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Abstract

Image analysis using spatial model checking is a relatively recent approach that has promising
applications in the medical field. We investigated whether it is possible to verify spatial proper-
ties using the mCRL2 toolset, which was built to verify concurrent systems and protocols. This
was achieved by translating Spatial Logic for Closure Spaces (SLCS) formulae to µ-calculus
formulae, proving this translation is correct, and by creating a script that associates an mCRL2
specification with an image. As mCRL2 only verifies properties on an initial state, which would
correspond to a single pixel, a proof-of-concept implementation was subsequently created that
utilizes the mCRL2 toolset to mark every pixel that satisfies a spatial property.
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Chapter 1

Introduction

Developing software that always behaves according to its requirements is notoriously hard.
Especially for systems with many components, their complexity grows quickly and verifying
behaviour by hand becomes an infeasible process. A manually constructed testing suite to
check system properties can contain mistakes, or miss rare circumstances that cause systems to
behave unexpectedly because there are simply too many possibilities to inspect. Also, the defects
that arise from a lack of verification can have disastrous consequences in critical applications.

Model checking aims to solve many of these challenges by automatically verifying properties
on systems, based on formal and mathematically sound languages. This process provides guar-
antees that other approaches may not give, and is able to uncover faults in an earlier design
stage.

Generally, applying model checking to a system requires a number of components. First, a model
M contains an abstraction of a system that captures all possible behaviour. To help describe
models accurately, they are often described using a formal specification language. We then
wish to check whether this model satisfies a certain property Φ, which is formulated in a logic
language. An associated model checker algorithmically attempts to validate the satisfaction of
Φ in the model M, either for some initial state x, or the entirety of M. The former is often
denoted as M, x |= Φ.

Model checking classically focussed on concurrent systems and protocols, and this field has
seen a lot of development over the years [2]. Recent work includes the application of model
checkers to industrial multi-agent systems [9], and the scheduling of wireless sensor and actuator
networks [16]. However, investigating the spatial aspects of systems or objects with similar
methodologies is a relatively recent development in Model Checking. Using models that have
their basis in topology, properties such as nearness and reachability can be constructed and
verified.

The medical field provides ample relevant applications to spatial analysis. Evaluating magnetic
resonance images (MRI) is one of them. Approaching image segmentation from the model-
checking field has lately been researched by Buonamici et al [5] and was also the main motivation
for this thesis. Currently, machine learning applications are one of the most popular techniques
to automate the detection and segmentation of tumours in images. While these applications
have been shown to be comparable or better than experts [7], one of the challenges for these
kinds of methods is the large variability between the images that different MRI scanners produce.
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CHAPTER 1. INTRODUCTION 3

Also, the segmentation of MRI images relies on the relative intensity of greyscale belonging to
tumours and surrounding tissue, which can be more difficult to process due to noise, and the
low contrast between tumour core and surrounding fluid buildup [17]. While model checking
does not inherently solve these challenges, it may help medical specialists with another challenge
that machine learning introduced, namely the explainability of these automated methods. As
Artificial Intelligence algorithms are often viewed as a black box, a specialist may wonder how
an application came to the conclusion that certain regions of an MRI image are marked. An
approach that builds upon a logic language potentially makes more sense to a specialist; their
thought process during manual marking can be written as human-readable logic formulae and
subsequently executed by a model checker.

The fragment of spatial logic proposed in [5] to perform medical analysis is the Spatial Logic
for Closure Spaces (SLCS). This logic includes two spatial operators: a near operator N
representing a single step modality, and a surrounded operator S , which in practice shows
some similarity to the ‘until’ operator in temporal logics. A point satisfies the formula Φ1 S Φ2,
if it satisfies some property Φ1 and cannot reach a point where neither Φ1 nor Φ2 hold without
passing a point satisfying Φ2 first. This implies the point is surrounded by Φ2.

As development of model checking on concurrent systems has been continuing for multiple
decades, verifying complex properties has become more and more efficient. One of the toolsets
that accomplishes this is mCRL2 [4], which has its own formal specification language to model
concurrent systems, and contains multiple tools to verify their properties. We therefore won-
dered whether it is possible to verify spatial properties with mCRL2 as well, and whether this
is a viable approach. This leads directly to the main research question of this thesis: can we do
spatial model checking using the mCRL2 toolset?

We identified a number of steps that are needed to address this problem. Namely, both the
specification and logic language that the mCRL2 toolset utilizes are different from an image
specification and spatial logic SLCS. Therefore, this thesis presents a method to transform an
image to a mCRL2 specification, and provides a correctness proof for a translation between
SLCS- and µ-calculus formula.

The type of solution the mCRL2 toolset provides introduces the final problem that this thesis
aims to solve. Namely, mCRL2 will return a Boolean stating whether a property holds or not
for the initial state of the system, while we wish to find all pixels satisfying this property.
We found that, by adding a prefix to the µ-calculus formulae, the mCRL2 toolset latently
maintains the satisfiability of every pixel. The complete solution is combined in a proof of
concept implementation that, given an image and SLCS formula, returns a copy of the image
where every pixel that satisfies the formula is marked. This implementation was written in
Python, and can be found in the spatial mcrl2 GitHub repository1.

The underlying logic to write down properties in mCRL2 is based on the modal µ-calculus, which
itself is an extension of Hennessy-Milner Logic with fixed point operators. While the recursive
nature of fixed points introduces a new layer of complexity, it allows for the verification of much
more interesting properties involving fairness, termination and reaching states ‘infinitely often’.
Fixed points seem to be suitable for dealing with spatial properties, as the evaluation of fixed
points has much in common with flood filling algorithms that are used in spatial model checkers.
For a comprehensive tutorial of the capabilities of mCRL2, see [13].

The outline of this thesis is as follows: Chapter 2 contains the necessary preliminaries of both

1https://github.com/FlorisZeven/spatial mcrl2/

https://github.com/FlorisZeven/spatial_mcrl2/
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SLCS and the modal µ-calculus, introducing their syntaxes and semantics. We continue by
presenting a translation between SLCS and the modal µ-calculus, and proving its correctness,
in Chapter 3. This is achieved by first creating an Labelled Transition System (LTS) associated
with the model of an image, and then, using this transformation, show there exists a µ-calculus
formula that correctly represents each SLCS operator. In Chapter 4 we show how this translation
leads to an implementation that verifies spatial properties on an image using the mCRL2 toolset.
Finally, we conclude our work and suggest how this proof of concept could be improved and
expanded upon in Chapter 5.



Chapter 2

Preliminaries

This chapter will cover the background material and definitions that will be used throughout
this thesis. Some examples will be given to aid the understanding of these concepts. Definitions
and examples are both closed by the / symbol.

We start out with the introduction of spatial logics in Section 2.1, delving into the syntax and
semantics of a specific logic that deals with closure spaces. Subsequently, we describe the syntax
and semantics for the modal µ-calculus in Section 2.2.

2.1 Spatial logic

A mathematical basis to reason about spaces, such as images and the pixels they consist of, is
very useful. Approaching images in this way will aid the translation from spatial logic formulae
to the modal µ-calculus, used in mCRL2, as we can formally capture logical operations. We
begin with a structure that defines a space. Closure spaces generalize the more familiar concept
of topological spaces. The ideas introduced here are explored and defined in more detail by
Galton [12]. This section will provide the relevant ideas of closure spaces from Galton by
mostly following the approach and notation by Buonamici et al. [5].

Definition 2.1. A closure space is a pair (X, C), where X represents a non-empty set of
points, and C : 2X → 2X is a function denoting the closure of this point set, which for all
subsets Y, Y1, Y2 ⊆ X satisfies:

1. C(∅) = ∅
2. Y ⊆ C(Y )
3. C(Y1 ∪ Y2) = C(Y1) ∪ C(Y2) /

In contrast to topological spaces, the idempotence axiom C(C(Y )) = C(Y ) is not included.
Topological spaces are in fact a subclass of closure spaces as defined in Definition 2.1. We
now restrict the closure space to obtain another subclass. Namely, we consider closure spaces
generated by binary relations on the set of points to be quasi-discrete closure spaces. In par-
ticular, let R ⊆ X ×X be a binary relation on X, then this gives rise to a new closure function
CR : 2X → 2X , where CR(Y ) = Y ∪ {x | ∃y ∈ Y. yRx}. This function satisfies the axioms in
Definition 2.1, meaning the pair (X, CR) is also a closure space. The notion that a closure space
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CHAPTER 2. PRELIMINARIES 6

is quasi-discrete iff the above relation exists was proven by Galton [12], located in Theorem 1.

A graph is a prime example of a quasi-discrete closure space. Namely, the relation R is the
set of edges, and every vertex is a point x ∈ X. This can directly be applied to the idea of an
image; every pixel of an image is a vertex in a graph, and a connection between pixels is an
edge. We say xRy holds if there exists an edge between pixels x and y. This means the closure
of x includes itself and all adjacent pixels that share an edge with x. What adjacency means
here may differ depending on what we want to model, but for now we assume the Von Neumann
or ‘orthogonal’ adjacency relation applies. In other words, pixels of an image sharing a vertical
or horizontal edge with pixel x are an element of CR(x).

We now define the notion of paths. To simplify the proofs further on in this paper, we define
a path as a sequence of points that are related under R, as opposed to a topological definition
that incorporates a continuous function equipped with the closure operator.

Definition 2.2. A path π in (X, CR) is a sequence x1 . . . xn such that for all indices 0 ≤ i ≤
n − 1, it holds that xi R xi+1. From now on we write π(i) to denote the point at index i on
path π. /

Pixels are not merely objects, they often contain information. In practice, pixels either consist of
three parameters that contain the intensity of each RGB colour component, or a single intensity
parameter in the case of greyscale images. Therefore, we extend the quasi-discrete closure space
with a valuation function that returns the value of a specific atomic predicate of a pixel, taken
from a set P of atomic predicates. This leads to the complete definition of a closure model:

Definition 2.3. A closure model M is a tuple ((X, CR),V), where (X, CR) is a quasi-discrete
closure space, and valuation V : P → 2X denotes the set of points where some atomic predicate
p holds. /

This closure model will interpret the operators of a fragment of the Spatial Logic for Closure
Spaces (SLCS). These operators include the common negation and conjunction, but also two
new operators specifically designed to tell meaningful properties of a space, namely N for near
and S for surrounded. We proceed by giving the syntax of this spatial logic:

Definition 2.4. The set of SLCS formulae is defined, given a set of atomic predicates p, q, r... ∈
P , by the following grammar:

Φ := p | ¬Φ | Φ1 ∧ Φ2 | N Φ | Φ1 S Φ2

We also define the logical operator ∨ for disjunction as:

Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2) /

As is conventional in the model checking field, the notion of satisfaction is used to show that
some formula Φ is satisfied in a particular state x in model M, written as M, x |= Φ. Let us
now give meaning to the defined operators by providing their semantics:

Definition 2.5. Satisfaction M, x |= Φ of point x ∈ X in some modelM = ((X, CR),V) with
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predicates p ∈ P is defined by induction on the structure of formulae, as follows:

M, x |= p ⇔ x ∈ V(p)

M, x |= ¬Φ ⇔ M, x 6|= Φ

M, x |= Φ1 ∧ Φ2 ⇔ M, x |= Φ1 and M, x |= Φ2

M, x |= N Φ ⇔ x ∈ CR({y | M, y |= Φ})
M, x |= Φ1 S Φ2 ⇔ M, x |= Φ1 and ∀π, i :

π(0) = x and M, π(i) |= ¬Φ1

implies ∃j such that 0 < j ≤ i
and M, π(j) |= Φ2 /

As an atomic predicate contains the information of a point x, a model satisfies some atomic
predicate if it exists in the set of points that has this predicate. The negation and conjunction
interpretations are straightforward, but what exactly constitutes near or surrounded is less
trivial. Formula N Φ is satisfied in a point x when there exists at least one point y satisfying Φ
whose closure includes x. This can therefore be x itself, or the set of points that are R-related
to x. Intuitively one can consider the near operator to mean ‘a single step’ away from Φ. The
interpretation of surrounded, written as Φ1 S Φ2, can be viewed as there being ‘no way out’
of an area satisfying Φ1 without first passing a point where Φ2 holds. Formally, this property
holds for some point x if it satisfies Φ1, and for every path from x to some other point y where
Φ1 does not hold, we must have seen a point that satisfies Φ2 somewhere on the path from x
to y.

The following example aims to highlight the key aspects of the definitions introduced so far:

Example 2.6. LetM1 = ((X, CR),V) be a closure model. Figure 1a shows a visual represen-
tation ofM1, where each pixel is a point x ∈ X that has a single atomic predicate representing
their colour c ∈ {yellow, pink, blue}. For example, V(blue) would return the only blue pixel.
The closure of this blue pixel is highlighted in Figure 1b with green pixels; it contains itself and
its neighbours. The grid in Figure 1c highlights the pixels for which the property (¬ N yellow)
holds. All these pixels cannot reach a yellow pixel in a single step. Finally, figure 1d verifies
the property (yellow S pink). This does not hold for the group of three yellow pixels on the
right, as starting from the blue pixel, we can reach one of these yellow pixels without passing a
pink pixel first. Note that the border of our image does not ‘break’ the surrounding property,
as paths outside the border simply do not exist. The group of yellow pixels in the top left are
therefore still surrounded by pink.

(a) input grid (b) CR(blue) (c) ¬ N yellow (d) yellow S pink

Figure 1: Example 2D grid
/
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2.2 The modal-µ calculus

This section will introduce the syntax and semantics of the modal µ-calculus used throughout
this paper. When referring to modal µ-calculus formulae, we often abbreviate to µ-calculus
formulae. For more information, the reader is directed to work by Bradfield [3] and Demri et
al [8], which explains these definitions in more detail.

The underlying model of the modal µ-calculus are Labelled Transition Systems (LTS), hence
we begin this section by giving its definition:

Definition 2.7. A Labelled Transition System is a tuple L = (S,Act,→), where S denotes the
set of states, Act a finite set of actions, and→ ⊆ S×Act×S the labelled transition relation. /

Symbols s, t, u are used to denote states, while we use symbols a, b, c to denote actions. A
transition (s, a, t) ∈ → is typically written as s

a−→ t, namely the transition from state s to t
under action a. We then move to the syntax of the modal µ-calculus:

Definition 2.8. The set of µ-calculus formulae is defined, given a set of variables X,Y, Z ... ∈
V ar and a set of actions Act, by the following grammar:

Φ := X | ¬Φ | Φ1 ∧ Φ2 | [A]Φ | νX.(Φ)

Here, A is some subset of Act, and variable X is an element of V ar. An occurrence of variable
X is bound when it is in the scope of a fixed point νX, an occurrence of X is free if it is
not bound. Fixed point νX.(Φ) is restricted such that any free occurrence of X in Φ must be
within the scope of an even number of negations. The scope of νX.(Φ) is often delimited by
parentheses for the sake of clarity, and parentheses are also used to resolve any ambiguity in the
precedence of operations. We also define the logical operator ∨ for disjunction, and the duals
of [A]Φ and νX.(Φ) as:

Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2)

〈A〉Φ ≡ ¬[A]¬Φ

µX.(Φ) ≡ ¬νX.(¬Φ)[¬X/X]

Note that [Ψ/X] represents the substitution of free variables X with Ψ, thus only substituting
when a variable is not bound to any fixed point variable other than X. We also assume that in
a formula, there exist no occurrences of operators µ and ν that bind a variable with the same
name. Finally, we define the Boolean constant true = νX.(X) and false = ¬true. /

This syntax allows us to verify an enormous amount of surprisingly complex properties of an
LTS. The Boolean constants are used to represent all states and no state respectively. Formulae
can be negated and put in conjunction using their corresponding logical operators.

Some clarification for the other operators is then appropriate. Essentially, the box modality
[{a}]Φ states that formula Φ must hold after taking an a-action. The diamond modality is
different in the sense that it captures possibility; 〈{a}〉Φ tells us that there exists an a-action
after which Φ holds. In practice these modalities are often combined with the Boolean constants.
For example, formula [a]false expresses that an a-action is not possible; after any a we reach
the property false, which holds in no state, and thus implies that any a action is impossible
to perform. Conversely, the formula 〈a〉true verifies whether an a-action is possible, since this
would lead to property true, which holds in all states. Finally, least fixed points (µX.(Φ))
are often constructed to model an eventuality, while greatest fixed points (νX.(Φ)) are useful



CHAPTER 2. PRELIMINARIES 9

when defining guarantees. Particularly common properties involving fixed points are ‘on some
path consisting of only a-actions, Φ must hold at some point’, depicted by µX.(Φ∨ 〈a〉X); and
similarly ‘on all a-paths, Φ must hold’, depicted by νX.(Φ ∧ [a]X).

To give a formal meaning to these properties in the context of an LTS, we now move to the
semantics of the modal µ-calculus:

Definition 2.9. Let L = (S,Act,→) be an LTS, then a variable assignment for S′ is a
valuation V : V ar → 2S assigning subsets S′ ∈ S to variables X ∈ V ar as follows:

V[X := S′](Y ) :=

{
S′ if X = Y

V(Y ) otherwise

/

Definition 2.10. Let L = (S,Act,→) be an LTS, and V be a variable assignment with regards
to subsets S′. Denoting the set of states in L satisfying formula Φ relative to V is written as
‖Φ‖LV , where we usually omit L if it is clear from the context. This is inductively defined as:

‖X‖V = V(X)

‖¬Φ‖V = S − ‖Φ‖V
‖Φ1 ∧ Φ2‖V = ‖Φ1‖V ∩ ‖Φ2‖V
‖Φ1 ∨ Φ2‖V = ‖Φ1‖V ∪ ‖Φ2‖V
‖[a]Φ‖V = {s | ∀t : s

a−→ t⇒ t ∈ ‖Φ‖V}

‖〈a〉Φ‖V = {s | ∃t : s
a−→ t ∧ t ∈ ‖Φ‖V}

‖νX.(Φ)‖V =
⋃
{S′ ⊆ S | S′ ⊆ ‖Φ‖V[X:=S′]}

‖µX.(Φ)‖V =
⋂
{S′ ⊆ S | ‖Φ‖V[X:=S′] ⊆ S

′}

From this we also derive the meaning of Boolean constants true and false:

‖true‖V = ‖νX.(X)‖V = S

‖false‖V = S − ‖true‖V = S − S = ∅ /

As an addition to this, we define the satisfiability of Φ for a single point, and some equivalences
that follow from this definition. This will be helpful when comparing the satisfaction relations
of both closure spaces in Definition 2.5 and the modal µ-calculus.

Definition 2.11. Given a modal µ-calculus-model, consisting of a labelled transition system
L and a formula Φ. If x is a state in L and an element of ‖Φ‖V , then we write L, x |= Φ, or in
other words, ’x satisfies Φ’. /

Proposition 2.12. The following equivalences hold for the binary relation L, x |= Φ:

L,x |= ¬Φ ⇔ L, x 6|= Φ

L,x |= Φ1 ∧ Φ2 ⇔ L, x |= Φ1 and L, x |= Φ2

L,x |= Φ1 ∨ Φ2 ⇔ L, x |= Φ1 or L, x |= Φ2

L,x |= [a]Φ ⇔ ∀y : x
a−→ y ⇒ L, y |= Φ

L,x |= 〈a〉Φ ⇔ ∃y : x
a−→ y ∧ L, y |= Φ
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Proof. All bi-equivalences directly follow from applying Definition 2.11 to the semantics of
Definition 2.10.

By far the most complex semantics are introduced by the fixed point operators. Let us therefore
go into some more detail about their evaluation. It is useful to think of fixed points as sets of
states; the smallest and largest subsets S′ ⊆ S that satisfy the equation S′ = ‖Φ‖V[X:=S′] are
the solutions for least and greatest fixed points respectively. To find these sets of states in the
case of least fixed points, we start with substituting all free occurrences of X within the body
of the fixed point for the empty set. Then, using the variable assignment, we keep substituting
X for new subsets until this set no longer grows, meaning it satisfies the equation X = X. In
the case of greatest fixed points we do the opposite. We begin its evaluation by substituting X
for the full set S, and continuously remove states from S until it stabilizes.

The notion of fixed point approximants describes this evaluation process. The annotation of a
fixed point with an ordinal number α with some limit ω will provide us with a finite amount of
new formulae. As with our intuition, the zeroth approximant of a least fixed point is the empty
set ∅, and full set S for greatest fixed points. Furthermore, we define a successor ordinal α+ 1
that substitutes each occurrence of X with the previous approximation.

Definition 2.13. Let σ ∈ {µ, ν}, and α an ordinal with limit ω. The meaning of ‖σαX.(Φ)‖V ,
is given by:

‖µ0X.(Φ)‖V = ∅
‖ν0X.(Φ)‖V = S

‖σα+1X.(Φ)‖V = ‖Φ‖V[X:=T ], where T = ‖σαX.(Φ)‖V
‖µωX.(Φ)‖V =

⋃
α<ω

‖µαX.(Φ)‖

‖νωX.(Φ)‖V =
⋂
α<ω

‖µαX.(Φ)‖ /

To give an example, take formula µX.(〈a〉X ∨ 〈b〉true), which in natural language states that
‘there exists a path of zero or more a actions towards a point where we can perform a b action’.
In the first approximation of this fixed point, all occurrences of variable X will be substituted
for the empty set, meaning we evaluate (〈a〉∅ ∨ 〈b〉true). This gives us all states that have
some a-action towards the empty set (implying all states with an outgoing a-action), and take
the union with states having an outgoing b-action. We then build the next approximation by
substituting X for this set, hence 〈a〉X returns all states that can perform an a-action towards
X. The second approximation will therefore consist of states that can perform an a-action to a
state that can do a b-action. One can see that, as we keep iterating, this gives rise to a set of
states that can perform zero or more a-actions until a b-action is taken. Eventually this set of
states no longer grows, and we return the set of the final approximation as the solution to our
fixed point.

Similarly, formula νX.([a]X ∧ 〈b〉true) expresses ‘on all paths intermediate state’. The first
approximation substitutes all occurrences of X for the full set S, and we end up with the states
that are able to perform an a-action (since all states satisfy being in S), intersected with states
that are able to perform a b-action. This facilitates the restriction on S; at some point X does
not become smaller, and we have found our solution.

In Definition 2.8 we mentioned that any free occurrence of X in Φ must be within the scope
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of an even number of negations. This is important, because blindly constructing formulae
with fixed points can lead to properties that have no meaning. More specifically, there only
exists a solution to a formula if any free occurrence of X in the body of fixed point µX.(Φ) or
νX.(Φ) is in the scope of an even number of negations. The easiest way to understand why
is by taking the simple formula µX.(¬X), where the occurrence of X is preceded by a single
negation. The zeroth approximation of X is the empty set, meaning its first approximation
will be its complement: the full set S. The next approximation will then be the empty set
again, and this repeats infinitely often. Clearly we will never obtain a solution, as it is not
possible that X equals its complement. Let us therefore state the definition of a ‘correct’ modal
µ-calculus formula:

Definition 2.14. A modal µ-calculus formula Φ is correct if and only if, for all subformulae
of Φ of the form µX.(Φ′) or νX.(Φ′), all free occurrences of X in the body of Φ′ are positive, or
in other words, occur within the scope of an even number of negations. /

From here on, we assume all modal µ-calculus-formulae mentioned are correct. One could argue
that negation can then only be applied to variables. However, we will still see formulae where
negation is applied to other operators. This is possible as long as the original formula is correct.
Using the dualities in Definition 2.8, we can always rewrite the formula by pushing negations
inwards to the point where they only apply to free variables, and the formula remains correct.

Take formula ¬νX.(P ∧¬〈a〉¬X) as an example of this, where P is a variable representing some
arbitrary property. This formula is correct as negation is applied twice to the occurrence of X
in the body of its corresponding fixed point. We can rewrite this formula as follows:

¬νX.(P ∧ ¬〈a〉¬X) = µX.(¬(P ∧ ¬〈a〉X))

= µX.(¬P ∨ ¬¬〈a〉X)

= µX.(¬P ∨ 〈a〉X)

Variable X remains in the scope of an even number of negations, because negation is only
applied to variable P .

It has been shown that monotonicity property is satisfied for all correct µ-calculus formulae,
which is in fact a requirement to have solutions to fixed point formulae in the first place. We
do not repeat this proof but refer the reader to Lemma 8.1.10 in the book by Demri et al [8].

Lemma 2.15. Let Φ be a correct modal-µ formula and let FΦ : 2S → 2S be a function
mapping subsets to subsets, then for any LTS L and valuation V, the map S′ 7→ ‖Φ‖V[X:=S′] is
monotone with respect to ⊆.

We finish this section with an example of a labelled transition system and some modal µ-
calculus-formulae that apply to it.

Example 2.16. Consider the simple LTS L1 below:

s1 s2b

b

a

Figure 2: Example LTS L1

Let us verify which states in L1 satisfy certain µ-calculus formulae. Formula 〈a〉true is satisfied
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in state s2, since it has an outgoing a-transition. Similarly, [b]false is also only satisfied in state
s2 as it has no outgoing b-transition.

Fixed point formula µX.(〈b〉X ∨ [b]false) tells us that there is always some path consisting of
only b-transitions that lead to a state where we can no longer perform a b-transition. Clearly
s2 has no outgoing b-transition, and from s1 we can always take a b-transition that leads to s2.
Hence this formula is true in all states. /



Chapter 3

A translation from SLCS- to
modal-µ calculus formulae

This chapter works towards a formal translation from SLCS- to µ-calculus formulae. As the
mCRL2 toolset verifies specifications using the modal µ-calculus, a proof showing that each
operator of SLCS has a µ-calculus formula that represents the exact same property is imperative.

We approach this problem in a few steps. In Section 3.1, it is shown how a Labelled Transition
System (LTS) can be constructed from the closure model of an image. Then, we describe
the translation in Section 3.2, and prove that all resulting µ-calculus formulae conform to its
syntax. To prove the correctness of the translation, we first characterize the µ-calculus formula
for surrounded operator in Section 3.3, and conclude the chapter by combining these findings
to form the correctness proof in Section 3.4.

3.1 An LTS associated with a quasi-discrete closure space

When we observe the closure model of SLCS and the modal µ-calculus model, it is clear they
are not directly comparable. Namely, SLCS is defined on a quasi-discrete closure space where
points are related using closure operation R, while the modal µ-calculus model is defined in
the context of an LTS. Also, the valuation function V in SLCS is not directly defined in such a
transition system. This subsection deals with the creation of an LTS that is associated with a
quasi-discrete closure space. This will aid the translation that we set out to make.

Definition 3.1. Given a closure model M = ((X, CR),V), we define an LTS associated with
M as L = (S,Act,→) such that S = X, and Act = P ∪ {R}. Finally, → is the least relation

such that x
R−→ y if and only if x ∈ CR(y), and x

p−→ x if and only if x ∈ V(p). /

Intuitively, the idea behind this transformation is as follows: every point inM becomes a state
in L, and atomic predicates of M become actions of L. We represent the binary relation R
as transitions between two points in L under action R. By creating self-loops for each atomic
predicate p ∈ P that holds in some state x, we effectively replace the valuation function V(p)
with the possibility of a p-transition.

13
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This approach also ensures we can also define paths in Definition 2.2 as sequences of R-
transitions.

Lemma 3.2. There exists a sequence of transitions x0
R−→ x1

R−→ ...
R−→ xn in the LTS L

associated with quasi-discrete closure space M iff there exists a path π from point x0 to xn in
M.

Proof. (⇒) From Definition 2.2 it follows there exist relations xi R xi+1 for all indices 0 ≤
i ≤ n− 1 and n ≥ 1. Hence, point xi ∈ CR(xi+1) for all i. By Definition 3.1 we then have

transitions xi
R−→ xi+1 for all i, which gives rise to the sequence of transitions.

(⇐) By Definition 3.1, each transition xi
R−→ xi+1 in the sequence only exists in L if xi ∈

CR(xi+1). Hence, since the sequence ranges from point x0 to xn, by Definition 2.2 the path π
from x0 to xn exists in M.

Note that index π(i) of a path in M corresponds to the point xi of a transition sequence in
L. Furthermore, as R is symmetric, for every transition sequence from x0 to xn, there is also a
sequence from xn to x0.

3.2 Translating SLCS formulae to modal µ-calculus formulae

With the transformation of Section 3.1 in place, we define a translation TSLCS→µ, which we
shorten to T from now on. We observe that this translation is not minimal; by this we mean
that rewriting the surrounded formula to one where negation is only applied to variable symbols
is possible, but it would be less intuitive to see how it constitutes the properties of surrounded.

Definition 3.3. We define the translation T of SLCS formulae to modal µ-calculus formulae
as follows:

atomic predicate: T (p) = 〈p〉true
negation: T (¬Φ) = ¬T (Φ)

conjunction: T (Φ1 ∧ Φ2) = T (Φ1) ∧ T (Φ2)

near: T ( N Φ) = 〈R〉T (Φ)

surrounded: T (Φ1 S Φ2) = T (Φ1) ∧ ¬µX.(
¬(T (Φ1) ∨ T (Φ2)) ∨
(T (Φ1) ∧ 〈R〉X)

) /

Informally, the translation can be explained as follows:

If point x has some atomic proposition p, this is represented as the possibility of performing
action p in the associated LTS. If p can be done in x, the atomic proposition holds. Negation
and conjunction connectives behave as expected.

For a point to be ‘near’ Φ in a closure model, its modal-µ equivalent is seen as reaching a state
satisfying the translation of Φ in a single step, represented by 〈R〉. Because of how R is defined
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in Definition 3.1, it is possible to transition to itself, or adjacent states. After taking action R,
formula T (Φ) can be checked appropriately.

The surrounded operator is more involved. Focusing on the least fixed point in the formula
first, we aim to find all states where neither T (Φ1) nor T (Φ2) hold that can be reached using
only R transitions to states where T (Φ1) holds. We take the complement of these states by
negating the fixed point, and then intersecting with all states where T (Φ1) hold, leaving us
with the states where T (Φ1) holds and that cannot reach any state satisfying neither T (Φ1) nor
T (Φ2) without first passing a state satisfying T (Φ2). Therefore, these states are surrounded by
property T (Φ2). The approach for this translation was inspired by Buonamici et al [5], whose
algorithm in their tooling verifies the same surrounded property.

It is crucial that our translation T only produces modal µ-calculus formulae that are correct.

Lemma 3.4. If Φ is a spatial logic formula, then T (Φ) is a correct modal µ-calculus formula.

Proof. We prove this property by induction on the structure of Φ.

A formula T (Φ) is correct iff, for all subformulae of the form µX.(Φ′) or νX.(Φ′), all free
occurrences of X in the body of Φ′ occur within the scope of an even number of negations.

Our only base case is given by atomic propositions. Let Ψ = p, then the resulting modal-µ
formula T (Ψ) is T (p), which equals 〈p〉true. This formula contains the fixed point µX.(X) by
the definition of true. However, no negation is applied to X in the body of µ, showing that
T (p) is correct.

Take two arbitrary spatial logic formulae Φ1 and Φ2, then we assume T (Φ1) and T (Φ2) are
correct modal-µ formulae. (IH)

Let Ψ = ¬Φ1. By Definition 3.3 the translation of T (¬Φ1) equals ¬T (Φ1). Since this negation
is not applied to free variables X in the body of fixed points in our translation, meaning T (Φ1)
is never X, and we assumed by IH that T (Φ1) is a correct formula, formula ¬T (Φ1) is also
correct.

Let Ψ = Φ1 ∧ Φ2. Then, T (Ψ) = T (Φ1 ∧ Φ2), which by Definition 3.3 equals T (Φ1) ∧ T (Φ2).
We assumed T (Φ1) and T (Φ2) to be correct formulae, hence their conjunction is also correct as
this operator does not introduce negations nor fixed points.

Let Ψ = N Φ1. Then, T (Ψ) = T ( N Φ1), which by Definition 3.3 equals 〈R〉T (Φ1). We
assumed T (Φ1) to be a correct formula. The diamond modality does not introduce a fixed
point, thus 〈R〉T (Φ1) is also a correct formula.

Finally, let Ψ = Φ1 S Φ2. Then T (Ψ) = T (Φ1 S Φ2), which by Definition 3.3 equals:

T (Φ1 S Φ2) = T (Φ1) ∧ ¬µX.(
¬(T (Φ1) ∨ T (Φ2)) ∨
(T (Φ1) ∧ 〈R〉X)

)

We assumed T (Φ1) is a correct formula, thus the only relevant subformula in T (Φ1)∧¬µX.(ϑ)
which remains to be proven is µX.(ϑ), where ϑ represents the body of the fixed point above.
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This implies we must show that all free occurrences of X in ϑ are in the scope of an even number
of negations, or, in other words, are positive.

Let us first look at the instances of T (Φ1) and T (Φ2) in ϑ. By our translation in Definition 3.3,
there clearly is only one possibility where T (Φ1) or T (Φ2) in ϑ contains an occurrence of X,
namely when the corresponding spatial logics formulae Φ1 or Φ2 contained a S operator.
However, these occurrences of X will then be bound to the fixed point with the same name
induced by the translation of this S operator. Hence, there are no free occurrences of X in all
subformulae T (Φ1) or T (Φ2) in ϑ. From this we can also conclude that the entire subformula
¬(T (Φ1) ∨ T (Φ2)) contains no free occurrences of X.

The only occurrence of X that then remains in ϑ is free and positive. The diamond modality,
conjunction and disjunction operators applied will give rise to zero (in the case of diamond and
conjunction) or two (in the case of disjunction) negations. It is therefore clear that all free
occurrences of X in µX.(ϑ) will remain positive. Since this is what we set out to prove, we
conclude the entire formula given by T (Φ1 S Φ2) is correct.

As we have handled all cases of the structure of Φ, this finishes the proof.

3.3 Correct characterization of a fixed point formula related to
surrounded

In Subsection 3.4 the correctness proof of translation T will be given. However, this proof will
be easier to follow if the fixed point formula in the surrounded case is characterized as a set of
states that satisfies certain properties. This subsection is therefore about the subformula that
is exactly the least fixed point in the translation of T (Φ1 S Φ2). The approach used to show
correctness is heavily inspired by the book ‘Reactive Systems’ by Aceto, Ingolfsdottir, Larsen
and Srba [1], with one difference being that we use approximants to simplify our proofs.

To achieve our characterization we first denote the following shorthand notation for the opera-
tors of the box- and diamond modalities, where [·a·], 〈·a·〉 : 2S → 2S , as:

‖[a]Φ‖V = [·a·]‖Φ‖V = {s | ∀t : s
a−→ t⇒ t ∈ ‖Φ‖V}

‖〈a〉Φ‖V = 〈·a·〉‖Φ‖V = {s | ∃t : s
a−→ t ∧ t ∈ ‖Φ‖V}

Informally, the property that we wish our fixed point denotes is described as the set of states
that:

1. Neither satisfies T (Φ1) nor T (Φ2) ; or
2. there exists a sequence of states satisfying T (Φ1) with R-labelled transitions reaching a

state satisfying 1.

Let us call this set R, and define it formally as:

R = {s | ∃n : s = sn
R−→ sn−1

R−→ ...
R−→ s0 ∧ ∀i. 0 < i ≤ n : si ∈ ‖T (Φ1)‖

∧ s0 ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖))}

of which we note that n can be zero; R would then only consist of states satisfying neither
T (Φ1) nor T (Φ2).



CHAPTER 3. A TRANSLATION FROM SLCS- TO MODAL-µ CALCULUS FORMULAE17

We wish to show that this set is indeed characterized by the subformula that is the body of
the fixed point in the translation for surrounded, depicted in Definition 3.3. Let us give this
subformula the name µR and define it as:

µR = µX.(¬(T (Φ1) ∨ T (Φ2)) ∨ (T (Φ1) ∧ 〈R〉X))

In Lemma 3.4 we have shown this fixed point is a correct formula. We then obtain the semantics
of µR, written as ‖µR‖, using Definition 2.10:

‖µR‖ = ‖µX.(Ψ)‖, where ‖Ψ‖ = (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖) ∪ (‖T (Φ1)‖ ∩ 〈·R·〉X)

From this we also derive:

‖µX.(Ψ)‖ =
⋂
{S′ ⊆ S | ‖Ψ‖V[X:=S′] ⊆ S

′}, where

‖Ψ‖V[X:=S′] = (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)) ∪ (‖T (Φ1)‖ ∩ 〈·R·〉S′)

To prove that ‖µR‖ then correctly characterizes R, we wish to show that in any LTS associated
with a quasi-discrete closure space, they capture exactly the same states.

Lemma 3.5. In any LTS L = (S,Act,→), ‖µR‖ = R

Proof. We prove both subset inclusions individually:

(‖µR‖ ⊆ R)
It is then sufficient to show that ‖Ψ‖V[X:=R] ⊆ R, as, if this is true for one set of which the
intersection is taken, the solution of this intersection given by ‖µX.(Ψ)‖ must also be a subset
of R, which would imply ‖µR‖ ⊆ R.

We therefore continue this inclusion by proving ‖Ψ‖V[X:=R] ⊆ R, needing to show that for all
states t ∈ ‖Ψ‖V[X:=R], it holds that t ∈ R.

If t ∈ ‖Ψ‖V[X:=R], then by its definition, two cases arise. Either t ∈ (S− (‖T (Φ1)‖∪‖T (Φ2)‖)),
or both t ∈ ‖T (Φ1)‖ and t ∈ 〈·R·〉R. We show that for both cases, t ∈ R

In the case that t ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)), it immediately follows that t ∈ R by the
definition of R.

If t ∈ ‖T (Φ1)‖ and t ∈ 〈·R·〉R, the latter being equivalent to t ∈ {s | ∃u : s
R−→ u ∧ u ∈ R},

then, from the definition of R we can assume u is an element such that there exist tn, . . . , t0

where u = tn
R−→ tn−1

R−→ . . .
R−→ t0 and where ∀0 < i ≤ n, ti ∈ ‖T (Φ1)‖. But by t ∈ 〈·R·〉R, the

transition t
R−→ u must then exist, and since we know t ∈ ‖T (Φ1)‖, there exist tn+1, . . . , t0 such

that t = tn+1
R−→ tn

R−→ tn−1
R−→ . . .

R−→ t0 and ∀0 < i ≤ n+ 1, ti ∈ ‖T (Φ1)‖. From this it follows
that state t ∈ R, which is what we set out to prove.

(R ⊆ ‖µR‖)
We wish to show that for all states t ∈ R, it holds that t ∈ ‖µR‖. As ‖µR‖ is equivalent to
‖µX.(Ψ)‖, it is then sufficient to show that t ∈ ‖µαX.(Ψ)‖ for some fixed point approximation
α.

First note that by t ∈ R, there exist tn, . . . , t0 such that t = tn
R−→ tn−1

R−→ . . .
R−→ t0 where

∀0 < i ≤ n, ti ∈ ‖T (Φ1)‖ and t0 ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)).
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We show that tn ∈ ‖µn+1X.(Ψ)‖ by induction on n, the length of the transition sequence
between tn and t0.

Base: (i = 0) If the length of our transition sequences is 0, all states satisfy t0 ∈ (S −
(‖T (Φ1)‖ ∪ ‖T (Φ2)‖)). But the approximation ‖µ0+1X.(Ψ)‖ covers precisely that, as:

t ∈ ‖µ1X.(Ψ)‖ ⇔ t ∈ ‖Ψ‖V[X=µ0X.(Ψ)]

⇔ t ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)) ∪ (‖T (Φ1)‖ ∩ 〈·R·〉∅)
⇔ t ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖))

Step: (i > 0) We assume ti−1 ∈ ‖µiX.(Ψ)‖, and set out to prove that ti ∈ ‖µi+1X.(Ψ)‖.

We first expand ti ∈ ‖µi+1X.(Ψ)‖:

ti ∈ ‖µi+1X.(Ψ)‖ ⇔ ti ∈ ‖Ψ‖V[X:=‖µiX.(Ψ)‖]

⇔ ti ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)) ∪ (‖T (Φ1)‖ ∩ 〈·R·〉‖µiX.(Ψ)‖)

Suppose ti 6∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖)), it remains to show that ti ∈ ‖T (Φ1)‖ and ti ∈
〈·R·〉‖µiX.(Ψ)‖. The former already holds as we assumed ti ∈ R. By the same assumption

there exist ti, . . . , t0 such that ti
R−→ ti−1

R−→ . . .
R−→ t0. But then, there is a transition from ti

to ti−1, and since we assumed by our induction hypothesis that ti−1 ∈ ‖µiX.(Ψ)‖, it must hold
that ti ∈ 〈·R·〉‖µiX.(Ψ)‖, which finishes the step case.

By this induction proof we conclude all states t ∈ R are added in some approximation of
‖µX.(Ψ)‖, hence all states t ∈ ‖µR‖.

This proves the second inclusion and finishes the proof.

With Lemma 3.5 we conclude the section regarding the correct characterization of the fixed
point formula in the surrounded operator. We now know that the above fixed point formula
characterizes a set with a number of properties, which will be used in the correctness of our
translation.

3.4 Correctness of translation

The most important result of this chapter is the proof that our translation T from Definition 3.3
is correct. More specifically, if formulae Φ is satisfied in a point x in model M, then x satisfies
the translated modal µ-calculus formulae T (Φ) in the LTS L associated withM, and vice-versa.
Without further ado:

Theorem 3.6. Let M be a closure space, let L be its corresponding LTS

Then, M, x |= Φ⇔ L, x |= T (Φ) for all points x and for every SLCS formulae Φ.

Proof. We prove this using induction on the structure of Φ, considering Definition 3.3:
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atomic proposition:

We derive M, x |= p⇔ L, x |= T (p) as follows:

(⇒) Assume M, x |= p holds. Then, by Definition 2.5, x ∈ V(p). This means that by Defini-

tion 3.1, there exists a transition x
p−→ x in the LTS L corresponding to M. Since the property

true holds in all states, we have ∃y.x p−→ y ∧ L, y |= true. From Definition 2.12 we then get
L, x |= 〈p〉true = T (p), finishing the implication.
(⇐) Assume L, x |= T (p) = 〈p〉true by Definition 2.12. Then, we know there exists a p-labelled

transition from x. By Definition 3.1, the only p-transition in L is the transition x
p−→ x and by

the same definition this implies x ∈ V(p). If this holds, Definition 2.5 shows us that M, x |= p,
proving the implication.

Take spatial logic formulae Φ1 and Φ2 such thatM, x |= Φ1 andM, x |= Φ2. Then, we assume
L, x |= T (Φ1) and L, x |= T (Φ2) hold as our induction hypothesis (IH).

Negation:

We derive M, x |= ¬Φ1 ⇔ L, x |= T (¬Φ1) as follows:

M, x |= ¬Φ1 ⇔M, x 6|= Φ1 (by def: 2.5)

⇔ L, x 6|= T (Φ1) (by IH)

⇔ L, x |= ¬T (Φ1) (by def: 2.12)

⇔ L, x |= T (¬Φ1) (by def: 3.3)

Conjunction:

We derive M, x |= Φ1 ∧ Φ2 ⇔ L, x |= T (Φ1 ∧ Φ2) as follows:

M, x |= Φ1 ∧ Φ2 ⇔M, x |= Φ1 and M, x |= Φ2 (by def: 2.5)

⇔ L, x |= T (Φ1) and L, x |= T (Φ2) (by IH (2x))

⇔ L, x |= T (Φ1) ∧ T (Φ2) (by def: 2.12)

⇔ L, x |= T (Φ1 ∧ Φ2) (by def: 3.3)

Near:

We derive M, x |= N Φ1 ⇔ L, x |= T ( N Φ1) as follows:

M, x |= N Φ1 ⇔ x ∈ CR({y | M, y |= Φ1}) (by def 2.5)

⇔ ∃y : x
R−→ y ∧ L, y |= T (Φ1) (by def 3.1 and IH)

⇔ L, x |= 〈R〉T (Φ1) (by def: 2.12)

⇔ L, x |= T ( N Φ1) (by def: 3.3))

Surrounded:

We derive M, x |= Φ1 S Φ2 ⇔ L, x |= T (Φ1 S Φ2), proving both implications individually, as
follows:
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(⇒) Assume Φ1 S Φ2 is satisfied in a point x for a quasi-discrete closure spaceM, then we aim
to show its translation T (Φ1 S Φ2) is satisfied in x for the labelled transition system L that
corresponds to M.

We take from Definition 2.5 that, if M, x |= Φ1 S Φ2, then:

M, x |= Φ1 and ∀π, i :

π(0) = x and M, π(i) |= ¬Φ1

implies ∃j such that 0 < j ≤ i
and M, π(j) |= Φ2

(1)

and show, following translation T in Definition 3.3, that then x must satisfy modal µ-formula:

L, x |= T (Φ1) ∧ ¬µX.(
¬(T (Φ1) ∨ T (Φ2)) ∨
(T (Φ1) ∧ 〈R〉X)

)

(2)

which would imply that L, x |= T (Φ1 S Φ2).

The modal µ-formula consists of a conjunction. The left hand side simply states that L, x |=
T (Φ1), which follows immediately from (1) after applying the IH to M, x |= Φ1. Hence, after
applying Definition 2.12 to the negation sign before the fixed point, what remains to be shown
is:

L, x 6|= µX.(

¬(T (Φ1) ∨ T (Φ2)) ∨
(T (Φ1) ∧ 〈R〉X)

)

(3)

This is exactly the modal µ-formula defined by µR in Subsection 3.3. By Definition 2.11, it
then follows that x 6∈ ‖µR‖. In Lemma 3.5, we have shown that ‖µR‖ is characterized by the
set R. Therefore, what remains to be shown is x 6∈ R. We will use a proof by contradiction to
achieve this; first assuming x ∈ R, and then showing that the paths from x do not adhere to
the surrounded property given in (1).

First, consider the paths from x = π(0) to π(i) defined in (1). Applying the IH to π(0), and all
points π(i) and π(j), we get L, π(0) |= T (Φ1); L, π(i) |= ¬T (Φ1) and L, π(j) |= T (Φ2). Then,
Lemma 3.2 can be applied to the paths in our closure model from x0 to xj to xi, meaning path
indices π(0), π(i), π(j) in M correspond to points x0, xi, xj in L. This implies the following
transition sequences originating from x0 must exist in L:

∀i : x = x0
R−→ ...

R−→ xi and L, xi |= ¬T (Φ1)

implies ∃j such that 0 < j ≤ i
and L, xj |= T (Φ2)

(4)

In other words, for all sequences starting in x, before reaching a point satisfying ¬T (Φ1), we
must pass a point satisfying T (Φ2) first.

Recalling the definition of R from Section 3.3, we know:

x ∈ {x | ∃i : x = x0
R−→ x1

R−→ ...
R−→ xi−1

R−→ xi ∧ ∀j. 0 ≤ j < i : xj ∈ ‖T (Φ1)‖
∧ xi ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖))}
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Note that some indices of this definition have been renamed for the sake of clarity.

We now prove that, if x ∈ R, that this contradicts with the sequences in 4, no matter what
value i takes. Two cases are to be considered:

If i = 0, then x0 ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2‖)), meaning L, x0 |= ¬(T (Φ1) ∨ T (Φ2)) by Def-
inition 2.11 and Definition 2.12. This contradicts with the transition sequences in (4), as
L, x0 |= T (Φ1) must hold.

If i > 0, then there exist x0, . . . , xi such that x = x0
R−→ x1

R−→ ...
R−→ xi−1

R−→ xi and ∀j.0 ≤
j < i : xj ∈ ‖T (Φ1)‖ and xi ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2‖)). Without loss of generality, we
can choose the smallest value of i such that ∀j < i : L, xj |= T (Φ1). As xi satisfies neither
T (Φ1) nor T (Φ2), we know L, xi |= ¬T (Φ1). If this is the case, there must exist some xj on
the sequence from x0 to xi such that L, xj |= T (Φ2). However, from the definition of R, we
know ∀j. 0 ≤ j < i : L, xj |= T (Φ1), and L, xi |= ¬T (Φ2). Hence, there exists no xj such that
L, xj |= T (Φ2), which shows the contradiction with the transition sequences in (4).

This finishes the proof by contradiction, showing that x 6∈ ‖µR‖. Since this is what we set out
to prove, this finishes the implication.

(⇐) The implication from right to left will follow some parts of the proof above. We aim to
show that, assuming L, x |= T (Φ1 S Φ2), that then M, x |= Φ1 S Φ2.

Following translation T in Definition 3.3, if L, x |= T (Φ1 S Φ2) holds, this is equivalent to:

L, x |= T (Φ1) ∧ ¬µX.(
¬(T (Φ1) ∨ T (Φ2)) ∨
(T (Φ1) ∧ 〈R〉X)

)

(5)

and we aim to show that by Definition 2.5, this satisfies:

M, x |= Φ1 and ∀π, i :

π(0) = x and M, π(i) |= ¬Φ1

implies ∃j such that 0 < j ≤ i
and M, π(j) |= Φ2

(6)

The left-hand side of the conjunction in (6) immediately follows from applying the IH to L, x |=
T (Φ1), after which we achieve M, x |= Φ1. What then remains to be shown is the following:

∀π, i : π(0) = x and M, π(i) |= ¬Φ1

implies ∃j such that 0 < j ≤ i
and M, π(j) |= Φ2

(7)

As shown in the right implication proof at (4), by applying the IH and Lemma 3.2 to (7) we
achieve:

∀i : x = x0
R−→ ...

R−→ xi and L, xi |= ¬T (Φ1)

implies ∃j such that 0 < j ≤ i
and L, xj |= T (Φ2)

(8)

Furthermore, as the left-hand side of the conjunction formula in (5) has been shown, what
remains is the negation of the fixed point in the right-hand side. From the definition of µR in
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Section 3.3 this is equivalent to L, x 6|= µR after applying the negation implication in Defini-
tion 2.12. It follows by Definition 2.11 that x 6∈ ‖µR‖. By Lemma 3.5, this implies x 6∈ R.

We thus wish to show that (8) follows from x 6∈ R. This is achieved by proving the contraposi-
tive, we assume some arbitrary sequence starting in x does not satisfy (8), and show that this
implies x must be an element of R.

Assume ∀i : x = x0
R−→ ...

R−→ xi and L, xi |= ¬T (Φ1), but there exists no j such that 0 < j ≤ i
and L, xj |= T (Φ2). Then, L, xi |= ¬T (Φ2). From this and our assumption L, xi |= ¬T (Φ1), we
know L, xi |= ¬(T (Φ1) ∨ T (Φ2)) by applying Definition 2.12.

By definition we know L, x0 |= T (Φ1). Without loss of generality, we may then choose i such
that ∀j.0 ≤ j < i : L, xj |= T (Φ1).

If x ∈ R, the following must hold for x by the definition of R in Section 3.3:

x ∈ {x | ∃i : x = x0
R−→ x1

R−→ ...
R−→ xi−1

R−→ xi ∧ ∀j. 0 ≤ j < i : xj ∈ ‖T (Φ1)‖
∧ xi ∈ (S − (‖T (Φ1)‖ ∪ ‖T (Φ2)‖))}

(9)

In other words, there is some i that neither satisfies T (Φ1) nor T (Φ2) that can be reached from
x using only transitions to states satisfying T (Φ1). We can rewrite this to L, xi |= ¬(T (Φ1) ∨
T (Φ2)) and ∀j. 0 ≤ j < i : L, xj |= T (Φ1) by Definition 2.12. However, the transition sequence
that arose from our assumption exactly satisfies these conditions, and therefore x ∈ R. Since
this proves the contrapositive, we know (8) follows from x 6∈ R, which is what remained to be
proven, and hence proves the implication.

As we have covered all cases of our translation, this shows M, x |= Φ ⇔ L, x |= T (Φ) for all
points x and every SLCS formula Φ.



Chapter 4

Verifying spatial properties using
mCRL2

The mCRL2 toolset has been in development for several decades [15]. It implements even more
decades of theory, in order to verify behaviour of concurrent and distributed systems. These
systems consist of processes that are written down in the specification language of mCRL2, and
are verified using the modal µ-calculus. Typical questions that mCRL2 can answer are: ‘is my
system deadlock-free?’ or: ‘will every message that my buffer reads eventually be sent?’. These
properties are verified on the initial state of the system, as this allows for optimizations during
the verification process.

This chapter will describe the implementation that allows us to verify spatial properties using
mCRL2. To aid the understanding of this chapter, the full workflow is given in Figure 3, with
the data structures or concepts in blue, and the operations on them in orange. The scope of
mCRL2 with its relevant tools is shown. A model-checking problem in mCRL2 is tackled by
first creating a Linear Process Specification (LPS) from an mCRL2 specification using the tool
mcrl22lps. Then, a Parameterised Boolean Equation System (PBES) [14] is constructed from
the LPS and a µ-calculus formula encoding some property, by executing the tool lps2pbes.
Running pbessolve on this PBES returns whether or not the property is satisfied in the initial
state of the system.

Formalizing the goal of this chapter, we wish to use the mCRL2 toolset to verify all pixels in an
image I that satisfy a spatial property Φ. Because the types of systems that mCRL2 classically
verifies are quite different from images, we identified three main components outside the scope
of mCRL2 that are needed to perform spatial model checking:

First, we require an mCRL2 specification S that represents the image I. In Definition 3.1
we have seen that we can define a Labelled Transition System (LTS) from a closure model
of an image, which helps facilitate this transformation. As every mCRL2 specification has a
corresponding LTS, it is sufficient to create a specification whose implementation satisfies all
aspects of Lemma 3.1.

Furthermore, a spatial property Φ must be encoded as a µ-calculus formula T (Φ), such that
mCRL2 is able to verify it on a specification. We have shown in Chapter 3 that this is possible;
Theorem 3.6 proves every SLCS formula can be translated to a correct µ-calculus formula using
translation T .

23
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SLCS formula

µ-calculus formula

slcs2modalmu

Image

mCRL2 specification

mcrl22lps 
lps2pbes

PBES

pbessolve

local solution global solution

pbessolve_image

image2mcrl2

read debug output

mCRL2

add prefix
to formula

Figure 3: Diagram showing the process of spatial model checking in
mCRL2

Finally, there is a discrepancy between the type of solution mCRL2 provides, and the one
we wish to find. We mentioned that mCRL2 only verifies properties on the initial state of the
system, and this must be specifically encoded in the mCRL2 specification. Therefore, if we were
to directly verify T (Φ) on our specification S, we only know whether the initial state satisfies
spatial property Φ. In other words, it solves the local model checking problem of a system. This
is somewhat problematic for our application. Conventionally, spatial model checking answers
the global model checking problem; we wish to return every pixel of an image that satisfies a
given property, not just a single one. The dotted grey arrows in Figure 3 specify the additions
that allow us to get a global solution using the mCRL2 toolset. We found that the µ-calculus
formula T (Φ) can be adapted in such a way that, when the toolset is invoked, a solution to the
global model checking problem can be extracted from the output stream of pbessolve.

This workflow also contains a number of new scripts outside the mCRL2 scope, that together
form the implementation. These scripts will be explained throughout this chapter and can be
found in the spatial mcrl2 GitHub repository1.

This chapter is therefore outlined as follows: we first focus on solving the local model checking
problem in Section 4.1. This is done by describing the methods that are needed to utilize
the mCRL2 toolset to verify formulae on a single pixel of an image. Then, we explain the
additions needed such that the toolset can be used to obtain a global solution in Section 4.2.
The chapter continues by showing some extensions to the obtained mCRL2 specification to
allow for more flexible analysis in Section 4.3, and finishes with some experiments and their
results in Section 4.4 to evaluate the speed of this approach.
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4.1 The local model checking problem

The mCRL2 toolset was built and optimized to verify properties on a single, user-specified state
of the model. In an image model, this would be equivalent to verifying spatial properties on a
single pixel. While this is not what spatial model checking aims to do, it is helpful to understand
the process of obtaining a local solution, before moving to the additions that lead to a global
solution.

This section describes two steps that are required to solve the local model checking problem.
We cover how to express an image as an mCRL2 process specification, and how our translation
from the previous chapter can be used to verify spatial properties on a single pixel. We shall
mention the implementation of corresponding scripts image2mcrl2 and slcs2modalmu later, as
they will include the specification extensions covered in 4.3.

Let us start with the mCRL2 process specification that represents an image. We first denote a
fragment of the syntax of an mCRL2 process, stating only the parts that are relevant to this
thesis. For the full process specification, the reader is referred to [15].

A process P is syntactically defined by the following grammar:

P = a | P + P | P · P | exp→ P | (P )

Here, a is an action that can take some data type, and exp is some Boolean expression. The +
operator expresses choice, while the · operator denotes sequential composition. The→ operator
signifies a conditional statement; only if Boolean expression exp is true, process P can be
executed. Parentheses are useful to avoid ambiguity in the precedence of operators.

Our process specification should, when converted to a LTS, correspond to the closure model of
an image. Recall that the closure model of an image is defined byM = ((X, CR),V). From Def-
inition 3.1, we conclude our LTS must have a state for each pixel x ∈ X, appropriate R-labelled
transitions between neighbouring pixels, and, for each pixel, have a self loop containing its
atomic predicates. In this section we shall sometimes use the terms ’image data’ or ’attributes’
in favour of atomic predicates.

An image should, in this context, be seen as a 2D grid of pixels where each pixel contains data.
We can specify a grid g in mCRL2 by defining a list of lists, where the outer list and inner
lists represent the column and row index of the grid respectively. Note that this structure only
captures the image data and position on the grid, much like a lookup table.

Now consider closure operator CR. According to Definition 3.1, in an LTS corresponding to the
closure model, each pixel should have an R-labelled transition to itself and the pixels it shares
an horizontal or vertical edge with. We can create these pixel states and their transitions with
the process Grid :

1 proc
2 Grid(x:Int, y: Int) =

3 report(g.y.x) . Grid(x,y)

4 + R . Grid(x,y) % reflexive step

5 + (x != 0) -> R . Grid(x-1, y) % left step

6 + (x != size_x) -> R . Grid(x+1, y) % right step

7 + (y != 0) -> R . Grid(x, y-1) % down step

8 + (y != size_y) -> R . Grid(x, y+1) % up step

9 ;
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10 init
11 allow ({R, report},

12 comm({}, Grid(start_x, start_y))

13 );

From the snippet above, we see that process Grid takes two arguments. Integers x and y
represent the horizontal and vertical position on the grid. This process has, at all times, a choice
between 6 options, and then recurses, possibly with a new grid position. We briefly ignore the
first option for now. The other options all take an R-action representing the closure operation,
and either end up in the same, or an adjacent position on the grid. For each R-transition to
a neighbouring pixel, conditional checks should be applied that ensure the movement is valid,
as we may not end up outside the boundaries of our image. We can prevent invalid moves
from happening by, for example, not allowing a left step if we are at the left border, hence the
conditional (x != 0). The other boundary checks then follow. This leaves us with exactly one
state for each valid x and y position, and all the required R actions for a pixel x.

Let us now return to the first option of process Grid. For each pixel, the process generates a
report action that looks up the atomic predicates of pixel, which can be found by accessing
the structure that contains its data. The atomic predicates at position (x, y) are accessed using
‘g.y.x’, where g is the data structure of the grid. This satisfies our final property, because each
pixel x now has a self-loop containing its data.

This specification now satisfies all properties of Definition 3.1. The snippet above also shows
how to initialize the grid process. We only allow R and report actions to occur, there is
no communication with other components, and the grid is initialized with starting x- and y
positions. The following example will aim to explain what the mCRL2 specification of a small
image looks like

Example 4.1. Consider the image small consisting of 4 pixels in a 2 by 2 grid. Each pixel of
the image takes either the value yellow or pink, modelled by the enumerative data type Colour.
We then map small to a grid and define its data structure. The image in question is depicted
in Figure 4a, and its generated state space representation that follows from the Grid process is
shown in Figure 4b. Notice that R-actions leading outside the grid boundaries are not generated
by this model. Actions representing atomic predicates follow from the outcome of small.y.x
in its respective function report(small.y.x). States are filled with their assigned colour and
coordinates for the sake of clarity.

1 sort
2 Grid = List(List(Pixel))

3 Pixel = Colour

4 Colour = struct pink | yellow

5 map small : Grid
6 eqn small = [
7 [pink, pink],

8 [yellow, yellow]

9 ]
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(a) Visualisation of input
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Figure 4: Example of a small grid.
/

With the mCRL2 specification in place, we finish this section by showing how to implement
the translation from Chapter 3 in mCRL2. There are some notational differences; conjunction
and disjunction become their programming language counterparts && and || respectively, while
fixed points are written as mu and nu.

The translation can otherwise directly be implemented in mCRL2, bar one change specific to
this implementation. We saw in Definition 3.3 that the satisfaction of an atomic predicate p
in a state x should be translated to 〈p〉true, or in other words, there exists a transition p from
state x. In the mCRL2 specification we created, however, there are neither separate actions nor
transitions for each possible atomic predicate. Instead we have a single report action whose
contents represent the atomic predicates of x. Therefore, to verify whether a pixel satisfies p,
the lookup table access ‘g.y.x’ in the report function must return p. In other words, every
instance of 〈p〉true must be replaced with 〈report(p)〉true.

Example 4.2. Consider again the image small from Example 4.1. Two examples of that we
may verify on this image are:

A pixel is yellow:

SLCS | yellow
µ-calculus | 〈report(yellow)〉true

A pixel is near a yellow pixel, and is pink:

SLCS | N yellow ∧ pink
µ-calculus | (〈R〉〈report(yellow)〉true) && 〈report(pink)〉true /

This concludes the section that covered the process of verifying spatial properties locally in
mCRL2. Notice that the structure defining a single pixel is currently an enumerative data type,
which clearly has a limited amount of use and flexibility. Section 4.3 will extend this model
such that multiple and more complex attributes, like numerical values, can be asserted.
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4.2 The global model checking problem

So far, we were able to correctly verify spatial properties on single pixels. In image analysis,
however, it is much more useful to provide a solution to the image as a whole. Ideally we ‘mark’
every pixel in an image that satisfies a property.

The modal µ-calculus is suitable to answer these kind of questions. In particular, the denota-
tional semantics from Definition 2.10 already considered sets of states, but the implementation
of mCRL2 (rightfully) reduces the problem complexity by only verifying the µ-calculus formula
for the initial state. There still is a näıve way of obtaining a global solution. We could call
upon a new instance of the mCRL2 specification in Section 4.1 for each individual pixel, where
only the coordinate parameters denoting the initial position is changed. Clearly, this is not a
scalable solution; any real-world image would require thousands, if not millions of iterations.

This section therefore will present an alternative way to find a global solution. Due to the
manner in which mCRL2 toolset calculates solutions to fixed points, a few tricks can be applied
to ensure the solution to every pixel is latently available during the verification of a µ-calculus
formula on a single pixel. We will first go into more depth on how mCRL2 verifies model
checking problems in Section 4.2.1. Then, Section 4.2.2 elaborates what changes to the µ-
calculus formulae need to be made in order to extract the solution of each individual pixel.

4.2.1 How mCRL2 verifies the image model

Previously, we mentioned what mCRL2 tools are often used to solve model checking problems.
Figure 3 shows that the tools mcrl22lps and lps2pbes are used to construct a Parameterized
Boolean Equation System (PBES) from a mCRL2 specification and a µ-calculus formula. In
this section we show why it is not possible to extract a global solution in mCRL2, when we give
it a µ-calculus formula constructed from our translation in Chapter 3. We do this by taking a
look at pbessolve, which, as the name suggests, partially solves a PBES to verify the initial
state of the mCRL2 specification.

A PBES is a sequence of equations taking the shape of σX(d1 : D1, . . . , dn : Dn) = Φ, with
σ = {µ, ν} being either fixed point symbol, predicate variable X, data variables di of type Di,
and Φ an action formula.

Given an mCRL2 specification and a µ-calculus formula, the mCRL2 toolset converts the speci-
fication to a Linear Process Specification (LPS) and then creates a PBES from the LPS and the
formula. Its solution is an environment, containing the satisfiability of the µ-calculus formula
for each possible combination of data variable values. As these values could theoretically be
numerals going to infinity, obtaining the complete environment is often very slow. However,
since mCRL2 knows the initial process parameters, the tool pbessolve can find a partial en-
vironment by instantiating a PBES to a Boolean Equation System (BES) and inserting the
reported BES equations in a so-called structure graph.

A BES is a sequence of equations (σ1X1 = Φ1) . . . (σ1Xn = Φn). Each equation (σiXi = Φi)
represents the solution to one fixed point in the corresponding PBES for specific data variables.
Instantiating is done by generating fresh equations whenever the solution to one BES equation
requires the evaluation of a (possibly new) fixed point with new data variables. This is repeated
until every right hand side consists of either existing equations, or ones that evaluate to true or
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false.

In our case, the only relevant variables in the mCRL2 image specification are the integer pixel
coordinates defined by the process Grid(x:Int, y:Int). The mCRL2 specification requires
an initial state to be given. We therefore know the starting coordinates and thus the first BES
equation that is generated. If this initial state is the coordinate (0, 0), the evaluation of BES
equation (σX(0, 0) = . . . ) is the solution to this coordinate for fixed point X.

In the case where µ-calculus formulae do not depend on other coordinates, like atomic predi-
cates, solving the PBES is trivial; its solution can immediately be deduced. The evaluation of
properties like ’surrounded’, however, may depend on many other coordinates due to the fixed
point it introduces. Clearly, since our image has a fixed size, at some point instantiation will
halt as there are no new coordinates to be discovered.

A structure graph is then built from the generated BES equations. Vertices are created for
each BES equation, and edges between two vertices X and Y exist if Y appears in the BES
equation associated to X. The solution of a BES equation is captured in a decoration d ∈
{true, false, conjunction, disjunction} and assigned to its corresponding vertex. In the case
this equation does not depend on other positions or nested fixed points and is therefore solvable,
the decoration will be its Boolean outcome. Otherwise, depending on the fixed point formula,
its decoration must be conjunction or disjunction. If the solution of X only depends on a single
BES equation, a decoration is not assigned.

This structure graph is a representation of a parity game. These two-player games are the most
common reduction from a µ-calculus formula and specification, as parity games are expressive
enough to handle formulae with (nested) fixed points. However, we do not consider all vertices
of the structure graph, as we already know the answer to BES equations decorated with true and
false. Furthermore, an important observation is made. Many equations can be solved without
the need for a parity game solver by using so-called attractor sets. Namely, all vertices in the
structure graph decorated with conjunction that have an edge to a vertex false are immediately
also false, and likewise for equations decorated with disjunction and true respectively.

If at this point there are still unsolved BES equations, a parity game is constructed from the
remaining vertices, and is solved using Zielonka’s algorithm [18]. These two-player games are
the most common reduction from a µ-calculus formula and specification, as parity games are
expressive enough to handle formulae with (nested) fixed points. The algorithm returns a
partition of the vertices into two sets: they contain the BES equations evaluating to true and
false respectively. As these sets contain all the remaining equations, this finishes the solving
process; the solution to the very first generated equation is reported.

To find a solution for the initial state of the specification, this approach is ideal. By only
using a minimal amount of information to verify a property a lot of computation time is saved.
However, these optimizations get in the way of a global solution. We finish this section with
Example 4.3, which aims to highlight the key steps in verifying an SLCS property on an image
and why the entire image is often not considered.

Example 4.3. Consider the image from Example 2.6:
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We wish to verify SLCS formula yellow S pink on the entire picture. This has the associated
µ-calculus formula:

(yellow S pink) = yellow ∧ ¬µY.(
¬(yellow ∨ pink) ∨
(yellow ∧ 〈R〉Y )

)

Because the formula does not start with a fixed point and therefore does not adhere to the PBES
format, a dummy fixed point νX is generated around this formula. The R-action is expanded
to all possible pixels a current position can move to, as followed from the Grid process in
Section 4.1. The resulting PBES is given below, where the report actions for atomic predicates
are left out for readability purposes:

(νX(x : Int, y : Int) = yellow ∧ ¬Y (x, y))

(µY (x : Int, y : Int) = ¬(yellow ∨ pink) ∨ (

(yellow ∧ (Y (x, y) ∨
(x 6= 0)⇒ Y (x− 1, y) ∨
(x 6= 6)⇒ Y (x+ 1, y) ∨
(y 6= 0)⇒ Y (x, y − 1) ∨
(y 6= 5)⇒ Y (x, y + 1))

)

The BES from this PBES is then instantiated. Suppose our starting position from the mCRL2
initialization parameters is the top left coordinate (0, 0), then the first considered instance of
the PBES is νX(0, 0). Its evaluation depends on whether this coordinate is yellow, which it
is, and the negation of fixed point Y with the given coordinates. Hence the first generated
BES equation is νX(0, 0) = ¬µY (0, 0), and we continue exploration by finding the solution to
Y (0, 0).

As the top left pixel is yellow, the first part of the equation is satisfied. What remains is
the possible movements from this coordinates, which arose from the grid specification and
is specified in this PBES. As both x and y coordinates are 0, the generated BES equation
becomes µY (0, 0) = µY (0, 0)∧µY (0, 1)∧µY (1, 0). This exploration then continues; as µY (0, 0)
is already explored, we process Y (0, 1) and subsequently µY (1, 0). Important to observe is that
exploration can be halted early; the pixel at position (0, 2) is pink, hence µY (0, 2) is false and
no further instantiating past this equation is necessary. This eventually leads to the following
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(shortened) BES:

(νX(0, 0) = ¬µY (0, 0))

(µY (0, 0) = µY (0, 0) ∨ µY (0, 1) ∨ µY (1, 0))

(µY (0, 1) = µY (0, 1) ∨ µY (0, 0) ∨ µY (0, 2) ∨ µY (1, 1))

. . .

(µY (1, 1) = µY (0, 1) ∨ µY (1, 0) ∨ µY (1, 1) ∨ µY (1, 2) ∨ µY (2, 1))

(µY (1, 2) = false)

(µY (2, 1) = false)

During exploration a structure graph is filled accordingly. As every pink pixel causes the
µY (x, y) formula to be false, instantiating past these pixels is not needed. Apparently, infor-
mation of only a small set of pixels was sufficient to determine that a solution can be found.
We see the solutions to BES equations for the group of yellow pixels all depend on each other
and the attractor sets of pink pixels do not include yellow ones. A parity game is therefore
constructed for the remaining equation, and the solution to Y (0, 0) then appears to be false.
This implies X(0, 0) is true, which is what we expected and set out to verify. /

4.2.2 A prefix to the µ-calculus formulae

In the previous section it was shown that due to optimizations in the instantiation of a PBES,
verifying translated SLCS properties pbessolve will not provide a global solution. Often, the
evaluation of an initial state can be found without generating solutions for other coordinates,
and we cannot pass multiple initial states to mCRL2. To work around this restriction, we
extend µ-calculus with a prefix. This section explains what changes need to be made to the
µ-calculus formulae to ensure pbessolve does consider every pixel.

Our first attempt involved stating that ’for all reachable paths formula Φ holds’; this would
presumably lead to Φ being verified for each pixel during execution. This property can be
encoded as:

νX.(Φ ∧ [true]X)

In mCRL2, a shorthand for this is given in the shape of regular formula:

[true∗]Φ

Resulting in PBES:

νX(x : Int, y : Int) = (Φ ∧ (X(x, y) ∧X(x+ 1, y) ∧ ...)

Unfortunately, this will not yield a global solution yet. Due to the way BES equations are
generated, if the first pixel we analyse contradicts with Φ, we already know that ’for all reachable
paths’ Φ is not satisfied, and no other pixels are evaluated. Similarly, an alternative regular
formula 〈true∗〉Φ denoting ’there exists a reachable path to a point where Φ holds’ is already
satisfied the moment we find any pixel that satisfies Φ. Therefore, our next attempt involved a
second addition to the µ-calculus formula. If we introduce a fresh fixed point variable between
[true∗] and Φ, BES equations will first be written for this fresh fixed point before Φ is evaluated.
We therefore end up with our final prefix:

[true∗]νX.Φ
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A PBES for these formulae would look like:

νX(x : Int, y : Int) = (Y (x, y) ∧ (X(x, y) ∧X(x+ 1, y) ∧ ...)
νY (x : Int, y : Int) = Φ

This subtle change to the PBES avoids any optimizations, because pbessolve cannot im-
mediately deduce the answer to Y (x, y), representing Φ, even though there otherwise are no
differences with the previous PBES. This results in pbessolve solving X(x, y) for all reachable
x and y. From our specification it follows that all coordinates are always reachable. This means
the solution to Y (x, y) will also be deduced for every coordinate. Also, with this addition, it
does in fact not matter whether we write [true∗] or 〈true∗〉; the fresh fixed point variable will
have the same effect.

We now have all the ingredients to obtain a global solution, but pbessolve itself will still not
give us one, because we gave it a different question to answer. Namely, only if Φ holds for all
reachable pixels, the property holds in its entirety. Fortunately, by setting the --debug flag
when running pbessolve, all BES equations are reported back to the user. Since we can easily
deduce from our final PBES what fixed point represents Φ, the instantiated BES equations
corresponding to this fixed point can be extracted from the debug output.

This is the essence of what our Python script pbessolve image does. While the mCRL2 toolset
solves the PBES of an edited µ-calculus formulae that contains the added prefix, this program
keeps track of a separate structure for BES Equations, containing its identifier, the coordinates,
structure graph decoration, and a Boolean stating whether this is a BES equation that encodes
the solution to Φ. The decoration of these equations is used to store the solution. This is
determined in one of three ways:

1. During execution, pbessolve immediately determines Φ is satisfied at a position x, y or
not and gives it the decoration true or false. No further action then needs to be taken.

2. When determining the attractor sets of BES equations with decoration true or false,
pbessolve reports a mapping that contains the strategy for BES equations whose solution
can be deduced from attractor sets. This mapping is processed by changing the decorations
accordingly.

3. For the remaining vertices in the structure graph, the parity game solver is needed,
pbessolve reports the partitioning found by Zielonka’s algorithm. We simply set its
decoration according to the partitions.

Once pbessolve is finished, pbessolve image simply reports the coordinates of BES equations
that encode the solution to Φ, and whose decoration is true. We can now combine this method
with the mCRL2 specification of an image and translated SLCS formula from Section 4.1,
completing the workflow from Figure 3.

4.3 Extensions of the spatial verification process

In the previous sections of this chapter, we have described the complete process of verifying
spatial properties on an image using the mCRL2 toolset. One may have noticed that the
implementation is fairly inflexible. Most images do not have a single colour attribute for each
pixel, but instead hold RGB data. This consists of three numerical values for the intensity of
colours red, green and blue. While it is possible to assign colours to pixels as a preprocessing
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step, it is much more precise if we could directly process this type of image data. Buonamici et
al [5] extended their image model in a similar way to facilitate this.

Section 4.3.1 will describe how the specification from Section 4.1 can be extended to support
more complex data structures, the ability to make assertions on them, and what effect this has on
the µ-calculus formula for atomic predicates. These extensions are subsequently covered in the
description of slcs2modalmu, a simple lexer and parser implementing both the translation from
Chapter 3 and the implementation-specific additions from this chapter, such that the resulting
µ-calculus formulae are immediately verifiable using the mCRL2 toolset. This description can
be found in Section 4.3.2.

4.3.1 Extending the mCRL2 image model with data

The mCRL2 toolset extends the modal µ-calculus described in Definition 2.8 with data to
facilitate data-dependent processes. So far, our mCRL2 specifications have only handled a
single, enumerative data type that consisted of a select number of colour options. This section
will show an extension of this specification, to allow verifying pixels that have an arbitrary
amount of atomic predicates with arbitrarily many different data types. We first explain how
more complex data structures for pixels should be created, and then show how we can make
assertions on these structures using the modal µ-calculus with data.

While mCRL2 provides numerous ways to create complex data types, a suitable approach for
images is to use the mCRL2 construct ’Structured Sorts’. In the case of RGB values, we need
to define three parameters for each pixel, that contain a numerical value between 0 and 255
specifying its intensity. This can be done as follows:

1 sort

2 Pixel = struct RGB(

3 red:Intensity ,

4 green:Intensity ,

5 blue:Intensity ,

6 );

7 Intensity = Int

A pixel now consists of a tuple named RGB with three parameters. Functions are created for
each parameter by mCRL2, that when called upon return the colour intensity. They take the
name of their respective parameter, meaning the red intensity value can be accessed by stating
red(Pixel). What remains is correctly represent pixel data in the image grid. If we take
Example 4.1, and take RGB values for the colours pink and yellow, we can do this as follows:

1 eqn small = [

2 [RGB(255,255,0) , RGB(255,255,0) ],

3 [RGB(255,192,203), RGB(255,192,203)]

4 ]

Clearly, this approach allows for a lot more flexibility. As larger images have an enormous
amount of different colours, individually specifying them is infeasible, and the verification pro-
cess would become very cumbersome to write down.

In previous examples, we verified the existence of a report action whose function returned the
pixel attribute. Now such an action consists of three different parameters which we want to
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individually access. It is possible to assert this more complex structure in µ-calculus formulae,
for which it is helpful to understand the notion of an action formula, introduced to facilitate
data-dependent processes in mCRL2. We refer the reader to work by Groote and Mousavi [15]
for a full comprehensive description, or alternatively the documentation of mCRL2 [10]. We
will only state a fragment containing the relevant parts to our specification.

An Action Formula is syntactically defined by the following grammar:

α ::= t | true | false | ¬α | α1 ∧ α2 | α1 ∨ α2 | ∃d:D α | ∀d:D α

Where, t is a Boolean expression, and d a data identifier of D. Negation, con- and disjunction,
and existential quantifiers behave as expected. Data types D can, for example, be some set of
numbers, like N,Z. The mCRL2 toolset also allows D to be a predefined structure, like the
RGB tuple we created before. The quantifications represent a set of actions. In the case of an
existential quantifier, there is some data identifier d for which action formula α holds, while α
must hold for all d in the case of an universal quantifier.

The existential quantifier in the µ-calculus formulae is helpful to make assertions on the data
attributed to a pixel. We can write ∃d : D.〈report(d)〉true to state there exists some data
identifier d of data type D for which the process can perform a report(d) transition. This
formula alone will naturally always be true as long as there exists a report action of type D, so
we must restrict what report actions we allow using Boolean expressions on d.

We have already seen a simple application of this with the Colour structure in Example 4.1,
where we could also write 〈report(yellow)〉true as:

∃ c : Colour . val(c == yellow) ∧ 〈report(c)〉true

Note that in mCRL2, the keyword val() must be written around Boolean expressions in µ-
calculus formulae for parsing reasons. A more generalized expression to evaluate pixel data with
assertions a1 . . . an would now be:

∃ px : Pixel . val(a1 ∧ a2 ∧ · · · ∧ an) ∧ 〈report(px)〉true

We essentially verify the existence of a report action that satisfies all assertions defined within
the val() block. With this implementation verifying ranges of colours is now possible by letting
an RGB value fall within certain intensities. As an example, we may check whether a pixel is
‘approximately’ pink by writing the µ-calculus formula:

1 exists px:Pixel.val(

2 250 <= red(px) && red(px) <= 255 &&

3 190 <= green(px) && green(px) <= 195 &&

4 200 <= blue(px) && blue(px) <= 205

5 ) && <report(px)>true

Since the medical field often deals with greyscale images, we also provide a second example. In
this case, the three parameters that define an RGB value always take the same value. This allows
for the following simplification of our Pixel structure and corresponding µ-calculus formula:

1 sort

2 Pixel = Int

3 eqn small = [

4 [125, 125],

5 [190, 190]

6 ]
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1 exists px:Pixel.val(

2 120 <= px && px <= 130

3 ) && <report(px)>true

This concludes the section about extending the mCRL2 specification of an image with more
complex data types to make analysis more flexible. Python script image2mcrl2 was created to
automatically generate such a specification, given an image with numerical RGB data. This
program is fairly straightforward, as the structure containing data of individual pixels is the only
variable element. Other parts of the specification are static. An optional argument --greyscale
can be passed for greyscale images, to create the simplified structure.

4.3.2 slcs2modalmu, a lexer and parser for translating SLCS formulae

This section briefly describes the implementation of a simple lexer and parser slcs2modalmu
following the translation in Definiton 3.3, with optional arguments to facilitate the verification
in mCRL2. The script was created in Python. It takes a .slcs file, verifies its syntax, and
transforms the input to a modal µ-formula.

The required syntax of SLCS formulae in slcs2modalmu is stated below:

<FORM> ::=

<ATOM_PRED> (atomic predciates, reserved names are below)

| (<FORM>) (Subformula)

| ! <FORM> (NOT operator)

| N <FORM> (Near operator)

| <FORM> && <FORM> (AND operator)

| <FORM> S <FORM> (Surround operator)

The precedence of operations depends on their amount of arguments; operators taking one
subformula have precedence over operators that take two. For example, the SLCS formula
N a S b is parsed in the same manner as (N a) S b. Bracket usage is still encouraged to
avoid unwanted behaviour. The usage of comments is possible; they should be preceded by a %
character. Any further tokens after % are ignored by the parser until the next line of the input
file. Comments will not reappear in the output file.

The SLCS formula is lexed using the python module re [11] to match regular expressions and
subsequently tokenize the input. An atomic predicate must adhere to the regular expression
[a-ZA-Z0-9 ]+, meaning only groups of (capital) letters, numbers and underscores are matched.
Capitals N and S are reserved for the near and surround operator in SLCS; they should be
avoided as identifiers for atomic predicates, and spaces around these operators are therefore
necessary.

If the optional argument --mcrl2 is added, all instances of atomic predicates are changed to be
compatible with the mCRL2 image model, as described in the previous section. Atomic predi-
cates should be written down in .slcs as three comma-separated pairs of RGB intensity ranges
surrounded by square brackets: [Rmin-Rmax,Gmin-Gmax,Bmin-Bmax]. In Section 4.3.1, we
approximated pink, which would be written down here as
[250-255,190-195,200-205]. If the optional argument --greyscale is also set, only one pair
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is needed; the intensity range would be represented by [100-120]. Spaces are allowed inside
the square brackets, but hyphens and commas are necessary.

Parsing is done by creating an Abstract Syntax Tree from the tokens, which is then processed
recursively to produce a modal µ-formula. Type checking is not implemented, but syntax errors
will be raised if operators do not have the correct number of arguments or if atomic predicates
have no binding operator. The result is saved to a .mcf file that is in accordance with the
formatting of modal µ-formulae in mCRL2 [10].

4.4 Experiments and Results

This section contains a small number of experiments that were performed to evaluate the speed
of this spatial model checking approach. Experiments were run on an Intel i7-4710MQ CPU
processor running at 2.50GHz.

To combine the findings of previous sections in this chapter, Python script verify image was
created. It takes a SLCS formula Φ and an image file, and performs the following steps.

1. Create a mCRL2 specification from an image file using script image2mcrl2.
2. Execute slcs2modalmu on Φ to obtain a µ-calculus formula verifiable by mCRL2.
3. Execute mCRL2 tools mcrl2lps and lps2pbes
4. Execute pbessolve image to extract the coordinates of the pixels satisfying Φ.
5. Mark the image according to these coordinates.

Figure 5 shows the sample image on which three properties were verified, the greyscale alterna-
tive, and the respective images returned by verify image. The property in Figure 5e should be
considered a ‘layered surrounded’, in which we mark all blue pixels surrounded by yellow that
themselves are surrounded by pink or blue pixels. This final disjunction is necessary to capture
the correct pixels for the nested surround operator, as the yellow pixels cannot be exclusively
surrounded by two separate colours.

(a) (b) (c) (d) (e)

Figure 5: Experiments ran with verify image.
5a: the 64x64 sample image. 5b: image 5a, with y S p marked in green,
5c: greyscale version of image 5a, 5d: image 5c, with y ∧ N p marked
5e: image 5c, with b S (y S p ∨ b) marked

The experiments were timed for different resolutions of the same image. The results are shown
in Table 4.1. Compared to the benchmarks by [5], the image size this approach can verify
spatial properties on within 10 minutes is significantly lower. The simplifications a greyscale
image introduces in both model and µ-calculus formula causes verification to be faster, yet grows
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equally quick for larger images. The colour intensity range only has have a marginal effect on
speed; verifying y S p for exact RGB values versus a range of 10 only sees a 10% decrease in
computation time.

The formula itself does have a noticeable impact. The near operator is especially costly, as
every pixel could potentially be near a property and all its outgoing transitions must always
be checked. Surrounded operators are more efficient if there are not many pixels satisfying the
left-hand side in the first place; even the more complex layered surrounded is evaluated faster
than the near operator. This does mean that the algorithms in mCRL2 work as intended. When
solutions to many pixels can be found early in outer fixed points, verification speed increases
dramatically.

y ∧ N p y S p b S (y S p ∨ b)
Resolution RGB Grey RGB Grey RGB Grey

32x32 18.80 2.75 3.99 1.74 5.16 1.77
64x64 304.64 34.39 23.78 14.03 25.84 11.34
128x128 >600 545.40 201.76 146.29 184.64 128.48
256x256 >600 >600 >600 >600 >600 >600

Table 4.1: Experiment results (in seconds)

The overhead that verify image introduces is significant. The computation time of script
image2mcrl2 scales linearly with the amount of pixels, as the only variable element in the
mCRL2 specification is the table containing RGB data of each pixel. Script slcs2modalmu has a
negligible execution time. Most extra work comes from parsing the debug output of pbessolve
in script pbessolve image. Its overhead grows with complexity O(n ∗ f), with n being the
amount of pixels, and f the amount of fixed points. This is because pbessolve generates at
most one BES equation per pixel for every fixed point, and every equation only needs to be
parsed once using regular expressions. Additionally, the decoration of an equation is updated
from either the mapping or the parity game solver at most once. The total overhead does not
seem to grow faster than the work done by mCRL2, as simply running pbessolve without the
--debug flag and with no parsing, cuts the computation time roughly in half, independent of
image size and formula complexity. We therefore expect that, while an implementation directly
built in the mCRL2 toolset will save time, evaluating larger images will remain costly.



Chapter 5

Future work and conclusion

This thesis investigated a new approach to spatial model checking, in which we used the mCRL2
toolset for analysing concurrent systems to verify spatial properties on images. Spatial model
checking is a promising and relatively new field in Computer Science has applications in the
medical field, and one of its main advantages is the ability to make the process of medical
imaging, often performed by machine learning applications, more explainable and intelligible
for specialists.

By creating both a transformation between the underlying models of SLCS and the modal
µ-calculus, and a correct translation between their logics, we were able to create generalized
mCRL2 specifications and µ-calculus formulae that verify spatial properties. By adding a prefix
to the µ-calculus formulae, the solution for every pixel could be extracted from the intermediate
computations by mCRL2. Also, a proof of concept implementation was created that reads image
data, creates an mCRL2 specification from, translates SLCS- to µ-calculus formulae, runs some
tools in the mCRL2 toolset and finally extracts the relevant data to mark the original image
accordingly.

While our implementation was successful, it does not outperform existing toolsets. We did
not expect this approach to be faster, since dedicated toolsets [6] were specifically built for
topological applications. A direct implementation in mCRL2 remains as future work, which
would remove significant overhead from the computation time. To speed up this process for
applications requiring successive SLCS formulae, one could reduce the state space considered
after each processed formula. This would most likely require the construction of a new model
from the marked coordinates, on which more complex and time-consuming formula could be
run.

The SLCS logic fragment we discussed is not sufficient to do precise image segmentation in
medical images, leading [5] to present the language ImgQL, which extends SLCS with a distance
operator and region similarity to perform texture analysis. Their spatio-temporal model checker
topochecker [6] also implements these techniques. These extensions, however, fell outside the
scope of this thesis. Future work would involve the possibility of their implementation in
mCRL2.
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