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Abstract

In the one-round discrete Voronoi game, two players compete over a set of voters
represented by points V ⊂ Rd. They do this by placing points: Player 1 places k points,
followed by Player 2 placing ℓ, after which each voter is won by the player that placed
a point closest to it. For three different definitions of ‘closest’, we present lower bounds
on the number of voters Player 1 wins under optimal play of the game in R2 with ℓ = 1.
Such bounds already existed when ‘closest’ is based on the L2 metric, so there we prove
better bounds with an algorithm based on the quadtree of V . We also introduce bounds
for the L1 metric and for the personalised L1 metric, where each voter has a preference
vector describing how they value the distance in each coordinate.
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Chapter 1

Introduction

Two-player discrete Voronoi games are a way of modelling elections in a two-party sys-
tem. As input, we get a set of voters with points in Rd to represent their opinions on
d topics. The two competing players then decide what standpoints their parties should
take, again represented by points in Rd. After that the voters will vote on the party
whose standpoints are the closest to their own opinion. The goal for each player is to
win as many votes as possible. For Player 1, the problem is closely related to that of
finding a plurality point; a point Player 1 can place to guarantee that with one point
Player 2 will win at most half of the voters.

Figure 1.1: Discrete Voronoi
game after both players have
placed their points

Another way to interpret Voronoi games is as a com-
petitive facility location problem, where the goal is to find
locations to build facilities that are in some sense good.
In a (non-discrete) Voronoi game, the competitors place
their facilities as points in R2 and a facility placement
is good if for a large region it is the closest facility. We
can determine this by drawing the Voronoi diagram for
all points and looking at the area covered by each of the
Voronoi cells. In discrete Voronoi games, we specifically
consider where the users of these facilities live: as input
we get a set of points in R2 representing the users, and
the score for a player depends on how many users live in
the player’s Voronoi cells. Figure 1.1 gives an example
of a situation after Player 1 (red) and Player 2 (green) have placed their points. The
blue crosses are users, so here Player 1’s one facilities are the closest for eight users and
Player 2’s for three.

We call a (discrete) Voronoi game a one-round game if all of Player 1’s points are
placed before Player 2’s. This setting was introduced by Banik et al. [4], who use
VG(k, ℓ) to denote the one-round discrete Voronoi game where Player 1 places k points
and Player 2 places ℓ. The setup means Player 1 only knows where the voters are
and needs to account for every possible placement of Player 2’s points, while Player 2
has complete information. As a consequence, the game is harder for Player 1, both in
computational complexity and in chance of winning.
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This thesis will consider, given k and ℓ, how many voters Player 1 can always win
regardless of how the voters are distributed. Note that this is equivalent to asking how
many points Player 1 needs to place in order to win a given number of voters.

1.1 Related work

Algorithms to find an optimal placement. The first question that might come to mind
is what Player 1 should do to win as many voters as possible from a given set V . The
problem VG(1, 1) in R can be solved by finding the median, for which Blum et al. [10]
have found a linear-time algorithm. When we instead work in Rd (with the L2 metric),
the problem is equal to that of finding the Tukey median, a generalisation of the median
to higher dimensions that can be found in O

(
nd−1 + n log n

)
time [13]. We can also

look at the problem VG(k, ℓ) and remain in R. In this situation, De Berg et al. [9] give
an algorithm that solves it in O

(
kn4

)
time. On the other hand, they also show that in

R2 the decision problem is already
∑P

2 -hard, which means it is NP-hard and likely not
in NP. They do give an algorithm that solves the most general problem (VG(k, ℓ) in Rd

with Lp metric) optimally in O
(
(nckℓ)(kd+1)(ℓd+1)pkℓd

2
)
time, for some constant c.

R Rd

VG(1, 1) n [10] nd−1 + n log n (for L2 only) [13]

VG(k, ℓ) kn4 [9] (nckℓ)(kd+1)(ℓd+1)pkℓd
2

(for Lp) [9]

Table 1.1: Lowest known big-O running time to get an optimal solution

Van Hulzen [19] gives heuristic algorithms to still quickly find a solution in R2, and
also a way to find the optimal strategy for Player 2 in O

(
n2ℓ + n5

)
time. Banik et

al. [5] give algorithms to find the optimal placement for both players in the situation
that points have already been placed and each needs to place one more, in R2 with the
L2 but also the L1 and the L∞ metric.

Bounds on the number of voters Player 1 can win. Another interesting question is
how many voters Player 1 will win, assuming both players play optimally. Only when
Player 2 places a single point are the bounds for this known, and these are only known
to be tight for VG(1, 1). There we can use the bounds Chawla et al. [14] have found
for the Tukey median. They showed that for any voter set in Rd the optimal score for
Player 1 will be in [ 1

d+1 ,
1
2 ], and conversely any value in that interval is the optimal score

for some voter set.
For VG(k, 1) bounds are given by Banik et al. [6]. They give an upper bound of

1− 1
2k for the number of voters Player 1 wins in optimal play, while giving two separate

lower bounds. One lower bound, which works best when k is relatively low, is found
by constructing an ε-net over the voter set. There is no closed form expression for the
resulting lower bounds, but Table 1.2 shows some values in R2. Finding such an ε-net can
be done in O

(
kn log4(n)

)
time. What ε-nets are and why they work will be explained
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further in Chapter 2. In R2, Banik et al. also prove a lower bound of 1 − 42
k , which is

the better bound when k ≥ 137. The accompanying algorithm takes O
(
n2

)
time, or

more if a more space-efficient method is used for finding the k-enclosing disk. In R3, the
alternative lower bound of 1− 420

k is only better for k ≥ 806.

Plurality points. Lastly, one might only be interested in Player 1 winning the game,
meaning all situations where Player 1 wins less voters than Player 2 are equally bad.
This has been studied for VG(1, 1), where a point Player 1 can place to win is referred to
as a plurality point. De Berg et al. [8] give an O (dn log n) algorithm for Rd to find such
a plurality point or return that there is none (in the L2-norm). They also give an O (n)
algorithm for the L1-norm and an O

(
nd−1

)
algorithm for the personalised L1-norm,

where each voter has a preference vector that describes how important they deem the
distance in each coordinate.

Often, there is no plurality point. One solution by Aronov et al. [3] to this is to
instead look at β-plurality, where a voter’s distance to Player 1’s point is multiplied by
β while the distance to Player 2’s point remains the same. This is a way of modelling
valence; factors such as charisma, competence and campaign spending. The lower β,
the higher the valence of Player 1’s party compared to Player 2’s. The paper gives
algorithms to find a β-plurality point with β as high as possible and gives bounds on
how low this β can need to be.

Continuous Voronoi games. Continuous Voronoi games take place on a region in Rd,
where each point’s score is determined by how much of the region lies in its Voronoi cell,
instead of how many voters. For continuous Voronoi games where both players place the
same number of points, the one-dimensional game can always be won by Player 1 if it is
one-round and by Player 2 otherwise [1]. In R2, Player 2 will win the one-round game
as long as n is large enough, in both the L2 metric [15] and the L1 metric [12].

1.2 Contributions and organisation

This thesis considers the one-round discrete Voronoi game VG(k, 1) in R2 with the L2,
L1 and personalised L1 metrics. It gives new lower bounds on the number of voters
Player 1 can win and algorithms to ensure those lower bounds. More formally, we derive
bounds on the quantity Γ(n, k) defined as follows:

Γ(n, k) = min{Γ(V, k) | V is a set of n voters in R2},

where Γ(V, k) denotes the maximum number of voters that Player 1 can win from the
voter set V when placing a set P of k points against an opponent that optimally places a
single point q. Player 2 wins a voter when q is strictly closer to it than all points p ∈ P ;
otherwise Player 1 wins it.

No papers have been written yet on bounds for the L1 and personalised L1 metrics in
one-round discrete Voronoi games, so there they are new. For the L2 metric the bounds
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by Banik et al. [6] are improved upon. For example, we are able to win half of the voters
using only four (instead of five) points, and also a fraction 1 − 20

k of the voters voters
(instead of 1− 42

k ) with k points.
Chapter 2 considers strategies based on ε-nets that work well when Player 1 places

a (relatively) low number of points. For the L2 metric this means we find better ε-
nets for convex sets, for the L1 metric we prove that we can use ε-nets for axis-parallel
rectangles, and for the personalised L1 metric we prove we can use ε-nets for axis-parallel
star-shaped sets and show how to construct these. The results for this up to k = 5 and
the previous results from Banik et al. [6] are given in Table 1.2.

k 1 2 3 4 5

L2 (Banik et al. [6]) n/3 3n/7 7n/15 15n/31 21n/41
L2 (new) n/2 11n/21

L1 n/2 3n/5 2n/3 5n/7 3n/4
Personalised L1 n/4 2n/7 n/3 4n/11

Table 1.2: Lower bounds for Γ(n, k)

Chapter 3 gives a quadtree-based strategy that works well when Player 1 places a
relatively large number of points. For the L2 metric this gives a bound of 1 − 20

k and

for the L1 metric it gives a bound of 1− 6 6
7
k . In both cases, there is also an O (n log n)

algorithm that accomplishes a slightly worse bound.
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Chapter 2

Solutions for low k

As shown by Banik et al. [6], ε-nets can provide a solution for Player 1. These solutions
are mostly interesting for low k, due to there being better techniques for higher k that
do not only consider solutions in the form of ε-nets.

2.1 ε-nets

To properly define what such an ε-net exactly is, we first need to define range spaces.

Definition 2.1.1. A range space is a pair (X,R) where R is a family of subsets of X.
Elements of X are referred to as points and elements of R as ranges.

For our purposes, X will always simply be R2 and R can be the family of axis-parallel
rectangles or the family of convex sets. Other commonly used ranges are for example
disks and half-spaces.

Definition 2.1.2. An ε-net for a finite set of points P ⊂ X from a range space (X,R)
is a set of points N ⊂ X such that any range R ∈ R where |R ∩ P | ≥ ε|P | must also
contain a point of N . The ε-net is called strong when N ⊆ P .

A good ε-net will contain only a small number of points, making
it useful for example for approximation. To get a strong ε-net, we can
simply pick random points from P . For many range spaces this already
gives a good result with high probability [18]. However, when as ranges
we have the convex sets, strong ε-nets that are small do not exist. For
example, when the points of P lie on a circle, we can always make
a convex set that covers all points except those chosen for the ε-net,
by taking their convex hull. Therefore, we need to use ‘weak’ ε-nets to get non-trivial
bounds there.

A simple example of a weak 2
3 -net is the centerpoint. This is a point such that any

line going through it divides the point set roughly equally: any side of that line will
contain at least 1

3 of the points. It can always be found in linear time [20]. Any convex
set that does not contain the centerpoint must lie completely on one side of some line
through the centerpoint, and therefore must contain less than 2

3 of the points.
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In general, we will use εk to refer to the lowest value such that k points suffice to
make an εk-net for any point set, and εk the lowest value that has been proven we can
reach. We will use εCk when the ranges are convex sets and ε□k when the ranges are
axis-parallel rectangles.

2.2 L2 metric

ρ1

ρ2

ρ3 ρ4

(x, 0)`

α

β

γ

γα

β

Figure 2.1: Situation for The-
orem 2.2.1

When working with the L2 metric, we can use ε-nets
for convex sets to get upper bounds on V (k, 1). This
is because the Voronoi cell corresponding to the point
Player 2 places is convex and does not contain any
points of Player 2. Banik et al. [6] use the results by
Mustafa and Ray [21], but the following section will
show a construction that gives better bounds.

Let V be a point set in general position in the plane
and L = {ℓ1, ℓ2, ℓ3} be a set of three concurrent lines.
The lines in L partition the plane into six wedges. We
define the weight of a wedge to be the number of points
from V in the wedge’s interior, plus 1

2 for each point
on the wedge’s boundary. The following theorem is a
generalisation of the proposition from Bukh [11] that
three concurrent lines can equipartition a point set.

Theorem 2.2.1. Let V be a point set in general position and α, β, γ ∈ N0 such that
2α+2β+2γ = |V |. Then there is a set of three concurrent lines that partition the plane
into six wedges with weights (in counterclockwise order) α, β, γ, α, β, γ.

Proof. Let θ be an arbitrary angle and ℓ the directed line that makes that angle θ with
the positive x-axis and also splits V in half, i.e. it has exactly |V |/2 points on either
side of it. Because V is in general position such a line exists for any θ. Without loss of
generality, assume ℓ is the x-axis and consider a point (x, 0) ∈ ℓ.

Let ρ(ϕ) be the ray emanating from (x, 0) whose counterclockwise angle with ℓ is
ϕ and F (ϕ) denote the weight of the wedge between ℓ and ρ(ϕ). We have F (0) = 0

and F (π) = |V |
2 . Since V is in general position, ρ will always go through at most two

points, thus as ϕ goes from 0 to π, F (ρ) increases in steps of either 1
2 followed by 1

2 , or
one followed by one. Therefore, there are always rays ρ1 = ρ(ϕ1) such that F (ϕ1) = α.
Likewise, there are rays ρ2, ρ3, ρ4 that together give six wedges with the given weights.
Figure 2.1 depicts this situation.

Now imagine that we move the point (x, 0) by changing the value of x. Consider
what happens to the rays ρ1, . . . , ρ4 that give the requested wedges. As we decrease
x all rays will move towards ℓ and as we increase x they will move towards −ℓ. This
movement is continuous, so there is a value x1 where ρ1 and ρ3 line up, as well as a value
x2 where ρ2 and ρ4 line up.
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These values again change continuously as we change θ. When we add π to θ, we
get the same picture but with the rays swapped around: ρ1 and ρ3 switch roles, as do ρ2
and ρ4. The points (x1, 0) and (x2, 0) will appear in the same position, but this means
that with respect to ℓ they have changed order. Thus, for some θ they must have been
equal.

Combined with Lemma 2.2.2 this gives us the tools to create new ε-nets.

Lemma 2.2.2. Let L be a set of three lines intersecting in a common point p, and
consider the six wedges defined by L. A convex set S not containing p will always
intersect at most four wedges. These wedges must be adjacent.

Proof. If S intersects two wedges, then it needs to also intersect the ray(s) between those
wedges. Because S is convex it cannot intersect both rays that make up a line without
also intersecting their shared point p. Thus, S can intersect at most three of the rays,
giving at most four adjacent wedges.

Figure 2.2: Sets of wedges

If we simply let α = β = γ = 1
6 |V |, the lemma lets us

conclude that S overlaps at most 2
3 of the points in V . This

is in line with the centerpoint theorem.
We can now use the partition into six wedges to get

better bounds for k ≥ 4 on εCk , the effectiveness of a k-point
ε-net for convex ranges.

Theorem 2.2.3. Let εCk be the lowest value for the range
space of convex sets in R2 such that we can make a k-point
εCk-net for any set of points. Given r1, r2, r3, s ∈ N0,

εCr1+r2+r3+3s+1 ≤
1

2

(
1

εCr1
+

1

εCr2
+

1

εCr3

)−1

+
1

2
εCs .

Proof. Let µ = 1
2

(
1
εCr1

+ 1
εCr2

+ 1
εCr3

)−1
and assume we are

given n points. If n is odd, we add an arbitrary extra point

to the set (but not to n), so that we can use Theorem 2.2.1 with α =
⌈

µ
εCr1

n
⌉
, β =

⌈
µ
εCr2

n
⌉

and γ =
⌈
n
2 − α− β

⌉
to get a partition, and place the point p at the intersection of the

lines. We then place an εCs -net for each of the three sets of three wedges shown in
Figure 2.2, an εCr1-net for the wedge with size α, an εCr2-net for the wedge with size β
and an εCr3-net for the wedge with size γ.

From Lemma 2.2.2 we know that a convex set not containing p can intersect at most
four adjacent wedges. Thus, it will always intersect three wedges with an εCs -net, from
which it thus gets less than n

2 ε
C
s points, and one wedge with its own ε-net, from which

it gets less than εCr1

⌈
µ
εCr1

n
⌉
, εCr2

⌈
µ
εCr2

n
⌉
or εCr3

⌈
n
2 − α− β

⌉
points, thus at most µn.
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Perhaps the most interesting consequence of this is the Corollary 2.2.4. For us, it
means that Player 1 always only needs to place four points to win at least as many
voters as Player 2, as opposed to the five that were proven in earlier work. This is also
something Van Hulzen [19] noticed in practice.

Corollary 2.2.4. εC4 ≤ 1
2 .

Proof. This follows from Theorem 2.2.3 with r1, r2, r3 = 0 and s = 1.

2.3 L1 metric

Voronoi cells under the L1 metric are not convex but only star-shaped, so we cannot use
ε-nets in the same way as before. Instead, we can use the following very useful lemma.

p

Op
(−1,1) Op

(1,1)

Op
(−1,−1)O

p
(1,−1)

Lemma 2.3.1. Let p ∈ Rd be a point played by Player 1. For a vector
c ∈ {−1, 1}d, define the orthants

Op
c =

{
x ∈ Rd | ci(xi − pi) ≥ 0 for all 1 ≤ i ≤ d

}
.

A point q by Player 2 that wins a voter v ∈ V ∩Op
c must have ⟨c, q⟩ >

⟨c, p⟩, where ⟨·, ·⟩ denotes the inner product.

Proof. Let v ∈ V ∩ Op
c . For any i we know ci(vi − pi) ≥ 0 and |ci| = 1, therefore

ci(vi − pi) = |vi − pi| and

∥v − p∥1 =
d∑

i=1

|vi − pi| =
d∑

i=1

ci(vi − pi) = ⟨c, v − p⟩.

Because |ci| = 1 for all i we also know that

∥v − q∥1 =
d∑

i=1

|vi − qi| ≥
d∑

i=1

ci(vi − qi) = ⟨c, v − q⟩.

If we assume q wins v, then ∥v − q∥1 < ∥v − p∥1. This now gives us

⟨c, v − q⟩ ≤ ∥v − q∥1 < ∥v − p∥1 = ⟨c, v − p⟩,

which implies ⟨c, q⟩ > ⟨c, p⟩.

A direct consequence of this lemma is that there is no vector c where Player 2 wins
voters from two opposite orthants Op

c and Op
−c. In R2 this means Player 2 can only win

voters from the two quadrants on the left, right, top, or bottom of a point p played by
Player 1. In higher dimensions there are more combinations of orthants possible so this
does not work out as nicely.
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Theorem 2.3.2. Let V be a set of n voters in R2. If Player 1 places points according
to an ε-net for V with respect to axis-parallel rectangles, then Player 2 always wins less
than εn voters.

Proof. As noted, Player 2 has to choose for each point of Player 1 whether they want to
win voters on the left, right, top, or bottom of that point. Combining these constraints,
we get that the voters won by Player 2 must lie in an (open) axis-parallel rectangle that
does not contain any point of Player 1. Because Player 1’s points are placed according
to an ε-net, this means any axis-parallel rectangle not containing these cannot contain
εn voters.

Aronov et al. [2] give ε-nets with respect to axis-parallel rectangles. They conjecture
that ε□k ≤

2
k+3 (“there is always an 2

k+3 -net with k points”), which if true would mean
this technique is also effective for high values of k. Dulieu [16] and Rachek [22] both
show that ε□4 ≤ 2

7 , together with the bounds by Aronov et al. confirming the conjecture
for k ≤ 5.

2.4 Personalised L1 metric

We can also use the personalised L1 metric as defined by De Berg et al. [8]. This models
the fact that a voter v might assign more weight to certain topics. To that end, each
voter v is given a personal preference vector w(v) = (w1(d), . . . , wd(v)) ∈ Rd. The
distance between a voter v ∈ V and a point p ∈ Rd is then defined as distw(v, p) =∑d

i=1wi(v)|pi− vi|. Worth noting is that this is not actually a metric: it is only defined
when the first argument is a voter and it is not necessarily symmetric.

To simplify things, we assume the preference vectors are normalised, i.e. ∥w(v)∥ = 1.
This does not restrict the problem, because we only care which points a voter considers
the closest and multiplying the preference vector by a scalar does not change that.

We only need to slightly alter Lemma 2.3.1 to make it work here:

Lemma 2.4.1. Let p ∈ Rd be a point played by Player 1. For a vector c ∈ Rd, define
the set of voters

V p
c = {v ∈ V | ci(vi − pi) ≥ 0 and wi(v) = |ci| for all 1 ≤ i ≤ d} .

A point q by Player 2 that wins a voter v ∈ V p
c must have inner product ⟨c, q⟩ > ⟨c, p⟩.

Proof. Let v ∈ V p
c . For any i we know ci(vi − pi) ≥ 0 and |ci| = wi(v), therefore

ci(vi − pi) = wi(v)|vi − pi| and

distw(v, p) =

d∑
i=1

wi(v)|vi − pi| =
d∑

i=1

ci(vi − pi) = ⟨c, v − p⟩.

Because |ci| = wi(v) for all i we also know that

distw(v, q) =
d∑

i=1

wi(v)|vi − qi| ≥
d∑

i=1

ci(vi − qi) = ⟨c, v − q⟩.
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If we assume q wins v, then distw(v, q) < distw(v, p). This now gives us

⟨c, v − q⟩ ≤ distw(v, q) < distw(v, p) = ⟨c, v − p⟩,

which means ⟨c, q⟩ > ⟨c, p⟩.

V p
(−1,2)

V p
(2,−1)

p

Here, there still is no vector c where Player 2 can win voters from
both V p

c and V p
−c. On the other hand, it is now possible to win voters

from opposing orthants Op
c and Op

−c, provided those voters have differ-
ent preferences. The figure on the right shows this: the voters V p

(−1,2)

are those that have preference (1, 2) that are somewhere in the red or-
thant Op

(−1,1) and can be won if Player 2 places a point in the bigger

red area, while the voters V p
(2,−1) have preference (2, 1), are in the blue

orthant Op(1,−1) and can be won with a point in the bigger blue area. A point placed
where the two areas overlap might thus win voters from the two opposing orthants.

We will show that Player 2 still cannot win voters in Op
c when placing a point in

Op
−c. This lets us give strategies for Player 1 without having to worry about the specific

preference vectors.

2.4.1 Preference-oblivious methods

As was the case for the L2 and L1 metric, we can use an ε-net to get a solution.

Theorem 2.4.2. Let V be a set of n voters in Rd. If Player 1 places points according to
an ε-net for V with respect to axis-parallel star-shaped sets, then Player 2 always wins
less than εn voters.

Proof. Assume Player 1 placed a point p and Player 2’s point q lies in orthant Op
c while

voter v lies in the opposite orthant Op
−c. For any i, we know ci(qi − pi) = |qi − pi| and

−ci(vi − pi) = |vi − pi|. Thus, |qi − pi| + |vi − pi| = ci(qi − vi), which because |ci| = 1
must be equal to |qi − vi|. Therefore, |qi − vi| ≥ |vi − pi|. Regardless of the preference
vector w(v), we now have distw(v, q) ≥ distw(v, p) as well, which means q cannot win v.
The voters won by q must thus lie in Rd \Op

−c.
This means that for any Player 1 point p there is an axis-parallel set that is star-

shaped with respect to q, covering all voters q wins without containing p. When we
look at all points Player 1 placed, then we can intersect those sets to get a set S that
is still axis-parallel, star-shaped with respect to q and covering all voters q wins. On
top of that, it cannot contain any of Player 1’s points. Assuming Player 1’s points are
placed according to an ε-net for V with respect to axis-parallel star-shaped sets, then
that means the set S must cover less than εn voters. Since all voters won by q are
covered by S, Player 2 must also win less than εn voters.

As can be expected no research has been done on these specific ε-nets, so this sub-
section will establish bounds for it. Similarly to the ε-nets before this, we will use εSk to
denote the lowest value such that any point set has a k-point εSk net.

12



One technique Aronov et al. [2] use to make ε-nets for axis-parallel rectangles is to
place the points according to a grid where the rows and columns all have varying heights
or widths to ensure that they contain the same number of voters. To avoid intersecting
the ε-net, an axis-parallel rectangle can then only cover one column or one row, which
means it can cover n

i+1 voters in an i× i grid.
In the same situation, an axis-parallel star-shaped set can cover both one column

and one row. Thus, Player 2 can win at most n
ix+1 +

n
iy+1 voters when Player 1’s points

are placed according to a ix × iy grid. To improve the grid, Aronov et al. [2] construct
ε-nets inside the rows and columns, which is something we can also use here. When we
put rx-point ε

S
rx-nets in jx of the rows and ry-point ε

S
ry -nets in jy of the columns, we get

the following bounds.

Lemma 2.4.3. For all positive integers ix, iy, jx, jy, rx, ry with jx ≤ ix and jy ≤ iy,

εSixiy+jxrx+jyry ≤
1

jx/εSrx + ix + 1− jx
+

1

jy/εSry + iy + 1− jy
.

For k = 1 this only gives the trivial bound εS1 ≤ 1, but as it turns out this bound
is actually tight. We can see this when all voters lie on the line y = x. When Player 1
places a point p above or below the line, then Op

(1,−1) or O
p
(−1,1) cannot contain voters.

When p lies on the line, then neither Op
(1,−1) nor Op

(−1,1) can contain voters. Thus,
regardless of where p is placed there is always an orthant without voters, and one of the
star-shaped axis-parallel sets R2 \ Op

(1,−1) and R2 \ Op
(−1,1) will cover all voters without

containing p.
For k = 2 we can do better. As Figure 2.3 shows, with the grid construction we

always count the voters in the same cell as Player 2’s point twice, but we can use a
different construction to avoid that. There, we first take a horizontal line to divide the
voter set in an upper and a lower half both containing half the voters, and then for both
halves find the vertical line that divides it in half. Placing Player 1’s points where those
lines intersect then ensures that there is always 1

4 of the voters that Player 2 cannot win.
We can make similar constructions with three points to guarantee Player 1 wins 5

7
voters and five points for 7

11 . These are also shown in Figure 2.3. For higher numbers
of points, these constructions are no longer better than the grid construction. One
explanation for this is that the cell for which the voters get counted twice becomes small
enough to not matter as much anymore.

Lemma 2.4.4. εS2 ≤ 3
4 and εS3 ≤ 5

7 and εS5 ≤ 7
11 .

1
4

1
4

1
4

1
4

2
7

1
7

2
7

1
7

1
7

2
11

1
11

2
11

1
11

1
11

2
11

2
11

Figure 2.3: The grid construction with two points, and alternative constructions with
two, three and five points
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2.4.2 Preference-aware methods

In the previous subsection, we did not actually consider the preference vectors of the
voters, but simply made sure the methods work regardless of what they are. As can be
expected, taking the preferences into account gives better methods. However, how good
they are depends on how many different preference vectors there are. To capture this,
we let W = {w(v) | v ∈ V } denote the set of used preference vectors. In the worst case
we can have |W | = n, which as we will see means the preference-aware methods do not
give useful results.

When we only have |W | = 1, we can re-scale the voter set to bring it back to the
normal L1 metric and then solve it as before. For placing a single point, this uses
the medians of the x-coordinates and the y-coordinates in the voter set. We can do
something similar with weighted medians when |W | = 2.

Definition 2.4.5. Let V ⊂ R be a set where each v ∈ V has weight ω(v) ∈ R≥0. Then
the value x ∈ R is a weighted median when∑

v∈V
v<x

ω(v) ≤ 1

2

∑
v∈V

ω(v) and
∑
v∈V
v>x

ω(v) ≤ 1

2

∑
v∈V

ω(v).

At least one weighted median always exists.

Lemma 2.4.6. When |W | = 2, Player 1 can place one point to make sure Player 2 can
win at most n√

2
voters.

Proof. Assume W = {(w′
x, w

′
y), (w′′

x, w
′′
y)} with w′

x > w′′
x. The preference vectors are

normalised, so also w′
y < w′′

y . Let V
′ be the voters with preference (w′

x, w
′
y) and V ′′ those

with preference (w′′
x, w

′′
y). We place the point p ∈ R2 based on weighted medians:

• Its x-coordinate is a weighted median for the voters’ x-coordinates where a voter
v ∈ V ′′ has weight ω(v) =

√
2− 1 and the rest has weight 1.

• Its y-coordinate is a weighted median for the voters’ y-coordinates where a voter
v ∈ V ′ has weight ω(v) =

√
2− 1 and the rest has weight 1.

We can use a linear program to bound the number of voters Player 2 can win. As
variables we use v′++, v

′
+−, v

′
−−, v

′
−+, v

′′
++, v

′′
+−, v

′′
−−, v

′′
−+ ∈ R≥0, where for example v′+−

corresponds to |V p
(+w′

x,−w′
y)
|/n; the voters from V ′ in the bottom-right quadrant. We will

also use v′ as shorthand for v′++ + v′+− + v′−− + v′−+ and define v′′ analogously.
As first constraint, we have v′ + v′′ = 1. The construction of p as a weighted median

also brings constraints:
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v′++ + v′+− + (
√
2− 1)

(
v′′++ + v′′+−

)
≤ 1

2

(
v′ + (

√
2− 1)v′′

)
v′−+ + v′−− + (

√
2− 1)

(
v′′−+ + v′′−−

)
≤ 1

2

(
v′ + (

√
2− 1)v′′

)
(
√
2− 1)

(
v′++ + v′−+

)
+ v′′++ + v′′−+ ≤

1

2

(
(
√
2− 1)v′ + v′′

)
(
√
2− 1)

(
v′+− + v′−−

)
+ v′′+− + v′′−− ≤

1

2

(
(
√
2− 1)v′ + v′′

)

Figure 2.4: Wedges where
Player 2’s point wins a
different combination of
voters

With the objective function we count how many of the
voters Player 2 can win under these constraints. Figure 2.4
depicts which combinations of voters Player 2 can win. The
blue lines belong to V ′ while the red lines belong to V ′′, in
the sense that for example a point above both red lines might
win all voters from V ′′ above p. Player 2 only wins voters on
one side (above/below/left/right) of p when placing a point
in a light grey area, while winning voters from V ′ to the left
or right of p and from V ′′ above or below p when placing a
point in a dark grey area.

Due to symmetry all light grey and all dark grey areas
behave the same, so as objective we maximise the maximum
of what Player 2 would win by placing a point in the rightmost area, and what a point
in the top-right area would win:

max{v′++ + v′+− + v′′++ + v′′+−, v′++ + v′+− + v′′++ + v′′−+}

Solving this linear program gives 1/
√
2 as highest attainable value. In other words, with

any distribution of voters, placing Player 1’s point as described ensures Player 2 wins at
most n/

√
2 voters.

For |W | ≥ 3 constructions with weighted medians also work, but there is no obvious
pattern to which weights should be used and what result it gives for Player 2.

To get a general preference-aware solution, we can combine the method for |W | = 1
and the weighted-median method. For this, we let the voters for each of the m most
common preferences be handled separately with the former method, the voters for k0
pairs of the remaining most common preferences with the latter method, and leave any
remaining voters as is. This gives us Lemma 2.4.7. For some combinations of |W | and
k, the best bounds given by the lemma or the preference-oblivious method are listed in
Table 2.1.

Lemma 2.4.7. By placing k = k0 +
∑m

i=1 ki points, Player 1 can ensure the fraction of
voters Player 2 wins is at most

|W | − 2k0 −m

|W |
+

1√
2
· 2k0
|W |

+

m∑
i=1

ε□ki
|W |

.
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|W | \ k 1 2 3 4 5

1 0.5 0.4 0.333 0.286 0.25
2 0.707 0.5 0.45 0.4 0.367
3 0.805 0.638 0.5 0.467 0.433
4 0.854 0.707 0.604 0.5 0.475
5 0.883 0.75 0.666 0.646 0.5
...

...
...

...
...

...
∞ 1 0.75 0.714 0.667 0.636

Table 2.1: Upper bounds for how many voters Player 2 wins in the personalised L1 metric
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Chapter 3

Solutions for high k

When Player 1 is allowed to place many points (k is high), we get good strategies by
using a compressed quadtree of the voter set to decide where to place points.

3.1 Algorithm

First, we construct a compressed quadtree T based on the voter set V . This can be done
in O (n log n) time and gives a tree structure where each node ν is associated with a
square that includes its bottom and left edge but excludes the other two. Each internal
node of this tree has four children. We denote the set of children of a node ν by C(ν).

In a compressed quadtree, we have at most 4n leaf nodes and for those the associated
squares always contain at most one voter each. We want to more generally find a set R
of regions such that the number of voters covered by a region is bounded by a number
of our choosing, while keeping |R| low and maintaining a nice structure. To that end,
we will go through the tree from the leaves up and only pick the regions that lead to
more than m voters getting covered, for some given constant m.

Figure 3.1: The compressed quadtree, and the region division for m = 2
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Figure 3.1 shows the resulting regions for an arbitrary voter set with m = 2. The six
regions each cover between three and eight voters, and one ‘free’ voter is left uncovered.
The exact procedure is described by Algorithm 1.

Algorithm 1: MakeRegions(V,m)

Input: A quadtree node ν
Output: A set of regions R and a set of free voters Vfree

Let R(ν) be the square corresponding to ν;
if ν is a leaf node then

if ν contains a voter v then
return (∅, {v})

else
return (∅, ∅)

end

else
Recursively call MakeRegions for all nodes in C(ν);
Let R be the union of the returned sets of regions;
Let Vfree be the union of the sets of returned free voters;
R(ν)← R(ν) \

⋃
R∈RR;

if |Vfree| ≤ m then
return (R, Vfree)

else
return (R∪ {R(ν)}, ∅)

end

end

For the analysis it will often be useful to look at ‘child’ regions, so we define
C(R(ν)) = {R(ν ′) | ν ′ ∈ C(ν))} and we define the child regions of a collection R of
regions to be C(R) =

⋃
R∈RC(R) \ R. That is, C(R) contains the regions that are a

child of a region in R but that are not in R themselves.
Both R and C(R) have some useful properties. First of all, we can easily bound the

number of regions and the number of voters in a region.

Lemma 3.1.1. For any region R ∈ C(R) we have |V ∩R| ≤ m < n
|R| .

Proof. From the algorithm we get R ∈ R if and only if |V ∩ R| > m. By definition
R ∈ C(R) means R /∈ R, so this shows the first part of the statement. Because the
regions in R do not overlap and each covers more than m voters, the equivalence also
means that |R| < n

m . This can be rewritten to m < n
|R| .

Once we have these regions, we can use them to place points for Player 1. We will
see that placing points on the corners of each region R(ν) ∈ C(R) ensures that Player 2
can only win voters from three different child regions (see Figure 3.2 for the simplest
case). We also need the four points on the outside of each region R(ν) ∈ R to ensure
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Player 2 cannot win voters from multiple ‘ancestor’ regions; regions R(ν ′) ∈ R where
node ν ′ is an ancestor of ν. This gives the point set P (R) as shown in Figure 3.2. Recall
that k is the number of points placed by Player 1. Because we place 13 points per region
R(ν) ∈ R, we have k ≤ 13|R| and thus m < 13n

k .

Figure 3.2: Left: If Player 2 places a point in a coloured semi-circle it can win voters in
the region with that colour. Right: The 13 points P (R) placed around a region R ∈ R.

As noted, constructing a compressed quadtree takes O (n log n) time and gives O (n)
nodes. For each of the nodes, Algorithm 1 does a constant-time operation, and |R| =
O (n) so adding the points P (R) for each region R ∈ R can also be done in O (n) time.
Thus, the whole procedure has a running time of O (n log n). The following lemma
summarises the properties of the construction.

Lemma 3.1.2. The quadtree-based method described above places less than 13 n
m points

of Player 1 and runs in O (n log n) time.

Next we analyse the number of voters that Player 2 can win.

3.2 A first bound

To give an upper bound for the number of voters Player 2 can win, we will bound the
number of child regions Player 2 can win voters from. In the case depicted in Figure 3.2
it is not too complicated to prove Player 2 can only win voters from three child regions,
but when we account for how a region can be nested in arbitrarily many ancestor regions
this becomes more involved.

We can, however, already conclude a simple property from the fact that each child
region has points on its corners. For a point q to win voters from a child region it needs
to be closer to them than these corner points, which means it must be placed in the blue
area in Figure 3.3. The blue area comes from the union of open disks that are centred
around a possible voter in the child region and do not contain one of Player 1’s points.
We capture this idea with Definition 3.2.1:
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Figure 3.3: Q(R) and V (R) for any R ∈ C(R)

Definition 3.2.1. For a region R, we define Q(R) as the set of locations for Player 2’s
point that might win a voter in R, i.e.

Q(R) = {q ∈ R2 | ∥q − v∥ < min
p∈P
∥p− v∥ for some v ∈ R}

We can also do the reverse and determine the area a point q can win voters in, when
we know in which child region q is placed. This comes down to looking at the union of
possible Voronoi cells, as shown in Figure 3.3. The boundary is formed by the parabolas
that are equidistant from a point of Player 1 and a side of the child region.

Definition 3.2.2. For a region R, we define V (R) as the set of locations for voters that
Player 2 might win by placing a point in R, i.e.

V (R) = {v ∈ R2 | ∥q − v∥ < min
p∈P
∥p− v∥ for some q ∈ R}

From C(R), let R0 be the region containing q and Rl, Rr, Ru, Rd the first new re-
gions encountered when moving from q in each of the cardinal directions (as depicted
in Figure 3.4). Using the two properties we found, the following lemma will show that
q can only win voters from these five regions of C(R), which already gives a bound for
how many voters Player 2 can win.

Lemma 3.2.3. A point q ∈ R0 can only win voters from R0 and the first regions
encountered in each of the cardinal directions (Rl, Rr, Ru and Rd).

Proof. The point q can only win voters from regions R ∈ C(R) that intersect the hor-
izontal or vertical line through q, because otherwise it cannot lie in Q(R). We follow
the line from q in the given cardinal direction and let R be the first region of C(R) \R0

encountered that we win voters from.
First, assume R is an ancestor of R0. The quadtree structure means that the distance

between R0 and the outer boundary of R will be a multiple of the side length of R0. The
distance cannot be zero, because otherwise we cannot have encountered R. Thus the
distance is at least the side length of R0, meaning anything outside of R will definitely lie
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Figure 3.4: The five child regions Player 2’s point might win voters from

outside of V (R0). Also because of the quadtree structure, the distance between R0 and
another quadtree region R′ must be at least the minimum of their side lengths. Thus,
when R′ is at least as large as R0 then it will be outside of V (R0), and R0 itself will be
outside of Q(R′) when R′ is smaller than R0. Thus, we can only win voters from R.

Now, assume R is not an ancestor. The points on the corners of R prevent us from
winning any voters behind it. Hence, if q can win any voters from a region R′ ̸= R that
lies in the same cardinal direction as R, then R′ must be a descendant of R. In that
case, either R′ touches the boundary of R (in which case we could not have won voters
from R) or R′ at least the side length of R′ removed from the boundary (in which case q
cannot lie in Q(R′)). Thus, for a given cardinal direction we can always only win voters
from the first encountered child region.

3.3 A tight bound

Figure 3.5: Player 2’s point
(in the blue area) can only win
voters from the green area

From Lemma 3.2.3 we know we only need to consider
five regions. However, it is not possible to get voters
from all combinations of these regions. In fact Player 2
can only win voters from three, which gives a tighter
bound.

To get this new bound, we will need to look at what
happens when q is placed outside of a region but still
wins voters from it. If we assume q is above the region,
then it must be in the blue half-disk in Figure 3.5, and
thus any voters won must be in the green area. The
boundary for that is formed by the hyperbolas that are
equidistant from the disk and Player 1’s points (for the
top and left) and the lines that are equidistant from the
rightmost point of the disk and Player 1’s points (for
the bottom and right).

We can now use this property to further limit the
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number of regions Player 2 can simultaneously win voters from.

Lemma 3.3.1. A point q ∈ R0 can only win voters from R0 and at most two of the
regions Rl, Rr, Ru, Rd.

Proof. Let R be the smallest region in R the point q wins voters from. Without loss of
generality assume R has side length 4 and its top-right corner is placed at the origin.

First, assume q = (x, y) lies outside R. Without loss of generality we also assume
that y > 0 and x > −2. For q to win voters from R we now also need y < 2 and x < 0.
Since it already wins voters from R downwards, by Lemma 3.2.3 we cannot win voters
from any other region below q. Because R is the smallest region, Rl cannot overlap the
green area from Figure 3.5 either.

Thus, assume we win voters from both Ru and Rr. Let (ux, uy) and (rx, ry) denote
the position of a won voter in Ru and Rr respectively. Without loss of generality, assume
(ux, uy) lies on the lower boundary of Ru and (rx, ry) on the left boundary of Rr. Because
R is the smallest region that q wins voters from and has side length 4, that means uy and
rx should be multiples of 4. One of Ru and Rr will always have a corner point at (rx, uy),
or two that lie closer to (ux, uy) and (rx, ry), thus the distance of (ux, uy) and (rx, ry) to
their nearest corner point will be at most rx − ux and uy − ry respectively. Because we
had x < 0 and y < 2, the distance to q is always at least uy − 2 and rx respectively. If q
is to be closer we definitely need uy − 2 < rx − ux, which means rx > ux + uy − 2. We
also need rx < uy − ry, but that means rx must be in the interval (uy + ux− 2, uy − ry).
As can be gathered from Figure 3.5, we definitely need ux ≥ −2 and r2 ≥ 0, so this
will be at best (uy − 4, uy). Because uy is a multiple of 4 this interval cannot contain
any others, which means there are no valid positions for rx. Thus, we cannot win voters
from both Ru and Rr.

Now, assume q lies inside R. Since R is the smallest region from which q wins voters,
there are no child regions to account for. Thus, any other voters must come from outside
of the quadrant q is in. In the worst case, these will be placed in the middle of the sides
of the quadrant. Assuming the quadrant has side length 2, such a voter will be at most
1 unit away from the closest point of Player 1. Thus, if q is to win it, it should be less
than 1 unit away from that side. This means q cannot win voters from two opposing
sides, which means it can win from at most two cardinal directions.

This now finally lets us conclude a good upper bound for the number of voters won
by Player 2.

Theorem 3.3.2. Let V be a set of n voters in R2. In O (n log n) time, we can place
k points for Player 1 such that by placing a single point Player 2 always wins less than
39n

k voters.

Proof. From Lemma 3.3.1 we know that Player 2 can win voters from at most three
regions of C(R) and nowhere else. Lemma 3.1.1 gives us that these three regions each
contain less than n

|R| voters. By construction k ≤ 13|R|, so finally Player 2 wins less

than 3 n
|R| ≤ 39n

k voters. As noted in Lemma 3.1.2, the construction takes O (n log n)
time.
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Figure 3.6: A setup that achieves the 39n
k bound

The setup from Figure 3.6 (where m means the region contains m voters) lets us get
arbitrarily close to this bound, if we nest the grey region under a larger area the way the
yellow region is nested under the grey region. This way, we have no overlaps and use
k = 13|R| points for n = |R|(m+1)+2m− 1 voters. Thus, 13n

k = m+1+ 2m−1
|R| , which

can get arbitrarily close to m if we make |R| and m sufficiently large. Player 2 can win
3m voters by placing a point in the top-right quadrant of the yellow region, thus this
can get arbitrarily close to 39n

k .

3.4 A more refined approach

Figure 3.7: V (R) for a re-
gion R where we leave out
the innermost five points

Currently, we use the same 13 points regardless of where
the voters lie in a region and how many there are, even
though this can range fromm+1 to 4m. We can get better
bounds by making the points depend on the number of
voters and their locations.

One way to do this is to only place the full 13 points
for regions that contain more than 3

2 voters. For a region
R with less voters, we save points by placing them only
on the corners of R itself instead of the corners of all of
its child regions. That gives the eight points shown in
Figure 3.7. The region R now resembles what a child
region looks like otherwise, and as can be seen V (R) is
still small.

Let R1 denote the regions with points on the corners
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of each child region and R2 those with points only on its own corners. Instead of C(R),
we will now look at C̃(R) = C(R1) ∪ R2. For each R ∈ C̃(R) we know that there are
points on the corners and that Q(R) and V (R) are small, so we can follow the exact
same proof that lead to Lemma 3.3.1 to show that Player 2 can win voters from at most
three regions in C̃(R).

Now, a region in C̃(R) can contain up to 3
2m voters. Despite that, we can ensure that

Player 2 wins at most m voters from a region by placing centerpoints in the regions R2.
The centerpoint is an 2

3 -net, and as such ensures that Player 2 win less than 2
3 ·

3
2m = m

voters from a region in R2. Thus, when a region contains more than 3
2m voters we use

nine points, while otherwise we use 13, and Player 2 still wins at most 3m voters in total.
When we include this case distinction in the algorithm, it lets us place less points

to achieve the same result. Assuming |R2| = x and |R1| = y, then the total number of
points k = 9x+13y and also x ·m+ y · 32m < n. Combining these two, k−13y

9 m+ 3
2ym =

k+ 1
2
y

9 m < n, which in the worst case means m < 9n
k . This is lower than the bound

m < 13n
k we got with the original setup, therefore means that the at most 3m voters

Player 2 can win due to Theorem 3.3.2 only amount to 27n
k instead of 39n

k .
We will need to find a centerpoint for O (|R|) point sets, each containing O (m)

points. Thus, this will take O (m · |R|) time [20], which is O (n) by Lemma 3.1.1. The
running time of the full algorithm is therefore still O (n log n).

3.4.1 Incorporating techniques for low k

For the previous construction, we used centerpoints to ensure Player 2 can win at most
m voters from a region in C̃(R), even though they might contain more. We can take this
further and let Player 2 only win 2

3m voters from these regions. For a region in R that
covers 4m voters, this is accomplished by placing the 13 points as before and then adding
centerpoints for the voters in each quadrant. For regions containing less voters, we can
leave out the centerpoint for any quadrant that contains at most 2

3m voters anyway. In
the worst case we have i quadrants that contain 2

3m+1 voters each, requiring us to use
13+ i points for (slightly more than) 2

3m · i voters. The number line in Figure 3.8 shows
the maximum number of points a region needs using this technique when it contains a
given number of voters.

1.5m 2m 2.5m 3m 3.5m 4m
14 15 16 17

m

Figure 3.8: Maximum points needed for a region with a given number of voters

When a region contains only m+ 1 voters, this still forces us to use 14 points for it.
We can do better if, like before, we leave out the five innermost points. To make sure
Player 2 can win at most 2

3 voters, we now need to do more than place a centerpoint.

Instead, we can place a two-point εC2 -net, as given in Chapter 2. For a region R, this

works as long as εC2 · |R ∩ V | ≤ 2
3m. As εC2 = 4

7 this works when it contains at most 7
6m
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m 1.5m 2m 2.5m 3m 3.5m 4m
10 … 14 15 16 17

Figure 3.9: Maximum points needed for a region with a given number of voters

voters. In general, an εCi -net lets us use 8 + i points for up to 2
3m/εCi voters.

We get the best results by using this new construction when placing up to 14 points,
while otherwise still placing the 13 points and adding centerpoints to some quadrants.
This gives the number line in Figure 3.9.

Table 3.1 gives the exact values involved in the case distinction: for every construc-
tion it gives the number of points needed and at which number of voters it starts being
used. In all cases, this is when the previous construction stops working, e.g. the con-
struction with 14 points is used when a region contains more than 12

5m voters because

the construction with 13 points can handle up to 2
3m/εC5 = 12

5m voters.
In the last row, we divide the number of points used for a region by the minimum

number of voters it covers. This gives a bound for m: if all regions use the same
construction costing k′ points and covering more than n′m voters, then k ≤ |R|k′ and
n > |R|n′m and therefore m < k′

n′ · nk . When multiple constructions are used, this bound
is somewhere between the values for only one construction. Here, we can see that in
the worst case we only get m < 10 5

16 ·
n
k . Player 2 can win at most 2m voters, so this

amounts to less than 205
8 ·

n
k .

Number of points 10 11 12 13 14 15 16 17

Min. voters covered m 11
6m 11

4m 11
3m 12

5m 1 5
11m 2m 22

3m
Max. points per m voters 10 93

7 93
5 93

4 10 10 5
16 8 63

8

Table 3.1: Bounds resulting from the various setups

3.4.2 Excluding quadrants

The bound of 205
8 comes from the strategy with 14 points (of which six form an εC6 -net)

only being able to cover up to 2
3m/εC6 = 1 5

11m voters. The other strategy with 14 points
is to place 13 of them as before, and the remaining one as centerpoint in the quadrant
with the most voters. However, this already stops working when two quadrants have
2
3m+1 voters each. If only those two quadrants have voters, we might as well leave out
the points for the other quadrants, leading to one of the setups in Figure 3.10. With R
and R′ as the two remaining child regions, Q(R), Q(R′), V (R), V (R′) are all still small
enough for Lemma 3.3.1 to hold.

Often, we will of course still have some voters in the other two quadrants. As long
as these are at most m, we can simply pass these along as free voters in Algorithm 1
and let it put them in a region later.
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Figure 3.10: Possible setups when only two quadrants contain points

If we only use this setup when there are two quadrants with more than 2
3m voters

and add centerpoints to both those quadrants, it means it always covers more than 11
3m

voters and can handle the region containing up to 21
3m. This gives us Table 3.2, where

we can see that the new worst bound is m < 10 · nk , achieved when we are forced to use
10 or 14 points for every region. This means Player 2 always wins less than 20 · nk voters.

Theorem 3.4.1. Let V be a set of n voters in R2. Player 1 can place k points to ensure
that by placing a single point Player 2 wins less than 20n

k voters.

Number of points 10 11 12 13 14 13 16 17

Min. voters covered m 11
6m 11

4m 11
3m 12

5m 11
3m 21

3m 22
3m

Max. points per m voters 10 93
7 93

5 93
4 10 93

4 66
7 63

8

Table 3.2: New bounds resulting from the various setups

3.5 L1 metric

The quadtree method works well in the L2 metric, but in the L1 metric it works even
better. We place the same 13 points as before based on the procedure in Section 3.1.
As Figure 3.11 shows, in the simple situation where a region is a square, Player 2 can
win outside voters from only one direction as opposed to the two we had under the L2

metric. We will show that in more complicated situations this still holds.
Figure 3.11 also shows where a point placed in the blue triangle (such that it can win

voters from the top-right quadrant) might win other voters. This is again much nicer
than what we had in L2, because there the equivalent area was unbounded. Here, it is
bounded by the diagonal and horizontal line equidistant from the top of the triangle and
Player 1’s highest point, the vertical line equidistant from the left of the triangle and
Player 1’s point there, and the vertical line equidistant from the right of the triangle and
Player 1’s point there.
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Figure 3.11: Left: If Player 2 places a point in a coloured triangle it can win voters in
the region with that colour. Right: Player 2’s point (in the blue area) can only win
voters from the green area

Lemma 3.5.1. q only wins voters from at most two regions of C(R).

Proof. Let R be the smallest region in R the point q wins voters from.
First, assume q lies inside R. Since R is the smallest region, there are no child regions

to account for. That means the situation is as in Figure 3.11. Thus, in that case q can
only win voters from at most two regions of C(R).

Now assume q lies outside of R. As Figure 3.11 shows, there is only a small area
where other voters won by q can lie. Because R is the smallest region q wins voters from,
no other region can overlap that area. Therefore, q can again only win voters from two
regions of C(R).

This directly lets us conclude an upper bound on the number of voters won by
Player 2 that is better than its equivalent in the L2 metric.

Theorem 3.5.2. Let V be a set of n voters in R2. In O (n log n) time, we can find k
points for Player 1 to place such that by placing a single point Player 2 always wins less
than 26n

k voters.

Proof. From Lemma 3.5.1 we know that Player 2 can win voters from at most two regions
of C(R) and nowhere else. Lemma 3.1.1 gives us that these two regions each contain less
than n

|R| voters. By construction k ≤ 13|R|, so finally Player 2 wins less than 2 n
|R| ≤ 26n

k

voters. As noted in Lemma 3.1.2, this takes O (n log n) time.

3.5.1 A more refined approach

As with the L2 metric, we can make a case distinction to further improve this result.
Here, the ε-net solution from Chapter 2 is already very good (if as conjectured we can
always make a 2

k+3 -net from k points, it is better to not use the quadtree technique at all).

To make optimal use of that, we enforce that the opponent can only win 1
6m voters from
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any region in C(R). Because ε□10 = 1
6 this means we place a staggering 13 + 4 · 10 = 53

points when a region covers 4m voters. However, this number is balanced out by the
fact that the opponent can only win 2 · 16m = 1

3m voters in total.
When placing 8+i ≤ 27 points we place the eight outer points and then the remaining

i according to an ε□i -net. These can be used for up to 1
6m/ε□i voters. Table 3.3 shows

the bounds this gives. The construction with 27 points works for up to 1 5
12m voters.

Number of points 20 22 24 25 27

Min. voters covered m 1 1
12m 11

6m 11
4m 11

3m
Max. points per m voters 20 20 4

13 204
7 20 201

4

Table 3.3: Bounds resulting from the various setups

Otherwise, we place the full 13 points and use the remaining ones to make ε-nets
in the child regions. For convenience, let 1/ε□−1 = 0. Now, a quadrant needs an ε□i -net

when it contains more than 1
6m/ε□i−1 voters. More generally, let i1, . . . , i4 denote the

number of points used for an ε-net in each of the quadrants. We need
∑4

j=1 ij points

when each quadrant j contains more than 1
6m/ε□ij−1 voters. Thus, 13 + i points can be

used for up to min
{∑4

j=1
1
6m/ε□ij−1

∣∣∣ ∑4
j=1 ij = i− 1

}
voters.

Table 3.4 shows the bounds this gives. Here, we skipped many possible setups, such
as the one with 42 points. This is because limiting us to the shown cases does not give
a worse overall bound but prevents the table from getting overly large.

Number of points 29 30 32 34 41 51 53

Min. voters covered 1 5
12m 11

2m 1 7
12m 12

3m 2m 21
2m 31

3m
Max. points per m voters 20 8

17 20 20 4
19 202

5 201
2 202

5 15 9
10

Table 3.4: Bounds resulting from the various setups

We always need at most 204
7 points per m voters, so the total number of points is

k < 204
7 ·

n
m . Thus, m < 204

7 ·
n
k and Player 2 can win 1

3m < 66
7 ·

n
k voters.

Theorem 3.5.3. Let V be a set of n voters in R2. Player 1 can place k points to ensure
that by placing a single point Player 2 wins less than 66

7 ·
n
k voters.
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Chapter 4

Conclusion

We have proven new bounds for the one-round discrete Voronoi game for the L2 metric,
L1 metric and the personalised L1 metric. For low k, these are based on ε-nets with a
different range space depending on how the distance is calculated. Respectively, these
are convex sets, axis-parallel rectangles and axis-parallel star-shaped sets. We have given
a new construction for ε-nets for convex sets that for k ≥ 4 gives results better than
previously known. To our knowledge this is the first time ε-nets for axis-parallel star-
shaped sets are considered, though we do draw heavily from existing constructions for
axis-parallel rectangles.

For high k we get good results using quadtree-based methods for the L2 and L1

metric. Compressed quadtrees can be generated quickly so in the places we can find
a running time this was a nice O (n log n). However, for the best bounds we do not
have algorithms, because ε-net constructions they use as a subroutine do not have an
algorithm yet. Therefore we also do not have algorithms to achieve the best lower
bounds.

It would have been nice to have a single lower bound for both low and high k, but it
makes sense that the quadtree-based method does not provide one: it limits the number
of regions Player 2 can win voters from, but when the method only creates few regions
this is not very effective.

For the personalised L1 metric we have not managed to find a method that works
well for high k. The quadtree method does not work, for one because a voter v with
preference w(v) = (1, 0) does not care about y-coordinates and might thus be won by a
point q placed in a far away region. As a consequence, we also do not know if Player 1
can win O

(
n
k

)
as in the L2 and L1 metric.

4.1 Future work

There are still many options for and generalisations of the one-round discrete Voronoi
game that have not been researched but could be interesting.
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4.1.1 Higher dimensions

This thesis only gave bounds and algorithms for the one-round discrete Voronoi game in
R2, so a natural future step would be to try to generalise the results to higher dimensions.

For the quadtree-based methods, this would mean using octrees and higher dimen-
sional ‘hyperoctrees’. The main hurdle is to figure out how many points each region
should have and where. Simply placing points at each corner of a child region means
that in high enough dimensions it becomes possible to place a point on one side of the
child region and win voters on the other side of it, which was impossible in R2 and one
of the reasons it gave a good bound.

The grid-based ε-net constructions for axis-parallel rectangles and star-shaped sets
easily generalise to Rd: instead of placing the ε-net according to a ix × iy grid we place
it as an i1 × · · · × id grid. This should then ensure that any axis-parallel hyperrectangle
overlaps less than max1≤j≤d

1
ij+1 of the voters and any axis-parallel star-shaped set less

than
∑d

j=1
n

ij+1 , unless they intersect the ε-net. From this we directly get bounds for

the personalised L1 metric for Rd in general. However, as explained in Section 2.3 we
cannot simply use ε-nets for axis-parallel hyperrectangles for the L1 metric. Since the L1

metric is a special case of the personalised L1 metric, we can use ε-nets for axis-parallel
star-shaped sets, but it would be interesting to see if there is a technique that works
better.

The ε-net construction for convex sets given in Section 2.2 might be difficult to
generalise to higher dimensions. It is based on an equipartition of the voter set by
hyperplanes that intersect in one common point, but for higher dimensions no obvious
option has presented itself.

4.1.2 VG(k, ℓ) with ℓ > 1

Another natural next step is to consider the game when Player 2 can place more than
one point. Player 1 can of course always use the same strategy as for VG(k, 1), so that
Player 2 wins at most ℓ times as many voters as in VG(k, 1). When k is much larger
than ℓ, this should be the best strategy, because any good strategy for Player 1 will leave
multiple disjoint options for Player 2 to win the same number of voters. When k and ℓ
are closer together, it might be possible to force the subsets of voters two Player 2 points
would win to have overlap. A simple but not very meaningful example is when we place
a centerpoint: there are multiple options for Player 2 to win 2

3n voters with one point,
but for any two points there must be overlap in the 2

3n voters they win, because it is
impossible to win more than n voters.

4.1.3 Algorithms to achieve the found bounds

Chapter 2 gives constructions for ε-nets, but no actual algorithms to (efficiently) do
those constructions. For most constructions it should not be too complicated to make
an algorithm, but turning the proof from Theorem 2.2.1 for partitioning a point set with
three concurrent lines into an algorithm might be less easy. Here, it might be possible
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to alter the O
(
n2 log n

)
algorithm that was found for an equipartition with those same

three concurrent lines [7].

4.1.4 β-plurality

As mentioned in the introduction, β-plurality points have been introduced as an alterna-
tive to normal plurality points. Existing research focuses on VG(1, 1), but the concept
can easily be generalised to VG(k, 1). There, the question is how how many of the voters
Player 1 can win with a given β and k.

In general, we can say that it is not possible to always win more than k
k+1 of the

voters. This can be seen when there are n = k + 1 voters that are each at different
positions: Player 2 can always place a point on top of a voter that Player 1 did not place
a point on top of. Regardless of which distance function is used, this ensures Player 2
wins that voter, thereby leaving only the remaining k for Player 1.

For the L2 metric, we can already see some interesting results when β ≤
√
d. Then,

Player 1 can place points as if working in the L1 metric and win at least as many voters.
This comes from the fact that ∥x∥2 ≤ ∥x∥1 ≤

√
d∥x∥2 for any x ∈ Rd. It means that

when we have a voter v and two points p, q such that ∥v − p∥1 < ∥v − q∥1,

β∥v − p∥2 ≤ β∥v − p∥1 < β∥v − q∥1 ≤ ∥v − q∥2.

More difficult problems arise when we try to find, for example, how big β can be while
still ensuring that Player 1 wins VG(2, 1) under optimal play.

Apart from this, it might also be interesting to see how β-plurality works for the
personalised L1 metric. Filtser and Filtser [17] have found a lower bound

√
2 − 1 for

the value of β needed to ensure a β-pluralty point exists in any metric space, but the
personalised L1 metric is not a metric and it does not seem like their proof can be
adapted to work for it. However, when all preference vectors are of the form (1, w) with
β ≤ w ≤ 1

β , Player 1 can again treat the game as if it is in the normal L1 metric.
This is because when for some voter v and points p, q we have ∥v − p∥1 ≤ ∥v − q∥1 and
w(v) = (1, w) with β ≤ w ≤ 1, then also

βdistw(v, p) ≤ w∥v − p∥1 ≤ w∥v − q∥1 ≤ distw(v, q).

Simultaneously, when 1
β ≥ w ≥ 1,

βdistw(v, p) ≤ βw∥v − p∥1 ≤ βw∥v − q∥1 ≤ distw(v, q).

When the preference vectors are far apart this can force β to be arbitrarily small, so it
would be interesting to see if there is also a bound that does not depend on the specific
preferences.

4.1.5 Measures

All shown constructions will likely also work when the voters are given by a continuous
measure instead of a point set, or even as long as any atom of the measure has measure
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at most one. The ε-nets and proofs should generalise to these measures without much
extra work. To construct a quadtree for the measure, we subdivide any square that has
measure more than one until there are none left.

The Voronoi game with measures generalises both the discrete and the continuous
Voronoi games and could for example apply when voters are represented by a region
instead of a point. It could also be useful when the exact position of (some) voters is
unknown and instead given by a probability distribution, though in that case winning two
voters with probability 1

2 counts for the same as winning one voter with probability 1.
The algorithms and bounds would only consider the expected number of voters won,
while the probability of Player 1 winning might be more suitable. For example, if there
are two voters in total then winning two voters with probability 1

2 means losing half the
time, while always winning a single voter means Player 1 always wins. This could be
another possibility for future work.
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van Oostrum. Competitive facility location along a highway. In Jie Wang, editor,
Computing and Combinatorics, 7th Annual International Conference, COCOON
2001, Guilin, China, August 20-23, 2001, Proceedings, volume 2108 of Lecture Notes
in Computer Science, pages 237–246. Springer, 2001.

[2] Boris Aronov, Franz Aurenhammer, Ferran Hurtado, Stefan Langerman, David
Rappaport, Carlos Seara, and Shakhar Smorodinsky. Small weak epsilon-nets. Com-
put. Geom., 42(5):455–462, 2009.

[3] Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On
beta-plurality points in spatial voting games. CoRR, abs/2003.07513, 2020.

[4] Aritra Banik, Bhaswar B. Bhattacharya, and Sandip Das. Optimal strategies for
the one-round discrete voronoi game on a line. J. Comb. Optim., 26(4):655–669,
2013.

[5] Aritra Banik, Bhaswar B. Bhattacharya, Sandip Das, and Satyaki Mukherjee. The

discrete voronoi game in r2. Comput. Geom., 63:53–62, 2017.

[6] Aritra Banik, Jean-Lou De Carufel, Anil Maheshwari, and Michiel H. M. Smid.
Discrete voronoi games and ε-nets, in two and three dimensions. Comput. Geom.,
55:41–58, 2016.

[7] Astrid Belder, Mark Bouwman, and Gábor Damásdi. An algorithm for six-way
equipartition. Found at https://damasdigabor.web.elte.hu/sixway.pdf.

[8] Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for
computing plurality points. ACM Trans. Algorithms, 14(3):36:1–36:23, 2018.

[9] Mark de Berg, Sándor Kisfaludi-Bak, and Mehran Mehr. On one-round discrete
voronoi games. In Pinyan Lu and Guochuan Zhang, editors, 30th International
Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019,
Shanghai University of Finance and Economics, Shanghai, China, volume 149 of
LIPIcs, pages 37:1–37:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

33

https://damasdigabor.web.elte.hu/sixway.pdf


[10] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–
461, 1973.

[11] Boris Bukh. A point in many triangles. Electron. J. Comb., 13(1), 2006.

[12] Thomas Byrne, Sándor P. Fekete, Jörg Kalcsics, and Linda Kleist. Competitive lo-
cation problems: Balanced facility location and the one-round manhattan voronoi
game. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C. Nandy, editors, WAL-
COM: Algorithms and Computation - 15th International Conference and Work-
shops, WALCOM 2021, Yangon, Myanmar, February 28 - March 2, 2021, Proceed-
ings, volume 12635 of Lecture Notes in Computer Science, pages 103–115. Springer,
2021.

[13] Timothy M. Chan. An optimal randomized algorithm for maximum tukey depth. In
J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-
14, 2004, pages 430–436. SIAM, 2004.

[14] Shuchi Chawla, Uday Rajan, R. Ravi, and Amitabh Sinha. Min-max payoffs in a
two-player location game. Oper. Res. Lett., 34(5):499–507, 2006.

[15] Otfried Cheong, Sariel Har-Peled, Nathan Linial, and Jiŕı Matousek. The one-round
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