
 Eindhoven University of Technology

MASTER

Simulation and DSE of Neuromorphic Architectures for RSNNs

Willigers, Stefan L.C.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3361f59c-5cf4-4400-97ff-717e051a404d

Department of Electrical Engineering
Parallel Architecture Research Eindhoven (PARsE)

Simulation and DSE of Neuromorphic Ar-
chitectures for RSNNs

Master’s Thesis

Stefan Willigers

Supervision:
Sherif Eissa
Henk Corporaal

Assessment committee:
Sherif Eissa
Henk Corporaal
Federico Corradi
Charlotte Frenkel

August 12, 2022

Contents

1 Introduction 3
1.1 Problem statement . 4
1.2 Contributions & overview . 4

2 Background 6
2.1 Neuromorphic computing . 6

2.1.1 Biological neurons . 6
2.1.2 ANNs . 8
2.1.3 SNNs . 9

2.2 Neuromorphic hardware . 10
2.2.1 Hardware design choices 11

2.3 Trace-driven vs execution-driven simulators 14

3 Related work 16
3.1 Neuromorphic hardware . 16
3.2 Neuromorphic hardware simulators 17
3.3 Unexplored approach . 19

4 Simulator 20
4.1 Simulator overview . 20
4.2 SNN model . 22
4.3 Hardware model . 23

4.3.1 Core . 24
4.3.2 Controller . 27
4.3.3 Mesh . 28
4.3.4 Synchronization . 29

4.4 Cost model . 30
4.4.1 Memories . 30
4.4.2 Buffers . 31
4.4.3 Memory layout . 32
4.4.4 Core . 34
4.4.5 Routers . 35
4.4.6 Chip total . 36

1

4.5 Software architecture . 36

5 Experiments 38
5.1 Experimental setup . 38

5.1.1 Networks . 38
5.1.2 Mapping . 39
5.1.3 ALU config . 42
5.1.4 Routing config . 43
5.1.5 Memory config . 43

5.2 Evaluation . 45
5.3 Experimental results . 45

5.3.1 Core size . 46
5.3.2 ALU design . 49
5.3.3 NoC design . 51
5.3.4 Accuracy deviations 54

6 Discussion 56
6.1 Hardware analysis . 56
6.2 Experimental analysis . 57
6.3 Simulator reflection . 59
6.4 Future work . 59

7 Conclusion 61

Appendices 66

A Experimental results 67

2

Chapter 1

Introduction

Machine learning is a branch of AI that uses algorithms and data to perform
cognitive tasks. Recently, machine learning has become a hot topic again.
This increase in popularity is due to the increase in computation power
and data abundance allowing the accuracy of especially neural networks to
improve by leaps and bounds. As a result, neural networks have proven
effective in a wide range of applications. Effective applications include fields
like computer vision which deals with the analysis of image and video data
by computers, or the field of natural language processing which tries to
interpret natural languages like English, French, German or Dutch. Deep
learning has achieved super-human performance in many of these cognitive
tasks.

Currently, most of the work in deep learning is in the field of ANNs (arti-
ficial neural networks). ANNs can achieve super-human performance on cog-
nitive tasks, but they suffer from being power-hungry and time-consuming
to create and run. When looking at the biological counterpart for AI, the
brain, we see that the brain consumes less power and learns information eas-
ier than current ANN-based systems. Two avenues of research are studying
the brain in the context of AI. Cognitive neuroscience tries to decode how
the brain works. And neuromorphic AI, which uses neuroscience concepts
to improve the efficiency of computers on cognitive tasks. This work’s main
area of interest will be SNNs (spiking neural networks), part of neuromor-
phic AI research. SNNs try to improve on ANNs using several principles
inspired by the brain. SNNs are also often called the third generation of
neural networks [1].

There is already dedicated hardware for running ANNs. Due to ANNs
being so popular, this avenue of research is also intensively researched. This
popularity results in the more mature hardware specialized in running appli-
cations required by the ANN field. There even are frameworks specializing
in DSE for ANNs like ZigZag [2]. However, that maturity does not hold
for SNN hardware. The design and implementation of efficient hardware for
SNNs are compared to ANNs still in their infancy. Hardware specialized in

3

simulating SNNs is called neuromorphic hardware.

1.1 Problem statement

In this work, we want to research neuromorphic hardware and the design
choices involved. More specifically, the neuromorphic hardware we want to
research is multi-core and therefore has a NoC (Network on Chip). Ad-
ditionally, we want to do DSE (design space exploration) of different SNN
applications and mappings. Using a hardware model, we want to learn what
trade-offs are and how significantly they affect the hardware design. More
specifically, the questions that we want to answer are as follows:

• What is the effect of core size on the throughput and energy of the
chip? Smaller cores cause more traffic, but the memories consume less
energy.

• How can core computation unit design affect the area, energy, and
throughput? Having more functional units allow more throughput.
However, more functional units will increase area and power leakage.

• What is the influence of increasing a router’s buffer sizes on the through-
put and area usage of the hardware? Increasing buffer sizes of the
routers may increase the router’s throughput but will increase the
area usage of the router.

• Does limiting the number of wires between routers greatly influence the
throughput of the hardware? Limiting the number of wires can limit
the transfer speed between routers. This limited speed will decrease
overall throughput.

1.2 Contributions & overview

To enable DSE, we plan to create a simulator that models the behavior
of neuromorphic hardware. This simulator will include a cost model that
can quantify the area and energy cost of the core and a discrete event-
based simulator that can functionally model the hardware, including the
congestion of the NoC. Additionally, the simulator will be execution-driven
and, therefore, able to predict accuracies. The hardware will be multi-core
and use a 2D-mesh as communication fabric, and the core design will be
digital and time-multiplexed. Additionally, the core design will use the
axonal approach. To do our experiments, we will train our own networks
based on the SRNN (spiking recurrent neuronal network) networks of [3].
Then we will use these networks as a benchmark to evaluate the performance
of different hardware configurations. The hardware configurations are made
in such a way that they can answer the research questions.

4

The remainder of the work will be as follows: First, we will give a bit of
background into SNNs, neuromorphic hardware, and simulators in chapter
2. Then we will investigate the current state of the art and see where we can
improve upon it in chapter 3. After researching the state-of-the-art, we will
explain the simulator that was built to solve the problem. The explanation
of this simulator is given in chapter 4. Finally, we can do our experiments
in chapter 5, after which we can discuss the results and the simulator in
chapter 6, followed by the conclusion in chapter 7.

5

Chapter 2

Background

Before looking at related work, we first need to know some background
information to understand the related work. Section 2.1 will look into how
neuromorphic computing works. After that, we will look into some choices
we can make while designing neuromorphic hardware in section 2.2. Finally,
we will look at the design choice of implementing an execution-driven versus
a trace-driven simulator in section 2.3, which is an important design decision
for simulators.

2.1 Neuromorphic computing

To build efficient hardware for SNNs, we first need to know how SNNs
actually work. Therefore, we will first look into how biological neurons
work and what the interesting properties of biological neurons are in section
2.1.1. We will then see how ANNs work and how they implement some of
the ideas of biological neurons in section 2.1.2. Finally, in section 2.1.3 we
will look at how SNNs work.

2.1.1 Biological neurons

The neurons in SNNs are based on their biological counterparts. There
is a large variety in biological neurons [4]. However, all kinds of neurons
work according to the following general concept, see figure 2.1. A biological
neuron can be divided into three functionally distinct parts [4]: dendrites,
axons, and somas. A biological neuron has dendrites which are the input
of neurons. These dendrites receive action potentials. Action potentials are
rapid changes in the membrane potential of a neuron. The axons have the
opposite function. They transmit action potential and are the output of a
neuron. This current is transferred to other neurons’ dendrites. A synapse
connects the dendrites and axons. The sending neuron is called the presy-
naptic, and the receiving neuron is postsynaptic. Many dendrites feed into a
soma. The soma can, in turn, drive multiple axons. The soma is a process-
ing unit and adds a lot of non-linearity to the neuron [4]. The soma holds

6

potential. This potential will rise according to the current flowing from the
postsynaptic part of the synapse into the soma. The potential rise in the
soma is proportional to how “well-connected” the synapse is. This “connect-
edness” of the synapse can also change based on effects like, for example,
LTP (long-term potentiation) [5]. If the potential in the soma reaches some
threshold, the neuron will spike. This spike is an action potential traveling
down the axon to another postsynaptic neuron. This spike can then cause
an increase of potential in postsynaptic neurons, which can subsequently
make these postsynaptic neurons spike. Finally, the exact mechanism that
generates the spike will also reset the potential of the soma back to some
resting potential.

Figure 2.1: An image depicting a biological neuron from [6]. It shows a simplified overview of
a neuron with the dendrites, soma and axons. Additionally, it shows how the action potential
from the dendrites is fed into the soma and how a spike generated in the soma travels down to
the axons.

Biological neurons have several remarkable features that make them in-
teresting [7]:

1. Spikes: In the brain, biological neurons communicate by using spikes.
These spikes typically have a duration of 1-2 ms and amplitude of 100 mV
[4]. Even if the spikes vary slightly, it does not matter for the information-
carrying ability of the spike. The information-carrying ability will stay the
same as long the timing stays consistent. This resiliency is because the tim-
ing of neurons largely carries the information in the brain and which neurons
fire rather than the value of the action potential [4, 7].

2. Sparsity: Most of the time, the neurons in the brain are silent and
do not spike [8]. This sparsity is good for efficiency because silent neurons
consume less energy by not spending the energy on generating spikes. As
the generation and transmission of spikes by cerebral neurons consume a
significant part of the energy budget in the cerebral cortex [9], this can re-
sult in substantial energy savings.

7

3. Static suppression: The sensory system is more reactive to changes
than static information. An example of this reactivity is the visual sys-
tem. The visual system is, for example, quick to adapt to changes in color
brightness [10].

2.1.2 ANNs

ANNs work differently from their biological counterparts [11]. Figure 2.2
shows a visual reference. Additionally, equation 2.1 shows a simplified equa-
tion describing an ANN neuron that can also be used as a reference. Gen-
erally, ANNs are functional and do not have a time dimension, unlike their
biological counterpart. Exceptions to this functional model are recurrent
architectures like RNNs [12], LSTMs [13] and GRUs [14].

y “ fp

N
ÿ

i“1

xiwi ` bq (2.1)

Figure 2.2: Graphical depiction of the ANN neuron model.

A neuron will receive a set of inputs xi P R and produce a single output
y P R. This is done by multiplying each of the inputs xi with the corre-
sponding weight wi P R. The weights wi control how important each of the
inputs is. During training, the weights are changed to minimize the differ-
ence between the predicted y and the desired y. In addition to the weights, a
bias b P R is added, which biases the neuron. Finally, an activation function
f maps the summed potential to the output activation. The goal f is to
add non-linearity. If this is not done, the neuron will only be able to model
linear relations, meaning that the output is only a linear combination of the
input. Even if more neurons are added in series, i.e., more layers are added,
the output will still be a linear combination of the input.

Their biological counterparts primarily inspire ANNs. The weights model
the synapse “connectedness”, the activation function models the soma, the
inputs xi model the dendrites, and finally, the output y models the axon.

8

However, this likeness of ANN neuron model to their biological counterpart
does not result in any of the remarkable features of biological neurons men-
tioned earlier exhibiting themselves. SNNs try to remediate the lack of these
features.

2.1.3 SNNs

SNNs are a new third generation of deep learning models that tries to im-
prove on the biological inaccuracies of ANNs, the second generation of neural
networks [1]. SNNs are similar to ANNs in that they can model identical
topologies. This similarity means that SNNs can model fully connected,
convolutional, and recurrent layers similarly to ANNs. However, the differ-
ence between the two is in the neuron model. Whereas the neuron model
of an ANN is purely functional1, the neuron models of SNNs always have a
state. In the same way that there are many possible activation functions in
ANNs, SNNs have many different neuron models. The most ubiquitous and
straightforward neuron model is LIF (Leaky Integrate-and-Fire).

A LIF neuron tries to model a biological neuron. The explanation of the
LIF neuron model is, therefore, also comparable to the one given in section
2.1.1. An example of how the neuron model works is shown in figure 2.3. A
LIF neuron works as follows [7]: Unlike ANN models, the LIF is not purely
combinatorial and has a state variable: the potential. This neuron potential
resembles the potential of the soma in a biological neuron. If the potential
exceeds some threshold, then the neuron will spike, and the potential will
be reset to 02. LIF neurons also have an exponential decay, meaning that
the potential will decrease exponentially over time.

Figure 2.3: Figure from [7] showing the dynamics of a LIF neuron.

Equation 2.2 shows the equation for a LIF neuron model. LIF neurons
a persisting potential uptq. The potential of the neuron changes according

1Once again, except for RNNs, LSTMs, and GRUs
2Actually resting potential, but the resting potential is assumed to be 0

9

to the input current Iptq, resistance R, and decay rate τm. The leakage will
exponentially decay the potential with a rate of τm. The left term on the
right side will, henceforth, be called the decay term, and the right term will
be, henceforth, the input term. If the potential exceeds some threshold θ,
the neuron will fire, which means the potential is reset to 0. Equation 2.3
shows that the amount of current received is proportional to the spikes and
weights. Whenever a spike siptq arrives on synapse i at time t, then the
potential is increased proportional to the weight wi.

τm
du

dt
“ ´uptq ` Iptq ¨ R (2.2)

Iptq “

N
ÿ

i“1

siptq ¨ wi (2.3)

2.2 Neuromorphic hardware

Unlike CPUs (central processing unit) and GPUs (graphic processing units),
neuromorphic hardware does not adhere fully to standard Von Neumann ar-
chitecture [15, 16, 17, 18]. Instead of having a large shared memory that
each PE (processing element) shares, each PE accesses the local memory
next to it. This locality of memory reduces the latency and energy over-
head caused by expensive memory access and limits the effects of the Von
Neumann bottleneck.

Figure 2.4 shows an example model of a neuromorphic multi-core chip.
A neuromorphic processor consists of several cores connected by a communi-
cation fabric; see figure 2.4a. Figure 2.4b shows a typical digital neuromor-
phic core. A neuromorphic core consists of multiple functional components:
a router or an I/O interface that handles the sending or receiving spikes. A
mapper unit that is responsible for mapping outgoing spikes to the target
cores’ addresses. It also consists of memory to store synapses and neuron
states and an ALU unit that can emulate the required neuron operations
that need to be supported. Most designs do not exactly follow this scheme of
separation into these exact functional components. Some, for example, have
multiple separate pieces of memory [17, 19]. However, the memory, com-
pute, routing and mapping are always in there in some form and therefore
are the most unifying aspects of a digital neuromorphic core.

10

(a) Multiple cores connected by a
2D-mesh NoC

(b) Main constituent parts of a
core.

Figure 2.4: Simplified overview of multi-core neuromorphic mesh.

2.2.1 Hardware design choices

There are multiple techniques to simulate SNNs; see figure 2.5. An SNN
can be simulated either using digital hardware or using analog hardware.
One approach is analog hardware where a physical model is constructed
that models the dynamics of the SNN neuron model. The other is a digital
hardware where the formulas governing the dynamics are simulated. The
digital hardware can simulate the decay in two ways: time-driven and event-
driven. We will explain more about the difference between these two ways
in the section about digital hardware. This choice between time-driven
and event-driven is essential as it will significantly affect the design of a
neuromorphic chip.

Figure 2.5: A tree showing the difference choices that can be made when simulating an SNN.

Analog hardware

There are two ways to model neurons in the analog domain: analog CMOS
[20] and memristor-based. Memristor-based setups are commonly used in
a crossbar arrangement to model all-to-all synaptic connections between
inputs and outputs. We will explain more about these memristor-based
crossbars as they have gained popularity recently.

These crossbars can perform parallel matrix-vector multiplication with
very low energy requirements [21]. Figure 2.6 shows such a crossbar. The

11

general concept is as follows [22]: There is an array of horizontal word lines
and vertical bit lines. A memristor then connects these. A memristor is a
circuit component that can modulate its conductance [21]. Synapse weights
can then be stored in these modulated conductances. So, when a spike
arrives on a synapse, the top word line can be set to high. Then an amount
of current will flow, proportional to the memristor state, from the word
line to the bit line. After which, an ADC (analog-digital converter) can
read the output value on the bit line. A CMOS (Complementary metal-
oxide-semiconductor) circuit can then use this output value to simulate LIF
behavior. This circuit is digital. One bit line for the negative values and one
bit line for positive values is used because memristors can not store negative
values. Although this analog design may look like the perfect solution,
it still has some problems. NVM (non-volatile memory) technologies like
memristors can suffer from limited read endurance [23], meaning that the
weight value would have to be rewritten after a certain amount of reads. In
addition they can suffer from several defects and variabilities [22, 21].

Figure 2.6: A simplified example from [22] of an RRAM-based crossbar.

Digital hardware

Digital simulation emulates the differential equations governing the neurons.
For linear models, the input term of section 2.1.3 only changes the potential
when a spike arrives and therefore is easy to implement. One can change
the potential of the neuron whenever a spike comes in. However, the decay
term is a problem. The decay term changes the potential over time. It is,
therefore, more difficult to calculate what the potential should be at some
later point in time. Luckily the decay is exponential, and the solution for
exponential decay is already known. Equation 2.4 shows the solution to the

12

decay term of equation 2.2. Here, t1 is the time the potential needs to be
known, and t is the time of the last known potential.

There are two approaches to using this solution: event-driven [19] and
time-driven [18]. The time-driven takes constant steps, meaning that t1 ´ t
is constant. Equation 2.5 shows the solution to the decay for time-driven
simulation. The equation assumes a discretization such that t1 “ t ` 1. An
advantage of these constant steps is that the term expp´ t1´t

τm
q becomes con-

stant and therefore possible to precompute. As a result, the computations
are significantly simplified because no exponential calculations and storing
the last known potential are needed. The signal to apply the decay can be
issued in many ways, in ODIN [17], the signal is manually triggered by an
event sent to the core, while for TrueNorth [18], the signal comes from a
clock-based 1000 Hz signal.

On the other hand, an event-driven simulation has no such assumption;
in event-driven designs, t1 can take any value as long as t1 ě t. Equation 2.6
shows that only the time of equation 2.4 has to be discretized. A consequence
of variable time steps is that in addition to uptq, the t also needs to be
stored because the step sizes are not constant. However, the amount of
computation in an event-driven simulation is proportional to the number of
spikes, not the number of timesteps. This proportionality of computation
to the number of spikes can be advantageous if the number of spikes is
sufficiently sparse spatially and in time.

upt1q “ uptq ¨ expp´
t1 ´ t

τm
q (2.4)

urt ` 1s “ urts ¨ expp´
1

τm
q (2.5)

urt1s “ urts ¨ expp´
t1 ´ t

τm
q (2.6)

Synchronization

If neurons spread over multiple cores have to generate spikes and apply decay
simultaneously, then each should share the same sense of time. However, this
synchronization is not always required. For example, ODIN [17] only has a
way to trigger a leakage event manually, and the ODIN chip immediately
spikes when the threshold is reached.

Nonetheless if there is synchronization, then there are many approaches
to doing it. We will distinguish between two different directions: A central
synchronization approach [18] where the control to advance to the next
timestep is centered on one component. Fig 2.7a shows an example of central
synchronization where a central controller sends a synchronization event over
the communication fabric every 1ms to synchronize.

13

On the other hand, when using distributed sync [16] shown in figure
2.7b, all cores decide together to advance to the next timestep. Several
different implementations of distributed synchronization are possible. One
implementation requires sending a done signal to a central controller, which,
when receiving all done signals, will send a synchronization event to all cores.
In this case, the synchronization is not spatially distributed but distributed
in terms of control. Another implementation requires each core to send
synchronization events to the neighboring cores to signify that the current
core is done. An example of this implementation is Loihi [16]. In this case,
the synchronization is distributed spatially and in terms of control.

(a) Central sync (b) Distributed sync

Figure 2.7: Synchronization methods

2.3 Trace-driven vs execution-driven simulators

When designing hardware simulators, one can choose between an execution-
driven [24, 22] and a trace-driven simulator [25, 23]. Figure 2.8 shows the
difference between an execution-driven and trace-driven simulator using a
visual diagram. The main essence of the figure is that an execution-driven
simulator has a “built-in” SNN simulator. The execution-driven simulator
does both the SNN and hardware simulation. In contrast, a trace-driven
simulator outsources this to a separate external SNN simulator. Each ap-
proach has different pros and cons. Trace-driven simulators have no model
of the SNN. Thus spike drops or other events happening out of order can not
influence the neuron dynamics and, therefore, the simulator can not predict
the model’s accuracy. Consequently, trace-driven simulators are less flexible
in the hardware details they can model accurately.

Ultimately, this comes down to a trade-off between more abstraction
or less abstraction. A more abstract model will have fewer assumptions
and details and be applicable in more situations. However, a more detailed
model can simulate specific scenarios more accurately. A more abstract
model will also be faster to simulate as the simulator must simulate fewer
details. Trace-driven simulators are, in this case, the more abstract model.
They apply to more simulations, e.g., changing neuron model, and they are
faster run, but they will lose some accuracy in simulations, e.g., can not
predict model accuracy. Finally, using a non-self-written simulator can save

14

work, which is another advantage for trace-driven simulators.

(a) Trace-driven simulation

(b) Execution-driven simulation

Figure 2.8: Trace-driven vs execution-driven simulator. Blue boxes show inputs/outputs. Or-
ange boxes show programs.

15

Chapter 3

Related work

After knowing some of the background information about neuromorphic
hardware and neuromorphic hardware simulator we can take a look at what
the other works do. Research on neuromorphic hardware is needed such that
a hardware model that is relevant to the current SOTA (State Of The Art)
can be implemented. Section 3.1 will look into some of the neuromorphic
hardware chips. Section 3.2 will look into some of the simulators that are
used to simulate neuromorphic hardware. This knowledge is need to to know
whether we can find a way to improve or take a different approach. Finally,
in section 3.3 we can put together what we learned about simulators and
neuromorphic hardware and determine the type of hardware and the kind
of simulator we would like to implement.

3.1 Neuromorphic hardware

One of the earlier big neuromorphic processors developed is TrueNorth [18].
It is a neuromorphic processor developed by IBM. It is fully digital and
does time-driven SNN simulation. TrueNorth’s NoC is an asynchronous
2D-mesh. The core supports multiple neurons by time multiplexing. The
synchronization is done centrally by a clock running at 1000 Hz. Therefore,
the TrueNorth processor is a prime example of the central synchronization
paradigm. Interestingly, even though the processor is digital, it still imple-
ments a digital crossbar. The main goals of the TrueNorth processor were to
minimize energy consumption, maximize throughput, have a real-time op-
eration, have scalability, be defect tolerant, and have one-to-one equivalence
between hardware and software.

ODIN [17] is different in that it only has one core instead of many cores.
ODIN can simulate both a LIF neuron and phenomenological models for the
Izhikevich neuron model. ODIN does not have synchronization. The closest
resemblance to synchronization is a manually triggered leakage event. ODIN
neurons immediately trigger if they reach threshold. ODIN also implements
a phenomenological model that mimics but not is Izhikevich model. A phe-

16

nomenological model rather than a differential equation is simulated and,
therefore, does not fit either event-driven or time-driven simulation. Un-
fortunately, the small size of ODIN limits the applicability to anything else
than edge computing applications.

Loihi [16] is a neuromorphic processor developed by Intel. It has 128
cores that are each able to simulate 1024 neurons. Like TrueNorth, it is
connected by an asynchronous 2D mesh, but unlike TrueNorth, the syn-
chronization is not global but distributed using barrier sync messages. The
Loihi paper does not give enough information about the core design to know
whether it uses event-driven or time-driven simulation. Unlike TrueNorth
and ODIN, Loihi focuses more on having a very flexible neuromorphic pro-
cessor. Loihi, for example, has a reconfigurable on-chip learning engine.
Loihi even keeps track of spike traces, which is essential for some learning
algorithms.

NeuroEngine [19], takes a clear event-driven simulation approach. The
main contributions are in the proposal of several techniques to increase the
simulation efficiency of two-stage neuron models. Two-stage neuron models
are a special class of neuron models where instead of the potential increas-
ing instantly on an input spike arriving, the potential increases slowly over
time. The authors theorize that this non-instant increase could allow the
network to model more complex dynamics and reach higher accuracy. The
synchronization scheme is once again not clearly defined in the paper.

The SpiNNaker [26, 27] and SpiNNaker2 [28] are computer clusters. Un-
like other neuromorphic processors, this architecture uses a specialized ARM
core. The choice of a general-purpose ARM core increases the system’s flex-
ibility significantly. The system can simulate a vast range of SNN topologies
and neuron models. The SpiNNaker system can run a time-driven [29] sim-
ulation. No literature could be found that claimed that it could also do
event-driven simulation.

3.2 Neuromorphic hardware simulators

There is already some research in using hardware simulators to evaluate
neuromorphic hardware. However, interestingly, there is a significant variety
in the methods of these simulators and the modeled hardware.

PyCARL [25] simulates hardware in a trace-driven way primarily fo-
cused on crossbar-based architecture. The central concept of this trace-
driven approach is to get a trace of spikes from an external SNN simulator
like CARLsim [30]. This trace is then simulated on a hardware model to
extract metrics. This trace consists of the time and neuron of each spike in
the network. PyCARL does acknowledge that hardware details can affect
the accuracy of the SNN simulation. To monitor the accuracy impact of
the simulated hardware, they added the spike disorder and the inter-spike

17

interval distortion metrics. Nonetheless, these metrics can only provide es-
timates of the model’s accuracy. Running a dataset on the simulator and
reading the accuracy will not work as it is trace-driven. On the other hand,
the simulator can extract information like latency, throughput, and energy
of the hardware design. These metrics can help estimate congestion of the
NoC, which most of the experiments also test.

NeuroXplorer [23] shares some of the same authors as PyCARL. It is,
therefore, no surprise that this work improves on its predecessor PyCARL.
The most relevant difference is that, compared to PyCARL, which is only
compatible with CARLsim, this framework is compatible with many other
neuromorphic simulators like Brian [31], and Nest [32]. The model accuracy
metrics are the same as PyCARL. Yet, in terms of hardware metrics, this
work has more metrics. In addition to the metrics of PyCARL, the model
also focuses on metrics monitoring the crossbar like circuit aging, resource
utilization, and endurance.

The work [22], henceforth, called the system level simulator, also focuses
on crossbar-based architectures. However, in addition to focusing on differ-
ent aspects of RRAM, the paper also has a different approach to simulating.
This work uses an execution-driven simulator, simulating the neuronal dy-
namics and evaluating accuracy.

NEUTRAMS [24] is another execution-driven simulator. However, this
simulator has a decoupling between the functional and timing models. The
user can then give the time that a certain operation should take, independent
of the functionality. This decoupling means that the user can, for example,
configure that a synaptic operation should take a certain number of cycles.
Simulators like the earlier mentioned system-level simulator, NeuroXPlorer,
and PyCARL do not explicitly show any flexibility in changing the timing
parameters of the core independently from functionality. This flexibility in
the timing model allows the user to model more scenarios. In addition, the
NEUTRAMS simulator also claims to be amiable to changing the execution
substrates, e.g., ANNs vs SNNs. All of these options allow the NEUTRAMS
simulator to be very flexible.

Although not neuromorphic hardware simulators, Compass [33], Nen-
goLoihi [34], and the Intel lava framework [35] also simulate SNNs. But
these simulators mostly emulate execution semantics. Simulating execution
semantics can be helpful in some scenarios, like investigating scalability.
Still, these simulators do not model any buffers, NoC, or other hardware
mechanics and are, therefore, not considered neuromorphic hardware simu-
lators.

18

3.3 Unexplored approach

A large part of the related work focuses on simulating crossbar-based archi-
tectures. Simulators like PyCARL, NeuroXPlorer, the system level simula-
tor, and NEUTRAMS all focus on crossbar-based architectures. However,
section 2.2 shows that not all hardware follows this crossbar-based archi-
tecture. Moreover, this focus on crossbar-based architectures results in few
simulators supporting architectures that use a digital time-multiplexed core
like Loihi.

What can also be seen is that most simulators either choose to do a
trace-driven simulation or an execution-driven simulation of a crossbar. The
trace-driven designs are acceptable. However, they do lose all knowledge
of the neuron model being simulated. This means that after the trace is
extracted, no design exploration in, for example, quantization of the neuron
model can be done. Also, fewer different hardware models can be explored
in a detailed way because some hardware models may let spikes drop in
sacrifice for more efficient hardware. If a trace-driven simulator is used then
the accuracy effects of dropping spikes can not be determined. Thus, an
execution-driven simulator will allow the design of both hardware that does
and does not drop spikes.

Most of the execution-driven simulators are like the system-level simu-
lator which focuses on the execution-driven simulation of a crossbar with
an emphasis on simulating low-level electrical circuits. As a result of fo-
cusing on these low-level mechanics, these execution-driven designs are less
flexible. For example, it makes it more challenging to run different neuron
models. An exception to this rule is, for example, turning LIF into an IF
(integrate-and-fire) neuron model by setting leakage to 0. But then, the
processor simulates a more complicated neuron model while the processor
could use a less complex one. NEUTRAMS does not take this approach and
can create a high-level crossbar simulator by adding abstractions in the right
places. Yet, NEUTRAMS currently is still quite focused on crossbar-based
architectures. Also, NEUTRAMS is a clock-driven simulator, which can be
non-ideal in terms of performance.

The direction of a digital architecture-focused simulator that can do an
execution-driven simulation focusing on high-level aspects and modelling
non-crossbar-based hardware would be interesting to research. Unfortu-
nately, not many simulators can be found that take this direction. If this
simulator is made event-driven, it is even possible to have a configurable core
timing model like NEUTRAMS. This event-driven simulation will result in
a large amount of flexibility.

19

Chapter 4

Simulator

In the previous section, we learned what the current SOTA is doing regarding
hardware and simulators. Now that we know the current SOTA and how
we want to improve upon it, we can discuss the simulator that was built.
Firstly, in section 4.1 we will look at a quick overview of the constituent
programs of the simulator. In section 4.2 we will look at our SNN model.
In section 4.3 we will look at the hardware model we want to evaluate and
use for the simulator. In section 4.4 we will look at how we can quantify
the energy and area cost for each of our hardware components. Finally, in
section 4.5, we will review the simulator’s software architecture shortly.

4.1 Simulator overview

Firstly, we will make the simulator source code available as open source. The
source code can be found at https://github.com/tetanw/SpikingDSE.
The simulator consists of several separate programs that together form
the complete simulator. The implementation of these programs is in ei-
ther Python or C#. The more compute-intensive programs use C#. The
rest uses Python. The simulator produces energy, latency, and area num-
bers given a hardware model, SNN model, cost model, and input traces.
The simulator is execution-driven, but it is also possible to do trace-driven
simulation in the future by extending the simulator (see section 4.5). The
hardware focus of the simulator will be on digital mesh-based neuromor-
phic hardware that is multi-core. The SNN focus will be on simulating the
SRNN networks of [3]. This work was selected for its good performance on
a wide range of benchmarks. Even better, the source code was available for
use. The networks are recurrent though so the hardware should be able to
simulate recurrent SNN networks.

Figure 4.1 shows an overview of the constituent programs of the sim-
ulator. The main program is the DES (discrete-event simulator). It is a
discrete-event simulator. Discrete-event simulations model a system as a
series of events happening at increasing discrete times. More specifically, it

20

https://github.com/tetanw/SpikingDSE

is a process-based (or process-oriented) discrete-event simulation [36]. The
process-based part means that the simulated system is viewed as many com-
municating parallel processes. This process-based DES design of the simu-
lator is based on SimPy [37], and POOSL [38].

Figure 4.1: Simulator overview. The orange boxes show inputs, the green boxes show the
programs, and finally, the blue boxes show intermediate results.

The main function of the DES is to produce results like how many packets
a router handled, how many memory accesses each core did, how much time
an inference took, etc. Creating these results needs a specification of the
hardware model. This HW specification can, for example, contain how many
cores the hardware consists of, parameters of each core, locations of cores on
the mesh, buffer sizes of routers, etc. But most importantly, it also contains
parameters regarding how much time each operation takes. Because the
simulator is discrete-event based, the latencies are also parameters. The
advantage of having latencies as parameters is that the simulator is more
flexible. The disadvantage is that it requires an effort from the user to find
realistic values for these parameters. Moreover, these parameter values may
not always be readily available.

The other program either produces input files needed for the DES or
analyzes the results of the DES. The SNN model describes the SNN archi-
tecture that the hardware simulates. Additionally, the simulator needs input
traces. These input traces contain which neuron spikes at which timestep in
the input layer. The model file is an enriched version of the hardware file.
In addition to all the information about the HW, it contains memory size
parameters. The HW generator generates the HW specification file based
on the model file. The model file makes more assumptions about the hard-
ware. For example, the model files assume that all cores are homogeneous
in size, whereas, for the simulator, this does not necessarily have to be the

21

case. By keeping the HW and model file separate, the DES does not have
these assumptions like homogeneity and can, therefore, be more flexible.
The mapper creates a mapping of the layers of the SNN to the cores. The
mapper is part of the experimental setup and will be explained in section
5.1.2. The cost model calculates the energy cost or area cost of certain op-
erations. For example, given synapse size in bits and the maximum number
of synapses that a core may store, it can calculate the synapse memory size.
The cost model can then use this memory size to calculate the leakage, dy-
namic read energy, area, etc. The result analyzer can then use this cost
model and the results from the DES to calculate the metrics.

4.2 SNN model

The simulator needs a description of the SNN model. The simulator assumes
that an SNN network consists of a series of layers. More specifically, the
simulator expects an input layer followed by any number of hidden layers
followed by an output layer. Figure 4.2 shows an example of such an SNN.
Input layer “i” is followed by a series of hidden layers “h1” and “h2”, ending
with an output layer “o”. Henceforth, a connection from one layer to another
will be called a forward connection. A connection between a layer and itself
will be called a recurrent connection.

Figure 4.2: Example of what an SNN model should look like. It consists of an input layer “i”
followed by recurrent hidden layers “h1” and “h2”, and finally, output layer “o”.

Each layer should also have a size in terms of the number of neurons in
that layer. Additionally, different sets of parameters are required depending
on the layer type. There are two layer types supported by this simulator
ALIF and LI, both of which are from [3]. An ALIF layer requires passing the
weights, decay constants, biases, etc. These parameters need to come from
a trained PyTorch model. Section 5.1.1 explains more about this parameter
extraction and the origin of these trained models. The output layer of
[3] requires a separate layer implementation as it is functionally different

22

compared to the ALIF layers. Henceforth, the name of this output layer
will be the LI layer. Running the LI requires fewer parameters as it is a
simpler version of the ALIF layer. It only requires weights, decay constants,
and threshold voltage. In figure 4.2, “h1” and “h2” would be ALIF layers,
and “o” would be the output layer of [3] as these are the only hidden and
output layer types available.

The simulator can also split layers into multiple parts if a core can not
fully fit a layer due to constraints. The word layer, in this simulator, actually
means a subset of a layer’s neurons which can be the full layer but does not
have to be. So, a layer part. The layer splitting is a complicating factor in
the design of the hardware. If the layer is recurrent and is split into multiple
parts located on different cores, then spikes need to be sent between cores
to communicate the recurrent spikes. Likewise, the layer before the splitted
layer must send the spikes to multiple destinations.

4.3 Hardware model

Figure 4.3 shows a general model of the hardware. As mentioned earlier, the
hardware will focus on simulating mesh-based chips. The number of slots to
fit cores or controllers in the width and height of the mesh is configurable.
In the case of figure 4.3 the hardware model is configured with a width of
2 slots and a height of 2 slots. In addition, the hardware model will always
have the controller on the bottom left slot of the mesh, with cores filling the
remaining slots.

Figure 4.3: An example of a possible configuration of the hardware model. The figure shows a
mesh of 2 by 2 with a controller on the bottom-left and cores all around connected by links.

The remainder of this section will discuss how the synchronization (sec-
tion 4.3.4) works and discuss the three big component parts of the hardware

23

model: the core (section 4.3.1), the controller (section 4.3.2), and the mesh
(section 4.3.3).

4.3.1 Core

Unlike TrueNorth and Loihi, the core design for this simulator uses the
concept of layers. Although, especially Loihi and DYNAPs [15] try to limit
the memory size on the chip needed to store the connectivity. We also
chose to limit the memory size. We chose a layer-based system because it
is closest to how the SRNN model of [3] is trained. The implementation
of this work does not allow connection between all neurons. Like ANNs, it
limits connectivity by grouping neurons in layers and limiting layers to be
connected in an acyclic way.

Figure 4.4: Simplified overview of core. Green shows the three main components. Orange shows
the buffers. Purple the memories. And light-blue the router.

Figure 4.4 shows an overview of the core’s hardware model. The core
has three main components: the receiver, ALU, sender, and two buffers:
the compute and output. The receiver is responsible for receiving packets
from the mesh and handling them correctly. There are two compute buffers.
One buffer for the current timestep’s spikes and one buffer for the next
timestep’s spikes. The ALU reads the current timestep’s buffer, and the
next timestep’s buffer is filled with spikes generated by other cores’ spikes
for the next timestep. Therefore two buffers are needed. If the receiver
receives a spike packet, it should be queued in the compute buffer of the
next timestep. If the receiver receives a sync packet, it should signal the
ALU to start synchronizing the compute buffer of the next timestep. The
sender’s job is to wait for packets in the output buffer and send them to the
router.

The ALU is the most complicated part of the core. When a synchro-
nization signal comes in from the receiver, the ALU will read spike events
until the buffer is empty. Each spike packet will result in the core updat-

24

ing the potentials of the relevant layer. After all, spikes are processed, the
ALU must synchronize all neurons. This synchronization includes applying
leakage and checking whether the threshold has been reached, among other
things. Connected to the ALU are the layer, neuron, and synapse memories.
These memories must be written to and read for the ALU to do its job. The
layer memory stores information about where the neurons and synapses are
stored, network parameters, connectivity data, etc. The neuron memory
stores the potential and other neuron parameters. The synapse memory
stores the synapse weights. Section 4.4.3 describes what the memory looks
like in-depth.

The core has to update the potentials of all neurons when a spike is re-
ceived. The TrueNorth paper [18] documents two approaches: the dendritic
and axonal approaches. Figure 4.5 shows these two approaches. The den-
dritic approach gets the neuron state from memory once and then integrates
all input synapses. The axonal approach sees every input spike as an event
that updates neuron potentials.

The advantages and disadvantages of each approach are as follows. Firstly,
the dendritic approach requires that all spikes need to be stored before syn-
chronizing, whereas the axonal does not. On the other hand, this means
that the axonal approach can update as the spikes come in, which can be
an advantage for the axonal approach in certain circumstances.

The dendritic approach only requires getting the neuron state as often
as there are neurons in a layer, whereas the axonal approach requires more
neuron state accesses. Namely, the number of neuron state accesses depends
on the number of neurons in a layer and then more depending on the number
of spikes. However, this is eased by not having to fetch the whole neuron
state while integrating but only the neuron potential. On the other hand,
the dendritic approach must fetch the spiking state of the same input neuron
multiple times. So, the axonal approach results in more neuron state accesses
and the dendritic approach in more spiking state accesses. Finally, the
axonal approach will comparatively perform better in sparse scenarios as
the number of fetches scales with the number of spikes.

The axonal approach is advantageous in terms of throughput. The den-
dritic approach has constant working time1. In contrast, the amount of time
for the axonal approach is more proportional to the number of spikes. So
once again, the axonal approach will likely work better in case of high spar-
sity. Therefore, this work uses the axonal approach because the benchmarks
can have relatively high sparsity.

ALU

The ALU will integrate the spikes followed by synchronizing the neurons.
Parallelism is a configurable parameter that denotes the number of neurons

1this does not necessarily have to be the case

25

(a) Dendritic approach (b) Axonal approach

Figure 4.5: Integration approaches. The vertical axis show the input neurons. The horizontal
axis the neurons of the layer to be updated. The dots on the intersection show waiting spikes.
The image shows that for the dendritic approach you iterate over all input connection on each
neuron whereas for the axonal approach you update all neurons on a layer on receiving a spike.

during synchronization and the number of neurons during integration that
is updated simultaneously. For example, when the parallelism is 4, then the
ALU will perform four synaptic operations at the same time and synchronize
four neurons at the same time.

One of the most important design decisions for the ALU is how many
functional units of each kind are needed. The more functional unit can
increase the throughput but take up more area and contribute to leakage.
The two processes that the ALU needs to perform are integration and syn-
chronization. The most complicated of these is synchronization. Figure 4.6
shows a dataflow graph for the synchronization of the neurons.

Figure 4.6: Dataflow for synchronization of a neuron. The green boxes show the operations. The
blue circles show the variables used in the operations. The dotted line denotes that the operation
will only happen when Spiked is true.

The latency of synchronizing a neuron and integrating a synapse are

26

configurable in the simulator. The user can change two parameters: the
latency and the initiation interval. The latency describes the time it takes
for a value to go from load to store. The initiation interval is the amount
of time between operations, i.e., inverse of the throughput. Three designs
are possible. A fully serial design where each operation happens in series.
A parallel design that still is serial but that will do as much in parallel as
possible. The latency will be the same for both the serial and parallel design.
Finally, there is a pipeline design. This design schedules the operation in a
pipeline. This design will have about the same latency as fully parallel but
have a lower initiation interval.

Comparatively, the integration of a spike is easy. Figure 4.7 shows the
data flow for that process. Here not much design is possible. It is assumed
that the integration uses the same functional units as the synchronization
process.

Figure 4.7: Dataflow for integrating a spike for an ALIF neuron. The green boxes show the
operations. The blue circles show the variables used in the operations.

4.3.2 Controller

The controller has multiple responsibilities. Firstly, it handles the input
layer. Meaning that from the controller the input spikes are sent to the first
hidden layer. Secondly, the controller handles the output layer. Meaning it
also receives the spikes from the final hidden layer. Layers mapped to the
core are assumed to take no time and energy. This also implicates that the
input and output layer consume no energy. Finally, the controller is respon-
sible for orchestrating the synchronization. This explained in more detail in
section 4.3.4. The controller has no configurable parameters regarding la-
tencies for receiving spikes or regarding synchronization. These parameters
can be added in future works to make the simulator more accurate.

27

4.3.3 Mesh

The mesh consists of many connected routers. The simulator uses a packet-
switched router with input and output buffers. Most routers are virtual-
channel based. However, this combination of input and output buffers al-
lows for the evaluation of the difference between input buffering and output
buffering. Additionally, the model chosen by the simulator is simpler to
implement.

Figure 4.8 shows an overview of the router design used in this simulator.
The green show boxes show processes, and the orange boxes show buffers.
The inputs are responsible for receiving the transmitting packet. The input
buffers will store the packets after being received. The outputs are respon-
sible for sending the packets onto the next router. More precisely, they read
a packet from the output buffer and send it to an input buffer of another
router. The switch is responsible for moving a packet from an input buffer
to the correct output buffer.

The routing policy is XY-routing. XY-routing is required to prevent
deadlocks due to cyclic dependencies when routing packets. The router also
uses round-robin arbitration to guarantee that one direction does not starve
all other directions. The round-robin arbitration works as follows: it stores
the direction in which the switch switched the last packet. Then, when
a new packet is available for routing, the direction after the last switched
direction is checked first.

Figure 4.8: Model of an XY-Router as used in the simulator. Orange boxes show buffers. Green
boxes show processes.

Figure 4.9 shows a diagram depicting the latencies that a packet encoun-
ters when travelling through a switch. First, it will encounter latency on
the input. This latency is equal to the transfer latency parameter if it is
non-local input and the input transfer latency if not. The reasoning behind
this differentiation is that local connections may be faster because the local
connection is closer to the core. The same latencies also hold for the output
link. If the router switch is already busy or the output is busy, the packet
may have to wait in the buffer. This waiting is the congestion. Then comes
the switching delay. The simulator assumes that the delay in routing, arbi-

28

tration, and traversal can be summarisable into one number, the switching
delay.

Figure 4.9: Diagram of the latencies that a packet can encounter when traversing a router.

4.3.4 Synchronization

This hardware model uses a distributed synchronization approach. However,
it is quite an unusual variant as it uses the controller to decide when to
continue instead of all cores deciding together.

Figure 4.10 shows how synchronizing two cores in practice. First, the
controller sends the spike events from the input layer to the first hidden
layer in each step. Then the controller sends a synchronization event that
prompts the cores to start consuming the spikes in the compute buffer.
After integrating the spikes in the compute buffer (see section 4.3.1), the
core synchronize each neuron. After completion of the synchronization of
all neurons, each core will report that it is ready to the controller. A new
synchronization event will be issued if the controller has a message from
each relevant core that it has completed synchronization. A relevant core is
a core that has mapped layers. If there are no layers on a core, then it is
not involved in synchronization.

Figure 4.10: The sequence of action that the hardware goes through when doing one timestep.
This is an example of a hypothetical hardware with one controller and two cores.

This scheme, however, has a problem. The core should only report that
it has completed synchronizing after the spiking events generated during the
synchronization have arrived at their destination cores. However, because

29

of the packet-switched mesh, a core can not know when a spike has arrived.
As a result, it is possible that a core already got a synchronization signal
before the spike from that timestep could arrive at the compute buffer. Thus
there is a race condition. This race condition influences the accuracy of the
simulation. This race condition should be relatively rare, so this defect is
allowed.

4.4 Cost model

The cost model assumes that the hardware will run at 100 MHz with a
core voltage of 1.1 V, a temperature of 25 °C, and that a 40 nm fabrication
process is used. The cost model also assumes some level of power and clock
gating. As a result, if a core does not have any layers, then it is assumed
that the core does not contribute to energy consumption. Additionally, the
idle energy consumption of functional units is assumed to be zero.

In section 4.4.1 and section 4.4.2 we will give the memory and buffers an
area and energy cost. Section 4.4.3 will show the memory layout. After this
section we should know the depth and width of each memory and how each
parameter is laid out in the memories. In section 4.4.4 and section 4.4.5 we
will look at energies and area for the core and the router. Finally, we will
look how the earlier individual energy and area consumption sum up to a
model for the whole chip in section 4.4.6.

4.4.1 Memories

Numbers of a commercial 40 nm SRAM memory library are used to find
good memory models for the simulator. The version of memory used has a
mux factor of 4 and uses the dense memory type. The simulator requires a
model for the area, static power, and dynamic energy. Although the value
of these characteristics can depend on many variables, only two will be
considered the size of the memory in bits S and the width of the memory
in bits W .

The area usage of the memory logically depends mostly on the number
of the memory capacity in bits. If the memory is small, then the area usage
will be mostly dominated by the peripheral circuitry. Equation 4.1 shows
the formula used to determine a memory’s area. This equation model has
an R-squared2 value of 0.9986 Thus, it is quite a good fit.

Amem “ p0.4586 ¨ S ` 12652q ¨ 10´6 rmm2s (4.1)

2R-squared is a value denoting which proportion of the variance of the data is explained
by the model. So, it measures how well a model fits the data. A value of 1 is a perfect
explanation of variance.

30

Similarly, the leakage also linearly depends on the capacity of the mem-
ory. Equation 4.2 shows the amount of leakage for a certain memory size S.
The fit for this equation has an R-squared value of 0.9968, so it is also an
accurate fit.

Pl “ p8 ¨ 10´5 ¨ S ` 1.822q ¨ 1.1 ¨ 10´6 rWs (4.2)

Finally, the dynamic read and write energy are more complicated as
they also depend on the width of the memory. Equation 4.3 and equation
4.4 show the write and read energy respectively. The W parameter signifies
the width of the memory in bits. Do keep in mind that for the neuron
and synapse memory the width is not the size of a neuron and a synapse
itself as described in section 4.4.3, but instead need to still be multiplied
by the parallelism P . So, the hardware model assumes that an increase in
parallelism on the ALU will also increase the width of memory access. The
fitting for this equation was done using a Moore-Penrose inverse, giving a
least-squares solution. Overall, the error between data and model is less
than 20% for both the read and write energy. The model even becomes
more accurate with an increase in memory size.

Ew “ p3.32 ¨ 10´5S ` 0.20 ¨ W ` 3.71q ¨ 10´12 rJs (4.3)

Er “ p4.68 ¨ 10´5S ` 0.31 ¨ W ` 3.23q ¨ 10´12 rJs (4.4)

Equation 4.5 shows the total energy consumption of the memory for one
inference, where Nr is the number of rows read from memory, Nw is the
number of rows written to memory, and t amount of time that the inference
took.

Emem “ Ew ¨ Nw ` Er ¨ Nr ` Pl ¨ t rJs (4.5)

4.4.2 Buffers

The hardware model assumes that both the compute and output buffer are
FIFO buffers. Each of these buffers will block if it is full. The cost model
will also assume that the FIFO buffers are implemented using SRAM. In
addition, the cost model assumes that dequeuing a value from the buffer
only requires a memory read, and enqueueing a value only requires a memory
write. Counters are typically required to store the next available space to
read and write, especially in the case of ring buffers. The cost model assumes
that these are implemented as registers. Thus, they do not cause extra rows
to be read and written to the SRAM memory. The cost model also assumes
that these registers’ read and write energies are also zero.

31

4.4.3 Memory layout

Section 4.3.1 explained how the core works functionally but did not yet
describe how the memory in the buffers and the memories are laid out. An
explanation of different parameters of the cost model is needed first. Table
4.1 describes these parameters.

Parameter Description

Nneuron Number of neurons on a core
Nsyn Number of synapses on a core
Nlayer Number of layers on a core
Nsplit Number of times a layer can be split
Nw,x Number of slots of the mesh in the width
Nw,y Number of slots of the mesh in the height
Nfanin Maximum fan-in synapses
Ntypes Number of different packet types
P Numbers of neurons/synapses executed concurrently

Table 4.1: The parameters used in memory layout model

Mesh packets

To dimension the router’s buffers, the size of the different type of packets
need to be known. The system uses three kinds of packets: the spike packet,
the sync packet, and the ready packet. Figure 4.11 shows the memory layout
for each packet type. The packet should always denote the destination core
of the packet. The packet also holds the packet type. This way, the core or
controller will know which kind of packet was received. The largest packet
kind should dimension the input and output buffer width for the router.
For this system, this will always be the spike packet. The size of the largest
packet, i.e., the spike packet, will be called Spacket. The depth of a router’s
buffers is a configurable parameter.

Figure 4.11: Memory layout of all mesh packet types.

32

Core buffers

Figure 4.12 shows the memory layout of the core’s buffers. The compute
buffer will hold the spikes until a synchronization event arrives. It must
therefore be able to store the information regarding a spike. For that, it
needs the layer that received the spike, the neuron that spikes in the previous
layer, and whether it is a feedback spike. The compute buffer should be able
to hold two times the maximum number of spikes according to the fan-in of
the core, because there are actually two buffers. It should contain the spikes
of the current timestep, and it should hold the spikes of the next timestep
already being received. So, the the compute buffer should be able to hold
2 ¨ Nfanin items. The output buffer will store the packets ready to be sent
on the mesh and, therefore, should have a width equal to the packet size.
The depth is configurable.

Figure 4.12: Memory layout of the core’s buffers. Spacket is the size of a packet.

Core memory

Figure 4.13 shows the memory layout of the neurons, layers, and synapses.
The figure shows the names of the parameters corresponding to a certain
piece of memory and the number of bits. The neuron, synapse, and layer
should contain all parameters required to simulate a neuron, which will be
stored in the NeuronState, SynapseState, LayerState respectively. Sec-
tion 5.1.5 will contain more details on what these states contain for the
experiments. The NeuronOffset is important when a layer is split. For
example, if a layer has a size of 32 neurons and is split into two parts of 16,
then the second part will have a layer offset of 16 neurons. Of course, the
size corresponds to the size of the layer mapped onto the core. In our ear-
lier example, both parts would have a size of 16 neurons. The NeuronStart,
ForwardStart, and RecurrentStart denote where in the memories the start
address of the neuron and the start of the forward and recurrent synapse for
that layer are. Finally, the layer also needs to store the fanout for the lay-
ers. This fanout requires storing the coordinates of the cores and the layer
address on the destination core. The core requires two rows of fanouts, one
for the forward connections and one for recurrent connections.

33

The number of rows in the synapse, neuron, and layer memory will
be Nsyn, Nneuron, and Nlayer respectively. The compute’s parallelism will
affect the width and number of rows of the synapse memory and the neuron
memory. For example, if the parallelism is two, the neuron memory will be
twice as wide and half as deep. However, parallelism does not influence the
layer memory.

Figure 4.13: Memory layout of the neuron, synapse, and layer memory. Ss, Sn, and Sl describe
the synapse, neuron and layer state sizes. These are described in section 5.1.5.

4.4.4 Core

The energy and area numbers for the ALU on the core are based on the
work of [39]. The work documents leakage power, area, and dynamic energy
for several different types of functional units. Specifically, the 10 ns number
should be used as the hardware model assumes 100 MHz.

Equation 4.6 shows the are usage of the the ALU. F denotes the set of
all functional units. Npfq denotes the number of functional units of type f
on the core. Npfq is a model parameter as this depends on how the ALU is
designed (see 4.3.1). Apfq denotes the area consumption of functional unit
f . This area consumption comes from [39].

Aalu “
ÿ

fPF
Apfq ¨ Npfq rmm2s (4.6)

Equation 4.7 shows the energy consumption of the ALU. The first term
is the dynamic energy consumption of the ALU and the second the leakage
of the ALU. Epfq is the dynamic energy consumption of the functional unit
according to [39]. And the NOpfq is the number of operation of that type
performed on that functional unit. This parameter is a result of the DES.

34

t is the amount of time the inference took. Finally, Plpfq is the leakage
corresponding to the functional unit, also from [39].

Ealu “
ÿ

fPF
Epfq ¨ NOpfq ` t ¨

ÿ

fPF
Npfq ¨ Plpfq rJs (4.7)

Finally, equation 4.8 and 4.9 show the the area and energy consumption
of a whole core respectively.

Acore “ Aalu ` Aneuron ` Asyn ` Alayer ` Acompute ` Aoutput rmm2s (4.8)

Ecore “ Ealu ` Eneuron ` Esyn ` Elayer ` Ecompute ` Eoutput rJs (4.9)

4.4.5 Routers

Each router will also have an energy and area consumption. The area that
the switch takes up is difficult to quantify and will therefore not be consid-
ered. Therefore only the area of all memories is used. Equation 4.10 shows
this equation. Ar,input and Ar,output are the areas of the input and output
buffers, respectively.

Arouter “ 5 ¨ Ar,input ` 5 ¨ Ar,output rmm2s (4.10)

The energy consumption of the router is based on [40]. The router de-
sign assumed for the work assumes a virtual-channel router which is different
from this work that assumes a router that assumes a router with an input
and output buffer. However, the energies should not be too different. Addi-
tionally, the numbers of this work are for a 130 nm process while the model
of the simulator assumes a 40 nm. Therefore a correction needs to be ap-
plied. This correction will only correct for the difference in core voltages.
The work does not mention the core voltage used for the chip. So it is as-
sumed that a core voltage of 1.2 V was used. This means that all numbers
needs to be corrected by a factor: Cf “ 1.12

1.22
.

Equation 4.11 shows a modified version of equation 2 of [40]. The equa-
tion of [40] assumes that the amount of hops per packet are counted. How-
ever, for the simulator this is not feasible. Therefore, the simulator counts
the the number of hops per router Nh and the number of packets switches
Ns. This is enough to make an equivalent equation. The length of the links
L are modelled by equation 4.12. This equation assumes that the router, the
ALU, and the memory, among others fit perfectly together. Realistically,
this is not the case, but this will still give a good indication.

Erouter “ pp1.37 ` 0.12LqNh ` 0.98Nsq ¨ Cf ¨ 10´12 rJs (4.11)

35

L “
a

Arouter ` Acore rmms (4.12)

4.4.6 Chip total

Finally, the total area and energy consumption of chip are described by
equation 4.13 and 4.14 respectively. R is the set of all routers, and C is
the set of all active cores. An active core is a core with at least one layer
mapped to it. The controller’s slot will not contribute to the area of the chip.
Additionally, the energy consumption of the controller is not considered.

Achip “ pNw,x ¨ Nw,y ´ 1q ¨ pAcore ` Arouterq rmm2s (4.13)

Echip “
ÿ

cPC
Ecore,c `

ÿ

rPR
Erouter,r rJs (4.14)

4.5 Software architecture

Since the simulator is a research tool, it is written in such a way that it is ex-
tensible. Figure 4.14 shows the decomposition that enables this flexibility3.
For example, a user can implement custom hidden layers. This new custom
implementation could be a neuron model with different mechanics. Or in-
terestingly, a custom implementation of a hidden layer could use a trace file
instead of computing the numbers on the fly. This way, the simulator can
become trace-driven. The figure shows that ALIF and LI are implementa-
tions of this hidden layer class. A hidden layer implementation requires a
description of how it syncs, how it integrates, and whether it is recurrent.
In addition, the layer requires the size of the layer in neurons and the input
size. The input size is the size of the previous layer.

In addition, a user can change the communication fabric as well. A new
class that extends Comm needs to be created to make a custom implemen-
tation. For now, only a mesh fabric is implemented. But this could also
be extended to cover a bus or fat-tree architecture. Another interesting ap-
proach could be implementing a communication model where the simulators
model a mesh by just delaying the packets traveling over the mesh based on
the number of hops. This model would not model congestion but would be
simpler to model and, therefore, faster simulation.

The reason that the program is written as a system of programs and not
just one program is also to facilitate extensibility. An advantage of this is
that, for example, if the mapper is not well-liked, a user can write a new
mapper in a different programming language to generate the mapping files.

3Not all methods and fields are shown for the sake of brevity

36

Finally, the simulator has a reporting system. Figure 4.1 showed that
the DES simulator writes its results to an output file. The results file is a
CSV file. The results file contains a concatenation of the strings where each
string represents a column. These strings come from the Report method
on all Core instances and the Comm instance. For the Mesh instance, the
reporting consists of the result of the Report method of all routers. Adding
new columns is as simple as adding an extra column in the report method
of the core or router.

Figure 4.14: Simplified description of the DES’s Core, Comm and Layer abstractions. It also
shows how the current core, controller, mesh and layer classes use the abstraction.

37

Chapter 5

Experiments

Now that we know how the simulator works, we can do some experiments.
But before we start the experiments, we first need to talk about the experi-
mental setup in section 5.1. After that, we need to determine which metrics
will be used to evaluate the experiments in section 5.2. Finally, in section
5.3 we can start doing the experiments to answer our research question.

5.1 Experimental setup

There is still some explanation left before we do our results. This section
will focus on explaining more about the experimental setup. Section 5.1.1
will talk about the networks that were trained to evaluate our hardware and
with which we will do our experiments. Section 5.1.2 discusses the mapper
made to map the networks on the hardware for our experiments. Finally,
we need to show what values were chosen for most of the parameters of our
hardware model. Section 5.1.3, section 5.1.4, and section 5.1.5 will show the
configurations for the ALU, routing and memory, respectively.

5.1.1 Networks

The experiments will use four datasets during its DSE: SDH, SSC, S-MNIST,
and PS-MNIST. These are a subset of the datasets used by [3]. Each
dataset will have two networks with different configurations. One network
per dataset will have the same layer sizes as the original work. The other
network will have larger layer sizes (SHD, S-MNIST, PS-MNIST) or smaller
layer sizes (SSC). The networks were chosen so that they are fully connected
and follow the paradigm of a series of inputs followed by an output value.
The ECG dataset was therefore not selected as it requires output prediction
simultaneously with inputting. The convolutional neural networks were also
not selected as they need more complicated mapping. There are also a few
differences in SNN execution.

Compared to [3] there are a few changes, the most major being that
the transfer of spikes from one layer to another takes one timestep and is

38

not immediate1. Thus we cannot use exactly the same networks as the
original paper. New ones have to be trained. Table 5.1 shows these newly
trained models. The accuracies achieved for the self-trained models are
comparable to that of the original work. So, they are sufficient to perform
the experiments.

Network Configuration Our acc. Acc. from [3]

SHD1` 700x128x128x20 84.41% 84.4%
SHD4 700x512x256x20 85.42% -
SMNIST3` 40x256x128x10 96.19% 97.82%
SMNIST4 40x512x256x10 96.95% -
PSMNIST1` 40x256x128x10 91.17% 91.0%
PSMNIST2 40x512x256x10 93.05% -
SSC2`* 700x400x400x35 73.13% 74.2%
SSC3 700x256x128x35 66.40% -

Table 5.1: Self-trained networks using the neuron dynamics of [3]. `: networks with the same
layer sizes as the paper. *: was not presented in paper but was included in source-code.

Datasets SHD and SSC are from the same work [41]. The SHD and
SSC dataset must be discretized as part of the data preparation. As a
result, the dataset’s number of timesteps depends on the precision chosen for
this discretization process. The SHD and SSC have 100 and 250 timesteps
for this work, respectively. The original work uses the same parameters.
Choosing different discretization precisions is beneficial as it provides more
variety in the benchmarks.

PS-MNIST and S-MNIST are both based on the MNIST dataset. S-
MNIST is supposed to be a sequential version of MNIST. S-MNIST is simply
a version of MNIST for which each image is flattened and then convoluted.
In this work, this convolution will have a stride of 2 and a kernel size of
8. PS-MNIST is similar to S-MNIST, but PS-MNIST permutes the pixels
beforehand. This permutation is the same for all samples. Like the original
work, the PS-MNIST and S-MNIST are population-encoded, meaning that
there is one extra ALIF layer and that extra ALIF layer is fed analog num-
bers instead of spikes. This extra population encoding layer has 40 neurons
for both S-MNIST and PS-MNIST. The simulator does not allow something
other than spikes. As a result, the simulator can not use the input from the
dataset itself. But instead, the spike trace of the population encoding layer
is extracted. That spike trace is then used for the simulator.

5.1.2 Mapping

The simulator also requires a mapping of the SNN layers onto the hardware
cores. This is complicated by the fact that if a layer does not fit wholly

1The modified SRNN implementation is published with the source code

39

on a core then it can be split into multiple parts and be fitted to multiple
cores. In addition, there are several constraints when fitting a layer to a core.
Namely, the number of neurons may not exceed the number of neurons that
can fit in neuron memory. The number of synapses can not exceed synapse
memory. The layer can also not be split into too many parts as the core
needs to store the location of each part of the split layer in a row on the
layer memory. In addition, only a limited number of layers can be stored on
each core constrained by the number of rows in the layer memory. Finally,
the amount of fan-in connections is limited as well because of the limited
size of the compute buffer. As the compute buffer must be able to hold all
of the spikes of the incoming synapses until the synchronization event comes
in.

Since there are too many constraints it is not feasible to make a manual
mapping from layers to cores. Therefore a simple mapping algorithm was
implemented to do the mapping automatically. Future work does not have
to use this mapper they can write their own mapper. The algorithm is based
on a first-fit bin packing algorithm. Algorithm 1 shows the main concept.
The algorithm first tries to fit a layer to a core in such a way that the layer
does not have to split if it has to split then it will fit the layer to the first
cores. This is what the FindWholeFit function does.

To determine whether the layer fits a core wholly, algorithm 2 is used.
This algorithm will be called the MaximumCut algorithm, as it tries to fit the
largest subset of layer’s neurons that fits on a core. This algorithm tries to
find the maximum amount of neurons that fit on from layer l P L with size
n onto a core c P C, where L is the set of all layers in the SNN model and
C the set of all cores. When the maximum cut is the size of the layer then
we know that the whole layer will fit on the core.

Also, the cores are sorted in order according to priority. The highest
priority core on the list will be check first. Many orderings are possible.
Figure 5.1 shows two of those. The experiments will solely use the column-
major sorting as it is easiest to use, but diagonal sorting is also implemented.

Some layers may not be split. For example, the input and output layer
may be problematic if split over multiple cores. If no core can be found that
fits the layer as a whole and the layer is not splittable then the algorithm
will return with an error. If the layer is splittable, then the layer can be split
over multiple cores. The FindSplitSet finds this set of cores. It checks all
cores in the sorted order and tries to fit as many neurons on them on each
core possible using the MaximumCut algorithm. If the full layer can not be
mapped then an empty set will be returned. In this case, the algorithm will
also return a failure. If not, then the layer will be split and actually assigned
to the cores. If all layers mapped without any error then the mapping is
valid.

40

Algorithm 1 FirstFit

1: for l P L do Ź Iterate over all layers in network
2: c Ð FindWholeFit Ź Finds a core that can fit the layer as a

whole
3: if l is not splittable then
4: return Fail
5: end if
6: s Ð FindSplitSet Ź Find a set of cores that the layer can split

over
7: if s is empty then
8: return Fail
9: else

10: AssignSplitSet(s) Ź Applies the splitting
11: end if
12: return Mapping
13: end for

Algorithm 2 MaximumCut

1: function MaximumCut(l P L, c P C, n)
2: if c.nrLayers “ c.maxLayers or c.fanin + layer.inputSize +

(layer.reccurent ? layer.size : 0) ě c.maxFanIn or l not in
c.acceptedLayers then

3: return 0
4: end if
5: neuronLim Ð c.maxNeurons ´ c.nrNeurons
6: if l.recurrent then
7: synapseLim Ð c.freeSynapses{pl.inputSize ` l.sizeq

8: else
9: synapseLim Ð c.freeSynapses{l.inputSize

10: end if
11: return Min(neuronLim, synapseLim, n)
12: end function

(a) Column-major (b) Diagonal

Figure 5.1: Different ordering of core priorities.

41

5.1.3 ALU config

Section 4.3.1 mentioned that multiple ALU configurations were possible de-
pending on the number of functional units used. The configuration matters
most for the synchronization of neurons, not the integration, as the synchro-
nization is more complex. The experiments will explore three configurations:
serial, parallel, and pipeline. In the serial configuration, everything opera-
tion required for syncing happens serially. The parallel configuration is sim-
ilar to serial but instead tries to parallelize operations maximally. Finally,
there is the pipeline configuration that assumes a pipeline. In the pipeline
configuration, each operation has its functional units. Consequently, the
pipeline configuration runs at the fastest speed possible. The default ALU
configuration will be the serial configuration for all experiments.

Table. 5.2 shows, among others, the latencies for these configurations.
This work assumes that a load and store happen in a separate cycle. There
might be possibilities to optimize this, but a more conservative estimate is
preferred. As a result, the pipeline will only be able to reach an initiation
interval of 20 ns instead of 10 ns. In addition, the hardware model assumes
that if an operation is skipped due to the neuron not spiking, it will still
take one cycle2. In addition to latencies, table. 5.2 also shows the number
of functional units used in a core as a function of the number of parallel
synapses or neurons P . The simulator assumes that the same functional
unit does an equality check and subtraction as an addition, meaning that
the area and leakage are shared. The simulator must make this assumption
because the work of [39] does not have separate functional units documented
for these operations.

No latencies are associated with receiving a spike or sync event on the
receiver, creating a spike to put into the output buffer. Additionally, writing
or reading a buffer also take no time. Only the ALU operations take time.
A user can add more latencies in future work to make the simulation more
accurate.

Sync. Sync. Int. Int. #Addf32 #Multf32
II [ns] Lat. [ns] II [ns] Lat. [ns]

Serial 110 110 30 30 1P 1P
Parallel 80 80 30 30 2P 1P
Pipeline 20 80 20 30 6P 3P

Table 5.2: Parameter values as a result of which ALU configuration is chosen. The ALU config-
uration influences both the timing and the number of functional units.

2One cycle is 10 ns. The HW is assumed to run at 100 MHz (see section 4.4)

42

5.1.4 Routing config

In addition, to core latencies, there are also router latencies. Table. 5.3
shows the router latencies. As mentioned in section 4.3.3, the delays for
transferring from the core to the router can differ from one router to another.
The delay for an inter-router transfer is the transfer delay. The input and
output delays give the delay for transferring from a local core to the router.
The table shows the delays are the same for all kinds of transfers. Finally,
the switch delay represents multiple operations that need to be done by the
switch, like arbitration, route computation, and switch travel. The latency
model assumes that arbitration takes two cycles, and route computation and
switch traversal take one.

Param. Name Value [ns]

InputDelay 10
OutputDelay 10
SwitchDelay 40
TransferDelay 10

Table 5.3: Baseline router latency parameters used to do the experiments.

Three different buffering parameters relate to the NoC. The core output
buffer depth and the router’s input buffer and output buffer depth. The
core output buffer will not be changed and will be kept at a depth of 1. The
NoC experiments will change the input and output buffer depth, but for the
other experiments, we will keep it at a default of 1.

5.1.5 Memory config

This section will define Sn, Sl, Ss, and Ntypes of section 4.4.3. The other pa-
rameters of the section will be defined in section 5.3.1. We want to simulate
the model of [3]. Figure 5.2 shows how the neuron state, synapse state, and
layer state should look like to achieve this. All of the parameters are 32-bit
floating-point values as no quantization is assumed. The neuron state has 5
parameters and one boolean to denote whether it spiked last timestep. As
a result, the neuron state, Sn, is quite large with 161 bits. A synapse only
requires the storage of the weight. The synapse state size, Ss, therefore, is
32 bits large. The layer state stores the threshold, VTH, and beta as these
parameters only need to vary based on layers. The size of the layer state,
Sl, is 64 bits.

Our current model only has only three kind of packet types. This is not
realistic as more than three kinds of packets would be needed to configure
the memories and for debugging purposes. Therefore this parameter was
made configurable the number of packet types Ntypes was made configurable.

43

Figure 5.2: Memory layout of the neuron states.

The experiments will assume that a hardware implementation will require
8 different kind of packet types. Therefore Ntypes is 8.

44

5.2 Evaluation

The experiments have three main metrics to measure the performance of
the hardware: the synaptic energy, the synaptic area, and the throughput
efficiency. The synaptic energy measures the energy efficiency of the chip.
The total energy is not used because the total energy usage is very dependent
on the number of synaptic operations. As a result, it would be difficult to
distinguish efficiency by looking at total energy. The synaptic energy is
calculated by the following formula: Esop “ Echip{Nsop, where Echip is the
energy consumption of the whole chip from section 4.4.6 and Nsop is the
number of synaptic operations.

Likewise, the synaptic area is used instead of the total area. The synaptic
area measures the area required to store one synapse. The synaptic area is
calculated by the formula: Asyn “ Achip{Ns, where Ns is the number of
synapses that the chip can hold, Achip is the the total area of chip from
section 4.4.6.

The throughput efficiency measures the number of synaptic operations
per second that can be achieved per square millimeter of chip area. The
following formula calculates it: TE “ Nsops{T {Achip where T is the amount
of time taken to run through the whole dataset. Henceforth, the throughput
efficiency will be called just “throughput”.

Most design space exploration is about making trade-offs. In a trade-off,
one metric will become better, and one will become worse. Consequently,
it is difficult to distinguish between an efficient and an inefficient trade-off.
Therefore, in this work, we will seek to maximize the EAT (Energy-Area-
Throughput) measure. Equation 5.1 shows the equation to calculate the
EAT. This EAT calculation will be done on a per network basis.

EAT “ TE{Esop (5.1)

Representing the metrics of all networks for all experiments is infeasible.
Instead, to summarise the results of all networks, the arithmetic mean is
used to summarise all numbers. Each experiment name will also be anno-
tated with its experiment ID between brackets. These IDs are important
for section 5.3.4 as they can be used to cross-reference the experiments. Ad-
ditionally, these IDs can also be used to lookup up the metrics on a per
network basis instead of the summarised numbers. These unsummarised
numbers are provided in appendix A.

5.3 Experimental results

Finally, now that we have set up everything, we can do some experiments
and try to answer our research questions. Section 5.3.1 seeks answer the
question related to the effect of core size. Section 5.3.2 seeks to answer what

45

effect the design of the ALU will have. Section 5.3.3 will answer two of our
research question. It will answer both the influence of buffering and changing
the number of wires. Finally, in section 5.3.4, we will look at what accuracy
the networks run in our simulator predict versus what the PyTorch trained
models predicted. We are looking at the accuracy to evaluate whether the
synchronization problem does not have too large of an effect on the results
and whether there were no mistakes in the simulator code.

5.3.1 Core size

This experiment tries to vary the core size and examine the effect of changing
core sizes on the metrics. Table. 5.4 shows the core sizes that will be tried.
Not only should the maximum number of neurons and synapses scale, but
we should also scale the maximum splits and number of cores. If the layer
does not fit one core, then the layer needs to be split. When a layer splits,
more destination cores have to receive the spike. These destination cores
are stored in the layer memory. The layer memory can not have an infinite
width. This is what limits the maximum amount of splits. If core sizes are
small, the mapper must split the layers into more parts. Consequently, more
cores and more allowed splits are needed.

Param. name Small Medium Large Huge

MaxNeurons (Nneuron) 32 64 256 512
MaxSynapses (Nsyn) 32K 64K 256K 512K
MaxFanIn (Nfanin) 2048 2048 2048 2048
MaxLayers (Nlayer) 4 4 4 4
MaxSplits (Nsplit) 64 16 8 4
Parallel (P) 4 4 4 4
Mesh (Nw,xxNw,y) 8x8 4x4 3x3 2x2
ALU Serial Serial Serial Serial

Table 5.4: The different core sizes that will be explored for this experiment. MaxSplits refers to
the maximum of parts a layer can be split into. Between brackets are the corresponding parameters
from table 4.1.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Small (exp4) 134 14.6 21.6 109
Medium (exp1) 130 35.0 18.2 269
Large (exp3) 186 7.0 15.6 37
Huge (exp2) 263 6.0 15.2 23

Table 5.5: Results of varying the core sizes. Configurations from table 5.4 are used.

Table 5.5 shows the results of the experiments using the core sizes from
table 5.4. The results show that the medium size is the best in terms of EAT.

46

The trend is that larger core sizes seem to have a higher energy consumption
than smaller core sizes. However, this trend is broken for the small core size,
where it is smaller but consumes slightly more energy.

An energy breakdown may give a better idea of what is going on. Ta-
ble. 5.6 shows the energy breakdown. The energy breakdown shows which
component consumes what amount of energy. The data clearly shows that
most energy goes to reading and writing memories. When the core size de-
creases, the synapse memory energy significantly decreases. This decrease
is the result of the smaller memories on smaller core sizes. The medium size
performs better than the small size because the increase in energy by the
layer memory, router, and static on the small core counteracts the decrease
in synapse memory energy. As the core size decreases, more layer splits oc-
cur, and the core must send far more spike packets. This splitting, therefore,
increases the consumption due to routing. Besides, the core must deal with
integration events that update fewer neurons. Consequently, the overhead of
getting the layer information for each spike integration becomes more signif-
icant, which increases the layer memory energy consumption. Additionally,
the layer memory is wider due to the increased number of splits.

One other interesting observation: the router does not consume much
energy relatively. In hindsight, this makes sense. Generally, the energy to
switch and transfer a packet is on the order of 20 pJ. The cost of updating
a neuron for the hardware model is 80 pJ. In addition, one packet transfer
will cause multiple neuron updates. So, the packet transfer cost is minimal
compared to the neuron update cost for a whole layer. Splitting the layers
more will increase the energy due to routing relatively, but it will still be a
relatively minor energy consumer.

Component Energy Energy Energy Energy
Small [mJ] Medium [mJ] Large [mJ] Huge [mJ]

Static 23 20 25 44
Layer Mem. 23 3 1 1
Neuron Mem. 259 260 261 263
Synapse Mem. 49 76 235 447
Compute buffer 2 0 0 0
Output buffer 0 0 0 0
ALU 31 31 31 31
Router 7 2 1 1

Total 393 391 554 788

Table 5.6: Energy breakdown: energy consumption per component. This breakdown is for the
SHD1 network. Static energy for layer memory, etc are included separately in the static category.

There is a general trend toward the cores increasing throughput as the
core size shrinks. The throughput increases as cores become smaller because

47

there is more computation power for fewer synapses. As a result, the in-
tegration of spikes takes less time. However, if cores become smaller, the
mapper must split layers into more parts. Consequently, there is conges-
tion due to more traffic on the mesh. Congestion seems prevalent for the
small core size as the throughput is lowered. The transfer latencies in table
5.7 show that there indeed is a lot of congestion. A packet transfer is far
slower on the small core size than the large ones. So, it is plausible that
the congestion partially causes the throughput to slow down. In both the
large and huge configurations, there is almost no congestion, but there is
still no doubling of throughput. This bad throughput scaling may be due
to the general latencies involved in synchronization. For example, it takes
time for the ready event to travel to the controller. And it takes time for
the controller’s input spikes to arrive at the cores containing the first hidden
layer.

Network Lat. Lat. Lat. Lat.
Small [ns] Medium [ns] Large [ns] Huge [ns]

SHD1 58.3 52.3 50.0 50.0
SHD4 91.8 67.6 51.5 50.5
SMNIST3 77.6 61.4 50.1 50.0
SMNIST4 83.3 66.5 51.1 50.0
PSMNIST1 89.9 63.2 50.1 50.0
PSMNIST2 87.0 67.8 51.3 50.0
SSC2 76.8 59.6 50.7 50.3
SSC3 90.5 67.9 50.0 50.0

Mean 81.9 63.3 50.6 50.1

Table 5.7: Transfer latencies: the time from when a packet has been received until it after it
has been sent to a next router. The results are showing the mean latency per network. Shortest
latency possible is 50ns.

Finally, there is a trend towards larger cores requiring less area to store
a synapse for the synaptic area. We may get an explanation by looking at
each component’s area consumption. Table 5.8 shows this area breakdown.
This table shows that as the core size increases, the overhead will decrease,
as components other than the neuron memory and synapse memory will
remain relatively constant in size. Accordingly, the synaptic area will be
lower, as the area dedicated to, for example, a router does not allow more
synapses to run on the hardware.

48

Component Area Small Area Medium Area Large Area Huge
[mm2] [mm2] [mm2] [mm2]

Layer mem. 0.01 (1.4%) 0.01 (0.8%) 0.01 (0.2%) 0.01 (0.1%)
Neuron mem. 0.02 (2.8%) 0.02 (1.7%) 0.03 (0.7%) 0.05 (0.6%)
Syn. mem. 0.49 (69.0%) 0.97 (82.9%) 3.86 (94.1%) 7.71 (96.6%)
Compute buf. 0.03 (4.2%) 0.03 (2.5%) 0.03 (0.7%) 0.04 (0.5%)
Output buf. 0.01 (1.4%) 0.01 (0.8%) 0.01 (0.2%) 0.01 (0.1%)
ALU 0.02 (2.8%) 0.02 (1.7%) 0.02 (0.5%) 0.02 (0.3%)
Router 0.13 (18.3%) 0.13 (10.9%) 0.13 (3.2%) 0.13 (1.6%)

Total 0.71 1.19 4.10 7.96

Table 5.8: Area breakdown: area usage per component in a core

5.3.2 ALU design

The goal of this experiment is to try and find out what the influence is of
adding more functional units to a core. Adding more functional units should
increase leakage but improve throughput. Changing the ALU configuration
can be done in two ways: by changing the ALU configuration between serial,
parallel, and pipeline or increasing the amount of parallelism. The goal is
also to find the trade-off between these two choices.

Firstly, we will explore the ALU configurations. The different configu-
rations of table 5.2 with a medium core size are tried. Table 5.9 shows the
results for the different ALU configurations. The serial and parallel con-
figurations are not that different, which makes sense considering that they
are quite similar in latency and number of functional units. However, the
pipeline configuration is quite a bit different. We expected that these config-
urations would trade area and energy for throughput. However, in this case,
the increase in throughput seems to be worth the relatively small increase
in area and energy. The energy increase is due to the increased leakage
because of more functional units. However, it has to be kept in mind that
the simulator does not measure idle energy. Thus energy consumption could
realistically be worse.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Serial (exp1) 130 35.0 18.2 269
Parallel (exp5) 131 35.9 18.3 274
Pipeline (exp6) 136 43.0 19.0 315

Table 5.9: The results of a medium core size design with different ALU configurations.

Next, we will explore an increase in the parallelism of the medium core
size design. Table. 5.10 shows the results for this experiment. Increasing
the parallelism is very effective in increasing the throughput of the cores.
The throughput of the ALU must have been quite compute-bound. More

49

interestingly, the energy goes down as well. This decrease in energy is be-
cause when the parallelism increases, each memory access retrieves more
synapses. As a result, the cost of accessing a large memory can be divided
over multiple synapses. Hence, this saving overhead even offsets the increase
in leakage. Hence, energy savings. This savings is significant for the synapse
memory as it is big but not wide. Increasing the parallelism is far more ef-
fective than just changing the ALU configuration. The hardware design has
a parallelism of 16 is better than the pipeline ALU configuration from earlier
on every metric.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Parallel 4 (exp1) 130 35.0 18.2 269
Parallel 8 (exp7) 120 51.7 18.4 429
Parallel 16 (exp8) 117 67.0 18.9 572
Parallel 32 (exp38) 119 76.6 19.9 644

Table 5.10: The result of increasing parallelism for the medium core size.

Knowing that parallelism can significantly decrease synapse memory en-
ergy consumption, it may be interesting to see what happens when the large
core size increases in parallelism. The larger cores have a high energy con-
sumption mainly due to the high synapse memory energy. So, particularly
the larger core sizes can save a lot of energy by using more parallelism. Ta-
ble 5.11 shows the results when parallelism is increased for the huge core
size. The results show a significant improvement in terms of energy con-
sumption. So much so that the huge core size with high parallelism can at
least be competitive with the medium core size. The cost model shows that
the read energy of the synapse memory was originally 146 pJ per synapse.
With increased parallelism of 64, it is only 15 pJ to read one synapse. Now,
the neuron memory causes most of the energy consumption. It takes 82 pJ
to update the neuron potential and 15 pJ to read the synapse.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Parallel 4 (exp2) 263 6.0 15.2 23
Parallel 16 (exp10) 144 22.5 15.3 156
Parallel 32 (exp9) 125 40.2 15.4 322
Parallel 64 (exp11) 115 65.9 15.7 570

Table 5.11: The result of increasing parallelism for the huge core size.

It would also be interesting to see what would happen when the par-
allelism is increased on the smaller core sizes. An increase in parallelism
should theoretically increase traffic on the mesh. The small core size al-
ready suffers from congestion. Thus an increase in parallelism on the small

50

core size should not increase the throughput much. Table 5.12 shows the
results when core sizes are small. The results confirm these suspicions. An
increase in parallelism still leads to an increase in throughput but not much.
More interestingly, even the energy starts increasing from parallelism of 16
onwards. The increase in static power is likely the main cause for this. For
parallelism of 4, it is still 23 mJ, while for parallelism of 16, it is already
increased to 44 mJ, when the SHD1 network is used. The increase in static
power is especially problematic for the parallelism of 32 design, where even
EAT decreases.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Parallel 4 (exp4) 134 14.6 21.6 109
Parallel 8 (exp15) 132 17.3 22.1 132
Parallel 16 (exp16) 138 18.7 23.1 137
Parallel 32 (exp17) 155 18.3 25.1 122

Table 5.12: The result of increasing parallelism for the small core size.

5.3.3 NoC design

The goal of the following experiment is to research the effect the NoC has
on the chip. Specifically, we will study the impact of increasing buffering
depth and transfer time on the metrics. We will first increase the amount
of buffering in the routers. An increase in buffering should help smooth
out peak traffic but comes at the cost of more area usage. In the earlier
experiments, we kept the buffer depth at 1. In the following experiments,
both the input buffer and output buffer are increased separately to see the
influence of both independently. Table 5.13 shows the results for increasing
the buffer sizes on the NoC’s routers. The results show that increasing the
input buffer size is more effective than increasing the output buffer size. On
the other hand, increasing the output buffer size only has a minimal effect.
This minimal effect may either be due to the hardware not being sensitive
to increasing buffer depths or relatively low congestion on the medium core
hardware.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

In & Out 1 (exp1) 130 35.0 18.2 269
In 5 (exp12) 130 35.9 18.2 275
Out 5 (exp14) 130 35.2 18.2 270
In & Out 5 (exp13) 130 37.4 18.2 288

Table 5.13: The result of increasing buffer depth for the medium core size.

Before concluding any trend about buffer depth, it is good to get more
data. The medium has some congestion, but the smaller core design has

51

more congestion. It would be interesting to look at buffering results on the
smaller core size. Table 5.14 shows these results. The small core size shows
the same trend. According to the results, increasing the input buffer size is
more effective than increasing the output buffer size. This better throughput
for increasing input buffer depth contradicts the literature. Normally, the
literature assumes that output buffering provides more throughput than
input buffering [42].

The most likely explanation is that the ALU is stalling because there
is no free space in the output buffer of the core. An increase in the input
buffer depth of the router effectively increases the output buffer space on
the ALU as only a 10ns link separates these buffers. A custom experiment
is performed where the the buffer sizes where the input buffer and output
buffer depths were kept at 5 for all directions except for local which was
kept at 1. “In 5” and “Out 5” from table 5.13 then only have a throughput
of 35.2 and 35.2, respectively. Likewise, “In 5” and “Out 5” from table 5.14
then have a throughput of 15.0 and 15.0, respectively. These results show
that increasing in anything other than the local direction does not have any
effect for the medium design. However, For the small core size experiment’s
buffering this does have an effect. The input and output buffering have
about the same effect. These results show that there is not a large difference
between input and output buffering on a router.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

In & Out 1 (exp4) 134 14.6 21.6 109
In 5 (exp18) 133 15.2 21.6 114
Out 5 (exp19) 134 15.0 21.6 113
In & Out 5 (exp20) 133 16.5 21.6 125

Table 5.14: Results of increasing buffer sizes on the router on the small core size.

Furthermore, we can try increasing the buffer sizes more and see where
the throughput gains stop. Table 5.15 shows the result of this experiment.
After increasing the input buffer size to 5, the throughput does not increase
anymore.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

In 1 (exp1) 130 35.0 18.2 269
In 5 (exp12) 130 35.9 18.2 275
In 10 (exp21) 130 36.0 18.2 277
In 20 (exp22) 130 36.1 18.2 277
In 40 (exp23) 130 36.0 18.2 276

Table 5.15: The result of increasingly larger input buffer depths for the medium core size.

52

Maybe this diminishing throughput is due to using the medium core size
that has less congestion. Or, due to it only happening on the input buffer
sizes. We can check this by doing a set experiments on the small core size
with increasing output buffer depths. Table 5.16 shows the results. It shows
that even when using the small core size about the same effect occurs. The
throughput quickly diminishes after a buffer depth of 5.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Out 1 (exp4) 134 14.6 21.6 109
Out 5 (exp19) 134 15.0 21.6 113
Out 10 (exp33) 133 15.1 21.6 113
Out 20 (exp34) 133 15.2 21.6 114
Out 40 (exp35) 133 15.2 21.6 114

Table 5.16: The result of increasingly larger output buffer depths for the small core size.

Next, the amount of wires between two routers also determines the time
it takes to transfer a packet between two routers. Minimizing the number
of wires between routers can reduce area consumption. Sadly, the simulator
cannot model the area consumption of wires. However, the transfer time
can still be increased, which can model the throughput effect of decreasing
the number of wires. For example, if a flit is usually 10 bits and there are 10
wires, it results in a 10 ns transfer time. Then by increasing the transfer time
to 20 ns, we can model a situation where the number of wires would 5. We
ran all of the previous experiments with a transfer time of 10 ns. Table 5.17
shows the results of increasing the transfer time to 20 ns, 40 ns, and 80 ns on
the medium core size. The data shows that the throughput decreases quite
sharply. The synaptic area and EAT are useless as wires have no area model.
In reality, the synaptic area would have to reduce. Theoretically, increasing
the buffer sizes should increase throughput and even out this effect. Table
5.18 shows the results of increasing the input and output buffer depths
when the transfer time is 40 ns. These results even show an improvement in
throughput. So, in this case, the throughput increase of larger buffer depth
compensates for the larger transfer time. When the buffer sizes are 5, the
throughput is only 0.2 lower than it would be with a transfer time of just
10 ns. In real hardware, this would be an interesting trade-off to make.

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

Trans. 10 ns (exp1) 130 35.0 18.2 269
Trans. 20 ns (exp24) 130 33.9 18.2 259
Trans. 40 ns (exp25) 131 31.8 18.2 242
Trans. 80 ns (exp37) 132 27.9 18.2 212

Table 5.17: The result of increasing the transfer latency for the medium core size.

53

Exp. Name Energy Throughput Area EAT
[pJ{SOP] [MSOP{s{mm2] [µm2{syn] [SOP2{pm2Jsq ¨ 1021]

In & Out 1 (exp25) 131 31.8 18.2 242
In & Out 5 (exp26) 130 37.2 18.2 286
In & Out 10 (exp27) 130 37.3 18.2 287

Table 5.18: The result of increasing buffer depth for the for the design with a transfer latency
of 40 ns from table 5.17.

5.3.4 Accuracy deviations

As mentioned earlier, because our simulator is execution-driven, it can also
give accuracy predictions. We can compare this prediction to our PyTorch
model’s accuracy and get an idea if there are any mishaps in execution. Fig-
ure 5.3 shows this difference. The figure shows that the simulator does not
entirely predict the same outputs as the PyTorch model. If we look closely
at the figure, there is a component that constantly causes most networks
to mispredict no matter what experiment. And there is another component
that deviates on a per experiment basis.

Figure 5.3: This figure shows on the y-axis the difference in accuracy between when the network
runs on the PyTorch model versus when run on the simulator. The figure shows the accuracy per
experiment per network. The numbers on the horizontal axis refer to the experiment IDs.

A bug likely causes the first constant component in the simulator. Again,
this is an execution-driven simulator, so any difference in calculations can
result in wrong execution and, therefore, lower or higher accuracies. The
cause of this constant component is unknown. It can be that the parameters
extracted from the PyTorch model are not extracted with enough accuracy.
Or that there is a bug in the code. The research into the problem was
inconclusive.

However, the second component, the difference on a per experiment ba-
sis, can be explained. As mentioned in section 4.3.4 the synchronization

54

model used to do the experiments is not perfect. This is due to a race con-
dition in the synchronization algorithm. The synchronization problem can
cause spikes to arrive a timestep too late. This is the likely cause of the
second component.

Figure 5.4: Stacked bar graph of the number of spikes arriving at the wrong timestep in our
hardware model on the simulator. The bars show the number of mistimed spikes on a per network
per experiment basis. The numbers on the x-axis refers to the experiment ID.

To confirm this suspicion, we can let the simulator measure the number
of spikes that arrive either too early or too late. Henceforth, such a spike
will be called a faulty spike. Figure 5.4 shows the number of faulty spikes.
We can see that the differences in figure 5.3 overlap with the number of
faulty spikes from figure 5.4.

We can also take the circumstances that these faulty spikes occur. They
often occur on hardware designs where there is a combination of much buffer-
ing on the NoC and a lot of congestion. This makes sense, as this is caused
by the synchronization problem mentioned in section 4.3.4. The synchro-
nization problem is a race condition. If there is more congestion and more
buffering, then two different paths can have more opportunity for different
latencies. Therefore, there are more chances for race conditions to happen.

55

Chapter 6

Discussion

Now that experiments are done we can do an analysis and try to draw some
conclusions from each experiment and the hardware in general. After that
we can reflect and see what can be done better in the future. Section 6.1 will
provide an analysis of the general hardware and will compare the simulated
hardware to the literature. Section 6.2 will discuss the results of the core
size, ALU design, and NoC design experiments. In section 6.3 we will reflect
on the design and approach of the simulator. Finally, in 6.4 we will look at
possible avenues of improvement for the modelling and hardware design.

6.1 Hardware analysis

The current designs are comparatively still very inefficient compared to the
SOTA. TrueNorth has a synaptic area of 1.60 µm2. Loihi has a synaptic
area of about 0.46 µm2. ODIN has a synaptic area of 0.68 µm2. Exp 1 has
a synaptic area of about 18.2 µm2, which is an order of magnitude worse,
even though the simulator most likely underestimates the area. The synapse
memory takes up most of the area, which is a significant problem. Partially,
the bit width of the synaptic weights can be blamed. Other literature uses
less precise synaptic weights. For example, ODIN uses 4 bits per synapse.
TrueNorth and Loihi can even go down to 1 bit per synapse. When taking
the number of bits per synapse down to 4 and 1 bits, decreasing the neuron
size to 21 bits and dividing the area of functional units by 8 on exp1 will lead
to a synaptic area of 5.0 µm2 and 3.7 µm2, respectively. Still larger than
most of the literature, but at least somewhere in the same ballpark. With
these optimizations the router now consumes half of the area and therefore
is the main area consumer. Also, keep in mind that Loihi on and ODIN use
a more advanced fabrication process and therefore have denser memories.
This simulator assumes a 40 nm process. Since 90% of the more area efficient
designs is used by the synapse memory, more area savings can be found by
increasing memory density, adding memory compression, or adding pruning.

The same holds for synaptic energy. The current designs are too inef-

56

ficient. ODIN takes 12.7 pJ of energy per synaptic operation. Loihi takes
23.6 pJ per synaptic operation. TrueNorth takes 26 pJ per synaptic opera-
tion. Comparatively, a SOP energy of 130 pJ for exp1 even though it is not
the best is still quite alarming. Although this again is primarily due to the
lack of quantization. Suppose we do an experiment where we reduce the bit
width to 4 bits. In this case, we reduce neuron size to 21 bits, so 4 bits for
most parameters, and all the stats of the ALU divided by 8 on exp1, the
energy per synaptic operation is reduced to 21.1 pJ.

A bad hardware decision largely causes the remaining inefficiency. Choos-
ing the axonal approach itself is not that big of a problem, but the disadvan-
tage of the axonal approach is that it needs to fetch the neuron potentials
more. This fetching would not be a problem if the neuron state is small,
but the current implementation has quite a large neuron state, and it does
not have a separate neuron potential memory, meaning it has to fetch the
whole neuron state. So, either the neuron potential needs to be put in a
separate memory or the dendritic approach needs to be used. We can look
at what separating the neuron potential would save. Originally, updating
the whole neuron state results in energy consumption of about 12.4 pJ. By
only fetching the neuron potential, this can likely be reduced to 3.0 pJ with
enough of parallelism. This is a saving of about 9.4 pJ. This would reduce
the energy per SOP further down to 11.7 pJ.

So, if quantization and the hardware are optimized, then the simulated
design can be quite competitive. What has to be kept in mind is that the
simulator assumes that its hardware runs at a clock speed of 100 MHz on
a 40 nm process at 1.1 V. The earlier calculations also assumed floating-
point calculations instead of the integer ones if quantization is used. So, the
synaptic energy can be even better.

6.2 Experimental analysis

Even though the designs are not perfect, we can still draw some conclu-
sions from the experiments: Firstly, assuming that cores do not do external
memory banking and all have the same parallelism and ALU configuration,
smaller cores will have better energy consumption. But they do not have to
be so small that the layers have to be split so often that routing and other
overheads become a problem. Secondly, larger cores scale better because
they fundamentally produce less traffic on the mesh. After all, large cores
do not split the layers as much. Finally, routing energy, in this work, does
not significantly contribute to energy consumption. Although, this may be
due to the neuron and synapse memory taking up so much energy, thereby
making the energy consumption of the routing relatively insignificant.

The ALU configuration can increase the design’s throughput at the cost
of an increase in energy and area. Changing the ALU configuration leads

57

to a bit of improvement in EAT. However, increasing the parallelism of
the core will be more efficient because this also leads to wider memory
access. Above significantly improving the throughput, it also lowers the
energy consumption due to reducing the cost of accessing the large synapse
memory. Increasing parallelism is particularly effective for larger core sizes.
However, it has to be said that this is partially due to the assumption that a
wider ALU also comes with wider memory accesses. The hardware can also
be designed so that one synapse can be calculated in parallel, but instead
of only fetching one synapse, multiple synapses will be fetched in a batch.
Also, this assumes that no special techniques are applied to the memory to
reduce the dynamic energy access like banking.

Increasing the buffer depths by a small amount can have a small effect
on the throughput while not increasing the synaptic area by much. How-
ever, for medium core design and small core design, most of the increase in
throughput is due to a virtual increase in the core’s output buffer. Never-
theless, without this effect increasing all input or output buffers still results
in a small increase in throughput. Increasing the input buffer depths is
preferable in this scenario as output buffering is difficult in terms of hard-
ware implementation [42]. Increasing the input and output buffer depths
together leads to the most increase in throughput but would require the
most area and lead to the hardware difficulty mentioned earlier. Anything
above 5 packets in depth does increases the throughput only sparingly and
therefore should not be done. Increasing the transfer times diminishes the
throughput of the hardware in quite a substantial way. However, most of
this decrease in throughput can be recovered by increasing the buffer depths.
It may be interesting to see where the trade-off lies in decreasing the number
of wires and increasing buffer depth in terms of area usage. However, this
question requires that the simulator also gets an area model for the wires.

Two sources cause the accuracy to deviate. One unknown that is likely
caused by the simulator causes all experiments to deviate. And one that
is caused by the synchronization problem. The unknown only causes a real
problem for the PS-MNIST1 network. For the other ones, the accuracy devi-
ation is acceptable. The accuracy loss due to the imperfect synchronization
is also not disastrous. The accuracy loss only happens when there is more
buffering and congestion. Worst case, the accuracy only deviated by 0.5%
due to this problem. The reason for this small deviation was that faulty
spikes only occurred rarely and not often in the same dataset sample. Luck-
ily, the networks are resilient to at least some spikes dropping. However, it
is the case that if too many spikes drop, then accuracy does start to suffer a
bit. Depending on the application the accuracy deviations may be an issue
or not. However, for most applications this will likely not be an issue.

58

6.3 Simulator reflection

Additionally, there are some fundamental problems with the current simu-
lator. For one, the hardware being modeled is relatively unique. Not many
chips in the literature use this specific hardware. This makes it difficult to
compare the hardware to the SOTA. Also, the model is only as accurate
as the accuracy of the model and parameters. If the simulator does not
model a real-world chip in a behaviorally accurate way, then the simulator
will lack accuracy. Certain effects may exist in the simulator but not in
the real world. Additionally, if parameters are chosen wrongly, the same
will hold. One problem with the parameters is that the latencies are also
parameters, which introduces more room for inaccuracies. Finding the right
area and energy models, especially for the router, came with great difficulty,
as a result, these models could be more accurate.

Luckily the simulator is very open to changes. The simulator is imple-
mented so that the DES simulator itself only runs the SNN on the hardware
and produces latencies and other metrics and the number of operations per-
formed. Whatever program feeds the DES simulator or analyzes the results
does not matter. So, if someone wants to build another cost model program,
they can. They can even implement their own core, controller, NoC, or SNN
models in the DES simulator. They can also write their own mapper be-
cause the DES simulator only requires a mapping file that any program can
generate.

6.4 Future work

In hindsight, many improvements could have made the hardware far more
efficient. Due to only running fully connected layers and having 32-bit
synapses, the synapse memory was immense compared to all other com-
ponents. There are many solutions to this overly large synapse memory,
but the main one is quantizing and reducing the bit width of the synapses.
Almost all other neuromorphic hardware chips like TrueNorth, Odin, and
Loihi do this. The main problem for this work was that the original model
of [3] did not have any results based on quantization and quantizing the
model is complex and can easily cause the accuracy to suffer. So, it should
really be researched in a separate work. Another interesting solution could
be pruning. However, this likely requires more irregular memory access,
which makes increasing the width of memory access more difficult.

We can improve the synchronization process instead of waiting for all
cores to be ready and then sending the input spikes. The controller can
already start sending the input spikes for the next timestep immediately
after the synchronized signal. This improvement would increase throughput
by decreasing idle times on the core, and there would be no known downside.

59

The synchronization problem has a problem where some spikes arrive
late. We can solve the problem in multiple ways. For one, each spike
event being sent over the mesh can have an acknowledgment. However, this
leads to much more traffic over the mesh, possibly limiting throughput and
increasing energy consumption. In addition, if the core waits for each ac-
knowledgment before sending the next spike, this will significantly increase
latency. Another solution would be to send a kind of “end” event. After
synchronizing a layer for the current timestep, the core will send an “end”
event over all outgoing connections. This will tell all other cores that they
will not get any more spikes. The cores will then only be able to communi-
cate a ready signal when all “end” events are received for all incoming layers
to the core. This would lead to a relatively small communication overhead
and a minimal increase in latency.

Besides the hardware, we can still improve the model accuracy as well.
There is no area model for the wires between routers and also the crossbar
on the router. This is because finding good numbers for a crossbar and wires
was difficult. So, currently, the router is modeled as a sum of all the buffers,
but this is an underestimation and does not fully resemble the real world.

The current model assumes that there are no idle energies, especially
for the functional units on the core. This lack of idle energy makes the
model only accurate when for the actual hardware, everything is clock gated.
However, this is likely not always the case. Therefore, in future work, it
would be preferable to model the idle energies as well.

The latency model is also lacking. There is, for example, no latency for
placing data into buffers. So, currently, the transfer of a spike from the
ALU to the output buffer happens immediately, which is not preferable.
Additionally, the buffers should be modeled so that if multiple processes try
to access the same buffer, some processes must wait.

Currently on a router with an input buffer, output buffer, and a simple
round-robin arbitration scheme is modeled. However, the current literature
does not seem to use output buffer and input buffer but instead uses virtual
channels. So, in the future, maybe a model for a virtual channel-based
router would be interesting.

60

Chapter 7

Conclusion

Our goal was to research neuromorphic hardware and the design choices
involved. We were able to show that building bigger cores is better for con-
gestion on the mesh but that it comes at the cost of energy consumption due
to large memories. Additionally, we could show that the synapse memory
is the leading area consumer, and both the synapse and neuron memory
are responsible for a significant part of the energy consumption. We also
showed that when designing ALUs, much of the improvement in through-
put comes at the cost of higher energy consumption due to more leakage.
We also showed that increasing the parallelism of the hardware decreased
the energy consumption while increasing the throughput significantly. This
was mainly due to the wider memory access saving the energy overhead of
larger memory sizes for the synapse memory. Additionally, we could show
that increasing the input and output buffer could lead to a small increase
in throughput at the cost of a small amount of area. When increasing the
depths the throughput will soon encounter diminishing returns. Decreasing
the amount of wires can decrease the throughput, but that can mostly be
helped by increasing the buffer size. Finally, we were able to show that the
accuracy is not perfect. Mainly due to two problems. For one, the simula-
tor can not perfectly match PyTorch models. Secondly, the synchronization
technique used by the hardware is not perfect. Nevertheless, this problem
only manifests itself in scenarios with high congestion and much buffering.

To achieve our goal we developed a neuromorphic simulator that would
allow us to do DSE. The simulator especially had to focus on non-crossbar-
based time-multiplexed chips. Although the hardware model of the simula-
tor is not competitive with current neuromorphic hardware due to current
design choices, the simulator can still give good insights on how to design
multi-core neuromorphic chips. Especially if, in future work, the simula-
tor is changed such that quantization and the dendritic approach are both
used. The simulator written in this work is a good start but can still be im-
proved. Still, this simulator shows that using a simulator can be a promising
approach to researching neuromorphic hardware.

61

Bibliography

[1] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[2] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “Zigzag:
Enlarging joint architecture-mapping design space exploration for
dnn accelerators,” IEEE Transactions on Computers, vol. 70, no. 8,
pp. 1160–1174, 2021.

[3] B. Yin, F. Corradi, and S. M. Bohté, “Effective and efficient computa-
tion with multiple-timescale spiking recurrent neural networks,” CoRR,
vol. abs/2005.11633, 2020.

[4] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
Dynamics: From Single Neurons to Networks and Models of Cognition.
USA: Cambridge University Press, 2014.

[5] D. Purves and S. M. Williams, Neuroscience. 2nd edition. Sinauer
Associates 2001, 2001.

[6] Wikipedia, “Biological neuron model — Wikipedia, the free encyclope-
dia.” http://en.wikipedia.org/w/index.php?title=Biological%

20neuron%20model&oldid=1092801228, 2022. [Online; accessed 17-
June-2022].

[7] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking neural
networks using lessons from deep learning,” CoRR, vol. abs/2109.12894,
2021.

[8] S. Ahmad and J. Hawkins, “How do neurons operate on sparse dis-
tributed representations? a mathematical theory of sparsity, neurons
and active dendrites.”

[9] C. Howarth, P. Gleeson, and D. Attwell, “Updated energy budgets
for neural computation in the neocortex and cerebellum,” Journal of
Cerebral Blood Flow & Metabolism, vol. 32, no. 7, pp. 1222–1232, 2012.
PMID: 22434069.

62

http://en.wikipedia.org/w/index.php?title=Biological%20neuron%20model&oldid=1092801228
http://en.wikipedia.org/w/index.php?title=Biological%20neuron%20model&oldid=1092801228

[10] M. A. Webster, “Evolving concepts of sensory adaptation,” F1000
biology reports, vol. 4, pp. 21–21, 2012. 23189092[pmid].

[11] A. Krogh, “What are artificial neural networks?,” Nature
Biotechnology, vol. 26, pp. 195–197, Feb 2008.

[12] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mo-
hamed, and H. Arshad, “State-of-the-art in artificial neural network
applications: A survey,” Heliyon, vol. 4, pp. e00938–e00938, Nov 2018.
30519653[pmid].

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, p. 1735–1780, nov 1997.

[14] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: Encoder-decoder ap-
proaches,” CoRR, vol. abs/1409.1259, 2014.

[15] S. Moradi, Q. Ning, F. Stefanini, and G. Indiveri, “A scalable
multi-core architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (dynaps),” CoRR,
vol. abs/1708.04198, 2017.

[16] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[17] C. Frenkel, J. Legat, and D. Bol, “A 0.086-mm2 9.8-pj/sop 64k-synapse
256-neuron online-learning digital spiking neuromorphic processor in
28nm CMOS,” CoRR, vol. abs/1804.07858, 2018.

[18] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba,
M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jack-
son, and D. S. Modha, “Truenorth: Design and tool flow of a 65 mw 1
million neuron programmable neurosynaptic chip,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537–1557, 2015.

[19] H. Lee, C. Kim, Y. Chung, and J. Kim, “Neuroengine: A hardware-
based event-driven simulation system for advanced brain-inspired com-
puting,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, (New York, NY, USA), p. 975–989, Associa-
tion for Computing Machinery, 2021.

63

[20] C. Bartolozzi and G. Indiveri, “Synaptic Dynamics in Analog VLSI,”
Neural Computation, vol. 19, pp. 2581–2603, 10 2007.

[21] Y. Li and K.-W. Ang, “Hardware implementation of neuromorphic
computing using large-scale memristor crossbar arrays,” Advanced
Intelligent Systems, vol. 3, no. 1, p. 2000137, 2021.

[22] M. K. F. Lee, Y. Cui, T. Somu, T. Luo, J. Zhou, W. T. Tang, W.-F.
Wong, and R. S. M. Goh, “A system-level simulator for rram-based
neuromorphic computing chips,” ACM Trans. Archit. Code Optim.,
vol. 15, jan 2019.

[23] A. Balaji, S. Song, T. Titirsha, A. Das, J. L. Krichmar, N. D. Dutt, J. A.
Shackleford, N. Kandasamy, and F. Catthoor, “Neuroxplorer 1.0: An
extensible framework for architectural exploration with spiking neural
networks,” CoRR, vol. abs/2105.01795, 2021.

[24] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“Neutrams: Neural network transformation and co-design under neu-
romorphic hardware constraints,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 1–13,
2016.

[25] A. Balaji, P. Adiraju, H. J. Kashyap, A. Das, J. L. Krichmar, N. D.
Dutt, and F. Catthoor, “Pycarl: A pynn interface for hardware-software
co-simulation of spiking neural network,” CoRR, vol. abs/2003.09696,
2020.

[26] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Pat-
terson, D. R. Lester, A. D. Brown, and S. B. Furber, “Spinnaker: A
1-w 18-core system-on-chip for massively-parallel neural network simu-
lation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1943–
1953, 2013.

[27] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker
project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[28] C. Mayr, S. Höppner, and S. B. Furber, “Spinnaker 2: A 10 million core
processor system for brain simulation and machine learning,” CoRR,
vol. abs/1911.02385, 2019.

[29] S. J. van Albada, A. G. Rowley, J. Senk, M. Hopkins, M. Schmidt,
A. B. Stokes, D. R. Lester, M. Diesmann, and S. B. Furber, “Per-
formance comparison of the digital neuromorphic hardware spinnaker
and the neural network simulation software nest for a full-scale cortical
microcircuit model,” Frontiers in Neuroscience, vol. 12, 2018.

64

[30] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krichmar,
“Carlsim 3: A user-friendly and highly optimized library for the cre-
ation of neurobiologically detailed spiking neural networks,” in 2015
International Joint Conference on Neural Networks (IJCNN), pp. 1–8,
2015.

[31] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive
and efficient neural simulator,” eLife, vol. 8, p. e47314, Aug. 2019.

[32] M.-O. Gewaltig and M. Diesmann, “Nest (neural simulation tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[33] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser,
W. P. Risk, H. D. Simon, and D. S. Modha, “Compass: A scal-
able simulator for an architecture for cognitive computing,” in SC
’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1–11, 2012.

[34] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. Stewart, D. Ras-
mussen, X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a python
tool for building large-scale functional brain models,” Frontiers in
Neuroinformatics, vol. 7, 2014.

[35] Intel, “Lava:a software framework for neuromorphic computing.”
https://github.com/lava-nc/lava.

[36] A. Cuomo, M. Rak, and U. Villano, “Process-oriented discrete-event
simulation in java with continuations-quantitative performance evalua-
tion.,” in SIMULTECH, pp. 87–96, 2012.

[37] P. Grayson, O. Lünsdorf, and S. Scherfke, “Simpy.” https://gitlab.

com/team-simpy/simpy. [Online; accessed 17-June-2022].

[38] B. Theelen, O. Florescu, M. Geilen, J. Huang, P. van der Put-
ten, and J. Voeten, “Software/hardware engineering with the paral-
lel object-oriented specification language,” in 2007 5th IEEE/ACM
International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2007), pp. 139–148, 2007.

[39] Y. Wu, A. Azur, and T. Po-An, “Accelergy-aladdin-plug- in.”

[40] P. Wolkotte, G. Smit, N. Kavaldjiev, J. Becker, and J. Becker, “En-
ergy model of networks-on-chip and a bus,” in 2005 International
Symposium on System-on-Chip, pp. 82–85, 2005.

[41] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke, “The heidelberg
spiking data sets for the systematic evaluation of spiking neural net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
pp. 1–14, 2020.

65

https://github.com/lava-nc/lava
https://gitlab.com/team-simpy/simpy
https://gitlab.com/team-simpy/simpy

[42] R. S. Ramanujam, V. Soteriou, B. Lin, and L.-S. Peh, “Design of a
high-throughput distributed shared-buffer noc router,” in 2010 Fourth
ACM/IEEE International Symposium on Networks-on-Chip, pp. 69–78,
2010.

66

Appendix A

Experimental results

Table A.1, table A.2, and table A.3 show the unsummarised metric values
on a per network per experiment basis. If, for example, the throughput,
energy, or EAT for the SSC3 network on exp1 is needed, then these tables
show the values.

67

shd1 shd4 smnist3 smnist4 psmnist1 psmnist2 ssc2 ssc3
exp1 128 130 131 132 130 131 134 125
exp2 258 261 262 269 262 267 268 256
exp3 182 184 190 187 189 185 192 183
exp4 129 137 132 135 132 134 145 126
exp5 129 131 131 133 131 131 135 126
exp6 134 139 135 138 135 136 143 130
exp7 117 121 121 122 120 121 125 115
exp8 113 121 116 119 116 118 123 111
exp9 123 122 126 128 126 126 127 120
exp10 142 142 145 148 145 146 146 140
exp11 114 113 117 118 117 116 117 111
exp12 128 130 131 132 130 130 134 125
exp13 128 129 131 132 130 130 133 125
exp14 128 130 131 132 130 130 134 125
exp15 125 140 129 133 128 132 147 122
exp16 127 153 131 139 130 137 162 124
exp17 135 185 141 155 139 153 196 133
exp18 128 137 132 135 131 133 145 126
exp19 128 138 132 135 131 133 145 126
exp20 128 136 132 134 131 132 143 126
exp21 128 130 131 132 130 130 134 125
exp22 128 130 131 132 130 130 133 125
exp23 128 130 131 132 130 130 134 125
exp24 128 130 131 132 131 131 134 125
exp25 129 132 131 133 131 131 135 125
exp26 128 129 131 132 130 130 133 125
exp27 128 129 131 132 130 130 133 125
exp33 128 138 132 135 131 133 145 126
exp34 128 138 132 135 131 133 145 126
exp35 128 138 132 135 131 133 145 126
exp37 129 134 132 134 131 132 137 126
exp38 113 127 117 121 116 120 128 111

Table A.1: Per network synaptic energy results for all experiments in pJ{SOP

68

shd1 shd4 smnist3 smnist4 psmnist1 psmnist2 ssc2 ssc3
exp1 15.2 39.9 27.8 50.1 29.9 50.9 36.7 29.8
exp2 5.0 7.6 4.8 6.9 4.9 7.1 6.8 5.3
exp3 3.7 9.7 4.8 9.6 5.1 9.9 7.9 5.1
exp4 8.1 13.8 13.1 20.2 14.4 20.6 12.1 14.3
exp5 15.4 40.1 29.0 51.8 31.1 52.2 37.5 29.8
exp6 19.8 45.5 35.8 61.4 38.5 61.8 43.6 37.3
exp7 25.6 52.7 44.1 72.9 47.5 73.7 50.0 47.1
exp8 38.1 59.7 60.8 92.3 65.3 92.6 61.5 65.5
exp9 29.1 47.8 32.4 49.2 32.1 50.9 46.2 34.1
exp10 17.5 27.7 18.0 26.4 18.0 27.3 25.7 19.2
exp11 43.3 77.4 52.6 84.5 51.3 87.4 75.7 55.4
exp12 15.3 40.6 28.9 51.4 31.0 52.2 37.2 30.4
exp13 15.8 44.0 29.3 53.5 31.4 54.4 39.8 30.9
exp14 15.2 40.1 27.9 50.5 30.0 51.4 36.8 29.9
exp15 10.7 14.8 16.3 23.5 17.9 23.9 13.5 18.0
exp16 12.4 15.1 18.0 24.8 19.9 25.2 13.8 20.1
exp17 12.7 14.4 17.8 24.1 19.8 24.4 13.2 20.2
exp18 8.2 14.0 13.7 21.5 15.2 21.8 12.6 14.8
exp19 8.2 13.9 13.5 21.3 14.9 21.5 12.5 14.5
exp20 8.9 16.2 14.5 23.3 15.9 23.8 14.2 15.5
exp21 15.3 40.7 29.0 51.8 31.0 52.5 37.4 30.4
exp22 15.3 40.8 28.9 51.9 30.9 52.5 38.0 30.4
exp23 15.3 40.7 28.8 51.8 30.8 52.5 37.4 30.3
exp24 14.8 37.4 27.4 48.4 29.5 49.3 34.9 29.4
exp25 14.0 33.2 26.5 45.4 28.5 46.1 31.8 28.5
exp26 15.7 43.9 29.1 53.0 31.2 54.0 39.6 30.8
exp27 15.7 44.0 29.3 53.4 31.3 54.4 39.8 30.8
exp33 8.2 14.0 13.5 21.5 15.0 21.8 12.5 14.6
exp34 8.2 14.1 13.5 21.5 15.0 21.8 12.5 14.7
exp35 8.2 14.1 13.5 21.5 15.0 21.8 12.5 14.7
exp37 12.7 26.9 24.4 39.6 26.4 40.2 26.8 26.4
exp38 48.8 63.4 72.2 103.0 77.4 102.4 66.4 79.0

Table A.2: Per network throughput results for all experiments in MSOP{s{mm2

69

shd1 shd4 smnist3 smnist4 psmnist1 psmnist2 ssc2 ssc3
exp1 119 308 213 379 229 390 274 238
exp2 19 29 18 26 19 27 25 21
exp3 20 52 25 52 27 54 41 28
exp4 63 100 99 150 110 154 84 114
exp5 119 306 221 391 238 398 279 237
exp6 149 327 265 446 286 454 306 288
exp7 218 436 366 597 396 610 401 410
exp8 338 495 522 776 563 787 500 592
exp9 237 391 257 386 255 404 365 283
exp10 123 195 124 179 124 187 176 138
exp11 379 684 451 716 439 750 645 498
exp12 120 314 221 390 238 400 278 244
exp13 123 341 225 406 242 418 299 247
exp14 119 310 213 383 230 394 275 239
exp15 86 106 126 176 140 182 92 147
exp16 98 99 137 179 153 184 85 162
exp17 94 78 126 156 143 160 67 152
exp18 64 102 104 160 116 163 87 117
exp19 64 101 102 158 114 161 86 115
exp20 69 120 110 174 122 180 100 123
exp21 120 314 222 393 238 403 280 243
exp22 120 314 221 394 237 403 285 243
exp23 120 314 221 393 237 402 280 243
exp24 115 287 209 366 226 377 260 235
exp25 109 253 202 342 218 352 235 227
exp26 123 340 223 403 240 415 297 247
exp27 123 341 224 406 241 418 299 247
exp33 64 102 102 160 114 163 87 116
exp34 64 103 102 160 115 164 87 117
exp35 64 103 102 160 115 164 87 117
exp37 98 201 185 297 202 304 195 210
exp38 433 498 618 852 667 856 517 714

Table A.3: Per network EAT results for all experiments in SOP2{pm2Jsq ¨ 1021

70

	Introduction
	Problem statement
	Contributions & overview

	Background
	Neuromorphic computing
	Biological neurons
	ANNs
	SNNs

	Neuromorphic hardware
	Hardware design choices

	Trace-driven vs execution-driven simulators

	Related work
	Neuromorphic hardware
	Neuromorphic hardware simulators
	Unexplored approach

	Simulator
	Simulator overview
	SNN model
	Hardware model
	Core
	Controller
	Mesh
	Synchronization

	Cost model
	Memories
	Buffers
	Memory layout
	Core
	Routers
	Chip total

	Software architecture

	Experiments
	Experimental setup
	Networks
	Mapping
	ALU config
	Routing config
	Memory config

	Evaluation
	Experimental results
	Core size
	ALU design
	NoC design
	Accuracy deviations

	Discussion
	Hardware analysis
	Experimental analysis
	Simulator reflection
	Future work

	Conclusion
	Appendices
	Experimental results

