
 Eindhoven University of Technology

MASTER

RoboSC
a domain-specific language for supervisory controller synthesis of ROS-based applications

Wesselink, Bart B.A.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/38ddea96-eda9-4714-90e8-2917574a6519

RoboSC: a domain-specific
language for supervisory

controller synthesis of
ROS-based applications

Master Thesis

Bart Wesselink
(b.b.a.wesselink@student.tue.nl)

Department of Mathematics and Computer Science
Software Engineering and Technology (SET)

Supervisors:
dr. Ivan Kurtev
dr. Elena Torta

Version 1.0

Eindhoven, July 2022

mailto:b.b.a.wesselink@student.tue.nl

Abstract

Safety is a key concern for the development of robots. They should operate as expected, not have any
deadlocks, livelocks or cause accidents. In robotic applications, supervisory controllers determine
which discrete actions a robot should execute based on the current state and data. The process of
manually creating supervisory controllers makes it very difficult to verify their correctness with re-
spect to requirements, like the absence of deadlocks and livelocks. In this thesis, a domain-specific
language (DSL), RoboSC, is devised that can be used to develop a robotic supervisory controller for
a robotic middleware. The language allows users to model concepts from supervisory control theory
together with communication concepts from the robotic middleware ROS. This, in turn, allows users
to generate models for supervisory control theory to which controller synthesis can be applied, as well
as the platform binding code for both ROS as well as ROS2, which allows users to integrate the con-
troller into ROS-based applications, without the user having to know anything about it. This speeds
up the entire controller development chain while avoiding errors. An evaluation of the language is
presented by simulating eight robotic scenarios for which a supervisory controller was developed us-
ing the DSL. The execution of the controller, as well as the generated bindings, were verified on both
simulated as well as physical hardware.

ii RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Acknowledgements

This thesis marks the end of my Master in Computer Science at the University of Eindhoven. Although
last two years meant that on-campus activities were limited due to all restrictions, it still has been a
very joyful and educational experience.

First of all, I would like to thank my supervisors: Ivan Kurtev and Elena Torta. Their guidance has
been excellent, and they provided me with an extremely collaborative environment, always open to
new ideas. Their insights were key to what is presented in this thesis, and I would like to thank them
for that.

Furthermore, special thanks to everyone that helped me in any way during the project. Sometimes
by providing me with new insights, or sometimes by just listening to problems that I encountered, and
helping to solve them.

Lastly, I thank my family, friends and colleagues for all their support over the years. They always
had faith that everything would be alright with respect to my education, and let me do my thing. Thank
you for that.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications iii

Contents

Contents iv

List of Figures vii

List of Tables ix

Listings x

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 1
1.3 Research Questions . 2
1.4 Structure of the Thesis . 2

2 Preliminaries 4
2.1 Introduction . 4
2.2 Model-Driven Engineering (MDE) . 4

2.2.1 Domain-Specific Languages (DSL) . 4
2.3 Robot Operating System . 5
2.4 Supervisory Control Theory . 6
2.5 CIF . 7

3 Related work 9
3.1 Introduction . 9
3.2 Robotic Domain-Specific Languages . 9

3.2.1 Approaches . 9
3.2.2 Evaluation . 13
3.2.3 Artifacts . 13
3.2.4 Ecosystem . 14

3.3 Supervisory Controllers . 14

4 Language 16
4.1 Introduction . 16
4.2 Concepts . 17

4.2.1 Base . 17
4.2.2 Components . 18
4.2.3 Data types . 20
4.2.4 Expressions . 21
4.2.5 Interfaces . 22
4.2.6 Communication . 22
4.2.7 Automata . 24
4.2.8 Data provisioning . 27
4.2.9 Communication requirements . 28

iv RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CONTENTS CONTENTS

4.3 Data Flow . 30
4.4 Type System . 31

4.4.1 Inference . 31
4.5 Validation . 33

4.5.1 Data provisioning check . 33
4.5.2 Result type check . 33
4.5.3 Integer range required check . 33
4.5.4 Interface link required check . 33
4.5.5 No assignment on messages to node check . 33
4.5.6 No assignment outside scope check . 33
4.5.7 Single component behaviour check . 34
4.5.8 Single default enum case check . 34
4.5.9 Single initial state check . 34
4.5.10 Marked state check . 34
4.5.11 Type check . 34
4.5.12 Uniqueness check . 34
4.5.13 Enum value name state overlap . 35
4.5.14 Variable data type check . 35

4.6 Assumptions . 35
4.7 Supervisory Layer . 36

4.7.1 Overview . 36
4.7.2 Differences to supervisory controller approach . 37
4.7.3 Limitations . 37

4.8 Workbench . 38
4.8.1 Supported editors . 38

5 Generators 39
5.1 Introduction . 39
5.2 Supervisory Control Theory . 40

5.2.1 Plants . 40
5.2.2 Requirements . 44
5.2.3 Enums . 45
5.2.4 Data elimination . 46
5.2.5 Mapping . 46
5.2.6 CIF . 46

5.3 ROS . 48
5.3.1 Supervisory Controller . 48
5.3.2 Communication . 50
5.3.3 Data . 53
5.3.4 Metadata . 54
5.3.5 Mapping . 54
5.3.6 Supervisory Layer . 54

5.4 Generator Configuration . 55
5.5 Debugging . 56

6 Evaluation 58
6.1 Introduction . 58
6.2 Evaluation Goals . 58

6.2.1 Scenario 1 - Line follower . 58
6.2.2 Scenario 2 - Simple navigation . 58
6.2.3 Scenario 3 - Obstacle navigation . 59
6.2.4 Scenario 4 - Object finder . 59
6.2.5 Scenario 5 - Maze solver . 59
6.2.6 Scenario 6 - Push ball into goal . 59

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications v

CONTENTS CONTENTS

6.2.7 Scenario 7 - Person follower . 59
6.2.8 Scenario 8 - Supervisor . 59

6.3 Implementation . 60
6.3.1 Shared components . 60
6.3.2 Scenario 1 - Line follower . 60
6.3.3 Scenario 2 - Simple navigation . 62
6.3.4 Scenario 3 - Obstacle navigation . 63
6.3.5 Scenario 4 - Object finder . 63
6.3.6 Scenario 5 - Maze solver . 65
6.3.7 Scenario 6 - Push ball into goal . 68
6.3.8 Scenario 7 - Person follower . 70
6.3.9 Scenario 8 - Supervisor . 71

6.4 Results . 72
6.4.1 Memory usage . 72
6.4.2 Execution time . 72
6.4.3 Compilation time . 74
6.4.4 Source Lines of Code . 74

6.5 Simulation . 76
6.6 Physical hardware . 77
6.7 Limitations . 78

7 Discussion 80
7.1 Answers to Research Questions . 80
7.2 Comparison to Related Work . 82
7.3 Correctness of Generated Code . 84
7.4 Future work . 84

8 Conclusion 86

Bibliography 87

Appendix 91

A Language Concepts Sample 91

B Line Follower Scenario 93

C Simple Navigation Scenario 95

D Obstacle Navigation Scenario 97

E Object Finder Scenario 99

F Maze Solver Scenario 102

G Push Ball Into Goal Scenario 104

H Person Follower Scenario 106

I Supervisor Scenario 108

vi RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

List of Figures

2.1 Example of a ROS graph with three nodes. 6
2.2 Example of a visual representation of a plant. 7

3.1 Sketched sample of a robot that moves until it reaches an obstacle in RobotML. 12

4.1 Example communication of the supervisory controller node. The dashed rectangle rep-
resents what is generated from the DSL. 17

4.2 Part of the metamodel for the base concepts of the robot. 18
4.3 An example of the representation of the internal component state of a motor. 19
4.4 Part of the metamodel for the components concepts of the robot. 19
4.5 Part of the metamodel for the data types concepts of the robot. 20
4.6 Sample message communication between multiple components. 23
4.7 Sample service communication between multiple components. 23
4.8 Sample action communication between multiple components. 24
4.9 Part of the metamodel for the communication concepts of the robot. 25
4.10 Example DSL automaton with result transitions and tau transitions. 25
4.11 Part of the metamodel for the automata concepts of the robot. 26
4.12 Part of the metamodel for the data provisioning concepts of the robot. 28
4.13 Part of the metamodel for the requirement concepts of the robot. 29
4.14 Sample data plant for communication items. 30
4.15 Visualization of assumption that nodes do not communicate with each other such that

it could change the state of either component without the controller knowing. 35
4.16 Visualization of assumption that no two nodes publish to the same topic. 36
4.17 Overview of the structure of the supervisory layer. The dashed rectangle represents

what is generated from the DSL. 37

5.1 Transformation chain overview of artifact generation based on DSL. Rectangles repres-
ent artifacts, ovals represent generators. Generators with double lines stand for gen-
erators from the supervisory controller tool. Arrows transfer the output (source) to an
input (sink). 40

5.2 Example of a case with two plants where an uncontrollable event can not occur in reg-
ular supervisory control theory. 43

5.3 Example of a case with two plants where an uncontrollable event can occur, because of
added self-loops. 44

5.4 Overview of the technical integration with CIF. 47
5.5 Additional option to the C-generator of CIF that determines whether uncontrollable

events should be performed automatically. 48
5.6 Example of a visualization of the robot state in Visual Studio Code. 57

6.1 States of the emergency stop component. 60
6.2 States of the line follower component. 61
6.3 States of the LiDAR sensor component. 61

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications vii

LIST OF FIGURES LIST OF FIGURES

6.4 States of the Nav2 component. 63
6.5 States of the LiDAR scanner component. 64
6.6 States of the rotator component. 64
6.7 States of the object detector component. 65
6.8 States of the LiDAR scanner component. 66
6.9 States of the LiDAR scanner component. 68
6.10 States of the goal detector component. 69
6.11 States of the ball detector component. 69
6.12 States of the Yolox detection component. 71
6.13 Real memory usage in megabytes for each of the scenarios. 73
6.14 Virtual memory usage in megabytes for each of the scenarios. 73
6.15 Average compilation time for ROS1 and ROS2 nodes. 75
6.16 Source lines of code for DSL and generated code for all of the scenarios. 75
6.17 Screenshots of the simulation of each of the scenarios. 77
6.18 Pictures of the line follower on the TurtleBot 3.0 Waffle Pi and the ROSbot 2.0. 78

viii RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

List of Tables

4.1 Language type system inference rules. 32

5.1 Mapping between result transition types and the corresponding plant event. 43
5.2 Mapping between language concepts and concepts from supervisory control theory. . . 46
5.3 Mapping between language concepts and concepts from ROS. 54

6.1 Communication overview of the line follower scenario. 62
6.2 Communication overview of the simple navigation scenario. 63
6.3 Communication overview of the object finder scenario. 66
6.4 Communication overview of the maze solver scenario. 67
6.5 Communication overview of the push a ball into a goal scenario. 70
6.6 Communication overview of the person follower scenario. 71
6.7 Communication overview of supervisor follower scenario. 72
6.8 Overview of the execution time in micro seconds of a single control loop for each of the

scenarios. 74

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications ix

Listings

3.1 Sample of a robot that moves until it reaches an obstacle in vTSL. 10
3.2 Sample of a robot that moves until it reaches an obstacle in MontiCoreAutomaton. 11
4.1 Robot concept code for running example. 18
4.2 Components concept code for running example. 20
4.3 Data concept code for running example. 21
4.4 Interface concept code for running example. 22
4.5 Messages concept code for running example. 23
4.6 Service concept code for running example. 24
4.7 Action concept code for running example. 24
4.8 Automata concept code for running example. 27
4.9 Provide statement concept code for running example. 28
4.10 Requirement statement concept code for running example. 29
5.1 CIF code for a message plant. 41
5.2 CIF code for a service plant. 41
5.3 CIF code for an action plant. 42
5.4 CIF code for a data plant. 44
5.5 CIF code for two equal requirements. 45
5.6 CIF code for an enum. 45
5.7 C++-code for message callback with code-only assignment. 50
5.8 Sample switch case for actions. 50
5.9 C++-code for publishing a twist message . 51
5.10 C++-code for invoking a service in ROS1 . 52
5.11 C++-code for invoking a service in ROS2 . 52
5.12 C++-code for starting an action in ROS2 . 53
5.13 C++-code for enum value transformation. 53
A.1 DSL code for the running example in the language concepts section. 91
B.1 DSL code for the line follower scenario. 93
C.1 DSL code for the simple navigation scenario. 95
D.1 DSL code for the obstacle navigation scenario. 97
E.1 DSL code for the object finder scenario. 99
F.1 DSL code for the maze solver scenario. 102
G.1 DSL code for the push ball into goal scenario. 104
H.1 DSL code for the person follower scenario. 106
I.1 DSL code for the supervisor scenario. 108

x RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Chapter 1

Introduction

1.1 Motivation

There are many different applications for robotics. Robots can be found in places like factories, hos-
pitals and nursing homes. It is very important that these robots function correctly, and behave as
intended. Failing to do so might cause huge safety problems, as these robots often work in dynamic
environments with people around. The development cycle of such a robot frequently starts with the
development of a model, which is transformed into software. Then, the software is verified after im-
plementation. If something was found to be incorrect, the model is altered and the process is starting
all over again.

To supervise the behaviour of a robot, engineers can make use of supervisory controllers. These
supervisory controllers update their state based on individual events coming from the different com-
ponents of the robot, like distance sensors. Depending on the state that the robot is in, supervisory
controllers restrict the allowed behaviour of such a robot.

Software for robots can be developed using a robotic middleware like ROS, the robotic operat-
ing system. This middleware enables communication between different parts of the robot. This has
several advantages, as it allows for the individual development of robotic components. Such a com-
ponent (or node) could contain the logic for communicating with a motor or a distance sensor, for
example.

One of the ways to develop a supervisory controller, is to apply controller synthesis, as described
in supervisory control theory [43]. The behaviour and communication of all the different systems are
modelled as plants (which are basically just automata). The events to these systems are split into two
sets: controllable and uncontrollable events. Controllable events are events that can be triggered by
the supervisor, whereas uncontrollable events are originated externally. Each of these plants specifies
the uncontrollable events, as well as the controllable events. Constraints on the controllable events
can be specified using requirements. These requirements restrict events that can happen based on
conditions that should be satisfied in order for controllable events to occur.

Existing work has been done to use tools that support supervisory controller synthesis (like CIF
[29], more information can be found in the chapter on related work, chapter 3), and convert the super-
visor to code, and construct supervisor controller in ROS from it. Although the supervisory controller
itself is generated automatically, it still requires modelling all communication individually, create a
ROS node manually and keeping the bindings between the robotic middleware and the supervisory
controller up-to-date. This process can be very time-consuming, repetitive and error-prone.

1.2 Approach

Within this thesis, the approach by Kok et al. [29] is taken a step further by making use of model-
driven engineering. The goal is to create a domain-specific language (DSL) that allows language users
to define the middleware communication, model the different components and specify requirements

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 1

1.3. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

in order to extract this a supervisory controller from it. By using a DSL, the idea is that users spend
less time and not make mistakes when creating a supervisory controller as the controller is synthesised
automatically using an external tool, and the ROS-code with bindings to the controller is generated
as well, which prevents mistakes. The generated code supports multiple versions of ROS. ROS is soft-
ware that can be installed onto a robot, and acts as a robotic middleware. This middleware enables
communication between different parts of the robot using various means of communication. Section
2.3 contains more information about this.

Although multiple robotic middlewares exist [15], and different tools can be used to create super-
visory controllers, the domain-specific language as devised in the thesis introduces concepts from
ROS (both versions, ROS1 and ROS2) and makes use of the concepts of supervisory control theory
[43]. In this thesis, CIF (see section 2.5) will be used, but any other tool that supports supervisory
controller synthesis could be used.

The focus, and therefore the concepts, for the DSL in this thesis has been on the ROS middleware,
to ensure familiarity with the concepts of ROS in terms of communication.

1.3 Research Questions

For this thesis, some guiding research questions have been formulated upfront. These questions help
answer sub-problems that lead to the development of a domain-specific language for a robotic super-
visory controller.

RQ1. What main approaches are used for modelling robots with DSLs?

The first research question mainly focuses on generic domain-specific-languages for robots. It is used
to find answers to the different ways of modelling robotic communication, software environment and
generic robot concepts.

RQ2. What concepts can be identified in the supervisory control domain for ROS?

In the second research questions the focus shifts to the supervisory control domain. It focuses on
the different concepts that are defined within the domain, especially the ones that are relevant to the
language that is developed.

RQ3. What kind of requirements should a supervisory controller be able to satisfy?

The third question focuses on the requirements that a supervisory controller should support and to
adhere to. These requirements are specified to support the supervisory controller synthesis process,
and it is important to check which kind of requirements should be supported.

RQ4. Does the proposed DSL-solution work in one or more case studies?

In the last question, the focus lies on the evaluation of the developed solution. It is important that
the language functions as expected, and that it is expressive enough to be useful in a wide variety of
scenarios.

1.4 Structure of the Thesis

This thesis structured as follows:

• Chapter 1 contains an overall introduction to the topic, research and the structure of the thesis.

• Chapter 2 describes some of the core preliminaries which are required to understand the ideas
and concepts that the thesis describes.

2 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

• Chapter 3 focuses on the related work that has already been done and is (partially) used or rel-
evant to this thesis.

• Chapter 4 outlines a general idea of the developed language, its concepts and core ideas.

• Chapter 5 describes all the logic around the generators for supervisory control theory (SCT) and
the Robot Operating System.

• Chapter 6 evaluates the language based on a set of scenarios, contains measurements for each
of the scenarios and discusses some limitations.

• Chapter 7 discusses the work that was done in the thesis and how it relates to the original re-
search questions specified in the introduction.

• Chapter 8 contains a conclusion of the thesis and recaps the work that was done to solve the
original problem as written down in the introduction.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 3

Chapter 2

Preliminaries

2.1 Introduction

This chapter covers some basic preliminaries that are required to understand the goal and research
that was done within this thesis.

2.2 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is a software development methodology that aims to increase com-
patibility between systems and simplifying the design process. The model can be defined as an ab-
straction of the system under study, where the abstraction is often replacing the model [11]. By incor-
porating the domain of the software project, model-driven engineering aims to promote communic-
ations between all stakeholders in a single project [18]. The goal of using model-driven engineering is
to save time by using concepts closer the domain, which increases productivity [50].

The first tools to support the MDE-methodology date as far back as the 1980s [6]. In the 90s, this
resulted in the creation of the Unified Modeling Language (UML), which was adopted as a standard by
the Object Management Group (OMG) in 1997 [6]. UML is very powerful for creating complex models
of a software project. These models are the single source of truth in a model-driven engineering pro-
ject for all of the stakeholders. Code that is written is based on these models and verification of the
software happens from the developed model as well.

What can make model-driven engineering especially powerful is the application of model-to-model
(M2M) or model-to-text (M2T) transformations [50]. These transformations are used to extract dif-
ferent artifacts from the set of developed models. For example, models can be transformed to code
using automatic code generation as an model-to-text transformation. Model-to-model transforma-
tions can be used to convert models to new models that can act as an input for different software, like
formal verification tools.

2.2.1 Domain-Specific Languages (DSL)

A domain-specific language is, contrary to a general-purpose language like Java, a programming lan-
guage that is developed for a specific domain. It can be seen as a high level software language imple-
mentation that introduces concepts and abstractions related to the current domain [59]. It also limits
the freedom of what can be done, which can prevent mistakes. A domain-specific language can be
used to instantiate entities within the model of a domain.

A domain-specific language is defined using syntax and semantics. The syntax defines the struc-
ture of a language, whereas the semantics define the actual meaning of the code. DSLs can be distin-
guished into two categories: external and internal languages [34]. Where external DSLs define their
own syntax and semantics, internal DSLs re-use part of the syntax and semantics of the host language.

4 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 2. PRELIMINARIES 2.3. ROBOT OPERATING SYSTEM

This means that these languages are somewhat restricted in the expressiveness of the DSL itself, but
do add the power of a domain-specific language to a general purpose language.

Multiple workbenches exist that can support the development of DSLs [17]. A popular tool is XText
1, which is a framework that supports the development of domain specific languages. It allows defin-
ing a grammar for a DSL, and get a parser, linker, typechecker and compiler as a result. Another option
is JetBrains MPS 2 which takes a different approach by using a projectional editor. With a projectional
editor, developers are programming in the model tree rather than in a concrete syntax (a concrete
syntax is the textual representation of the syntax). This has some advantages, as it allows language
designers to add complex elements in the editor. For example, the language could introduce a graph-
ical representation of a matrix or a vector.

2.3 Robot Operating System

Middlewares in robotics were created to make it easier to create different processes and enable com-
munication between these processes. Robots are often highly asynchronous with a lot of hardware
that requires dedicated drivers. A generic middleware can be defined as a software glue, which takes
care of communication between different applications within a system. Using a robotic middleware
can allow robotic developers to focus on specific parts of a robot and re-use existing solutions as the
parts and components are developed individually. Several middlewares exist [15], like the Robot Op-
erating System (ROS), which is the only middleware that is within the scope of this thesis, to ensure
familiarity with the concepts and communication of ROS. There are other middleware s[15], for ex-
ample Miro or Player. Miro is a distributed object oriented framework using a generic broker archi-
tecture, allowing developers to build robotic applications in their own programming language [38].
The Player Project enables the creation of free software to be used in research and education [42].

The Robot Operating System (ROS) can be defined as a set of software libraries and tooling that
assists in developing the software of a robot [56]. It is an open-source library that comes with an
ecosystem that allows re-using pre-existing modules like state-of-the-art algorithms for navigation or
drivers for certain motors and sensors. These modules are distributed using Github and can be found
using the ROS website. Although the name of ROS contains operating system, it runs as a program on
a host system. The current version of ROS is 2. The previous version, ROS1, defines the same concepts
[54].

The base of ROS consists of the ROS graph that defines all nodes and the communication between
them. A node is a process that performs computation [52] and can communicate with other nodes by
using messages, services and actions. ROS provides client and server libraries that can facilitate this
communication.

• Messages: messages have a specific data structure, and can be published to a topic using the
publisher/subscriber model. Other nodes can listen to these messages by subscribing to the
same topics.

• Services: services are based on a call-and-response model, similar to that of HTTP. Services that
are provided by a node return a response when invoked from a client.

• Actions: the intention of actions is that they support longer running tasks. They consist of a
goal, feedback and a result. A node can offer an action server, to which an action client node
can connect. The action is initiated by the client, by supplying the server with a goal. The server
acknowledges this and provides the client with feedback during the execution of the action.
When the action is finished, the server returns a response to the client. The goal and response
are similar to a service, whereas the feedback is provided using a message.

An example of the communication within ROS can be found in figure 2.1. It consists of three nodes,
who communicate with each other using messages and services. Arrows represent communication
between two entities. This example is based on the graph from the ROS website [52].

1https://www.eclipse.org/Xtext/
2https://www.jetbrains.com/mps/

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 5

2.4. SUPERVISORY CONTROL THEORY CHAPTER 2. PRELIMINARIES

N o d e 1 N o d e 2

N o d e 3

To p i c

ResponseRequest

Service

Figure 2.1: Example of a ROS graph with three nodes.

The detection and discovery of nodes within the same network happens automatically in ROS2, as
long as they run in the same network. Every ROS2 setup has a domain identifier, which is a number
that all nodes use to communicate with each other. As long as nodes communicate with the same
domain identifier, they will be discovered. In ROS1, discovery happens using a master node. The
discovery continues, even after the initial setup phase, to ensure that the presence of new nodes is
periodically checked. Furthermore, when nodes go offline, they have the option to advertise their
shutdown.

To launch a program in ROS, one can start a node directly, or make use of a launch file [55]. These
launch files contain information about how to start one or multiple nodes, allowing users to quickly
start a set of nodes that control all parts of the robot. It also supports the re-use of existing launch
files, which could be used to start all nodes required on a specific robot simultaneously.

Currently, there are two main versions of ROS: ROS1 and ROS2. Software updates for both versions
are released in the form of distributions. There are some differences between ROS1 and ROS2, as
described in [54]. The most notable changes are:

• ROS2 supports multiple platforms (Ubuntu, MacOS and Windows) out-of-the-box

• Support for real-time nodes was added in ROS2.

• Actions are part of the main ROS project in ROS2, instead of requiring an additional library.

• Opposite to version 1 of ROS, ROS2 does not need a central ROS master. All nodes have the
capability to discover other nodes without using a centralized system.

• Transport of data happens using the DDS standard, instead of a custom protocol [54].

2.4 Supervisory Control Theory

The Supervisory Control Theory, abbreviated as SCT, was proposed by Ramadge and Woham in [43].
The idea is to restrict the behaviour of a discrete system by synthesizing a supervisor. A discrete system
is a system that has a countable number of states, contrary to a continuous system that has an infinite
amount of states.

In supervisory control theory, Ramadge and Woham first define the concept of a generator, which
is similar to what an automaton is. The generator will play the role of a plant, which is a representation
of an individual system and its states and is the object to control. The formal definition of a generator
can be found in [43].

States of the generator can be labeled as marked. If a state is marked, it means that the state has
some special significance [62]. An example of such a significance is that they represent a finished task,

6 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 2. PRELIMINARIES 2.5. CIF

One Two Three

c [condition] / variable := 5

a b

Figure 2.2: Example of a visual representation of a plant.

where a finite amount of events can occur after which the generator will return to the marked state.
Events can either originate from the plant, or from the outside. If such a process returns to the initial
state after a while, the initial state can be defined as a marker state. To apply controller synthesis, it
should be possible to reach a marked state from all reachable states in the system [36].

The generator will control a system and act as a plant. To do so, supervisory control theory defines
Σ as the set of all events, and Σc as the set of controllable events, or the events over which the super-
visor has control. Such a controllable event can either be enabled or disabled. If it is disabled, the
supervisor will never allow the event to occur, whereas if it is enabled it is not forced to occur.

Next to the controllable events, there are also events that the supervisor has no control over: the
uncontrollable events. These events update the active state of a plant, and can occur at any time. The
supervisor observes the string of uncontrollable events and can restrict a plant to execute controllable
behaviour.

A plant can be visually represented in a diagram. This can be done in different ways. In this thesis,
all of the states of such a plant are represented by circles. If a state is also an initial state, it is annot-
ated with an incoming arrow. Double circles represent a state that is marked. Transitions between
states are visualized using arrows. Solid arrows stand for controllable events, whereas dashed arrows
represent uncontrollable events. In some cases, a transition (of a controllable event) can have guard,
which only enables the transition if the guard holds. This is represented by an edge label which con-
tains brackets around the guard expression. It is also possible that a transition results in assignments
to variables. This is represented as a suffix to the edge label in the form of / <variable> := <value>.
An example of an arbitrary plant is shown in figure 2.2.

Lastly, there is the concept of requirements. A requirement can require a plant to be in one or more
specific states in order to enable a controllable event. These requirements are used to synchronize a
supervisory controller that adheres to these requirements and will never allow controllable events
to occur that are disallowed by one or more of the requirements. Thus, the requirements specify the
behaviour that is allowed in for the supervisory controller. The requirements can be used to synthesize
a supervisory controller which: prevents blocking, only disables controllable events and which also
does not restrict the system any more than is strictly needed.

2.5 CIF

CIF stands for the Compositional Interchange Format and was developed at the University of Eind-
hoven [35]. The goal of CIF is to allow the modeling of discrete event systems, timed systems and
hybrid systems using automata. It contains a large set of functionalities that can be used in the devel-
opment of controllers, including supervisory controllers. CIF has support for the following features
for the development of controllers [35]:

• Specification

• Verification

• Supervisory controller synthesis

• Simulation-based validation

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 7

2.5. CIF CHAPTER 2. PRELIMINARIES

• Simulation-based visualization

• Real-time testing

• Code generation

In this thesis, CIF will only be used to perform supervisory controller synthesis and generate code
from this supervisory controller.

8 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Chapter 3

Related work

3.1 Introduction

This chapter contains related work for all that is done in the thesis. It contains literature on existing
robotic domain specific languages and their approaches, how they are evaluated, their development
process and their ecosystem. Furthermore, the chapter highlights work done in supervisory controller
synthesis in robotics, especially in combination with ROS.

3.2 Robotic Domain-Specific Languages

This section contains the state-of-the-art work that was already done with respect to domain-specific
languages for robots. Section 3.2.1 highlights the different approaches taken by the languages, of
which some ideas, concepts or insights can be introduced into the language developed in this thesis.
It also discusses the different approaches taken with respect to evaluation of the developed languages
in section 3.2.3. Furthermore, the different artifacts and the ecosystems around the developed solu-
tions are discussed in section 3.2.3 and 3.2.4 respectively. The insights from these sections are used
throughout the thesis.

3.2.1 Approaches

There are a lot of languages that apply model-driven engineering in robotics with domain-specific
languages [33]. One of the approaches that can be taken, is the task-based approach as done by Hein-
zemann and Lange [23]. They developed the vTSL-language: a formally verifiable (using an external
model checker) DSL for specifying robotic tasks. This is a text-based language that defines the beha-
vior of the robot using specifications of different tasks. These tasks are then verified using a separate
model checker, Spin 1.

Tasks are specified using so-called actions. Actions define the behaviour of a robot and can run
concurrently with other actions based on an optional set of parameters as an input. Furthermore,
actions have the option to call and start different actions. An interesting point, is that each action is
defined as a set of behaviors that each specify under which conditions the behaviour should be active.

The definition of the behaviour itself uses a C-like syntax. A key part of the DSL are sub-actions
that allow the re-use of logic between different behaviour definitions. These calls to sub-actions can
be executed in parallel if required.

vTSL also has built-in support for communicating with a middleware like ROS. Using keywords like
connect, read, write and disconnect, the DSL adds support for subscribing, listening and publishing to
topics in the middleware. The primary focus of the paper is to support the ROS middleware. Support

1http://spinroot.com/spin/whatispin.html

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 9

3.2. ROBOTIC DOMAIN-SPECIFIC LANGUAGES CHAPTER 3. RELATED WORK

for synchronuous request and reply communication is built using the query keyword. In ROS, com-
munications adhere to a data type. vTSL allows the definition of custom data structures from within
the language.

The language is implemented using Jetbrains MPS 2, a language workbench that supports the cre-
ation of domain-specific languages. One of the unique features of MPS, is its projectional editor. The
projectional editor supports editing files using non-textual syntax. As an example, MPS allows writing
mathematical representations of vectors from within the code. This is done by saving the entire file
as an abstract syntax tree, instead of a plain textual notation. The projectional editor only supports
typing commands that adhere to the grammar of the language, resulting in no more syntax errors.

Actions and behaviour of the language are transformed to code using a model-to-text (M2T) trans-
formation. However, the paper does not describe the methodology for this.

One of the use cases of the constructed model of the robotic behaviour, is performing a model-to-
model (M2M) translation to a model-checker called Spin. The model is converted to a state machine,
which is done using component stubs. As the language has no concept of the possible states and
interactions of a middleware node, these need to be modelled as well. Heinzemann et al. therefore
introduce the skill layer that models the topics and services of the middleware. These definitions do
not necessarily correspond to a single ROS-node, but may describe the behaviour of a group of nodes.

The authors opted to let user specify assertions on the value of variables from within the domain-
specific language, instead of using a separate tool for this. This yields some advantages, as variables
can easily be mapped to states in the resulting model. However, the assertions that can be performed
are still very limited. Another weakness of vTSL is that it is still rather vague and undefined how the
logic of a program should be split up into different actions, behaviours or functions. Also, commu-
nicating with the middleware results in the use of ambiguous keywords. Lastly, the implementation
in the paper still misses the approach of code generation.

An example of a program that is written in the vTSL-language is shown in listing 3.1. Note, that the
skill layer and ROS-bridge data types have been omitted.

action MoveUntilObstacle (double speed)
behavior normal

connect DistanceSensor . distanceTopic as distanceSensor with queue s i z e 1 ;
DistanceMessage curMsg = read distanceSensor ;

while (curMsg . distance < 100)
curMsg = read distanceSensor ;
setSpeed (speed)

end on abort
disconnect distanceSensor ;
setSpeed (0) ;

end

disconnect distanceSensor ;
setSpeed (0) ;

return ;
end

function setSpeed (double speed)
Float64 speedMsg ;
speedMsg . data = speed ;

w r i t e speedMsg to Motor . speedTopic ;
end

end

Listing 3.1: Sample of a robot that moves until it reaches an obstacle in vTSL.

Another text-based approach was proposed by Ringert et al. in [46], namely MontiArcAutomaton
3. MontiArcAutomaton is a framework that adheres to the component and connector (C & C) architec-

2https://www.jetbrains.com/mps/
3https://monticore.github.io/monticore/docs/DevelopedLanguages/

10 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 3. RELATED WORK 3.2. ROBOTIC DOMAIN-SPECIFIC LANGUAGES

ture. In this architecture, the composition of all components is separated from the individual beha-
viour of a single component. Communications between these components are defined as ports. The
behaviour of a component can be defined as an automaton or using a problem-specific language.
Support for these extensions is developed in MontiArcAutomaton ADL.

The MontiArcAUtomaton language is based on the MontiCore Language workbench 4. The lan-
guage is defined as a context-free grammar, which MontiCore uses to generate a parser that can parse
a concrete syntax into an abstract syntax tree (AST). Although MontiCore languages are text-based,
an integration for the Eclipse Modeling Framework (EMF) is provided to support visual development
of models.

MontiCore supports language composition based on three principles:

• Embedding: use parts of existing languages at pre-defined extension points.

• Aggregation: combine multiple, independent, languages into a single language family.

• Extension: re-use and extend existing grammars.

The paper shows the power of composition by embedding a domain-specific language for robot
arms to allow modeling the behavior of a component that controls a robot arm. Communications
take place by defining one or multiple ports.

Furthermore, the MontiCore workbench also has functionality to support in the development of
code generators. These code generators are defined in the configuration of an application and can
generate implementations for different general-purpose languages.

The MontiCoreAutomaton language is very well defined and is built on a solid base. The com-
positional nature of the language makes it very-well suited for a wide range of applications. However,
the source of the language is only partially available. The source of MontiCoreAutomaton is available
on the internet, but the source of the extensible MontiCoreAutomaton ADL is not. Furthermore, the
starting point when developing a robotic application with MontiCoreAutomaton is not entirely clear,
which makes the threshold to develop with the DSL relatively high.

The listing 3.2 contains an example of the controller of a robot that moves until it finds an obstacle.

component C o n t r o l l e r {
port

in i n t distance ,
out i n t speed ;

automaton {
s t a t e Moving , Halt ;

Moving −> Halt { distance < 100} / { speed = 0 } ,
Moving −> Moving / { speed = 100 } ;

}
}

Listing 3.2: Sample of a robot that moves until it reaches an obstacle in MontiCoreAutomaton.

A graphical-based approach was taken by Dhouib et al. in [13]. This approach was first published
in 2012, but it still has some interesting approaches to consider. The approach is based on the Eclipse
Modeling Framework 5 (EMF). EMF is an extension to Eclipse that facilitates in developing models
and code generation for different sets of tools and applications based on a structured set of models.
It also uses Papyrus 6 to support graphical editing of models.

The language was developed based on a set of requirements. These requirements included that the
language had to be easy to use, it should support component-based architectures and that it should
support multiple target platforms using code generation. Dhouib et al. do not explicitely evaluate the
ease of use, but only reason about this. They state that the language does not require users to have
programming knowledge, and that platform details are hidden in the models.

4https://monticore.github.io/monticore/
5https://www.eclipse.org/modeling/emf/
6https://www.eclipse.org/papyrus/

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 11

3.2. ROBOTIC DOMAIN-SPECIFIC LANGUAGES CHAPTER 3. RELATED WORK

Out In Out In

Moving Stopped

State machine

Model

DistanceSensor

distanceOut: Int

ServoMotor

speedIn: Int

Controller

distanceIn: Int
speedOut: Int

[d i s t a n c e < 100]

Figure 3.1: Sketched sample of a robot that moves until it reaches an obstacle in RobotML.

RobotML starts by designing a model that represents sensors, actuators and control systems of dif-
ferent robots. Communications are defined as ports and connectors. Both the publish and subscribe
architecture, as well as the request and reply mechansims are supported through these ports. The
behaviour of control systems is modelled in the form of state machines that represent the different
states of each system and use the incoming ports and outgoing connectors. The next step for the de-
velopment of a program consists of defining a deployment plan that specifies the robotic middleware
being used.

The RobotML model was based on the ontology of a robot. The domain of robotics was studied in
order to come to the design of the language. Concepts that were identified include a Robot, Sensor-
System, ActuatorSystem and a LocalizationSystem.

The RobotML paper was published back in 2012, which may be the reason of issues that arise
when attempting to install RobotML in newer versions of Eclipse and Papyrus. The last activity on
the RobotML GitHub organisation page dates back to 2016 [40], which might indicate a lack of main-
tenance of the framework. Also, the language has options to deploy to one or more multiple (robotic)
middlewares, but still requires the bindings to the platform to be defined manually.

As stated above, RobotML has been outdated and is not compatible anymore with newer versions
of Eclipse and Papyrus. A sketch of a solution in RobotML is depicted in figure 3.1.

Another approach, developed by Elliott et al. in [16], is to use synthesis to extract a controller. This
uses a correct-by-design approach contrary to the manual approach of constructing a robot control-
ler that correctly (based on the specifications) reacts to changes in the dynamic environment because
the controller is extracted using synthesis. The manual process can be very time consuming and error
prone. The language uses Generalized Reactivity(1) (abbreviated as GR(1)) specifications to automat-
ically generate controller designs from the specification. The paper proposes Salty: a domain-specific
language that allows the definition of GR(1) specifications.

These GR(1) systems work as follows. A specification φ has the form of φ = φe =⇒ φs , where
φe contains assumptions about the environment, andφs encodes guarantees that the system should

12 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 3. RELATED WORK 3.2. ROBOTIC DOMAIN-SPECIFIC LANGUAGES

make under these environmental conditions. The language lets users create those specifications, and
uses external tools to apply the actual synthesis of these GR(1) specifications. The DSL adds support
for complex or repetitive expressions using common patterns and macros. The synthesized controller
(which is a mathematical representation of the controller) is converted to multiple general-purpose
languages like Python, Java, and C++.

At a top level, Salty defines the concept of a controller which takes inputs and outputs that are
defined on the controller. These types of inputs and outputs can be enums, which are represented
as bit vectors. Specification properties can be added in their corresponding block. System initializ-
ation and environment initialization have their own block, the same holds for transition properties
in the system and environment as well as liveness properties for both the system and the environ-
ment. Furthermore, Salty adds support for features like sanity checking (approximating whether the
specifications are realisable), debugging and optimization.

3.2.2 Evaluation

The evaluation of a language is key when deciding whether or not a language is suitable for a given
problem, not only from the side of the language user, but also from the side of a language developer.
Nordmann et al. show that evaluation either takes place using quantitative or qualitative evaluation
[33]. Qualitative evaluations focus on the performance of a language in terms of execution time or
build time, whereas the latter is more focused on how well concepts can be modelled with the DSL
approach.

Some papers choose to evaluate the capabilities of their language by letting them perform a ded-
icated task, and execute it on different physical platforms [51] [61] [27] [25] [49] [44]. During the case
study, different types of robots were chosen. In some cases, these robots had different sensors and
actuators to highlight the handling of robots with different capabilities. There are also papers that
rely solely on the evaluation in a simulator [45], which has some advantages in terms of reproduction,
but it would still have been better to see a real-world example. In other cases, no evaluation has taken
place at all, but was rather mentioned as a point of improvement [16].

A different approach of evaluating the language was taken by Sutherland et al. [51]. In order to eval-
uate the simplicity of the language, Sutherland et al. demonstrated the language using a live demon-
stration to an audience, and applied user-suggested changes in a short time frame.

Next to the qualitative approaches to evaluation, there are also quantitative ways. Examples of
such metrics are the performance-per-watt metric [49] or the time it takes multiple groups to solve a
given task using the language [27]. There are also papers that evaluate the portability of a language.
There are two definitions for portability. First, there is portability in terms of the possibility for the
language to run on different robotic platforms [51]. Then, there is also portability in terms of the
amount of languages that the model can be transformed into [16].

3.2.3 Artifacts

In the context of model-driven engineering, there are different kinds of artifacts that are generated
from a model. The most common approach, at least within robotics, is code generation from a model
[33]. The model is fed to a generator, which generates one or more files with code. The use of multiple
code generators highlights the power of model-driven engineering even more, as artifacts for multiple
languages or tools can be generated from only a single model source [47].

As stated before, the most common scenario for using the model, is code generation. This code
can be code for languages like Python [45] or Java [10] [60], or even a specific framework that handles a
dedicated task like scheduling [61]. There is also a language, Salty (by Elliott et al. [16]), that produces
a controller for different languages (Python, C++ and Java) as an artifact.

There are also opposite approaches, where the model is an artifact rather than a source. By com-
bining information that is gathered from applying statical code analysis together with runtime mon-
itoring of a ROS node, a model is constructed [19]. In this case, model-driven engineering for robotics
is used as a complement, rather than having it as a separate solution.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 13

3.3. SUPERVISORY CONTROLLERS CHAPTER 3. RELATED WORK

Some of the papers describe approaches that allow feeding the model into a model verification
tool. Desai et al. [12] describe how state machines for the model are generated and fed into a state-of-
the-art prioritization tool, Dona. Some approaches allow modelling tasks as a task tree, after which
they are transformed using a model-to-model transformation into models that can be verified using
tools like Promela [23].

3.2.4 Ecosystem

Although there are lots of languages proposed within the domain of robotics [33], some of them only
provide a definition of the language in the paper, leaving potential language users with little inform-
ation about how to start using the language. It is interesting to consider what the ecosystem around
existing languages looks like in terms of the community around a DSL, the availability of document-
ation and instructions for developers to get started easily.

There are papers that provide users with the entire grammar of the language [27] [51] [1] [24].
Providing this grammar gives users a quick insight into all the possibilities of the language, but still
requires technical knowledge and a more in-depth read of all structural concepts that the language
defines.

Some of the papers illustrate the workings of languages by going through one or more example
scenarios that illustrate the concepts that are defined within the model of a language [23] [16] [26].
Providing these examples can increase the adoption of such a language, as it provides good insights in
how specific problems should be handled, and shows the expressiveness of a language. Some papers
choose to demonstrate small examples [23], whereas others highlight more complex scenarios [16].

Documentation of the language and its concepts alone is not sufficient in most cases, as users of-
ten require (installation) instructions to help them get started. There are papers that refer users to
external sites like GitHub for providing these instructions [16] [61]. Some store all of this information
(workbench, tooling, robotic models, installation, architectures and concepts) in a separate website
that is publicly accessible [61]. Contrary to this, there are also languages that provide little to no in-
formation about how to get started, making it difficult to start using them [60] [49].

3.3 Supervisory Controllers

The main idea that the work in this thesis is based on, was done by Kok et al. in [29], where they apply
a synthesis-based engineering approach to create a discrete event controller for a mobile robot plat-
form. They describe the process of applying synthesis to discrete event controllers for complex nav-
igation tasks using CIF based on supervisory control theory. The synthesized controller is deployed
using a ROS1 node, which is written in Python.

In the paper, they use state-of-the-art navigation modules which are provided by a ROS package.
These interfaces are modelled within CIF as a plant and contain navigation modules, a laser scan
distance sensor and a human machine interface. The invocation of the navigation modules presented
by the ROS package happens in the form of actions. Each of these actions was modelled as a separate
plant that contains two states, where it is idle or active. Controllable goal events take the plant to the
active state, whereas the uncontrollable finish event and the controllable cancel event take it back to
the idle state. Note that action feedback is omitted in this case.

Next to plants for each of the navigation actions, Kok et al. also define observers which update
their state based on outputs from the navigation modules, laser scan events and human machine
interface. Then, the paper defines requirements which are used in the controller synthesis process.
These requirements specify conditions that either a controllable event needs in order to be enabled,
or a condition that disables such a controllable event. The conditions are all defined as boolean ex-
pressions that need plants to be in a specific state. They are specified using both conjunctions, as well
as disjunctions.

A controller is then synthesized from the set of specified requirements. This controller is synthes-
ized using CIF, after which the code generator of CIF is invoked to generate C. Because CIF does not

14 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 3. RELATED WORK 3.3. SUPERVISORY CONTROLLERS

support Python code generation, a Python wrapper was built that allows Python 2.x modules to inter-
act with the controller based on the generated C-code. The working of this code generation process
was described in [28].

CIF3 has been used for supervisory controllers outside of robotics as well, for example in product
line engineering [3]. They provide an example model of the plants of a coffee machine and provide
the requirements that are used in synthesis, after which a supervisory controller is synthesized.

More work has been done to apply a supervisory controller in robotics [48], where they use a hy-
brid approach and model multiple robots with a discrete event model, and the control of a robot as a
continuous time based model. Synthesis is applied on the discrete event model, and a supervisor is
extracted from it.

Gleirscher et al. highlight the sound development of safe supervisors [22], where they combine
the best of both worlds. They both use verified synthesis, as well as complete testing. They propose a
workflow that bridges the gap between the synthesis process, the derivation of the test suites from the
supervisor reference, the generation of code that is executed, the test and deployment control system
and the integration into the wider system.

In [30] Kress-Gazit et al. review the state of formal synthesis within the field of robotics. As they
mention, applying synthesis allows reasoning about the task specification, rather than its implement-
ation. Manual implementation requires skilled programmers and extensive testing to verify the im-
plementation of a task. Synthesis provides users with guarantees about the behaviour of the robot.
Kress-Gazit et al. state that synthesis has a high potential, but was not yet widely used.

Gleirscher and Pelaska present work on testing the implementation of a synthesized supervisor in
[21]. Although it is possible to verify the properties of the supervisor itself, according to Geirscher and
Pelaska it is possibly not feasible to verify the actual generated code of the supervisor. They present
work to generate an abstract test reference instead of the more complex semantics of the generated
code. This test reference is generated in the form of a symbolic finite state machine, and is used to
show the equivalence between the test reference and the generated concrete controller that is running
on the control system platform.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 15

Chapter 4

Language

4.1 Introduction

In this chapter, the RoboSC (RSC) language will be presented. It will allow the development of a su-
pervisory controller that can be installed into a robotic middleware. The core idea of the language is
based on work performed by Kok et al. [29], where they apply synthesis-based engineering to robotic
supervisory controller, specifically in the field of automatic navigation. They develop supervisory con-
trol theory plants for each of the actions, and specify requirements to control the execution of them.
After applying controller synthesis, the C code engine is extracted. Manually, this is integrated into a
ROS-node, and bindings between the controller and the deployment platform are manually created.

In the language developed in this thesis, the main goal is to promote the adoption of supervisory
controller synthesis in the domain of robotics, by providing a language that allows synthesizing su-
pervisory controllers using concepts of supervisory control theory and the robotic middleware ROS.
By providing code generation, users do not need to bother about bindings and deep understandings
of C++.

In this thesis, the approach of Kok et al. is extended by:

• Reducing the amount of work required to construct models and update the links between the
supervisory controllers and the robotic platform

• Decrease development time by automatically applying supervisor synthesis and C++middle-
ware code

• Extend approach to be useful beyond automatic navigation

• Allow for easier debugging of supervisory controllers

Within the DSL, the language user can specify all (virtual) components, and all communication
that can take place. Similarly to the the terminology that supervisory control systems adhere to [62], a
distinction is made between controllable and uncontrollable communication. Controllable commu-
nication is the data that is going from the supervisory controller to the robotic middleware, whereas
uncontrollable communication is the data coming from the middleware. Based on the uncontrollable
communication, language users model the state of the robot using automata. Then, they can specify
requirements to restrict the execution of controllable communication. The data that is passed along
is determined based on conditions specified by the user. Then, from the DSL, code is generated to
a tool that can apply supervisory controller synthesis, in this case CIF. The code of this supervisory
controller is glued to a node for a robotic middleware, where the bindings and code are automatically
generated, hence not requiring any additional modifications.

The controller is created as a node, and is deployed into the robotic middleware. The node con-
tains the synthesized supervisory controller and plants, and starts a timer that acts as a control loop

16 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

Controller
Node

Node A Node B

/message_a /message_b

Figure 4.1: Example communication of the supervisory controller node. The dashed rectangle rep-
resents what is generated from the DSL.

and attempts to execute an enabled controllable event. The set of enabled controllable events de-
pends on the uncontrollable events originating from the middleware. When the supervisory control-
ler allows communication to take place, the node will publish messages, send requests to services or
goals to actions. Every time new data is coming in from the middleware, the state of the supervisory
controller is updated which updates the internal state of all plants. An example of the communication
with the controller is shown in figure 4.1.

4.2 Concepts

This section contains all the concepts of the language and how they should be used. Throughout this
section, a running example will be considered to make the concepts that are explained more concrete.
The ontology of this robot consists of two motors that allow the robot to move in the two directions.
Furthermore, it contains a sensor that can find a line, and if it has found one it can measure the offset of
that line to the center of the robot. The robot is also equipped with a distance sensor which measures
the distance to an object in front of the robot. If there is an obstacle, the robot can use its grabber to
pick up the obstacle. Lastly, a light bulb is attached to the robot which can be used to represent the
internal state of the robot.

The goal of the robot is to follow a line. If it finds something that is in front of the robot, it should
stop moving and pick the obstacle up using the grabber. In the case that there is no line at all, the light
bulb on the robot should be activated.

The full DSL model of this example can be found in appendix A.

4.2.1 Base

When a language user creates a model in the DSL, it can either start with a robot concept, or a library
concept. The concept of a robot allows the definition of all components, their behaviour, their inputs
and outputs, datatypes and the requirements that the controller should adhere to, whereas a library
can only be used to define all aspects of one or multiple components. These can be re-used within
the definition of a robot to accelerate development of different controllers for similar platforms.

A part of the metamodel of the base was added in figure 4.2. It contains the concepts of robot and
library definitions, which allow the user to specify entities related to the library or robot. Libraries can
only define interfaces, components and data types. Robot entities can also define provide statements
and requirements.

For the example that was mentioned in the beginning of this section, the robot concept should be
used. It receives a name, which is used to identify the robot. The code, as listed in listing 4.1, still looks
pretty empty, but will take shape in the next sections.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 17

4.2. CONCEPTS CHAPTER 4. LANGUAGE

Figure 4.2: Part of the metamodel for the base concepts of the robot.

robot ThesisLineFollower {
// Further robot code

}

Listing 4.1: Robot concept code for running example.

4.2.2 Components

A component can be defined as a virtual, software abstraction of a part of a robot. Although there is
no explicit one-to-one mapping to a middleware node, this will often be the case as, at least for some
robotic middlewares, it is expected that "each node in should be responsible for a single, module
purpose" [58].

For each component the communication with the middleware can be specified. The types of com-
munications that can be specified, are defined in section 4.2.6. Using this information, the internal
state of the component can be modelled. This is referred to as the behaviour of a component, and
can be specified using an automaton (see section 4.2.7). An example of this behaviour can be found
in figure 4.3, where the internal state of a (simple) component is represented by two uncontrollable
events: start and stop. These events are controllable events.

It is also possible to reference a component from a library by using an import. This is referred to
as an imported component, and does not allow the specification of any additional inputs, outputs or
behaviour. A component that is defined within a file itself is called a local component.

Figure 4.4 contains the concepts that are relevant to components. It highlights the relation to lib-
rary components (which are imported), and to the communication types and behaviour that a com-
ponent can define via a component definition.

For the example robot that should follow a line, five different components can distinguished. Each
of the actuators and sensors is modelled as an individual component. For the actuators, this means

18 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

I d l e M o v i ng

/start

/stop

Figure 4.3: An example of the representation of the internal component state of a motor.

Figure 4.4: Part of the metamodel for the components concepts of the robot.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 19

4.2. CONCEPTS CHAPTER 4. LANGUAGE

Figure 4.5: Part of the metamodel for the data types concepts of the robot.

that there are components for the light bulb, obstacle grabber and the motor. The sensors are repres-
ented by two components. One for the line detector and one for the distance sensor. This code for
this model was added in listing 4.2.

robot ThesisLineFollower {
component DistanceSensor {}
component ObstacleGrabber {}
component LightBulb {}
component LineDetector {}
component Motor {}

}

Listing 4.2: Components concept code for running example.

4.2.3 Data types

The language distinguishes three different types of data:

• Basic data types

• Complex data types

• Arrays

First, basic data types consist of strings, booleans, integers, doubles and the none-type. Additional
constraints as to where they are used in the language may apply. The complex data types consist of
objects and enums. Objects define key-value pairs, each with an associated data type. They may be
used recursively. Enums are used to convert input data, based on a set of conditions, to a finite set of
values. This helps to prevent exponential growth of the amount of possible states when using integers
in controller synthesis, for example. An enum is defined as a set of transformation rules. Then, arrays
are defined as a list of another data type. Restrictions apply as to where they are used, they can only
be used to model the format of data coming from the middleware, not as a datatype for a variable.
More information about this can be found in the section on validation 4.5. The concepts described
are shown in figure 4.5.

For the example of the line follower robot mentioned in the introduction, four custom data types
are needed. The first object datatype, Twist, represents the structure of the data that is sent to the

20 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

motor. It stores a linear and angular velocity, which are both represented as a vector. This vector is
modelled as a separate object datatype, which is referenced from the Twist data type. The third object
datatype represents the request to the light bulb which will update its state. Next to the three object
data types, there also is an enum type that converts the value that is coming from the distance sensor
to a finite set using transformation rules. The value of the distance sensor is a double. If it is higher
than a certain threshold, the distance is defined as free. If not, and by default, the value is obstructed.
These data types will be used in the section on communication. The syntax for all these concepts is
written down in listing 4.3.

robot ThesisLineFollower {
// ...

datatype o b j e c t Twist {
angular : Vector3
l i n e a r : Vector3

}

datatype o b j e c t Vector3 {
x : double
y : double
z : double

}

datatype o b j e c t LightBulbRequest {
^ s t a t e : boolean

}

datatype enum DistanceEnum from double to {
value >= 10 −> f r e e
d e f a u l t −> obstructed

}

// ...
}

Listing 4.3: Data concept code for running example.

4.2.4 Expressions

The language supports a basic set of expressions that are used in different parts of the language, for
example in passing data to the communication items, assigning values or specifying requirements.
The following types of expressions are supported:

• Conjunction

• Disjunction

• Equation

• Implication

• Addition

• Subtraction

• Multiplication

• Greater than

• Greater or equal than

• Less than

• Less or equal then

• Negation

• Assignment

To allow users to reference variables, states, enum value names or object properties in an expres-
sion, the language defines the concept of an access model. This model lets users reference the value
of such an item. It is possible that the access is nested, for example if users want to reference the
property of an object, which is also a property from a parent object.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 21

4.2. CONCEPTS CHAPTER 4. LANGUAGE

4.2.5 Interfaces

The language defines the concept of an interface, which describes the software packages that contain
the format specification of data coming from the middleware. Each message, service and action has a
corresponding data type. Although some basic data types are supported out-of-the-box, more com-
plex ones require external software packages. The content of these interfaces can be described via
custom data objects (see section 4.2.3). Interfaces can contain one or more data types. For example,
an action interface contains three data objects: the goal, feedback and response. The language user
can define interfaces for a robot that contain the name of the package, and the name of the interface.
Then, each communication item that uses a complex data type can reference this interface.

The example robot uses a data type Twist from an external package, geoemtry_msgs. This is de-
clared as a single interface which references the mentioned packages, as outlined in listing 4.4. There
are also two communication items that need data formats from an external package.

robot ThesisLineFollower {
// ...

i n t e r f a c e t w i s t use Twist from geometry_msgs
i n t e r f a c e l i g h t use LightBulbService from robot_common
i n t e r f a c e grabber use GrabberAction from robot_common

// ...
}

Listing 4.4: Interface concept code for running example.

4.2.6 Communication

The inputs and outputs of each component are defined as communication types. These communic-
ation types correspond to the the types of the supported middleware [53]:

• Messages

• Services

• Actions

The corresponding parts of the metamodel have been attached in figure 4.9.

Messages

Messages are published using an anonymous publisher/subscriber model in the middleware. A mes-
sage can either be a message that is going into a component (so the component subscribes to), or a
message that is going out of a component (and the component publishes to). A message has a name
and optionally a topic can be specified. If no explicit topic is specified, the name of the message will
be used as the topic. Furthermore, a message has a corresponding data type that contains the format
of the message. An illustration of the communication process is depicted in figure 4.6.

In the example that was set in the beginning, there are three components that define messages.
First, there is the distance sensor component, which provides the supervisory controller with a mes-
sage that contains the distance to an object. It is an outgoing message from the component to the
controller, and has an enum data type which was already defined above. The topic name is defined
explicitly. Then, the line detector component also defines outgoing messages. These messages rep-
resent the correction value and the event that there is no line. The correction value has a type double,
whereas the no line message has no attached datatype and is therefore assigned the none type. Lastly,
there is the motor component which receives incoming messages that control the movement of the
robot. These messages are defined separately, but they map to the same middleware identifier. They
differ in the data that will be sent along with the message. The move message will move the robot
forward, whereas the stop message requests the robot to halt its movement. The data type of both

22 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

C o mp . 1 C o mp . 2

C o mp . 3

To p i c

Figure 4.6: Sample message communication between multiple components.

C o mp . 1 C o mp . 2S e r v i c e

Request Request

ResponseResponse

Figure 4.7: Sample service communication between multiple components.

commands refers to the complex data type Twist that was defined above. Furthermore, the message
should be linked to the interface of that data type. The code is attached in listing 4.5.

robot ThesisLineFollower {
component DistanceSensor {

outgoing message distance with i d e n t i f i e r : "/distance" , type : DistanceEnum
}

// ...

component LineDetector {
outgoing message c o r r e c t i o n with i d e n t i f i e r : "/correction" , type : double
outgoing message no_line with i d e n t i f i e r : "/no_line" , type : none

}

component Motor {
incoming message move with i d e n t i f i e r : "/vel" , type : Twist l i n k s t w i s t
incoming message stop with i d e n t i f i e r : "/vel" , type : Twist l i n k s t w i s t

}
}

Listing 4.5: Messages concept code for running example.

Services

Another type of communication, are services. The software architecture of a service follows the call-
and-response architecture, similar to that of the HTTP client and server model. A schematic overview
has been given in figure 4.7.

Within the example, there is only a single component that offers a service, which is the light bulb.
It offers a service which can be provided with a boolean value that represents the state of the light bulb:
on or off. If true is sent to the light bulb, it will be turned on, and it will be turned off if false was sent.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 23

4.2. CONCEPTS CHAPTER 4. LANGUAGE

C o mp . 1 C o mp . 2Ac t i o n

Request Request

FeedbackFeedback

ResponseResponse

Figure 4.8: Sample action communication between multiple components.

The data type of this request was already modelled in the section on data. The corresponding service
interface, that contains the data type, is also linked. The code for such a service can be found in listing
4.6.

robot ThesisLineFollower {
// ...

component LightBulb {
s e r v i c e s e t _ l i g h t _ s t a t e with request : LightBulbRequest , response : none l i n k s l i g h t

}

// ...
}

Listing 4.6: Service concept code for running example.

Actions

The last type of communication that can be defined on a robot, are actions. These actions are intended
for tasks that happen for a longer time [57]. Furthermore, during the period that the action is running,
feedback about the process is published to a topic that can be consumed by the initiating node. A
schematic overview is given in figure 4.8.

The example robot has an action which can be started to pick up the obstacle that is in front of
the robot. It does not need require any data, therefore the data types of the request, response and
feedback of the action are of type none. It is required that the action is linked to the interface that
was already defined, which represents this empty action format. The definition of such an action on
a component can be found in listing 4.7.

robot ThesisLineFollower {
// ...

component ObstacleGrabber {
action grab with i d e n t i f i e r : "/grab" , request : none , response : none , feedback : none

l i n k s grabber
}

// ...
}

Listing 4.7: Action concept code for running example.

4.2.7 Automata

Within the language, components can define their behaviour in form of an automaton. An automaton
has one or more states, and should have a single initial state. A state can also be labelled as marked [43].
It should be possible to reach a marked state from all of the other reachable states [36]. Each state can
define a set of transitions. This can either be result transitions, or tau transitions. Result transitions
occur when communication with the middleware happens. Events that trigger these transitions are

24 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

Figure 4.9: Part of the metamodel for the communication concepts of the robot.

requests, responses, feedback and errors. Tau transitions can be executed as soon as the guard is
enabled. An example of such an automaton, with incoming messages and tau transitions, is depicted
in figure 4.10. Note that the value-keyword in the assignments represents the data that is coming to
the middleware.

In some cases, a user might want to have transitions that are present in every state within the
automaton. In this case, the option is offered to define them on the automaton level, rather than on a
single state. Then, the transition will be possible in all states that are defined within the automaton.
This is especially useful in a case where a user wants to receive incoming data in all states and store it.

To store data, automatons can define variables. The variables have a data type, which should be a
simple data type (see section 4.2.3). Upon a transition, these variables can be assigned, for example
based on the data that is received from the robotic middleware. The data from the middleware is
represented by the value keyword in an assignment.

Figure 4.11 shows an overview of the concepts related to automata in the DSL. It contains defini-
tions for variables, transitions and states.

Unsafe Safe

[current_distance = safe]

[current_distance = unsafe]

/scan
/ current_distance := value

/scan
/ current_distance := value

Figure 4.10: Example DSL automaton with result transitions and tau transitions.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 25

4.2. CONCEPTS CHAPTER 4. LANGUAGE

Figure 4.11: Part of the metamodel for the automata concepts of the robot.

The example in the introduction of this section requires the definition of the behaviour of three
components: the distance sensor, the obstacle grabber and the line detector. The distance sensor only
has a single state, in which it senses the distances and publishes this value. Upon a response from this
message, the value is stored in a variable. The variable is defined in the automaton. For the obstacle
grabber, there are two states. The first state where it is idle, and a state where it is grabbing an object.
Note that the idle state also represents the initial state, and is marked, because the component will
eventually return to that state. When started, the component transitions from its initial state to the
state where it is grabbing, until it has finished grabbing the object, after which it returns to the initial
state. Then, lastly, the line detector also knows two states. There is a state when there is no line, and
there is a state where a line was found. From the initial state, there is a result transition which takes the
automaton to the state where a line is found. In this state, any incoming correction values are stored
in a variable on the automaton. The code for these components is added in listing 4.8.

26 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

robot ThesisLineFollower {
// ...

component DistanceSensor {
// ..

behaviour {
v a r i a b l e current : DistanceEnum = obstructed

i n i t i a l marked s t a t e sensing {
on response from distance do current := value

}
}

}

component ObstacleGrabber {
// ..

behaviour {
i n i t i a l marked s t a t e i d l e {

on request to grab goto grabbing
}

s t a t e grabbing {
on response from grab goto i d l e

}
}

}

component LineDetector {
// ..

behaviour {
v a r i a b l e c u r r e n t _ c o r r e c t i o n : double = 0 . 0

i n i t i a l marked s t a t e no_line {
on response from c o r r e c t i o n goto line_found

}

s t a t e line_found {
on response from no_line goto no_line

}
}

}

// ...
}

Listing 4.8: Automata concept code for running example.

4.2.8 Data provisioning

Controllable communication takes place when certain requirements are met. This means, that there
is no direct invocation of communication, much like a method in a regular programming language
like Java or C++. Therefore, it is not possible to directly pass data to it.

To solve this problem, the language introduces the concept of provide-statements which link data
to the communication with the robotic middlware. These statements provide communication with
data, based on boolean expressions. These boolean expressions determine whether data should be
sent along with communication based on the current state of the supervisory controller. More in-
formation about the data flow can be found in section 4.3. The concepts on data provisioning can be
found in figure 4.12.

The example robot from the introduction requires some provide statements. First, the messages
that are sent to the motor require a linear and an angular velocity. For the move message, this means

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 27

4.2. CONCEPTS CHAPTER 4. LANGUAGE

Figure 4.12: Part of the metamodel for the data provisioning concepts of the robot.

that the robot will be provided with a constant value for the linear speed, and a fraction of the line
correction value for the angular speed, such that it can steer towards the line. The stop command
will be provided with a value of zero for both the linear as well as the angular speed. The service that
updates the light state also requires a value, depending on the state of the line detector component,
which is added as a condition. The provide statements are outlined in listing 4.9.

robot ThesisLineFollower {
// ...

// Provide communication with the correct speed
provide move with {

l i n e a r : { x : 0 . 4 } ,
angular : { z : LineDetector . current / 100 }

}
provide stop with {

l i n e a r : { x : 0 . 0 } ,
angular : { z : 0 . 0 }

}

// Enable light when no line found
provide s e t _ l i g h t _ s t a t e with { ^ s t a t e : f a l s e } i f LineDetector . l ine_found
provide s e t _ l i g h t _ s t a t e with { ^ s t a t e : true } i f LineDetector . no_line

// ...
}

Listing 4.9: Provide statement concept code for running example.

4.2.9 Communication requirements

In order to restrict the behaviour of controllable communication, the user has to define requirements.
Requirements are split into two types:

• Requirements that disallow controllable communication to take place based if a condition holds.
This condition is captured using a boolean expression.

28 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.2. CONCEPTS

Figure 4.13: Part of the metamodel for the requirement concepts of the robot.

• Requirements that need a condition to hold in order to have the communication take place.
This condition is captured using a boolean expression as well.

It is possible to specify requirements either for a single communication item, or for a set of com-
munication items.

The model of the requirements is attached in figure 4.13. It contains models that allow require-
ments to either specify a condition for a single communication type, or for multiple types. Require-
ments can be of two types. Either, a requirement with a condition that disallows communication
based on a condition that holds, or a requirement that needs a condition to hold to allow the commu-
nication to take place. Note that the expression concept allows referencing of states.

There are a total of four requirements for the example robot. For the move message, nothing
should be in front of the robot and therefore the distance sensor value should be equal to free. Further-
more, the robot should not move while grabbing anything and therefore the obstacle grabber should
be in state idle. The stop command should be executed if one of these conditions does not hold, so
if the distance sensor has something in front or the obstacle is being picked up. The last requirement
specifies that if the distance sensor says there is nothing in front of the robot, the obstacle grabber
action can not start, as it has nothing to pick up. These requirements are shown in listing 4.10.

robot ThesisLineFollower {
// ...

// Movement
requirement move needs DistanceSensor . current = f r e e
requirement move needs ObstacleGrabber . i d l e
requirement stop needs DistanceSensor . current = obstructed or ObstacleGrabber . grabbing

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 29

4.3. DATA FLOW CHAPTER 4. LANGUAGE

// Grabbing
requirement DistanceSensor . current = f r e e d i s a b l e s grab

// ...
}

Listing 4.10: Requirement statement concept code for running example.

4.3 Data Flow

Because all communications that take place happen when certain conditions are met, it is impossible
to directly invoke such a communication, and pass data to it. Therefore, the language defines provide-
statements which, based on a specific condition, determine what data should be passed. If one or
more conditions overlap, it is non-deterministic what data will actually be passed to that communic-
ation item.

These statements are converted to an automaton with states for each of the statements. The state
of the automaton determines what should be sent. Each communication item has a single data auto-
maton, where the states are defined as S = {e mp t y }∪P , with P being defined as the set of all provide
statements for that communication item. The labels of these states are generated randomly. In each
state, edges to all other states are added, where the transition guard of each edge is defined as the
condition specified in the provide-statement.

Each time the controller executes the control loop, it attempts to execute all data-related trans-
itions that are enabled in a random order, hence internally determining what data currently should
be sent to the communication item. A sample of such a data automaton can be found in figure 4.14.

E mp t y

D a t a 1 D a t a 2

Figure 4.14: Sample data plant for communication items.

30 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.4. TYPE SYSTEM

4.4 Type System

The language has a few basic data types: booleans, integers, strings and doubles. It also defines the
special data type none, which represents communication that accepts or receives no data. The data
types can be used in various places. For example, data can be provisioned to a communication item
or data can be used in a multiplication. Not all of these data types are compatible with each other, as
it should not be possible to multiply a string with a number for example. To solve this, the language
defines its own type system. Each expression results in an inferred type, and the resulting type is
checked with the expected type.

4.4.1 Inference

The inference process of the type system determines a data type for a given expression. It does not yet
validate the type, this happens in a separate validator. The formal definition of the type system and
the inference rules are outlined in table 4.1.

One of the special concepts of the language, is the access model. The access model provides users
with the possibility to reference states, variables, enum values or object properties. The type system
first checks what is actually referenced. If the referenced item is a state, the resulting type will always
be a boolean (that represents whether the automaton is in that state). If the reference was to a variable,
the type of the referenced variable will be used. For an enum value, the enum that defines the value
is used as the type and lastly, if the reference was to a property of an object, the type of the property
definition is used.

If the system is unable to infer a type for an expression, it will return the unknown data type. This
can happen when the user has referenced a property or variable that does not exist. Although the DSL
code will not compile (because of a broken reference), validation checks are still executed. And, as
there is no reference to a variable, it can not infer the type.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 31

4.4. TYPE SYSTEM CHAPTER 4. LANGUAGE

Γ ⊢ true : bool Γ ⊢ false : bool

Γ ⊢ literal int : int Γ ⊢ literal double : double

Γ ⊢ literal string : string
Γ ⊢ E1 : bool Γ ⊢ E2 : bool

Γ ⊢ E1 and E2 : bool

Γ ⊢ E1 : bool Γ ⊢ E2 : bool
Γ ⊢ E1 or E2 : bool

Γ ⊢ E1 : bool Γ ⊢ E2 : bool
Γ ⊢ E1 => E2 : bool

Γ ⊢ E1 = E2 : bool Γ ⊢ E1 != E2 : bool

E1 : T ∈ {int, double} E2 : T ∈ {int, double}
Γ ⊢ E1 > E2 : bool

E1 : T ∈ {int, double} E2 : T ∈ {int, double}
Γ ⊢ E1 < E2 : bool

E1 : T ∈ {int, double} E2 : T ∈ {int, double}
Γ ⊢ E1 >= E2 : bool

E1 : T ∈ {int, double} E2 : T ∈ {int, double}
Γ ⊢ E1 <= E2 : bool

Γ ⊢ E : bool
Γ ⊢ !E : bool

Γ ⊢ E : int
Γ ⊢ -E : int

Γ ⊢ E : double
Γ ⊢ -E : double

E1 : T ∈ {int, double} E2 : T ∈ {int, double}
Γ ⊢ E1 / E2 : double

Γ ⊢ E1 : double E2 : T ∈ {int, double}
Γ ⊢ E1 + E2 : double

E1 : T ∈ {int, double} Γ ⊢ E2 : double
Γ ⊢ E1 + E2 : double

Γ ⊢ E1 : double E2 : T ∈ {int, double}
Γ ⊢ E1 - E2 : double

E1 : T ∈ {int, double} Γ ⊢ E2 : double
Γ ⊢ E1 - E2 : double

Γ ⊢ E1 : double E2 : T ∈ {int, double}
Γ ⊢ E1 * E2 : double

E1 : T ∈ {int, double} Γ ⊢ E2 : double
Γ ⊢ E1 * E2 : double

Γ ⊢ E1 : int Γ ⊢ E2 : int
Γ ⊢ E1 + E2 : int

Γ ⊢ E1 : int Γ ⊢ E2 : int
Γ ⊢ E1 - E2 : int

Γ ⊢ E1 : int Γ ⊢ E2 : int
Γ ⊢ E1 * E2 : int

Γ ⊢ state reference : bool

variable : T ∈ Γ
Γ ⊢ variable : T

property : T ∈ Γ
Γ ⊢ property : T

Γ ⊢ enum : enum

Table 4.1: Language type system inference rules.

32 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.5. VALIDATION

4.5 Validation

Next to syntax validation, there are more constraints which are checked to ensure correctness of the
model. A violation of such a constraint will result in an error that is presented to the user, and it will
prevent the generator from generating any code.

4.5.1 Data provisioning check

Every communication item that is defined in the model can be supplied with data by using provide
statements. But, in some cases this is not allowed. This check validates that no data is passed to a
message that is coming out of the controller, and therefore is an uncontrollable event.

4.5.2 Result type check

Components can update their state based on uncontrollable behaviour and events that are received
from messages, services or actions. For messages, this means that user can listen for response events.
In the case of services, there is also the possibility to watch for a response, and actions have the option
to transition upon feedback or cancellation. This check validates whether there is a result transition
that watches for a disallowed event.

4.5.3 Integer range required check

Some variables are required within the supervisory controller, and some are not (more information
can be found in the section about the generators for supervisory control theory 5.2). In the supervisory
controller, integer variables require users to specify a domain for the integer. In this validation rule,
it is checked whether a variable is required within the supervisory controller and if it has no integer
range present, it will throw an error.

4.5.4 Interface link required check

Communication items have the option to link an interface, if they are using a custom data type. In
this validation rule, the data type of every communication type is checked, and if it is found to be
custom, it is checked whether it has an associated interface, which is used to determine the imports,
parameters and linked libraries.

4.5.5 No assignment on messages to node check

If a result transition is triggered upon sending a message to a node (controllable behaviour) it is not
allowed to update any variables, because no data is coming in. This rule checks each message to see
the direction and validates whether there are any assignments.

4.5.6 No assignment outside scope check

In CIF, the concept of global read and local write is used [37]. This means that all automatons can
read variables from another automaton, but not write to it. They can only write to variables that are
declared within the scope of their own automaton. As some variables that are declared in the model
are also specified in plants with supervisory control theory, it means that the language should also
adhere to this concept. This validation rule checks whether this is the case and will present the user
with an error if not.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 33

4.5. VALIDATION CHAPTER 4. LANGUAGE

4.5.7 Single component behaviour check

The syntax of the DSL allows users to have the definition of communication and behaviour of a com-
ponent in no given fixed order. This also means that the syntax allows the specification of multiple
component behaviours. There can only be a single behaviour definition per component, which is
checked using this validation rule.

4.5.8 Single default enum case check

An enum should have exactly a single default case, which is used as a fallback. This rule checks
whether the user has specified a default transformation rule.

4.5.9 Single initial state check

Similar to the enum validation rule, there is also a check which ensures that every automaton in the
language has an initial state. The language only supports automata that are in one state at a time, and
therefore there should always be a single initial state.

4.5.10 Marked state check

To ensure that a supervisor can be synthesized, all of the reachable states (starting from the initial
state) should be able to reach a marked state. This is checked, and if this is not the case, the user will
be presented with an error.

4.5.11 Type check

To check whether users have specified the correct types for assignments, data provisioning and guards,
the type system is used. The types of different expressions are inferred using the type system, and
then compared to the expected types. If something is wrong, an error annotation is added on the
corresponding line, together with more information about the inferred data type and the expected
data type. For boolean operations (conjunctions, disjunctions and negations) this means that both
the left-hand-side, as well as the right-hand-side, should be of type boolean. For numeric operations,
the values on both sides should either be of type double or integer. Next to that, it is validated that
equations have the same data type.

There are also some places that require expressions to be of a specific type. For example, transition
guards and data provisioning conditions should both be of type boolean. Also, the provided data to a
communication item should be of the type that was specified in the definition. This also holds when
the provide statements define an object value, then the value of a field should have the data type that
was defined in the custom data type declaration. Both initial values for, as well as assignments to,
variables are checked to determine whether they have correct types.

Apart from the type validation, there is also another part to type checks. Users can provide com-
munication items with object values. If they provide the object with a property that is not defined on
the custom data type, the reference can not be resolved. This will also result in an error which is visible
to the user.

4.5.12 Uniqueness check

Some entities require unique names, to ensure that they can be identified correctly. There is a valid-
ation rule for unique state, communication, enum value, data type and topic names. Duplicate topic
names (in separate components) do not produce an error, but rather a warning which notifies the user
of unexpected consequences.

34 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.6. ASSUMPTIONS

4.5.13 Enum value name state overlap

Besides the fact that enum value names must be unique within the robot, the names of these enum
value names also can not overlap with the name of any automata state in the robot. This is done
because CIF will consider the enum value as a state (and therefore have different semantics).

4.5.14 Variable data type check

There are limitations to the types that a variable can be. A variable can never be an object or an array.
Furthermore, if a variable is required in the controller synthesis process, it can not have the type of a
double or a string.

4.6 Assumptions

In order for the supervisory controller to work within the robotic middleware, there are some assump-
tions on the communication between nodes in the middleware. If these assumptions do not hold, the
controller could end up in an unexpected state.

The first assumption is that there is no communication between nodes that influences the state
of a component and that the controller is unaware of. As this could internally change the state of
a component, users might observe unexpected behaviour. This could be solved by either altering
the developed model for the components to include the additional communication, or by altering
the nodes to add additional communication to notify the supervisory controller of the state changes.
This additional communication should be included in the DSL model as well. An example of this
disallowed behaviour is shown in figure 4.15, where the controller is aware of communication via
topic A, but not topic B.

The other assumption is that no two components publish a message to the same topic. If two com-
ponents were to do so, it means that the controller is unaware from which component the message
came, therefore not knowing which component’s state should be updated. This case is visualized in
figure 4.16, where both nodes publish to the same topic, topic A. Although the language will provide
the user with a warning if two components publish to the same topic, this is not water tight, as there
is no one-to-one mapping from a component to a node. There are two ways to solve this. First, if the
language user has the option to alter the topic name of a message, it could change them to a unique
value. If not, the nodes which the components represent could be started with remappings. Remap-
pings ensure that all communication from and to a node for a given topic, is remapped to a different
topic. Publishers will publish to that new topic name and subscribers will listen to the new topic name.

N o d e 1 N o d e 2

To p i c A

To p i c B

Supervisory Controller

Figure 4.15: Visualization of assumption that nodes do not communicate with each other such that it
could change the state of either component without the controller knowing.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 35

4.7. SUPERVISORY LAYER CHAPTER 4. LANGUAGE

N o d e 1 N o d e 2

To p i c

Supervisory Controller

Figure 4.16: Visualization of assumption that no two nodes publish to the same topic.

4.7 Supervisory Layer

The focus of this thesis has been on the supervisory controller, where a controller is synthesized based
on a set of requirements. However, it is also possible to look at it from a different perspective: a su-
pervisory layer. By doing so, the supervisor layer can be connected to an existing controller and check
whether the behaviour of the controller is allowed according to the requirements. This can be ex-
tremely helpful for cases where a controller already exists, but the existing solution has no formal
guarantees on its behaviour. The supervisory layer can then block all communication from that ex-
isting controller that is not allowed to occur according to the requirements that were specified.

4.7.1 Overview

The idea is that all communication from the existing controller to the middleware is supervised by a
supervisory layer, in the form of a node in the middleware. But, instead of starting the existing con-
troller normally, it will start the controller with remapped topic and service names, which allows the
supervisory layer to control the communication from and to the controller. The original names are
defined in the model of the DSL, and remapped to an unique name. Then, the supervisor node sub-
scribes to these unique names. All controllable events (publishing of messages, requests to services
or sending goals to actions) are checked against the current state of the supervisor, and if they are
allowed based on the set of the requirements, the message is passed to the original topic, the request
to a service is forwarded to the original server or the goal is sent to the original action server.

Instead of updating the state of the supervisory controller in the control loop, and trying to execute
all possible controllable communication, the supervisor waits for commands from the existing con-
troller. For services and actions this means that the supervisor creates a proxy server, which forwards
all data, if allowed in the current state. The supervisor also subscribes to all uncontrollable events.
Note that uncontrollable events are also remapped (and therefore the controller is not instantly made
aware of them), because it allows the supervisor to update its internal state before the existing control-
ler can. If an uncontrollable event would reach the existing controller before the supervisor, it might
lead to unexpected behaviour as it might allow or disallow controllable communication incorrectly.
After communication has taken place (both incoming or outgoing), the robot attempts to execute all
tau transitions.

It is possible that the controller executes behaviour that is not allowed. In that case, the super-
visor informs the controller by means of a message. A message is published to the topic, containing
information about the disallowed behaviour of the robot.

An overview of the structure of the communication is shown in figure 4.17. In this overview, the
communication between the components is relatively simple using messages.

36 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 4. LANGUAGE 4.7. SUPERVISORY LAYER

Controller

Supervisor

Component
A

Component
B

/message_a_remapped/message_b_remapped

/message_a /message_b

Figure 4.17: Overview of the structure of the supervisory layer. The dashed rectangle represents what
is generated from the DSL.

4.7.2 Differences to supervisory controller approach

Although there is a lot of overlap between the two approaches, there are some important differences.
The main one, is that the supervisor will only start communication with the middleware based on
what the controller attempts. It supervises the communication. As a result, the concept of provide
statements is not relevant to the supervisor, because it will only pass on data that is coming from the
controller or a component in the middleware.

Another implication of this, is that there is no timer that executes transitions in the control loop.
These transitions are executed when communication is started from the controller. All silent trans-
itions that are enabled are executed after communication from the controller to the supervisor has
occurred.

4.7.3 Limitations

There are some limitations to this approach. First, messages, services and actions can not have du-
plicate topic names. For supervisory controllers, it was possible to have multiple messages in the
model that map to the same topic name, as long as they are coming from the same component. How-
ever, this is not allowed in the supervisor layer approach as the supervisor can not distinguish which
message was actually invoked.

Furthermore, it was found that the remapping functionality of ROS does not work for actions,
meaning that the controller will send goals to the actual action server. The supervisor still generates a
proxy server with a unique name, so users have the option to connect to the supervised action server
manually.

Lastly, the supervisor does not initiate communication. Some robots (like the Turtlebot) are con-
trolled by sending a command to the robotic middleware using a message that determines the linear
and angular speed. If the supervisor layer disallows the passing of this message because an emergency
stop was pressed, for example, the robot will not directly stop as it has not received a message that sets
the linear and angular speed to 0. Although some robots have a fallback which stops the robot when
no new speed has been received for a while, there are also other options to solve this. One option is
to create a component which moves the robot at a certain speed, but for a limited amount of time.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 37

4.8. WORKBENCH CHAPTER 4. LANGUAGE

4.8 Workbench

The language workbench that was used, is Eclipse XText. XText is a framework that can be used for the
development of domain-specific languages, containing different tools that streamline the language
development process. It will generate a parser, syntax highlighting and auto completion [14]. All of
this is generated automatically based on an XText grammar. The language itself still specifies scopes,
validation rules and generators. One of the main reasons that XText was used over MPS, is the support
for multiple model to text generators. From a single model, multiple files can be generated, contrary
to how JetBrains MPS works.

Next to XText, the language also uses XTend 1, an Eclipse project for modern Java expressions,
allowing easy templating for model to text transformations. XTend code is transformed into Java code,
that can run on the Java JVM just as any regular Java program.

Often, the use of a specific language workbench comes with a deep integration into an integrated
development environment (IDE) [7]. This has advantages in term of user experience, but means that
the user of the language will often locked into that specific IDE. To solve this, the language server
protocol has been developed by Microsoft [32]. Because XText generates support for the Language
Server Protocol automatically, it means that language users can use their favorite editor, as long as it
supports the protocol and an extension has been built to integrate the support.

4.8.1 Supported editors

Although the language was built with Xtext, usage of the DSL is absolutely not bound to Eclipse. There
is an Eclipse-plugin, which language users can install. But, XText also comes with out-of-the-box
support for the Language Server Protocol, which allows other editors to integrate with the DSL as
well. In this project, a Visual Studio Code extension was built as well, which starts the language server
using Java. This means that Java must be present on the users system for the user to run the tool. Both
editors support syntax highlighting, cross-referencing, auto completion, syntax checking and code
generation for the DSL.

1https://www.eclipse.org/xtend/

38 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Chapter 5

Generators

5.1 Introduction

Several artifacts are generated from the DSL. These artifacts are generated in multiple steps. First,
using a model-to-text transformation, code is generated for supervisory control theory, specifically
for the CIF-tool. Then, supervisory controller synthesis is applied using that tool. After synthesis is
applied, the code generator for the supervisory controller can be executed. This resulting controller
code is then used by an additional model-to-text generator from the DSL, that creates a ROS1 and
ROS2 node with bindings to the supervisory controller. Figure 5.1 shows the transformation chain
from the DSL code to a ROS node. All rectangles represent an artifact, whereas ovals represent gen-
erators. The arrows stand for the data flow between artifacts and generators, where the source of the
arrow represents the output of an artifact and the sink defines that artifact as an input to the generator.
Generators with double lines stand for generators from the supervisory controller tool.

This chapter describes the generated concepts and code from the model, both for supervisory con-
trol theory, as well as the ROS-nodes and how they integrate with each other. Furthermore, an explicit
mapping is defined between the concepts of the language and the concepts of ROS and supervisory
control theory.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 39

5.2. SUPERVISORY CONTROL THEORY CHAPTER 5. GENERATORS

Model
in DSL

CIF-code Controller

Controller
Code

ROS-node

Synthesis

ROS-generator

CIF-generator

C-generator

Figure 5.1: Transformation chain overview of artifact generation based on DSL. Rectangles represent
artifacts, ovals represent generators. Generators with double lines stand for generators from the su-
pervisory controller tool. Arrows transfer the output (source) to an input (sink).

5.2 Supervisory Control Theory

The heart of the controller is built using supervisory control theory (SCT). SCT is being used to apply
event-based controller synthesis based on a set of plants and a set of requirements. The code is con-
verted to C-code using an external tool, which is embedded into a ROS-node. Although within this
thesis CIF was chosen, any tool that supports supervisory controller synthesis could have been used,
as equal concepts apply. This chapter highlights the generated plants and requirements based on the
DSL model, and shows the workings of the technical integration between CIF and the DSL. Further-
more, some modifications had to be made to the CIF code generator, which have been offered to the
open source project.

5.2.1 Plants

Several plants are constructed based on the DSL model. This section describes all of the generated
plants, their states, transitions and variables.

Communication

All communication items are represented by plants. Each plant defines controllable events, uncon-
trollable events, inputs, states and edges. The controllable events are used to send or start communic-
ation from the controller, whereas the uncontrollable events represent events that notify the controller
of incoming data. If the data is required within a plant, inputs store this incoming data. Depending
on the type of communication, states represent the phase that the communication currently is in.

Plants that support incoming data from a communication item, store this data in inputs. For basic
data types, this results in a single input property. However, for complex objects, an input is created
for each field. An algorithm (described in algorithm 1) finds all properties using a recursive search,
and checks whether the property should be present in a plant, and if so, defines an input. A property

40 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.2. SUPERVISORY CONTROL THEORY

should be present if its value is used in a guard or requirement. This can be directly, or indirectly,
where the value is first stored in a variable of a plant. Note, if an input is defined within a plant, the
field itself can only be of a simple data type (enums, integers with a range or booleans). So, arrays are
not supported for example. For more information about this, consider the section on validation rules
4.5.

input : A property p r o p e r t y (with type and name) and a prefix p r e f i x that is prepended
to the inputs.

output: A set of inputs that are required within CIF for a given data type.
R ←;
if property.type is object then

for child in property.type do
R ←R ∪C I F I np u t s (c hi l d , p r e f i x + _+ c hi l d .na me)

end
return R

else
if property required in some plant then

return {prefix}
else

return ;
end

end
Algorithm 1: Algorithm to define plant input properties for a given data type.

The plants that correspond to messages are relatively simple. Each message is defined within the
scope of a component, and depending on the direction of the message with respect to the compon-
ent, the definition changes. For incoming messages to a component, the plant has a controllable edge,
which can occur in the single state of the plant. However, if the message is going out of the compon-
ent, there is a single uncontrollable edge within the plant. The name of the plant is the name of the
message, prefixed with message_.

If the data of this message is required within a guard or requirement, the plant defines inputs that
store the incoming data so that it can be used in guards or assignments. An example of a plant for a
message is shown in listing 5.1, represented as CIF-code.

plant message_sample :
u n c o n t r o l l a b l e u_response ;
input bool i_response_object_value_one ;
input bool i_response_object_value_two ;

l o c a t i o n :
i n i t i a l ; marked ;
edge u_response ;

end

Listing 5.1: CIF code for a message plant.

The plant of a service looks a bit more complex than that of a message. In ROS2, services are asyn-
chronous, whereas in ROS1, they are synchronous. In our plant, they are modelled equally: asyn-
chronous. The plant distinguishes four different states: idle, waiting for response, ready and error. A
service plant is in the (initial) idle state when it is waiting to be executed. In this state, there is an edge
that allows the invocation of a service, which takes the plant to the next state: waiting for response.
When an error occurs, an uncontrollable event will take the automaton to the error state. If a response
was received, the plant is taken to the ready state. Similar to how messages work, the result values are
stored in an input field if they are required in further guards, requirements of assignments. An ex-
ample of a service plant is shown in listing 5.2, again represented as CIF-code. The name of the plant
is the name of the service, prefixed with service_.

plant service_sample :

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 41

5.2. SUPERVISORY CONTROL THEORY CHAPTER 5. GENERATORS

c o n t r o l l a b l e c _ t r i g g e r , c _ r e s e t ;
u n c o n t r o l l a b l e u_response , u_error ;

input bool i_response_object_value_one ;
input bool i_response_object_value_two ;

l o c a t i o n i d l e :
i n i t i a l ; marked ;
edge c _ t r i g g e r goto wait_for_response ;

l o c a t i o n wait_for_response :
edge u_response goto ready ;
edge u_error goto e r r o r ;

l o c a t i o n ready :
edge c _ r e s e t goto i d l e ;

l o c a t i o n e r r o r :
edge c _ r e s e t goto i d l e ;

end

Listing 5.2: CIF code for a service plant.

For ROS actions, plants also consist of four states: idle, executing, ready and error. Again, idle
represents a state where the action can be started using a trigger edge, and if the action is executed, the
plant transitions to an executing state. From here, both uncontrollable as well as controllable events
can occur. First, the action server can provide feedback about the execution using the uncontrollable
feedback event. This keeps the plant in the same state, whereas the response event will transition
the automaton to the ready state. In case something goes wrong (for example, an action server is
unavailable), an uncontrollable error event occurs, transitioning the plant into that corresponding
state. The name of the plant is the name of the action, prefixed with action_.

Both responses as well as feedback sent by the action are stored in separate input fields of the
plant. An example of such an action plant can be found in listing 5.3.

plant action_sample :
c o n t r o l l a b l e c _ t r i g g e r , c_reset , c_cancel ;
u n c o n t r o l l a b l e u_feedback , u_response , u_error ;

input i n t [0 . . 2 0] i_feedback_object_value_one ;
input i n t [0 . . 2 0] i_feedback_object_value_two ;

input bool i_response_object_value_one ;
input bool i_response_object_value_two ;

l o c a t i o n i d l e :
i n i t i a l ; marked ;
edge c _ t r i g g e r goto executing ;

l o c a t i o n executing :
edge u_feedback ;
edge u_response goto ready ;
edge u_error goto e r r o r ;
edge c_cancel goto i d l e ;

l o c a t i o n ready :
edge c _ r e s e t goto i d l e ;

l o c a t i o n e r r o r :
edge c _ r e s e t goto i d l e ;

end

Listing 5.3: CIF code for an action plant.

Behaviour

If a component has associated behaviour, this behaviour is transformed into a plant as well, where the
name of the plant is the name of the component prefixed with component_. The behaviour within the
DSL is defined as an automaton with states and events. There are two possible transitions between
the states: result transitions and tau transitions.

42 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.2. SUPERVISORY CONTROL THEORY

One TwoOne Two

b

a

a

b

Figure 5.2: Example of a case with two plants where an uncontrollable event can not occur in regular
supervisory control theory.

For result transitions, the represented edge in the plant depends on the type of result. Result types
depend on the type of communication, and can have the following values: request, response, feed-
back, error or cancel. The edges originate from the plant of the communication item, and synchronize
(meaning that the transition must be enabled in all plants). These correspond to the plant events as
described in table 5.1.

Result Transition Type Plant event
request <communication plant>.c_trigger
response <communication plant>.u_response
feedback <communication plant>.u_feedback
error <communication plant>.u_error
cancel <communication plant>.c_cancel

Table 5.1: Mapping between result transition types and the corresponding plant event.

If a plant includes an edge within a specific state, it means that the plant must be in that state
in order for the edge to be able to execute. If this is not the case, the transition can not take place.
This can result in unwanted behaviour, as the robotic middleware can always provide the supervisory
controller engine with data at any moment. If a component defines a transition that occurs upon a
message from a specified topic, but this transition is only defined in a single state, and the plant is not
in that state it means that none of the plants can perform the transition, meaning that the system is
unaware of the incoming data. An example of such a scenario, with two uncontrollable events a and
b , is shown in figure 5.2. In the left plant, event a is enabled in state one, but in the right plant it is only
enabled in state two. The same holds for event b, but this event is only enabled in state two in the left
plant, and in state one in the right plant. This would mean that the event can not occur.

The solution to this problem can be split into two parts. First, it is important that result transitions
have no guard. If they were to have a guard, and the guard was not enabled, it would mean that none
of the plants can be notified of new data.

The other part of the solution is that each state within the plant of component behaviour should
be extended with additional edges. These edges have no state changes and no guard, but ensure that
these events can always occur, no matter the state of the plant. For each state of a (behaviour) plant,
all communication items in the robot are scanned, and all the events from table 5.1 are added if they
were not already present. It should be made sure that no duplicates exist, because otherwise the robot
might end up in an unexpected state, as the same edge defines different output states. An example is
shown in figure 5.3.

Next to result transitions, component behaviour automata can also make use of tau transitions.
The tau transitions specify a guard and a possible state change. Although CIF supports tau transitions,
they can not be used in supervisory controller synthesis [36]. To solve this, the SCT generator generates
random strings for controllable events. These controllable events are defined on the plant, and at
every iteration the controller will try to execute them, if enabled.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 43

5.2. SUPERVISORY CONTROL THEORY CHAPTER 5. GENERATORS

One TwoOne Two

b

a

a

b

a bb a

Figure 5.3: Example of a case with two plants where an uncontrollable event can occur, because of
added self-loops.

Data

Some communication items require data to be passed along. To do so, the provide statement was
introduced. If a communication item has one or more associated provide statements, a plant will be
generated that represents the data that is passed. This plant always has a none state, that states that
no data can be passed at the time. Then, for each provide statement a new location is added. The
name of this location is randomly generated. Then, each of these generated locations contains edges
to all other generated locations, along with the guard that was specified on the corresponding provide
statement. There is also an edge that goes back to the none location, whose event is only executed
when none of the guards hold anymore.

An example of a data plant is listed in listing 5.4, represented in CIF-code. Note, that in this ex-
ample the names of the edges and locations are not randomly generated. This is done for readability.

plant data_sample :
c o n t r o l l a b l e c_data1 , c_data2 , c_none ;

l o c a t i o n none :
i n i t i a l ; marked ;
edge c_none when not (ExampleComponent . s t a t e 1) and not (ExampleComponent . s t a t e 2) goto none

;
edge c_data1 when ExampleComponent . s t a t e 1 goto data1 ;
edge c_data2 when ExampleComponent . s t a t e 2 goto data2 ;

l o c a t i o n data1 :
marked ;
edge c_none when not (ExampleComponent . s t a t e 1) and not (ExampleComponent . s t a t e 2) goto none

;
edge c_data1 when ExampleComponent . s t a t e 1 goto data1 ;
edge c_data2 when ExampleComponent . s t a t e 2 goto data2 ;

l o c a t i o n data2 :
marked ;
edge c_none when not (ExampleComponent . s t a t e 1) and not (ExampleComponent . s t a t e 2) goto none

;
edge c_data1 when ExampleComponent . s t a t e 1 goto data1 ;
edge c_data2 when ExampleComponent . s t a t e 2 goto data2 ;

end

Listing 5.4: CIF code for a data plant.

5.2.2 Requirements

The transformation from requirements in the DSL to supervisory control theory is relatively straight
forward. In supervisory control theory, a requirement is defined as a (controllable) event and a condi-
tion which is captured as a boolean expression. The requirement can either state that the event needs
this condition to hold in order for the event to be enabled, or that the condition disables the event
if it holds. The DSL allows users to specify one or more communication items that either require an
expression to hold in order to be enabled, or to specify an expression that disables the execution of
one or more communication items. If multiple communication items are specified within a single re-

44 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.2. SUPERVISORY CONTROL THEORY

quirement, a single supervisory control theory requirement is generated for each of them. The event
that the requirement should hold for, is in this case the trigger edge of a communication item plant.

Two generated CIF requirements, that both represent the same condition, are attached in listing
5.5.

requirement message_sample . c _ t r i g g e r needs Component . s t a t e A ;
requirement not Component . s t a t e A d i s a b l e s message_sample . c _ t r i g g e r ;

Listing 5.5: CIF code for two equal requirements.

Cancel

For actions, it is a bit different. As actions are meant for longer-running tasks, it is possible that an
action can be started based on the requirements, but during the execution of the action the state of
the controller changes, meaning that the requirement does not hold anymore. As actions can be can-
celled using a controllable event, some actions require an additional requirement. If an action has one
or more associated requirements, an extra requirement is generated, but for the controllable cancel
event. The expression of this requirement can be described as the case when any of the requirements
to start the action does not hold anymore.

This expression is a disjunction of different expressions, and can be constructed as follows. Given
an action, all requirements associated to this action are collected. For each of these requirements,
a term is added to this disjunction. If the requirement needs an expression to hold, the negation of
the expression is added to the disjunction. If the expression of a requirement disables an action, the
expression itself is added to the disjunction. Then, if the disjunction is not empty, the requirement to
cancel the action is added to the generated code. The algorithm that computes this boolean expres-
sion is described in algorithm 2.

input : The requirements R of an action
output: A boolean expression that represents when an action should be cancelled.
O← True
for r ∈ R do

if r is needs requirement then

else
O←O ∨ (¬ r.condition)

end
O←O ∨ r.condition

end
return O

Algorithm 2: Algorithm to compute the boolean expression for the cancel requirement of an action.

5.2.3 Enums

The language allows the definition of enums, which can help the controller to process complex data,
without suffering from an extreme growth of the amount of possible states within the controller (which
slows down the synthesis process). The conversion of a value to the corresponding enum value hap-
pens within the ROS-node. Therefore, the supervisory controller synthesis process only needs the
names the possible enum values. Although CIF supports having multiple enums, the values of these
enums can not have overlapping names. Currently, it means that this limitation also holds for the
DSL. An example of such a definition can be found in listing 5.6.

enum sample_enum = one , two , three ;

Listing 5.6: CIF code for an enum.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 45

5.2. SUPERVISORY CONTROL THEORY CHAPTER 5. GENERATORS

Language concept Supervisory Control Theory concept Cardinality
Message Plant One-to-one
Service Plant One-to-one
Action Plant One-to-one
Enum Enum One-to-one
Requirement Requirement One-to-many
Provide statement Plant Many-to-one
Component Behaviour Plant One-to-one

Table 5.2: Mapping between language concepts and concepts from supervisory control theory.

5.2.4 Data elimination

To prevent state space explosion and support more complex data, the SCT-generator eliminates any
inputs and variables that are not relevant to the supervisor. The first step is that it checks whether a
variable is required for the supervisory controller. It does so by checking whether a variable is used in
a:

• Transition guard

• Data condition

• Requirement

If it is used in one or more of these items, then the variable will be defined within the plant. In
the case that is found that a variable is not required in the controller, it will be defined as a variable
within the ROS-node. In this case, the variable could be used to pass incoming data to anther node,
for example, and therefore is not relevant to the controller.

Next to variables, data elimination is also used at plant inputs. Inputs are used to handle incoming
data from the robotic middleware. There can be more than one input for a communication item, if
the data is in the form of a complex object type (then the inputs are generated as in algorithm 1). The
elimination check determines whether an input is required in the supervisory controller by looking at
all assignments to variables upon incoming data, and checking whether that variable is referenced in
any of them.

5.2.5 Mapping

The language uses several concepts from supervisory control theory. Most of the concepts are a one
to one mapping. Communication items (messages, services and actions) are all directly converted to
a SCT-plant for example. The same holds for a requirement and component behaviour. For provide
statements, it is a bit different. A group of provide statements for a single communication item is
mapped to a single CIF-plant. An overview can be found in table 5.2.

5.2.6 CIF

Within this thesis, CIF is used to apply controller synthesis. The concepts w.r.t. supervisory control
theory in CIF are the same as the concepts from the theory itself, meaning that any other tool could
be used that fulfills the following requirements:

• The tool supports supervisory control theory (plants and requirements)

• The tool supports supervisory controller synthesis

• The tool supports code generation

46 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.2. SUPERVISORY CONTROL THEORY

DSL CIF-code Controller
Controller

w/o

excl. inv.

C-code

CIF-generator Event-based synthesis CIF to CIF CIF C-generator

Figure 5.4: Overview of the technical integration with CIF.

Technical integration

There are multiple options that can be used to integrate and communicate with CIF from external
tools. The first is option is to use the command line interface of CIF. Although this seems like the most
easy option to integrate with CIF, this comes with some downsides:

• The user should have CIF installed on their computer.

• The DSL should be aware of the install location of CIF.

• Although it is a command line tool, Eclipse will still be started in the background, adding a lot
of overhead.

• Different versions of CIF may break the DSL generator.

That is why the DSL in this thesis uses a different approach. CIF is developed using Java, and so is
the DSL. Java allows reusing code between different applications in the form of JARs (Java Archives).
During the build process of the DSL (which uses Gradle), an additional build command is executed
that downloads Eclipse Escet from Git (at a specific branch or tag) and builds all the required projects
from the Eclipse Escet bundle (cif, common, thirdparty and setext). Because Eclipse Escet is bundled
using Maven, the build process is invoked from Gradle but executed with a simple command. The
build of the Escet project results in a set of JARs, which are added as dependencies to the language.
This allows the DSL to directly invoke and use Java classes from CIF. By embedding the CIF toolset
like this, tests can ensure that the CIF version works as expected and will not change unexpectedly.
Furthermore, the user does not need to have CIF (and Eclipse) installed.

After the generator has generated a CIF-file, the CIF classes will be invoked. CIF defines several
apps, that are responsible for operations executed on an input CIF-file. The language uses these apps
as if they were ran from the command line, by providing the arguments as an array of strings. The full
process is visualized in figure 5.4.

The process uses three tools that result in code for the controller. The first step is to apply event-
based controller synthesis, after which the resulting file is transformed using a CIF to CIF transforma-
tion, which eliminates the state/event exclusion invariants (required for code generation). Then, the
code generator is executed.

One of the problems of executing the tools like this, is that CIF writes output to the console and
exits the process after it has finished. To prevent this, output is redirected and captured to a different
output stream, and the exit code is saved to a variable, rather than the program being stopped.

Contributions

CIF supports code generation to multiple programming language, including C. Although the gener-
ated code will be used within C++, the C code can be compiled such that it can be used within C++.
However, the interface of this code does not expose all the required methods and functionalities that
the controller would need. As changing generated code comes with a risk of breaking code with newer
versions of the language, the code generator interface changes have been implemented in CIF itself,
based on the Eclipse Escet 1 source. These changes are made based on a fork of the source code, and
were offered to the maintainers of the Eclipse Escet project.

1https://gitlab.eclipse.org/eclipse/escet

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 47

5.3. ROS CHAPTER 5. GENERATORS

Figure 5.5: Additional option to the C-generator of CIF that determines whether uncontrollable events
should be performed automatically.

The first change introduces an option in the code generation process. One of the functions that
the C-generator exposes, is a step function that attempts to execute all transitions that are currently
possible. If a transition can be taken, the loop is stopped and all transitions are checked from the
beginning. In this code generator, both controllable as well as uncontrollable events are executed.
This means that an uncontrollable event blocks the execution of any following event, as the order in
which these are executed is deterministic and fixed.

To prevent this, an additional option was introduced, which determines whether uncontrollable
events should be performed automatically. The option can be passed via the graphical user interface
(as in figure 5.5), or via the command line. For the controller generation process, the value of this
option is false.

The other problem to the C-generator of CIF, was that it is not possible to execute transitions in-
dividually. For example, when data is received from a communication item, the corresponding trans-
ition should be executed. However, the generated controller code from CIF does not expose these
functions, as they are marked as being static. In C, this means that they are scoped to the current file,
and are not intended for external use. Although the simple solution would be to remove the static
keyword, the actual solution is a bit different. The names of the functions that execute individual
transitions are not named by their transition, but by a number. This number is internal to the CIF
code generator, and is not exposed to the outside. Therefore, an additional function was added to the
generated code. This function takes the name of a CIF transition (which comes from a C-enum that
is exposed), and (attempts to) invoke the corresponding transition function, and returns the result.

5.3 ROS

One of the artifacts of the DSL is a ROS-node for a controller. The language has generators for both
versions of ROS: ROS1 and ROS2. This node integrates with the CIF-engine and is responsible for all
communication with the robotic middleware. The node defines fields for all communication and at-
taches listeners for the relevant communication. As soon as the node is started, a timer starts that will
try to perform all transitions that the supervisory controller engine allows. When a transition can be
executed, the relevant ROS communication will be triggered. The node also listens to events that are
coming from the robotic middleware and performs the corresponding (uncontrollable) supervisory
controller transitions which will update the states of all plants.

The nodes for ROS1 and ROS2 are both using C++ code, which allows the re-use of a lot of logic
between the generators for the two versions. There are some differences in the ROS-interface and
build configuration. These files are generated using platform-specific code.

5.3.1 Supervisory Controller

The most important part of the ROS-node is the integration with the synthesized supervisory con-
troller. After the supervisory controller has been synthesised with a tool that supports Supervisory
Control Theory as described in section 5.2, the supervisor can be integrated into the controller node.
In this case, CIF is used as the tool to perform this synthesis. Although the CIF-engine generates C-
code and not C++-code, the files can still be compiled and linked to the ROS-node via CMake 2. The

2https://cmake.org

48 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.3. ROS

following section describes the technical connection to CIF.
The integration between the supervisory controller and the ROS-node is as follows. At each exe-

cution of the control loop (which is described more detail in section 5.3.1), the supervisory controller
attempts to:

• Execute all possible controllable data transitions

• Execute the first controllable communication or tau transition that is enabled

Upon incoming data from the middleware, the supervisory controller will:

• Update the plant inputs with the correct data

• Execute the corresponding uncontrollable event

Initialization

The CIF-engine needs to be initialized in two ways. First, the generated C-code from CIF exposes the
AssignInputVariables function, which is implemented in the ROS-node. Each of the inputs is connec-
ted to a variable that should have an initial value. The inputs are used to pass data from the middle-
ware to the engine. The actual initial values are not relevant, as inputs are only used when data is
received from the platform, and therefore immediately overwritten. Nevertheless, the initial value of
a boolean input is false, for an integer it is 0 and for an enum it is the default transformation rule as
modelled in the DSL.

The other phase of the initialization sets the internal CIF-state. The generated code from CIF does
not expose a function that only performs this initialization. There is a function, EngineFirstStep, which
attempts to execute the first event that is enabled for n times, where n defaults to 100 which can be
changed using a build flag. Because the controller node performs the execution itself, rather than
using the EngineFirstStep, the parameter can be set to 0, which transforms the function into an ini-
tialization function, as no events are executed.

Control loop

A timer, which forms the control loop, is invoked at every tick. In this control loop, the controller
attempts perform transitions. It does not just try all transitions, but it splits up the transition into
different sets.

At every timer tick, the controller node performs the following actions in the control loop:

• Update the state of all data plants. It does so by executing all the data plant events that are en-
abled. These controllable events update the state of the data plants that represent what should
be sent to the middleware. The order in which these data events are executed is shuffled at
every execution of the control loop. This means that, if multiple events are enabled (which can
happen when provide statements have overlapping conditions), the data that will be sent to the
middleware is non-deterministic.

• Execute first enabled communication or tau transition. All communication is modelled as a
plant, which have trigger (and possibly cancel) transitions defined on them, see also section
2.5. If these transitions are fired, communication with the middleware should take place. There
are also tau transitions, which can be defined in the behaviour automaton of a component.
The controllable events for communication with the middleware are merged into a set together
with all tau transitions. This set is shuffled at every execution of the control loop, after which
the node will attempt to execute all transitions until it has found a transition that is enabled,
which is then executed. If the transition that was executed is a trigger for communication with
the middleware, this communication will take place. Note, that actions also have a controllable
event which will cancel the action if fired.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 49

5.3. ROS CHAPTER 5. GENERATORS

In the case that the event represents a message to the middleware, a message will be published
using a publisher. If it represents a service, then the service client will send a request to the
service server. If the event is a trigger for an action, then a goal is sent to the action server. This
goal is cancelled if the event that was executed represents a cancel event for that action.

Incoming events

There is also communication coming from the robotic middleware, that the supervisory controller
should be made aware of. This could be in the form of messages, responses or action feedback. Upon
receiving data, the controller first assigns the data to plant inputs, if they are required in the supervis-
ory controller. Then, as soon as the inputs are set, the controller node invokes the supervisor trans-
ition.

It is also possible that the data is not directly used in the supervisory controller, meaning that it is
not used in transition guard or requirement. If that is the case, the data is stored within the controller
node itself, ready to be transmitted. An example of such a callback function with assignment can be
found in listing 5.7.

void cal lback_message_correction (const std_msgs : : msg : : Float32 : : SharedPtr msg) {
code_LineDetector_current_correct ion = msg−>data ;

// C a l l engine function
controller_EnginePerformEvent (message_correction_u_response_) ;

}

Listing 5.7: C++-code for message callback with code-only assignment.

Event hook

The CIF-code generator exposes functionality that allows for notifications when transitions are ex-
ecuted. This is done in form of the InfoEvent method, which receives the name of the transition to-
gether with a boolean that determines whether the function is invoked before or after the engine has
performed the transition. Note that notifications before transitions are taking place already indicate
that the transition is enabled.

As soon as the notification is received that a transition has taken place, the controller will check
what it should do based on a switch statement. The trigger transition for messages, services and ac-
tions results in the call of a method which will start the corresponding communication. For actions,
there is an additional switch case, which is for the cancel event. When the cancel event is executed,
all goals for the corresponding action server are cancelled. An example for action events is shown in
listing 5.8. The actual implementation of the call and cancel functions is explained in the section on
communication.

switch (event) {
case a c t i o n _ n a v i g a t e _ c _ t r i g g e r _ :

node_control ler−>c a l l _ a c t i o n _ n a v i g a t e () ;
break ;

case act ion_navigate_c_cancel_ :
node_control ler−>ca nc el_ ac t io n_ nav ig ate () ;
break ;

d e f a u l t :
return ;

}

Listing 5.8: Sample switch case for actions.

5.3.2 Communication

The generated code for communication with the middleware depends on both the type of commu-
nication (message, service or action) and the ROS-version. The concepts for both versions are similar,
however.

50 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.3. ROS

Messages

The implementation of a message depends on the direction of that message. If a message is coming
out of a component, the controller should create a subscriber for the message as it is an uncontrollable
event. If the component has an incoming message, the controller should create a publisher which
publishes to the same topic.

The name of the topic can be explicitly specified within the DSL. If that is not the case, then the
name of the message will be used to subscribe to.

Next to the field for the message, the generator also decorates the controller with additional meth-
ods. If the controller subscribes to a message, an additional method is generated which is invoked as
soon as a message is received from ROS. This function takes the incoming message, takes the data and
assigns the data to the corresponding variables. For data that is required in the supervisory controller,
inputs will be used. In all other cases, data is assigned to variables that are defined within the scope
of the controller node. More information can be found in the section on data. The actual C++-type
of the message is depending on the interface that is linked to the message if it is a non-basic data
type. After the data has been assigned correctly, the supervisory controller is notified of the event. An
example of such a function is shown in listing 5.7 (note that this is for ROS2).

A different method is generated when a controller should publish to a topic. Then, there is a func-
tion to trigger the communication. A new object is constructed that stores the data of the message.
The actual data that is sent along is depending on the state of the data plants, as described in the sec-
tion on data. When the message is constructed, it is published to the topic. Again, the C++-type of the
message is determined by the linked interface for messages that are defined with a custom data type.
Note that this function is never called directly, but only after the trigger transition has taken place in
the supervisory controller. Listing 5.9 contains an example of such a function.

void call_message_move () {
auto value = geometry_msgs : : msg : : Twist () ;

i f (data_move_ == _control ler_data_one) {
value . l i n e a r . x = 0 . 6 ;
value . angular . z = (−code_LineDetector_current_correct ion) / 100;

}

t h i s−>publisher_client_move−>publish (value) ;
}

Listing 5.9: C++-code for publishing a twist message

Services

A service client is generated for all services that are defined in the model. The name that is used for
the client is determined similarly to the topic of a message. It can either be explicitly defined, or a
fallback will be used. The fallback is the name of service within the DSL. The definition of a service
consists of three parts. First, a client is created and stored in a field, allowing the controller node to
access it when needed.

The second part of the service, is the invocation method. It allows the controller to send a request
to the server. Again, the actual data that is put into the request is determined by the state of the cor-
responding data plants. Then, the request is sent to the service. For ROS2, the next step is to wait for
the response. Because services are asynchronous within ROS2, the controller waits for a response in
the form of a callback function. This callback function handles the data, assigns it to the correct vari-
ables and notifies the supervisory controller of the incoming data. The C++-types of the incoming
and outgoing data are determined by the linked interface in the model.

The procedure for ROS1 is a bit different. In ROS1, services are synchronous calls, meaning that if
the controller sends a request using the service client, it will wait until it has received an answer. So,
for ROS1, the response and request handling are done within the same method. Because services are
still asynchronous in the model, the method notifies the controller of the incoming response after it
has processed the data. The difference can be seen in listing 5.10 (ROS1) and 5.11 (ROS2).

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 51

5.3. ROS CHAPTER 5. GENERATORS

void c a l l _ s e r v i c e _ s a m p l e () {
default_msgs : : SumAction s r v ;
auto request = std : : make_shared<default_msgs : : SumAction : : Request >() ;

i f (data_sample_ == _control ler_data_one) {
s r v . request . a = 2 ;
s r v . request . b = 7 ;

}

i f (s e r v i c e _ c l i e n t _ s a m p l e . c a l l (s r v)) {
code_SampleComponent_result = s r v . response−>sum ;

controller_EnginePerformEvent (service_sample_u_response_) ;
} e l s e {

controllerEnginePerformEvent (service_sample_u_error_) ;
}

}

Listing 5.10: C++-code for invoking a service in ROS1

void c a l l _ s e r v i c e _ s a m p l e () {
auto request = std : : make_shared<default_msgs : : s r v : : Sum : : Request >() ;

i f (data_sample_ == _control ler_data_one) {
request−>a = 2 ;
request−>b = 7 ;

}

using ServiceResponseFuture = rclcpp : : Cl ient<default_msgs : : s r v : : Sum> : :
SharedFutureWithRequest ;

auto r e s u l t = s e r v i c e _ c l i e n t _ s a m p l e−>async_send_request (request , std : : bind(& C o n t r o l l e r : :
response_service_sample , t h i s , std : : placeholders : : _1)) ;

}

void response_service_sample (rclcpp : : Cl ient<default_msgs : : s r v : : Sum> : : SharedFuture f u t u r e) {
std : : shared_ptr<default_msgs : : s r v : : Sum_Response> r e s u l t = f u t u r e . get () ;

code_SampleComponent_result = r e s u l t −>sum ;

// C a l l engine function
controller_EnginePerformEvent (service_sample_u_response_) ;

}

Listing 5.11: C++-code for invoking a service in ROS2

Actions

Similar to services, actions have a request (also known as goal) and a response. But next to that, actions
have the option to provide feedback during the execution of that action. Actions are asynchronous in
both ROS1 as well as ROS2.

Each action first gets an action client, where the name of the action either is explicitly defined in
the model, or the entity name is used as a fallback. Four additional methods are generated next to the
client. First, a method that can start the action and provide it with a goal. The C++-datatype of the
goal is depending on the interface type of the action and the value of the goal is based on the data that
is passed to it using the provide statements. The method to start the action first attempts to reach the
action server, as it might be unavailable. If that is the case, the error transition is executed, allowing
the user to be indicated about the error that occurred. Then, there is a callback for when feedback is
received. This feedback is assigned to the corresponding variables, after which the supervisory con-
troller is notified of the data. Then, when the action is finished, the action client receives a response
using the generated response method. The data is processed, and the engine is made aware of the
uncontrollable event. Lastly, there is also a cancel method that can be invoked to cancel the current

52 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.3. ROS

goal, if there was any. An example of a generated function to start an action can be found in listing
5.12. Note that the example is for ROS2, but the code for ROS1 is very similar.

void c a l l _ a c t i o n _ n a v i g a t e () {
i f (! t h i s−>a c t i o n _ c l i e n t _ n a v i g a t e −>w a i t _ f o r _ a c t i o n _ s e r v e r (1 s)) {

controller_EnginePerformEvent (a c t i o n _ n a v i g a t e _ u _ e r r o r _) ;
return ;

}

auto goal_msg = nav2_msgs : : act ion : : NavigateToPose : : Goal () ;

i f (data_navigate_ == _control ler_data_one) {
goal_msg . pose . pose . p o s i t i o n . x = code_Nav2_current_x ;
goal_msg . pose . pose . p o s i t i o n . y = code_Nav2_current_y ;
goal_msg . pose . pose . p o s i t i o n . z = code_Nav2_current_z ;

}

auto send_options = rc lc pp _ac t i on : : Cl ient<nav2_msgs : : act ion : : NavigateToPose > : :
SendGoalOptions () ;

send_options . r e s u l t _ c a l l b a c k = std : : bind(& C o n t r o l l e r : : response_action_navigate , t h i s , std : :
placeholders : : _1) ;

send_options . feedback_cal lback = std : : bind(& C o n t r o l l e r : : feedback_action_navigate , t h i s , std
: : placeholders : : _1 , std : : placeholders : : _2) ;

t h i s−>a c t i o n _ c l i e n t _ n a v i g a t e −>async_send_goal (goal_msg , send_options) ;
}

Listing 5.12: C++-code for starting an action in ROS2

5.3.3 Data

Enums

The DSL defines the concept of an enum, which can transform an arbitrary data type into a finite
set of values using transformation rules. If the value matches a given expression, the data will be
transformed to that value. If none of the transformation rules match, a default rule will be used. The
ROS-node converts values before they reach the supervisory controller

The generator generates a function that takes an input and uses multiple if-statements to determ-
ine the return value. The default return value will be the enum default. The return type of the function
is controllerEnum, which comes from the CIF-generator, and stores all the enum values in one single
data type. As a result, the actual return values are prefixed with the controller keyword, as they rep-
resent an internal CIF data type. Listing 5.13 demonstrates such a function, where the input of a laser
scan is converted into a value that determines whether there is a wall, or there is not.

controllerEnum convert_enum_Distance (const sensor_msgs : : msg : : LaserScan : : SharedPtr input) {
i f (input−>ranges [2 7 0] < 0 . 7 | | input−>ranges [2 4 0] < 0 . 7) {

return _ c o n t r o l l e r _ w a l l ;
}

return _ c o n t r o l l e r _ n o _ w a l l ;
}

Listing 5.13: C++-code for enum value transformation.

Code-only assignments

Some assignments that happen upon incoming data from the middleware, are done to variables that
are not required in the supervisory controller. In this case, the assignment of such a variable is done in
the node only. The generator defines C++ variables for each of them. For each function that handles
incoming data from a response, message or feedback, the generator checks which transitions perform
assignments and checks for each variable whether that is a C++ assignment. If it is a C++ assignment,
the expression is compiled to C++ and assigned to the corresponding variable.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 53

5.3. ROS CHAPTER 5. GENERATORS

Language concept ROS concept Cardinality
Message Message One-to-one
Service Service One-to-one
Action Action One-to-one
Interface Custom Interface One-to-one
Component Node Many-to-many

Table 5.3: Mapping between language concepts and concepts from ROS.

Provisioning

As explained in chapter 4, data is provided to communication items using provide statements. Each of
these statements are modelled using data plants, whose state determines the data that is sent along.

Data can be passed to messages (going out of the controller), services and actions. Before such
communication takes place, the controller first determines the state of the corresponding data plant
and links it with the actual data. This is done by generating if-statements for each the different states,
and then assigning the values. If the data that should be sent is a basic type (string, bool, integer or
double) then the property data will be used to store the value, as is the name of the built-in ROS-type.

If complex objects are used, all properties from the value are extracted and assigned individually.
If the given value of a property contains an expression, then it the expression will first be compiled to
C++-code.

5.3.4 Metadata

Both versions of ROS require some additional configuration that stores metadata about the package,
and how to build it. First, there is the CMakeLists.txt file, which contains information about the build
process. Most of the generated file is based on the ROS-defaults, but there are some changes. First,
the file links all of the custom message definitions that the model uses. These packages are defined
within the model, and added as a dependency to the build file. Furthermore, the file contains code
that can compile the C-code for the supervisory controller. It also contains an important flag which
ensures that the CIF-engine can be initialized safely, without resulting in any unexpected behaviour.

The other file that is generated stores information about the package, which is the package.xml
file. The packages holds information about the build tool (which is different between ROS1 and ROS2),
and about the required packages for custom message definitions. These packages should be present
at build time.

5.3.5 Mapping

The DSL presented in this thesis introduces concepts from the ROS domain. All communication con-
cepts (messages, services and actions) are coming from that domain. The same holds for an inter-
face, it has a one-to-one mapping to the concept of a custom interface in ROS. The relation between
a component from the DSL and a node is a bit more complex. Although users regularly will find that
a one-to-one mapping works best, it is possible to have many components map to a single node and
vice-versa. Therefore the mapping between the two concepts is a many-to-many mapping. An over-
view can be found in table 5.3.

5.3.6 Supervisory Layer

To support the supervisor node for the supervisory layer approach, as introduced in section 4.7, an
additional generator was created which is based on the ROS2 code generator. Instead of generating a
controller node, it now generates a supervisor node. It still uses a lot of common generator logic that
is shared between all generators, but there are some differences. Note that the code for the supervisor

54 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.4. GENERATOR CONFIGURATION

is only generated for ROS2, and not for ROS1. This was done to show the possibilities of this layer
approach. A generator for ROS1 could be implemented by applying the same changes and concepts.

The first addition to the generator is the generation of a launch file. Based on information sup-
plied in the config file, the launch file stores logic to start the existing controller and the supervisor.
Within the launch file, ROS offers the option to apply remappings. This means that unique names are
generated for all of the communication that is defined within the DSL-model.

The supervisor node now creates a subscription and a publisher for each message. If the controller
provides the supervisor with a message, the supervisor creates a subscription for the remapped topic
and a publisher for the original one. If the controller expects a message, the publisher publishes to
the remapped topic and the subscriber listens to the original topic.

If the supervisor receives a message from the controller, the data is first stored into a variable, and
the trigger event is executed in the supervisor. If the supervisor allows the behaviour, the data is re-
trieved from the property and published to the original topic. Note that this process takes place within
a mutex, which prevents the passing of incorrect data because fields are overwritten. Mutexes ensure
that a critical part of the code is only accessed by one thread at a time. Messages to the controller
also result in a transition in the supervisor, similar to the controller behaviour, and are passed to the
existing controller using the remapped topic.

To allow the supervisor to control the communication of services, the supervisor creates a service
server and client for all defined services. The service server listens to the remapped service name,
and will handle all incoming communication from the controller. When a request is coming in, the
supervisor checks whether the trigger is allowed. If that is the case, the request will be forwarded to
the original service. As soon as a response is coming in, it is sent back to the controller.

Similar to services, actions also get a proxy server. Goals, responses and feedback are forwarded
between the controller and the original action server, if the supervisor allows the behaviour. The prob-
lem for actions is that they are not remapped by ROS. This means that the bindings to the robotic
middleware should be altered such that the existing controller connects to the proxy action server.

5.4 Generator Configuration

There are some settings that can be defined which will alter the generated code. This configuration is
stored in a separate file, controller-config.json. This file can either be in the same directory as the DSL-
code file that is compiled, or in one of the child directories starting from that location. The choice to
use JSON for the configuration was made because it is easy to read, write and parse which makes it
perfect for simple settings like this.

Within the config, users have the option to disable publishing state information to the middle-
ware using the publishStateInformation option, as it takes more processing time in the control loop.
The same holds for the logging of input and output, which can be enabled using the writeEventsToLog
key. Furthermore, they have the option to copy the code of the controller (or supervisor) to a specific
location. Normally, code that is generated is placed within the src-gen folder, requiring users to copy
the generated controller to the correct location every time. By using the output key within the config-
uration, and setting one or more of the ros1ControllerNodeLocation, ros2ControllerNodeLocation or
ros2SupervisorNodeLocation fields, the copying will take place automatically.

Lastly, there is an option for the supervisor which determines how to start the existing controller.
This is required, because it will be started with remapped topics and services. There is an option to
start the controller from an existing launch file, or running the node directly. These options can be
configured using the controller property of the supervisor key.

Initially, the idea was to also use the configuration file for linking custom interface definitions from
ROS, as they appeared not to be relevant to the actual model, only as a setting for generation. But,
although for compilation this would have been enough, the actual imports and parameter types of
these custom interface definitions, depend on the message, service or action that they are connected
to. Therefore, they became part of the model, known as interfaces.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 55

5.5. DEBUGGING CHAPTER 5. GENERATORS

5.5 Debugging

The core idea of the language is that code is generated from the DSL script. This code can be deployed
to a robotic middleware and will instantly run. This means that users can make use of debugging
tools provided by the generated language (like C++ for ROS2). But, this can be cumbersome to set
up and understand. It is also very likely that users have little to no knowledge about these generated
languages.

In order to make it easier to debug the behaviour of the supervisory controller, a configurable
option has been added that specifies whether the controller node should publish information about
the current state of all components to a topic. Other nodes can subscribe to this topic, and handle the
information.

The data that is published to the topic, is a serialized JSON string. Although a custom interface
definition could have been used, JSON was chosen as it does not require any additional dependencies
on the target platform. The current state is serialized to JSON and contains the following information:

• Components

• Component states

• Component transitions

• Component variables

• Variable values

• Executed transitions

Although the serialized information already provides some information, it is still hard to read. That
is why the Visual Studio Code extension has a feature that visualizes the information. The extension
starts a node in the background and subscribes to the controller state topic. As soon as information
comes in, it will either create a visual representation of the automata and variables, or update the
existing visualization. If data from a new robot comes in and thus the definition of the robot changes,
it will create a new visual representation. The extension was built using JavaScript and uses the ROS-
packages from Foxglove 3 4 to facilitate communication with the middleware, and Dagre D3 5 for the
visualization of the state machines. An example of such a visualization can be found in figure 5.6.

It is also possible to gather more information about the input and output of the controller using a
text file. By default, no logging is generated. If a user configures logging (see section 5.4), the controller
node writes all events to a file together with a timestamp, which can be used to reason about the
behaviour that is or was executed by the controller node.

3https://www.npmjs.com/package/@foxglove/ros1
4https://www.npmjs.com/package/@foxglove/ros2
5https://www.npmjs.com/package/dagre-d3

56 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 5. GENERATORS 5.5. DEBUGGING

Figure 5.6: Example of a visualization of the robot state in Visual Studio Code.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 57

Chapter 6

Evaluation

6.1 Introduction

This chapter evaluates the language by developing several models with the DSL for a given set of
scenarios, in order to evaluate expressiveness, behaviour, memory usage, compilation time, execu-
tion time and the amount of generated lines. All of the implementations of the scenarios were tested
with a simulation tool, and a single scenario has been verified on multiple physical robotic hardware
platforms as well. The chapter also highlights the limitations of the language, that came to light when
implementing the different scenarios.

6.2 Evaluation Goals

In order to evaluate the language, several scenarios have been developed in order to test the express-
iveness, flexibility, generated code size, compilation time and the execution time of the language.
These scenarios have all been implemented with the DSL. In all scenarios, an additional component
is added which acts as an emergency stop. The scenarios are defined as follows:

6.2.1 Scenario 1 - Line follower

The first scenario describes a robot that is following a yellow line. The yellow line is found by taking
the camera of the robot as an input, whose camera feed is processed by a ROS-node that finds the
center of the line. The offset of the line center to the center of the image is published as a correction
value, which can be used by the controller to adjust the movement of the robot. The procedure that
the robot should follow was inspired by the tutorial from Gaitech 1.

6.2.2 Scenario 2 - Simple navigation

This scenario describes a scenario where the robot should perform simple navigation in a room, with
no obstacles. The robot receives prior knowledge about the room in the form of a map. This map
is visualized with Rviz (a tool that can visualize robotic data 2). Then, the robot waits for an initial
pose. When the initial pose has been received, the robot waits for a point that it should navigate to. To
perform the navigation, the ROS Nav2 library [31] is used. It is used in such a way that it can be used
together with a supervisory controller.

1http://edu.gaitech.hk/turtlebot/line-follower.html
2https://wiki.ros.org/rviz

58 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.2. EVALUATION GOALS

6.2.3 Scenario 3 - Obstacle navigation

Contrary to the simple navigation scenario, in this scenario the robot has to navigate to a point, but
comes across obstacles that it needs to navigate around. It again has prior knowledge about the en-
vironment, visualized with Rviz 3. The robot waits for an initial pose. As soon as the initial pose is
determined, the robot waits until it receives a navigation goal. For navigation, the ROS Nav2 library
[31] is used.

6.2.4 Scenario 4 - Object finder

The object finder scenarios describes a task where the robot is situated within a room, and will use its
LiDAR-sensors and camera to find a stop sign. It will move until it reaches a wall, and based on the
distance to the wall on either the left or right side choose a direction. When the image detection node
finds a stop sign, it will stop. The Darknet ROS package is used for the detection of a stop sign (and
other classes, which are ignored in this scenario) [5].

6.2.5 Scenario 5 - Maze solver

In this scenario, the robot attempts to escape a maze using the wall follower algorithm. The layout of
the maze has been reconstructed based on the article from Yong [63]. It will use the LiDAR sensors to
sense the environment, and will keep following walls on the right side of the robot until it eventually
reaches the end. Similar to the object finder scenario in 6.3.5, an additional node will be used that can
rotate the robot for a fixed amount of degrees.

6.2.6 Scenario 6 - Push ball into goal

In the following scenario, the goal for the robot is to find a red ball and push it into a green goal. The
robot uses the camera feed to detect red and green surfaces, and move it into the correct direction.
The assumption in this scenario is that the red ball is located between the robot and the goal, and that
the goal is visible for the robot when it is faced towards the ball, so it can push the ball in the goal.
When the ball (and the robot) have reached the goal, the robot will stop moving.

6.2.7 Scenario 7 - Person follower

This scenario represents a scene where the robot needs to find a person, and follow it, while keeping
a safe distance. The detection of a person happens using the camera feed, which classifies objects
within the feed and assigns a predicted class to it. For the image classification, the Yolox package is
used [20]. The package publishes all found objects to a bounding box, with the positions in the image.
The Lidar sensor detects whether there is a person in front.

6.2.8 Scenario 8 - Supervisor

The last scenario is somewhat different than the other ones. In this scenario, a supervisor is used.
It uses the controller that was obtained from the line follower scenario in section 6.3.2, but without
the emergency stop and Lidar sensor. The emergency stop and LiDAR-sensor are enforced using the
supervisor. All communication from and to the controller passes the supervisor. If the emergency
stop was activated, any movement is blocked by the supervisor.

3https://wiki.ros.org/rviz

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 59

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

In service Stopped

/stop

/continue

Figure 6.1: States of the emergency stop component.

6.3 Implementation

All scenarios have been developed for a Turtlebot 3 Waffle Pi [9]. For each scenario, a controller is
developed using the language described in this thesis. All controller code has been added as an ap-
pendix.

6.3.1 Shared components

Most of the nodes re-use components using the concept of a library, as it allows the re-use of logic. For
the scenarios, two shared components have been developed. One component models the emergency
stop, and one component models the Turtlebot Platform.

The emergency stop, which is a middleware node that was purposely built for the evaluation of the
language, provides the user with an interface to stop the robot. It has two states, one where the stop is
in service, and one where it has been stopped. It can switch between the states using two messages,
that determine whether it should stop or continue. This behaviour has been visualized in figure 6.1.

The other component, the TurtleBot Platform, only defines two messages, one message to move,
and one message to halt all movement. It has defined the corresponding datatypes that allow the
language user to specify angular and linear movement, but it has no associated behaviour.

6.3.2 Scenario 1 - Line follower

Line detection

For the line detection, an additional node has been developed for the purpose of this thesis. The
node emits a value that provides the offset between the center of the yellow line and the center of the
camera feed, in case a line has been detected. If a line has not been detected, it will emit a message to
the robotic middleware that no line has been found.

The line detection makes use of the open-source OpenCV library [39]. First, the node that was
developed transforms all colors that are yellow into white, and all colors that are not into black. The
range of yellow is determined using HSV colors (hue, saturation, lightness) (information about HSV
and its relation to RGB can be found in [2]). All colors in the image (from the camera feed) that lie
within the HSV range of (10, 10, 10) and (255, 255, 250) are considered as yellow colors. Then, the
OpenCV library is used to find the image’s moments, whose center is used to determine the center of
the yellow line (if present). Then, the center of this value is used together with the horizontal center
of the image feed to determine the amount of correction that is needed for the robot to come back to
the yellow line and follow it.

Model

The model is added in appendix B. In the model, the following four components can be distinguished:
a line detector, a LiDAR sensor, an emergency stop and the Turtlebot Platform. Note, that the emer-
gency stop and the Turtlebot Platform are imported from a library, as described in section 6.3.1.

The line detector component knows two states. First, the initial state is the state where no line is
found. The other state is when the a line is detected, and a correction value is received. The compon-
ent has two outgoing messages. First, when a line is detected, the component emits a message that
contains a value that represents the offset from the line with respect to the center of the image feed, as

60 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

No line Line found

/correction

/no_line

/correction / current_correction := value

Figure 6.2: States of the line follower component.

Unsafe Safe

[current_distance = safe]

[current_distance = unsafe]

/scan / current_distance = value/scan / current_distance = value

Figure 6.3: States of the LiDAR sensor component.

described in the section on line detection. This value is stored in a variable with the latest correction.
When the controller receives a value from either the correction or no line message, it will transition to
the corresponding state. The state machine of this component is depicted in figure 6.2.

The LiDAR sensor measures the distances on the front-, the left- and right-hand sides of the robot
to determine whether it is safe for the robot to move forward. It therefore knows two states: one that
represents a safe distance, and one that stands for an unsafe distance. It receives a message from the
physical LiDAR scan (which contains a 360-degree scan) and transform it using an enum. This value is
stored in a variable, and depending on the value of this variable it will transition to the corresponding
state.

The requirements for the controller are relatively straight-forward. The Turtlebot Platform defines
two messages: move and halt. For the controllable event move to be emitted, the following should
hold:

• Component Emergency Stop should be in state in service

• and component Line Detector should be in state line found

• and component LiDAR Sensor should be in state safe distance

For the halt event, the following should hold:

• Component Emergency Stop should be in state stopped

• or component Line Detector should be in state no line

• or component LiDAR Sensor should be in state unsafe distance

The controller provides both incoming messages to the Turtlebot Platform with a linear and angu-
lar velocity. For the move message, this means that it will use a constant linear velocity, and an angular
velocity determined by the correction that is received from the line detector: −c u r r e n t _c o r r e c t i o n

100 . The
halt message should always stop all movement.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 61

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

Communication

The communication, as seen from the component, is shown in table 6.1.

Direction Type Name Data Type Component
Outgoing Message /correction double Line Detector
Outgoing Message /no_line none Line Detector
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
Incoming Message /cmd_vel Twist Turtlebot Platform
Outgoing Message /scan LaserScan LiDAR scanner

Table 6.1: Communication overview of the line follower scenario.

6.3.3 Scenario 2 - Simple navigation

Navigation

As stated, the navigation happens using the Nav2 library [31] for ROS2. The library normally works
without an additional controller, as one is provided by the library itself. An initial pose can be specified
via RVIZ, and as soon as this has been done, RVIZ allows the user to specify a navigation goal. The
problem for an additional controller is that this goal is directly passed to the Navigation node, and
the action is started immediately. To solve this, the controller uses a different input. RVIZ also has a
plugin that allows clicking a point, which is then published to a topic. Instead of using the navigation
goal, the controller stores this point, and passes it to the navigation action itself.

To prevent confusion, the launch file for this scenario contains a custom RVIZ config. This config
disables the navigation goal button, to ensure that users cannot accidentally get confused and use it
to trigger the navigation, of which the controller is unaware.

The navigation action will be cancelled as soon as any requirements for it to be started do not hold
anymore.

Model

The model is added in appendix C. The scenario is split into two components. First, there is a com-
ponent that covers all Nav2 communication. Although it was possible to split this component into
two components (for example a component for RVIZ, and a component for the navigation), it is com-
bined into a single component because the communication of both components would be depending
on each other. The RVIZ component should be aware of the fact that the navigation was cancelled,
for example. Next to the Nav2 component, there is an emergency stop, which is imported from the
shared library as described in section 6.3.1.

For the RVIZ component, three states can be defined. First, the component awaits an initial pose
using the RVIZ interface. As soon as this pose is provided using the initial pose message, the com-
ponent accepts incoming points for navigation. When a point is provided through the corresponding
message, it transitions to a state where it has a point and the corresponding point is saved into a vari-
able. As soon as the navigation is completed, or was cancelled it will transition back to the awaiting
point state. A visualization of the states of this component can be found in figure 6.4.

There are only two requirements that are needed for the navigation action to start:

• Component Emergency Stop should be in state in service

• and component Nav2 should be in state has point

Note, that if this requirement does not hold during the execution of the action, the action will be
cancelled.

The navigation action is provided with a value that represents the last point that was published by
the RVIZ component.

62 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

No initial
pose

Awaiting
point

Has point

/initialpose

/clicked_point / point := value

/navigate_to_pose (response)

/navigate_to_pose (cancel)

Figure 6.4: States of the Nav2 component.

Communication

The communication, as seen from the component, is shown in table 6.2.

Direction Type Name Data Type Component
Outgoing Message /clicked_point PointStamped RVIZ
Outgoing Message /initialpose PoseWithCovarianceStamped RVIZ
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
- Action /navigate_to_pose NavigateToPose Nav2

Table 6.2: Communication overview of the simple navigation scenario.

6.3.4 Scenario 3 - Obstacle navigation

The implementation of this scenario is exactly the same as the simple navigation scenario, because
the obstacle avoidance happens using the Nav2 library. Therefore, the model, component and com-
munication descriptions can be found in section 6.3.3. For completeness, the model for this scenario
has been added in appendix D.

6.3.5 Scenario 4 - Object finder

Rotation

For this scenario, a node has been developed for the purpose of this thesis that can turn the robot
a given amount of degrees. Normally, rotation of the TurtleBot platform happens using an angular
velocity (in π

s). To allow the movement of a relative amount of degrees, this node starts a rotation
and reads the current orientation of the robot. If the desired rotation has been reached, it will stop
rotating. To increase accuracy, the robot is rotating at a relatively low speed, as it takes time to stop
the robot. Increasing this speed is considered as out of scope for this project.

Model

The model for the scenario can be found in appendix E. In the DSL model, five components are
defined. First, there is a component for the LiDAR scanner. Then, there are components for the ro-
tator and the object detector. Lastly, there are two components that are used from the shared library,

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 63

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

Sensing
/scan (right)
/ right := value

/scan (left)
/ left := value

/scan (front)
/ front := value, has_front := true

Figure 6.5: States of the LiDAR scanner component.

Awaiting
command

Rotating

/rotate_left

/rotate_right

/rotate_done

Figure 6.6: States of the rotator component.

namely the emergency stop and the Turtlebot Platform. They are described in the section on shared
components (6.3.1).

The LiDAR scanner component knows a single state, the state where it is sensing. It has 3 outgoing
messages, but they all have the same identifier and therefore the controller will subscribe to the same
topic. However, their data type differs. Each of these three messages has an enum data type that
transforms the 360-degree LiDAR scan to a safe or unsafe value, depending on the orientation (left,
front and right). When one of these values is received, it will be transformed by the enum and stored
into a variable on the component. Next to that, the component has a variable that determines whether
a value for the front sensor has been received. This value will immediately be set to true as soon as
this message reaches the controller. The states are visualized in figure 6.5.

For the rotator component, the behaviour is modelled with two states. There is a state where it is
awaiting a command, and one where it is processing a command, i.e. rotating. The component has
two incoming messages, one to rotate 90 degrees left and one to rotate 90 degrees to the right. Then,
when this process has finished, it will send an outgoing message to notify the controller that it finished
rotating. This behaviour is visualized in figure 6.6.

Then, the object detector component. It represents the Darknet ROS nodes [5] and has two out-
going messages: one message with the amount of objects it has detected in the camera feed, and one
with the bounding boxes of the detected objects. The values of these messages (more specifically, the
object count and the fond object) are stored in a variable in the component when the message is re-
ceived. It will transition between a state where no object is found and a state where an object is found,
depending on these values. The state machine is shown in figure 6.7.

The requirements for the controllable communication that should hold, are split per communic-
ation item. For the move message, this means that:

• Component Emergency Stop should be in state in service

• and component Rotator should be in state awaiting command

• and variable front from LiDAR Scanner should have value safe

64 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

No object Object
found

/darknet_ros/found_object
/ scanned_object_count := value

/darknet_ros/found_object
/ scanned_object_count := value

/darknet_ros/bounding_boxes
/ scanned_object := value

/darknet_ros/bounding_boxes
/ scanned_object := value

[scanned_object_count > 0 and
scanned_object = stop_sign]

[scanned_object_count = 0]

Figure 6.7: States of the object detector component.

• and component Object Detector should not be in state object found

Then, for the halt message:

• (variable front from LiDAR Scanner should have value unsafe and variable left from LiDAR
Scanner should have value unsafe and variable right from LiDAR Scanner should have value
unsafe)

• or component Emergency Stop should be in state stopped

• or component Object Detector should be in state object found

The requirements for the rotate left message are defined as below. Note, that for the rotate right
message they are similar, except where the left variable is used, it should hold for the right variable of
the LiDAR scanner.

• Component Emergency Stop should be in state in service

• and variable left from LiDAR Scanner should have value safe

• and component Object Detector should not be in state object found

• and component Rotator should be in state awaiting command

• and variable front from LiDAR Scanner should have value unsafe

• and variable has front from LiDAR Scanner should have value true

Communication

The communication, as seen from the component, is shown in table 6.3.

6.3.6 Scenario 5 - Maze solver

Wall-follower algorithm

For the algorithm to solve the maze, we use a relatively simple algorithm [8]. It is known as the wall-
follower algorithm. In the basis, it means that the robot will move along the wall. The robot can either
follow the wall on its left, or the wall on the right, depending on the implementation of the algorithm.
In this scenario, the robot follows the wall on the right side.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 65

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

Direction Type Name Data Type Component
Outgoing Message /scan LaserScan LiDARScanner
Incoming Message /rotate_left none Rotator
Incoming Message /rotate_right none Rotator
Outgoing Message /rotate_done none Rotator
Outgoing Message /darknet_ros/found_object ObjectCount Darknet
Outgoing Message /darknet_ros/bounding_boxes BoundingBoxes Darknet
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
Incoming Message /cmd_vel Twist Turtlebot Platform

Table 6.3: Communication overview of the object finder scenario.

Sensing
/scan (right)
/ right := value

/scan (back right)
/ back right := value

/scan (front)
/ front := value

Figure 6.8: States of the LiDAR scanner component.

In the basis, the robot will move as long as it has found a wall on the right side. If it detects a wall in
front, it will rotate right. If it detects that there is no more wall on the right side at−90°, but it does still
find one at −105°, it will rotate right in order for it to keep following the wall. This process will repeat,
until the robot has found the exit of maze. In this algorithm, the robot has no prior knowledge of the
layout of the maze. Furthermore, all walls should be connected to the outer room.

Model

The model is added in appendix F. In this scenario, the problem has been modelled with 3 compon-
ents. First, there is a component for the LiDAR scanner, which stores all distance values for the front
and right side of the robot. Then, there is a component that represents the platform. The platform can
move the robot forward, but also rotate it. Lastly, the emergency stop component is imported from
the shared components library 6.3.1.

The LiDAR scanner component only knows a single state, the state where it is sensing values. The
incoming scan data is modelled with three messages, as the data is transformed using three enums.
One for the distance to an object for the front of the robot (0°), one for the right (−90°) and one for
the back right at −105°. When a value is published, the component transforms it and stores it as a
variable. Each of the enums transforms the distance value to a value that determines whether there
is a wall, or there is not based on a threshold. The behaviour is represented in figure 6.8.

The other component is the platform component. It defines two messages that represent the
movement of the robot (move and halt). Next to that, there are two messages, rotate left and right,
that allow the robot to rotate in either direction. When this has finished, the component emits a mes-
sage, rotate done, that indicates that the rotation has taken place. This behaviour results in two states:
a state where the robot can move freely, and one where the the robot is turning and therefore can not
accept any new rotation commands. These states and their transitions are shown in figure 6.6.

66 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

Requirements have been specified for the controllable communication in order for it to adhere to
the line follower algorithm. The move command has the following requirements that should hold:

• Component Emergency Stop should be in state in service

• and component Platform should be in state ready

• and (variable right from LiDAR Scanner should have value wall and variable front from LiDAR
Scanner should have value no wall)
or (variable front from LiDAR Scanner should have value no wall and variable right from LiDAR
Scanner should have value no wall and variable back right from LiDAR Scanner should have
value no wall)

For the rotate right command, the following set of requirements should be satisfied for it to be
triggered by the controller:

• Component Emergency Stop should be in state in service

• and component Platform should be in state ready

• variable right from LiDAR Scanner should have value no wall

• variable back right from LiDAR Scanner should have value wall

Then, for the robot to turn to the left, the following conditions should be satisfied:

• Component Emergency Stop should be in state in service

• and component Platform should be in state ready

• variable front from LiDAR Scanner should have value wall

The move and halt messages are provided with a fixed value that determines their speed, which
for the halt command results in a speed of zero. Furthermore, the rotate messages are provided with
a value of 90° that represents the amount of degrees the robot should rotate when invoked.

Communication

The communication, as seen from the component, is shown in table 6.4.

Direction Type Name Data Type Component
Outgoing Message /scan LaserScan LiDAR scanner
Incoming Message /rotate_left integer Platform
Incoming Message /rotate_right integer Platform
Outgoing Message /rotate_done none Platform
Incoming Message /cmd_vel Twist Platform
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop

Table 6.4: Communication overview of the maze solver scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 67

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

Sensing /scan / distance := value

Figure 6.9: States of the LiDAR scanner component.

6.3.7 Scenario 6 - Push ball into goal

Goal and ball detection

For the goal and the ball detection, a similar process was developed for the purpose of this thesis as
with the (yellow) line follower scenario from section 6.3.2. In this case, two separate nodes have been
developed that use OpenCV for the processing of the image feed. These nodes publish a correction
when the goal and/or ball have been detected, and publish to a different topic when no item was
found.

The node for the detection of the ball, however, has some additional functionalities. When the
ball is detected, but the center of it is too far to the left or right, it will publish that the ball needs an
adjustment, in order for it to be in front of the robot again, and keep the robot from losing control over
the ball. When this is not the case, it will publish that to a topic as well.

Lastly, the node for the ball detection also publishes a message when the ball is in front of the
robot. Because LiDAR sensors do not work when the ball is blocking the lasers, it will use the camera
feed to detect the presence of the ball by determining the ratio between the size of the ball and the
image feed width. When this exceeds a predetermined threshold, it will let the controller know using
a topic.

Model

The model for the scenario can be found in appendix G. The controller knows five different compon-
ents. First, there is a component that represents the LiDAR scanner, so the robot knows when it has
reached the goal. Then, there are two components that respectively model the ball and goal detectors.
Lastly, two components are used that originate from the shared library, namely the emergency stop
and Turtlebot Platform component. More information on them, can be found in section 6.3.1.

The LiDAR scanner component is relatively simple. It publishes a message that contains the result
of a 360°-scan with all the corresponding distances. Using an enum, this value is transformed into a
value that determines whether the path of the robot is obstructed, or free. At each scan, the result of
the scan is saved into a variable in the automaton. The visualization of this component can be found
in figure 6.9.

The behaviour of the goal detector component can be split into three states. The component pub-
lishes two messages, when a green goal was detected it will publish the offset of the center of the goal
to the center of the image feed. When no goal was found at all, this will be published to a separate
topic. The initial state of the component is where it is awaiting a result. Then, there are states where a
goal was found, or when no goal was found. When a goal was found, the last correction will be stored
in a variable. All states are shown in figure 6.10.

The ball detector is a bit more complex. As stated in the section about the ball and goal detection,
the component defines multiple messages. First, it publishes whether there is a ball, and if so, the
correction value. Furthermore, there are messages that define whether the ball is correctly in front of
the robot, or whether the ball is too much to the left or right of the robot, causing the robot to lose
control. Initially, the component waits for a result. Then, there are two states that represent whether
the ball is found or not. Furthermore, there is a state when the ball is in front of the robot, and lastly,
there is a state where the robot needs to adjust is movement to center the ball in front. All the states
and transitions are shown in figure 6.11.

68 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

Awaiting

No goal Goal found

/goal_correction

/no_goal

/goal_correction
/ correction := value

/no_goal

/goal_correction

Figure 6.10: States of the goal detector component.

Awaiting

No ball Ball found
Ball in
front

Adjusting

/ball_correction

/no_ball

/ball_correction
/ correction := value

/ball_front_check

/needs_ajustment/no_ajustment/no_ball

/ball_correction

Figure 6.11: States of the ball detector component.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 69

6.3. IMPLEMENTATION CHAPTER 6. EVALUATION

There are only two controllable communication items, move and halt. For move, the following
should hold:

• Component Emergency Stop should be in state in service

• and variable distance from LiDAR Scanner should have value free

Then, for the halt message, the following requirements should be satisfied in order for it to be
emitted:

• Component Emergency Stop should be in state stopped

• or variable distance from LiDAR Scanner should have value obstructed

Lastly, the model defines what values the controller should send along with the messages, depend-
ing on the current state. When no ball is found, the robot will rotate. When a ball is found, it will move
towards that ball, until at some point it has the ball in front. It will then move towards the goal, until
it needs to adjust the ball to keep it in front.

Communication

The communication, as seen from the component, is shown in table 6.5.

Direction Type Name Data Type Component
Outgoing Message /scan LaserScan LiDAR Scanner
Outgoing Message /ball_correction double Ball Detector
Outgoing Message /no_ball none Ball Detector
Outgoing Message /needs_adjustment none Ball Detector
Outgoing Message /no_adjustment none Ball Detector
Outgoing Message /ball_front_check none Ball Detector
Outgoing Message /goal_correction double Goal Detector
Outgoing Message /no_goal none Goal Detector
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
Incoming Message /cmd_vel Twist Turtlebot Platform

Table 6.5: Communication overview of the push a ball into a goal scenario.

6.3.8 Scenario 7 - Person follower

Model

The model for the scenario can be found in appendix H. The controller model uses four components.
There is a component for the LiDAR scanner, one for the Yolox detector and two components from
the shared library: an emergency stop and the TurtleBot movement platform. These components are
described in the shared components section, section 6.3.1.

The LiDAR scanner represents the node that publishes the 360°-laser scan. It only has a single
state, which processes the scan message. This message is transformed into a value that determines
whether the robot can move freely, or that something is in front. The states are shown in figure 6.9.

The other component, the Yolox detection component, knows two states. First, there is a state
where an object is detected. If this is the case, the position of the object is stored in the variables, next
to the size of the image. This is done, to rotate the robot such that the object is in the center of the
robot. The behaviour of the component is shown in figure 6.12.

Requirements are specified for two messages, namely for halt and for the move command. For the
move command, the following requirements should hold:

70 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.3. IMPLEMENTATION

Sensing Detected

/bounding_boxes
/ current := value /bounding_boxes

/ current := value

Figure 6.12: States of the Yolox detection component.

• Component Emergency Stop should be in state in service

• and Yolox should be in state detected

Similarly, for the halt message:

• Component Emergency Stop should be in state stopped

• or variable distance from LiDAR Scanner should have value obstructed

The provide statements ensure that the robot is moving at the correct speed. For the halt com-
mand, it is simple, as it should stop all linear and angular movement. For the move command, it
depends on the distance to a person. When a person is in front, it should only rotate towards the per-
son, but not move any further. If the robot is too far away, it will come closer to the person that it has
found.

Communication

The communication, as seen from the component, is shown in table 6.6.

Direction Type Name Data Type Component
Outgoing Message /scan LaserScan LiDAR Scanner
Outgoing Message /bounding_boxes BoundingBoxes Yolox
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
Incoming Message /cmd_vel Twist Turtlebot Platform

Table 6.6: Communication overview of the person follower scenario.

6.3.9 Scenario 8 - Supervisor

Movement

The movement in this scenario is a little bit different to the line follower scenario. The line follower
published an angular or linear velocity to a topic, which would make the robot move this way until
a new velocity was received. To allow for the use of a supervisor, a node has been developed for the
purpose of this thesis that can accept steps of movement. It supports the same inputs as the regular
TurtleBot command, but it will only execute it for 100ms, after the robot will stop again.

By doing so, the supervisor can intercept move commands and check whether it allows it. If not,
it can drop the command, which will happen in case the emergency stop was pressed or something is
in front of the robot.

Model

The model for the supervisor is very similar to the line follower controller, and is added in appendix I.

Communication

The communication, as seen from the component, is shown in table 6.7.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 71

6.4. RESULTS CHAPTER 6. EVALUATION

Direction Type Name Data Type Component
Outgoing Message /correction double Line Detector
Outgoing Message /correction double Line Detector
Outgoing Message /no_line none Line Detector
Outgoing Message /stop none Emergency Stop
Outgoing Message /continue none Emergency Stop
Incoming Message /simple_movement Twist Simple Movement

Table 6.7: Communication overview of supervisor follower scenario.

6.4 Results

All of the scenarios have been evaluated using different metrics. For each of the scenarios, the amount
of lines have been counted for the model and the generated CIF, ROS1 and ROS2 code. Furthermore,
the compilation time for the ROS-nodes has been measured, next to the (peak) memory usage and
the execution time. All experiments have been conducted on a Dell XPS 13" laptop running Ubuntu
20.04.4 (LTS). The computer has 16GB of RAM memory available and runs on an Intel® Core™ i7-
10510U CPU @1.80GHz processor. For ROS1, the Noetic distribution was used, whereas for ROS2
the Foxy distribution was installed on the operating system.

6.4.1 Memory usage

First, the memory usage of each of the nodes was captured by using psrecord 4, a Python-tool that
can record the memory of a process (and its children) for a period of time. The controller node was
started directly on the laptop together with the simulation tool. During the evaluation, the nodes
are all started separately from the controller (or supervisor). This was done to make sure that their
memory usage does not influence that of the controller measurements. The controller is started using
the psrecord tool, and measures the memory during a period of 5 minutes (300 seconds). Both the
real memory usage, as well as the virtual memory usage have been captured in figures 6.13 and 6.14
respectively. The real memory represents the amount of memory that is currently within the physical
RAM of the device, whereas the virtual memory is used by an operating system to create the illusion
of a larger physical memory, when that is not the case, using an abstraction layer as explained in [4].

The first observation to make for both the virtual memory as well as the real memory, is that the line
stabilizes after about 2 seconds, no matter what scenario. This suggests that, at least for the duration
of the measurement and the code that was covered during the execution, no memory leaks appear
to be present within the code. Furthermore, the simple navigation as well as the obstacle navigation
scenario use a bit more memory than the other scenarios. Both scenarios make use of an action client
within the ROS-node, whereas the others do not. The memory usage of the other scenarios is about
the same in both figures.

6.4.2 Execution time

The execution times of a single execution of the control loop (in which it updates the state) have also
been measured. The results are shown in table 6.8. During a period of 5 minutes, the duration of a
control loop execution was measured (at each timer tick). Note, that the supervisor scenario was not
measured, because the supervisor engine is only triggered based on emitted controllable events by an
existing controller. Measuring this time would have skewed the measurements.

The results in the figure show that the line follower, person follower and the push ball into goal
take the most time to execute. These scenarios all emit the move message that provides the robot
with a velocity at (almost) every tick, which takes some time until it is published to the ROS message
bus. However, the simple navigation and obstacle navigation take almost no time to execute during a

4https://github.com/astrofrog/psrecord

72 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.4. RESULTS

0 30 60 90 120 150 180 210 240 270 300
0

10

20

30

40

50

Duration (s)

R
ea

lM
em

o
ry

(M
B

)

Line Follower (controller)
Simple Navigation

Obstacle Navigation
Object Finder
Maze Solver

Push Ball into Goal
Person Follower

Line Follower (supervisor)

Figure 6.13: Real memory usage in megabytes for each of the scenarios.

0 30 60 90 120 150 180 210 240 270 300
0

100

200

300

400

500

600

700

Duration (s)

V
ir

tu
al

M
em

o
ry

(M
B

)

Line Follower (controller)
Simple Navigation

Obstacle Navigation
Object Finder
Maze Solver

Push Ball into Goal
Person Follower

Line Follower (supervisor)

Figure 6.14: Virtual memory usage in megabytes for each of the scenarios.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 73

6.4. RESULTS CHAPTER 6. EVALUATION

Avg. (µs) Min. (µs) Max. (µs) S. D. (µs)
Line Follower 71 16 868 46
Simple Navigation 9 4 248 6
Obstacle Navigation 11 5 906 19
Object Finder 33 8 340 37
Maze Solver 36 8 451 42
Push Ball into Goal 42 15 528 26
Person Follower 52 6 1606 52

Table 6.8: Overview of the execution time in micro seconds of a single control loop for each of the
scenarios.

controller tick, as the action is initiated by the controller, after which all movement is handled by the
Nav2-package. The maze scenario and object finder also remain idle when the robot is rotating, and
therefore take less time on average.

6.4.3 Compilation time

The compilation times of the controllers (and supervisor) for all scenarios have been plotted in figure
6.15. They have all been build in a clean (without cache) environment using the default build tool
for the robotic middleware. For ROS1, this means that the nodes were built using Catkin 5, whereas
Colcon 6 was used for ROS2. Only the time that the controller took to build has been measured, any
other dependencies were ignored. Note that the two navigation scenarios make use of Nav2, which
is a package that is available for ROS2 only. To ensure that the controller of these scenarios could
compile, the action and message definitions of the Nav2-package were manually ported and compiled
for ROS1, such that they could be used in the compilation process of the controller. Obviously, it was
not possible to run these controllers on ROS1. Note that the supervised version of the line follower
only contains information for ROS2, as the supervisor only has a ROS2 version.

From the results, it can be noted that the difference between the compilation time for ROS1 and
the compilation time for ROS2 is relatively big. In some scenarios, compilation for ROS2 takes almost
two times as long. For ROS1, the compilation of the navigation scenarios takes a bit longer than the
other ones. These are the only scenarios that make use of the action library (that provides tools for
action clients and servers). For the other scenarios, there are no notable differences in compilation
times.

6.4.4 Source Lines of Code

Lastly, the source lines of code for all of the scenarios have been counted using sloc7. Rather than just
counting the amount of lines within a directory, the tool strips white lines and comments, leaving only
lines with actual code. This has been measured for the source DSL code and the generated CIF, ROS1
and ROS2 files. Note, that the code of the ROS1 and ROS2 node includes code that was generated
based on the CIF file. The results are shown in the bar chart in figure 6.16.

The ratio between the amount of lines of the DSL and the amount of generated CIF lines is about
2-3, depending on the scenario. For ROS nodes, the ratio between the DSL and the ROS-node is way
bigger (22 on average). Again, the exact values depend on the scenario. It can be observed that the
difference in source code lines between ROS1 and ROS2 nodes is very small. Note that the supervisor
does not have a ROS1 implementation, which is therefore missing from the results.

5https://wiki.ros.org/catkin
6https://docs.ros.org/en/foxy/Tutorials/Colcon-Tutorial.html
7https://www.npmjs.com/package/sloc

74 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.4. RESULTS

0 2 4 6 8 10 12 14 16 18 20

Line Follower (controller)

Line Follower (supervised)

Maze Solver

Object Finder

Obstacle Navigation

Person Follower

Push Ball into Goal

Simple Navigation

Compilation time (s)

ROS1
ROS2

Figure 6.15: Average compilation time for ROS1 and ROS2 nodes.

0 200 400 600 800 1,000 1,200 1,400 1,600

Line Follower (controller)

Line Follower (supervised)

Maze Solver

Object Finder

Obstacle Navigation

Person Follower

Push Ball into Goal

Simple Navigation

Source lines of code

DSL
CIF

ROS1
ROS2

Figure 6.16: Source lines of code for DSL and generated code for all of the scenarios.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 75

6.5. SIMULATION CHAPTER 6. EVALUATION

6.5 Simulation

Each of the scenarios has been simulated using the Gazebo simulation tool 8. Gazebo is an open-
source 3D simulator to verify the behaviour of a robot using a simulator. Although the default Gazebo
simulator can be used without ROS, packages exist to allow integration between ROS and Gazebo [41].

All simulations were executed with the Turtlebot 3 Waffle Pi robot 9, a compact, modular and cus-
tomizable robot that can be used to develop robotic applications in many different fields. The robot
contains two individually controllable wheels, a Lidar sensor and a camera. It supports both ROS1 as
well as ROS2 by running it on a Raspberry Pi, a small single-board computer. The simulations were
done by using ROS2. Gazebo integration is available using publicly available ROS-packages10.

Each of the scenarios requires multiple nodes to be started. To support this, each of the nodes
has been equipped with a package scenario that contains a launch file, which will start the Gazebo
simulation, all the scenario nodes, an emergency stop and any additional required tools like Rviz.

All scenarios were ran individually and each of them executed their goal correctly in the end. Some
of them required minor adjustments or bug fixes to the language to achieve their goal. Screenshots of
the simulations of all eight scenarios can be found in figure 6.17.

In the first scenario (figure 6.17a), the line follower, one can observe that the line follower follows
the yellow line until it no longer finds a line. If the emergency stop is pressed in between, the robot
stops moving. The same holds for when an object is placed in front of the robot. It will temporarily
stop the line detection process. It does slightly rotate away from the line when it stops, as it needs stop
all angular velocity.

In the second scenario (figure 6.17b), the simple navigation scenario, Rviz is launched next to the
simulator and emergency stop. It is preloaded with a map of the room that the robot is in (within
Gazebo). After determining the initial pose within Rviz, the robot is ready to accept navigation com-
mands. After publishing a point, it correctly navigates to the point. Pressing the emergency stop res-
ults in the robot cancelling the navigation. After the emergency stop is back in service, it is ready to
accept new commands.

The third scenario (figure 6.17c) is very similar to the simple navigation scenario. In this case
however, both Rviz as well as Gazebo have been loaded with a default Turtlebot 3 simulation map
which contains obstacles. Executing the same steps as for the simple navigation scenario results in
the robot correctly navigating around the obstacle and reaching the provided destination point.

Starting the fourth scenario (figure 6.17d), which is the obstacle detection scenario, starts a visu-
alization of the camera, next to the simulation environment and emergency stop. This camera view
is annotated with any objects that the Darknet ROS package classifies. As soon as the scenario starts,
the robot is moving along the wall and arbitrarily picks a direction. At some point, it will reach the
stop sign and stop the robot. One observation to make is that rotating the robot for exactly 90 degrees
takes relatively long.

The fifth scenario (figure 6.17e) demonstrates a maze solver. The maze has been implemented by
adding walls to the scenario. The robot has no prior knowledge about the environment. Once started,
the robot starts to move along the wall and follow it on the right-hand side. Because the algorithm does
not find the shortest path to the exit (because the robot has no knowledge about the maze itself), and
rotating takes some time, it takes about a while before the robot has reached the end, but eventually
it finds the exit. It will then move around the field and start over.

The sixth scenario (figure 6.17g) lets the robot push a ball into a goal. By starting the launch file,
the goal and ball detectors are launched as well. Once started, the robot correctly finds the ball and
attempts to move it to the goal. If it is too far off the center of the robot, it corrects it. Once the ball is in
the goal, one can observe that the robot stops moving. It does appear that the position of the ball and
the robot makes the behaviour somewhat fragile, and that the robot can not be too far off the goal.

In the seventh scenario (figure 6.17g), the robot uses the camera feed to detect and follow persons.
The person is placed into the virtual world. When the scenario is started, it shows a visualization of the
persons that the Yolox ROS-package detects. It can be observed that the robot correctly moves towards

8https://gazebosim.org
9https://www.robotis.us/turtlebot-3-waffle-pi/

10https://wiki.ros.org/turtlebot_gazebo

76 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.6. PHYSICAL HARDWARE

(a) Line follower (b) Simple navigation (c) Obstacle navigation

(d) Object finder (e) Maze solver (f) Push ball into goal

(g) Person follower (h) Supervisor

Figure 6.17: Screenshots of the simulation of each of the scenarios.

the person. If the person is moved to a different location, the robot finds the person and drives towards
the person. The emergency stop ensures that no movement takes place if it was pressed.

The last scenario (figure 6.17h) demonstrates similar behaviour to the first scenario, as they both
implement a line following robot. In this case, this is implemented using a supervisor which required
an additional node that allowed for movement of the robot in time steps. The most important part
of the supervisor is that it stops the robot when the emergency stop was pressed. Observe that when
the scenario is launched, both the controller as well as the supervisor are started and that pressing the
emergency stop correctly halts the robot.

6.6 Physical hardware

To highlight that the solution not only works in a simulation, but also in the real world, the line follower
(controller) scenario was also tested on two real robots, the TurtleBot 3 Waffle Pi and the ROSbot 2.011.
Both bots have been tested by running the ROS1 versions of the controller. The DSL already generated
a ROS1-version of the controller. The line detector (which was not built using the DSL), however, was
still targeting ROS2. The line detector was altered in order for it to run on both robots.

The first test was executed on the TurtleBot 3 Waffle Pi. Before the scenario could be run on the
robot, some small adjustments had to be made. First, the line detection needed to be changed from
yellow lines to white lines, as the environment that the robot would be deployed in, only consists of
white lines. Furthermore, the field of view of the line detection needed to be altered. The camera feed
of the real robot consists of more noise and could potentially detect a line while there was no line.
This could be solved by limiting the portion of the camera feed that is considered when detecting
lines. Furthermore, the topic names of the robot were slightly different than the ones that were used
in the simulation. These needed to be altered for the movement and the camera. The data types,
however, were still the same.

When running the program on the TurtleBot, it was found that the line detection was not updating
fast enough. This meant that the robot could not rotate quickly enough for it to keep the line in the

11https://husarion.com/manuals/rosbot/

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 77

6.7. LIMITATIONS CHAPTER 6. EVALUATION

(a) TurtleBot (b) ROSbot

Figure 6.18: Pictures of the line follower on the TurtleBot 3.0 Waffle Pi and the ROSbot 2.0.

center of the camera. At some points, it could take up to 2 seconds until it had processed a new image.
After some debugging, it was found that this was because the raw camera images were used, and they
had to be sent over the network to the line detector node, which uses up a lot of bandwidth. Luckily, the
robot also publishes the compressed images. This required a small modification in the line detector
node, as it now first has to uncompress the image before it could be used. The DSL model itself was
correct. After this was fixed, the line detection worked at a rate of around 15 Hz.

After the robot was running it required a bit of tweaking to find the correct linear and angular velo-
city, to ensure that the robot could rotate quickly enough in order for it to keep the line in center. This
tweaking meant updating the data values in the model that were supplied to the robot. Eventually, a
linear speed of 0.20 m/s and an angular speed of c o r r e c t i o n

450 π/s were used, which allowed the robot
to move correctly. Although the line follower could still be improved (as it sometimes detected a line
that was next to the one the robot was following), the robot supervisory controller works perfectly.
The improvement of the line detector is outside of the scope of the thesis, but steps could be made
such that it uses a light sensor or places a camera directly under the robot. Both were not possible in
this project.

The second test was performed using the ROSbot. Apart from changing the name of the topics that
control the movement of the robot, and the camera, the only required change was to alter the speed
of the robot. Again, this meant that the data values in the model had to be updated. In the case of the
ROSbot, a linear speed of 0.04 m/s was used and an angular speed of c o r r e c t i o n

500 π/s, after which the
robot correctly followed the line.

A picture of both robots following the line is shown in figure 6.18.

6.7 Limitations

The development of the eight scenarios which were created to evaluate the language with a diverse set
of use cases led to some interesting insights. Although these scenarios highlight the expressiveness of
the language, they also help to identify the limitations of the language.

One of the first limitations is that variables can only store relatively simple data, depending on
their use. If a variable is used the supervisory controller itself, the type of the variable is limited to
booleans, enums and integers. If it is a variable that is defined in C++ in the ROS node, it can also store
doubles and strings. But, in neither of these cases it allows users to store complex data, like a ROS
data object. In some cases, users might want to store a complex object, just to pass it to a different
communication item. Due to a lack of time, this has not been implemented.

Next to that, the language does not support casting of doubles to integers or vice versa (or at least
not explicitly, as a division by 1 could be used to convert the type of an integer to a double). These
types are incompatible, and mixing them could lead to type errors. An option would be to have a
function that can cast to either type. But, the language does not have any concept of a function at this
point, which would take quite some time, and has therefore been skipped.

78 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 6. EVALUATION 6.7. LIMITATIONS

In some cases, the controller receives data in the form of an array that has no predefined size. An
example of this could be an array which stores all the detected objects from the camera feed. The
language has no option to count the amount of items in the array and has to rely on other commu-
nication to ensure that this data is passed along. Again, there is no concept of a function that could
be re-used to support this.

Furthermore, the data that is passed within a provide statement is fixed. Although the provide
statement itself can have a condition that needs to be matched in order for it to be sent along with
any communication item, the values within the statement can not use conditional expressions. This
could be solved by using multiple provide statements, but that leads to a lot of duplicate code and the
amount of provide statements can grow very quickly. This can be fixed, but to keep the code clean it
has been chosen not to implement this at the moment.

Another limitation, or more an improvement in this case, is that there is no option to define global
constants which can be reused in expressions. For example, this constant can hold the threshold of
a safe distance. Instead, users have to redefine a magic number in multiple places, with the risk of
getting a mismatch between the number in different places. This can quite easily be implemented,
but had no priority due to limited time.

Users have the option to define multiple enums. However, the names of these enum values have
to be unique globally (within the scope of the robot). The reason for this, is that CIF does not allow
duplicate enum values either. Specifying multiple enums that have overlapping enum value names
results in errors when applying controller synthesis, and therefore causes an error in the controller
generation process. This is a limitation of CIF, but could be repaired by the language, but because of
time, it has been chosen not to do so for now.

There is also a different limitation with respect to enums. In some cases, the logic and transform-
ation rules of an enum are very similar, but have different constants for example. There is no way to
parameterize enums such that they can be reused, causing less duplicate code within the DSL file.
This would be possible, but it needs re-thinking of the way enums are used in general in the language.
An option could be to consider it as methods, but this concept has not been introduced because of
time.

Some scenarios make use of libraries which define the data types and behaviour of components
and the communication that takes place with that component. However, libraries within the DSL
have no option to provide data to this communication. In some cases, this could be desirable. For
example, libraries could provide a default stop message, which provides the robot with a velocity of
0. Implementing this has some side-effects, as the user might be unaware of the data that is already
provided to the robot. An idea could be to make use of inheritance and use override keywords when
supplying data to a communication item from a library. This has not been implemented because of
limited time during the project.

Lastly, there is no validation on topics. Although it is hard to validate the actual names of a topic
and check whether they are present in the middleware (as there is no binding in the language directly
to the middleware), it could come in handy to check the syntax of a topic name. It could be added,
but it would need knowledge of the specific middleware that is used within a project.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 79

Chapter 7

Discussion

7.1 Answers to Research Questions

In this thesis, the Robot Supervisory Controller DSL was presented, which supports the development
of supervisory controllers using model driven engineering. To guide the design of this language, some
research questions were defined upfront. This section provides answers to these research questions.

RQ1. What main approaches are used for modelling robots with DSLs?

Chapter 3, section 3.2.1 contains research about the existing approaches that domain-specific lan-
guages within robotics take. One of the approaches, the vTSL language [23], lets users specify tasks
and define them formally. It defines bindings for the ROS middleware and allows model-to-model
transformations to an external model checker, converting the existing DSL model to a state machine
that can be verified. Note that the behaviour of the middleware is modelled using components stubs,
because the internal state of the middleware or its components is unknown.

A different approach, the MontiArcAutomaton approach, in [46] uses a component and connector
architecture. The tool is text-based, but also supports integration with the Eclipse Modelling Frame-
work to provide visual modelling tools. It models the behaviour of a robot into multiple components,
which communicate with each other using ports. These ports have their own dedicated name and
type and represent communication with a robotic middleware, ROS. Note, that only ROS messages
are supported. The language is build with the MontiCore language workbench, which supports lan-
guage composition in terms of embedding, aggregation and extension. Although the paper defines
multiple languages, MontiCoreAutomaton and MonticoreAutomatonADL, only the first one is pub-
licly available.

Another take is the somewhat older RobotML approach [40], but it still has some interesting per-
spectives to consider. It is based on the Eclipse Modeling Framework (EMF) together with the Papyrus
extension, so it can facilitate code generation for different sets of tools. In the DSL, users can model
the sensors, actuators and control system of a robot. Again, communications are defined using ports.
These ports now both support the publish and subscriber architecture, as well as the request and re-
sponse mechanism. The behaviour of the control system is modelled using state machines which
represent the state of each system and base this on the incoming and outgoing connectors. The lan-
guage also integrates tools for the deployment plan. The language still requires users to manually
define bindings to the robotic middleware.

Lastly, Salty [16] lets users focus on writing specifications rather than implementations. These
are written using the GR(1) specification syntax and allow for specification of initialization, transition
and liveness properties for both the system as well as the environment. Specifications have the form
where an assumed environment state, which results in enforced guarantees about the system. Salty
synthesizes the controllers, which result in a mathematical representation, and converts them to gen-
eric programming language: Python, Java and C++. Salty defines inputs and outputs on the level of

80 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 7. DISCUSSION 7.1. ANSWERS TO RESEARCH QUESTIONS

the controller, which support a basic set of data types. The language also adds some basic support for
sanity checking, debugging and optimization.

To conclude, although there are many languages for robotic DSLs, a few different ones were high-
lighted. Some main approaches consist of both textual as well as graphical languages. There are lan-
guages that use component based approaches, either for verification, or to define different parts of
the robots. Communication between components happens via ports or inputs and outputs on the
controller. Furthermore, both task-based as well specification-based approaches exist.

RQ2. What concepts can be identified in the supervisory control domain for ROS?

All of the concepts that the language defines and requires from the supervisory control domain
can be found in chapter 4, section 4.2. The concepts are based on ROS, supervisory control theory
and related robotic domain-specific languages.

The languages introduces the communication concepts from ROS, namely the messages, services
and actions, together with the interface that links the correct data types in the generated code. It
also uses the concepts from supervisory control theory, which are used to perform the controller syn-
thesis process. It uses the requirements and automata from supervisory control theory to allow state-
based specifications of requirements. An explicit mapping can be found in the chapter on generators,
chapter 5.

CIF was used for the supervisory controller synthesis process. But, because the concepts that are
used are related to supervisory control theory, this tool could be replaced by any tool for supervisory
control theory that meets the following requirements:

• Support supervisory controller synthesis

• Support code generation to C++/C

This is a bit different for the robotic middleware with respect to generalizability. The language in-
troduces communication concepts that are specific to ROS. There are other robotic middlewares [15]
with communication options between different software processes, but they do not have the defini-
tion of messages, services and actions. If this were to be generalized, for example in future work, these
communication types should be decomposed into the publisher and subscriber architecture, and the
client and response model. In this thesis, this has not been done, as the project has been scoped to
ROS to ensure familiarity with the concepts.

RQ3. What kind of requirements should a supervisory controller be able to satisfy?

The thesis focuses on the synthesis as described in Supervisory Control Theory (SCT). Within su-
pervisory control theory, requirements are specified on the controllable events that occur. This means
that the supervisory controller adheres to these requirements by construction, as it is synthesized. To
do so, the DSL uses concepts from SCT to define requirements (which are the properties that the su-
pervisory controller satisfies), as described in section 4.2 of chapter 4. As described in section 2.4, su-
pervisory controllers determines which controllable events are enabled given the state of the plants at
some point based on a set of requirements. The controllable events that are present within the scope
of this thesis, is the communication from the supervisory controller to the middleware. All of the con-
trollable events that are defined for this communication are described in section 5.2. For messages,
this means that the supervisor determines whether messages can be published to a topic or not. For
services, it determines whether the controller can send a request to service server, and for action the
supervisor supervises the sending of a goal, and cancelling an action.

In supervisory control theory, requirements can have of two types. There are requirements that
disable controllable events based on a condition, and requirements that a controllable event needs to
have satisfied in order for it to allow the controllable event to occur. If multiple disable requirements
are specified, they are combined using a disjunction, meaning that if one of the conditions holds, the
controllable event is not allowed in the current state. For requirements that specify a condition that
needs to be true, they are combined using a conjunction, meaning that if one of them evaluates to

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 81

7.2. COMPARISON TO RELATED WORK CHAPTER 7. DISCUSSION

false in the current state of the plants, then the controllable event is not allowed to occur. In the basis
of supervisory control theory, these conditions should allow specifications on the current state of the
plant. CIF supports to have variables defined on a plant, which requirement conditions can use in
expressions like (in)equalities.

To conclude, for supervisory controller synthesis it is important that a supervisory controller can
ensure that one of the plants/components is in a given state. But, CIF also supports the definition of
variables on a plant. Conditions for the requirements can use these variables in expressions to ensure
that they have specific values.

RQ4. Does the proposed DSL-solution work in one or more case studies?

To show that the domain-specific language that was proposed in the thesis works, chapter 6 con-
tains an evaluation in the form of several distinct scenarios. Some of these scenarios use external
nodes from GitHub for ROS, some of them use custom-built nodes for their dedicated task. A super-
visory controller was created for each of them using the DSL by specifying the components, commu-
nication and the set of requirements. The following scenarios were tested:

• Line follower (controller)

• Simple navigation

• Obstacle navigation

• Object finder

• Maze solver

• Push ball into goal

• Person follower

• Line follower (supervisor)

All of the scenarios were running on the simulator and correctly achieved their goal. Although
they worked correctly, some of the scenarios lead to insights that could improve or alter the concepts
of the language. One of the main limitations is that the controller can only store simple data, even if
the data is not required for controller synthesis. In some cases, it might be necessary to temporarily
store incoming data, just to sent it to another node in the middleware. Furthermore, in some cases
it might be necessary to parameterize enum transformations, as in some cases they are very similar,
but have some minor differences. This can cause duplicate code.

The line follower controller was also tested on real hardware running ROS1. It ran on both the
TurtleBot 3 as well as the ROSbot 2.0, whilst only requiring minor adjustments to make the scenario
suitable to the platform. The only modifications to the controller that needed to be made, were speed
changes and platform binding names. The line detector (which is outside the scope of this thesis) did
need some alterations for it to work in the real world as well.

In conclusion, the language works very well for different scenarios. Although there is still room
for improvement, all scenarios could be executed correctly, and one scenario was even tested on two
real, physical, robots.

7.2 Comparison to Related Work

Throughout this thesis, several papers and other literature have been used and referenced. Chapter 3
describes existing work that was already analyzed in related fields, and has been used in this thesis.

The ideas in this thesis have been based on work by Kok et al. in [29]. Here, they use supervisory
control theory with CIF to apply model-driven engineering to autonomous navigation in robotics with
ROS. They model plants, synthesize them and use them in a manually constructed ROS-node. In this

82 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 7. DISCUSSION 7.2. COMPARISON TO RELATED WORK

thesis, the CIF-code is automatically generated, minimizing replication for language users. Further-
more, the ROS-node is generated automatically as well, with the bindings to the robotic middleware
in it, contrary to the work in [29], where the bindings have to be kept up-to-date manually, which can
be very error-prone. Because the ROS bindings are generated automatically, the DSL presented in
this thesis supports both ROS1 and ROS2 out-of-the-box. This thesis generalized the ideas of Kok et
al. into a domain model, supporting more tasks than just autonomous navigation.

The section on related work contains some different approaches for robotic DSLs. Although not
all of the DSL approaches model a robotic controller, some of the concepts used in the languages still
apply. For example, vTSL [23]uses component stubs in verification. These components represent part
of the robotic middleware, whose state is unknown. The definition of a component often is close to
that of a ROS-node, but can consist of multiple nodes. This also applies to the concept of a component
within this thesis. However, the approach is task-based, and the tasks are converted to an input for a
model checker, whereas this thesis constructs a supervisory controller node with synthesis. Further-
more, there is also no code generation for the ROS-node in vTSL. It is listed in their section on future
work.

Again, the MontiCoreAutomaton [46] also makes use of components that represent virtual parts
of the robot. Communication is modelled using ports that have incoming and outgoing data. Simil-
arly, RobotML also uses ports [13]. Both support the publisher/subscriber architecture, and RobotML
supports the request/response architecture as well. Although this is a very good generalization of the
communication, it does not work for actions, which is why this generalization was not applied in this
thesis.

Next to that, RobotML also introduces parts of the ontology of the robot into their model. They
define the concept of a sensor and an actuator, whereas in this thesis, the concepts are kept generic,
such that it can be used for all sorts of ROS nodes. The RobotML language also defines control sys-
tems as state machines, whereas the DSL in this thesis synthesizes a supervisory controller based on
requirements.

There is also the language Salty [16], that, similarly to this thesis, also applies synthesis to extract a
controller. Salty makes us of GR(1) specifications to synthesize a controller, and does therefore not use
supervisory control theory. Furthermore, Salty generates code for generic programming languages,
rather than code for ROS. Also, the specification of properties can be quite hard for someone that has
little to no technical knowledge of the specification format.

A survey that was performed by Nordmann et al. that discusses the state of domain-specific lan-
guages in robotics [33]. The importance of evaluation of robotic DSLs is highlighted, and they make
the distinction between qualitative and quantitative evaluations. Chapter 6 first shows an evaluation
based on a given scenario, and then that scenario is executed on different physical platforms, sim-
ilar to [51] [61] [27] [25] [49] [44]. The thesis also contains quantitative evaluation in terms of memory
usage, build time, execution time and size of the models in lines of code.

The same survey also shows that code generation is the most common scenario for using the
model in model-driven engineering for robotics. Similarly to Salty [16], the language in this thesis
produces a controller. Contrary to the Salty DSL, the DSL in this thesis generates a ROS-node that is
ready to be deployed into a middleware.

A good ecosystem can help the adoption of a language. To highlight the expressiveness of a lan-
guage to potential users, this thesis contains different example scenarios that show the workings, sim-
ilar to [23] [16] [26]. This language has no external documentation apart from this thesis, contrary to
[16] [61]. This is written down in section 7.4 as future work.

The ideas in this thesis are all based on a discrete event system, whereas Roszkowska and Jakubiak
propose a hybrid solution for robot control [48], but in this case for multiple robots. The control of an
individual robot happens using continuous systems, whereas a supervisory controller is only used for
the control of the robots as a whole.

There is also some work done on the verification of a supervisor [22], next to the synthesis, by using
complete testing and combining different parts of the whole workflow of the supervisor development
chain. The approach in this thesis still lacks functionality for complete testing.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 83

7.3. CORRECTNESS OF GENERATED CODE CHAPTER 7. DISCUSSION

7.3 Correctness of Generated Code

Since the thesis uses supervisory controller synthesis, one can argue about the correctness of this
synthesis process. Synthesis ensures the development of a correct-by-design supervisory controller.
For the actual synthesis process, CIF is used. So, the generated supervisory controller will always
supervise that the requirements hold. But, the CIF specification is not directly what the user models,
but rather something that is generated.

It is hard to prove that the generated requirements are correctly generated. To do so, formal se-
mantics of our DSL should be defined and it should be proven that the translation to supervisory
control theory is semantics preserving, which is outside the scope of this thesis. However, one can
argue over why it should be correct. The DSL in this thesis uses concepts that very closely relate to the
concepts and semantics of supervisory control theory, and therefore CIF. The concept of a compon-
ent is directly converted into a plant, together with the corresponding locations and transitions. The
current way of checking whether the generator is correct, is by testing it.

The controllable events for the supervisory controller are mapped to communication within the
DSL. The DSL defines the concept of communication items (messages, services and actions) which are
modelled as one or more controllable events for the supervisory controller. Each requirement defined
in the DSL can be accompanied by one or more communication items. In the generator process for
supervisory controller synthesis, this is directly converted to the corresponding controllable event.
By keeping close to the semantics of supervisory control theory, the language should have similar
correctness properties.

An actual proof of correctness of the CIF-generator (and the resulting node) is outside of the scope
of this thesis. One of the approaches to verify the supervisor is by creating an abstract test reference,
as in [21] and checking its equivalence with the generated concrete controller which is running on the
control system platform.

7.4 Future work

Although a lot of research and work was already done within the scope of this thesis, there is still room
for improvements. To start, there are still some limitations that were found during the development
of the different scenarios. These limitations were highlighted in section 6.7 and range from small
improvements to the introduction of new concepts. For example, there is still work to do on the side
of variables. Variables can only have relatively simple data types, which blocks users from storing a
complex message and sending it to a different node in the middleware. Also, enums can cause a lot of
duplicate code if only a few constants or variables need changing. This requires users to create a new
separate enum that is almost the same as the original one. This could be solved by parameterizing
these enums, for example. There are also some more small improvements that can be made, like the
introduction of constants or the ability to reuse enum value names.

Currently, the language supports Eclipse and Visual Studio Code. But, because the language im-
plements the Language Server Protocol, support can relatively easily be extended to other editors as
well, as long as they support the same protocol. Supporting multiple editors allows users to use the
tools they already know and love.

Furthermore, the scope of this thesis was limited to the use of ROS and CIF. A next step could be
to support multiple middlewares (like MIRO or The Player Project [38] [15]) or synthesis tools. The
support of multiple robotic middlewares would require generalizing some of the concepts that are
currently defined in the language.

The thesis also presented novel work on a supervisor layer instead of a supervisory controller. Al-
though there are still some limitations, it is interesting to see some implementations of re-inforcement
learning with a supervisory layer.

Besides that, as already described in section 7.3, a formal proof of the correctness of the generated
supervisor still misses. The supervisor based on the CIF requirements is correct, but one can only
argue as to why the generated CIF-requirements based on the DSL are correct.

84 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

CHAPTER 7. DISCUSSION 7.4. FUTURE WORK

Lastly, there is a lot of information in this thesis, but there is no website or documentation that
allows users to quickly get started and install the language. This still has to be written and could be
stored on GitHub, for example.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 85

Chapter 8

Conclusion

This thesis presents the RoboSC DSL: a language that allows users to model a robot supervisory con-
troller for ROS using supervisory controller synthesis. Users model all the components that can be
distinguished on the robot, and model their behaviour using different state-based specifications. The
states of these components is updated based on communication from and to ROS. The language user
defines a set of requirements that restrict the communication from the controller to the middleware.
Both the components together with the requirements are then used to synthesize a supervisory con-
troller.

The model defined by the user is used for supervisory control theory (SCT) and ROS generators,
supporting both versions of ROS. CIF is used to apply controller synthesis, after which the controller
is directly integrated into the ROS nodes, ready to be deployed on either a ROS1 or ROS2 platform.
To support the integration with CIF, contributions to the open-source project of CIF have been made
that extend the possibilities of interfacing with the code generator of CIF.

The language defines concepts to send data to the middleware and adds checks to ensure that only
data that is actually required for controller synthesis ends up in the supervisory controller, limiting
the possible states of the controller. It also has a type system that is used for type safety. Besides
that, there is also a set of validation rules that apply semantic validation to the model specified by the
user. Debugging tools have been added as a functionality to the language as well, which visualize the
current state of each of the components together with their variables, making the debugging process
more visual and easier to understand.

The thesis also presents initial work on a different approach, the supervisory layer, rather than
a supervisory controller. The language adds support to connect an existing controller and apply re-
mapping to it, such that all behaviour of the controller is first validated by the supervisor node before
it reaches other destinations in the robotic middleware.

RoboSC was validated using eight scenarios, in each the robot had a different task (apart from the
line follower, one model was intended for a supervisory controller, the other for a supervisory layer).
All of these scenarios have been successfully simulated in a virtual environment, and the line follower
scenario was even successfully tested on two physical robots.

To summarize the contributions of this thesis, RoboSC is presented as a domain-specific language
that stimulates the development of safe ROS-based robotic applications using a supervisory control-
ler. Using the DSL allows users to develop applications faster and safer for both ROS1 as well as ROS2.
The language provides live visualization tools that allow for better understanding and debugging of
the developed model. The DSL can also be used for a supervisory layer approach, which connects to
existing controllers.

The source code and artifacts of the language have been published to GitHub 1. The latest version
of both the plugin for Visual Studio Code, as well for Eclipse, can be downloaded from the GitHub
Releases page.

1https://github.com/bartwesselink/robot-supervisory-controller-dsl

86 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Bibliography

[1] Marian Sorin Adam. Generative programming for functional safety in mobile robots. 2017. 14

[2] Max K.. Agoston. Computer Graphics and Geometric Modeling: Implementation and Algorithms.
Springer, 2005. 60

[3] Maurice H ter Beek, Michel A Reniers, and Erik P de Vink. Supervisory controller synthesis for
product lines using cif 3. In International Symposium on Leveraging Applications of Formal Meth-
ods, pages 856–873. Springer, 2016. 15

[4] Abhishek Bhattacharjee and Daniel Lustig. Architectural and operating system support for virtual
memory. Synthesis Lectures on Computer Architecture, 12(5):1–175, 2017. 72

[5] Marko Bjelonic. YOLO ROS: Real-time object detection for ROS. https://github.com/
leggedrobotics/darknet_ros, 2016–2018. 59, 64

[6] Grady Booch. Uml in action. Communications of the ACM, 42(10):26–28, 1999. 4

[7] Hendrik Bünder. Decoupling language and editor-the impact of the language server protocol on
textual domain-specific languages. In MODELSWARD, pages 129–140, 2019. 38

[8] Jianping Cai, Xuting Wan, Meimei Huo, and Jianzhong Wu. An algorithm of micromouse maze
solving. In 2010 10th IEEE International Conference on Computer and Information Technology,
pages 1995–2000. IEEE, 2010. 65

[9] Sukting Chong, Joe Dinius, and dps53. Turtlebot: Turtlebot 3 waffle pi. https://www.
robotis.us/turtlebot-3-waffle-pi/. Accessed: 2022-05-12. 60

[10] Anne-Lise Courbis, Kahune Luu, Benjamin Grondin, and Kelly Roussel. A model driven architec-
ture framework for robot design and automatic code generation. In 15th China-Europe Interna-
tional Symposium on Software Engineering Education, 2019. 13

[11] Alberto Rodrigues Da Silva. Model-driven engineering: A survey supported by the unified con-
ceptual model. Computer Languages, Systems & Structures, 43:139–155, 2015. 4

[12] Ankush Desai, Tommaso Dreossi, and Sanjit A Seshia. Combining model checking and runtime
verification for safe robotics. In International Conference on Runtime Verification, pages 172–189.
Springer, 2017. 14

[13] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal Ziane. Robotml, a
domain-specific language to design, simulate and deploy robotic applications. In International
conference on simulation, modeling, and programming for autonomous robots, pages 149–160.
Springer, 2012. 11, 83

[14] Sven Efftinge and Miro Spoenemann. Eclipse XText: Why xtext? https://www.eclipse.org/
Xtext/. Accessed: 2022-05-31. 38

[15] Ayssam Elkady and Tarek Sobh. Robotics middleware: A comprehensive literature survey and
attribute-based bibliography. Journal of Robotics, 2012, 2012. 2, 5, 81, 84

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 87

https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros
https://www.robotis.us/turtlebot-3-waffle-pi/
https://www.robotis.us/turtlebot-3-waffle-pi/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Trevor Elliott, Mohammed Alshiekh, Laura R Humphrey, Lee Pike, and Ufuk Topcu. Salty-a do-
main specific language for gr (1) specifications and designs. In 2019 International Conference on
Robotics and Automation (ICRA), pages 4545–4551. IEEE, 2019. 12, 13, 14, 80, 83

[17] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman, William R
Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, et al. The state of the art in
language workbenches. In International Conference on Software Language Engineering, pages
197–217. Springer, 2013. 5

[18] Klaus Fischer, Julian Krumeich, Dima Panfilenko, Marc Born, and Philippe Desfray. Based mod-
eling: A stakeholder-centered approach for model-driven engineering. In Advances and applic-
ations in model-driven engineering, pages 317–341. IGI Global, 2014. 4

[19] Nadia Hammoudeh García, Harshavardhan Deshpande, André Santos, Björn Kahl, and Mirko
Bordignon. Bootstrapping mde development from ros manual code: Part 2—model generation
and leveraging models at runtime. Software and Systems Modeling, pages 1–24, 2021. 13

[20] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021.
arXiv preprint arXiv:2107.08430, 2021. 59

[21] Mario Gleirscher and Jan Peleska. Complete test of synthesised safety supervisors for robots and
autonomous systems. arXiv preprint arXiv:2110.12589, 2021. 15, 84

[22] Mario Gleirscher, Lukas Plecher, and Jan Peleska. Sound development of safety supervisors. arXiv
preprint arXiv:2203.08917, 2022. 15, 83

[23] Christian Heinzemann and Ralph Lange. vtsl-a formally verifiable dsl for specifying robot tasks.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 8308–
8314. IEEE, 2018. 9, 14, 80, 83

[24] Nico Hochgeschwender and Sebastian Wrede. Dsls in robotics: A case study in programming
self-reconfigurable robots. Grand Timely Topics in Software Engineering: International Summer
School GTTSE 2015, Braga, Portugal, August 23-29, 2015, Tutorial Lectures, 10223:98, 2017. 14

[25] Nicole Hutchins. A dsml for a robotics environment to support synergistic learning of ct and geo-
metry. kong, sc, sheldon, j., & li, ky.(eds.). conference. In Proceedings of International Conference
on Computational Thinking Education 2018., 2018. 13, 83

[26] Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and Peter Stone. Task planning in robotics: an
empirical comparison of pddl-and asp-based systems. Frontiers of Information Technology &
Electronic Engineering, 20(3):363–373, 2019. 14, 83

[27] Andrés C Jiménez, John P Anzola, Vicente García-Díaz, Rubén González Crespo, and Liping Zhao.
Pydslrep: A domain-specific language for robotic simulation in v-rep. Plos one, 15(7):e0235271,
2020. 13, 14, 83

[28] J. W. Kok. Synthesis-based engineering of supervisory controller for autonomous robotic navig-
ation. 2020. 15

[29] JW Kok, Elena Torta, Michel A Reniers, JM van de Mortel-Fronczak, and MJG van de Molen-
graft. Synthesis-based engineering of supervisory controllers for autonomous robotic naviga-
tion. IFAC-PapersOnLine, 54(2):259–264, 2021. 1, 14, 16, 82, 83

[30] Hadas Kress-Gazit, Morteza Lahijanian, and Vasumathi Raman. Synthesis for robots: Guarantees
and feedback for robot behavior. Annual Review of Control, Robotics, and Autonomous Systems,
1:211–236, 2018. 15

[31] Steven Macenski, Francisco Martin, Ruffin White, and Jonatan Ginés Clavero. The marathon 2: A
navigation system. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020. 58, 59, 62

88 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Microsoft. Language Server Protocol: Specification. https://microsoft.github.io/
language-server-protocol/specifications/lsp/3.17/specification/. Accessed:
2022-05-09. 38

[33] Arne Nordmann, Nico Hochgeschwender, Dennis Wigand, and Sebastian Wrede. A survey on
domain-specific modeling and languages in robotics. 2016. 9, 13, 14, 83

[34] Arne Nordmann, Nico Hochgeschwender, and Sebastian Wrede. A survey on domain-specific
languages in robotics. In International conference on simulation, modeling, and programming
for autonomous robots, pages 195–206. Springer, 2014. 4

[35] Eindhoven University of Technology. CIF3: Compositional interchange format. https://
cstweb.wtb.tue.nl/cif/trunk-r9682/. Accessed: 2022-05-02. 7

[36] Eindhoven University of Technology. CIF3: Data-based supervisory controller synthesis. https:
//cstweb.wtb.tue.nl/cif/trunk-r9682/tools/datasynth.html. Accessed: 2022-05-
05. 7, 24, 43

[37] Eindhoven University of Technology. CIF3: Global read, local write. https://cstweb.wtb.
tue.nl/cif/trunk-r9682/lang/tut/data/read-write.html. Accessed: 2022-05-05. 33

[38] University of Ulm. Miro: Middleware for robots. http://users.isr.ist.utl.pt/~jseq/
ResearchAtelier/misc/Miro%20-%20Middleware%20for%20Robots. Accessed: 2022-
06-30. 5, 84

[39] OpenCV. OpenCV: Homepage. https://www.robotis.us/turtlebot-3-waffle-pi/. Ac-
cessed: 2022-05-31. 60

[40] RobotML organization. GitHub: Organization page for robotml. https://github.com/orgs/
RobotML/repositories. Accessed: 2022-02-10. 12, 80

[41] OSRF. Gazebo: Compositional interchange format. https://classic.gazebosim.org/
tutorials?tut=ros2_overview. Accessed: 2022-05-02. 76

[42] The Player Project. The player project. https://playerproject.github.io. Accessed:
2022-06-30. 5

[43] Peter J Ramadge and W Murray Wonham. Supervisory control of a class of discrete event pro-
cesses. SIAM journal on control and optimization, 25(1):206–230, 1987. 1, 2, 6, 24

[44] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. Formal specification of robotic
architectures for experimental robotics. In Metrics of Sensory Motor Coordination and Integration
in Robots and Animals, pages 15–37. Springer, 2020. 13, 83

[45] Barry Ridge, Timotej Gaspar, and Aleš Ude. Rapid state machine assembly for modular robot con-
trol using meta-scripting, templating and code generation. In 2017 IEEE-RAS 17th International
Conference on Humanoid Robotics (Humanoids), pages 661–668. IEEE, 2017. 13

[46] Jan Oliver Ringert, Roth Alexander, Rumpe Bernhard, and Wortmann Andreas. Language and
code generator composition for model-driven engineering of robotics component & connector
systems. 2015. 10, 80, 83

[47] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann. Code generator
composition for model-driven engineering of robotics component & connector systems. arXiv
preprint arXiv:1505.00904, 2015. 13

[48] Elzbieta Roszkowska and Janusz Jakubiak. Control synthesis for multiple mobile robot systems.
Transactions of the Institute of Measurement and Control, page 01423312211047061, 2021. 15, 83

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 89

https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/specification/
https://cstweb.wtb.tue.nl/cif/trunk-r9682/
https://cstweb.wtb.tue.nl/cif/trunk-r9682/
https://cstweb.wtb.tue.nl/cif/trunk-r9682/tools/datasynth.html
https://cstweb.wtb.tue.nl/cif/trunk-r9682/tools/datasynth.html
https://cstweb.wtb.tue.nl/cif/trunk-r9682/lang/tut/data/read-write.html
https://cstweb.wtb.tue.nl/cif/trunk-r9682/lang/tut/data/read-write.html
http://users.isr.ist.utl.pt/~jseq/ResearchAtelier/misc/Miro%20-%20Middleware%20for%20Robots
http://users.isr.ist.utl.pt/~jseq/ResearchAtelier/misc/Miro%20-%20Middleware%20for%20Robots
https://www.robotis.us/turtlebot-3-waffle-pi/
https://github.com/orgs/RobotML/repositories
https://github.com/orgs/RobotML/repositories
https://classic.gazebosim.org/tutorials?tut=ros2_overview
https://classic.gazebosim.org/tutorials?tut=ros2_overview
https://playerproject.github.io

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Jacob Sacks, Divya Mahajan, Richard C Lawson, and Hadi Esmaeilzadeh. Robox: an end-to-end
solution to accelerate autonomous control in robotics. In 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 479–490. IEEE, 2018. 13, 14, 83

[50] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and soul of model-
driven software development. IEEE software, 20(5):42–45, 2003. 4

[51] Craig J Sutherland and Bruce MacDonald. Robolang: A simple domain specific language to script
robot interactions. In 2019 16th International Conference on Ubiquitous Robots (UR), pages 265–
270. IEEE, 2019. 13, 14, 83

[52] Robot Operating System. ROS: Nodes. https://wiki.ros.org/Nodes. Accessed: 2022-06-24.
5

[53] Robot Operating System. ROS2: About ros interfaces. https://docs.ros.org/en/
galactic/Concepts/About-ROS-Interfaces.html. Accessed: 2022-03-17. 22

[54] Robot Operating System. ROS2: Changes between ros 1 and ros. http://design.ros2.org/
articles/changes.html. Accessed: 2022-03-08. 5, 6

[55] Robot Operating System. ROS2: Creating a launch file. https://docs.ros.org/en/foxy/
Tutorials/Launch/Creating-Launch-Files.html. Accessed: 2022-05-07. 6

[56] Robot Operating System. ROS2: Rolling documentation. https://docs.ros.org/en/
rolling/. Accessed: 2022-03-08. 5

[57] Robot Operating System. ROS2: Understanding ros2 actions. https://docs.ros.org/en/
galactic/Tutorials/Understanding-ROS2-Actions.html. Accessed: 2022-03-16. 24

[58] Robot Operating System. ROS2: Understanding ros2 nodes. https://docs.ros.org/en/
galactic/Tutorials/Understanding-ROS2-Nodes.html. Accessed: 2022-03-10. 18

[59] Eelco Visser. Webdsl: A case study in domain-specific language engineering. In International
summer school on generative and transformational techniques in software engineering, pages
291–373. Springer, 2007. 4

[60] Johannes Wienke, Dennis Wigand, Norman Koster, and Sebastian Wrede. Model-based perform-
ance testing for robotics software components. In 2018 Second IEEE International Conference on
Robotic Computing (IRC), pages 25–32. IEEE, 2018. 13, 14

[61] Dennis Leroy Wigand and Sebastian Wrede. Model-driven scheduling of real-time tasks for ro-
botics systems. In 2019 Third IEEE International Conference on Robotic Computing (IRC), pages
46–53. IEEE, 2019. 13, 14, 83

[62] W Murray Wonham, Kai Cai, et al. Supervisory control of discrete-event systems. 2019. 6, 16

[63] Andrew Yong. Medium: Maze escape with wall-following algorithm. https://
andrewyong7338.medium.com/maze-escape-with-wall-following-algorithm-170c35b88e00.
Accessed: 2022-04-28. 59

90 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

https://wiki.ros.org/Nodes
https://docs.ros.org/en/galactic/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/galactic/Concepts/About-ROS-Interfaces.html
http://design.ros2.org/articles/changes.html
http://design.ros2.org/articles/changes.html
https://docs.ros.org/en/foxy/Tutorials/Launch/Creating-Launch-Files.html
https://docs.ros.org/en/foxy/Tutorials/Launch/Creating-Launch-Files.html
https://docs.ros.org/en/rolling/
https://docs.ros.org/en/rolling/
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Nodes.html
https://docs.ros.org/en/galactic/Tutorials/Understanding-ROS2-Nodes.html
https://andrewyong7338.medium.com/maze-escape-with-wall-following-algorithm-170c35b88e00
https://andrewyong7338.medium.com/maze-escape-with-wall-following-algorithm-170c35b88e00

Appendix A

Language Concepts Sample

robot ThesisLineFollower {
i n t e r f a c e t w i s t use Twist from geometry_msgs
i n t e r f a c e l i g h t use LightBulbService from robot_common
i n t e r f a c e grabber use GrabberAction from robot_common

datatype o b j e c t Vector3 {
x : double
y : double
z : double

}

datatype o b j e c t Twist {
angular : Vector3
l i n e a r : Vector3

}

datatype enum DistanceEnum from double to {
value >= 10 −> f r e e
d e f a u l t −> obstructed

}

datatype o b j e c t LightBulbRequest {
^ s t a t e : boolean

}

component DistanceSensor {
outgoing message distance with i d e n t i f i e r : "/distance" , type : DistanceEnum

behaviour {
v a r i a b l e current : DistanceEnum = obstructed

i n i t i a l s t a t e sensing {
on response from distance do current := value

}
}

}

component ObstacleGrabber {
action grab with i d e n t i f i e r : "/grab" , request : none , response : none , feedback : none

l i n k s grabber

behaviour {
i n i t i a l s t a t e i d l e {

on request to grab goto grabbing
}

s t a t e grabbing {
on response from grab goto i d l e

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 91

APPENDIX A. LANGUAGE CONCEPTS SAMPLE

}
}

}

component LightBulb {
s e r v i c e s e t _ l i g h t _ s t a t e with request : LightBulbRequest , response : none l i n k s l i g h t

}

component LineDetector {
outgoing message c o r r e c t i o n with i d e n t i f i e r : "/correction" , type : double
outgoing message no_line with i d e n t i f i e r : "/no_line" , type : none

behaviour {
v a r i a b l e current : double = 0 . 0

i n i t i a l s t a t e no_line {
on response from c o r r e c t i o n goto line_found

}

s t a t e line_found {
on response from no_line goto no_line
on response from c o r r e c t i o n do current := value

}
}

}

component Motor {
incoming message move with i d e n t i f i e r : "/vel" , type : Twist l i n k s t w i s t
incoming message stop with i d e n t i f i e r : "/vel" , type : Twist l i n k s t w i s t

}

// Provide communication with the correct speed
provide move with {

l i n e a r : { x : 0 . 4 } ,
angular : { z : LineDetector . current / 100 }

}
provide stop with {

l i n e a r : { x : 0 . 0 } ,
angular : { z : 0 . 0 }

}

// Enable light when no line found
provide s e t _ l i g h t _ s t a t e with { ^ s t a t e : f a l s e } i f LineDetector . l ine_found
provide s e t _ l i g h t _ s t a t e with { ^ s t a t e : true } i f LineDetector . no_line

// Requirements
// Movement
requirement move needs DistanceSensor . current = f r e e
requirement move needs ObstacleGrabber . i d l e
requirement stop needs DistanceSensor . current = obstructed or ObstacleGrabber . grabbing

// Grabbing
requirement DistanceSensor . current = f r e e d i s a b l e s grab

}

Listing A.1: DSL code for the running example in the language concepts section.

92 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Appendix B

Line Follower Scenario

robot L i ne F o l lo w e rC o n t ro l l e r {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs

component LineDetector {
outgoing message c o r r e c t i o n with i d e n t i f i e r : "/correction" , type : double
outgoing message no_line with i d e n t i f i e r : "/no_line" , type : none

behaviour {
v a r i a b l e c u r r e n t _ c o r r e c t i o n : double = 0 . 0

i n i t i a l marked s t a t e no_line {
on response from c o r r e c t i o n goto line_found

}

s t a t e line_found {
on response from no_line goto no_line
on response from c o r r e c t i o n do c u r r e n t _ c o r r e c t i o n := value

}
}

}

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype enum DistanceSafety from LaserScan to {
value . ranges [0] > 0.25 or value . ranges [0] <= 0 . 0 −> s a f e
d e f a u l t −> unsafe

}

component LidarSensor {
outgoing message scan with i d e n t i f i e r : "/scan" , type : DistanceSafety l i n k s l a s e r

behaviour {
v a r i a b l e c u r r e n t _ d i s t a n c e : DistanceSafety = unsafe

on response from scan do c u r r e n t _ d i s t a n c e := value

i n i t i a l marked s t a t e unsafe_distance {
t r a n s i t i o n i f c u r r e n t _ d i s t a n c e = s a f e goto s a f e _ d i s t a n c e

}

s t a t e s a f e _ d i s t a n c e {
t r a n s i t i o n i f c u r r e n t _ d i s t a n c e = unsafe goto unsafe_distance

}
}

}

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 93

APPENDIX B. LINE FOLLOWER SCENARIO

component EmergencyStop from EmergencyStopLibrary import EmergencyStop
component Turt lebotPlat form from T u r t l e b o t L i b r a r y import Turt lebotPlat form

requirement h a l t needs EmergencyStop . stopped or LineDetector . no_line or LidarSensor .
unsafe_distance

requirement move needs EmergencyStop . i n _ s e r v i c e and LineDetector . l ine_found and
LidarSensor . s a f e _ d i s t a n c e

provide move with {
l i n e a r : { x : 0 . 6 } ,
angular : { z : (−LineDetector . c u r r e n t _ c o r r e c t i o n) / 100 }

}

provide h a l t with { l i n e a r : { x : 0 . 0 } , angular : { z : 0 . 0 }}
}

Listing B.1: DSL code for the line follower scenario.

94 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Appendix C

Simple Navigation Scenario

robot SimpleNavigation {
i n t e r f a c e point use PointStamped from geometry_msgs
i n t e r f a c e pose use PoseWithCovarianceStamped from geometry_msgs
i n t e r f a c e navigate use NavigateToPose from nav2_msgs

datatype o b j e c t Quaternion {
x : double
y : double
z : double
w: double

}

datatype o b j e c t Point {
x : double
y : double
z : double

}

datatype o b j e c t Pose {
p o s i t i o n : Point
o r i e n t a t i o n : Quaternion

}

datatype o b j e c t PoseStamped {
pose : Pose

}

datatype o b j e c t PointStamped {
point : Point

}

datatype o b j e c t NavigateToPoseRequest {
pose : PoseStamped

}

component Nav2 {
outgoing message point with i d e n t i f i e r : "/clicked_point" , type : PointStamped l i n k s point

outgoing message i n i t i a l _ p o s e with i d e n t i f i e r : "/initialpose" , type : Pose l i n k s pose
action navigate with i d e n t i f i e r : "/navigate_to_pose" , request : NavigateToPoseRequest ,

response : none , feedback : none l i n k s navigate

behaviour {
v a r i a b l e current_x : double
v a r i a b l e current_y : double
v a r i a b l e current_z : double

i n i t i a l s t a t e n o _ i n i t i a l _ p o s e {
on response from i n i t i a l _ p o s e goto await ing_point

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 95

APPENDIX C. SIMPLE NAVIGATION SCENARIO

}

marked s t a t e await ing_point {
on response from point do current_x := value . point . x , current_y := value . point . y ,

current_z := value . point . z goto has_point
}

s t a t e has_point {
on response from navigate goto await ing_point
on cancel from navigate goto await ing_point

}
}

}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop

requirement navigate needs EmergencyStop . i n _ s e r v i c e
requirement navigate needs Nav2 . has_point

provide navigate with {
pose : {

pose : {
p o s i t i o n : { x : Nav2 . current_x , y : Nav2 . current_y , z : Nav2 . current_z }

}
}

}
}

Listing C.1: DSL code for the simple navigation scenario.

96 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Appendix D

Obstacle Navigation Scenario

robot ObstacleNavigation {
i n t e r f a c e point use PointStamped from geometry_msgs
i n t e r f a c e pose use PoseWithCovarianceStamped from geometry_msgs
i n t e r f a c e navigate use NavigateToPose from nav2_msgs

datatype o b j e c t Quaternion {
x : double
y : double
z : double
w: double

}

datatype o b j e c t Point {
x : double
y : double
z : double

}

datatype o b j e c t Pose {
p o s i t i o n : Point
o r i e n t a t i o n : Quaternion

}

datatype o b j e c t PoseStamped {
pose : Pose

}

datatype o b j e c t PointStamped {
point : Point

}

datatype o b j e c t NavigateToPoseRequest {
pose : PoseStamped

}

component Nav2 {
outgoing message point with i d e n t i f i e r : "/clicked_point" , type : PointStamped l i n k s point

outgoing message i n i t i a l _ p o s e with i d e n t i f i e r : "/initialpose" , type : Pose l i n k s pose
action navigate with i d e n t i f i e r : "/navigate_to_pose" , request : NavigateToPoseRequest ,

response : none , feedback : none l i n k s navigate

behaviour {
v a r i a b l e current_x : double
v a r i a b l e current_y : double
v a r i a b l e current_z : double

i n i t i a l s t a t e n o _ i n i t i a l _ p o s e {
on response from i n i t i a l _ p o s e goto await ing_point

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 97

APPENDIX D. OBSTACLE NAVIGATION SCENARIO

}

marked s t a t e await ing_point {
on response from point do current_x := value . point . x , current_y := value . point . y ,

current_z := value . point . z goto has_point
}

s t a t e has_point {
on response from navigate goto await ing_point
on cancel from navigate goto await ing_point

}
}

}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop

requirement navigate needs EmergencyStop . i n _ s e r v i c e
requirement navigate needs Nav2 . has_point

provide navigate with {
pose : {

pose : {
p o s i t i o n : { x : Nav2 . current_x , y : Nav2 . current_y , z : Nav2 . current_z }

}
}

}
}

Listing D.1: DSL code for the obstacle navigation scenario.

98 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

Appendix E

Object Finder Scenario

robot ObjectFinder {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs
i n t e r f a c e count use ObjectCount from darknet_ros_msgs
i n t e r f a c e boxes use BoundingBoxes from darknet_ros_msgs

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype enum DistanceFront from LaserScan to {
value . ranges [0] >= 0 . 6 −> s a f e _ f r o n t
d e f a u l t −> unsafe_front

}

datatype enum DistanceLeft from LaserScan to {
value . ranges [9 0] >= 0 . 6 −> s a f e _ l e f t
d e f a u l t −> u n s a f e _ l e f t

}

datatype enum DistanceRight from LaserScan to {
value . ranges [2 7 0] >= 0 . 6 −> s a f e _ r i g h t
d e f a u l t −> u n s a f e _ r i g h t

}

datatype o b j e c t BoundingBoxes {
bounding_boxes : array (BoundingBox)

}

datatype o b j e c t BoundingBox {
c l a s s _ i d : s t r i n g

}

datatype o b j e c t ObjectCount {
count : i n t e g e r (0 . . 1)

}

datatype enum ScannedObject from BoundingBoxes to {
value . bounding_boxes [0] . c l a s s _ i d = "stop sign" −> stop_sign
d e f a u l t −> no_object_found

}

component LidarScanner {
outgoing message scan_front with i d e n t i f i e r : "/scan" , type : DistanceFront l i n k s l a s e r
outgoing message s c a n _ l e f t with i d e n t i f i e r : "/scan" , type : DistanceLeft l i n k s l a s e r
outgoing message s c a n _ r i g h t with i d e n t i f i e r : "/scan" , type : DistanceRight l i n k s l a s e r

behaviour {
v a r i a b l e f r o n t : DistanceFront

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 99

APPENDIX E. OBJECT FINDER SCENARIO

v a r i a b l e l e f t : DistanceLeft
v a r i a b l e r i g h t : DistanceRight
v a r i a b l e has_front : boolean = f a l s e

i n i t i a l marked s t a t e sensing {
on response from scan_front do f r o n t := value , has_front := true
on response from s c a n _ l e f t do l e f t := value
on response from s c a n _ r i g h t do r i g h t := value

}
}

}

component Rotator {
incoming message r o t a t e _ l e f t with i d e n t i f i e r : "/rotate_left" , type : none
incoming message r o t a t e _ r i g h t with i d e n t i f i e r : "/rotate_right" , type : none
outgoing message rotate_done with i d e n t i f i e r : "/rotate_done" , type : none

behaviour {
i n i t i a l marked s t a t e awaiting_command {

on request to r o t a t e _ l e f t goto executing
on request to r o t a t e _ r i g h t goto executing

}

s t a t e executing {
on response from rotate_done goto awaiting_command

}
}

}

component ObjectDetector {
outgoing message object_count with i d e n t i f i e r : "/darknet_ros/found_object" , type :

ObjectCount l i n k s count
outgoing message object_scan with i d e n t i f i e r : "/darknet_ros/bounding_boxes" , type :

ScannedObject l i n k s boxes

behaviour {
v a r i a b l e scanned_object_count : i n t e g e r (0 . . 1)
v a r i a b l e scanned_object : ScannedObject

on response from object_count do scanned_object_count := value . count
on response from object_scan do scanned_object := value

i n i t i a l marked s t a t e no_object {
t r a n s i t i o n i f scanned_object_count > 0 and scanned_object = stop_sign goto

object_found
}

s t a t e object_found {
t r a n s i t i o n i f scanned_object_count = 0 goto no_object

}
}

}

component Turt lebotPlat from from T u r t l e b o t L i b r a r y import Turt lebotPlat form
component EmergencyStop from EmergencyStopLibrary import EmergencyStop

requirement move needs LidarScanner . f r o n t = s a f e _ f r o n t and Rotator . awaiting_command and
EmergencyStop . i n _ s e r v i c e

requirement h a l t needs (LidarScanner . l e f t = u n s a f e _ l e f t and LidarScanner . r i g h t =
u n s a f e _ r i g h t and LidarScanner . f r o n t = unsafe_front) or ObjectDetector . object_found or

EmergencyStop . stopped

requirement r o t a t e _ l e f t needs LidarScanner . l e f t = s a f e _ l e f t and ! ObjectDetector .
object_found and EmergencyStop . i n _ s e r v i c e

requirement r o t a t e _ r i g h t needs LidarScanner . r i g h t = s a f e _ r i g h t and ! ObjectDetector .
object_found and EmergencyStop . i n _ s e r v i c e

100 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

APPENDIX E. OBJECT FINDER SCENARIO

requirement { r o t a t e _ l e f t , r o t a t e _ r i g h t } needs Rotator . awaiting_command
requirement { r o t a t e _ l e f t , r o t a t e _ r i g h t } needs LidarScanner . f r o n t = unsafe_front and

LidarScanner . has_front

requirement ObjectDetector . object_found d i s a b l e s move

provide move with { l i n e a r : { x : 0 . 5 } , angular : { z : 0 . 0 } }
provide h a l t with { l i n e a r : { x : 0 . 0 } , angular : { z : 0 . 0 }}

}

Listing E.1: DSL code for the object finder scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 101

Appendix F

Maze Solver Scenario

robot MazeSolver {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs
i n t e r f a c e movement use Twist from geometry_msgs

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype o b j e c t Vector3 {
x : double
y : double
z : double

}

datatype o b j e c t Twist {
l i n e a r : Vector3
angular : Vector3

}

datatype enum DistanceRight from LaserScan to {
value . ranges [2 7 0] < 0 . 7 or value . ranges [2 4 0] < 0 . 7 −> w a l l _ r i g h t
d e f a u l t −> n o _ w a l l _ r i g h t

}

datatype enum DistanceFront from LaserScan to {
value . ranges [0] < 0 . 6 −> w a l l _ f r o n t
d e f a u l t −> no_wal l_front

}

datatype enum DistanceDiagRight from LaserScan to {
value . ranges [2 2 5] < 0 . 9 −> w a l l _ d i a g _ r i g h t
d e f a u l t −> n o _ w a l l _ d i a g _ r i g h t

}

component Distance {
outgoing message s c a n _ r i g h t with i d e n t i f i e r : "/scan" , type : DistanceRight l i n k s l a s e r
outgoing message scan_front with i d e n t i f i e r : "/scan" , type : DistanceFront l i n k s l a s e r
outgoing message s c a n _ d i a g _ r i g h t with i d e n t i f i e r : "/scan" , type : DistanceDiagRight

l i n k s l a s e r

behaviour {
v a r i a b l e r i g h t : DistanceRight = n o _ w a l l _ r i g h t
v a r i a b l e f r o n t : DistanceFront = no_wal l_front
v a r i a b l e d i a g _ r i g h t : DistanceDiagRight = n o _ w a l l _ d i a g _ r i g h t

on response from s c a n _ r i g h t do r i g h t := value
on response from scan_front do f r o n t := value
on response from s c a n _ d i a g _ r i g h t do d i a g _ r i g h t := value

102 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

APPENDIX F. MAZE SOLVER SCENARIO

i n i t i a l marked s t a t e sensing {}
}

}

component Platform {
incoming message movement with i d e n t i f i e r : "/cmd_vel" , type : Twist l i n k s movement
incoming message h a l t with i d e n t i f i e r : "/cmd_vel" , type : Twist l i n k s movement

incoming message t u r n _ l e f t with i d e n t i f i e r : "/rotate_left" , type : i n t e g e r
incoming message t u r n _ r i g h t with i d e n t i f i e r : "/rotate_right" , type : i n t e g e r

outgoing message rotate_done with i d e n t i f i e r : "/rotate_done" , type : none

behaviour {
i n i t i a l marked s t a t e ready {

on request to t u r n _ l e f t goto turning
on request to t u r n _ r i g h t goto turning

}

s t a t e turning {
on response from rotate_done goto ready
on response from stop goto ready

}
}

}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop

// Rules when following left-walls
requirement movement needs (Distance . r i g h t = w a l l _ r i g h t and Distance . f r o n t = no_wal l_front

)
or (Distance . f r o n t = no_wal l_front and Distance . r i g h t = n o _ w a l l _ r i g h t and Distance

. d i a g _ r i g h t = n o _ w a l l _ d i a g _ r i g h t)

requirement t u r n _ r i g h t needs Distance . r i g h t = n o _ w a l l _ r i g h t and Distance . d i a g _ r i g h t =
w a l l _ d i a g _ r i g h t

requirement t u r n _ l e f t needs Distance . f r o n t = w a l l _ f r o n t

requirement { t u r n _ l e f t , t u r n _ r i g h t , movement} needs Platform . ready

requirement EmergencyStop . stopped d i s a b l e s {
movement ,
t u r n _ l e f t , t u r n _ r i g h t

}

requirement h a l t needs EmergencyStop . stopped

// Provide communication with correct data
provide t u r n _ l e f t with 90 // degrees
provide t u r n _ r i g h t with 90 // degrees

provide movement with { l i n e a r : { x : 0 . 3 } }
provide h a l t with { l i n e a r : { x : 0 . 0 } }

}

Listing F.1: DSL code for the maze solver scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 103

Appendix G

Push Ball Into Goal Scenario

robot MazeSolver {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs
i n t e r f a c e movement use Twist from geometry_msgs

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype o b j e c t Vector3 {
x : double
y : double
z : double

}

datatype o b j e c t Twist {
l i n e a r : Vector3
angular : Vector3

}

datatype enum DistanceRight from LaserScan to {
value . ranges [2 7 0] < 0 . 7 or value . ranges [2 4 0] < 0 . 7 −> w a l l _ r i g h t
d e f a u l t −> n o _ w a l l _ r i g h t

}

datatype enum DistanceFront from LaserScan to {
value . ranges [0] < 0 . 6 −> w a l l _ f r o n t
d e f a u l t −> no_wal l_front

}

datatype enum DistanceDiagRight from LaserScan to {
value . ranges [2 2 5] < 0 . 9 −> w a l l _ d i a g _ r i g h t
d e f a u l t −> n o _ w a l l _ d i a g _ r i g h t

}

component Distance {
outgoing message s c a n _ r i g h t with i d e n t i f i e r : "/scan" , type : DistanceRight l i n k s l a s e r
outgoing message scan_front with i d e n t i f i e r : "/scan" , type : DistanceFront l i n k s l a s e r
outgoing message s c a n _ d i a g _ r i g h t with i d e n t i f i e r : "/scan" , type : DistanceDiagRight

l i n k s l a s e r

behaviour {
v a r i a b l e r i g h t : DistanceRight = n o _ w a l l _ r i g h t
v a r i a b l e f r o n t : DistanceFront = no_wal l_front
v a r i a b l e d i a g _ r i g h t : DistanceDiagRight = n o _ w a l l _ d i a g _ r i g h t

on response from s c a n _ r i g h t do r i g h t := value
on response from scan_front do f r o n t := value
on response from s c a n _ d i a g _ r i g h t do d i a g _ r i g h t := value

104 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

APPENDIX G. PUSH BALL INTO GOAL SCENARIO

i n i t i a l marked s t a t e sensing {}
}

}

component Platform {
incoming message movement with i d e n t i f i e r : "/cmd_vel" , type : Twist l i n k s movement
incoming message h a l t with i d e n t i f i e r : "/cmd_vel" , type : Twist l i n k s movement

incoming message t u r n _ l e f t with i d e n t i f i e r : "/rotate_left" , type : i n t e g e r
incoming message t u r n _ r i g h t with i d e n t i f i e r : "/rotate_right" , type : i n t e g e r

outgoing message rotate_done with i d e n t i f i e r : "/rotate_done" , type : none

behaviour {
i n i t i a l marked s t a t e ready {

on request to t u r n _ l e f t goto turning
on request to t u r n _ r i g h t goto turning

}

s t a t e turning {
on response from rotate_done goto ready
on response from stop goto ready

}
}

}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop

// Rules when following left-walls
requirement movement needs (Distance . r i g h t = w a l l _ r i g h t and Distance . f r o n t = no_wal l_front

)
or (Distance . f r o n t = no_wal l_front and Distance . r i g h t = n o _ w a l l _ r i g h t and Distance

. d i a g _ r i g h t = n o _ w a l l _ d i a g _ r i g h t)

requirement t u r n _ r i g h t needs Distance . r i g h t = n o _ w a l l _ r i g h t and Distance . d i a g _ r i g h t =
w a l l _ d i a g _ r i g h t

requirement t u r n _ l e f t needs Distance . f r o n t = w a l l _ f r o n t

requirement { t u r n _ l e f t , t u r n _ r i g h t , movement} needs Platform . ready

requirement EmergencyStop . stopped d i s a b l e s {
movement ,
t u r n _ l e f t , t u r n _ r i g h t

}

requirement h a l t needs EmergencyStop . stopped

// Provide communication with correct data
provide t u r n _ l e f t with 90 // degrees
provide t u r n _ r i g h t with 90 // degrees

provide movement with { l i n e a r : { x : 0 . 3 } }
provide h a l t with { l i n e a r : { x : 0 . 0 } }

}

Listing G.1: DSL code for the push ball into goal scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 105

Appendix H

Person Follower Scenario

robot PersonFollowing {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs
i n t e r f a c e boxes use BoundingBoxes from bboxes_ex_msgs

datatype o b j e c t BoundingBoxes {
bounding_boxes : array (BoundingBox)

}

datatype o b j e c t BoundingBox {
xmax : double
xmin : double
img_width : double

}

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype enum Distance from LaserScan to {
value . ranges [0] > 5 . 0 and value . ranges [3 5 0] > 5 . 0 and value . ranges [1 0] > 5 . 0 −> f r e e
d e f a u l t −> person

}

component Scanner {
outgoing message scan with i d e n t i f i e r : "/scan" , type : Distance l i n k s l a s e r

behaviour {
v a r i a b l e distance : Distance

i n i t i a l marked s t a t e sensing {
on response from scan do distance := value

}
}

}

component YoloxDetection {
outgoing message bounding_boxes with i d e n t i f i e r : "/bounding_boxes" , type :

BoundingBoxes l i n k s boxes

behaviour {
v a r i a b l e current_image_size : double = 0 . 0
v a r i a b l e current_xmax : double = 0 . 0
v a r i a b l e current_xmin : double = 0 . 0

on response from bounding_boxes do current_image_size := value . bounding_boxes [0] .
img_width ,

current_xmax := value . bounding_boxes [0] . xmax ,
current_xmin := value . bounding_boxes [0] . xmin

106 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

APPENDIX H. PERSON FOLLOWER SCENARIO

goto detected

i n i t i a l s t a t e i n i t i a l i z i n g {}
marked s t a t e detected {}

}
}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop
component Turt lebotPlat form from T u r t l e b o t L i b r a r y import Turt lebotPlat form

// Base requirements
requirement h a l t needs EmergencyStop . stopped or Scanner . distance = person
requirement move needs EmergencyStop . i n _ s e r v i c e

requirement move needs YoloxDetection . detected

// Data for movement
provide move with {

l i n e a r : { x : 0 . 0 } ,
angular : { z : ((YoloxDetection . current_image_size / 2) − ((YoloxDetection . current_xmin

+ YoloxDetection . current_xmax) / 2)) / 1000 }
} i f YoloxDetection . detected and Scanner . distance = person

provide move with {
l i n e a r : { x : 0 . 2 } ,
angular : { z : ((YoloxDetection . current_image_size / 2) − ((YoloxDetection . current_xmin

+ YoloxDetection . current_xmax) / 2)) / 1000 }
} i f YoloxDetection . detected and Scanner . distance = f r e e

provide move with {
l i n e a r : { x : 0 . 0 } ,
angular : { z : 0 . 3 }

} i f YoloxDetection . i n i t i a l i z i n g

provide h a l t with { l i n e a r : { x : 0 . 0 } , angular : { z : 0 . 0 }}
}

Listing H.1: DSL code for the person follower scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 107

Appendix I

Supervisor Scenario

robot LineFollowerSupervised {
i n t e r f a c e l a s e r use LaserScan from sensor_msgs
i n t e r f a c e movement use Twist from geometry_msgs

datatype o b j e c t Vector3 {
x : double
y : double
z : double

}

datatype o b j e c t Twist {
l i n e a r : Vector3
angular : Vector3

}

component LineDetector {
outgoing message c o r r e c t i o n with i d e n t i f i e r : "/correction" , type : double
outgoing message no_line with i d e n t i f i e r : "/no_line" , type : none

behaviour {
v a r i a b l e c u r r e n t _ c o r r e c t i o n : double = 0 . 0

i n i t i a l marked s t a t e no_line {
on response from c o r r e c t i o n goto line_found

}

s t a t e line_found {
on response from no_line goto no_line
on response from c o r r e c t i o n do c u r r e n t _ c o r r e c t i o n := value

}
}

}

datatype o b j e c t LaserScan {
ranges : array (double)

}

datatype enum DistanceSafety from LaserScan to {
value . ranges [0] > 1 . 0 and value . ranges [2 7 0] > 0 . 5 and value . ranges [9 0] > 0 . 5 and value

. ranges [4 5] > 0 . 7 and value . ranges [3 0 5] > 0.7−> s a f e
d e f a u l t −> unsafe

}

component LidarSensor {
outgoing message scan with i d e n t i f i e r : "/scan" , type : DistanceSafety l i n k s l a s e r

behaviour {
v a r i a b l e c u r r e n t _ d i s t a n c e : DistanceSafety = unsafe

108 RoboSC: a DSL for supervisory controller synthesis of ROS-based applications

APPENDIX I. SUPERVISOR SCENARIO

on response from scan do c u r r e n t _ d i s t a n c e := value

i n i t i a l marked s t a t e unsafe_distance {
t r a n s i t i o n i f c u r r e n t _ d i s t a n c e = s a f e goto s a f e _ d i s t a n c e

}

s t a t e s a f e _ d i s t a n c e {
t r a n s i t i o n i f c u r r e n t _ d i s t a n c e = unsafe goto unsafe_distance

}
}

}

component SimpleMovement {
incoming message move with i d e n t i f i e r : "/simple_movement" , type : Twist l i n k s movement

}

component EmergencyStop from EmergencyStopLibrary import EmergencyStop

requirement move needs LineDetector . l ine_found
requirement move needs EmergencyStop . i n _ s e r v i c e
requirement move needs LidarSensor . s a f e _ d i s t a n c e

provide move with {
l i n e a r : { x : 0 . 6 } ,
angular : { z : (−LineDetector . c u r r e n t _ c o r r e c t i o n) / 100 }

}
}

Listing I.1: DSL code for the supervisor scenario.

RoboSC: a DSL for supervisory controller synthesis of ROS-based applications 109

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Approach
	Research Questions
	Structure of the Thesis

	Preliminaries
	Introduction
	Model-Driven Engineering (MDE)
	Domain-Specific Languages (DSL)

	Robot Operating System
	Supervisory Control Theory
	CIF

	Related work
	Introduction
	Robotic Domain-Specific Languages
	Approaches
	Evaluation
	Artifacts
	Ecosystem

	Supervisory Controllers

	Language
	Introduction
	Concepts
	Base
	Components
	Data types
	Expressions
	Interfaces
	Communication
	Automata
	Data provisioning
	Communication requirements

	Data Flow
	Type System
	Inference

	Validation
	Data provisioning check
	Result type check
	Integer range required check
	Interface link required check
	No assignment on messages to node check
	No assignment outside scope check
	Single component behaviour check
	Single default enum case check
	Single initial state check
	Marked state check
	Type check
	Uniqueness check
	Enum value name state overlap
	Variable data type check

	Assumptions
	Supervisory Layer
	Overview
	Differences to supervisory controller approach
	Limitations

	Workbench
	Supported editors

	Generators
	Introduction
	Supervisory Control Theory
	Plants
	Requirements
	Enums
	Data elimination
	Mapping
	CIF

	ROS
	Supervisory Controller
	Communication
	Data
	Metadata
	Mapping
	Supervisory Layer

	Generator Configuration
	Debugging

	Evaluation
	Introduction
	Evaluation Goals
	Scenario 1 - Line follower
	Scenario 2 - Simple navigation
	Scenario 3 - Obstacle navigation
	Scenario 4 - Object finder
	Scenario 5 - Maze solver
	Scenario 6 - Push ball into goal
	Scenario 7 - Person follower
	Scenario 8 - Supervisor

	Implementation
	Shared components
	Scenario 1 - Line follower
	Scenario 2 - Simple navigation
	Scenario 3 - Obstacle navigation
	Scenario 4 - Object finder
	Scenario 5 - Maze solver
	Scenario 6 - Push ball into goal
	Scenario 7 - Person follower
	Scenario 8 - Supervisor

	Results
	Memory usage
	Execution time
	Compilation time
	Source Lines of Code

	Simulation
	Physical hardware
	Limitations

	Discussion
	Answers to Research Questions
	Comparison to Related Work
	Correctness of Generated Code
	Future work

	Conclusion
	Bibliography
	Appendix
	Language Concepts Sample
	Line Follower Scenario
	Simple Navigation Scenario
	Obstacle Navigation Scenario
	Object Finder Scenario
	Maze Solver Scenario
	Push Ball Into Goal Scenario
	Person Follower Scenario
	Supervisor Scenario

