
 Eindhoven University of Technology

MASTER

Optimization of Multilevel ∆-Quantum Machine Learning Based on Neural Networks

van Wanrooij, Quinten M.P.M.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/5175f323-a3b4-48f4-98ae-ac80326bef73


Master Thesis

Optimization of Multilevel ∆-Quantum
Machine Learning Based on Neural

Networks

Author:
Quinten van Wanrooij, 1000722

October 31, 2022

Supervisor:
Björn Baumeier



Abstract

The term Quantum Machine Learning (QML) refers to the application of machine
learning methods for the prediction of properties of nanoscale objects, such as molecules.
In a mathematical setting, these properties can, in principle, be derived from the solu-
tions to the multi-electron Schrödinger equation. In practice, this equation cannot be
solved exactly (except for simple systems) and one needs to resort to approximations of
different computational complexity and varying accuracy. The machine learning used
for this purpose, requires high-accuracy reference data to make predictions of the
properties of interest purely based on the molecular structure (composition of atoms
and their arrangement). This direct QML approach, targeting the highest quality
reference, has shown to require quite a lot of, computationally expensive, datapoints.

In this project, an alternative QML approach, ∆-QML, will be investigated, in
which the goal is to learn the difference ∆t

b(m) between a low-accuracy baseline
Db(m) and the high-accuracy property of interest Dt(m), for molecule m, such that
Et(m) = Eb(m)+∆t

b(m). Specifically, we focus on multilevel ∆-QML, in which one (or
more) intermediate quality reference calculations (with a lower computational cost)
are introduced, i.e.

Et(m) = Eb(m) + ∆i
b(m) + ∆t

i(m). (1)

Where both ∆ terms are obtained by two individually trained neural networks. In
this report there is chosen to use ’SchNet’, a neural network that is particularly used
to model atomistic systems.

With the combined use of the multilevel ∆-QML method and SchNet, we inves-
tigated which intermediate step would result in the best balance between the mean
absolute error (MAE) and computational cost. Furthermore, we looked into the possi-
bility to use the Wasserstein distance – a metric used in optimal transport problems to
measure the distance between two distributions – as a QML-free method to determine
the intermediate step as well. Lastly, we investigated what reduction in computa-
tional cost can be achieved with the ∆-QML method combined with SchNet as neural
network. This investigation suggests that (for the QM7b dataset) it is best to use the
datapoints calculated with the MP2 quantum chemistry method under the numerical
implementation of the cc-pVDZ basis set as intermediate step. Which is showed both
by computational results and the Wasserstein distance. In total we managed to reduce
the 543 days required to calculate all atomization energies on the reference level to 48
days of calculations to produce enough datapoints for training our SchNet models at
chemical accuracy.

1



Contents

1 Introduction 3

2 Background in Quantum Mechanics - a concise overview 5
2.1 Hartree–Fock Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Møller–Plesset perturbation theory . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The coupled-cluster method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Numerical implementation and basis sets . . . . . . . . . . . . . . . . . . . . 9

3 Overview of the QM7b dataset 11

4 Description of SchNet 13

5 ∆-QML method 17
5.1 Delta-QML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Multilevel Delta-QML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Wasserstein distance 22

7 Results 24
7.1 Delta-QML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Multilevel Delta-QML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Wasserstein distance with sub-sampling . . . . . . . . . . . . . . . . . . . . 33

8 Conclusion 35

2



1 Introduction

Chemistry is all around around us, from producing materials, our food and developing new
drugs. As of today, chemistry relies to a large degree on observations and experimentation,
by trial and error. Eventually these experiments lead to new materials and molecules, such
that they can be used for a new drug for instance. These experiments take much time
before a chemical with the desired structure and properties is discovered. As the properties
and structure of a molecule follows the laws of quantum mechanics, it might be beneficial
to use a model to determine those rather than via experiments[Sch+17].

From a theoretical perspective, solutions to the exact Schrödinger equation of Quan-
tum Mechanics are hard or impossible to obtain. Instead, approximate methods, such as
the Hartree–Fock method, are used. However, even these are time consuming, especially
when the size of the molecule, i.e. the number of atoms and electrons, and the number
of molecules increases. Today, machine learning methods show great potential as they
are able to incorporate pre-known quantum mechanical knowledge[Lu+19]. One of these
machine learning methods is implemented in the SchNet package, which uses a neural
network and is designed to model atomistic systems. In this thesis SchNet will be used to
optimize Multilevel ∆-Quantum Machine Learning based on Neural Networks

To construct a neural network usable for predicting atomic properties with sufficient
accuracy, (training)data needs to be generated. In Section 2 a concise overview of quantum
mechanics, used to generate the data, will be given. Three approximate quantum chem-
istry methods and three basis sets for their numerical implementation are described. In
this thesis, the QM7b dataset [Zas+19] will be used, consisting of 7211 different molecules,
each molecule consists of a combination of at most seven of the C,N,O,S,Cl atoms. The
details of this dataset are discussed in Section 3. This QM7b dataset will be used to train
neural networks, which are chosen to be SchNet in this thesis (Section 4). SchNet is a
neural network that is specifically designed to model atomistic systems. Therefore, SchNet
is good at predicting energies and forces based on the atomic charges and positions of the
atoms in the molecules. SchNet takes only the atoms and their arrangement as input
values to predict the property of interest. To reach chemical accuracy for the predictions,
one needs a large data set of accurate (we will define this later) data, constructed by quan-
tum chemistry calculations at considerable cost. For instance, calculations of the data for
QM7b at the highest possible accuracy take about 550 days.

To reduce the training data required, we will use a (cheap) baseline as starting point
and train a neural network on the difference between the reference data and the baseline.
We call this the ∆-Quantum Machine Learning method (∆-QML method). We first con-
sider the regular ∆-QML method, before proceeding to the multilevel ∆-QML method,
based on the same principle, but takes one or more intermediate steps, with the aim to
reduce the overall computational cost (Section 5).

With the multilevel ∆-QML method and SchNet as neural network, we will answer
the following research questions:

• (R1) Which intermediate step results in the largest reduction of computational cost
of the datapoints?

3



• (R2) Is it possible to use a QML-free method to rank the available intermediate
steps?

• (R3) How much can we reduce the computational costs by predicting the effective
averaged atomization energies instead of calculating all of them?

Note, research question R3 refers to the calculations performed with the CCSD(T) method
under the cc-pVDZ basis set (see Section 2).

To answer research question R2, we describe the Wasserstein distance as a candidate
to rank the available intermediate steps in a QML-free way (Section 6). In Section 7,
we answer the research questions described above. By first using the ∆-QML method
and Wasserstein distance to give us some insight about which level of calculation would
be useful to use as intermediate step in the multilevel ∆-QML. We continue with the
obtained ’best’ intermediate step, to reduce the total computational cost for the datapoints
significantly, by a simple trial and error method on the number of training samples used
in the SchNet models. Lastly, we will summarize our findings and give recommendations
for further research in Section 8. Specifically, regarding cases when the data is not already
precomputed, i.e. active learning methods.

4



2 Background in Quantum Mechanics - a concise overview

To construct a neural network usable for predicting atomic properties with sufficient ac-
curacy and reduced costs, it will be preferable to have data generated in multiple ways.
In this section we will describe three quantum chemistry methods and describe three ba-
sis sets that are usable within the chemistry methods to obtain the datapoints. These
quantum chemistry methods are all based on solving the wave function Ψ for a molecular
system made out of M atoms and N electrons.

The coordinates Rα of the individual nuclei with charges Zα and ri of the individual
electrons are combined into the variables R = (R1,R2, . . . ,RM ) and r = (r1, r2, . . . , rN ),
respectively, furthermore Mα denotes the mass of the nuclei. With this, the many-body
Hamiltonian Ĥ reads

Ĥ = −1

2

M∑
α=1

Mα∆Rα

︸ ︷︷ ︸
T̂nuc

+
1

2

M∑
α,β=1,
α ̸=β

ZαZβ

|Rα −Rβ|︸ ︷︷ ︸
V̂nuc-nuc

−1

2

N∑
i=1

∆ri

︸ ︷︷ ︸
T̂el

+
1

2

N∑
i,j=1,
i ̸=j

1

|ri − rj |︸ ︷︷ ︸
V̂el-el

−
M∑
α=1

N∑
i=1

Zα

|ri −Rα|︸ ︷︷ ︸
V̂nuc-el

,

(2)

where T̂ and V̂ are the the kinetic and potential energy operators, involving the nuclear
(nuc) and electronic (el) subsystems.

The time evolution of the many-body wave function Ψ(r,R, t) is obtained by solving
the time-dependent Schrödinger equation [Sch26]

ĤΨ(r,R, t) = i
∂

∂t
Ψ(r,R, t). (3)

In practice however, (3) can only be solved exactly for M = N = 1, which corresponds to
a hydrogen atom, so we will need to explore several approximations to make the problem
tractable. The standard method of solving a partial differential equation such as (3) is
the method of separation of variables in which one makes a product function ansatz, i.e.,
Ψ(r,R, t) = Φ(r,R)U(t).

If the Hamiltonian in (2) is not explicitly time-dependent, its expectation value, the
total molecular energy Emol, is constant, and the time evolution of the wave function is
given by U(t) = C exp (−iEmolt). The spatial component Φ(r,R) of the wave function
and the total energy are obtained as solutions of the stationary Schrödinger equation

ĤmolΦ(r,R) = EmolΦ(r,R). (4)

Note that in (4) both r and R are explicit variables of this eigenvalue problem. Since
the nuclei are much heavier than the electrons, one can further assume that the elec-
trons adjust instantaneously to the nuclear motion, i.e., the electrons move adiabatically.
To express this situation in formal terms, we consider a fixed arrangement of nuclei R.

5



2.1 Hartree–Fock Theory

The Hamiltonian representing the electronic system that interacts with the fixed nuclear
configuration reads

Ĥel = Ĥel(R) = T̂el + V̂nuc-el(R)︸ ︷︷ ︸
1-electron operator

+ V̂el-el︸︷︷︸
2-electron operator

. (5)

In this situation, R is no longer a variable of the electronic system, but a fixed
parameter for the electronic degrees of freedom. The corresponding stationary electronic
Schrödinger equation is given by

Ĥel(R)Φν(r;R) = Eν(R)Φν(r;R), (6)

where
{
Φν(r;R)

}
is a set of adiabatic electronic wave functions.

2.1 Hartree–Fock Theory

The electronic Schrödinger equation (6) is in practice still not solvable for many-body
systems, due to the presence of the electron-electron interaction V̂el-el. Without it, the
electronic Hamiltonian is simply the sum of non-interacting single-particle Hamiltonians,
i.e., Ĥel =

∑N
i=1 ĥi(ri).

As
[
ĥi(ri), ĥj(rj)

]
= 0, the corresponding N -electron wave function Φ0

ν is a product

of single-particle functions, also known as the Hartree product,

Φ0
ν(r) =

N∏
i=1

ϕ0
νi(ri) (7)

and the total energy is given by

E0
ν =

N∑
i=1

ε0νi . (8)

However, the Pauli principle tells us that the electronic wave functions must be anti-
symmetric with respect to particle exchange, and therefore must change sign whenever
the coordinates of two electrons are interchanged. To meet this requirement, the elec-
tronic wave function is constructed from single-particle functions ϕi as a so-called Slater
determinant [Sla28]:

Φ(r;R) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) · · · ϕ1(rN )
ϕ2(r1) · · · ϕ2(rN )

...
. . .

...
ϕN (r1) · · · ϕN (rN ).

∣∣∣∣∣∣∣∣∣∣
(9)

The idea of the Hartree–Fock theory is that instead of starting from predetermined single-
particle functions and enforcing antisymmetry, we can start from the requirement of an-
tisymmetry and use the variational principle to derive a set of equations that determine
suitable effective single particles for the interacting case. Let us take a closer look at the

6



2.1 Hartree–Fock Theory

expression for the total electronic energy (suppressing the parametric dependence on R)
for any given wave function Φ:

E[Φ] =

∫
Φ∗(r)ĤelΦ(r)d

3Nr. (10)

The variational theorem states that this energy functional is minimal for the true ground-
state wave function, i.e., E[Φ] ≥ E0, where E0 is the ground-state energy. Denote now ΦHF

as the many-body wave function in Hartree–Fock theory as a Slater-determinant ansatz.
By a variational principle, the energy as a functional of the determinant approximates the
true ground-state energy E0:

E[ΦHF] =
⟨ΦHF|Ĥel|ΦHF⟩
⟨ΦHF|ΦHF⟩

≥ E0. (11)

Minimizing the above energy functional via the effective single-particle functions ϕj

under the constraint that they are normalized is achieved by

δ

δϕ∗
j (r)

E[ΦHF]−
N∑
i=1

εHF
i

(∫
ϕ∗
i (r)ϕi(r)dr− 1

) = 0 (12)

and yields a set of equations that allow to determine the functions ϕj :{
−∆r

2
+ V̂ext(r) +

∫
n(r′)vC(r, r

′)dr′
}
ϕHF
j (r)

−
∫

n(r, r′)vC(r, r
′)ϕHF

j (r′)dr′ = εHF
j ϕHF

j (r),

(13)

with vC = |r− r′|−1. Here, we have also introduced the electronic densities

n(r) =
N∑
i=1

ϕ∗
i (r)ϕi(r) n(r, r′) =

N∑
i=1

ϕ∗
i (r)ϕi(r

′). (14)

The first integral in (13) corresponds to the classical Hartree integral [Har28] of the
Coulomb interaction VH(r) =

∫
n(r′)vC(r, r

′)dr′, and the second integral defines the ex-

change potential operator V̂x(r) =
∫
n(r, r′)vC(r, r

′) · · · dr′. The N -electron problem has
thus been mapped on a set of effective single-particle problems with the Hartree–Fock
potential

V̂HF(r) = V̂ext(r) + V̂H(r) + V̂x(r). (15)

Considering the double counting of i and j interactions ϕHF
i and ϕHF

j , the total energy of
the ground state is

EHF
0 =

N∑
i=1

εHF
i − 1

2
(EH + Ex) (16)

where

EH =

∫
n(r)vC(r, r

′)n(r′)drdr′

Ex = −
∫

n(r, r′)vC(r, r
′)n(r′, r)drdr′.

(17)

7



2.2 Møller–Plesset perturbation theory

In summary, the Hartree–Fock theory assumes that the many-electron wave function
takes the form of a Slater determinant. Since the exact wave functions cannot be expressed
as single determinants, the problem with this assumption is that Hartree–Fock methods
cannot fully represent the solution of the exact many-electron Schrödinger equation (6) and
the corresponding total energy differs from the true ground-state energy. This difference
is often referred to as correlation energy. There are multiple methods that aim to improve
on this Hartree–Fock method. These methods improve the accuracy of the solutions to
the Schrödinger equation, however that is paired to a larger computational cost to obtain
the solutions. Furthermore, the accuracy and cost depends on the basis set that is used to
describe the waves of the electrons. We will discuss two of the post-Hartree–Fock methods
and three different basis sets in the remainder of this section.

2.2 Møller–Plesset perturbation theory

The Møller–Plesset (MP) perturbation theory enhances the Hartree–Fock method by
adding electron correlation effects by using the Rayleigh–Schrödinger perturbation the-
ory. This theory adds a small disturbance P̂ to an unperturbed Hamiltonian Ĥ0:

Ĥ = Ĥ0 + λP̂ . (18)

Here, λ is a real parameter, which determines the size of the disturbance added to the
Hamiltonian. In the case of the Møller–Plesset perturbation, the unperturbed Hamiltonian
Ĥ0 is given by:

Ĥ0 =

N∑
i=1

fi. (19)

Where fi denotes the Fock operator for the i-th electron in the system and is defined
in terms of the exchange operator Kj(i), which defines the quantum effect produced by
exchanging two electrons, and Coulomb operator Jj(i), which defines the repulsive force
between two electrons:

fi = hi +
∑
Mo

2JMo(i)−KMo(i) (20)

where we only sum over the occupied molecular orbitals.

The Hartree–Fock ground state wavefunction ΦHF is an eigenfunction of Ĥ0 with an

eigenvalue E
(0)
0 . The perturbation P̂ is taken as:

P̂ = H − Ĥ0, (21)

with H being the electronic Hamiltonian (Equation 5).

This perturbation determines the first-order energy correction E
(1)
0 , as the energy

correction is equal to the expectation value of the perturbation. By adding E
(0)
0 and E

(1)
0 ,

we end up with the result of the Møller–Plesset perturbation theory. Note that E
(0)
0 is the

same as EHF
0 in Equation 16. Therefore, the Møller–Plesset theory adds a correction to

the Hartree-Fock method based on the perturbation. There are different variants of this
method available, dependent on the order of the correction that is added. For example,
MP2 includes the second-order energy correction in the ground state energy calculation.

8



2.3 The coupled-cluster method

This second order energy correction E(2) is defined as follows:

E(2) =
∑
J ̸=0

⟨ΦJ |H(1)|Φ0⟩⟨Φ0|H(1)|ΦJ⟩
E

(0)
0 − E

(0)
J

. (22)

Where, E
(0)
J is the eigenvalue of ΦJ , a multiply excited determinant and a eigenfunction

of Ĥ0. The method can be extended to include third order (MP3), fourth order (MP4) or
even higher orders for the energy correction. Resulting in better results for the Hartree–
Fock equations, but also becoming more complicated to perform the calculations.

There are advantages and drawbacks to the Møller–Plesser method. Clearly it en-
hances the results with comparison to the Hartree–Fock method, as the method is designed
tackle one of the weaknesses of the Hartree–Fock method. However, this enhancement
comes at a computational cost to calculate the perturbation and higher-order energy cor-
rections. Furthermore, the method lacks the infinite-order effects of the coupled cluster
method, which we will discuss in the next subsection, meaning the latter method will be
more accurate than the Møller–Plesset method.

2.3 The coupled-cluster method

The coupled-cluster (CC) method relates the exact electronic wavefunction Φ to the
Hartree–Fock wavefunction Φ0 by a cluster operator C:

Φ = eCΦ0, (23)

where the exponential eC is defined by the series expansion:

eC = 1 + C +
1

2
C2 +

1

3!
C3 . . . . (24)

Cluster operator C is equal to the sum
∑N

i=1Ci, where Ci is the effect of the i-electron
excitation operator, where

C1Φ0 =
∑
a,p

tpaΦ
p
a, C2Φ0 =

∑
a,b,p,q

tpqabΦ
pq
ab, . . . (25)

are satisfied. Dependent on the variant of the coupled-cluster method, we know which
excitation operators Ci are exactly used. Most common are the abbreviations S, D, T
and Q to distinguish respectively between single, double, triple and quadruple excitations.
Meaning that CCDT stands for the coupled cluster method where C is given by C2 +C3.

Another variant, CCSD(T), is used to obtain datapoints within the QM7b dataset,
on which we will elaborate in Section 3. In the name of the method, the brackets around
’T’ mean that an estimate is used for the connected triples. So in CCSD(T), the cluster
operator C consists of C1, C2 and C3, however the contribution of the triple excitations
is calculated non-iteratively using perturbation theory.

2.4 Numerical implementation and basis sets

To represent the molecular orbitals in the Hartree–Fock method exactly, we need a com-
plete set of basis functions χ to perform the calculations on. However, this is not compu-
tationally feasible due to the basis set being infinite. Therefore, it is important to use a

9



2.4 Numerical implementation and basis sets

basis set that minimizes the number of two-electron integrals to evaluate by keeping the
amount of basis functions low; and choose these basis functions smart to minimize the
cost of calculating the integrals.

One choice for the basis functions are the Slater-type orbitals (STO), which depend
on the nucleus of the atom with atomic number Z and on quantum numbers n,l and ml:

Ψnlml
(r, θ, ϕ) = NrNeff−1e−Zeffρ/neffYlml

(θ, ϕ). (26)

Where N is a normalization constant, ρ = r/a0 and Ylml
is a spherical harmonic. Fur-

thermore, neff and Zeff are respectively the effective principal quantum number and the
effective nuclear charge. A complete basis set consists of all possible STOs (see section 9.4
in ), which is infeasible to use, so a basis set consists usually only of a small number of
STOs. However, for the Hartree–Fock method such a basis set is still impractical to use,
because of the amount of two-electron integrals.

To reduce the number of two-electron integrals, Guassian-type orbitals (GTO) were
introduced. These Gaussian orbitals are of the form:

gijk(r) = Nxiyjzke−ar2 . (27)

Here r represent the coordinates of the nucleus and N is a normalization constant. Fur-
thermore, α is a positive exponent and lastly i, j, k are non-negative integers. There are
different types of these Gaussian orbitals, dependent on the sum of the values for i, j, k.
If i+ j + k = 0, then we have s-type orbitals; when they sum to one, we are using p-type
orbitals; and so on. The advantage of GTOs is that the product of two Gaussians can be
written as one Gaussian. Reducing the computational costs to evaluate the two-electron
integrals. Despite the upside of the Gaussian orbitals, they need a larger basis set to rep-
resent the orbitals around the nucleus to achieve the same accuracy as STOs. To reduce
the computational cost of the expanded basis set, we can group several GTOs together
by taking a linear combination of them. This grouping of GTOs is known as ’contracted
Gassian functions’.

Clearly, there are multiple possibilities when choosing which GTOs should contract
with each other. Let ng denote the number of Gaussians in the initial basis set. By
using a least square fit of the ng Gaussians to a set of, already optimized, STOs. The
basis set consisting of these ng optimized Gaussians is then used as the STO-ngG basis
set. In the dataset used in this paper (see Section 3) STO-3G, the variant with ng = 3,
is one of the available basis sets. Another basis set based on contracting Gaussians is
the 6-31G basis set. In this contraction method the orbital of the inner shell and the
valence shell are contracted differently. For the inner shell, a single contracted Gaussian,
composed of six primitive orbitals, is used. For the valence shell the orbital is given by
one contracted Gaussian consisting of three original orbitals, with the addition of a single
diffuse primitive. This basis set is more accurate than the STO-3G basis set, however
the number of basis set functions increases quickly when used on larger molecules. As a
consequence, the computational time becomes larger than with the STO-3G basis. Lastly,
we will explain the most accurate basis set available in the dataset, cc-pVDZ. This basis
set extends on the 6-31G basis set, by using twice as many basis functions for the valence
shells. Thus the amount of basis functions increases with respect to the 6-31G basis set,
resulting in an increase of computational cost.

10



3 Overview of the QM7b dataset

The research performed in this report is on the molecules in the QM7b dataset. It consists
of 7211 molecules, where each molecule consists of a maximum combination of at most
seven C, N, O, S, Cl atoms, saturated with H atoms. In other words the molecules consist
of C, N, O, S, Cl, H atoms with seven or less ’heavy’ atoms and enough H atoms to satisfy
the preferable amount of bonds for each atom. As an example, in Figure 1, one of the
molecules in the dataset is shown. This molecule adheres the constraints to belong to the
QM7b dataset, since there are only five ’heavy’ atoms: one nitrogen atom and four carbon
atoms. Furthermore, the hydrogen atoms ensure that each carbon atom has four bonds
and the nitrogen has three bonds.

Figure 1: Example of a molecule in QM7b dataset.

For these 7211 molecules, the ’effective averaged atomization energies’ and ’total
energies’ are calculated with nine different levels of accuracy. We will refer to these nine
levels as the nine ’levels of theory’, which consist of a combination of one of the basis
sets and quantum chemistry methods described in Section 2. For the basis set, we have
the option between STO-3G, 6-31G and cc-pVDZ and for the quantum chemistry method
between HF, MP2 and CCSD(T). In Table 1 these combinations are shown with their
notation.

basis set
cc-pVDZ DH,c DM,c DC,c

6-31G DH,6 DM,6 DC,6

STO-3G DH,s DM,s DC,s

HF MP2 CCSD(T)
quantum chemistry method

Table 1: The nine combinations of basis sets and methods with their notation, where the
arrows indicate an increase in accuracy and computational cost.

11



As mentioned in Section 2, the accuracy and cost of the calculations needed to gen-
erate the data depend on the method and basis set. The arrows, next to the table above,
indicate an increase in computational cost to obtain the datapoints, accordingly the accu-
racy of the datapoints also increases. Therefore, DC,c will be used as the target value in
the ∆-QML model. We discuss the computational costs of these methods in more details
in Section 5 (Figure 3). In the rest of this paper we denote the effective averaged atom-
ization energy of a molecule m calculated at level Dq,b by Eq,b(m) for q ∈ {H,M,C} and
b ∈ {s, 6, c}. The effective averaged atomization energy of molecule m is defined as:

E(m) = Etotal(m)−
∑
I∈m

nI(m) · eI(m), (28)

where nI(m) is the number of atom I in molecule m and eI(m) is the effective atomic
energy of atom I. The values eI(m) are determined by a linear fit of Etotal(m) =∑

I∈m nI(m) · eI(m) over all molecules m in the dataset. The total energies Etotal are
calculated as described in Section 2 and thus dependent on the combination of quantum
chemistry method and basis set. Note that in the remainder of this report, we denote the
effective averaged atomization also with just ’atomization energy’.

The dataset can be found as ZIP at [Zas+19]. The ZIP file is placed under the
’Supporting Info’ tab and can be freely downloaded from there.

12



4 Description of SchNet

In order to predict the target values DC,c based on a representation of the molecules, a
neural network will be used. There are a lot of different networks available, but in this the-
sis SchNet will be used. This choice is largely based on the fact that SchNet is specifically
designed to model atomistic systems. Therefore, SchNet is good at predicting energies and
forces based on the atomic charges and positions of the atoms in the molecules. SchNet is
freely available as option within the ’SchNetPack’ package on GitHub[Sch]. The descrip-
tion of SchNet that follows in the rest of this section is largely based on the description of
the inventors, found in the papers about SchNet[Sch+18] and SchNetPack[Sch+19]. For
further details about the possibilities within SchNetPack and the results that they achieve,
we refer you to these papers.

Neural networks consist of 2 components: a representation block and a prediction
block. Here representation means: the way that the available data gets stored to be
usable within the neural network. An example of a representation for neural networks can
be the Coulomb Matrix C[Rup+12]. This matrix depicts the interaction between atoms
in the following way:

Ci,j =

0.5Z2.4
i for i = j

Zi·Zj

Ri,j
for i ̸= j

,

where Zi is the atomic charge Z of atom i and Ri,j the distance between atoms i and
j. In the case of the Coulomb Matrix, the representation block will simply consist of the
calculations of the values in each of the matrices. A neural network can be trained on the
available molecules based on the values in the Coulomb Matrix. The Coulomb Matrix is
easy and fast to calculate, however it has some drawbacks. One of them is the lack of
uniqueness, i.e. the same molecule can have multiple valid Coulomb Matrices, depending
on the ordering of the atoms.

Another variant for the representation block is used within SchNet: since SchNet is an
end-to-end architecture, both the representation and the prediction block will be trained
on the data. So there is no predetermined representation like the Coulomb matrix, but
a flexible one which adapts to the available data. Therefore, SchNet trains to predict a
predetermined property Pm of molecule m, consisting of n atoms, by only using nuclear
charges Zm = (Zm

1 , . . . , Zm
n ) and positions Rm = (rm1 , . . . , rmn ) as input, where n is the

number of atoms in molecule m.

13



Figure 2: Overall architecture of SchNet[Sch+18].

Figure 2 shows the architecture of the neural network SchNet. The network consists
of a few building blocks that reappear multiple times throughout the model. When we
look at the left hand side of Figure 2, we see the overall structure of SchNet that starts
with an embedding layer to initialize the representation block. Next, a predetermined
number of interaction blocks will be used. These interaction blocks are displayed in more
detail in the middle part of the figure. Each interaction block consists of continuous-filter
convolutions, for which its composition is shown on the right hand side in Figure 2. The
process of training ends with sum pooling, which simply sums the atomic contributions,
in order to get to the final prediction.

SchNet represents the atoms of molecule m in each layer by a feature vector x of a
preset size F per layer. Let molecule m consist of n atoms, with nuclear charges Z and
positions R. Furthermore, let X l = (xl

1, . . . ,x
l
n) be the representation of the n atoms at

layer l. This representation is just a way to document the values of the different neurons in
the network in a convenient way. The number of features F is simply the number of used
neurons. Note that the numbers in Figure 2 are the number of output neurons in that
layer and hence having the same lengths as the feature vectors xi, F . Next, the interaction
of the different kind of layers on the representation vectors is explained in more detail.

Embedding layer: This layer is the initializing layer of SchNet and is solely based on
the atomic charges Zi:

x0
i = aZi , ∀i ∈ {1, . . . , n}.

The embeddings aZ are initialized at random and optimized during training. Note that
if atoms i and j are the same, the feature vectors for these vectors will also be the same,
i.e. if Zi = Zj , then x0

i = x0
j .

Dense layer: This layer, as the name indicates, is a dense layer. Dense layers in neural
networks are layers that are fully connected to the previous layer. Hence, the output
vector xl+1

i is determined by all entries of feature vector xl
i. This is simply done by a

weighted sum of the entries with the addition of an additional bias b:

xl+1
i = xl

iW
T + bl, ∀i ∈ {1, . . . , n}.

14



Atom-wise layer: These layers share a lot of similarities with the dense layers. However,
they differ in the way that weights are applied to the entries of xl

i. Instead of the weighted
sum used in the dense layers, a weighted function is used. Meaning that xl+1

i is obtained
by a function, which takes all entries of xl

i as input. Furthermore, a bias b is added for
each neuron, giving us the following result for xl+1

i .

xl+1
i = W lxl

i + bl, ∀i ∈ {1, . . . , n}.

Note, W l is a function and not a matrix. These functions and their biases are fixed within
each layer l, which ensures that SchNet remains scalable with respect to the number of
atoms in molecule m.

Shifted softplus: This layer simply applies an activation function to the output of the
previous layer. More concretely, the shifted softplus function is used as activation function:

ssp(xl
i) = ln (0.5ex

l
i + 0.5).

The shift in the function makes sure that ssp(0) = 0, which enhances the convergence of
SchNet.

Sum pooling: This is the last step in the structure of SchNet and results in the prediction
for molecule m. Before this step the number of features is reduced by the use of several
atom-wise layers. As shown in Figure 2 the initial number of features (64) is first reduced
to 32 and then to only one. So for last layer L we end up with a feature vector X =
(xL

1 , . . . ,x
L
n), where x

L
i is only a number and not a vector anymore. Applying sum pooling

on this feature vector, simply means summing all the xi:

Ê =
n∑

i=1

xLi .

The SchNet structure consists of a combination of all these different layers, which
occur in the different building blocks of SchNet. As said before, SchNet produces its pre-
diction by training the representation and the prediction blocks. The representation block
gives the intermediate feature vector X l after all the interaction blocks. After which the
prediction block proceeds by transforming this feature vector into the eventual prediction.
On the left hand side of Figure 2, the green and yellow blocks are the components of the
representation block and the blue parts form the prediction block.

This leaves us with the explanation of the continuous-filter convolutional layers
(cfconv). These layers are specifically designed by the developers of SchNet to handle
atomic interactions within the molecules. To achieve this, the convolution between atom
i and its surrounding atoms is taken into account. Let us denote the set of neighbours of
atom i by nbh(i). Then convolution of atom i in SchNet becomes:

xl+1
i =

∑
j∈{nbh(i)}

xl
i ⊙W l(||rj − ri||).

Here W l is a filter-generating network, that maps atomic distances to filter values, i.e.
W l : R 7→ RF . Furthermore, ’⊙’ is the element wise multiplication between xi and W l.

15



Therefore, the convolutions are all calculated feature-wise, which is computationally more
efficient. Note that cross-feature processes are performed by the atom-wise layers.

This filter-generating network can be used to incorporate chemical knowledge into
the system. For example, known invariances of molecules are included into SchNet. More
precisely the model is rotational invariant by using the pairwise distances ||rj−ri|| between
atoms, instead of the relative positions of the atoms.

16



5 ∆-QML method

In this section we give an overview of the computational costs per combination of chemistry
method and basis set. With the computational costs at hand, we will describe the role
of ∆-QML in this project. ’regular’ QML, ∆-QML and multilevel ∆-QML and their
differences will be described in this section. Furthermore, we will explain our choice for
using multilevel ∆-QML in this project.

5.1 ∆-QML

As mentioned before, SchNet will be used as neural network to eventually predict the
reference values DC,c from the input of the molecular structure. Additionally, we want to
achieve chemical accuracy (≈ 1kcal/mol) as cheap as possible, since the goal is to reduce
the computational costs for generating high-quality data. To achieve the reduction in
computational cost, we want to use inexpensive data as predictor for the ’effective aver-
aged atomization energies’, instead of having to perform the high cost data calculations.
Therefore, we will first look at the cost bound to the different combination of basis set and
method. Note that the cost is measured as the computation time (CPU) in seconds. We
split the dataset in 7 groups, where each element in a group is determined by the number
of ’heavy’ atoms and denote them by CONSCli. Here i denotes the number of ’heavy’
atoms and ranges from one to seven, for example CONSCl2 is the subset containing all
the molecules with exactly 2 non-hydrogen atoms. The distinction between the different
CONSCl levels is logical to make, as the calculations for the datapoints largely depend on
the number of ’heavy’ atoms.

CONSCl1 CONSCl2 CONSCl3 CONSCl4 CONSCl5 CONSCl6 CONSCl7
100

101

102

103

104

105

av
er

ag
e 

CP
U 

tim
e 

(s
)

HF/STO-3G
HF/6-31G
HF/cc-pVDZ
MP2/STO-3G
MP2/6-31G
MP2/cc-pVDZ
CCSD(T)/STO-3G
CCSD(T)/6-31G
CCSD(T)/cc-pVDZ

Figure 3: Average computational time per combination of chemical method and basis set,
depends on the number of ’heavy’ atoms.

17



5.1 Delta-QML

The figure above shows that datapoints on DC,c level are extremely expensive with
respect to the other combinations of basis set and method. On the other hand datapoints
on DH,s are as expected the cheapest to obtain. Note that the difference in basis set
influences the computational costs more than the difference in the chemistry method. To
analyze the reduction in costs later in this report, we assume that the computational costs
are on a linear line with respect to the CONSCl level, when a log-scale y-axis is used, i.e.
the computational costs follow an exponential curve (with base 10). With this assumption,
we have an average cost (ac) per CONSCli level for calculating the atomization energy. To
make the analysis of the results easier, we take the averaged sum of ac over the number of
molecules in each CONSCl level. As a result we have a single value as computational cost,
shown in Table 2. Note that this procedure is repeated for each combination of chemistry
method and basis set individually. The advantage of using a single cost value for all
molecules is that we do not have to check which datapoints are exactly in the training’s
samples for the SchNet model.

DH,s DH,6 DH,c DM,s DM,6 DM,c DC,s DC,6 DC,c

3.5 7.5 322.0 4.1 9.9 462.2 5.9 26.3 6509.4

Table 2: The nine different combinations of chemistry method and basis with respect to
their computational cost in seconds.

Using the value for DC,c in the table above, we calculate the total computational cost:
6509.4 · 7211 = 46939283.4 seconds, which is over 543 days, to obtain the atomization
energies with the highest accuracy. To reduce the computational time, we want to predict
atomization energies by using the help of only a subset of the available data. By default,
we can use SchNet to predict the atomization energy directly. Meaning we train the
neural network from a single level of datapoints. Obviously, it will give the best results
if the training data is obtained on the same level as the target data, i.e. on the DC,c

level. However, the amount of expensive datapoints is then entirely determined by the
training size. Let SN,v

C,c denote a trained SchNet model on level DC,c of training size N and

validation set of size v. Then we denote the predicted atomization energy Êm for molecule
m by:

Êm ≈ SN,v
C,c (m).

To limit the training size, we will use more initial information before we start training the
neural network. One way to achieve this, is to use a baseline as starting point and train
a neural network on the difference between the reference data and the baseline. Since
we train the model on differences of quantum mechanical properties, we call this the ∆-
Quantum Machine Learning method or ∆-QML method in short. As the baseline we can
for instance take the energies calculated at DH,s level, but another combination between

basis set and chemistry method can form the baseline as well. Let ∆C,c
H,s(m) denote the

atomization energy difference EC,c(m)−EH,s(m) for molecule m. Note that the difference
can become negative when EH,s is larger than EC,c. Let S[·]N,v denote a trained SchNet
model on the differences, where N, v are respectively the training and validation sizes.
This gives us the following notation for the predicted atomization energies for molecule
m:

Êm ≈ EH,s(m) + S[∆C,c
H,s(m)]N,v.

For both these methods, the direct ML and the ∆-QML, we can use a SchNet model

18



5.2 Multilevel Delta-QML

to see how the learning curves differ from each other. Figure 4 shows these learning curves
over the number of training samples N .

0 1000 2000 3000 4000 5000
Training size (N)

2

4

6

8

10

12

14

16

M
AE

 (k
ca

l/m
ol

)

Direct ML
-QML

Figure 4: Learning curves of the direct QML and ∆-QML methods.

One can notice that the learning curve of the ∆-QML method starts with a steeper
slope, meaning that the MAE on the predictions decreases faster on the training size than
with the direct ML method. As an example, to get below a MAE of 4 kcal/mol the direct
ML method needs 3000 datapoints and the ∆-QML method needs only 2000. So the ∆-
QML method already improves on applying a SchNet model directly to the data, however
we can improve on the ∆-QML method as well. Despite the addition of pre knowledge
in the form of a baseline to start from, which reduces the amount of training data N to
achieve the same mean absolute error (MAE), we remain at the point that all training
data uses its atomization energy at DC,c cost to calculate the necessary differences. To
move away from the restriction that all needed training samples use their atomization
energy at DC,c level, we will use a multilevel ∆-QML method.

5.2 Multilevel ∆-QML

The multilevel ∆-QML method is based on the same principle as the ∆-QML method,
but takes one or more intermediate steps. Let us consider only one intermediate step for
now. Again we can start with baseline DH,s and reference values DC,c. For simplicity,
let us denote the intermediate level with i, which is one of the 7 remaining combinations
in Table 1. As we have one intermediate level, we end up with 2 differences. Namely,
the difference between the baseline and the intermediate calculations and between the

19



5.2 Multilevel Delta-QML

intermediate level and the reference data:

∆i
H,s(m) = Ei(m)− EH,s(m),

∆C,c
i (m) = EC,c(m)− Ei(m).

Let S1 denote the SchNet model trained on the first distances ∆i
H,s and S2 the neural

network subject to the second distances ∆C,c
i with respectively N1, N2 as training sizes and

v1, v2 as validation set sizes. Then the prediction for the atomization energy of molecule
m becomes:

Êm ≈ EH,s(m) + S1[∆
i
H,s(m)]N1,v1 + S2[∆

C,c
i (m)]N2,v2 .

Comparing this to the single ∆-QML method, we hope to have a more accurate baseline:
EH,s(m) + ∆i

H,s and less irregular ∆C,c
i , since the computations on Di level are more

accurate to train a neural network on. Both these advantages result in N2 being smaller
than N , therefore, needing less samples from the expensive DC,c level. However, we need
at least max{N1, N2} training samples on the Di level of accuracy. If we require that both
SchNet models are trained on (fully) independent datapoints, we need N1 + N2 samples
on Di level. Whereas, by creating as much overlap between the samples, we only have a
training size of max{N1, N2} at that accuracy.

Zm Rm

SN1,v1
1

∆̂i
H,s(m)

SN2,v2
2

∆̂C,c
i (m)EH,s(m) Êm+ =+

Figure 5: Overview of how the multilevel ∆-QML method arrives at its predictions.

The figure above shows an overview of how we use SchNet in combination with the
∆-QML method. The red blocks in Figure 5 are trained SchNet models on the respective
distances. These models take the atomic charges Zm and atomic positions Rm of molecule
m as input (blue circles) to get predictions ∆̂i

H,s and ∆̂C,c
i for molecule m. These predic-

tions are summed together with the available atomization energy at DH,s level to get to

the final value Ê(m).

In conclusion, we will use the multilevel ∆-QMl method in combination with SchNet
to predict the ’effective averaged atomization energy’ of a molecule with the intention to
reduce the computational costs associated with generating the atomization energies on a
high accuracy level. With the data that is available to us, we have different possibilities
for the intermediate step in the multilevel ∆-QML method. In the following sections of

20



5.2 Multilevel Delta-QML

this report we investigate, which intermediate step performs the best and whether we can
use the Wasserstein distance as machine learning-free ranking of the intermediate step.
Furthermore, we will determine the computational reduction one can achieve by using
the combination of SchNet and the multilevel ∆-QML method, instead of applying the
CCSD(T) method with cc-pVDZ basis to all the molecules.

21



6 Wasserstein distance

As mentioned, we want to achieve chemical accuracy with the lowest computational cost
for the datapoints. Therefore, we need to determine which intermediate step will be the
best one. As we train neural networks on differences, we basically are training the networks
to transport data from one distribution to another one. This transport of data has a lot
of similarities to an optimal transport problem, as our SchNet models basically try to
transport the distribution of the baseline to the distribution of the intermediate step with
the least amount of work and the same for the distribution of the intermediate step to
the reference data. In Figure 6, the histogram of the available data on DH,s level and the
kernel density estimate (kde) on DC,c level are shown. Clearly the kde does not belong to
the histogram, since they are not perfectly on top of each other. However, both DH,s and
DC,c represent the effective averaged atomization energies for the same molecules. Thus
we would like to adjust the histogram on DH,s level in such way that it represents the
values of the DC,c level, i.e. shift the histogram to match the kde on DC,c level.

100 50 0 50 100 150 200 250
effective averaged atomization energy (kcal/mol)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

De
ns

ity

DC, c

DH, s

Figure 6: Histogram of the atomization energies calculated on DH,s and kernel density
estimate of the atomization energies calculated on DC,c level.

This gives us 2 options to determine the best intermediate step. Firstly, we can
indeed see it as an optimal transport problem and use some metric from that field to
derive a choice. Secondly, we can train SchNet on each of the remaining options and
investigate which intermediate step gives the best results, i.e. trial and error. Let us
explain the more theoretical option: the optimal transport problem. As explained above,
the optimal transport problem arises when one wants to move one distribution onto another
distribution while minimizing the amount of work. This can either be performed discrete-
wise (on histograms) or continuously (on densities). Clearly our data is not continuous,
so we will focus on the discrete case.

22



We can see each histogram as a probability vector a, where its length corresponds
to the number of bins in the histogram and the value of ai is equal to the probability of
an observation being in bin i. This probability is just the ratio between the frequency of
observations being in bin i and the total amount of observations. Clearly 0 ≤ ai ≤ 1 ∀i
and

∑
i ai=1, hence a is indeed a probability vector. Now we let a denote the probability

vector corresponding to the histogram we want to transport to a second histogram with
probability vector b. Note that both probability vectors not necessarily need to have the
same length, since the histograms could consist of a different number of bins. For now we
assume that vectors a and b respectively have k and l entries.

Furthermore, we define matrix C as the cost matrix, where Ci,j denotes the cost to
move from ai to bj and matrix P as the coupling matrix, where Pi,j denotes the amount
of mass flowing from ai to bj . With this coupling matrix we can define the admissible
transportations by U(a, b):

U(a,b) = {P ∈ Rk×l
+ |

∑
j

(Pi,j) = a and
∑
i

(Pi,j) = b.}

Hence, U(a,b) is the set of possible couplings that move vector a to b. Using this notation
we can construct Kantorovich’s optimal transport problem:

LC(a,b) = min
P∈U(a,b)

∑
i,j

Ci,jPi,j .

Using Kantorovich’s description of the optimal transport problem, we derive the p-Wasserstein
distance in the following way: We assume that probability vectors a and b have the same
length n. Furthermore, let the cost matrix C be equal to Dp for some distance matrix D.
Where matrix D is a distance matrix if the following three properties hold:

D ∈ Rn×n,

Di,j = 0 ↔ i = j,

Di,k ≤ Di,j +Dj,k,∀(i, j, k) ∈ {0, . . . , n.}3

Then the p-Wasserstein distance[PC20] Wp(a,b) is defined as:

Wp(a,b) = LDp(a,b)1/p.

23



7 Results

In this section we will answer the research questions stated in the introduction. We
will start with the ordering of intermediate steps that the Wasserstein distance gives
us. Furthermore, we will investigate which intermediate step in the multilevel ∆-QML
method is the most applicable for us. We proceed by using this intermediate step in a
more extensive SchNet model to see what cost reduction we can achieve. Lastly, we will
investigate the possibility to use sub-samples of the data in the Wasserstein distance.

7.1 ∆-QML

Let us start with the ∆-QML method to give us some insight about which level of calcu-
lation would be useful to use as intermediate step in the multilevel ∆-QML. First let us
look at what the 1-Wasserstein distance is between the different level of calculations. We
calculate these distances with respect to DC,c:

cc-pVDZ 0.59 0.36 0
6-31G 3.14 2.55 2.05

STO-3G 6.68 4.90 4.49

HF MP2 CCSD(T)

Table 3: The 1-Wasserstein distance with respect to DC,c.

Table 3 shows that the distance grows, if the calculations are either from another
basis set or with another quantum chemistry method. The choice of the latter seems to
influence the distance less than the choice in basis set.

In order to investigate, whether the 1-Wasserstein distance is a good predictor of the
∆-QML performance, we calculate the explicit mean absolute error (MAE) for different
baselines. We have taken all 8 possible levels, other than DC,c, as baseline and calculated
the mean absolute error after training SchNet on 1000, 3000 and 5000 molecules.

1000 3000 5000 1-W

DH,s 4.62 2.54 1.26 6.68
DM,s 5.2 2.8 1.17 4.90
DC,s 4.21 1.88 1.24 4.49
DH,6 3.09 1.22 0.92 3.14
DM,6 2.03 1.64 0.73 2.55
DC,6 1.9 1.08 0.92 2.05
DH,c 1.0 0.6 0.47 0.59
DM,c 0.8 0.34 0.26 0.36

Table 4: Mean absolute errors of SchNet with different baseline and training size next to
the Wasserstein distance.

By using Wasserstein and SchNet, we can make an ordering of the baselines with
respect to the expectation of the performance. These are shown below in Table 5 and

24



7.1 Delta-QML

Table 6

cc-pVDZ 2 1 -
6-31G 5 4 3

STO-3G 8 7 6

HF MP2 CCSD(T)

Table 5: Ordering based on the
1-Wasserstein distance.

cc-pVDZ 2 1 -
6-31G 5 4 3

STO-3G 7 8 6

HF MP2 CCSD(T)

Table 6: Ordering based on the mean
absolute error.

One may notice that these orderings are almost identical apart from DH,s and DM,s.
This shows that reducing the mean absolute error by SchNet and the Optimal Transport
Problem might indeed be linked to each other. This link between the two problems might
help us to determine the intermediate step in multilevel ∆-QML. For instance, we can
fix the baseline to the DH,s calculations and find the shortest path to DC,c of length 2.
This shortest path indicates, which intermediate step would minimize the total amount
of ’work’ to shift the histogram of DH,s to Di, where i is the intermediate level, and then
from Di to DC,c.

cc-pVDZ 6.16 6.37 6.68
6-31G 3.74 4.28 4.74

STO-3G 0 1.81 2.34

HF MP2 CCSD(T)

Table 7: The 1-Wasserstein distance
with respect to DH,s.

cc-pVDZ 6.75 6.73 -
6-31G 6.88 6.83 6.80

STO-3G - 6.71 6.84

HF MP2 CCSD(T)

Table 8: The total 1-Wasserstein dis-
tance corresponding to its intermediate
level.

In Table 8, one can see that DM,s has the lowest Wasserstein distance as intermediate
step between DH,s and DC,c. Shortly followed by the datapoints that are calculated on the
cc-pVDZ basis set. However, the difference between the furthest and shortest path is only
6.88 − 6.71 = 0.17. Hence, the Wasserstein distances are very close to each other. Note,
that all distances in Table 8 are higher than the distance of the direct path between DH,s

and DC,c: 6.68, as can be seen in Table 7. That the direct path has a lower Wasserstein
distance is no surprise, as each distance metric should adhere the triangle inequality, i.e.
W (a, b) ≤ W (a, c) +W (c, b) for any a, b, c.

One may note, that the use of the Wasserstein distance is only possible if all the dat-
apoints are already precomputed for all combinations of chemistry method and basis set.
Which contradicts with the task of minimizing the computational costs of the data gen-
eration. To counter this problem of the Wasserstein distance, we will investigate whether
sub-samples of the data give representative Wasserstein distances in Subsection 7.3.

To answer research question R2: ’Is it possible to use a QML-free method to rank the
available intermediate steps?’, it indeed seems to be possible to use a QML-free method
to rank the intermediate steps. In the case that the Wasserstein distance is used as such a
QML-free method, we basically get the same ranking as the ranking obtained by looking at
the MAE corresponding to using different baselines. When we use the Wasserstein distance

25



7.2 Multilevel Delta-QML

as a predictor for which intermediate step to take in the multilevel ∆-QML method, we see
that the distances are all quite close to each other. In the next subsection, we investigate
if the lowest Wasserstein distance in Table 8 (DM,s) indeed give the best combined results
between the MAE and computational cost. Besides the Wasserstein distance, there may
exist other metrics that can rank the intermediate steps with a more distinct difference
between the methods. We leave this as a possibility for further research.

7.2 Multilevel ∆-QML

To get a first impression, whether DM,s is indeed an useful intermediate step, we train
with a SchNet model which has the same parameters as described in the tutorial on the
QM9 dataset by SchNetPack[Sch]. We use this configuration for the parameters, as this
limits the time needed to train the SchNet model, approximately 20 minutes for training
on 3000 training samples. In Table 9 some of the values used in the SchNet models are
displayed.

variable name value

n atom basis 30
n filters 30

n gaussians 20
interaction blocks 5

cutoff 4
learning rate 10−2

patience 5
epochs 200

validation size 500

Table 9: Overview of some of the values assigned to variables within SchNet used for
tutorial like applications.

We will start by investigating the ability of SchNet to learn from the data. We
investigate this by using training sets with different sizes and calculate the mean absolute
error on a fixed test set. These mean absolute errors obtained by different training sets give
us the learning curve. For this curve, we expect that the mean absolute error decreases
when the number of training samples increases, because then SchNet has more data to
learn from and thus should be able to make more accurate predictions. In Figure 7a and
Figure 7b, the mean absolute error of the multilevel ∆-QML method is shown, where
respectively N1 and N2 are on the x-axis and the different colored lines represent different
values for N2 and N1 respectively.

One may note that the lines in Figure 7b indeed seem like regular learning curves,
but the lines in Figure 7a seem to flatten at a 1000 training datapoints. This might be
explainable by the Wasserstein distance between DH,s and DM,s as shown in Table 7,
which is only 1.81. This relatively small distance indicates that the two distributions are
quite similar and therefore we suspect that only a limited number of training samples on
DM,s level is needed to get representative predictions.

Furthermore, we can also investigate the cost C of the data generation. We determine

26



7.2 Multilevel Delta-QML

0 1000 2000 3000 4000 5000
N1

2

4

6

8

10

M
AE

 (k
ca

l/m
ol

)

N2 = 100
N2 = 500
N2 = 1000
N2 = 2000
N2 = 3000
N2 = 5000

(a)

0 1000 2000 3000 4000 5000
N2

2

4

6

8

10

M
AE

 (k
ca

l/m
ol

)

N1 = 100
N1 = 500
N1 = 1000
N1 = 2000
N1 = 3000
N1 = 5000

(b)

Figure 7: DM,s MAE with respect to training sizes N1 and N2.

27



7.2 Multilevel Delta-QML

the total cost based on the training sizes N1, N2 and the validation size v in the following
way:

C(N1, N2, v) : = c1(N1 +N2 + v) + 6509.4(N2 + v).

The value c1 is determined by Table 2 and depends on the intermediate step we use. The
formula for the cost is derived from the amount of datapoints we use for both SchNet
models. The first model is trained on ∆i

H,s, where the cost is only determined by the
amount of training samples N1, since we assume that the baseline datapoints DH,s are

freely available to us. For the second model, trained on ∆C,c
i , we need N2 datapoints on

DC,c level but also on Di level, as we need the differences between the values of both
levels. Therefore, we need N1 +N2 datapoints with cost determined by the intermediate
step and N2 datapoints with a cost of 6509.4 seconds. Furthermore, both SchNet models
use a validation set of size v, so we need to take them into account as well, leaving us
with the equation above with variable c1 dependent on the intermediate level. Since we
have DM,s as intermediate step, we see in Table 2 that c1 = 4.1. In Figure 8 the MAE is
depicted against the computational cost.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cost (s) 1e7

2

4

6

8

10

M
AE

 (k
ca

l/m
ol

)

N1

N2 = 100
N2 = 500
N2 = 1000
N2 = 2000
N2 = 3000
N2 = 5000

Figure 8: DM,s MAE with respect to the computational cost.

As can be seen in the figure above, the number of training samples N2 largely deter-
mine the total cost for the data generation. As explained before this is due to the large
cost associated to the data generation of DC,c. To get a reasonable mean absolute error, we
need a lot of these datapoints and thus there will be a high computational cost. However,
we have seen that if the Wasserstein distance is small, the learning curve flattens out quite
quickly. So we expect that we need less N2 datapoints if we use DM,c as intermediate level,
since the Wasserstein distance is only 0.36 between DM,c and DC,c as shown in Table 3.
We check this claim by training the SchNet models using the same configuration as before
(Table 9) on the distances ∆M,c

H,s and ∆C,c
M,c respectively.

In Figure 9a and Figure 9b, we show the obtained learning curves again. On the left
we have the mean absolute error against N1 and on the right against N2. As expected the
lines in Figure 9b flatten out over the number of training samples.

28



7.2 Multilevel Delta-QML

0 1000 2000 3000 4000 5000
N1

1

2

3

4

5

6

7

M
AE

 (k
ca

l/m
ol

)

N2 = 100
N2 = 500
N2 = 1000
N2 = 2000
N2 = 3000
N2 = 5000

(a)

0 1000 2000 3000 4000 5000
N2

1

2

3

4

5

6

7

M
AE

 (k
ca

l/m
ol

)

N1 = 100
N1 = 500
N1 = 1000
N1 = 2000
N1 = 3000
N1 = 5000

(b)

Figure 9: DM,c MAE with respect to training sizes N1 and N2.

In Figure 9a, we notice an unexpected bump at N1 = 2000 in the learning curves.
This bump is unforeseen as we expect that more training samples result in a lower MAE,
since the SchNet model has more data to learn from. One explanation might be that
the model over-fitted itself on the 2000 N1 datapoints, i.e. the model is able to deliver
predictions close to the actual atomization energies for the molecules it is trained on, but is
unable to generalize the energies to the other molecules in the dataset. Another plausible
explanation is that the molecules used for training are not representative for the entire
dataset, meaning the model is unable to capture the underlying structure of the data.
To investigate if the bump is an incident, we trained an untrained SchNet model for the

29



7.2 Multilevel Delta-QML

∆M,c
H,s on different training sets of size 2000. The investigation suggests that it is indeed

an incidence and not a recurring problem. However, we should keep in mind that those
bumps can occur on our SchNet models.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Cost (s) 1e7

1

2

3

4

5

6

7
M

AE
 (k

ca
l/m

ol
)

N2 = 100
N2 = 500
N2 = 1000
N2 = 2000
N2 = 3000
N2 = 5000

Figure 10: DM,c MAE with respect to the computational cost.

In Figure 10 the mean absolute errors with respect to their cost are shown for DM,c

as intermediate step. The vertical difference between points of the same color (same N2

value) shows that using more N1 data points decrease the mean absolute error significantly.
Furthermore, the addition of more N2 datapoints makes less of a difference, just as we
expected. Now we need only a 1000 N2 datapoints to get below the threshold value of 1
kcal/mol (see orange square in Figure 10) and using DM,s as intermediate step we needed
at least 5000 N2 datapoints. Therefore, the computational cost decreases from 3.4 · 107
s to only 0.9 · 107 s. This indicates that DM,c is indeed a better intermediate step than
DM,s, to reduce the computational cost for generating the data.

With the results obtained by the Wasserstein distance before and the MAE cor-
responding to the different intermediate steps, we can formulate an answer to research
question R1: ’Which intermediate step results in the largest reduction of computational
cost of the datapoints?’. Based on the MAE obtained by using different intermediate
steps for the SchNet models, we determine that DM,c is a better intermediate step than
DH,s. A first reason for this conclusion is that with DM,c as intermediate step, the SchNet
models are able to produce a MAE smaller than 1 kcal/mol, i.e. below the chemical ac-
curacy threshold. Intermediate step DH,s is unable to achieve MAE below the chemical
accuracy, even when N1 = N2 = 5000. Furthermore, the learning curves in Figure 9b
are almost flat over N2, i.e. the MAE are already close to the smallest MAE for low N2

values, which limit the computational costs for the datapoints. We believe that these flat
learning curves are a result of the small Wasserstein distance between DM,c and DC,c. So
based on the Wasserstein distance we recommend using DM,c as intermediate step over
all other possible intermediate steps, as less N2 datapoints are needed as training data.

Moving forwards with DM,c as our choice for the intermediate step in the multilevel

30



7.2 Multilevel Delta-QML

∆-QML method, we can investigate whether the amount of data points can be reduced,
by adjusting the parameters of SchNet. The parameters are chosen such that they match
with the parameters used by the creators of SchNet to achieve the best results on the
QM9 dataset. Table 10 shows some of the values for the parameters used in the SchNet
models. With these parameters the SchNet models need fewer training samples to obtain
a MAE below 1 kcal/mol as shown in Figure 11, however the time spent training the
models increases significantly as well. To train a SchNet model on 3000 training samples
with these parameters, we need at least 80 minutes.

variable name value

n atom basis 128
n filters 128

n gaussians 50
interaction blocks 6

cutoff 10
learning rate 10−4

patience 25
epochs 100000

validation size 200

Table 10: Overview of some of the values assigned to variables within SchNet used for the
benchmark results on the QM9 dataset.

Figure 11 shows the MAE with respect to computational cost when we use more
potential from SchNet. In this figure, every color shows the number of N2 values used
while training as shown in the legend, i.e. N2 = 40 · i for i ∈ {1, . . . , 9}. For each color,
the dot on the left represents N1 = 3400 and each subsequent dot is an increase of 200,
resulting that the most right dot corresponds to N1 = 5600.

31



7.2 Multilevel Delta-QML

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Cost (s) 1e6

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
M

AE
 (k

ca
l/m

ol
)

N2 = 40
N2 = 80
N2 = 120
N2 = 160
N2 = 200
N2 = 240
N2 = 280
N2 = 320
N2 = 360

Figure 11: MAE with respect to computational cost

As can be seen in the figure above, the least amount of computational cost, while
maintaining an MAE below the threshold of 1 kcal/mol (represented with the red square
in Figure 11), is achieved when using (only) 160 data points to train the second SchNet
model, i.e. the model trained on ∆C,c

M,c. Additionally, we need 3600 datapoints to train
the other SchNet model. Note that on top of the training sizes N1 and N2 both models
use 200 validation datapoints, so we need to include them as well when we calculate
the computational cost. In total the computational costs will be 4.2 · 106 s, which is
approximately half of the 0.9 · 107 s needed in the previous case.

Let us answer research question R3:’How much can we reduce the computational
costs by predicting the effective averaged atomization energies instead of calculating all
of them?’. By using the multilevel ∆-QML method and using SchNet as neural network
to predict the differences ∆M,c

H,s and ∆C,c
M,c, we managed to reduce 543 days of generating

atomization energies to only 48 days. There might be even more cost reduction possi-
ble, for instance by playing around with the parameters of the used SchNet models. By
playing around with the parameters, we might be able to get better SchNet models, in
the sense that they achieve the same MAE with less training samples. However, checking
all combinations for the parameters is a time consuming task, so we will leave that as a
possibility for future research. In particular, there can be looked further into the role of
the validation set in SchNet models. Especially for the model trained on the distances
DC,c

M,c, since the validation set is larger than the training size used to obtain the lowest
computational cost. Therefore, even a small reduction of the validation size may have an
impactful result on the total computational cost. One can also research whether multiple
intermediate steps in the multilevel ∆-QML method yield more cost reduction. In this
report we focused on only a single intermediate step (DM,c), however it is also possible to
use an intermediate step between DH,s and DM,c, i.e. using two intermediate steps. How-

32



7.3 Wasserstein distance with sub-sampling

ever, three SchNet models are needed in that case as we have three differences. Therefore,
the runtime of the SchNet models on the computer will increase as more models have to
be trained. Despite the increase in runtime, it might still be beneficial to consider two or
even more intermediate steps. Lastly, the use of a minimization algorithm, for instance
a genetic algorithm, might be interesting to investigate. The algorithm should navigate
over the values N1 and N2 both in the range {1, . . . , 7211}, with objective minimizing the
computational cost under the constraint that the MAE is smaller than chemical accuracy.
One advantage of using an algorithm for the N1 and N2 values, is that these values should
converge to the best possible combination, instead of us just trying certain N1 and N2

values. On top of that, the algorithm might be able to reduce the number of SchNet
models that are trained, because it does not have to use all possible values for the training
sizes. Therefore, not only the computational cost will be minimized, but also the time
spent training SchNet models. However, if the algorithm is free to take any value for the
training size, for example N2 as 7000, then the purpose of our research is negated, as we
still need to compute 7000 datapoints. A simple solution is to bound both N1 and N2

from above, but then we remain with the question: what should the upper-bound be.
Still it might be interesting to further investigate the possibility of using some sort of
optimization algorithm.

7.3 Wasserstein distance with sub-sampling

The choice for DM,c as intermediate step in the multilevel ∆-QML method is based on the
Wasserstein distance and supported by the experimental results. However, for the Wasser-
stein distance we used all available data, so basically we are still using 7211 datapoints
on DC,c level. Since we used the Wasserstein distance as indication for the intermediate
step, it will be interesting to investigate whether we can limit the datapoints used in the
Wasserstein distances. As a test we take differently sized sub-samples of the available data
and calculate the distances on these samples, note that for this comparison it is important
to use data only from the same molecules.

As the values of the Wasserstein distance become more unreliable, when we use less
datapoints, it might be more beneficial to look only at the order of Di based on the
Wasserstein distances, just like Table 5. We suspect that the distances rely on the specific
subset of molecules that is being taken. Therefore, we have to repeat the process of
sub-sampling multiple times, to get meaningful results. We take 10000 times a different
sub-sample of size ns, where ns ∈ {100 · k|k = 1, . . . , 50}. For each of these individual
sub-samples, we check how often the ordering remains the same as in Table 5. In Figure 12
the percentage of times the ordering stays the same is shown for each ns value.

33



7.3 Wasserstein distance with sub-sampling

0 1000 2000 3000 4000 5000
ns

0

20

40

60

80

100
Pe

rc
en

ta
ge

Figure 12: The percentage of times that the sub-sample size ns gave the same ordering as
in Table 5.

One can see in the figure above, that the percentage becomes close to 100% quite
quickly. It seems that using at least 1100 datapoints for the Wasserstein distances gives the
same ordering every time. This is quite an increase when compared to the 360 datapoints
we needed to train and validate the second SchNet model. However, at 500 datapoints
we get a 96% success rate, so there is an option to take only 500 datapoints for the
Wasserstein distances. As an advantage we reduce the amount of datapoints by more
than half, however we only have a 96% possibility that the ordering is the right one.

34



8 Conclusion

In this report we investigated the possibility to downscale the computational time needed
to calculate the atomization energy with the CCSD(T) method under the cc-pVDZ basis
set. For the entire QM7 dataset these calculations take 543 days in total. In particular, we
investigated the use of ∆-QML in combination with the neural network SchNet to reduce
the amount of necessary datapoints and still obtain valuable datapoints. Since ∆-QML
still relies mostly on the amount of high accuracy datapoints, we used a multilevel variant,
which takes at least one intermediate step. This variant comes at the cost of having to
use two individual SchNet models, since we have to train them both on ∆i

H,s and ∆C,c
i .

First we examined which intermediate step to take, both by experimental results as
by the Wasserstein distance. These methods indicated that DM,c as intermediate step
yield the best results, since the number of datapoints N2 for the second SchNet model are
minimized. In the case of the available dataset and goal of the project, the minimization
over N2 is more important than for N1 as the data generation costs significantly more for
obtaining the ∆C,c

i values. After we fixed the intermediate level to DM,c, we analyzed the
mean absolute errors when using a more sophisticated SchNet model. Where this variant
of the SchNet model differs mostly in the size of the feature vector x and the amount of
epochs.

To conclude, the combination of using SchNet in the ∆-QML method can indeed
reduce the computational cost of obtaining all atomization energies. The effectiveness of
this method is determined by the used parameters within SchNet and which intermediate
step we use. We already managed to reduce the computational time from 543 days to only
48 days.

However, it might be possible to reduce these costs even further. Firstly, the pa-
rameters within the SchNet models are chosen to be the same as when the model would
be used for the QM9 dataset. Since we use a different dataset and we have a different
objective, it is possible that changing some of the parameters yield better results. We
chose not to investigate the effect in this report as it is a time-consuming task. Secondly,
the ∆-QML could be exploited further with respect to the number of intermediate steps
that are taken. As shown in Section 7, the amount of datapoints needed in the SchNet
models decreases, when the Wasserstein distance becomes smaller. We have quite a large
distance between DH,s and DM,c, so using another intermediate step might reduce the
total cost again. However, we suspect this reduction to be less impactful than the already
used intermediate step, since the order of the data generation cost is significantly smaller
than the cost for DC,c.

35



REFERENCES

References

[Har28] D. R. Hartree. “The Wave Mechanics of an Atom with a Non-Coulomb Central
Field. Part II. Some Results and Discussion”. en. In: Mathematical Proceed-
ings of the Cambridge Philosophical Society 24.1 (Jan. 1928), pp. 111–132.
issn: 0305-0041, 1469-8064. doi: 10.1017/S0305004100011920. url: https:
//www.cambridge.org/core/product/identifier/S0305004100011920/

type/journal_article (visited on 05/24/2022).

[Lu+19] Chengqiang Lu et al. Molecular property prediction: A Multilevel Quantum
Interactions Modeling Perspective. June 2019. url: https://arxiv.org/
abs/1906.11081.

[PC20] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Mar.
2020. url: https://arxiv.org/abs/1803.00567v4.

[Rup+12] Matthias Rupp et al. Fast and accurate modeling of molecular atomization
energies with machine learning. Jan. 2012. url: https://journals.aps.
org/prl/abstract/10.1103/PhysRevLett.108.058301.

[Sch] K. T. Schütt et al. Atomistic-machine-learning/Schnetpack: Schnetpack - deep
neural networks for atomistic systems. url: https://github.com/atomistic-
machine-learning/schnetpack.

[Sch+17] Kristof T. Schütt et al. Quantum-chemical insights from deep tensor neural
networks. Jan. 2017. url: https://www.nature.com/articles/ncomms13890.

[Sch+18] K. T. Schütt et al. “SchNet – a deep learning architecture for molecules and
materials”. In: The Journal of Chemical Physics 148.24 (Mar. 2018), p. 241722.
doi: 10.1063/1.5019779.

[Sch+19] K. T. Schütt et al. “Schnetpack: A deep learning toolbox for atomistic sys-
tems”. In: Journal of Chemical Theory and Computation 15.1 (2019), pp. 448–
455. doi: 10.1021/acs.jctc.8b00908.

[Sch26] E. Schrödinger. “An Undulatory Theory of the Mechanics of Atoms and Molecules”.
en. In: Physical Review 28.6 (Dec. 1926), pp. 1049–1070. issn: 0031-899X. doi:
10.1103/PhysRev.28.1049. url: https://link.aps.org/doi/10.1103/
PhysRev.28.1049 (visited on 05/24/2022).

[Sla28] J. C. Slater. “The Self Consistent Field and the Structure of Atoms”. en.
In: Physical Review 32.3 (Sept. 1928), pp. 339–348. issn: 0031-899X. doi:
10.1103/PhysRev.32.339. url: https://link.aps.org/doi/10.1103/
PhysRev.32.339 (visited on 05/24/2022).

[Zas+19] Peter Zaspel et al. “Boosting Quantum machine learning models with a multi-
level combination technique: Pople diagrams revisited”. In: Journal of Chem-
ical Theory and Computation 15.3 (2019), pp. 1546–1559. doi: 10.1021/acs.
jctc.8b00832.

36


