
 Eindhoven University of Technology

MASTER

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Zhang, Jie

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/19a93c34-7be3-486f-ae79-a9f8fff39844

Delta CODESYS robotics
solution for random bin
picking tasks using a 3D

ToF camera

Master Thesis

Jie Zhang

Department of Mechanical Engineering
Microsystems Research Group

Supervisors:
Prof. Dr.Ir. J.M.J. (Jaap) Den Toonder

Jason Wu

final version

This report was made in accordance with the TU/e Code of Scientific Conduct for
the Master thesis

Eindhoven, March 2023

Abstract

In recent years, industrial automation technology has evolved significantly and is constantly being
improved to increase productivity and reduce the need for direct human intervention. It is a ma-
jor challenge in many automated assembly processes to locate or grasp components in the correct
orientation from a bin in which they are randomly positioned and unsorted. The process is known
as random bin picking (RBP), and the difficulties associated with it have long been recognized.

For this graduation project, we used a Delta Electronics’ 3D ToF camera with a CODESYS-based
motion controller. The proposed system utilises a combination of computer vision modules in 2D
and 3D, robotics and deep neural networks. We demonstrated the kinamatic relationship between
the camera and the robotic manipulator. We developed grasping algorithms based on deep neural
networks. The results of the algorithms were presented and tested in simulations of a planar grasp
and six-degrees-of-freedom grasp. Additionally, we developed a demonstration application with a
planar grasp algorithm.

ii Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Preface

This is a master’s thesis in the Department of Mechanical Engineering at TU/e under the study
program Artificial Intelligence Engineering Systems. In developing this master’s thesis, I would
like to acknowledge the following individuals for their contributions:

• Firstly, I would like to thank my supervisors, Jason Wu and Jaap de Toonder, for their
contribution to this project and their invaluable guidance and advice

• Secondly, I would like to express my gratitude to my family and friends for their love and
support

• Lastly, thanks to the other interns and employees at Delta Electronics for their constant
support and encouragement

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera iii

Contents

Contents iv

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Background . 1

1.1.1 Project Background . 1
1.1.2 Company Background . 2

1.2 Problem Description . 3
1.3 Research Objective . 3
1.4 Research Questions . 4
1.5 Outline of contents . 4

2 Literature Review 5
2.1 Gripper oriented methods . 5

2.1.1 Planar vs 6DoF . 6
2.2 Object oriented methods . 8

3 Theoretical Background 10
3.1 Deep Learning . 10
3.2 Neural Network . 10
3.3 Convolutional Neural Networks . 12

3.3.1 Convolution Layer . 12
3.3.2 Pooling Layer . 12
3.3.3 Residual Blocks . 13

3.4 Transfer Learning . 14
3.5 Robotic Fundamentals . 14

3.5.1 Coordinate Frame and Notation . 14
3.5.2 Inverse Kinematics . 15

3.6 Camera . 16
3.6.1 Hand Eye Calibration . 17

4 Method 19
4.1 Tools and Equipment . 19

4.1.1 Robot arm . 20
4.1.2 AX-8 motion controller . 20
4.1.3 Servo drives . 20
4.1.4 3D TOF camera . 21
4.1.5 Custom made gripper . 22
4.1.6 Master computer . 22

4.2 Hand-to-eye calibration . 23

iv Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CONTENTS CONTENTS

4.3 AI Algorithm . 25
4.3.1 Datasets . 25
4.3.2 Planar grasp . 27
4.3.3 6DoF grasp . 30

4.4 Software Development . 33
4.4.1 Simulation environment setup . 33
4.4.2 Image Acquistion . 33
4.4.3 Robot Control . 34
4.4.4 Grasping Objects . 35
4.4.5 Code structure . 36

5 Results 39
5.1 Planar Grasp . 39

5.1.1 Physical setup . 39
5.1.2 Eye-to-Hand Calibration . 40
5.1.3 Image Acquisition . 41
5.1.4 Neural Networks . 41
5.1.5 Simulation . 43
5.1.6 Real Application . 44

5.2 6DoF grasp . 45
5.3 Demonstration Video . 45

6 Discussions and recommendations 46
6.1 AprilTag v.s. Chessboard . 46
6.2 Depth Image Quality . 46
6.3 Object segmentation . 47
6.4 Bin picking . 49

7 Conclusion 50

Bibliography 51

Appendix 55

A Gripper Manual 56
A.1 Wiring . 56
A.2 Control . 56

B Tensorboard Training Curves 58
B.1 Planar Grasp . 58
B.2 6DoF Grasp . 63

C Digital Appendix 64

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera v

List of Figures

1.1 Delta’s industrial automation product line includes PLC motion controllers, servo
systems (servo drives and servo motors), industrial robots, and HMIs, extracted
from [1] . 2

1.2 Delta products. (left)Delta DRV Robot Arm. (right)Delta 3D ToF Camera 3

2.1 Bin picking based on deep learning category[2] . 5
2.2 Dex-Net 2.0 pipeline [3]. Using a dataset of 6.7 million synthetic point clouds,

grasps, and associated robust grasp metrics computed with DexNet 1.0, the Grasp
Quality Convolutional Neural Network (GQ-CNN) is trained offline to predict the
robustness of candidate grasps from depth images. A depth camera provides the
robot with a 3D point cloud that identifies several hundred potential grasps when
an object is presented to it. 6

2.3 A 5D rectangular grasp configuration[4] . 7
2.4 Grasp coordinate frame [5] . 8

3.1 A simple neural network, which is organized in layers consisting of a set of inter-
connected neurons. Networks can have tens or hundreds of hidden layers. [6] . . . 11

3.2 An example of convolution operation performed on an input image [7] 12
3.3 An example of the max pooling operation using a 2 × 2 filter [7] 13
3.4 An example of identical block. The skip connection ”skips over” 2 layers [8] 13
3.5 An example of convolutional block. There is a CONV2D layer in the shortcut path

[8] . 13
3.6 Transfer learning [9]. The network is first trained on the source task (ImageNet

classification, top row) using a large number of labelled images. In the next step,
the parameters pre-trained in the internal layers of the network (C1-FC7) are trans-
ferred to the target tasks (Pascal VOC object or action classification, bottom row).
. 14

3.7 A pinhole camera model where the image plane is located in front of the camera’s
origin. A non-inverted image is formed on the plane at zi = f [10] 16

3.8 A hand-eye calibration estimates the position of the camera relative to the robot’s
baseHROB

CAM in eye-to-hand systems. The pose circle can be closed by calculating one
pose from the other poses. In this case, the position of the object in relation to the
robot. This can be determined by multiplying the pose of the camera relative to the
robot with the pose of the object relative to the camera: HROB

OB,J = HROB
CAM ·HCAM

OBJ

[11] . 17
3.9 Hand-to-eye calibration. Cameras are used to observe tool feature points mounted

on the gripper in order to determine the tool’s motion [12] 18

4.1 An overview of our proposed RBP system. A number of grasping objects are placed
in the Initiation state. A depth image from the Image Acquisition state will be used
in the Grasping Prediction state. The proposed grasping location will be sent to
the Robotic Manipulation state, where the final picking action will be performed. . 19

vi Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

LIST OF FIGURES LIST OF FIGURES

4.2 An illustration of the physical robot cell and the simulation environment. (a) Robot
cell for real application. (b) A simulation of a robot cell in Pybullet 20

4.3 Technical specification of the robot arm extracted from [13]. (left)Articulated robot
specification table. (right)DRV series motion directions 21

4.4 The AX-8 Windows-based PLC was used in the pratical work of this thesis [14] . . 21

4.5 ASDA-A2 servo drive with motor [15] . 22

4.6 Diagram of the wiring between the robot, AX-8 motion controller and the custom-
made gripper . 23

4.7 Two examples of calibration pattern images taken by the 3D ToF camera in the
amplitude mode . 24

4.8 AprilTag detection using MATLAB calibration toolbox. (a) detected points shown
in real images. (b) demonstration of MATLAB’s detection function on a generated
pattern . 24

4.9 An illustration of the hand-to-eye calibration process. A total of 20 different images
containing calibration patterns are imported into MATLAB. To get the final result
of camera position and orientation, the output of the function along with the 20
different robot pose information is fed into OpenCV-Python function calibration-
HandEye() . 25

4.10 Sample of Cornell Grasp dataset [16] . 26

4.11 A large variety of objects are included in the Jacquard dataset, each of which has
multiple labeled grasps on realistic images. On the image, grasps are represented
by 2D rectangles whose darker sides indicate the position of the jaws [17] 26

4.12 Food items included in the YCB object set. Back row, from left to right: a can
of chips, a coffee can, a cracker box, a box of sugar, and a can of tomato soup.
From left to right, middle row: mustard container, tuna can, chocolate pudding
box, gelatin box, and potted meat can. An apple, a lemon, a pear, an orange, a
banana, a peach, strawberries, and a plum are displayed in the front row [18] . . . 27

4.13 The GG-CNN architecture [19]. It is the last convolutional layer that generates the
grasp and width images as well as the two angle images. The best grasp is separated
from the quality distribution. 28

4.14 Proposed Generative Residual Convolutional Neural Network [20] 29

4.15 PointNetGPD algorithm flow [21]. Given raw RGB-D data from a sensor input,
the depth map is first converted into a point cloud. Next, some candidate grasping
poses are sampled based on geometric constraints. For each candidate, the point
cloud inside the grasper is cropped and converted to the gripper’s local coordinate
system. Lastly, the candidate grasping inputs are fed into the grasping quality
evaluation network to determine scores, and the candidate grasping poses with the
highest scores are adopted. 30

4.16 PointNet-based network structure for grasp quality evaluation [21]. Based on the
grasp pose and the original point cloud, the point cloud in the closed region of the
grasper represents a grasp that is transformed into the grasper’s local coordinate
system and input into the network. As a result of multiple spatial transformations
and feature extraction, the final global features are used to classify the input grasps
according to their quality level. 31

4.17 Representation of a grasp in the local gripper coordinate system [21]. (a) a typical
grasping pose; (b) the axes of the local coordinate system. The authors use the
forward, parallel, and orthogonal directions of the gripper as the XYZ axes and the
middle position of the bottom of the gripper as the origin, respectively. 31

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera vii

LIST OF FIGURES LIST OF FIGURES

4.18 (left) The grasps are estimated with respect to the center of mass of the object
point cloud, X. The axes of the grasp coordinate frame are parallel to those of the
camera. (right) An point cloud X is obtained by fitting a plane to a depth image.
The Grasp Sampler Network uses the point cloud to propose different grasps. Based
on the object point cloud and the proposed grasp, the evaluator network assesses
the grasps. By using the gradient of the evaluator network, grasps are improved
iteratively [5] . 32

4.19 Each grasp is mapped to a point z in a latent space during training. Latent space
distribution is minimized toward a normal distribution. Using the point cloud and
latent values, the decoder reconstructs the 6D grasps, depicted here as gripper poses
[5] . 32

4.20 Camera parameters that can be adjusted using internal software. The integration
time and intensity are defined by default as 1000 and 1.0 . Both of these parameters
have a significant impact on the quality of the depth image 34

4.21 Different statuses of the axis group . 35
4.22 An illustration of the general movement performed by the DRV robot axis groups . 36
4.23 Examples of grasping objects. (left) simulated objects from ShapeNetsem database

in Pybullet. (right) real application grasping cubes provided by Delta 37

5.1 Schematic of the system. A motion controller and six servo drives are connected
to the robot. A custom-made gripper connects the robot and controller via RS-485
communication. AX-8 and the master computer exchange data through OPC UA
communication. Harvesters API is used on the master computer to control the 3D
ToF camera using the GigE standard . 39

5.2 Intrinsic paramters result from MATLAB. (left) camera centric (right) object centric 40
5.3 Example of amplitude and aligned depth images acquired with grasping objects

(cubes) in the scene. 41
5.4 Accuracy curves and loss curves of planar grasp networks (a) GG-CNN(b) GR-

ConvNet. The x-axis represents the epochs of the training process. The y-axis plots
(from left to right) the IoU matrices (i.e. the grasp accuracy), the L2 loss function
values of the training dataset and the L2 loss function values of the validation dataset 42

5.5 Training curves of VAE. The x-axis shows the steps taken during the training pro-
cess, while the y-axis (from left to right, top to bottom) shows the reconstruction
loss of the testing dataset (orientation and translation loss of the generated grasps
with the ground truth grasps), confidence loss (confidence term that penalizes out-
putting zero confidence), KL-divergence loss, reconstruction loss, and total loss of
the training dataset . 43

5.6 Training curves of grasp evaluator. The x-axis shows the steps taken during the
training process, while the y-axis (from left to right) indicates the accuracy of
grasping the testing dataset, classification loss (cross-entropy loss), confidence loss
(confidence term that penalizes outputting zero confidence) and total loss of the
training dataset . 43

5.7 Visualization of the grasping prediction module for real-world application. As shown
in the image above, the depth image was captured and cropped, and a red dot in-
dicates the predicted grasping center. Listed below are the grasp quality (successful
grasp probability from 0 to 1), grasp angle in radian, and grasp width in pixels. . . 44

5.8 (a) Demonstration of generating predicted graphics from RealSense point clouds.
(b) Simulation of grasping a mug with a gripper model in the Isaac Gym 45

6.1 Incorrect corner points detection on MATLAB. (a) Pose A (b) Pose B (approx.
180° from Pose A) . 46

6.2 A comparison of depth images taken under different settings. (a) A smoother and
less noisy depth image with higher integration time and intensity settings. (b) A
depth image with more noise when the integration time and intensity are reduced . 47

viii Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

LIST OF FIGURES LIST OF FIGURES

6.3 Architecture of the proposed model includes a segmentation module [22]. The back-
bone network is shared by both branches for grasp detection and segmentation. A
grasp refinement head uses both outputs (grasp candidates and semantic segment-
ation) to predict refined grasp candidates with increased accuracy 48

6.4 Results of the testing of the grasping module using the segmentation method [22].
The following images are explained from left to right: 1) the raw input image; 2)
predicted semantic segmentation, where each color represents a specific class; and 3)
the best possible grasp for each class in the scene (blue lines indicate parallel plates
of the gripper, red lines indicate opening width). Each row represents a different
example of input . 48

B.1 GG-CNN training curve. The x-axis represents the epochs of the training process.
The y-axis plots (from left to right) the IoU matrices (i.e. the grasp accuracy), the
L2 loss function values of the training dataset and the L2 loss function values of
the validation dataset . 58

B.2 GG-CNN training dataset loss curves. The x-axis represents the epochs of the train-
ing process. The y-axis plots (from left to right) the angle cos loss, the probability
loss, the angle sin loss, the width loss of the training dataset 58

B.3 GG-CNN validation dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the prob-
ability loss, the angle sin loss, the width loss of the validation dataset 59

B.4 GG-CNN modified version testing dataset loss curve. The x-axis represents the
steps of the training process. The y-axis plots (from left to right) the total loss,
the angle cos loss, the probability loss, the angle sin loss and the width loss of the
testing dataset . 59

B.5 GG-CNN modified version accuracy curve. The x-axis represents the steps of the
training process. The y-axis plots (from left to right) the prediction accuracy
(between the predicted outputs and ground truth) and the probability accuracy
of the testing dataset . 59

B.6 GG-CNN modified version training dataset loss curve. The x-axis represents the
steps of the training process. The y-axis plots (from left to right) the total loss,
the angle cos loss, the probability loss, the angle sin loss and the width loss of the
training dataset . 60

B.7 GG-CNN modified version accuracy curve. The x-axis represents the steps of the
training process. The y-axis plots (from left to right) the prediction accuracy
(between the predicted outputs and ground truth) and the probability accuracy
of the training dataset . 60

B.8 GRConvNet training curve using Cornell dataset. The x-axis represents the epochs
of the training process. The y-axis plots (from left to right) the IoU matrices (i.e.
the grasp accuracy), the L2 loss function values of the training dataset and the L2
loss function values of the validation dataset . 60

B.9 GRConvNet training dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the prob-
ability loss, the angle sin loss, the width loss of the training dataset 61

B.10 GRConvNet validation dataset loss curves. The x-axis represents the epochs of
the training process. The y-axis plots (from left to right) the angle cos loss, the
probability loss, the angle sin loss, the width loss of the validation dataset 61

B.11 GRConvNet training curve using Jacquard dataset. The x-axis represents the
epochs of the training process. The y-axis plots (from left to right) the IoU matrices
(i.e. the grasp accuracy), the L2 loss function values of the training dataset and
the L2 loss function values of the validation dataset 61

B.12 GRConvNet training dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the prob-
ability loss, the angle sin loss, the width loss of the training dataset 61

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera ix

LIST OF FIGURES LIST OF FIGURES

B.13 GRConvNet validation dataset loss curves. The x-axis represents the epochs of
the training process. The y-axis plots (from left to right) the angle cos loss, the
probability loss, the angle sin loss, the width loss of the validation dataset 62

B.14 Training curves of VAE. The x-axis shows the steps taken during the training pro-
cess, while the y-axis (from left to right, top to bottom) shows the reconstruction
loss of the testing dataset (orientation and translation loss of the generated grasps
with the ground truth grasps), confidence loss (confidence term that penalizes out-
putting zero confidence), KL-divergence loss, reconstruction loss, and total loss of
the training dataset . 63

B.15 Training curves of grasp evaluator. The x-axis shows the steps taken during the
training process, while the y-axis (from left to right) indicates the accuracy of
grasping the testing dataset, classification loss (cross-entropy loss), confidence loss
(confidence term that penalizes outputting zero confidence) and total loss of the
training dataset . 63

x Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

List of Tables

4.1 Technical specifications for 3D ToF camera . 22

5.1 Hyperparameters values . 42
5.2 Pick success rate (%) in simulation . 44
5.3 results of grasp success rates (%) among different categories of objects 45

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera xi

Chapter 1

Introduction

1.1 Background

1.1.1 Project Background

In recent years, industrial automation technology has evolved significantly and is constantly be-
ing improved to increase productivity and reduce the need for direct human intervention. The
goal of robotic research in this area is to develop a system that is more intelligent, flexible, and
autonomous. This type of system would be capable of completely replacing human labor in the
implementation of certain tasks, including those in the field of automated manufacturing. It is
a major challenge in many automated assembly processes to locate or grasp components in the
correct orientation from a bin in which they are randomly positioned and unsorted. The process is
known as random bin picking (RBP), and the difficulties associated with it have long been recog-
nized [23]. Most parts are found randomly located in boxes or bins, and objects to be processed on
different production lines have a wide range in geometric shape, color, texture, and surface. As a
result, it remains challenging and complex to obtain satisfactory perceptual abilities for a complete
and optimal robot bin-picking system [24]. Objects must be able to be positioned randomly in an
unstructured and poorly constrained occlusion in a heavily cluttered environment for the system
to perform effectively. In the field of image processing and automated manufacturing, RBP has
been the focus of research for many years owing to its necessity and high applicability. In spite of
this, most research results have been somewhat limited due to simplistic hypotheses or insufficient
robustness for industries with strict requirements for speed and stability [25].

There are several distinct functions involved in picking random bins by robots: creating an im-
age of the objects and containers; isolating the object from the background image; determining
the position of objects relative to the image sensor or robotic arm; generating a trajectory for
moving the robot to grasp the objects; and finally gripping the part and transferring it to the
required location [26]. As a result, several technologies are involved, which must be seamlessly
integrated into a robotic RBP system: imaging and lighting, data processing, component hand-
ling, and robotic guidance [26]. The two most important technologies that support robotic RBP
are three-dimensional (3D) vision and algorithms that interpret the images. The development of
machine vision technology over the last few years has been very rapid due to an increase in compu-
tation power and many 3D imaging systems are now available commercially based on a variety of
techniques, along with ever more sophisticated image processing algorithms for RBP applications
[27]. Several 3D vision systems incorporate conventional two-dimensional(2D) cameras with laser
line scanning projections for obtaining depth information, while others employ triangulation and
time-of-flight (ToF) techniques.

Traditional RBP systems utilize task-specific algorithms that are specially tailored to meet the
requirements of each individual situation. While this approach can be efficient, it has significant

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 1

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

limitations in terms of generalizability and unexpected situations, such as novel objects. However,
the use of deep learning shows the potential to revolutionize the field of robotics and improve the
efficiency of the picking processes. Unlike task-specific algorithms, it is capable of generalizing
new objects and environments. Additionally, the deep learning approach is capable of adapting
to changes in the environment, resulting in a more robust system. Furthermore, deep learning
algorithms can learn from experience, allowing them to continuously improve.

1.1.2 Company Background

This project has been conducted out in the company called Delta Electronics [1] which was foun-
ded in 1971 and is headquartered in Taiwan. It is a global company leading in Power and Thermal
management solutions. Its business verticals include Power Electronics, Automation, and Infra-
structure. Delta has a sales presence in all 6 continents and manufacturing plants in Asia, Europe
and Americas. Delta Group established its EMEA operation in 1995, setting up its regional
headquarters in Hoofddorp, near Amsterdam. Delta EMEA offers a wide portfolio of products
and solutions in EV Charging, Solar Inverters, Telecom Powers, Data Centers, Industrial Auto-
mation and Display [1].

The site in Helmond offers automation products and solutions with high performance and reli-
ability, including drives, motion control systems, industrial control and communications, power
quality improvement, human machine interfaces, sensors, meters and robot solutions. The center
especially provides information monitoring and management systems such as SCADA (Supervis-
ory Control And Data Acquisition) and industrial EMS (Electronics Manufacturing Services) for
complete, smart manufacturing solutions. The company’s basic information, including the logo,
is shown in Figure 1.1.

Figure 1.1: Delta’s industrial automation product line includes PLC motion controllers, servo
systems (servo drives and servo motors), industrial robots, and HMIs, extracted from [1]

Delta Electronics (Netherlands) BV
Automotive Campus 260, 5708 JZ Helmond, The Netherlands

+31 40 800 3900

2 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 1. INTRODUCTION 1.2. PROBLEM DESCRIPTION

1.2 Problem Description

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF
camera

This graduation project aims to provide a functional solution for a vision-based bin-picking system.
By utilizing the information from a 3D ToF camera, the vision system should be able to locate
and recognize objects randomly placed in a box. Following the coordinate transformation from
the vision system, the robot arm would be able to pick up the required object. The 3D camera is
capable of capturing high-resolution, real-time images of objects which are used as the inputs for
the grasping strategy trained by a convolutional neural network. The company provides the robot
arm and 3D ToF camera as shown in the Figures 1.2 below. CODESYS SoftMotion Robotics
library would be used to control the movement of the robot arm during picking. As a result of
this project, a simulation environment and a real-world application would be developed that can
demonstrate the accuracy of bin-picking.

(a) (b)

Figure 1.2: Delta products. (left)Delta DRV Robot Arm. (right)Delta 3D ToF Camera

1.3 Research Objective

Our objective is to investigate the means by which algorithm can be trained to interact with the
robot arm and objects, in particular, grasping and positioning them in intended positions while
integrating a 3D ToF camera. The following steps must be taken in order to achieve this goal:

• Explore existing solutions:
To realize this project, it is essential to have a solid understanding of the existing deep
learning strategies for RBP. We need to understand both the core concepts and popular
methods associated with deep learning for RBP. Furthermore, we must be able to compare
our proposed work with current state-of-the-art research.

• Discover machine learning libraries and robot simulation environments:
It is necessary to be familiar with the machine learning libraries that are related to deep
learning methods. Additionally, we require an open source robot simulation environment
in order to conduct our experiments. We should develop and modify these environments to
meet the needs of our project.

• Create a functional algorithm and training framework:
In order to achieve RBP, the algorithm developed should be capable of identifying and
recognising objects, predicting the picking position, and mapping coordinates between the
3D ToF camera and the robot. It is also necessary to implement a framework that allows

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 3

1.4. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

a robot arm to interact with objects. A comprehensive description of the entire training
process, from collecting training samples to conducting online training, should be included.

• Analyze and improve the algorithms and structures:
The advantages and disadvantages of different learning algorithms and neural network struc-
tures must be compared in order to determine which is best. It is then necessary to improve
both algorithms and structures in order to meet our needs and to accomplish our task.

1.4 Research Questions

The research questions form the backbone of the research and are formulated as follows:

How to develop a CODESYS-based robotics solution for RBP tasks using a 3D ToF
camera and a Delta DRV robot arm?

The main question can be divided into several sub-questions, which are formulated as follows:

• What kind of method will be used for objects identifying and recognizing?

• What is the software structure of the system?

• Which programming language and development software will be used for the vision system
and robot arm manipulating?

• What is the communication method between the robot arm and the vision system?

• What kind of experiments need to be done for performance evaluation?

1.5 Outline of contents

In this thesis, both theoretical and practical research is conducted that covers the available tech-
nologies that can be applied in an RBP system, including extensive literature and theory research.
In this section, a brief overview of the thesis’ structure is provided along with a summary:

• Chapter 2 discusses robotic grasping challenges and other researchers’ attempts to achieve
rapid and reliable grasping.

• In Chapter 3, the concepts of neural networks, convolutions, coordinate frames, camera
models, and inverse kinematics are introduced.

• In Chapter 4, we discuss the methods used for testing and evaluating practical experiments.
After reviewing our network, we discuss improvements and extensions to existing network
models.

• Presented in Chapter 5 are the results based on Chapter 4

• Chapter 6 presents personal thoughts and discussions related to the results in Chapter
5. The strengths and weaknesses of the practical work are discussed, as well as possible
improvements.

• In Chapter 7, a summary of our findings is provided along with answers to the research
questions.

4 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Chapter 2

Literature Review

Vision-based robotic grasping can be classified according to a number of different criteria. As
shown in Figure 2.1, it can be divided into several domains. Bin picking can be divided into two
main topics, as inspired by the work of Kleeberger et.al [28] and Matthieu Grard [29]: gripper-
oriented and object-oriented, which are discussed in turn in the following sections.

Figure 2.1: Bin picking based on deep learning category[2]

Gripper-oriented approach lacks the notion of instance, so it does not identify the various objects
occupying the workspace, which is necessary for handling occlusions in dense stacks of instances.
Object-oriented approach relies either on the notion of pose or on generic segmentation techniques.
The approach can be divided into model-based, or analytical approaches [30], and model-free, or
data-driven approaches.

2.1 Gripper oriented methods

In gripper-oriented methods, the robot end effector physics are taken into consideration in order
to detect grasping opportunities. Unsupervised heuristic methods were used in early approaches
in order to determine the optimal locations for parallel grippers or the most suitable planar area
for vacuum cups using RGB and depth images. One of the first and most well-known heuristic
procedures was introduced by Miller et al. [31]. For this application, Miller utilized heuristic rules

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 5

2.1. GRIPPER ORIENTED METHODS CHAPTER 2. LITERATURE REVIEW

to generate and evaluate grasps for three-fingered hands, modeling an object as a set of shape
primitives, including spheres, cylinders, cones and boxes.

In later stages of the research, deep convolutional networks (DCN) were employed to boost ranking
of heuristic-based grasp candidates for more complex gripper-oriented methods. In order to gain
a better understanding of how these methods work in bin picking environments, we will briefly
describe some of these methods based on DCN.

There has been significant progress in developing methods with the best results and with greater
depth since 2017. Dexterity Network (Dex-Net) 2.0 [3] is one of the most popular ones. It resulted
in a Grasping Quality Convolutional Neural Network (GQ-CNN) model capable of predicting
grasp success probabilities from depth images in a short amount of time. According to [3], grips
are specified in terms of their planar position, angle, and depth relative to an RGB-D sensor. A
pipeline can be identified in Figure 2.2 for this network.

Figure 2.2: Dex-Net 2.0 pipeline [3]. Using a dataset of 6.7 million synthetic point clouds, grasps,
and associated robust grasp metrics computed with DexNet 1.0, the Grasp Quality Convolutional
Neural Network (GQ-CNN) is trained offline to predict the robustness of candidate grasps from
depth images. A depth camera provides the robot with a 3D point cloud that identifies several
hundred potential grasps when an object is presented to it.

2.1.1 Planar vs 6DoF

A different aspect of categorizing vision-based robotic grasping is brought to our attention here.
To grasp an object, it is necessary to know the 6-dimensional pose of the robot end-effector in
the camera coordinates. Our discussion of robot end-effectors in this thesis is limited to parallel
grippers. As described in the grasping configuration, the gripper 6D pose is arranged to ensure
that the object is successfully grasped. The grasping detection methods based on deep learning
can be classified into planar grasp and 6 DoF grasp in accordance with the different grasping
configurations.

A. Planar Grasp

In a 3DoF grasp, the target object is placed within a planar workspace, and the grasp is constrained
in one direction perpendicular to the workspace. Therefore, it is also referred to as a 2D plane
grasp, which involves a 2D in-plane location and a 1D rotation. There are a large number of
methods using deep learning that treat oriented rectangles as grasp configurations. As a result,
the capabilities of 2D planar grasp have been greatly expanded, and the range of objects to be

6 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 2. LITERATURE REVIEW 2.1. GRIPPER ORIENTED METHODS

grasped has expanded from known objects to novel ones. There are two types of 2D planar grasping
methods: structured grasping and pixel-level grasping.

i. Structured Grasping During the early stages of the research, the grasping configuration
was based on points on scene images. In order to estimate the graspable point position in the
cartesian coordinate system, Saxena et al. [32] proposed a regression learning method in an effort
to find graspable points in the discrete 3D space. Although this approach only determines where
to grasp, it does not determine the orientation of the gripper. As a solution to this limitation,
an oriented rectangle is proposed as a representation of grasping configurations. Jiang et al. [?]
proposed using a directed rectangle which contains three-dimensional position, three-dimensional
orientation, and the gripper opening width, expressed as G = (x, y, z, α, γ, ϕ, w), to estimate the
7D grasp. It is computationally expensive to present such information. In order to simplify
the above-mentioned grasping configuration from 7D to 5D, Lenz et al. [16] used the rectangle
with location, orientation, and size: G = (x, y, θ, h, w). Figure 2.3 illustrates the used rectangle
representation. This was the first time that deep learning has been applied to robotic grasping.
Two networks were proposed to be used as a two-step continues system, first removing candidate
grasps that were impossible, and then re-evaluating the remaining grasps to find the top-ranked
rectangles. Several subsequent studies have used this 5D rectangle grasp representation. With the
5D configuration, Redmon et al. [33] addressed the same problem as [16], but employed a different
network architecture that performs a single-stage regression from RGB-D images to graspable
bounding boxes.

Figure 2.3: A 5D rectangular grasp configuration[4]

ii. Pixel-level grasping Pixel-level grasping configurations are designed to estimate the grasp
quality for each pixel or to estimate pixel-by-pixel grasp affordances to evaluate the most probable
grasping contacts. The Generative Grasping Convolutional Neural Network (GG-CNN) proposed
by Morrison et al. [19] translates a depth image into a grasp map, which is composed of three
pixel images: grasp quality, grasp angle, and grasp width. Based on these three pixel images,
a grasp is determined for each pixel. Zeng et al. [34] also presented a framework for predicting
grasp locations, orientations, and confidence scores at pixel-level according to grasp affordances.
Parallel gripper grasps and suction cup grasps are pre-defined as grasp affordances. The authors
used two fully convolutional networks in order to predict whether the object can be sucked or
grasped from 16 different angles, and then derived grasp proposals with confidence scores.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 7

2.2. OBJECT ORIENTED METHODS CHAPTER 2. LITERATURE REVIEW

B. 6DoF grasp

As shown in Figure 2.4, a 6DoF grasp requires an estimation of the gripper’s 6D pose in camera
coordinates to allow it to grasp objects at various angles. The 6D pose includes the 3D position
and 3D orientation of the gripper. Analytical methods were initially used to analyze the geometric
structure of the 3D data, and the points suitable for grasping were determined by force closure [29].
In [35], an overview of 3D object grasping algorithms was presented, where most of the algorithms
dealt with complete shapes. Monocular object 6D pose estimation [36][37] is extensively researched
as depth images become readily available. With the camera’s intrinsic parameters, the depth image
is easily lifted into a 3D point cloud, making depth image-based 6DoF grasps a hot area of research.
The majority of 6DoF grasp methods aim at known objects where the grasps can be precomputed.
Then 6DoF grasps can be estimated by sampling and ranking the grasp poses in the knowledge
base. The problem of estimating grasp poses is transformed into estimating 6D poses for the
target object, which we previously referred to as object-oriented methods. On the basis of prior
knowledge about the shape of the objects, Deng et al. [38] predict the 6D poses of the objects,
and then projects these predefined grasp poses onto the workspace.

Figure 2.4: Grasp coordinate frame [5]

From [39], there has been a new research direction based on the partial point cloud that requires
no prior knowledge of objects, and analyzes the input partial point cloud to estimate the 6DoF
grasp poses. The majority of these methods recommend grasp candidates and provide estimates
of their grasp quality. In [39] proposed GPD algorithm, grasp candidates are first sampled from
a region of interest (ROI) determined by preprocessed viewpoint clouds, then encoded as stacked
multi-channel images. A CNN algorithm can be used to evaluate the score of each candidate, and
the grasps that will be executed are selected based on that score. PointNetGPD was proposed
by Liang et al. [40] as a further expansion. Take raw point clouds as input instead of multi-view
projection features. Following that, a geometric analysis based on PointNet should be conducted
to evaluate the quality of the sampled candidate grasps. In general, this work outperforms GPD
when the input point cloud is sparse.

2.2 Object oriented methods

Object-oriented bin-picking aims to provide affordable instances independent of the gripper model.
From this perspective, the disparity between object-oriented and gripper-oriented approaches can
be explained by the fact that object-oriented approaches are strongly related to occlusion percep-
tion, whereas gripper-oriented approaches are more focused on friction forces and gripper torques
[29].

8 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 2. LITERATURE REVIEW 2.2. OBJECT ORIENTED METHODS

Object-oriented approaches can be divided into two categories: analytical or model-based ap-
proaches, and data-driven or model-free approaches [28]. In contrast, analytical methods assume
an explicit model of the target, whereas data-driven methods are mainly based on image segment-
ation techniques, such as neural networks for segmenting images [29].

Analytical approaches (model-based): analyze the shape of the target object to determine an
appropriate grasp position. These calculations are often based on certain information regarding
the models, such as points of contact, Coulomb friction, and rigid body modeling [2]. In order
to formulate the problem as a constrained optimization problem, geometric, kinematic, and dy-
namic formulations are required [41]. To conclude, this solution involves a model-based method,
which, as its name suggests, relies on a model, such as a CAD model, in order to solve the problem.

Data-driven approaches (model-free): approaches that are based on machine learning [28],
and have gained popularity in recent years. Using these methods, grasping candidates for unknown
objects are sampled and ranked according to a certain metric [41]. Unlike analytic methods, they
do not require a model, such as a CAD model or previously scanned model; instead, they require
labels collected by humans or labeling processes, physical trial and error, heuristic methods, or a
process based on human or robot demonstrations.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 9

Chapter 3

Theoretical Background

3.1 Deep Learning

During the past few years, deep structured learning, or deep learning as it is commonly referred
to, has emerged as one of the most promising fields of machine learning research. As a result of
drastic improvements in chip processing capabilities, the considerable increase in data size used for
training, and recent advances in machine learning, deep learning is becoming increasingly popular
today. The techniques developed from deep learning research have had a profound impact on a
wide range of signal and information processing work in recent years. This is especially true in
the areas of image and object recognition, as well as speech recognition [42][43].

As a result of these developments, deep learning techniques are able to exploit complex, non-linear
functions, to learn distributed and hierarchical representations of features, and to use both labeled
and unlabeled data effectively [44].

3.2 Neural Network

There has been research into neural networks since the 1960s [45]. It was based on simulating
the human brain and the objective was to find a principled approach to solving general learning
problems. In a standard artificial neural network (ANN or NN), many simple, connected units are
referred to as artificial neurons, which are loosely inspired by the neurons found in a biological
brain. Signals can be transmitted from one artificial neuron to another through every connection
between two neurons.

A typical implementation of an ANN involves sending real numbers between neurons, and calcu-
lating the output of each artificial neuron by summing the weights of its inputs. By implementing
an activation function, signals are only sent from one neuron to the next if the threshold is crossed
[46]. The goal of learning is to find weights that enable the ANN to display desired behavior, such
as grasping an object in our case. Depending on the weight, the signal strength at a connection
may be increased or decreased. In most cases, artificial neurons are arranged in layers. Input
may be transformed in different ways by different layers. Upon receiving complex data inputs,
input neurons receive weighted connections from previously active neurons, which activate other
neurons. By triggering actions, output neurons may influence the environment. There may be a
need for long chains of computational stages (layers) depending on the nature of the problem and
the way the neurons are connected. Figure 3.1 shows the structure of a simple neuronal network.

An activation function defines the function applied to the input of a neuron in order to achieve
a particular output. In modern neural networks, the default activation function is the Rectified

10 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 3. THEORETICAL BACKGROUND 3.2. NEURAL NETWORK

Figure 3.1: A simple neural network, which is organized in layers consisting of a set of intercon-
nected neurons. Networks can have tens or hundreds of hidden layers. [6]

Linear Unit (ReLU) [44]. For any negative input x, this function returns 0; however, for any
positive input x, this function returns that value. Therefore, it can be written as f(x) = max(0, x).

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 11

3.3. CONVOLUTIONAL NEURAL NETWORKSCHAPTER 3. THEORETICAL BACKGROUND

3.3 Convolutional Neural Networks

Convolutional neural networks, also called CNNs, are specialized types of neural networks used to
process data with known grid-like topologies. It is common to use CNNs in computer vision tasks
related to classification. Srivastava et. al demonstrated the accuracy of the network structure in
2012 [43], when they won the computer vision competition ILSVRC-12 [47], by a significant margin.

In a CNN structure, there are typically one or more convolutional layers followed by a pooling
layer and a fully connected layer. Through local connections and correlated weights, this network
structure takes advantage of the 2D input structure, resulting in translation-invariant features.

3.3.1 Convolution Layer

Initially, a convolution neural network is set up with a convolution layer. An input image is
projected with a given feature, resulting in a stack of processed, filtered images. Each pixel in the
input images is mapped to the projected feature structure, and the rate of accuracy is computed
on the new filtered image. In Figure 3.2, a colored input image is treated as a three-dimensional
matrix of pixels, while a filter with a two-dimensional weight array is slid across the receiving field
of the image to identify the presence or absence of a feature. In general, the filter is a 3x3 matrix
applied to the input image, and the dot product is calculated from the pixels and filter weights.
Activation maps or feature maps are created by the output of each dot product. The activation
map contains feature information extracted from an image using a specific filter. Pixel areas with
high mapped values indicate that the given feature is present in that particular area. A stack of
filtered images can be created by repeating this procedure for a variety of feature structures.

Figure 3.2: An example of convolution operation performed on an input image [7]

3.3.2 Pooling Layer

A CNN may include local or global pooling layers that combine the outputs of several neurons at a
given layer into a single neuron at the next layer. Max-pooling as shown in Figure 3.3, for example,
reports the maximum output within a neighborhood. All in all, pooling provides a representation
that is approximately invariant to small translations of the input. The location of the eyes does
not need to be precise when determining if an image contains a face; we are only concerned with
the presence of eyes. As pooling summarizes responses over a whole neighborhood, fewer pooling
units may be required than detector units. In this way, the network is made more efficient in terms
of computation. In situations in which the number of parameters in the next layer is a function
of its input size (e.g., when the layer is fully connected and based on matrix multiplication),
the decrease in input size may result in a reduction in the memory requirements for storing the
parameters [48]. By reducing the number of parameters, the search space for optimization was
also reduced. In addition to preventing overfitting, fewer parameters facilitate a faster and more
efficient training process.

12 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 3. THEORETICAL BACKGROUND3.3. CONVOLUTIONAL NEURAL NETWORKS

Figure 3.3: An example of the max pooling operation using a 2 × 2 filter [7]

3.3.3 Residual Blocks

A residual block consists of a stack of layers arranged in such a way that the output of one layer is
added to another layer deeper within the block. The non-linearity is then applied after adding it to
the output of the corresponding layer in the main path. It is called a shortcut or a skip-connection
because it bypasses the main connection. Deeper networks begin to converge, exposing a degrad-
ation problem: with increasing network depth, accuracy becomes saturated and rapidly degrades
[49]. As a result of the skipping connection/residual connection, adding new layers guarantees
that the model’s performance will not decrease, but might increase slightly [50].

In general, there are two types of blocks, depending on whether the input and output dimensions
are the same or different.

• Identical residual block (shown in Figure 3.4)

In an identical residual block, the shortcut path and main path outputs have the same
dimensions. As a result of padding the input to each convolutional layer in the main path,
the output and input dimensions remain unchanged.

Figure 3.4: An example of identical block. The skip connection ”skips over” 2 layers [8]

• Convolutional residual block (shown in Figure 3.5)

This type of residual block uses a convolutional layer to resize the output of the shortcut
path to match the dimensions of the main path. Additionally, the layer can control the
dimension of the output volume by using different filter sizes, including 1x1, padding, and
strides.

Figure 3.5: An example of convolutional block. There is a CONV2D layer in the shortcut path [8]

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 13

3.4. TRANSFER LEARNING CHAPTER 3. THEORETICAL BACKGROUND

3.4 Transfer Learning

In order to adjust weights and biases between layers during training, deep neural networks require
a substantial amount of labeled data. In many applications, it is not feasible to access an extensive
amount of labeled data during training since the number of parameters may be in the range of
hundreds to millions [9]. A transfer training method entails reusing a pre-trained network from a
larger dataset in order to reduce the dependence between weights and biases [51]. The ImageNet
[43] dataset is one of several public datasets available today that are sufficient in size for training
large neural networks. In neural networks, general features are learned early in the network
structure, while specific features for classification are learned in the last layers, so weights and
biases learned from these datasets can be applied to new target objects. Only the last layers
of the deep learning model are trained during transfer learning in order to achieve classification.
Thus, deep learning can be applied in situations where there is a limited amount of labeled data
available. In Figure 3.6, the concept of transfer learning is demonstrated, where the classifier of
the target task is trained after the parameters from the source task have been transferred.

Figure 3.6: Transfer learning [9]. The network is first trained on the source task (ImageNet
classification, top row) using a large number of labelled images. In the next step, the parameters
pre-trained in the internal layers of the network (C1-FC7) are transferred to the target tasks
(Pascal VOC object or action classification, bottom row).

3.5 Robotic Fundamentals

3.5.1 Coordinate Frame and Notation

A rotation matrix is a transformation matrix that produces a rotated vector such that the co-
ordinate axes remain constant. Every rotation matrix has the following form in two dimensions:

R =

[
cos θ sin θ
− sin θ cos θ

]
This rotates the point in the xy-cartesian plane counterclockwise through an angle θ about its
origin.

14 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 3. THEORETICAL BACKGROUND 3.5. ROBOTIC FUNDAMENTALS

Below are the three basic rotation matrices in three dimensions:

Rx =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

Ry =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

Rz =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

where α ,β and γ are the angles rotated about the x,y and z axis respectively. To align the reference
frame’s axes with the body frame’s axes, rotation matrices describe how to rotate about an axis
in space. Consider two coordinate systems C (camera coordinate) and W (world coordinate) that
differ by a rotation. The rotation matrix can be used to transform a point from one coordinate
system to another. For example, if we have the coordinates of a point in coordinate system C, we
can find the equivalent set of coordinates in coordinate system W using the rotation matrix:

WP = RW
C

CP

It is important to note that these rotation matrices are orthonormal, which means that:

RW
C = RC

W

−1
= RC

W

T

Translation vectors describe the relative displacement between two frames in the same way that
rotation matrices describe relative orientation between two frames. A 6 DoF pose consists of
position (3DoF) and orientation (3DoF). For example, the transformation of a position vector PB

to PA can be expressed as follows:
AP = RA

B
BP + tAB

Where RA
B is the rotation matrix and tAB is the translation vector. Alternatively, we can use the

homogeneous transformation matrix:

TA
B =

(
RA

B tAB
01x3 1

)
AP = A

BT
BP

3.5.2 Inverse Kinematics

Inverse Kinematics is the opposite of Forward Kinematics. It involves transforming a given posi-
tion of the end-effector in space into the joint space values needed to attain the desired position
[52]. When it comes to bin picking, the inverse kinematics problem is generally more relevant
than the forward kinematics problem. Using this method, the planner can plan the trajectory
of the end effector during motion planning. A set of joint values corresponds to one position of
the end-effector frame in forward kinematics. Inverse kinematics, on the other hand, might allow
for multiple joint values for any given end effector frame. Consequently, the inverse kinematics
problem is more complex since the equations to be solved are generally nonlinear.

There are two common approaches to solving inverse kinematics problems: analytical and numer-
ical. Analytical approaches calculate joint angles by utilizing a mathematical formula based on
the position of the end-effector. According to the joint parameters and end-effector poses, inverse
kinematics can find all possible joint angles analytically based on the lengths of the linkages, the
starting position, and the rotation constraints. Since the kinematic equations are nonlinear and
scalability is limited for redundant robot configurations, analytical inverse kinematics is typically
applied to robots with a low degree of freedom. The numerical solution can be used to approxim-
ate robot configurations that meet specified goals and constraints. Each joint angle is calculated
iteratively using algorithms for optimization, such as gradient-based methods. In comparison with
analytic inverse kinematics solvers, numerical solvers are more general, but require a number of
steps in order to arrive at a solution to the nonlinearity.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 15

3.6. CAMERA CHAPTER 3. THEORETICAL BACKGROUND

3.6 Camera

Cameras can be used by robots to perceive the environment. As a result, navigation and manip-
ulation of objects in an unknown and dynamic environment are enabled. Figure 3.7 illustrates a
pinhole camera model that can be used to project and map a 3D world coordinate point onto a
2D image plane.

Figure 3.7: A pinhole camera model where the image plane is located in front of the camera’s
origin. A non-inverted image is formed on the plane at zi = f [10]

In order to capture 3D images and store them in 2D formats, cameras play an instrumental role.
Our project does not require a detailed explanation of the physics of the pinhole camera model
since explaining the mathematics behind it will suffice. The 3D world is projected onto a plane
(the projection plane) in front of the camera center in this model. The focal length is the distance
between the camera center and the projection plane. Using the following formula, any point in
the 3D world can be projected onto the projection plane of the camera:

m′ = A[R | t]M ′

 u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

X
Y
Z
1

Here, (X,Y, Z) indicate the coordinates of the point in the 3D world coordinate frame and (u, v)
indicate the coordinates of the projection point in pixels. Camera matrix A is defined as a
matrix of intrinsic parameters (internal to the camera setup, they determine the positioning and

16 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 3. THEORETICAL BACKGROUND 3.6. CAMERA

orientation of the camera in relation to the world frame), while matrix [R | t] is defined as a
matrix of extrinsic parameters (external to the camera and may vary with respect to the world
frame, allowing a mapping between camera coordinates and pixel coordinates in the image frame).
(cx, cy) represents the center of the image (in pixels) and is sometimes referred to as the principal
point. The focal lengths (fx, fy) are also expressed in pixel units.

3.6.1 Hand Eye Calibration

Hand-eye calibration is the process of calculating the relative 3D position and orientation between
the camera and the robot arm in an eye-to-hand configuration, in which the camera is station-
ary within the robot’s environment. It involves calculating the relative rotation and translation
(homogeneous transformation) between two coordinate frames, one centered at the camera lens
center, and the other at the robot arm center. Figure 3.8 illustrates the relationships between
the various components of a vision-guided robot. It is necessary to obtain all the relationships
of an object based on the robot base frame in order to identify that object completely. From
the kinematic model of the robot, it is possible to determine the relationship between the robot
base and the end-effector, while from the calibration of the camera, it is possible to determine
the relationship between the camera and the environment. It is therefore necessary to compute a
relationship between the camera and the robot hand.

Figure 3.8: A hand-eye calibration estimates the position of the camera relative to the robot’s
base HROB

CAM in eye-to-hand systems. The pose circle can be closed by calculating one pose from
the other poses. In this case, the position of the object in relation to the robot. This can be
determined by multiplying the pose of the camera relative to the robot with the pose of the object
relative to the camera: HROB

OB,J = HROB
CAM ·HCAM

OBJ [11]

An illustration of the problem can be found in Figure 3.9, where B represents the transforma-
tion between the coordinate frame of the hand and the base of the robot. The transformation
between the camera coordinate frame and the base coordinate frame is represented by Z, while
the transformation between the camera and tool coordinate frame is represented by A. Lastly, X
represents the transformation between the hand and the tool frame.

The problem can be formulated as AX = ZB assuming that the transformation B is known
and the transformation A can be calculated by calibration software. In this case, X and Z are
unknown. AX represents a transformation from the robotic hand to the camera via the calibration
object (tool), while ZB represents a transformation from the robotic hand to the camera via the

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 17

3.6. CAMERA CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.9: Hand-to-eye calibration. Cameras are used to observe tool feature points mounted on
the gripper in order to determine the tool’s motion [12]

robot base. AX = ZB can be solved by passing a series of matrices Ai and Bi that contain the
relevant transformations for image i, and solving X and Z as follows:

AiX = ZBi → Z = AiXB−1
i

Ai+1X = ZBi+1

Ai+1X = AiXB−1
i Bi+1

A−1
i Ai+1X = XB−1

i Bi+1.

As this set of equations corresponds to solving AX = XB, where A = A−1
i Ai+1 and B =

XB−1
i Bi+1, this is called a Sylvester equation and it can be solved numerically or methodologically

with respect to X [53].

18 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Chapter 4

Method

We will present our work and findings in this chapter while pursuing an RBP vision-guided system,
as well as some of the choices we made while conducting our research. As shown in Figure 4.1, a
simplified pipeline for the proposed system is depicted. In the Start state, hardware and software
are initialized, before a depth image is acquired in the Image Acquisition state. In the Grasp
Prediction state, a deep neural network is used to locate the most suitable grasping pose based on
the location of the object in the depth image. In the Robot Manipulation state, a robot performs
the picking operation based on the grasping location. After completing the pick, the series of
actions may be repeated for a new object, or the system may exit.

Figure 4.1: An overview of our proposed RBP system. A number of grasping objects are placed in
the Initiation state. A depth image from the Image Acquisition state will be used in the Grasping
Prediction state. The proposed grasping location will be sent to the Robotic Manipulation state,
where the final picking action will be performed.

4.1 Tools and Equipment

In the FAE lab at Delta Electronics, practical work was conducted in a small robot cell which
consisted of the following hardware:

• DRV90L, six axis robot arm

• 3D ToF camera

• AX-8 motion controller

• ASDA-A2 servo drives

• master computer

• custom made gripper module

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 19

4.1. TOOLS AND EQUIPMENT CHAPTER 4. METHOD

Figure 4.2 displays the physical setup of the robot cell, as well as a simulated model in Pybullet.

(a) (b)

Figure 4.2: An illustration of the physical robot cell and the simulation environment. (a) Robot
cell for real application. (b) A simulation of a robot cell in Pybullet

4.1.1 Robot arm

In this graduation project, a Delta DRV90L is used. DRV series robots are composed of six axes,
J1 to J6; their motion direction is determined by the joint coordinates. The (+) and (-) shown
in Figure 4.3 represent the actual direction of motion for each axis. On the robot arm, a signal
connector is used to connect the parallel gripper. The parallel gripper wires are connected to pins
1-12 of the 24Pos circular connector behind the base of the robot and to the 12Pos signal circuit
from the robot’s J4 axis wrist.The wiring diagram can be found in Section 4.1.5. A technical
description of the robot arm and its axes of rotation can be found in Figure 4.3, as well as an
illustration of the robot and its axes of rotation.

4.1.2 AX-8 motion controller

The AX-8 Series utilizes the CODESYS motion control platform to enable simple programming
for complex motion control settings. The device supports EtherCAT communications for high
speed motion control, as well as OPC UA for connecting other equipment or software. The robot
arm in this thesis is controlled by an AX-8 Windows-based PLC. It is connected to six servo drives
that correspond to the six axes on the robot arm to achieve motion control. Motion planning is
performed using the CODESYS robotics library, which will be discussed later in this chapter. A
diagram of the controller can be found in Figure 4.4.

4.1.3 Servo drives

Delta introduced the high-performance motion control ASDA-A2 series servo motors and servo
drives in 2009 in order to satisfy the demanding requirements of motion control applications in

20 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.1. TOOLS AND EQUIPMENT

(a) (b)

Figure 4.3: Technical specification of the robot arm extracted from [13]. (left)Articulated robot
specification table. (right)DRV series motion directions

Figure 4.4: The AX-8 Windows-based PLC was used in the pratical work of this thesis [14]

industrial automation as well as the needs of machine designers and system integrators for high-
precision positioning control [14]. For precise motion control, we used six ASDA-A2 servo drives
corresponding to encoders built into the robot arm. An illustration of the servo drive can be seen
in Figure 4.5.

4.1.4 3D TOF camera

In our system, we used a 3D ToF camera DMV-TI3000, which is a high-performance 3D camera
for industrial and robotic applications. Table 4.1 contains the technical specifications. The camera
in our system was mounted on top of the robot arm. In addition to the internal software, the
camera is capable of obtaining depth and amplitude images through any universal software that
supports the GigE standard. For the purposes of this thesis, we are using Harvesters API to
acquire the depth images through a Python file on the master computer.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 21

4.1. TOOLS AND EQUIPMENT CHAPTER 4. METHOD

Figure 4.5: ASDA-A2 servo drive with motor [15]

Model DMV-TI3000GSM
Sensing Technology iToF(indirect Time of Flight)
Resolution(pixel) 640x480
Sensor Sony IMX556 TOF image sensor
Pixel size (um) 10
Frame rate (fps) 60
FOV 67 x 51
Recommend Working Range (m) 6

Table 4.1: Technical specifications for 3D ToF camera

4.1.5 Custom made gripper

We have made a custom gripper that is a parallel gripper using RS-485 for communication. It is
manufactured by a third-party company using 3D printing and customized PCB boards. According
to Figure 4.6 below, the gripper is powered by a 24V power supply and is connected to AX-8 via
two RS-485 signal wires. Appendix A contains the specific operation manual. CODESYS was
used to control the gripper via MODBUS commands.

4.1.6 Master computer

Master computers were mainly used to run image acquisition and neural networks for grasp pre-
diction, as well as receiving and transmitting signals to other components of the system. The
computer was a Linux-based computer with 32 GB RAM, and an Intel Core i7-9700 processor
running at 3.00GHz x8. The graphic card was NVIDIA Quadro RTX 4000.

22 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.2. HAND-TO-EYE CALIBRATION

Figure 4.6: Diagram of the wiring between the robot, AX-8 motion controller and the custom-
made gripper

4.2 Hand-to-eye calibration

It is necessary to perform hand-eye calibration since a 3D camera system is used for bin picking.
In order to increase the accuracy of the calibration, the robot is controlled to move to 20 different
locations while an image of a standard calibration pattern is taken, along with the robot’s location.
Figure 4.7 illustrates two examples of the images.
Extrinsic parameters indicate the camera’s position and orientation in the 3D environment. Math-
ematically, the position is defined by a 3x1 translation vector and the orientation by a 3x3 rotation
matrix. The calibration was performed using the MATLAB calibration toolbox with AprilTag cal-
ibration pattern.

AprilTag is a visual identification system that can be detected and recognized by a camera in
order to provide special information regarding certain tags. An identifier associated with the tag
provides information regarding the tag’s position and orientation. The AprilTag barcode can be
detected even if the image is captured at a low resolution, and it can also be detected at a longer
range than other 2D barcodes, such as QR codes [54]. In the captured image, the tag can be
identified by detecting a four-sided region known as quads. When an AprilTag is scanned by a
camera, it provides different information that is used during the hand-to-eye calibration process.
When an AprilTag is decoded, the center and corners of the tag can be calculated, as well as
the family and ID. An example of how AprilTag is read by MATLAB helperDetectAprilTag-
Corners function and how data is generated is shown in Figure 4.8.

It is necessary to provide the calibrator function with known T gripper2base and T target2cam
transformations in order to compute the relative transformation between the camera and the base.
In this particular case, T gripper2base represents the dynamic transformation from the robot base
to the end effector frame. An AprilTag marker and estworldpose function are used to calcu-
late the T target2cam transformation, which represents the dynamic transformation between the

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 23

4.2. HAND-TO-EYE CALIBRATION CHAPTER 4. METHOD

(a) (b)

Figure 4.7: Two examples of calibration pattern images taken by the 3D ToF camera in the
amplitude mode

(a) (b)

Figure 4.8: AprilTag detection using MATLAB calibration toolbox. (a) detected points shown in
real images. (b) demonstration of MATLAB’s detection function on a generated pattern

camera and AprilTag frames. Figure 4.9 illustrates the calibration process in a simple schem-
atic. Using the two known dynamic transformations acquired in different poses, this calibration
calculates the desired static transformation.

24 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.3. AI ALGORITHM

Figure 4.9: An illustration of the hand-to-eye calibration process. A total of 20 different images
containing calibration patterns are imported into MATLAB. To get the final result of camera pos-
ition and orientation, the output of the function along with the 20 different robot pose information
is fed into OpenCV-Python function calibrationHandEye()

4.3 AI Algorithm

Traditionally, RBP systems are customized to meet the needs of each situation, as discussed in
Section 1.1.1. The purpose of this thesis is to explore the possibility of applying deep learning
to Delta’s existing products with more generalized solutions. We concluded, as discussed in the
previous two chapters, that we would base our planar grasp algorithm on GG-CNN, our 6DoF grasp
algorithm on PointNetGPD and o6DoF graspnet. In the grasp prediction module, Python was
used to implement a decentralized neural network approach based on the PyTorch framework. In
the following sections, we explain the algorithm and dataset used for training the neural networks,
as well as how we improved their performance.

4.3.1 Datasets

Cornell Grasping Dataset

Cornell Grasping Dataset (CGD) from [16] is a popular grasp dataset that has been used for
most transfer learning approaches in robotic grasping [55][33][56]. CGD contains grasp rectangle
information for 240 different types of objects and contains 885 RGB-D images, 885 point clouds,
and 51100 human-labeled positive and 2909 negative grasp rectangles. Figure 4.10 illustrates a
sample set of images. There have been a number of research studies concerning the CGD in the
recent past, which suggests that it contains a reasonable amount of examples of generalized grasps
[33].

Jacquard Dataset

The Jacquard dataset [17] contains 54485 different scenes featuring 11619 distinct objects with a
total of 4967454 grasps annotations (1181330 unique locations). Each scene includes a rendered
RGB image, a segmentation mask, two depth images, and grasp annotations. An example of
annotated images from the Jacquard dataset can be found in Figure 4.11 . Since this dataset

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 25

4.3. AI ALGORITHM CHAPTER 4. METHOD

Figure 4.10: Sample of Cornell Grasp dataset [16]

includes a variety of grasping positions on different objects, it can be viewed as an extension of
CGD.

Figure 4.11: A large variety of objects are included in the Jacquard dataset, each of which has
multiple labeled grasps on realistic images. On the image, grasps are represented by 2D rectangles
whose darker sides indicate the position of the jaws [17]

Yale-CMU-Berkeley object and model set

Yale-CMU-Berkeley (YCB) object and model set [18] [57] contains mesh models, RGB, RGB-
D, and point cloud images of over 80 objects. The data are collected using two state-of-the-art
systems: UC Berkley’s scanning rig and Google’s scanner. This scanning rig data includes meshes
generated using Poisson reconstruction as well as meshes generated using volumetric range image
integration, textured versions of both meshes, Kinbody files that can be used in OpenRAVE with
the meshes, 600 high-resolution RGB images, 600 RGB-D images, and 600 point clouds for each
object. As part of the Google scanner data, 3 meshes are provided, each with a different resolution
(16k, 64k, and 512k polygons), as well as textured versions of the meshes and Kinbody files for
use with OpenRAVE. The following is a sample set of images in Figure 4.12. It is important to
note that in this project, we selected the 512k laser scan option.

26 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.3. AI ALGORITHM

Figure 4.12: Food items included in the YCB object set. Back row, from left to right: a can of
chips, a coffee can, a cracker box, a box of sugar, and a can of tomato soup. From left to right,
middle row: mustard container, tuna can, chocolate pudding box, gelatin box, and potted meat
can. An apple, a lemon, a pear, an orange, a banana, a peach, strawberries, and a plum are
displayed in the front row [18]

4.3.2 Planar grasp

GG-CNN

The Generative Grasping Convolution Neural Network (GG-CNN) [19] is a fully convolutional
neural network capable of generating an antipodal grasp pose and quality measure for each pixel
in an input depth image. It is fast enough to allow for closed-loop control of grasping in dynamic
environments. There are four separate outputs from this model, each of which is based on a
depth-only image (no color information):

• Grasp Quality: normalized between [0,1], it represents the probability of successful grasp of
the pixel

• Angle: the angle is represented as points in the unit circle by two images, one for each
components, with value between [-1,1]

• Width: also given in normalized units and remapped to [0,150] pixels.

The output of the network is post-processed in order to facilitate the generation of grasps. The
angle is computed from the two components as 1

2arctan
y
x , so that the values fall within the range

[−π
2 ,

π
2]. Using the smoothed grasp quality distribution, the best local maxima are found to

determine the angles and widths of the best grasp. It is then possible to transform the image-
space grasp representation into world-space coordinates by knowing the intrinsic and extrinsic
parameters of the camera, as well as the depth from the input image.

Grasp point definition

GG-CNN defines g = (p, ϕ, w, q) as a grasp that is executed perpendicular to the x-y plane. This
is determined by the gripper’s pose, namely its center position p = (x, y, z) in Cartesian coordin-
ates, its rotation ϕ around the z axis, and its width w. The quality measure q represents the

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 27

4.3. AI ALGORITHM CHAPTER 4. METHOD

probability that the grasp will be successful.

An image of depth I = RH×W with height H and width W , acquired from a camera whose
intrinsic parameters are known. Image I illustrates a grasp as g̃ = (s, ϕ̃, w̃, q), where s = (u, v)
represents the center point in image coordinates (pixels), ϕ represents rotation in the camera’s
reference frame, and w represents width in image coordinates. By applying a sequence of known
transformations, a grasp in image space g̃ can be converted to a grasp in world coordinate g.

Architecture

As shown in Figure 4.13, GG-CNN is a fully convolutional topology. There are 62,420 parameters
in the GG-CNN, making it significantly smaller and faster to compute than the CNNs used for
grasp candidate classification in other works, which can contain hundreds of thousands [49][58] or
millions [59][3][60] of parameters. A total of 3 transposed-convolutional layers are applied after
the initial 3 convolutional layers in order to achieve a dense prediction for each pixel in the original
input image.

Figure 4.13: The GG-CNN architecture [19]. It is the last convolutional layer that generates the
grasp and width images as well as the two angle images. The best grasp is separated from the
quality distribution.

The grasp detection pipeline consists of three stages: image processing, evaluation of the GG-CNN,
and computation of the grasp pose. In order to suit the input of the GG-CNN, the depth image is
first cropped to a square and scaled to 300 x 300 pixels. In order to correct invalid depth values,
we use OpenCV inpainting function [61]. To enable to produce the grasp map Gθ, the GG-CNN is
evaluated on the processed depth image. We filter Qθ using a Gaussian kernel and remove outliers
to achieve convergence on more robust grasp regions. Lastly, the best grasp pose in the image
space g̃∗θ is determined by identifying the maximum pixel s∗ in Qθ, and the rotation and width
are determined by Φθ|s∗ and Wθ|s∗ , respectively. By using sequence of transformations, we are
able to calculate the grasp in Cartesian coordinates.

Evaluation

In the CGD, antipodal grasps are represented as rectangles aligned to the position and rotation of
a gripper. The center third of each grasping rectangle is used as an image mask to convert from
the rectangle representation to our image-based representation G. To train our network, we only
consider positive labeled grasps and assume any other area is not a valid grasp.

28 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.3. AI ALGORITHM

In order to evaluate the performance of the network, the GG-CNN uses the rectangle metric
proposed by Jiang [62]. Two conditions must be met for a grasp to satisfy the proposed rectangle
metric:

• An intersection over union (IoU) score of more than 25% exists between the ground truth
grasp rectangle and the predicted grasp rectangle

• An offset of less than 30 degrees exists between the predicted grasp rectangle and the ground
truth rectangle

Network modification

In Section 3.3.3, we discussed residual blocks, and we want to develop a net model using GG-CNNs
combined with residual blocks to increase the accuracy of the network. Figure 4.14 illustrates the
proposed GR-ConvNet [20] model, which is a generative architecture that generates three pixel-
wise grasps from an n-channel input image. In order to generate the four output images, the
n-channel image is passed through three convolutional layers, followed by five residual layers and
three convolution transpose layers. Convolutional layers extract features from the input image.
Five residual layers are applied to the output of the convolutional layer. As we know, accuracy
increases as layers are added. This is not true, however, when you exceed a certain number of layers,
resulting in vanishing gradients and dimensionality errors, which cause saturation and degradation
of accuracy. Through using skip connections, residual layers can help us learn identifier functions
more effectively. The image size is reduced to 56x56 after passing through convolutional and
residual layers, making it difficult to interpret. Similarly to GG-CNN, we up-sample the image
using a convolution transpose operation after convolution to make it easier to interpret and retain
spatial features. Thus, the output image is the same size as the input image.

Figure 4.14: Proposed Generative Residual Convolutional Neural Network [20]

In the last section, we mentioned that GG-CNN uses rectangle metrics for evaluation. In order
to calculate this metric, a grasp rectangle representation is required, but our model predicts an
image-based grasp representation. The value corresponding to each pixel in the output image
needs to be mapped to its equivalent rectangle representation in order to convert from image-
based grasp representation to rectangle representation. As a result, we propose another method
of evaluation that does not require conversion and requires the following two conditions:

• A difference of less than 30 degrees exists between the predicted grasp angle and the labelled
grasp angle

• The grasp center point is less than five pixels from the ground truth point

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 29

4.3. AI ALGORITHM CHAPTER 4. METHOD

For the convolutional layers, the useful information in the image is concentrated in the middle
(where the objects are), which leads to sparse and unbalanced classes. Instead of normal L1,L2
loss, we introduce focal loss as a modified loss function. In [63], it is demonstrated that focal loss
is more effective when the classes are imbalanced. Predicting the grasp region can be regarded as
a binary classification problem. The loss function is followed by a binary cross-entropy function,
which is defined as:

L = − 1

N

N∑
n=0

[
ynq · log

(
pnq

)
+

(
1− ynq

)
· log

(
1− png

)]
N represents the size of the output feature maps, pnq represents the probability predicted at the n
position, and ynq represents the corresponding label.

4.3.3 6DoF grasp

PointNetGPD

PointNetGPD [21]is an end-to-end grasp evaluation model that addresses the challenging issue of
identifying robot grasp configurations directly from point clouds. It is capable of capturing the
complex geometric structure of the contact area between the gripper and the object even when
the point cloud is sparse. The algorithm flow is shown in Figure 4.15.

Figure 4.15: PointNetGPD algorithm flow [21]. Given raw RGB-D data from a sensor input, the
depth map is first converted into a point cloud. Next, some candidate grasping poses are sampled
based on geometric constraints. For each candidate, the point cloud inside the grasper is cropped
and converted to the gripper’s local coordinate system. Lastly, the candidate grasping inputs are
fed into the grasping quality evaluation network to determine scores, and the candidate grasping
poses with the highest scores are adopted.

On the basis of the YCB dataset, the authors generated a dataset with 350k real point clouds,
parallel gripper grasping poses, and resolved grasping quality scores. As opposed to the Dex-Net[3]
dataset, this dataset provides a more detailed score for each gripper pose. The authors calculate
force-closure [64] and friction-independent GWS (Grasp Wrench Space) [65] as the score for the
gripping pose, given a 6D grasp pose and a CAD model of the object. Figure 4.16 illustrates the
grasp quality evaluation network. In this network, input grasps are represented as point clouds
within the closed region of the gripper, without using the entire point cloud as input, which can
improve the efficiency of learning and inference. Figure 4.17 illustrates how the point clouds are
transformed into a uniform gripper local coordinate system, which eliminates the ambiguity of

30 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.3. AI ALGORITHM

grasp locations resulting from different experimental setups. The point clouds are then fed into
the network in order to estimate the grasp quality hierarchy. Compared with other CNN-based
networks used for grasp estimation, this network is lightweight and has only approximately 1.6
million parameters.

Figure 4.16: PointNet-based network structure for grasp quality evaluation [21]. Based on the
grasp pose and the original point cloud, the point cloud in the closed region of the grasper rep-
resents a grasp that is transformed into the grasper’s local coordinate system and input into the
network. As a result of multiple spatial transformations and feature extraction, the final global
features are used to classify the input grasps according to their quality level.

Figure 4.17: Representation of a grasp in the local gripper coordinate system [21]. (a) a typical
grasping pose; (b) the axes of the local coordinate system. The authors use the forward, parallel,
and orthogonal directions of the gripper as the XYZ axes and the middle position of the bottom
of the gripper as the origin, respectively.

6DoF GraspNet

NVIDIA has developed another 6DoF grasp neural network structure, called 6DoF graspnet [5].
It is presented in this paper that a set of grasps are sampled using a variational autoencoder, and
the sampled grasps are then evaluated and fine-tuned for refinement through the use of a grasp
evaluator model. A 3D point cloud observed by the depth camera is taken as input by both the
grasp sampler and grasp refine network. Figure 4.18 illustrates the overall network structure.

The grasp sampling network consists of a variational autoencoder, or VAE. In the input, X is the
target point cloud from each viewpoint sampled from the original target 3D point cloud, and g
is the grasping pose, which is the R (rotation) and T (translation) of the gripper in the target
coordinate system. In order to obtain a similar g to the input, the encoder Q of the VAE encodes
the input into the hidden layer space, so that it meets the unit Gaussian distribution; then, after
decoding the hidden layer variable z, ĝ similar to the input is obtained. It is the purpose of the

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 31

4.3. AI ALGORITHM CHAPTER 4. METHOD

Figure 4.18: (left) The grasps are estimated with respect to the center of mass of the object point
cloud, X. The axes of the grasp coordinate frame are parallel to those of the camera. (right) An
point cloud X is obtained by fitting a plane to a depth image. The Grasp Sampler Network uses
the point cloud to propose different grasps. Based on the object point cloud and the proposed
grasp, the evaluator network assesses the grasps. By using the gradient of the evaluator network,
grasps are improved iteratively [5]

VAE training process to make z obey as closely as possible the unit Gaussian distribution de-
scribed above, so when testing, the encoder is removed and a random sample of the unit Gaussian
distribution replaces the hidden layer variable z that is encoded in order to obtain the input point
cloud X, resulting in the reconstructed grasp ĝ that corresponds to the network’s requirements.
The process is illustrated in Figure 4.19.

Figure 4.19: Each grasp is mapped to a point z in a latent space during training. Latent space
distribution is minimized toward a normal distribution. Using the point cloud and latent values,
the decoder reconstructs the 6D grasps, depicted here as gripper poses [5]

Since the grasp generated in the previous step must appear correct to the network (because z obeys
the unit Gaussian distribution, then the g reconstructed by sampling from the unit Gaussian
distribution must be the correct grasp), a judgment is actually required to determine whether
the generated grasp appears plausible. As a result, the authors in [5] add a grasp pose evaluation
network after the grasp sampling network. This evaluation network is essentially a binary network,
where the input is the synthetic rendered point clouds X ∪Xg of the target and gripper, and the
output is the success rate s. The grasp evaluation network is optimized using cross-entropy loss:

Levaluator = −(y log(s) + (1− y) log(1− s))

Following the evaluation, some examples of successful and unsuccessful grasps were obtained,
but how can the success rate be improved? What can be done to improve the accuracy of the
estimated grasps ĝ? An ingenious approach called iterative grasp pose refinement has been devised

32 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.4. SOFTWARE DEVELOPMENT

by the authors [5] in order to achieve this goal. As a larger s in the evaluation network indicates
a greater likelihood of success, making all these s as large as possible and converging to 1 will
also improve the grasps. In order to compute the refinement transformation that results in the
greatest improvement in success probability, the derivative of success with respect to the grasp
transformation should be taken: ∂S/∂g.

Combination

We have discussed above that PointNetGPD uses traditional methods to sample grasps, such
as force-closure and GWS. For the purpose of generating and evaluating grasps, they randomly
sample the grasps from the given mesh model and each time they must calculate scores, which
is time consuming to prepare this dataset for grasp prediction networks. In contrast, in 6DoF
graspnet, all sampling and evaluating is performed by VAE. Our proposal is to combine the two
networks and select the advantages of each network to achieve a more efficient network for 6DoF
objects grasping. The point cloud method from PointNetGPD can continue to be used for the
input of the grasp prediction network.

4.4 Software Development

In this project, we wrote the majority of the software for the system in Python, but some parts were
written in MATLAB and CODESYS. Programming in Python was used to control the grasping
prediction module. A Python API was used to control the 3D camera, while MATLAB was used
to calibrate the camera. The robot manipulation module on the AX-8 controller was implemented
using CODESYS SoftMotion+CNC robotics library.

4.4.1 Simulation environment setup

Pybullet

In this project we used Pybullet [66] as one of the simulation environments. The Pybullet Python
module is a fast and easy-to-use tool for robotics simulation and machine learning. An articulated
body can be loaded from files in URDF, SDF, MJCF, and other formats. These files contain
information about the structure of a robot, the connections between its various components, etc.
This project uses the URDF model provided by the company’s research and development depart-
ment.

In addition to forward dynamic simulation and inverse dynamic computation, Pybullet also sup-
ports collision detection and ray intersection queries. It is not only designed for grasping, but
also for general simulations. Since Pybullet does not accurately model friction, grasping objects
based on physics can be quite challenging. In contrast, the simulation can detect collisions fairly
easily, so if the gripper collides with an object during grasping, we can attach the object to the
end effector to simulate a grasp rather than relying on physics.

IsaacGym

Isaac Gym [67] provides a high performance learning platform for training robotics policies directly
on GPUs. The physics simulation and neural network policy training are both executed on GPUs,
and data is passed directly from physics buffers to PyTorch tensors without ever passing through
any CPU bottlenecks. In view of the complexity of the model and the efficiency of the simulation
environment, Isaac gym will be used to simulate and test 6 DoF grasp.

4.4.2 Image Acquistion

A Python program was used to control the 3D ToF camera and acquire the depth images. An
initial connection was established between the computer and the camera, and the pre-calibrated

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 33

4.4. SOFTWARE DEVELOPMENT CHAPTER 4. METHOD

camera settings were defined. Figure 4.20 shows the specific camera settings for our setup. The 3D
ToF camera records the captured data as an array containing all the information it has obtained.
As a result, it is possible to post-process the image in order to obtain the desired depth and
amplitude images.

Figure 4.20: Camera parameters that can be adjusted using internal software. The integration
time and intensity are defined by default as 1000 and 1.0 . Both of these parameters have a
significant impact on the quality of the depth image

4.4.3 Robot Control

As part of Delta Electronics’ requirements, CODESYS was chosen as the main control software
for the robot arm. CODESYS is an integrated development environment designed to develop con-
troller applications in accordance with the international industrial standard IEC 61131-3. Delta
provides software called Designer-AX that integrates the CODESYS-based controller with ad-
ditional customized features. CODESYS SoftMotion CNC+Robotics library provides function
blocks for motion planning, inverse kinematics, trajectory planning and supports OPC UA com-
munication with Python. Here are some explanations of the function blocks we use in this thesis.

• SMC GroupPower: perform a power on command for each axis of the robot arm

• MC GroupEnable: The axis group has several statuses, as shown in Figure 4.21. With this
command, we are able to move the axis group from GroupDisabled to GroupStandby

• MC MoveDirectAbsolute: execute a point to point movement with a non-linear trajectory

• MC GroupReadActualPosition: povides information regarding the position and orientation
of the end-effector

• SMC GroupSetTool: in robotics, a tool is a configurable offset between the Tool Coordinate
System and the Flange Coordinate System. We need to set the Z axis offset for the gripper
installed on the end-effector in our case

Target position of movement function blocks are just variables that need to be filled in with the
coordinate values in the following format:

pos1 : SMC POS REF := (c := (X := 100, Y := 100, Z := 100;A := 30, B := 40, C := 50))

34 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.4. SOFTWARE DEVELOPMENT

Figure 4.21: Different statuses of the axis group

where X,Y,Z are the Cartesian coordinates, and A,B,C are Euler angles in the order ZY’Z”.

Our proposed system consists of several static and dynamic manipulator poses given by the grasp-
ing prediction module during the RBP task. A pipeline of the different robot poses during a
picking operation can be seen in Figure 4.22, where the poses are as follows:

• Default Start Position
This is the robot’s starting position. Upon initialization, the robot will always start at this
position.

• Grasp Standby
As soon as CODESYS receives the predicted grasp from the master computer through OPC
UA, the robot moves above to the target position and is ready to perform the grasping
operation.

• Grasp Location
Through MODBUS, the gripper received the done signal from the previous step and executed
the grasp command.

• Move to New Object
The robot arm moves the picked object to a new location. This series of operations may be
repeated for a new object, or the system may terminate the process.

4.4.4 Grasping Objects

For simulation, we use object models from ShapeNetSem. ShapeNetSem contains a series of 3D
object databases that have been extensively annotated. Consequently, the scaling of the objects
is not homogeneous and in some cases is unknown. A set of 40 objects was randomly subsampled
and manually rescaled using Blender [68] to fit the gripper and robot arm’s dimensions in order to
ensure that all the objects could be grasped by our simulated gripper. Figure 4.23 illustrates the
objects that we wanted to grasp and pick during the simulation. It was chosen to represent the
wide range of product attributes that may exist in an actual warehouse by selecting objects with
a wide variety in terms of form, material, physical properties, and mass. For the real application,

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 35

4.4. SOFTWARE DEVELOPMENT CHAPTER 4. METHOD

Figure 4.22: An illustration of the general movement performed by the DRV robot axis groups

we only utilized a simple cube since it is common in industry to use repeated shapes and due to
time constraints, we only demonstrated the grasping capability. Figure 4.23 illustrates the cube.

4.4.5 Code structure

The entire code consists of two main parts that are responsible for achieving both simulation and
real-world application for planar grasps, as well as simulation for grasps with six degrees of freedom.

For the simulation of planar grasps, neural network models were implemented. A Pybullet sim-
ulation environment was set up in accordance with the URDF models of the robot arm and the
objects. The neural networks were trained and evaluated using the original GG-CNN as well as
the improved version GRConvNet. The real application includes the communication set up with
different hardware and the PLC program for controlling the robots throughout the whole RBP
process. There is also a Jupyter notebook file included for demonstration purposes.

As with 6DoF grasp, neural network models and visualization tool output (i.e. Tensorboard) were
incorporated along with a simulation environment for the Isaac Gym. We provide a demonstration
of 6DoF grasp on a real point cloud as well as a simulation of the grasping scene.

Gradua t i on p ro j e c t J i e /
Planar grasp /

Appl i ca t ion /
hardware/

camera . py
ey e t o hand c a l i . py
Apr i l t ag .m

PLC project /
robotGraspWithVision . p r o j e c t

demo . ipynb
opcua . py

Simulat ion /
d e l t a d r v90 l /

meshes/
c o l l i s i o n

36 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 4. METHOD 4.4. SOFTWARE DEVELOPMENT

(a) (b)

Figure 4.23: Examples of grasping objects. (left) simulated objects from ShapeNetsem database
in Pybullet. (right) real application grasping cubes provided by Delta

v i s u a l
urdf /

drv90 l . urdf
g r ippe r . urdf

datase t /
c o r n e l l
jacquard

ggcnn/
models /
output /
u t i l s /

data
da t a s e t p r o c e s s i n g
v i s u a l i s a t i o n

eva l ggcnn . py
t ra in ggcnn . py

grConvnet/
models /
output /
u t i l s /

eva luate . py
t ra in network . py

ob jec t s mode l /
graspLebe l /

g ene ra t e t a rg e t ggcnn . py
showlabe l . py

s im grasp . py
simEnv . py

6DoF grasp /
ycb datase t /
output /
models /
i s a a c s im /

a s s e t s /

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 37

4.4. SOFTWARE DEVELOPMENT CHAPTER 4. METHOD

r e s u l t s /
s im on e o b j e c t a l l g r a s p s . py

demo . py
t r a i n . py

Listing 4.1: code structure

38 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Chapter 5

Results

In this following chapter, we will present the results of our proposed system. Due to time con-
straints, we were able to achieve planar grasp with both simulations and real applications, but
only with simulation for 6DoF grasps.

5.1 Planar Grasp

5.1.1 Physical setup

The physical setup consists of a number of components that communicate via input and output
ports. Figure 5.1 illustrates a simple schematic representation of the system, in which the master
PLC controls the 3D camera and robot.

Figure 5.1: Schematic of the system. A motion controller and six servo drives are connected to
the robot. A custom-made gripper connects the robot and controller via RS-485 communication.
AX-8 and the master computer exchange data through OPC UA communication. Harvesters API
is used on the master computer to control the 3D ToF camera using the GigE standard

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 39

5.1. PLANAR GRASP CHAPTER 5. RESULTS

5.1.2 Eye-to-Hand Calibration

The eye-to-hand calibration was conducted in accordance with Section 3.6.1. A total of 20 images
were taken along with the recorded robot position at each iteration. As a result of the MATLAB
calibration toolbox, intrinsic and extrinsic parameters of the camera were calculated, as well as
distortion coefficients.

Intrinsic Parameters

In the camera matrix K, the intrinsic parameters were contained:

K =

 fx s x0

0 fy y0
0 0 1

A camera’s focal length is given by f , its axis skew by s, and its optical center by (x0, y0). It
is important to note that these values are only a function of the camera, which means they are
independent of the positioning and orientation of the camera in space. However, due to differences
in mounting and production variation of individual components, they may vary among assumed
identical camera models. According to the calibration, the resulting camera matrix is as follows:

K =

 527.627 0.000 339.664
0.000 527.527 238.394
0.000 0.000 1.000

In addition, camera distortion coefficients were estimated to be:

Kd =
(
−0.248 0.184 −0.163 0 0

)
.

Figure 5.2 shows the results of the MATLAB calibration toolbox analysis. This figure illustrates
the relationship between camera and calibration pattern, with respect to camera or object.

(a) (b)

Figure 5.2: Intrinsic paramters result from MATLAB. (left) camera centric (right) object centric

40 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 5. RESULTS 5.1. PLANAR GRASP

Extrinsic Parameters

In the extrinsic camera parameters, the location and orientation of the camera are described.
According to the calibration, the homogeneous transformation matrix between the robot base and
the mounted camera TB

C is as follows:

TB
C =

0.99842424 0.04931398 −0.02678007 760.89255123
0.0493939 −0.99877666 0.00233091 124.59082248

−0.02663236 −0.00365001 −0.99963863 863.50226556
0 0 0 1

 .

In order to estimate the rigid transformation TW
G between the world frame W and the grasping

location G, the transformation matrix TB
C was used:

TW
G = TH

BTB
CT

C
G

where TH
B is the transformation from the the hand/end-effector to robot base. TC

G is the trans-
formation from the camera to the grasp position.

5.1.3 Image Acquisition

In accordance with the proposed image processing pipeline from Section 4.4.2, we were able to
capture high quality depth images of the objects using the 3D camera. This was essential for
the picking operation, as the grasping module determines the object location based on this depth
image. Figure 5.3 illustrates an example captured depth image of grasping scene.

(a) (b)

Figure 5.3: Example of amplitude and aligned depth images acquired with grasping objects (cubes)
in the scene.

5.1.4 Neural Networks

Planar grasp

In order to interpret the results of the GG-CNN network during training and evaluation, the
visualization tool Tensorboard [69] was used. TensorBoard was accessed using the following com-
mand:

$ tensorboard −− l o g d i r=’ /your/path/ here ’

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 41

5.1. PLANAR GRASP CHAPTER 5. RESULTS

In this case, TensorFlow creates a local host server on which a visual representation is displayed.
With TensorBoard, we were able to monitor the progress of the networks as they were trained
using graphs, diagrams, and histogram plots. To detect overfitting during training, the accuracy of
the evaluation was continuously monitored. In order to evaluate the performance and behavior of
the network during training, different configurations with different hyperparameters were tested.
Based on [19] [20] and results we observed, we found that the hyperparameters listed in Table 5.1
produced the best results. Figure 5.4 illustrates the validation precision for both networks, as well
as the corresponding total loss graph for the same training period.

Hyperparameter Value

Training epochs 50
Batch size 8

Batches per epoch 1000
Validation batches 250

Optmizer for the training Adam

Table 5.1: Hyperparameters values

Validation precision is calculated in accordance with Section 4.3.2. Based on the validation accur-
acy curve (IOU), GG-CNN and GRConvNet exhibit rapid increases in accuracy before stabilizing
at 75% and 90%, respectively. At a given point, we cannot exclude the possibility of overfitting in
the networks, as we do not observe a sudden decrease in the score. Due to the similarity between
the training and validation sets, this can be attributed to the limited variation between them.
Based on the results of the total loss graphs, we are able to conclude that our trained networks
yielded sufficient classification for the training set since the squared error loss (L2 loss function) are
relatively low. Upon viewing the validation graph, the networks converged towards their highest
validation accuracy, so we stopped training and saved the frozen graphs at the highest peak. More
detailed graphs of our trained models can be found in Appendix B.

(a) (b)

Figure 5.4: Accuracy curves and loss curves of planar grasp networks (a) GG-CNN(b) GR-
ConvNet. The x-axis represents the epochs of the training process. The y-axis plots (from left
to right) the IoU matrices (i.e. the grasp accuracy), the L2 loss function values of the training
dataset and the L2 loss function values of the validation dataset

6DoF grasp

As described in Section 4.3.3, the 6DoF grasp is comprised of two neural networks, a grasp gen-
erator and a grasp evaluator. Both of them are based on the PointNet++ architecture. Figure
5.5 and Figure 5.6 illustrate the training curves. As can be seen, the accuracy of the evaluator
model remains stable around 80%. Because of time constraints and large computation times, we
did not perform hyperparameter tuning and used the default settings provided in the papers. We
will discuss the grasping results in the following section, and more training curves can be found
in Appendix B.

42 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 5. RESULTS 5.1. PLANAR GRASP

Figure 5.5: Training curves of VAE. The x-axis shows the steps taken during the training process,
while the y-axis (from left to right, top to bottom) shows the reconstruction loss of the testing
dataset (orientation and translation loss of the generated grasps with the ground truth grasps),
confidence loss (confidence term that penalizes outputting zero confidence), KL-divergence loss,
reconstruction loss, and total loss of the training dataset

Figure 5.6: Training curves of grasp evaluator. The x-axis shows the steps taken during the
training process, while the y-axis (from left to right) indicates the accuracy of grasping the testing
dataset, classification loss (cross-entropy loss), confidence loss (confidence term that penalizes
outputting zero confidence) and total loss of the training dataset

5.1.5 Simulation

Based on our previous discussion in Section 4.4, we developed a simulation environment in Pybul-
let to evaluate planar robotic grasping. The simulation environment consists of the DRV robot
arm equipped with a gripper and a simulated depth camera that observes the robot’s workspace
from above. A robot is set to a predefined homing pose and randomly selected objects are placed
in arbitrary poses within the robot’s workspace. In all experiments, the robot knows in advance
how to place the object, while the neural network model must predict the best grasping pose for
the given scene and send it to the robot to grasp, pick up, and place the object. Whenever an
object is higher than a threshold at the end of a pick and place mission, it is recorded as a success,
and the object will be automatically removed so that the process can be repeated.

Our neural networks were evaluated under two different scenarios: isolated and cluttered. In the
isolated object scenario, only one randomly selected object is placed. For the cluttered scenarios,
5 objects are randomly placed on the floor in order to simulate a cluttered pile of objects.

To assess the performance of the models, we measured the pick success rate, which is the ratio of
successful grasps to attempts. For each experiment, we conducted 50 grasp attempts and reported
the pick success rate. In Table 5.2, the results for different models have been summarized for
objects that were tested in isolation and in clutter. As shown in the graphs, the GRConvNet and
improved GGCNN models perform significantly better than the original GGCNN model in both

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 43

5.1. PLANAR GRASP CHAPTER 5. RESULTS

isolated and clutter scenarios.

Approach Training Dataset Isolated Cluttered

GGCNN Cornell 79.0 74.5
GGCNN improved Cornell 83.5 80.0

GR-ConvNet Cornell 93.0 90.0
GR-ConvNet Jacquard 92.5 95

Table 5.2: Pick success rate (%) in simulation

5.1.6 Real Application

Real-world applications were conducted on the Delta Electronics DRV robot. For grasping the
test objects, a parallel gripper was custom-made. Due to the time constraints, this application
was only used to demonstrate Delta’s product’s potential on RBP. The success rate of grasping
with the real application could not be tested out using different shapes of objects. Demonstrations
were conducted using only simple cubes. Based on its outstanding performance proven previously
in Section 5.1.5, we chose GRConvNet as the neural network. A visualization demo is shown in
Figure 5.7. Also the predicted grasping center for the testing cube and the output of the grasp
mapping are shown.

Figure 5.7: Visualization of the grasping prediction module for real-world application. As shown
in the image above, the depth image was captured and cropped, and a red dot indicates the
predicted grasping center. Listed below are the grasp quality (successful grasp probability from 0
to 1), grasp angle in radian, and grasp width in pixels.

44 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 5. RESULTS 5.2. 6DOF GRASP

5.2 6DoF grasp

The simulation for 6DoF grasp was conducted in IssacGym due to its outstanding performance
on GPUs. A simulation environment has been developed for the grasping scene, similar to the
planar grasping scene. This simulation environment only includes the gripper model and several
category object models, as listed below in Table 5.3, due to the complexity and time commitment
of the 6DoF grasp model. In the simulation environment, the mentioned combination network was
tested with three categories: mug, bottle, and bowl. According to the grasp scores calculated by
the evaluation networks, the final grasp poses are selected. The new combination network achieves
average 77% success rate and requires less computing time.

Approach Mug Bottle Bowl Average

6DoF grasp 76.3 78.0 76.7 77.0

Table 5.3: results of grasp success rates (%) among different categories of objects

Figure 5.8 shows a demonstration of predicted grasps using a real-world point cloud and a simu-
lation testing scene in Isaac Gym.

(a) (b)

Figure 5.8: (a) Demonstration of generating predicted graphics from RealSense point clouds. (b)
Simulation of grasping a mug with a gripper model in the Isaac Gym

5.3 Demonstration Video

A demonstration video was produced to illustrate the potential of planar grasp on Delta’s products.
Additionally, simulations of planar grasp and 6DOF grasp are demonstrated. You can find the
video in the digital appendix.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 45

Chapter 6

Discussions and recommendations

A discussion of the results obtained from our practical work will be presented in the following
chapter. A review of the system’s strengths and weaknesses will be presented, as well as suggestions
for improvements.

6.1 AprilTag v.s. Chessboard

Most camera hand-to-eye calibrations use a chessboard pattern as the calibration pattern. Initially,
we chose the chessboard pattern as well, but the calibration results were always far from the real
value. As we discovered, the MATLAB calibration toolbox does not recognize pattern changes
when they are rotated 180 degrees. This issue is explained in Figure 6.1. In order to avoid this
issue, we decided to use AprilTag as the calibration pattern since it contains unique patterns.

(a) (b)

Figure 6.1: Incorrect corner points detection on MATLAB. (a) Pose A (b) Pose B (approx. 180°
from Pose A)

6.2 Depth Image Quality

In order to locate the assumed best grasp location, the neural network requires a high quality
depth image. Feature enhancement and noise removal operations are performed on the initial
depth image before it is fed into the neural network. Despite the improvement in the processed
image, it proved difficult to obtain a high quality depth image for all surfaces, textures, and angles
of the objects. Using more smoothing filters can partially resolve this problem, but at the expense

46 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 6. DISCUSSIONS AND RECOMMENDATIONS6.3. OBJECT SEGMENTATION

of reduced texture and edge details in the depth image. As shown in Figure 6.2, camera settings
affect depth image noise and quality.

(a) (b)

Figure 6.2: A comparison of depth images taken under different settings. (a) A smoother and less
noisy depth image with higher integration time and intensity settings. (b) A depth image with
more noise when the integration time and intensity are reduced

6.3 Object segmentation

In general, the neural network performed well on semi-structured bin picking operations in which
the objects are clearly separated. Stacking two or more objects side by side resulted in a higher
failure rate. As a result, the neural network often evaluated the side-by-side objects as one solid
object. Thus, the final grasp location was located near the center of the combined objects, which
in reality might have been near the edge of the combined objects. Due to the fact that the network
is only trained on single object depth images, this type of failure may occur.

As a solution to this issue, we propose a separate object segmentation module in the bin picking
pipeline that may be able to resolve the issue where several objects are evaluated as one. The Figure
6.3 illustrates the results of a proposed object segmentation module that could be implemented
in our system in order to increase success rates. Based on the work presented in [22], the module
applies a Feature Pyramid Network (FPN) to achieve segmentation. Figure 6.4 illustrates the
results of testing the grasping module using this segmentation method.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 47

6.3. OBJECT SEGMENTATIONCHAPTER 6. DISCUSSIONS AND RECOMMENDATIONS

Figure 6.3: Architecture of the proposed model includes a segmentation module [22]. The backbone
network is shared by both branches for grasp detection and segmentation. A grasp refinement
head uses both outputs (grasp candidates and semantic segmentation) to predict refined grasp
candidates with increased accuracy

Figure 6.4: Results of the testing of the grasping module using the segmentation method [22]. The
following images are explained from left to right: 1) the raw input image; 2) predicted semantic
segmentation, where each color represents a specific class; and 3) the best possible grasp for each
class in the scene (blue lines indicate parallel plates of the gripper, red lines indicate opening
width). Each row represents a different example of input

48 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

CHAPTER 6. DISCUSSIONS AND RECOMMENDATIONS 6.4. BIN PICKING

6.4 Bin picking

Due to limited time and the complexity of 6DoF grasp, we were not able to integrate the algorithm
with a real-world application for this graduation project. Planar grasp should also be tested with
more experiments, for example, using different categories of objects. In addition, internal software
that is being developed could accelerate the process, since it will support automatic calibration
and direct extraction of point clouds. Consequently, it would be possible to implement the 6DoF
grasp on real applications and to integrate the planar grasp system into an automated system.

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 49

Chapter 7

Conclusion

The purpose of this thesis was to develop a functional solution using a 3D ToF camera for RBP
tasks. This thesis aimed to answer the following research question:

How to develop a CODESYS-based robotics solution for RBP tasks using a 3D ToF camera and a
Delta DRV robot arm?

To answer this main question, we explored deep learning based RBP algorithms and integrated
them with existing Delta products. By conducting extensive literature research, we were able
to gain a comprehensive understanding of the different technological approaches that might be
used to accomplish the task at hand. Through our practical work, we have successfully met the
objectives stated in Section 1.3 of the problem formulation. The kinematics of the robot were
described, followed by an estimation of the eye-to-hand coordination between the camera and the
robots. To ensure the success of grasping, a gripper was designed and manufactured, planar and
6DoF grasping neural networks were trained, and simulations and real-world experiments were
conducted. Due to time constraints, real-world applications are only possible with planar grasps.

We selected deep neural networks for the purpose of detecting object grasping, as these methods
have shown significant improvements in performance since their introduction. It became evident
from the results that our grasp prediction module was capable of picking a wide variety of objects
in a simulation environment. Additionally, the results demonstrate the robustness of deep learning
approaches in general.

Individual modules were combined with Python scripts and CODESYS PLC programming to cre-
ate one autonomous bin picking system, which was evaluated in terms of robustness and feasibility
for implementation in a realistic setting. The camera and master computers were connected using
Harversters API, and the master computer is connected to the PLC that controls the servo drives
on the robot arm using OPC UA. Simulation results indicate that the proposed bin picking system
achieved a success rate of 95% when picking unspecified objects using a planar grasp algorithm and
77% when using a 6DoF grasp algorithm. There was a problem distinguishing and separating ob-
jects that were stacked side by side, as the network often evaluated these objects as a single object.
In order to resolve this issue, an object segmentation module could be introduced into the pipeline.

In general, this thesis explores the possibility of integrating Delta’s products with intelligent vision-
guided RBP. As a result of the practical work and experiments conducted in this master’s thesis, a
bin picking system has been developed by combining deep learning, computer vision, and robotics.
Each module of the system has been thoroughly explained, and weaknesses and strengths have
been identified.

50 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

Bibliography

[1] W. C. Chang and C. H. Wu, “Eye-in-hand vision-based robotic bin-picking with active laser
projection,” International Journal of Advanced Manufacturing Technology, vol. 85, pp. 2873–
2885, 8 2016. 1

[2] T. T. Le and C. Y. Lin, “Bin-picking for planar objects based on a deep learning network: A
case study of usb packs,” Sensors (Switzerland), vol. 19, no. 16, 2019. 1

[3] C. Martinez, R. Boca, B. Zhang, H. Chen, and S. Nidamarthi, “Automated bin picking system
for randomly located industrial parts,” in IEEE Conference on Technologies for Practical
Robot Applications, TePRA, vol. 2015-August, IEEE Computer Society, 8 2015. 1

[4] R. Bogue Consultant, “Random Bin Picking: Has Its Time Finally Come?,” Assembl. Autom.,
vol. 34, pp. 217–221, 7 2014. 1

[5] G. Sansoni, M. Trebeschi, and F. Docchio, “State-of-the-art and applications of 3D imaging
sensors in industry, cultural heritage, medicine, and criminal investigation,” 1 2009. 1

[6] “About Delta - Delta Profile - Delta.” 2

[7] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A Survey on Learning-Based
Robotic Grasping,” Current Robotics Reports, vol. 1, pp. 239–249, 12 2020. 5, 9

[8] M. Grard, Generic instance segmentation for object-oriented bin-picking. PhD thesis, Lyon,
2019. 5, 8, 9

[9] A. Cordeiro, L. F. Rocha, C. Costa, P. Costa, and M. F. Silva, “Bin Picking Approaches
Based on Deep Learning Techniques: A State-of-the-Art Survey,” in 2022 IEEE International
Conference on Autonomous Robot Systems and Competitions, ICARSC 2022, pp. 110–117,
Institute of Electrical and Electronics Engineers Inc., 2022. 5, 9

[10] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis-A survey,” IEEE
Transactions on Robotics, vol. 30, no. 2, pp. 289–309, 2014. 5

[11] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic grasp planning
using shape primitives,” in Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2, pp. 1824–1829, 2003. 5

[12] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. Aparicio Ojea, and K. Gold-
berg, “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics,” tech. rep. 6, 28, 30

[13] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using vision,” in
International Journal of Robotics Research, vol. 27, pp. 157–173, 2 2008. 7

[14] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” International
Journal of Robotics Research, vol. 34, pp. 705–724, 4 2015. 7, 25, 26

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 51

BIBLIOGRAPHY BIBLIOGRAPHY

[15] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional neural networks,”
in Proceedings - IEEE International Conference on Robotics and Automation, vol. 2015-June,
pp. 1316–1322, Institute of Electrical and Electronics Engineers Inc., 6 2015. 7, 25

[16] L. Wang, Z. Zhang, J. Su, and Q. Gu, “Robotic Autonomous Grasping Technique: A Survey,”
in Proceedings of 2021 5th Asian Conference on Artificial Intelligence Technology, ACAIT
2021, pp. 287–295, Institute of Electrical and Electronics Engineers Inc., 2021. 7

[17] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic Grasping: A Real-time,
Generative Grasp Synthesis Approach,” tech. rep. 7, 27, 28, 42

[18] A. Zeng, S. Song, K. T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu,
E. Romo, N. Fazeli, F. Alet, N. C. Dafle, R. Holladay, I. Morena, P. Qu Nair, D. Green,
I. Taylor, W. Liu, T. Funkhouser, and A. Rodriguez, “Robotic pick-and-place of novel objects
in clutter with multi-affordance grasping and cross-domain image matching,” in Proceedings
- IEEE International Conference on Robotics and Automation, pp. 3750–3757, Institute of
Electrical and Electronics Engineers Inc., 9 2018. 7

[19] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based Robotic Grasping From Object Loc-
alization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: A Review,” 5
2019. 8

[20] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: Making RGB-Based 3D
Detection and 6D Pose Estimation Great Again,” in Proceedings of the IEEE International
Conference on Computer Vision, vol. 2017-October, pp. 1530–1538, Institute of Electrical
and Electronics Engineers Inc., 12 2017. 8

[21] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network
for 6d object pose estimation in cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017. 8

[22] X. Deng, Y. Xiang, A. Mousavian, C. Eppner, T. Bretl, and D. Fox, Self-supervised 6D
Object Pose Estimation for Robot Manipulation; Self-supervised 6D Object Pose Estimation
for Robot Manipulation. 2020. 8

[23] A. Mousavian, C. Eppner, and D. Fox, “6-DOF GraspNet: Variational Grasp Generation for
Object Manipulation,” 5 2019. 8, 31, 32, 33

[24] A. Ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection in point clouds,”
The International Journal of Robotics Research, vol. 36, no. 13-14, pp. 1455–1473, 2017. 8

[25] Institute of Electrical and Electronics Engineers, 2019 International Conference on Robotics
and Automation (ICRA). 8

[26] Y. Li, Q. Lei, C. Cheng, G. Zhang, W. Wang, and Z. Xu, “A review: machine learning on
robotic grasping,” in Eleventh International Conference on Machine Vision (ICMV 2018)
(A. Verikas, D. P. Nikolaev, P. Radeva, and J. Zhou, eds.), vol. 11041, p. 110412U, SPIE,
2019. 9

[27] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image
classification,” in Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 3642–3649, 2012. 10

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolu-
tional Neural Networks,” tech. rep. 10, 12, 14

[29] L. Deng and D. Yu, “Deep learning: Methods and applications,” 2013. 10, 11

[30] C. M. BERNERS-LEE, “Cybernetics and Forecasting,” Nature, vol. 219, no. 5150, pp. 202–
203, 1968. 10

52 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

BIBLIOGRAPHY BIBLIOGRAPHY

[31] J. Schmidhuber, “Deep Learning in neural networks: An overview,” 1 2015. 10

[32] J. D. Kelleher, Deep Learning. MIT Press Essential Knowledge Series, Cambridge, Massachu-
setts: The MIT Press, 2019. 11

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recogni-
tion Challenge,” International Journal of Computer Vision, vol. 115, pp. 211–252, 12 2015.
12

[34] S. Mostafa and F. X. Wu, “Diagnosis of autism spectrum disorder with convolutional autoen-
coder and structural MRI images,” in Neural Engineering Techniques for Autism Spectrum
Disorder: Volume 1: Imaging and Signal Analysis, pp. 23–38, Elsevier, 1 2021. 12, 13

[35] D. Scherer, A. Müller, and S. Behnke, “Evaluation of Pooling Operations in Convolutional
Architectures for Object Recognition,” tech. rep. 12

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 12
2015. 13, 28

[37] R. K. Srivastava, K. Greff, and J. Urgen Schmidhuber, “Training Very Deep Networks,”
tech. rep. 13

[38] P. Oommen, “ResNets — Residual Blocks & Deep Residual Learning,” 12 2020. 13

[39] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level image
representations using convolutional neural networks,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 1717–1724, IEEE Com-
puter Society, 9 2014. 14

[40] S. J. Pan and Q. Yang, “A survey on transfer learning,” 2010. 14

[41] J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control
Third Edition,” tech. rep., 2005. 15

[42] L. Fernandez, V. Avila, and L. Gonçalves, “A Generic Approach for Error Estimation of
Depth Data from (Stereo and RGB-D) 3D Sensors,” 2017. 16

[43] “Hand-Eye Calibration Problem — ZIVID KNOWLEDGE BASE documentation.” 17

[44] F. Dornaika and R. Horaud, “Simultaneous Robot-World and Hand-Eye Calibration,” IEEE
Transac-tions on Robotics and Automation, vol. 14, no. 4, pp. 617–622, 1998. 18

[45] “Konstantinos Daniilidis Hand-Eye Calibration Using Dual Quaternions,” tech. rep. 18

[46] “Delta Articulated Robot System User Manual,” tech. rep. 21

[47] “Products - CODESYS Motion Solution - Delta.” 21

[48] “Products - Servo Systems - AC Servo Motors and Drives - Delta.” 22

[49] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings - IEEE
International Conference on Robotics and Automation, pp. 3400–3407, 2011. 23

[50] J. Watson, J. Hughes, and F. Iida, “Real-world, real-time robotic grasping with convolu-
tional neural networks,” in Towards Autonomous Robotic Systems: 18th Annual Conference,
TAROS 2017, Guildford, UK, July 19–21, 2017, Proceedings 18, pp. 617–626, Springer, 2017.
25

[51] Z. Ju, C. Yang, and H. Ma, “Kinematics modeling and experimental verification of baxter
robot,” in Proceedings of the 33rd Chinese control conference, pp. 8518–8523, IEEE, 2014. 25

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 53

BIBLIOGRAPHY BIBLIOGRAPHY

[52] A. Depierre, E. Dellandréa, and L. Chen, “Jacquard: A Large Scale Dataset for Robotic
Grasp Detection,” 3 2018. 25, 26

[53] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, “Benchmarking
in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model Set,” IEEE
Robotics and Automation Magazine, vol. 22, pp. 36–52, 9 2015. 26, 27

[54] S. Kalkan, U. Saranlı, T. Orta Dogu Teknik Universitesi (Ankara, Institute of Electrical and
Electronics Engineers, and IEEE Robotics and Automation Society, Proceedings of the 17th
International Conference on Advanced Robotics (ICAR) : 27-31 July, 2015, Istanbul, Turkey.
26

[55] B. Siciliano and O. Khatib, “Springer Proceedings in Advanced Robotics 1,” tech. rep. 28

[56] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp from 50K tries and
700 robot hours,” in Proceedings - IEEE International Conference on Robotics and Automa-
tion, vol. 2016-June, pp. 3406–3413, Institute of Electrical and Electronics Engineers Inc., 6
2016. 28

[57] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp function for grasping
under gripper pose uncertainty,” in IEEE International Conference on Intelligent Robots and
Systems, vol. 2016-November, pp. 4461–4468, Institute of Electrical and Electronics Engineers
Inc., 11 2016. 28

[58] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000. 28

[59] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd images: Learning us-
ing a new rectangle representation,” in 2011 IEEE International conference on robotics and
automation, pp. 3304–3311, IEEE, 2011. 29

[60] S. Kumra, S. Joshi, and F. Sahin, “Antipodal Robotic Grasping using Generative Residual
Convolutional Neural Network,” 9 2019. 29, 42

[61] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detec-
tion,” 8 2017. 30

[62] H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang, “PointNetGPD:
Detecting Grasp Configurations from Point Sets,” 9 2018. 30, 31

[63] V.-D. Nguyen, “Constructing force-closure grasps,” in Proceedings. 1986 IEEE International
Conference on Robotics and Automation, vol. 3, pp. 1368–1373, Institute of Electrical and
Electronics Engineers. 30

[64] S. Qiu and M. R. Kermani, “A new approach for grasp quality calculation using continuous
boundary formulation of grasp wrench space,” Mechanism and Machine Theory, vol. 168,
p. 104524, 2022. 30

[65] “PyBullet Quickstart Guide.” 33

[66] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,
A. Allshire, A. Handa, and G. State, “Isaac Gym: High Performance GPU-Based Physics
Simulation For Robot Learning,” 2021. 33

[67] B. Foundation, “blender.org - Home of the Blender project - Free and Open 3D Creation
Software.” 35

[68] Mart́ın˜Abadi, Ashish˜Agarwal, Paul˜Barham, Eugene˜Brevdo, Zhifeng˜Chen, Craig˜Citro,
Greg˜S.˜Corrado, Andy˜Davis, Jeffrey˜Dean, Matthieu˜Devin, Sanjay˜Ghemawat,
Ian˜Goodfellow, Andrew˜Harp, Geoffrey˜Irving, Michael˜Isard, Y. Jia, Rafal˜Jozefowicz,

54 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

BIBLIOGRAPHY BIBLIOGRAPHY

Lukasz˜Kaiser, Manjunath˜Kudlur, Josh˜Levenberg, Dandelion˜Mané, Rajat˜Monga,
Sherry˜Moore, Derek˜Murray, Chris˜Olah, Mike˜Schuster, Jonathon˜Shlens, Ben-
oit˜Steiner, Ilya˜Sutskever, Kunal˜Talwar, Paul˜Tucker, Vincent˜Vanhoucke, Vi-
jay˜Vasudevan, Fernanda˜Viégas, Oriol˜Vinyals, Pete˜Warden, Martin˜Wattenberg,
Martin˜Wicke, Yuan˜Yu, and Xiaoqiang˜Zheng, “ TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems,” 2015. 41

[69] S. Ainetter and F. Fraundorfer, “End-to-end Trainable Deep Neural Network for Robotic
Grasp Detection and Semantic Segmentation from RGB,” 7 2021. 47, 48

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 55

Appendix A

Gripper Manual

A.1 Wiring

The gripper has the for pin cable:

• Red: Power input

• Black: Ground

• Yellow: RS-485 A Signal

• Green: RS-485 B Signal

Note that some devices invert the signal lines or have different name convention, this was what
matched with the adaptor we used. The gripper won’t be responsive but nothing will be damaged,
in that event swap the signal wire lines.

A.2 Control

The gripper exposes 4 modbus registers over the signal wires and has the device address of 5 The
register map is as following:

• Register 0: Control Register (Input)

– The register accepts values: 0, 1 and 2, any other value will we corrected to value 0

– Value 0 sets the device to idle, the value is also set automatically by the system when
it reaches the target pose

– Value 1 sets the device to travel to position open

– Value 2 sets the device to travel to position close

• Register 1: Status Register (Output)

– Execute only read operations on it

– The value returned is the status code and maps as follows: 1 - Starting, 2 - Idle, 3 -
Moving to close position, 4 - Moving to open position

– The device accepts the commands only when in Idle state, when entering this state it
also sets the command register to 0

• Register 2: Target Open Pose (Input)

– Holds the target pose for the open command, value is an unsigned integer representing
degrees

56 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

APPENDIX A. GRIPPER MANUAL A.2. CONTROL

– On startup the value is setup to the default of 90

– The value can be changed when the device is idle

• Register 3: Target CLose Pose (Input)

– Holds the target pose for the open command, value is an unsigned integer representing
degrees

– On startup the value is setup to the default of 80

– The Value can be changed when the device is idle

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 57

Appendix B

Tensorboard Training Curves

B.1 Planar Grasp

Figure B.1: GG-CNN training curve. The x-axis represents the epochs of the training process.
The y-axis plots (from left to right) the IoU matrices (i.e. the grasp accuracy), the L2 loss function
values of the training dataset and the L2 loss function values of the validation dataset

Figure B.2: GG-CNN training dataset loss curves. The x-axis represents the epochs of the training
process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the angle sin
loss, the width loss of the training dataset

58 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

APPENDIX B. TENSORBOARD TRAINING CURVES B.1. PLANAR GRASP

Figure B.3: GG-CNN validation dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the
angle sin loss, the width loss of the validation dataset

Figure B.4: GG-CNN modified version testing dataset loss curve. The x-axis represents the steps
of the training process. The y-axis plots (from left to right) the total loss, the angle cos loss, the
probability loss, the angle sin loss and the width loss of the testing dataset

Figure B.5: GG-CNN modified version accuracy curve. The x-axis represents the steps of the
training process. The y-axis plots (from left to right) the prediction accuracy (between the pre-
dicted outputs and ground truth) and the probability accuracy of the testing dataset

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 59

B.1. PLANAR GRASP APPENDIX B. TENSORBOARD TRAINING CURVES

Figure B.6: GG-CNN modified version training dataset loss curve. The x-axis represents the steps
of the training process. The y-axis plots (from left to right) the total loss, the angle cos loss, the
probability loss, the angle sin loss and the width loss of the training dataset

Figure B.7: GG-CNN modified version accuracy curve. The x-axis represents the steps of the
training process. The y-axis plots (from left to right) the prediction accuracy (between the pre-
dicted outputs and ground truth) and the probability accuracy of the training dataset

Figure B.8: GRConvNet training curve using Cornell dataset. The x-axis represents the epochs
of the training process. The y-axis plots (from left to right) the IoU matrices (i.e. the grasp
accuracy), the L2 loss function values of the training dataset and the L2 loss function values of
the validation dataset

60 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

APPENDIX B. TENSORBOARD TRAINING CURVES B.1. PLANAR GRASP

Figure B.9: GRConvNet training dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the
angle sin loss, the width loss of the training dataset

Figure B.10: GRConvNet validation dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the
angle sin loss, the width loss of the validation dataset

Figure B.11: GRConvNet training curve using Jacquard dataset. The x-axis represents the epochs
of the training process. The y-axis plots (from left to right) the IoU matrices (i.e. the grasp
accuracy), the L2 loss function values of the training dataset and the L2 loss function values of
the validation dataset

Figure B.12: GRConvNet training dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the
angle sin loss, the width loss of the training dataset

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 61

B.1. PLANAR GRASP APPENDIX B. TENSORBOARD TRAINING CURVES

Figure B.13: GRConvNet validation dataset loss curves. The x-axis represents the epochs of the
training process. The y-axis plots (from left to right) the angle cos loss, the probability loss, the
angle sin loss, the width loss of the validation dataset

62 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

APPENDIX B. TENSORBOARD TRAINING CURVES B.2. 6DOF GRASP

B.2 6DoF Grasp

Figure B.14: Training curves of VAE. The x-axis shows the steps taken during the training process,
while the y-axis (from left to right, top to bottom) shows the reconstruction loss of the testing
dataset (orientation and translation loss of the generated grasps with the ground truth grasps),
confidence loss (confidence term that penalizes outputting zero confidence), KL-divergence loss,
reconstruction loss, and total loss of the training dataset

Figure B.15: Training curves of grasp evaluator. The x-axis shows the steps taken during the
training process, while the y-axis (from left to right) indicates the accuracy of grasping the testing
dataset, classification loss (cross-entropy loss), confidence loss (confidence term that penalizes
outputting zero confidence) and total loss of the training dataset

Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera 63

Appendix C

Digital Appendix

There was a digital appendix attached to the thesis that contained the demonstration videos:

• DemoVideo.mp4: demonstration video with RBP tasks on real application

• Simulation.mp4: video on planar and 6DoF grasp simulations

64 Delta CODESYS robotics solution for random bin picking tasks using a 3D ToF camera

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Project Background
	Company Background

	Problem Description
	Research Objective
	Research Questions
	Outline of contents

	Literature Review
	Gripper oriented methods
	Planar vs 6DoF

	Object oriented methods

	Theoretical Background
	Deep Learning
	Neural Network
	Convolutional Neural Networks
	Convolution Layer
	Pooling Layer
	Residual Blocks

	Transfer Learning
	Robotic Fundamentals
	Coordinate Frame and Notation
	Inverse Kinematics

	Camera
	Hand Eye Calibration

	Method
	Tools and Equipment
	Robot arm
	AX-8 motion controller
	Servo drives
	3D TOF camera
	Custom made gripper
	Master computer

	Hand-to-eye calibration
	AI Algorithm
	Datasets
	Planar grasp
	6DoF grasp

	Software Development
	Simulation environment setup
	Image Acquistion
	Robot Control
	Grasping Objects
	Code structure

	Results
	Planar Grasp
	Physical setup
	Eye-to-Hand Calibration
	Image Acquisition
	Neural Networks
	Simulation
	Real Application

	6DoF grasp
	Demonstration Video

	Discussions and recommendations
	AprilTag v.s. Chessboard
	Depth Image Quality
	Object segmentation
	Bin picking

	Conclusion
	Bibliography
	Appendix
	Gripper Manual
	Wiring
	Control

	Tensorboard Training Curves
	Planar Grasp
	6DoF Grasp

	Digital Appendix

