
 Eindhoven University of Technology

MASTER

Generating realistic logs using a Colored Petri Net simulator

Verberk, Tom M.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/6df89dbb-7564-49c9-bc52-c948ef0bc54d

Department of Mathematics and Computer Science
Process Analytics

Generating realistic logs using a
Colored Petri Net simulator

Master Thesis

Tom Verberk

Supervisors:
prof. dr. ir. Boudewijn van Dongen

ir. Mitchel Brunings
Assessment committee member: dr. ir. Tom Verhoeff

23-08-2022

Abstract

In the process mining field, several techniques have been developed during
the last years for the discovery of Petri Net from event logs. One way to test
a process discovery technique is to generate an event log by simulating a Petri
Net, and then verify that the Petri Net discovered from such a log matches
the original one. For this reason, a easy to use tool for generating event
logs from Petri Nets becomes vital for the evaluation of process discovery
techniques. In this thesis, we present a program which is able to do this, the
extension built in CPN-IDE is able to generate logs conforming to the XES
Standard from the simulation of a Petri Net. The tool will have the option to
add lifecycle-transitions, time as well as resources to the log. An evaluation
of the implemented tool is presented in which the generated logs are checked
for correctness, this evaluation shows the correctness of the logs.

Contents

1 Introduction 4
1.1 State of the Art . 4
1.2 Research Questions . 5
1.3 Approach . 6
1.4 Findings . 7

2 Background 9
2.1 Petri Nets . 9
2.2 Colored Petri Nets . 11
2.3 Timed Colored Petri Nets . 13
2.4 Simple event log . 14
2.5 Event Logs . 16
2.6 Related work . 17

3 Problem Exposition 19
3.1 Context Understanding . 19
3.2 Data Understanding . 19

3.2.1 CPN-IDE . 20
3.2.2 Petri Nets, Colored Petri Nets and Timed Colored Petri

Nets . 22
3.2.3 Logs conforming to the XES Standard 24

3.3 Detailed Research Questions 25

4 Generating simple event logs 26
4.1 Generating a simple event log from a Colored Petri Net 27

4.1.1 Chapter description . 27
4.1.2 Recording fired transitions 27
4.1.3 Create caseId variable 28
4.1.4 Generating the log . 29
4.1.5 Combining the modules 29
4.1.6 Result . 30

2

4.2 Generating a simple event log from a Petri Net 42
4.2.1 Problem description 43
4.2.2 Added Modules . 43
4.2.3 Limitations . 45
4.2.4 Result . 46
4.2.5 Creating a log from a PN 52

5 Generating realistic logs 53
5.1 Adding lifecycle-transitions . 53

5.1.1 Modules . 54
5.1.2 Result . 55

5.2 Adding Time . 59
5.2.1 Modules . 59
5.2.2 Result . 61

5.3 Adding resources . 66
5.3.1 Modules . 67
5.3.2 Results . 68

6 Evaluation 71
6.1 Objective . 71
6.2 Execution tools . 71

6.2.1 Execution for checking XES Standard and Correctness
of Arguments . 71

6.2.2 Replaying the log . 72
6.2.3 Checking correctness of lifecycle attributes & time at-

tributes . 73
6.3 Setup & Results . 73

6.3.1 Setup & Result for section 4.1 73
6.3.2 Setup & Result for section 4.2 76
6.3.3 Setup & Result for Section 5.1 77
6.3.4 Setup & Result for section 5.2 82
6.3.5 Setup & Result for Section 5.3 83

6.4 Discussion . 85

7 Conclusion 87

APPENDICES 91

3

Chapter 1

Introduction

Process mining is a research and engineering discipline allowing for the anal-
ysis of business processes starting from event logs. The Extensible Event
Stream [4] (in the remainder of this thesis called XES) is a well-known and
accepted IEEE standard in the process analytics world for generating, stor-
ing, exchanging, and analyzing event logs. In this standard, each event in the
process corresponds to an event in the log. The events are ordered by case
and can be seen as the activities that belong to a specific case. Event logs
may store additional information about events such as timestamps, resources,
and lifecycle-transitions.

One of the branches of the process mining discipline is the discovery of
process models from event logs. The main idea of this branch is to extract
the knowledge from a log and generate a model from it. There are several
real life logs publicly available, this includes the Business Process Intelligence
Challenge (BPIC) logs [2]. However, there are only a limited number of logs
and the logs might not have certain attributes that you want the log to have.
For this reason, a common approach for testing discovery algorithms is with
the use of synthetic logs. Synthetic logs allow the individuals to create a log
that has the characteristics that the researchers want to use in their research.

1.1 State of the Art

Several synthetic log generators are already available in the literature. These
tools are all based on different modelling languages [6][7][13][10]. Generating
a log from the simulation of Colored Petri Nets (CPNs) allows researchers
to create specific logs (as the created logs are a one-to-one representation of
the simulation). It also allows researchers to immediately check if the model
discovered in the discovery algorithm corresponds to the initial model, as the

4

log is generated from this initial model.
To be able to better test specific discovery techniques, tools that allow

for an straightforward way of generating a log from the simulation of a Petri
Net are needed, and to my knowledge such a tool does not yet exist in the
literature. To close this gap, this thesis presents a tool for log generation
based on the simulation of Petri Nets. This extension will be built upon
the already existing CPN simulator CPN-IDE [3], which will be detailed in
detail in 3.2.1. The extension will allow the user to generate a log from the
transitions fired during the simulation of a CPN.

1.2 Research Questions

The goal of this thesis is to create a tool with which we are able to generate
logs from the simulation of a CPN. The simulation of the CPN will be done
in the tool CPN-IDE [3]. I will assume that this program is able to simulate
a CPN correctly.

The generated logs will be conforming to the XES Standard. The events
in the generated logs can, next to the transition name, contain three kinds
of attributes

1. A lifecycle-transition attribute, which shows the lifecycle of the event

2. A timestamp attribute, which shows the timestamp of the event

3. Possible multiple resource attributes, which show other resources used
while executing the event

The thesis will not consider noise or adding other attributes to the log.
We built the application on the already existing structure of CPN-IDE.

We Step-by-step expand the application with every sub-problem solved. While
expanding the program we will have a program which is able to generate a
log with more and more features until the tool eventually is able to generate
logs with the above mentioned attributes.

First, the problem of generating a simple event log from CPNs is solved.
Next, the solution for the first sub-problem is used to solve the problem of
generating a simple event log from a Petri Net (PN).

After the first two sub-research questions are solved the modules used to
solve the first two sub-research question are used as the basis to add the final
three attributes to the log;
The first attribute wanted in the log was the lifecycle-transition attribute of
the log.
The second attribute wanted in the log was the timestamp attribute of the

5

log.
The last attributes wanted in the log were resource attributes.

To verify if the generated logs are correct we will first check if the logs
conform to the XES Standard, we will do this by importing the logs into ProM
with the "Import Conforming Log from IEEE XES Log" import function,
this will immediately check if the generated logs are conforming the XES
Standard. We will also check the generated logs for correctness by replaying
the generated logs on the original model.

When the logs are conforming to the XES Standard and the logs are able
to be replayed on the model. We will be able to generate event logs which
are correct.

1.3 Approach

We answered the research questions by adding modules to the CPN-IDE
application, this application is owned by the process analytics cluster of the
Department of Mathematics and Computer Science at Eindhoven Universitiy
of Technology. The fact that the code was owned by the university meant
that I was able to directly change the source code of the application.

The first research question was answered by adding a recording module,
a caseId module and a generate log module. The recording module was
used to record the bindings of the fired transition, the caseId module was
used to determine which events belong to which trace, and the generate log
module was used to generate a log from the attributes found in the previous
two modules.

The second research question was answered by transforming the PN into
a CPN when certain requirements of the model were satisfied. Two modules
were added to help the user easily transform a PN into a CPN. The Petri

Net Transformation module was added to easily change the static elements
of the model. The Token Generator module was added to quickly change
the dynamic elements of the model.

The third research question concerned adding lifecycle-transitions to the
log. Lifecycle-transition attribute were not an attribute of CPN-IDE (in
CPN-IDE there is no way to assign a lifecycle transition attribute to a tran-
sition), therefore I was free to implement how I wanted this to work. In order
to get a good judgement of the possibilities I brainstormed with some profes-
sors in the process analytics cluster which solution would be the best for me
to implement. In the end I added two ways in which lifecycle-transitions can
be added to the log. The first way is when the lifecycle attribute is in the

6

transition name. The second way is that the program automagically gives
each event a lifecycle attribute.

The fourth research question concerned adding timestamps to the log.
CPN-IDE already had a time function built in. The time in CPN-IDE is
either an integer or a real number. I used the value of this time, and trans-
formed this time into a real time in which the user has the option to determine
how much time time an increase of one integer means to the time in real life.

The last research question concerned adding resources to the log. While
the XES Standard does have a resource attribute, after careful consideration
I decided not to use this attribute. Reason for this being that the resource
attribute in the XES-log can only have one element, while in CPNs it is
possible to have multiple tokens with the same color consumed in the firing
of the same transition. We do not want to lose the information about the
number of resources consumed in the transition, therefore we decided to
not use the built-in resource attribute of the XES-log, but put resources in
another attribute, which would be conforming to the XES Standard.

For each of the above research questions models were constructed that
allows us to test all the functionality of the added modules.

1.4 Findings

To verify whether the generated logs are correct we will firstly check whether
the generated event logs adhere to the XES Standard. We will do this
by importing the event logs into ProM with the "Import Conforming Log

from IEEE XES Log" import function. This import function will immedi-
ately check if the generated logs are conforming to the XES Standard, since
logs that are not conforming to the XES Standard will not be able to be
imported using this import function. We will also check the generated logs
for correctness by replaying the generated logs on the original model. If the
logs can be replayed on the original model in full, the attributes in the log
for each event will be correct. Lastly for some features of the log (such as
time), we will manually check if the attribute shown in the log is according
to our the settings.

For each sub-research question above we specifically constructed some
models that would cover all the added features of the log. Since these models
covered all the features added to the log, when the logs generated from these
models are correct, the modules added to the log will work as expected.

All logs shown in the evaluation were tested according to the above de-
scribed method. One by one I imported each log manually into ProM, then
I replayed the log on the model, either manually or with a tool, and lastly

7

I manually checked certain attributes. All logs passed the tests, were con-
forming to the XES Standard, and were able to be replayed over the initial
model.

Since we picked the models used in the evaluation in such a way that it
would cover all the functionality of the program, and all the generated logs
are conforming to the XES Standard, and can indeed by fully replayed on
the model we conclude that the program behaves as expected, and we are
able to generate correct event logs from the simulation of a CPN

8

Chapter 2

Background

This chapter introduces Petri Nets in Section 2.1, Colored Petri Nets in
Section 2.2, Timed Colored Petri Nets in Section 2.3, simple event logs in
Section 2.4 and event logs in Section 2.5. A good understanding of these
topics is necessary to understand the methodological and technical parts of
the thesis. This chapter also provides a comprehensive discussion of all prior
work in the area on this subject in Section 2.6

2.1 Petri Nets

A PN is a bipartite graph containing three types of objects. These objects
are transitions, places, arcs and tokens. When displaying a PN as a fig-
ure, places are portrayed as circles, transitions are portrayed as rectangles
and arcs are portrayed as arrows. Each place may hold a natural number of
tokens (including 0), pictured by small solid dots. These dots are used to
represent elements of a process model, for example a case, an employee or a
machine.
Transitions in the model can fire. When a transition t fires, the firing con-
sumes tokens from places in the preset of t, and produces tokens in the
places in thepostset of t.

In this section the fundamentals of Petri nets are explained. This includes
the definition, basic terminology and transition firing rules. The basic con-
cepts given in this section are used throughout this thesis.

We define a Petri Net as PN = (P, T,W,M0) in which:

� P : is a finite set of places

9

� T : is a finite set of transitions, P ∩ T = ∅

� W : Ai ∪Ao → N is a multiset of arcs. In which Ai = (P × T) → N, is
an input function that defines directed edges from transitions to places,
and Ao = (T × P) → N, is an output function that defines directed
edges from places to transitions. The output of these function is the
weight of the arc.

� M0 : P → N is the initial marking

A marking is an assignment of tokens to places of a PN. The number
and positions of tokens may change during the execution of a Petri net. The
function M(p) → N is used to define how many tokens place p has.

The arcs between places and transitions are shown in two functions: Ao

and Ai. For each possible combination between a place p and a transition t
there is a natural number namely Ao(t, p) which shows the weight of the arc
from place p to transition t. This value can be 0 when no arc is present, or
a positive number when the arc is present.
The function Ai displays the same characteristics, with the difference being
that the function Ai displays the weight of the arc from a transition t to a
place p.
All the places that have a positive integer for a specific transition t in Ai

are called the preset of t. All the places that have a positive integer for a
transition t in Ao are called the postset of t.
In the graphical representation of a PN arcs are shown as arrows going from
places to transitions and vice versa.

Actions in the PN are controlled by tokens and arcs. A PN executes
actions by firing transitions, before a transition can fire a transition first
has to be enabled. The Enabling Rule and the Firing Rule describe the
characteristics of tokens in input and output places, which determine whether
a transition can fire.

Enabling Rule: A transition t is enabled if and only if for each input
place p of t, p contains at least the number of tokens equal to the weight
of the arc going from p to t. Or more formally: ∀p ∈ P,M(p) ≥ Ai(p, t).
Note that when there are no edges Ai(p, t) will be zero, and note that M(p)
cannot be smaller than zero.

Firing Rule: When a transition t is enabled, transition t can fire and
if and only if transition t fires, then from all places p in the preset of t
the number of tokens equal to the weight of the edge going from p to t are
consumed. More formally: for a place p, Ai(p, t) tokens will be consumed

10

(deleted). Also tokens are produced (created) in all the places p in the postset
of t. So for each place p, there will be Ao(t, p) new tokens produced in p.

Silent transitions Silent transitions are transitions in a PN that are
simply not observed in real life and therefore don’t appear in the log. These
transitions often serve to transfer tokens from one place to another place.
Visually these silent transitions are often displayed as a black bar or as a
transition with a black background.

2.2 Colored Petri Nets

Colored Petri Nets [11] are an extension of regular Petri Nets. This extension
makes it possible for Petri Nets to carry data. This extension gives a Petri
Net a greater expression power.

Data is added to the Petri Nets by means of colors and color sets, color
sets can be seen as datatypes, and colors can be seen as values of these
datatypes. Adding colors and color sets to PN allows the following things in
a CPN.

� Each token now has a color. This can for example be an Integer value,
a String value or any other value of a specific datatype.

� Each place now has a color set, this means that a place can only contain
tokens of a certain color set. We define a function Θ that maps each
place to a color set. For example, if a place p has the color set Integer,
then only tokens with an Integer color can reside in the place.

� The function M(p) now gives the colors of all the tokens in p instead
of the number of tokens.

� Color sets can also be combinations of previously determined color sets.
For example, say we have already established the color set Machine, and
we have already established the color set User. We can now establish
a new color set called Machine-User. Which will first have an element
of the color set Machine, and second an element with color set User. A
possible token of color Machine-User will be (Forklift4, User001).

� We can now declare variables of a specific color set. For example a
variable x defines a value of color set Integer.

� Arcs are labelled with expressions that show how tokens are processed
when a transition fires. Expressions are part of a language Λ.
the basics of this language are colors, for example 1, and variables, for

11

example x. This language can be extended to include a combination
of variables. For all arcs the expression on the arc should be of the
same color set as the place of the arc. When the arc is an outgoing arc
(coming from a transition to a place), all variables on the arc should be
declared either in one of the incoming arcs. Specifically, the language
of the arcs is constructed as follows:

1. We start the language with colors and variables. These are the
same colors and variables as described above.

2. We can combine colors and variables, for example given the exam-
ple above from the color set Machine-User, say we have defined a
variable m of color set Machine and a variable u of color set User.
Then there are two ways to place the color set Machine-User in
the expression. The first way is to create a new variable of the
color set Machine-User, and place this variable on the arc. The
second way is to use the already existing variables, and combine
them in the expression, this would look the following: (m,u).

3. We can add positive integers to the arc expressions declared in 1
and 2. A positive integer indicates that an amount of tokens with
the same value are requested by the arc. For example 2‘x indicates
that two tokens with the same color are needed.

4. If multiple tokens are needed that are not the same color we can
add them with a ++. Say that we need two machines, and we have
defined color ”m1” and color ”m2” of color set Machine, then we
can denote this on the arc by placing 1‘m1 ++ 1‘m2 to indicate
we need two machines. Note that the color set of the variables
should be the same, as they are getting the tokens from the same
place, and all the tokens of that place will have the same color set.

� In a binding a variable is assigned one color. For example say we have
a transition with two incoming arcs, one from p1 and one from p2, both
arcs have variable x placed on it, and the color set of this variable is
the same as the color set of the places p1 and p2. Then the transition is
only enabled if there is a token to1 ∈ M(p1) which has the same color
as a token to2 ∈ M(p2). When the transition fires, the tokens with the
color used in x will be consumed from p1 and p2, and if there is an
outgoing arc with x on it then a token with value x will be created in
this place.

When a transition in a Colored Petri Net fires, each variable on an incom-
ing and outgoing arc is assigned a value. The list of key-value pairings used

12

in each firing of the transition is called the binding of the fired transition

With data on the tokens, the transitions in the model can have multiple
attributes such as users, document number etc. This will help greatly in
generating realistic logs.

2.3 Timed Colored Petri Nets

Timed Colored Petri Nets (TCPN) [5] are an extension of Colored Petri Nets.
This extension makes it possible for tokens in the CPN to carry time next
to data. TCPNs will be explained with the basics of CPNs in mind.

As the name suggests in TCPNs time is included. This is done by creating
a global time variable and by giving each token a time value, this value is
the moment in time. A TCPN works according to the following rules.

� There exists a global time variable. This variable starts at 0.0, and
increases when there are no enabled transitions. This variable increases
to the time when the next transitions will be enabled.

� Tokens have a time associated to it, this is a real number, schematically
this is done by adding @x where x is the time the token is available
again.

� Each transition now has a time associated to it. This is the time at
which the transition will be enabled. This time is the same time as
the highest time of any of the tokens consumed in the firing of the
transition. Only when the global time is equal to or lower than the
transition time the transition will be enabled.

� A transition can take time. This attribute of the transition is for ex-
ample @+x where x is a real number. Besides taking a predetermined
amount of time. A transition can also take a non-deterministic amount
of time. For example the exponential(x) function can be used to
generate values from exponential distributions.

� An outgoing edge can also take time. This value is placed directly
behind the expression on the arc, and can also contain a function.

� When a token is produced the time of that token will be the time of
the transition plus the time the transition takes plus the time the arc
takes.

13

2.4 Simple event log

Assume the set of all process activities Σ is given. An event is the occurrence
of an activity. A trace t is a (possible empty) sequence of events, for example
< a, b > is a trace. In < a, b >, first activity a occurs then activity b occurs.
A simple event log L is a finite non-empty set of traces in which the event
only contains an event-name. For example [< a, b >,< b, a >] denotes a
simple event log consisting of two traces < a, b > and < b, a >.

To be able to construct a simple event logs from data we need at least
the following three attributes for each event.

� The first attribute is the activityName, this is the name of the activity
the event refers to, this is used to differentiate between the different
activities.

� The second attribute is the traceId of the event. The traceId is used
to determine which trace the event is part of.

� The third attribute is the position of the event. The position attribute
indicates which position the event has in the list of all events. For
example, if we have only have two traces < a, b > and < c, d >, and
the events happen in order acdb then event a has position 1 in the list,
event c has position 2 in the list, event d has position 3 in the list and
event b has position 4 in the list. Once the events are sorted based
on traceId, we can find the order of both traces, and see that the two
traces are < a, b > and < c, d >. In this thesis we will portray the
position attribute of an event in the eventId attribute. This means
that the event that happened first has the eventId e1, the event that
happened second e2 etcetera.

These attributes are used to create simple event logs.
Lists of events are often portrayed as Event Tables. For example say we

have the events of table 2.1, and we want to create a log from this as shown
above. These events are ordered based on position because this is the order
the events entered the system.

We first order the events based on traceId, retaining the order by position.

Table 2.2 shows that there are three events with traceId 1, these are a,
c and b. Table 2.2 also shows that a happens before c and c happens before
b. Thus using this information we know that the trace < a, c, b > happened.
When using the same technique for the other traceIds the simple event log

14

eventId activityName traceId

e1 a 1
e2 b 2
e3 a 3
e4 a 4
e5 b 4
e6 c 1
e7 a 2
e8 b 3
e9 b 1
e10 c 3
e11 d 4

Table 2.1: A possible list of events sorted on eventId

eventId activityName traceId

e1 a 1
e6 c 1
e9 b 1

e2 b 2
e7 a 2

e2 a 3
e8 b 3
e10 c 3

e4 a 4
e5 b 4
e11 d 4

Table 2.2: A possible list of events sorted first by traceId then by eventId
traceId

[< a, c, b >,< b, a >,< a, b, c >,< a, b, d >] can be extracted from this table.

This technique allows the creation of a simple event log from any set of
events, as long as it has these three attributes.

15

2.5 Event Logs

Events are also allowed to have more attributes than the three mentioned
above, those attributes include but are not limited to a lifecycle-transition
attribute, a timestamp attribute and one or multiple resource attributes.
When we want to include these attributes in the log we are extending our
simple event logs into an event log.

Lifecycle transition attribute

One of the possible attributes of an event is the lifecycle-transition attribute.
The lifecycle-transition attribute refers to the lifecycle of activities. In most
situations activities take time, for example the activity cook will not start and
end at the same time. The lifecycle-transition attribute is there to indicate
the lifecycle of the activity cook, one event can have the lifecycle attribute
start, and one event can have the lifecycle attribute complete. This way
the activityName simply stays cook, but the lifecycle-transition attributes
indicates the lifecycle of the cook transition. In the end the lifecycle attribute
allows the activityName to be easier. In this thesis we assume the lifecycle-
transition model from the official XES website [4], this model is shown in
figure 2.1

Figure 2.1: The lifecycle model

Timestamp attribute

Another possible attribute of an event is the Timestamp attribute. The
timestamp attributes gives the date and time of the event when it happened
in real life.

16

Resource attributes

More possible attributes are resource attributes. Resource attributes can
have any name, but specify which resources are used in an action. A pos-
sible resource can be an user. This resource attribute specifies which user
performed the action.

Event log with all attributes

When these three attributes are added to events we can create for example
the event table of Table 2.3. All the events in Table 2.3 have activity a as
activityName, however activity a only happens two times. Event e1 and e3
record the start of activity a, and event e2 and e4 record the end of activity
a. Thus activity a is executed two times. Each event also has a timestamp,
and each event also has an user. Event e1 and e2 are done by Jaap, event e3
is done by Geert and event e4 is done by Henk.

eventId activityName traceId timestamp lifecycle user

e1 a 1 01/02/2013 15:40 Start Jaap
e2 a 1 01/02/2013 17:20 Suspend Jaap
e3 a 1 02/02/2013 10:00 Resume Geert
e4 a 1 02/02/2013 14:00 Complete Geert

Table 2.3: A possible list of events including extra attributes excluding even-
tId

2.6 Related work

The work presented in this thesis is related to previous work that has been
done in the field of process analytics. The logs currently used in the BPI
challenge [2] are logs generated from real life data. These are datasets that
portray the events as they happen in the real-life world the best. However we
do not have a constant supply of these datasets. These datasets often take
months to generate (as they are from real life systems). The literature has
tried to solve this shortage by creating synthetic datasets. All approaches in
the literature create a log based on different model languages. None of the
approaches in the literature generate a log based on the simulations of Petri
Nets. The approach used in Burattin and Alessandro [6] is based on gen-
eration of process descriptions via a stochastic context-free grammar whose

17

definition is based on well-known process patterns. The approach used by
Di Ciccio et al. [7] generates logs based on declarative models, while the
approach of Skydanienko [13] uses an approach based on multi-perspective
declarative models. Leiva et al [9] generates logs based on unplugged pro-
cesses and Alexey [10] generates logs based on BPMN models.

Noise generation

There has also been a lot of research in the area of noise generation. Shugurov
et al. [12] build a plug-in in ProM to create logs with noise from a PN.
Jonghyeon et al. [8] used existing event logs to generate new event logs with
noise. While this thesis will not go into detail about adding noise to the
log, adding noise to logs is an important part of log generation, and should
therefore be mentioned.

18

Chapter 3

Problem Exposition

This chapter introduces the problem context in more detail than Section 1.2
in Section 3.1, this chapter will also explain the research topic in relation
with the background discussed in Chapter 2, it will explain in detail how the
background is relevant for the problem context. Next this chapter will explain
the setting in which the research question is answered, then this chapter
will explain how the research problem is tackled, namely by subdividing the
main problem into several sub-research questions, each of these will briefly
be touched upon in this chapter.

3.1 Context Understanding

In Section 2.3 Timed Colored Petri Nets (TCPNs), and their functionality
were explained. One of the functionalities of a TCPN is that a TCPN can be
simulated. During the simulation of a TCPN transitions fire. The transitions
that fire during the execution of a TCPN are recordable. The goal of this
thesis is to devise a method to record the firing of these transitions along with
the color of the token used in the firing of the transition, and to generate a
log from these recordings.

3.2 Data Understanding

In this thesis the method to generate logs from TCPNs will be explained.
The method is based on an implementation of the functionality in CPN-IDE.
This tool will be further explained in Chapter 3.2.1. In this tool an extension
is created that allows the user to record the fired transitions of a TCPN, how
TCPNs are displayed in CPN-IDE is explained in Chapter 3.2.2. From this

19

recording a log conforming to the XES standard will be exported to a file.
The XES Standard will be explained in Chapter 3.2.3.

3.2.1 CPN-IDE

The application in which the extension is built is CPN-IDE[3]. CPN-IDE
is a modelling and simulation tool for TCPNs. The underlying structure of
CPN-IDE is divided into two parts: the front end and the back end. The
front end of CPN-IDE handles all things related to user interaction, user vi-
sualisation and modelling. The user interaction part of the front end includes
pressing a certain transition to fire, choosing a specific binding of a transition
to fire and selecting a number of transitions the model should fire. The user
visualisation part of the front end includes the showing of the TCPN, the
showing of the current marking of the simulation as well as the showing which
transitions are enabled for the user to fire. The modelling part of the front
end includes all functionalities in creating a model; creating new places, cre-
ating transitions, creating arcs, and adding labels and attributes to all these
objects. The back end of CPN-IDE consists of the SimulatorController,
the PetriNetContainer and the Simulator, and handles the checking for
correctness of the models and simulating the models. The Simulator com-
ponent of the back end was code not accessible by me. I had to work with the
already existing functions to gather information from the Simulator. This
only allowed me to perform certain actions with the Simulator.

A diagram of how the different parts of CPN-IDE interact with each other
in the simulation state is given in Figure 3.1. In this diagram arrows rectan-
gle represent the different parts of the application, and the arrows represent
communication between the different parts. In this diagram we identify four
components. FE is the front end component. BE is the back end component.
SC is the SimulatorController component. This component is responsible
for the back end side of the communication with the front end. PNC is the
PetriNetContainer component. This component is responsible for com-
municating with the Simulator. Sim is the Simulator. Arrows represent
communication between the components. A black arrow corresponds to ei-
ther the firing of one transition or the firing of a number of transitions. A
blue arrow corresponds to the firing of one transition. Blue arrows from the
Simulation do not have any attributes, they simply tell the PNC that the
Simulator is done firing the transition.

In practice this looks as follows: first the entire model is created in the
front end. Then when the user wants to simulate the model the front end
sends the model to the back end. The back end checks if this model is valid,

20

Figure 3.1: The components of the original CPN-IDE application

and if so it starts a simulation. The enabled transitions are then sent from
the back end to the front end, and displayed in the front end. Next, the
user has the ability to either fire a specific transition or select a number, this
number indicates how many transitions should fire. This information is sent
from the front end to the back end. Then the back end sends the transitions
to fire to the simulator one at a time. The simulator fires the transition(s),
and the new marking with the new enabled transitions are sent to the front
end.

The CPN-IDE program has two states. When opening the program the
program is in the modelling state. In the modelling state the user is able
to save, open and edit models. When pressing the start simulation switch
the user will enter the simulation state. In the simulation state the
user is not able to do the above mentioned actions, however the user is able to
fire transitions and simulate the model. When pressing the stop simulation

switch the program will enter the modelling state of the program again.
Figure 3.2 shows a screenshot of the modelling state of the application.
Figure 3.3 shows a picture of the simulation state of the program.

An important feature of the modelling state of the application as shown
in 3.2 is the start simulation button in the top bar. Pressing this but-
ton changes the state of the simulation from the modelling state of the
program to the simulation state. Another important feature is the model
diagram panel shown in the right middle of the screen, this diagram shows
the model (which is a Petri Net or Timed Petri Net), and allows the user
to change the it. Last important feature is the properties and declarations

21

panel in the lower left. In this panel color set and variables are declared.

Figure 3.2: The modelling state of CPN-IDE

An important feature of the simulation state of the application as
shown in 3.3 is the stop simulation button in the top bar. Pressing this
button changes the state of the program from the simulation state of
the program to the modelling state. Another important feature is the
model diagram panel, this panel shows the model and the current marking
of the simulation. Also enabled transitions are encircled with a green line.
The simulation panel, shown in the bottom left of the screen. Shows which
particular simulation actions can be taken. This includes firing a single
transition (as selected in the screenshot), or firing multiple transitions. While
the Single step action is selected. The user is able to select a transition
in the model diagram panel, if this transition is enabled then this transition
will fire.

3.2.2 Petri Nets, Colored Petri Nets and Timed Col-
ored Petri Nets

In the thesis the PN, CPNs and TCPNs will be shown as they are shown in
CPN-IDE. Besides the properties mentioned in Section 2.3 this also entails
that tokens are displayed slightly differently. Instead of each place having
a possible infinite amount of tokens, the tokens are textually represented,
more specifically tokens are represented by a pair in which one element is an
integer greater than 0, and the other element is the color of the token. For

22

Figure 3.3: The simulation state of CPN-IDE

example: say we have two tokens with color 1, we can represent this textually
as 2’1. When there are multiple tokens with different values the tokens are
separated by "++".

A model in CPN-IDE with the above mentioned display is shown in Fig-
ure 3.4. In this example there is one token with value 1 situated in P1.

Figure 3.4: An example of a TCPN in CPN-IDE

all places contain four attributes and all transitions contain three at-
tributes. In CPN-IDE the user is able to freely move these attributes all
over the model diagram, for the sake of simplicity we will assume that the
different attributes stay at the same place for all nets shown in this thesis.

A place contains four attributes. The name of the place is the first at-
tribute, this attribute is placed in the middle of the place, and is also known
as the place name. The second attribute is the color set of the place, this
attribute is placed in the bottom right just outside the place. The third and
fourth attribute are the initial marking and the current marking. The
initial marking is displayed in the top right of the transition. The current

23

marking is displayed in green boxes, also at the top right of the place.
A transition contains three attributes. The name of the transition is the

first attribute, this attribute is placed in the middle of the place and is also
known as the transition name. The second attribute is the time a transi-
tion takes, this attribute is placed in the top right of the transition. The third
attribute is the silent transition attribute. This is a boolean attribute
that shows if the transition is a silent transition or not, silent transitions are
displayed with a black background and not silent transitions with a white
background.

For an arc the only place where information can be stored is on top of
the arc, however this inscription can contain multiple elements. The first
elements is an expression as discussed in Section 2.2. The second element is
the time an edge takes, this number is places after a \@+".

The data and models studied in this thesis are data and models that
are specifically picked and created. The data and models are picked and
created in such a way that the data and models will cover all parts of the
implemented features.

3.2.3 Logs conforming to the XES Standard

In this thesis I want to create logs from simulating TCPNs. We want these
logs to be universally usable and conforming to a specific standard. The XES
Standard was chosen to be this standard. This standard was chosen as it is
the language officially published by the IEEE as the standard for Achieving
Interoperability in Event Logs and Event Streams. [4].

A log conforming to the XES Standard looks something like the log shown
in Listing 3.1

Listing 3.1: XES example log
1 <log>
2 <trace>
3 <s t r i n g key=”concept : name” value=”1”/>
4 <event>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 </event>
7 <event>
8 <s t r i n g key=”concept : name” value=”T2”/>
9 </event>

10 </trace>
11 </log>

A XES log has a hierarchical order. A log contains log attributes and
traces, a trace contains trace attributes and events, and an event contains
event attributes. Each line of a XES log has two possible uses. Either it
states the beginning or end of an object, or it gives an attribute of an object.
For example lets take the event object of Listing 3.1 on lines 7 till 9. Line 7

24

shows the start of the object, and line 9 shows the end of the object. Line 8
shows an attribute of the object. Attributes of the event are shown following
the following template

<TYPE key=KEY value=VALUE/"

in which all words in capital letters should be filled in correctly by some-
one. Lets look at line 7 again. The key of the object of line 7 is "concept:name"
the type of the object is string and the value of the object is "T2"

The concept:name attribute of an object in a XES log is used to de-
note the ID of the object. When the concept:name attribute is the ob-
ject of a trace the concept:name attribute denotes the traceId. When the
concept:name attribute is an attribute of an event the concept:name at-
tribute gives the activityName of an event.

If we try to simplify the log shown in Listing 3.1 we see that the log
has one trace. This trace has traceId 1 and has two events. One event has
transition name T1 and one event has transition name T2. Thus the log is
listing 3.1 is a XES log of the log [< T1, T2 >] in which the trace has traceId
1.

3.3 Detailed Research Questions

The main problem of the thesis can be subdivided into two research problems.
The first research problem will solve the question of generating logs conform-
ing to the XES standard based on simple event logs which are generated from
CPN or PN. This research problem will be solved in Chapter 4. This problem
will be solved by first generating simple event logs based on the execution
of a CPN in Chapter 4.1, then having this solution as a base method Chap-
ter 4.2 will explain how this method can be used to solve the problem for
PNs. The second research problem will be explained in Chapter 5. This re-
search focusses on generating realistic logs conforming to the XES standard
from TCPN. The realism is added to the logs by adding lifecycle-transitions
in Chapter 5.1, by adding time to the log in Chapter 5.2, and by adding
resources to the log in Chapter 5.3. This division between research problems
was chosen because the first research problem focusses on generating a log,
and the second research problem focusses on expanding the log generated.

In both the research problems the models will be presented as CPN-IDE
models, and the resulting logs will be given in a .xes file.

25

Chapter 4

Generating simple event logs

This chapter explains how a simple event log conforming to the XES Standard
can be created from the simulation of a Colored Petri Net (CPN) and a Petri
Net (PN). As explained in Section 2.5, when we have a list of events, and
each event has an activityName and a traceId, and we can determine the
position, then we can construct a simple event log from this list of events.
This chapter explains the modules created in the application that ensure
that events can be recorded from a CPN and PN, and that each event has
the before mentioned attributes. After explaining this the chapter will also
explain how the simple event log is transformed to a log adhering to the XES
Standard.

The remainder of this chapter is structured as follows. In Section 4.1
we will create a simple event log conforming to the XES Standard from any
Colored Petri Net. Then in Section 4.2 we will use the methods previously
discovered to create a simple event log conforming to the XES Standard for
some PNs.

Both research questions will be answered in the same way, first the im-
plemented methods will be explained, then the thesis will explain how the
implemented modules are relevant for solving the sub-problem.

26

4.1 Generating a simple event log from a Col-

ored Petri Net

4.1.1 Chapter description

The first sub-research question revolves around generating a simple event log
from a Colored Petri Net (CPN). To illustrate this take the model shown in
Figure 4.1

Figure 4.1: A simple CPN

If we try to execute this model, we first check which transitions are en-
abled. The only transition that is enabled is T1, so we fire T1. The token
currently in P1 will be removed, and a new token will be created in P2.
Then we check again which transitions are enabled. The only transition that
is enabled is T2, so we fire T2. The token currently in P2 will be removed,
and a new token will be created in P3. We can generate a log by hand from
this model, this would be [< T1, T2 >]. Our goal is that the application is
also able to do this.

In section 4.1.2 the first module which records transitions in CPN-IDE
will be explained. In section 4.1.3 the second module which adds a global
caseId variable is explained. In section 4.1.4 the third module which creates
the log from the recorded activities is explained. Lastly in Section 4.1.5 all
the modules are combined to generate a log from the simulation of a CPN.

4.1.2 Recording fired transitions

The first module added is the recording module, this module allows the user
to record the firing of transitions. More specifically, when the program is
in the simulation state, the module adds a record events switch. When
this switch is pressed, the application will enter the recording state and
will record the transitions that fire, when the switch is not activated, the
program will be in the simulation state and the transitions that fire will not
be recorded. The recordings will stay saved while the user is in the recording
state or in the simulation state. Only when exiting the simulation state
to the modelling state of the program or pressing the delete recordings

button the recordings will be deleted. this way the original functionality of

27

the simulation remains and no additional computational power is needed to
run the original program. When the program is recording transitions and a
transition fires, the transition and all its attributes together with the binding
of the fired transition will be recorded. This is done by catching the binding of
the executed transition and recording this binding. The program records the
transition the moment it fires in a Queue, this means the transition that will
be recorded first will be the transition that has fired first, thus preserving the
order of the simulation. It is important to note that the program remembers
all recorded events while in the same simulation, only by pressing the clear
recordings button or restarting a simulation will the recordings be removed.
This module also has a submodule that ignores irrelevant fired transitions.

Ignore irrelevant fired transitions

The submodule of the recording module is the silent transitions module. This
module is placed within the record activities module and makes sure the pro-
gram only records transitions that are not silent transitions. As discussed
in the previous paragraph, the transition and all its attributes are recorded.
One of those attributes is the background of the transition. The value of this
attribute is used to determine whether the transition is a silent transition
or a normal transition, as silent transitions have a black background. When
trying to record a transition, the transition is checked against a list of silent
transitions, when it is part of this list, the transition is ignored. This simu-
lates real life, as silent transitions are also not recorded in real life. The list
of silent transitions is constructed when the model is sent to the simulator,
the recording module catches the places (and its backgrounds) and creates a
list of silent transitions.

4.1.3 Create caseId variable

The second module added is the caseId module. This module gives the
user the possibility to fill in a caseId variable, which serves as a traceId for
the events. More specifically, as discussed in Chapter 2.2, when creating a
Colored Petri Net the user defines a set of colors and a set of variables, in this
module the user selects one of the variables to be the caseId variable. The
user is able to change the caseId variable at any point during the recording
process. Only when generating the actual log is the caseId variable used.

28

4.1.4 Generating the log

The third module added is the generate log module. This module generates
a simple event log from the recorded activities. The simple event log can
be generated at any point in time. The module uses the OpenXES Library
[4], this library has, next to many other classes, a log, trace and event class.
We will be using these classes to create the log in our implementation. The
generate log module gets the queue of recorded activities point, then the
module will loop over the queue, starting from the first activity. Then for
each transition the program will check whether the caseId variable is part of
the binding, if this is the case, the program will use the value for the caseId
variable as the traceId and thus have a value for the traceId for the event.
When the caseId variable is not part of the binding-variables the program
will ignore the event, as it does not have a traceId and thus is not part of
a trace and thus is not interesting for the log. After checking the traceId of
an event, the module will add the event to the trace it belongs to, which is
the trace with the same traceId. When no such trace exists a new trace is
created. When all events are placed in their corresponding trace a ”.xes” file
will be created and the list of traces will be parsed into this file using the
parse function of the OpenXES library. During this parsing the transition
name will become the activityName in the log. In the original program the
program already saved a simulation report to the files of the user. I used this
functionality to slightly change the folder and place the generated log in the
folder with the following path path/CPN-IDE/logout/CPN-sessionID. In
this path the CPN-sessionID is automatically generated by CPN-IDE when
starting the simulation.

4.1.5 Combining the modules

All the modules discussed in the previous section are part of the Recording
component. How the Recording component interacts with the original com-
ponents is shown in Figure 4.2. This diagram is an expansion on the original
diagram shown in 3.1. Compared to the original diagram there are a couple
of key changes. First the Recording component and the Disk component are
added. The Recording component contains all modules discussed before as
well as components that we discuss in later chapters. The Disk component
is the hard drive of the user that installed the program.
Also a lot of arrows were added. The blue arrows correspond to transitions
being fired in the Simulation state, these arrows are always in a specific
order; first arrow 1 happens which sends the transition that should be fired
to the Simulator, then arrow 2 tells the PNC that the Simulator is done

29

firing the step. Next, arrow 3 requests the current state of the simulation,
the current state of the simulator includes the last binding fired. Next, ar-
row 4 sends the current state of the simulation back to the PNC. Then the
Recording component is called with as argument the current state of the
simulation. Lastly, arrow 6 tells the PNC that the Recording component is
done. Only when all six arrow steps have been taken can we continue with
firing a new transition using arrow 1. The red arrows correspond to log
configuration options sent to the recording module, these include the caseId
variable, the name of the log and many more. The pink arrows correspond to
the location of the generated log. The log is always saved in a specific folder
that cannot be changed by the user, the location of this folder is sent to the
front end to be displayed to the user. The light blue arrow corresponds to
the log being saved on the disk.

Figure 4.2: The components of the extended CPN-IDE application

4.1.6 Result

This section shows the result after implementing the modules described
above. This section will do this by first showing the GUI after implementing
the modules described in the sections of this chapter. Next this section will
give a walk-through of how a log can be generated from a CPN in CPN-IDE.
Lastly this section will generate some logs from some models, these models
will be picked in such a way that all functionality of the feature is included.

30

Updated GUI

The implementation of the added modules is shown in Figure 4.3

Figure 4.3: The updated simulation state of the program

Most notable are the additions to the top bar. A switch named record

events (shown with a red circle) was added and a clear log (shown with
a blue circle) button was added. Pressing the record events will move the
program from the simulation state to the recording state. The clear log

button will clear all the current recorded events. Also added to the simula-
tion state of the program is the create Log tab in the simulation panel on
the bottom left of the screen. The folded out create log tab is shown in
Figure 4.4

Figure 4.4: The create log panel

31

In this tab the user can select the caseId as discussed in 4.1.3, and run
the generate log module as discussed in 4.1.4 (this option is shown with a
red circle). The other functionality of the create log tab is discussed in later
chapters as they do not add functionality discussed in this chapter.

Walk-through

Now this thesis will give a walk-through how to create a log from a simple
CPN. The model chosen for this example is shown in figure 4.5, during this
walk-through arrows will guide you to the buttons to press.

Figure 4.5: The model

32

We start this walk-through in the modelling state of the program in
Figure 4.6. Here it is possible to change the model conforming to what we
want. We have chosen and created the model of Figure 4.5.

Figure 4.6: The modelling state

After pressing the Start simulation button in Figure 4.6, we are now
in the simulation state of the model shown in Figure 4.7.

Figure 4.7: The simulation state

33

After pressing the start recording button in Figure 4.7 we are now in
the recording state, shown in Figure 4.8.

Figure 4.8: The recording state

In this recording state we are able to press either T1 or T2 to fire that
transition. We choose to fire T1 and thus press the T1 transition.

Figure 4.9: The marking state after firing T1 with the token with color 2

34

We pressed the transition T1, which fired, as color for x the program has
selected the color 2. We now want to fire a transition with a specific binding.
Therefore we first select the tab Single step choose binding and press
the T2 transition.

Figure 4.10: The program displays which color should have the value x

We have pressed the T2 transition, the program asks us to bind the
variable x to a color. We choose the color of x to be 1, this is shown in
Figure 4.10

Figure 4.11: The program after firing T2 with color x and pressing the Multi-
step fast forward tab

35

After firing the transition T2 with color x. We now want to make the
last step randomly. For this we select the multi-step (fast forward) tab.
This tab allows us to make a number of random moves. We select 50 in this
walk-through. This screen is shown in Figure 4.11.

Figure 4.12: After running the multi-step fast forward

After all the transitions are fired we are done simulating the model as
shown in Figure 4.12. We now want to extract a log from this model. To do
this we first press the create log tab in the simulation panel.

Figure 4.13: After opening the create log tab

36

Next we check the setting for generating the log shown in Figure 4.13,
only the caseId setting is important at this point. This value is correct as
x is the only variable used in the CPN. Then we press the run button to
generate a log.

Figure 4.14: After pressing run on the create log tab

Before generating the log the program first ask us under what name we
want to save the generated log as shown in Figure 4.14. The standard value
for this is the projectName but the user is able to change the name of the
log file. After pressing save the log is generated.

Figure 4.15: After saving the log

37

Lastly the program will show in the project console where the generated
log is saved as shown in Figure 4.15 This is in an automatic generated folder
in which also the simulation reports are shown.

When opening this file in a text editor such as notepad. The file will show
the log shown in Listing 4.1

Listing 4.1: A log generated from the model shown in the walk-through
1 <?xml ve r s i on =”1.0” encoding=”UTF=8” ?>
2 <!== This f i l e has been generated with the OpenXES l i b r a r y . I t conforms ==>
3 <!== to the XML s e r i a l i z a t i o n o f the XES standard f o r l og s to rage and ==>
4 <!== management . ==>
5 <!== XES standard ve r s i on : 1 .0 ==>
6 <!== OpenXES l i b r a r y ve r s i on : 1 .0RC7 ==>
7 <!== OpenXES i s a v a i l a b l e from http ://www. openxes . org / ==>
8 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
9 <trace>

10 <event>
11 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
12 <s t r i n g key=”concept : name” value=”T2”/>
13 <s t r i n g key=”t ra c e Id ” value=”1”/>
14 </event>
15 </trace>
16 <trace>
17 <event>
18 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
19 <s t r i n g key=”concept : name” value=”T1”/>
20 <s t r i n g key=”t ra c e Id ” value=”2”/>
21 </event>
22 </trace>
23 <trace>
24 <event>
25 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
26 <s t r i n g key=”concept : name” value=”T2”/>
27 <s t r i n g key=”t ra c e Id ” value=”3”/>
28 </event>
29 </trace>
30 </log>

In the remainder of the thesis when discussing generated logs. I will
generate the logs the same way I have generated the logs in the walk-through.
I will randomly pick which transitions to fire when more than one transition
is able to fire, I will keep doing this until there are no transition enabled
anymore. In the remainder of the thesis when displaying logs I will also keep
out lines 1 through 7 and shorten line 8 of the logs as they will be the same
comments for all logs.

Generated logs

The models used in this section of the thesis are used to show that the mod-
ules work as expected, the models will show that when the caseId variable is
part of the bindings of a fired transition that that event will be recorded and
placed in the right trace. In all the model the variable x and the variable
y are of the color set Integer. The caseId variable chosen for each log is x.
The first four models show that when the caseId variable is part of an arc.
No matter in what way that the program records the firing of this transition
correctly. The fifth model shows that when the caseId variable changes the

38

recorded log can change. The sixth model shows a model which has a silent
transition. The logs created from these models are evaluated in Chapter 6

Simple CPN model

The first CPN model is shown in 4.16. This model is a basic model with
one transition and two places. When simulating this model the log shown in
Listing 4.2 is generated.

Figure 4.16: Simple CPN model

Listing 4.2: A log generated from the model of Figure 4.16
1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 </trace>
9 </log>

CPN model with two tokens of the same color needed

The second CPN model is shown in figure 4.17. In this model two tokens with
the same color are needed to fire the transition. When simulating this model
the same log is generated as when generating a log for the model shown in
Figure 4.16.

Figure 4.17: CPN model with two tokens of the same color needed

39

CPN model in which caseId variable is part of an expression

The third model is shown in figure 4.18. In this model x is part of an ex-
pression on an arc. When simulating the model the same log is generated
as when generating a log for the model shown in Figure 4.16 and Figure 4.17.

Figure 4.18: CPN model in which caseId variable is part of an expression

CPN model with transition needing (not necessary similar) two
tokens

The fourth model is shown in figure 4.19. In for this transition two tokens of
color int are requested. One of these colors will be the variable X. Since the
value of the caseId variable can be either 1 or 2. This model was simulated
ten times. Four times the same log as for the above models was generated.
Six times the log shown below was generated.

Figure 4.19: CPN model with transition needing (not necessary similar) two
tokens

Listing 4.3: XES example log
1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”2”/>
7 </event>
8 </trace>
9 </log>

40

CPN model which can have two different caseId variables

The fifth model is shown in Figure 4.20. This model shows that different logs
are generated when selecting a different caseId variable. This model shows
a transition T1 in which both variable x and variable y are used. Then it
shows a transition T2 in which only variable x is used and a transition T3 in
which only variable y is used. When simulating this model and generating a
log with caseId x the log shown in Listing 4.4 is generated.

Figure 4.20: CPN model which can have two different caseId variables

Listing 4.4: The log generated from the model shown in Figure 4.20 and x

as caseId variable
1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
2 <trace>
3 <event>
4 <s t r i n g key=”t ra c e Id ” value=”1”/>
5 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
6 <s t r i n g key=”concept : name” value=”T1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T2”/>
11 <s t r i n g key=”t ra c e Id ” value=”1”/>
12 </event>
13 </trace>
14 </log>

When changing the caseId variable to be y and generating a log a different
log is produced by the application. The log shown in Listing 4.5 and is
produced when selecting y as caseId variable.

41

Listing 4.5: The log generated from the model shown in Figure 4.20 and x

as caseId variable
1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
2 <trace>
3 <event>
4 <s t r i n g key=”t ra c e Id ” value=”1”/>
5 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
6 <s t r i n g key=”concept : name” value=”T1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T3”/>
11 <s t r i n g key=”t ra c e Id ” value=”1”/>
12 </event>
13 </trace>
14 </log>

CPN model with silent transition

The sixth model is shown in Figure 4.21. This model contains a silent tran-
sition, which will not appear in the log. The following log is produced when
generating a log from model 4.21.

Figure 4.21: CPN model with silent transition

Listing 4.6: A Log generated from the model in Figure 4.21
1 <l og xes . v e r s i on =”1.0” xes . f e a t u r e s=”nested=a t t r i b u t e s ” openxes . v e r s i on =”1.0RC7”>
2 <trace>
3 <event>
4 <s t r i n g key=”t ra c e Id ” value=”1”/>
5 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
6 <s t r i n g key=”concept : name” value=”T1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T3”/>
11 <s t r i n g key=”t ra c e Id ” value=”1”/>
12 </event>
13 </trace>
14 </log>

4.2 Generating a simple event log from a Petri

Net

Section 4.1 discussed the first sub-problem which was generating a simple
event log from a Colored Petri Net (CPN). In this section we will use the
fact that we can create a log from a CPN, to create a log from a Petri Net
(PN). To do this we transform the PN into a CPN in such a way that the
flow of the Net remains the same and that we can construct a log from the
transformed Net.

42

This section begins by briefly introducing the specific problem we are
dealing with in Section 4.2.1. Then Section 4.2.2 explains which modules
were created and how they help to solve the problem. Then Section 4.2.3
will discuss in detail the requirements of a PN on which our transformation
is successful and lastly Section 4.2.4 will show the result of the features in
CPN-IDE.

4.2.1 Problem description

Chapter 4.1 dealt with generating logs from simulations of a CPN by picking
a specific variable and making that variable the traceId of the event. A PN
does not have variables thus this solution will not work for a PN. Thus we
are looking for a solution to give each firing of a transition a traceId. My
proposed solution is rebuilding the PN into a CPN. In the newly transformed
CPN each place has the color set TIMEDINT, this color set is the color set INT,
but timed. Each arc has the same variable and each token has an unique
color. This unique color will be the traceId. When doing this each transi-
tion will have its own caseId again thus we are able to use our solution from
Chapter 4.1 to generate a log.

The color set TIMEDINT was chosen instead of the color set INT as we
would like the user to have the ability to easily add time to the model, and
the only difference between the TIMEDINT color set and the INT color set is
that in the TIMEDINT color set the tokens can have a time, this will be further
discussed in Chapter 5.2.

The above solution gives each place the TIMEDINT color and each token
a different value. While this is a solution for generating a log from a PN,
this change can influence the flow of the model. Explanation why, require-
ments for the PN and an example of a model that does not work is given in
Section 4.2.3

4.2.2 Added Modules

This section will explain the two modules added to the application; the Petri
Net Transformation module and the Token Controller module. These mod-
ules are both created for user simplicity they don’t add anything to the
functioning of the recording modules explained in Chapter 4, they simply
make the life of the user easier by transforming multiple components of the
model at the same time. This section will also explain how these modules
help in creating a CPN suitable for generating a log.

43

Petri Net Transformation module

The Petri Net Transformation module allows the user to easily change the
places and arcs of the Petri Net. This module is built in the front end of the
application and is only accessible when in the modelling state of the program.
When pressing the place caseId’s button this module will give a prompt,
in this prompt the user is requested to give in a caseId variable. After filling
in this caseId variable the program will do the following four things.

1. First the program will create a new color set TIMEDINT which is an
integer which has a time associated to it (The time part is not important
for this part of the thesis but is useful when the PN has time attributes)

2. Second the program will create a new variable, the name of this variable
will be the same as the name filled in in the box and as color set the
TIMEDINT color.

3. thirdly the program will add the TIMEDINT color set to all places.

4. fourthly the program will add the new variable to all arcs.

When these changes are applied to the model all the stationary parts of the
PN (the PN excluding tokens) will be transformed into a CPN.

Token generator module

The token generator module allows the user to easily change the tokens of the
Petri Net. This module is also built in the front end of the application and is
only accessible when in the modelling state of the program. When pressing
the set initial marking button the module will give a prompt. In this
prompt the user is requested to give a place of the model and the number of
tokens the user wants in this place. After filling in the place and the number
of tokens. The program will create new tokens in the chosen place, giving the
first token the value 1 and increasing the value with each token generated.
For example if the number of tokens requested is ten, tokens with value 1
till 10 will be generated in that place. When after this a new place is given
with the same numbers, the tokens 1 till 10 will be generated in that place
as well.

Combining the modules

The Petri Net transformation module allows the transformation of every-
thing but the tokens of a PN, the Token generator module allows the trans-
formation of the tokens of the PN. Combining this the user is able to easily
transform the entire PN to a CPN.

44

4.2.3 Limitations

While these modules transform the PN to a CPN implementing the solution
this way has a couple of limitations. In Section 2.2 it was explained that
when a transition has two or more incoming arcs with the same variable on
the arc the transition can only be enabled when there are tokens in both
places with the same value. Now that each token has a value assigned to
it, there will be transitions that were possible in the PN and are no longer
possible in the CPN.

The models shown in Figure 4.22 gives an example of a transformation
that gives a the CPN created a different flow. The PN is shown in Fig-
ure 4.22a, and the CPN is shown in Figure 4.22b. In the PN transition T1,
can fire twice, once for both tokens in start. However the CPN can only fire
once. Only the token with value 1 in Start can fire. Since the token with
color 2 is different from the color 1 in resource while the inscription of both
arcs is x.

(a) PN version (b) CPN version

Figure 4.22: An example of a model transformation from a PN to a CPN

The problem with the created CPN in Figure 4.22b is that the value x is
not able to bind with both color 2 and color 1. This problem is because in
the original PN tokens are all the same, thus there are no restriction on the
firing of transitions, while tokens in the transformed PN can only be used in
transitions with other tokens that have the same ID. This means that if a
CPN has to have the same flow as the original PN, tokens that were able to
fire a transition in the original PN should be able to fire a transition in the
new PN. This means that a PN can correctly be transformed to a CPN if it
follows one of the following two requirements. The first requirement is that
the tokens should be all of the same ID (when this is the case the tokens
will all be able to fire transitions with each other). When each place of the
original PN only has one token in each place, the program will give each
token the same ID. The second requirement is that a token should be able to
fire all the same transition when it is the only token in the initial marking of
the PN (this way we ensure that tokens were not communicating). The first

45

requirement can be easily checked by the user, for the second requirement
the user will need some insight in the model. If either of the previous two
statements holds the CPN will have the same flow as the original PN and
thus be a correct transformation.

4.2.4 Result

This section shows the modules discussed in the previous sections in practice.
This section will start with the changes in the GUI and the actions the user
can do. Then a small walk-through of how a PN can easily be changed
into a PN with the newly added modules is shown. Lastly this section will
give some examples of PNs that can be transformed into CPNs and how the
transformed PN will look.

Updated GUI

The updated GUI is shown in figure 4.23. The notable changes are encircled
in the top bar, there are two new buttons. The first new button is the place
caseId’s button shown with a red circle. Pressing this button will give a
pop-up in which the user is able to easily place caseId’s on all arcs and color
sets on all places as discussed in Section 4.2.2. The second new button is
the set initial marking button shown with a blue circle. Pressing this
button will give a pop-up in which the user is able to easily create unique
tokens in a place as discussed in Section 4.2.2.

Figure 4.23: The GUI with the PN modules added

46

Walk-through

This thesis will give a walk-through on how to transform a PN into a CPN.
The model chosen for this example is shown in Figure 4.24. During the walk-
through red arrows will highlight the part of the program to focus on.

Figure 4.24: PN model of walk-through

We start the walk-through in the modelling state of the program in Fig-
ure 4.25. In this state we press the place caseId’s button.

Figure 4.25: Initial modelling state

After pressing the place caseId’s button, the program will open a
pop-up screen as shown in Figure 4.26. In this pop-up screen the user is able
to choose a caseId value, this value will be placed on all arcs.

47

Figure 4.26: place caseId pop-up screen

After pressing save in the previous screen the program will return to
the original screen as shown in Figure 4.27. The program will have created
the TIMEDINT color set and a variable of the color set TIMEDINT, this
variable is the variable filled in for the caseId value (in our example this is
x). Also the colorset of all places has changed and the arcs now have the
chosen variable as expression on it. The model now gives an error because
the original marking is no longer correct. We will change this by pressing
the set initial marking button.

Figure 4.27: Modelling state after applying place caseId changes

48

After pressing the set initial marking button the program will open
a pop-up screen as shown in Figure 4.28. In this pop-up the user is able to
select a place and choose how many tokens we want in that place. As we had
five tokens in P1 in the initial model we select these values.

Figure 4.28: The set initial marking pop-up menu after filling in the
values

After pressing save the model will have created five tokens with unique
colors (1 through 5) in P1. We have now transformed a PN into a CPN. The
newly constructed PN is shown in Figure 4.29

Figure 4.29: The model after all changes have been applied

Transforming PN into CPNs

The models used in this section of the thesis are used to show that the flow
of the model does not change when keeping the established requirements of
a PN in mind when transforming the PN to a CPN. For both requirements
models will be given that follow these requirements. We argue that since it
works on these models, it will work on all models. We argue this because,
while there can be many more transitions in models, these models will have
the same foundation as the models shown in this section, namely the firing
of a transition. Given that both the examples shown in this section and the

49

more elaborate models both use the transitions and the same firing rules we
argue that the transformation will work for all models that adhere to the
requirements.

PN model with one token in each place

The first model is shown in Figure 4.32. This model is a simple model that
has two tokens in P1. However the tokens do not interact and the execution
does not change when the token is on their own. First a T1 fires with one
token from P1. Then T1 fires again with the other token from T1. The tokens
themself do not interact with any of the other tokens. When transforming
the model to a CPN the model is transformed to the model shown in 4.33.
When simulating this model the log shown in Listing 4.8 is generated.

Figure 4.30: PN with one token in each place

Figure 4.31: Transformed PN with one token in each place

50

Listing 4.7: XES example log
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 </trace>
9 </log>

PN model with tokens that don’t interact

The second model is shown in Figure 4.30. This model is a simple model
that has one token in each place. When transforming the model to a CPN
the model is transformed to the model shown in 4.31. Since both tokens are
of the same color transition T1 is still able to fire. When simulating this
model the log is shown in Listing 4.7.

Figure 4.32: PN with multiple token in one place

Figure 4.33: Transformed PN with multiple token in one place

Listing 4.8: XES example log
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 </trace>
9 <trace>

10 <event>
11 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
12 <s t r i n g key=”concept : name” value=”T1”/>
13 <s t r i n g key=”t ra c e Id ” value=”2”/>
14 </event>
15 </trace>
16 </log>

51

4.2.5 Creating a log from a PN

Chapter 4.1 explained how a log can be created from a CPN, Chapter 4.2
explained how a PN can be transformed into a CPN if it has some specific
properties. If we apply the modules created in Chapter 4 to a CPN created
from the modules in chapter 4.2 then we are able to generate a log from a
PN.

52

Chapter 5

Generating realistic logs

In Chapter 4 the problem of generating a simple event log conforming to
the XES Standard from a Colored Petri Net was solved. The solution to
that problem will be the basis of the second research problem. This research
problem deals with extending the basic log, and creates a more realistic log
which can be found in everyday systems. This chapter will make logs more
realistic by adding three features to the log. The first feature which will
be added is a lifecycle-transitions attribute, this module will be explained in
Section 5.1. The second feature which will be added is a timestamp attribute.
The Time module will be explained in Section 5.2. The third feature that
will be added is the resource feature, the resource module will be explained
in Section 5.3.

5.1 Adding lifecycle-transitions

In Chapter 4 a simple log was generated from any CPN. This result will be the
basis for the feature added in this section. The feature added in this section
will be the lifecycle-transition attribute (LTA) for events. This attribute
tells something about the lifecycle of the event as explained in Section 2.5.
Is the event portraying the beginning of an activity, the end of the activity
or something in between.

This section will first explain the module added to the application, then
it will explain how the module is used and what kind of logs we are now able
to generate.

53

5.1.1 Modules

The lifecycle module allows the user to add lifecycle-transitions attributes
(LTAs) to the log in two ways. One way is the automatic way in which
the program itself adds the LTA to the event and will be discussed in Sec-
tion 5.1.1, the second way the program allows the user to add LTAs to
events is the manual way in which the user is allowed to select for each
transition which lifecycle it has, this part of the module will be explained in
Section 5.1.1. Then the result of this implementation will be shown in Sec-
tion 5.1.2. Reason for this option is because I want users to have the ability to
construct any log they want. By implementing lifecycle-transitions this way
the user is always able to pick the lifecycle-transitions they want by manually
adding them. Also I gave the option to automatically add the most common
lifecycle-transition if the user simply wants a lifecycle-transition, but the user
want to have the same lifecycle-transition everywhere.

Manually adding lifecycle-transitions

The lifecycle module also allows the user to manually enter the LTA for each
transition. For the LTA value the option in transition name is selected.
Initially the program will not output any LTA for each event when this op-
tion is chosen. When picking this option the user should identify for each
transition what the intended LTA is and add that LTA to the transition
name. For example say we have a transition cook and we want to give this
transition the LTA resume. We now change the transition name to be cook
+ resume. This way the application knows the activityName is cook and the
LTA is resume. Instead of the LTA resume the user is able to choose any
LTA as given in figure 5.1.

Automaticity adding lifecycle-transitions

The lifecycle module allows the user to enter a preset LTA value. This
value will then be added to all events as the LTA. There are three possible
options for this value. The first option is the start LTA, this value resembles
the start of an activity. The second option is the complete LTA, this value
resembles the end of an activity. The final option is a combination of both the
start LTA and the complete LTA. In this combination there are two events
created from each transition that fires, one of the events has the start LTA
and the second event has the complete LTA. This implementation allows the
user to pick a common LTA for each event.

54

Figure 5.1: The lifecycle model

5.1.2 Result

This section shows the result of the implementation of the modules discussed
in the previous sections. To do this this section will start with the changes
to the GUI and the actions the user is able to do. Then this section will give
some examples of CPN with lifecycle-transition attributes.

Updated GUI

The updated GUI is shown in Figure 5.2. The only notable change is in the
create log panel. In this panel the option to select a lifecycle-transition
attribute is added, this is done by the use of a dropdown menu. The possible
options are complete, start & complete, start and in transition name.

Figure 5.2: Screenshot of the create log panel

55

Models

The models used in this section of the thesis are used to show that the all the
modules discussed in the previous section work as they should. This includes
all options for th lifecycle-transition attribute as well as lifecycle-transition
attributes in the name of the transition. For all combinations of options and
transition Name a model will be shown.

CPN with manually added LTA

The second LTA model is shown in Figure 5.3. This model is a model with
two transitions which have the LTA in the transition name. We will use this
model to check whether the manual LTA module works as expected. We will
also be setting the LTA option to complete to show that when an automatic
option is selected the transition name does not matter. When the complete
LTA option is chosen the program will generate the module shown in 5.1.
When the in transition name option is chose the program will generate
the module shown in 5.2

Figure 5.3: CPN with manually added LTA

Listing 5.1: Log generated from the model shown in 5.3 and LTA complete
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1 + s t a r t ”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T1 + complete”/>
11 <s t r i n g key=”t ra c e Id ” value=”1”/>
12 </event>
13 </trace>
14 </log>

56

Listing 5.2: Log generated from the model shown in 5.3 and LTA in

transition name
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T1”/>
11 <s t r i n g key=”t ra c e Id ” value=”1”/>
12 </event>
13 </trace>
14 </log>

CPN model without particular LTA attributes in the transition
name

The first LTA model is shown in Figure 5.4. This model is the basic model
with one transition and two places. This model is used to show that the au-
tomatic selected lifecycle-transition module works. We will use this model to
generate a log with the lifecycle-transition being complete, start and start

and complete. When simulating this model with those lifecycle-transitions
attribute the following three logs are generated.

Figure 5.4: CPN model without LTA attributes

Listing 5.3: Log generated from the model of figure 5.4 with LTA complete
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 </trace>
9 </log>

Listing 5.4: Log generated from the model of figure 5.4 with LTA start
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>

57

7 </event>
8 </trace>
9 </log>

Listing 5.5: Log generated from the model of figure 5.4 with LTA start +

complete
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 <event>
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T1”/>
11 <s t r i n g key=”t ra c e Id ” value=”2”/>
12 </event>
13 </trace>
14 </log>

CPN model with incorrect LTA attribute

The third LTA model is shown in Figure 5.5. This model is a model with one
transition. This model is used to show that when selected in transition

name for the lifecycle attribute and the string after the + does not contain
a valid lifecycle-transition that the model will not identify this string as a
lifecycle-transition and simply add it to the activityName. The log generated
from this model is shown in Listing 5.6

Figure 5.5: CPN model with incorrect LTA attribute

Listing 5.6: Log generated from the model of figure 5.5 with LTA in

transition name
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1 + comp”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 </event>
8 </trace>
9 </log>

58

5.2 Adding Time

Chapter 5.1 added lifecycle-transitions to the log. We will use the function-
ality after the added modules in Chapter 5.1 as starting point for the added
functionality in this Chapter. We take this as starting point as we want to
use the lifecycle attribute when determining the time of a transition.

The feature added to the log in this chapter will be time of events. This
attribute tells something about the date and time the event happened in
real life. The basis for this will be the already built in time function of
CPN-IDE which is built upon the functionality of Timed Colored Petri Nets
(TCPNs) as explained in Section d2.3. This chapter will explain the module
built to record the already existing time in CPN-IDE and the module built to
transformed this time into a real life time. In these module we will be building
on the logs generated in 5.1. This includes that we need to associate a time
to an event with lifecycle-transition attribute (LTA) start, which should be
the start time of the event and LTA complete, which should be the end time
of the event.

This section begins with explaining certain design decision made to de-
termine the time of events. Then this section will explain the modules added
to CPN-IDE; the TimeLog module and the TokenController module. These
modules will be explained in Section 5.2.1. Then Section 5.2.2 will explain
how these modules work together to generate the correct time. Lastly the
result of the implemented modules will be shown in 5.2.2

The design decision was made to make the time dependent on the lifecycle-
transition attribute, when the lifecycle-transition attribute is In transition

name or start then the fire time of the transition will be the time of the tran-
sition. When the lifecycle-transition attribute is complete, we don’t want
the time at the beginning of the transition. We want the time at the end of
the transition. To find this time we looked at all the tokens produced from
the firing of that transition and pick the end time of the transition as the
earliest time of any of the produced tokens. I confirmed this design decision
with my supervisors and we believe that this implementation gives us the
most expressing power while remaining easy to configure when generating a
log.

5.2.1 Modules

Two modules are added to the application to be able to add time to the logs.
The first module is the TimeLog module, this module is created to transform
the time from the simulation to a real life time and add this time to the log.
The second module is the TokenController module, this module is created to

59

construct an end time of the firing of a transition in the simulation.

Time log module

The time log module is built to transform the simulator time into a real life
time and add this time to the log. The module uses the simulator time and
two user inputs; the StartingMoment and the TimeUnit. The StartingMo-
ment input is used to set a begin date and time for the log, for example
01/01/1970 00:00. The date and time chosen in this input are equal to
time 0.0 in the simulation. The TimeUnit input is used to determine how
time in the simulation relates to time in the real world. Time in the simula-
tion is done in real numbers. The time log module allows the user to select
how much time one time in the simulator takes. The user can pick from the
following options; years, months, weeks, days, hours or even minutes. These
two user inputs allows the user to add time to the log any way the user would
like without having to change the original model (as the TimeUnit input can
be adjusted to suit the model).

TokenController module

The TokenController module is built to get the end time of fired transitions.
Section 5.1.1 added the possibility to automatically add lifecycle-transitions
to the log, this includes the option to both generate an event with the LTA
start and with the LTA complete from the same firing of a transition.
However due to the fact that CPN-IDE allows transitions to take a non-
deterministic amount of time, the end-time of activities is not always trivial.
To solve this problem the TokenController module was created. The Token-
Controller keeps track of the time and position of each token. The module
does this by using the ReturnTokensAndMarking function of the simulator
to request the current marking of the simulation after the firing of each tran-
sition in the simulation. From this marking the tokens and the times of these
tokens are extracted. Then the tokens in the new marking are compared to
the tokens in the old marking. All the already existing tokens are filtered out
using this method leaving only the newly produced tokens. Then the lowest
time of these tokens is calculated and send back to the recording module,
which will use this time in the generation of the log. This module assumes
that the earliest time of any newly produced token is the end time of the
firing of the transition. Thus for this module to work there should be at
least one outgoing arc for each transition that does not take time. Since this
module uses a lot of processing power, the module can be turned on or of by
using the record time switch.

60

5.2.2 Result

The TokenController module explained in Section 5.2.1 allows the program
to generate the end time of fired transitions. The time log module explained
in Section 5.2.1 allows the program to transform the simulation time into a
realistic time. These two additions to the program allow the user to generate
a realistic time for each event in the generated logs from 5.1 as we are able
to generate a simulation time for the Complete lifecycle-transition attribute
and we are able to transform the simulator time into a realistic time.

This section shows the result of the implementation discussed in the pre-
vious section. To do this this section will start with the changes to the
GUI and the actions the user is now able to do. Then this section will give
some examples of TCPNs in which the functionality of the added modules is
evaluated.

Updated GUI

The GUI is updated in two ways with the module. The first update is in
the top bar as shown in figure 5.6. The Record Time button is added to the
top bar, when this button is pressed the log will now record time as well as
bindings. This is a seperate option and not built in with the recording to save
computational power when time is not of importance. The second update is
in the create log tab and is shown in Figure 5.7. There are two field added a
StartingMoment field, indicating the time in the real world equivalent to the
simulator time 0 and a TimeUnit dropdown menu, the user can select in this
dropdown menu what one timeunit in the simulator relates to; one minute,
hour, day, week, month or year.

Models

The models used in this section of the thesis are used to show that the all
the modules discussed in the previous section work as they should. This
includes all options for the TimeUnit variable as well as different options
for the StartingMoment dropdown menu as well as different options for the
lifecycle-transition attribute. The models are picked in such a way that in
the end all functionality of Time added to the logs is shown.

Generic time TCPN

The first time model is shown in Figure 5.8. I will use this model to show that
time is recorded with the activity, I will show that the TimeUnit functionality
works, I will show that the StartingMoment functionality works and I will

61

Figure 5.6: An updated GUI after the time module was added

Figure 5.7: The update create log panel

show that the complete LTA value has the timestamp of the end of the
activity. I will first generate a log with as StartingMoment 01/01/1970 at
00:00, with TimeUnit minutes. Then I will change the timeunit value until I

62

have gone through all values. These logs will only differ in the time attribute,
thus I will only show this attribute. Then I will change the StartingMoment
of the log to show that changing this variable also works.

The log generated from the model in Figure 5.8 is shown in Listing 5.7.
Logs generated with other TimeUnit attribute values are shown in List-
ings 5.8, 5.9, 5.10, 5.11 and 5.12. Next part of a log with the startingMoment
02/02/2002 at 02:02 and TimeUnit days is shown in Listing 5.14. Lastly the
log with LTA start and TimeUnit minutes will be shown in Listing 5.13.
In the caption of the listing the thing that is different from the first listing
will be displayed

Figure 5.8: A model with time

Listing 5.7: Log from model 5.8 with SM 01/01/1970 00:00 and TU minutes
and LTA complete

1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 <date key=”time : timestamp” value=”1970=01=01T00 :01:00.000+01:00”/ >
8 </event>
9 </trace>

10 </log>

Listing 5.8: Line 7 from listing 5.7 but with TU hours
1 <date key=”time : timestamp” value=”1970=01=01T01 :00:00.000+01:00”/ >

Listing 5.9: Line 7 from listing 5.7 but with TU days
1 <date key=”time : timestamp” value=”1970=01=02T00 :00:00.000+01:00”/ >

Listing 5.10: Line 7 from listing 5.7 but with TU weeks
1 <date key=”time : timestamp” value=”1970=01=08T00 :00:00.000+01:00”/ >

Listing 5.11: Line 7 from listing 5.7 but with TU months
1 <date key=”time : timestamp” value=”1970=02=01T00 :00:00.000+01:00”/ >

Listing 5.12: Line 7 from listing 5.7 but with TU years
1 <date key=”time : timestamp” value=”1971=01=01T00 :00:00.000+01:00”/ >

63

Listing 5.13: Log shown in Listing 5.7 but with LTA start
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 <date key=”time : timestamp” value=”1970=01=01T00 :00:00.000+01:00”/ >
8 </event>
9 </trace>

10 </log>

Listing 5.14: Line 7 from listing 5.13 but with SM 02/02/2002 02:02
1 <date key=”time : timestamp” value=”2002=02=02T02 :02:00.000+01:00”/ >

TCPN model with lifecycle-transitions in transition name

The second model is shown in Figure 5.9. I will use this model to show that
when the lifecycle-transition attribute is in the name, then the time of that
event will simply be the firing time of the transition. The log shown from
generating a log with LTA In transition name, TimeUnit minutes and
StartingMoment 01/01/1970 00:00 is shown in Listing 5.15.

Figure 5.9: TCPN model with lifecycle-transitions in transition name

Listing 5.15: The log from the model shown in 5.9 and the above mentioned
configuration settings

1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 <date key=”time : timestamp” value=”1970=01=01T00 :00:00.000+01:00”/ >
8 </event>
9 <event>

10 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
11 <s t r i n g key=”concept : name” value=”T1”/>
12 <s t r i n g key=”t ra c e Id ” value=”1”/>
13 <date key=”time : timestamp” value=”1970=01=01T00 :01:00.000+01:00”/ >
14 </event>
15 </trace>
16 </log>

TCPN model with non deterministic time and two output arcs and
two input arcs

The third model is shown in Figure 5.10. This model is used to show that
even when the time is non-deterministic we are still able to calculate the cor-
rect end-time from the log. To do this we will show the current marking after

64

firing transition T1. This model also shows that the time of the transition is
the lowest of the tokens consumed when firing the transition.
As the time in this model is non deterministic we need to know the time
in the simulation after transition T1 has fired. We need this time of the
simulation to check if the time for the transition is correctly calculated. The
current marking including times is shown in Figure 5.11, the time after firing
T1 in the simulation is 0.391483647815. The generated log from the sim-
ulation with LTA start+complete, TimeUnit hours and StartingMoment
01/01/1970 00:00 of this particular run of this model is shown in 5.16, note
that this log is not reproducible as the time is non deterministic.

Figure 5.10: TCPN model with non deterministic time and two output arcs
and two input arcs

Figure 5.11: TCPN model with non deterministic time and two output arcs
and two input arcs

65

Listing 5.16: A Log generated from TCPN model with non deterministic
time and two output arcs and two input arcs

1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
5 <s t r i n g key=”concept : name” value=”T1”/>
6 <s t r i n g key=”t ra c e Id ” value=”1”/>
7 <date key=”time : timestamp” value=”1970=01=01T00 :00:00.000+01:00”/ >
8 </event>
9 <event>

10 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
11 <s t r i n g key=”concept : name” value=”T1”/>
12 <s t r i n g key=”t ra c e Id ” value=”1”/>
13 <date key=”time : timestamp” value=”1970=01=01T00 :00:23.489+01:00”/ >
14 </event>
15 <event>
16 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
17 <s t r i n g key=”concept : name” value=”T2”/>
18 <s t r i n g key=”t ra c e Id ” value=”1”/>
19 <date key=”time : timestamp” value=”1970=01=01T00 :01:23:489+01:00”/ >
20 </event>
21 <event>
22 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
23 <s t r i n g key=”concept : name” value=”T2”/>
24 <s t r i n g key=”t ra c e Id ” value=”1”/>
25 <date key=”time : timestamp” value=”1970=01=01T00 :01:23:489+01:00”/ >
26 </event>
27 </trace>
28 </log>

If these modules all show a correct log we will have checked all the pos-
sibilities of added functionality to the log, thus we will have correctly added
time to the log.

5.3 Adding resources

Chapter 5.1 added time to the generated log, Chapter 5.2 added time to
the generated log. This chapter focusses on adding resources to the log.
Resources are tokens used for the firing of the transition that are not the
token identifying the caseId. The model in Figure 5.12 shows an example
of a resource. In this model x is the caseId, to fire transition T1 a token of
the color set Machine from place P3 is needed. We would like to record the
token used for the firing of this transition and add it to the log. Adding the
tokens needed for firing a transition shows us in this example which machine
was used to do the event.

This Chapter will begin by explaining the design choices made for the re-
sources attributes in Section 5.3. Then it will explain the two modules added
in Section 5.3.1. Lastly this chapter will show the result of the implemented
models in Section 5.3.2

66

Figure 5.12: A model where a resource is needed to fire a transition

Design decisions

While designing how resources should be portrayed in the log, we should
take the following things in mind. The first thing that should be taken into
mind is that we want to adhere to the XES standard, the second thing taken
in mind is that we want to clearly show which bindings are bound to which
variable. The last thing to take in mind that is that we might have multiple
tokens of the same color set. We want to differentiate between these colors
and show all these colors separately in the log.

The main design for a resource in the log is encoded as such:

<string key="COLOR SET:VARIABLE" value="COLOR"/>

in which COLOR SET, VARIABLE and COLOR are all variables based on the
binding. Sometimes multiple tokens with the same color are needed to fire
the transition, for example when a arc has inscription ”2‘x”. When this is
the case a list is created as shown in Listing 5.17.

Listing 5.17: An example of a list generated from an arc inscription
1 < l i s t key=”COLOR SET:VARIABLE”>
2 <s t r i n g key=”r0 ” value=”COLOR”/>
3 <s t r i n g key=”r1 ” value=”COLOR”/>
4 </ l i s t >

Having this key for the event allows us to know which tokens are used on
which arc for a variable.

5.3.1 Modules

To create the row shown in the example above we need three argument. We
need the variable and the color of this variable as used in the firing of the

67

transition and we also need the COLOR SET of this variable. We already can
get the variable and the color of the variable as we are already recording
these values as explained in 4.1.2. To be able to match the correct COLOR
SET to the variable and to generate the improved log, the variable module
was created and the create log module was extended.

Variable module

The variable module is responsible for creating a mapping between variables
and color set. Such that each variable maps to a color set. This is done at
the beginning of the simulation when loading in the model to the simulator.

Create log module

The create log module was extended in such a way that also resources that
are part of the binding are part of the generated log. For each variable in the
binding of the transition which is not the caseId variable, a row is generated
in the log adhering to the standard shown in 5.3.

5.3.2 Results

The results of Chapter 5.1 already shows that when a variable is part of a
binding in any form that the variable is saved. Thus in the result we will
assume that the recording module records all the variables that are part of a
binding. This section will focus on correctly displaying the resource values in
the log. The models used in this section of the thesis are used to show that
all the modules discussed in the previous section work as they should. This
includes a singular resource added to the log or a list of resources added to
the log.

Model with one resource

the model in Figure 5.13 shows a CPN in which one resource is needed to
fire a transition. This is a token of color set Machine and has the variable m.
The log generated when running this example is shown in 5.18

Listing 5.18: Log generated from the model shown in 5.13
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=”t ra c e Id ” value=”1”/>
5 <s t r i n g key=”MACHINE:m” value=”m1”/>
6 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>
7 <s t r i n g key=”concept : name” value=”T1”/>
8 </event>
9 </trace>

10 </log>

68

Figure 5.13: Model with one resource

Model with a list of resources

The model in Figure 5.14 shows a CPN in which two tokens of one resource
are needed to fire a transition. The log generated when running this example
is shown in 5.19

Figure 5.14: Model with a list of resources

Listing 5.19: Log generated from the model shown in 5.13
1 <log>
2 <trace>
3 <event>
4 <s t r i n g key=”t ra c e Id ” value=”1”/>
5 < l i s t key=”MACHINE:m”>
6 <s t r i n g key=”r0 ” value=”m1”/>
7 <s t r i n g key=”r1 ” value=”m1”/>
8 </ l i s t >
9 <s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”complete”/>

10 <s t r i n g key=”concept : name” value=”T1”/>
11 </event>
12 </trace>
13 </log>

69

Model with a resource in an expression

The model in Figure 5.14 shows a CPN in which the resource token is part
of an expression, note that this token does not come from a place which has
as color set the color set of the resource variable. The log generated from
the model is the same as the log generated from model 5.13 and is shown in
Listing 5.18

Figure 5.15: Model with a resource in an expression

70

Chapter 6

Evaluation

6.1 Objective

In this chapter, I want to evaluate the logs generated in this thesis. The logs
generated in the chapters should be correct, meaning that you should be able
to replay the log on the model and the logs should be adhering to the XES
Standard.

6.2 Execution tools

This section of the thesis shows the way the generated logs will be checked
for correctness.

6.2.1 Execution for checking XES Standard and Cor-
rectness of Arguments

Since we are using the OpenXES library to create the event log and OpenXES
is maintained by the same organisation that defines the XES Standard we will
be assuming that this works as expected. However the log will be checked to
see if all arguments of the log are linked in the correct way to their attributes.
The log will be loaded into the log visualisation function of ProM. This will
show for each event the attributes. We expect the values to link to these
attributes.

An example of the log visualisation tool (LVT) is shown in Figure 6.1.
The LVT has three important windows. The most left window is the log
overview window. This window shows all the traces and the names of the
traces. The log shown in Figure 6.1 has ten traces. The middle window is the
trace overview window. In this window the events in the trace are shown. The

71

trace selected in Figure 6.1 has nine events. For each event a quick summary
is given in the trace overview. First the first event the activityName is T1,
the lifecycle-transition argument is ”complete” and there is no timestamp.
The right window shows all the attributes for a selected trace or event. When
evaluating the generated logs we will primarily look at the window which is
important for the log to be evaluated, this can change for each log.

Figure 6.1: An example of the log inspector tool in ProM

6.2.2 Replaying the log

In this section we will be making a distinction between Nets that can be
replayed in a replayability tool and nets that cannot be replayed in a re-
playability tool. We will replay the logs generated from Petri Nets on Petri
Nets in the Multi-Perspective Process Explorer (MPPE) of ProM [1]. We will
use both the original PN and the generated log as input and try to replay
the log on the net. When we have a fitness of 100% and no missed events
we know that our log is correctly generated. The logs generated from CPNs,
TCPNs and PNs, in which the initial marking has tokens in more than one
place, cannot be replayed in a replayability tool, this is because the MPPE
does not support Colored Petri Nets. For this an auxiliary PN will be cre-
ated, this auxiliary PN will have one extra transition which will consume a

72

token in a newly created start place and produce a token in all the places
that have a token in the initial marking in the original PN. This way we can
still test the PN and the log.

An example of the MPPE is shown in figure 6.2 important aspects are
the time each transition takes (shown in the arcs) and the information on
the information panel. This information panel shows the fitness as well as
number of wrong events and number of correct events.

Figure 6.2: An example of the MPPE tool in ProM

6.2.3 Checking correctness of lifecycle attributes & time
attributes

The correctness of the lifecycle attribute and the time attribute will be
checked by hand.

6.3 Setup & Results

This section shows the setup and the result for each of the sub-problems.

6.3.1 Setup & Result for section 4.1

Setup for Section 4.1

To check whether the program generates a correct log for a CPN I will con-
duct the following steps. First I will check for each log whether they adhere

73

to the XES Standard. After this I will transform each log in the XES Stan-
dard to a log which has a better overview. Then I will try to replay the log
on the model to show the correctness of the log. I will do this by hand as
there are no auxiliary programs which can help me do this

CPN model from Figure 4.16, 4.17 and 4.18

In this section the log given in Listing 4.2 from model 4.16, 4.17 and 4.18
will be evaluated. First we will check if this log is conforming to the XES
Standard. Thus we will upload the log into the log explorer in ProM. This
is shown in Figure 6.3. This overview shows that there is one trace and this
trace has one event which has activityName T1 and traceId 1.

Figure 6.3: Log explorer for the log shown in Listing 4.2

When replaying the log on the model in 4.16, we will first fire transition
T1 with the color 1 for the caseId variable which is x, which we will be able to
do. When replaying the log on the model in 4.17, we will first fire transition
T1 with the color 1 for the caseId variable which is x, which we will be able
to do since we have tokens of color 1 in P1. When replaying the log on the
model in 4.18, we will first fire transition T1 with the color 1 for the caseId
variable which is x, we don’t care what the value of y is (since we did not
record the value) so we are able to do this transition with the token (1,2).

CPN model from Figure 4.19

The fourth CPN model can generate two logs, the first log is the log shown
in Listing 4.2 which we have discussed in Section 6.3.1. Also the log shown
in Listing 4.3 is able to be generated from model 4.19. This log is uploaded
to the log explorer and shown in Figure 6.4. This overview shows that there
is one trace and this trace has one event which has activityName T1 and
traceId 2.

When replaying the log shown in Listing 4.2 on the model in 4.19, we will
first fire transition T1 with the color 1 for the caseId variable which is x and

74

Figure 6.4: Log explorer for the log shown in Listing 4.3

color 2 with the variable y (which is not shown in the log.), thus replaying
the log. When replaying the log shown in Listing 4.2 on the model in 4.19,
we will first fire transition T1 with the color 2 for the caseId variable which
is x and color 1 with the variable y (which is not shown in the log.), thus
replaying the log. Thus we will be able to replay both logs on the model.

CPN model from Figure 4.20

For the fifth model we have generated two logs the log shown in Listing 4.4
was generated when x was the caseId variable, the log shown in Listing 4.5
was generated when y was the caseId variable. Listing 4.4 is uploaded to
the log explorer and shown in Figure 6.5, Listing 4.5 is uploaded to the log
explorer and shown in Figure 6.6. Figure 6.5 shows one trace with first an
event with activityName T1 and then an event with activityName T2. Both
have the traceId event attribute 1. Figure 6.6 shows one trace with first an
event with activityName T1 and then an event with activityName T3. Both
have the traceId event attribute 1.

Figure 6.5: Log explorer for the log shown in Listing 4.4

When replaying the log shown in Listing 4.4 on the model in 4.20, we
will first fire transition T1 with the color 1 from P1 for the caseId variable

75

Figure 6.6: Log explorer for the log shown in Listing 4.5

which is x and color 1 from P3 with the variable y (which is not shown in
the log.), then we will fire T2 with color 1 again. We will also fire T3, but
since T3 does not have the caseId variable in any of its bindings this event
does not show up in the log. When replaying the log shown in Listing 4.5
on the model in 4.20, we will first fire transition T1 with the color 1 from
P3 for the caseId variable which is y and color 1 from P1 with the variable y
(which is not shown in the log.), then we will fire T3 with color 1 again. We
will also fire T2, but since T2 does not have the caseId variable in any of its
bindings this event does not show up in the log.

CPN model from Figure 4.21

For the sixth model shown in Figure 4.21 the listing 4.5 was generated. We
have discussed the correctness of this log in 6.3.1. When replaying the log
on the model shown in Figure 4.21. We will first fire transition T1, with
color 1 from P1 for the caseId variable. Then the log shows a T3 transition
which we are not yet able to do in the model. Thus we will first fire the silent
transition in the model, producing a token with color 1 in P3. Now we are
able to fire transition T3 with color 1 for the caseId variable.

6.3.2 Setup & Result for section 4.2

Setup for Section 4.2

To check whether the program generates a correct log for a PN, I will assume
that a correct log can be generated for a CPN. Thus checking whether the
log adheres to the XES Standard is not necessary. Secondly I will check
whether the function I built are transforming the log as expected. Lastly I

76

will try to replay the log generated from the transformed model using a log
replayability tool.

Result from PN shown in model 4.32

For the first PN model shown in Figure 4.32 the log from listing 4.8 was
generated. This log was then replayed over the model shown in Figure 4.32
MPPE. The information panel from the MPPE is shown in Figure 6.7. This
figure shows that there was a fitness of 100% and there were two events that
were correct and no events that were wrong.

Figure 6.7: Information panel of the replay of the log from Listing 4.8 on
model 4.32

Result from PN shown in model 4.30

For the second PN model shown in Figure 4.30 the log from listing 4.7 was
generated. This log was then replayed over the model shown in Figure 6.8
using the MPPE. The model for the generation was slightly modifies because
th MPPE was not able to replay on the original model as the original model
had two places that contained tokens in the initial state and this was not
allowed by the MPPE. The information panel from the MPPE is shown in
Figure 6.9. This figure shows that there was a fitness of 71.5%, there was
one event that was correct and one event that was missing, the missing event
is T2 as this was added to replay the log correctly.

6.3.3 Setup & Result for Section 5.1

Setup for Section 5.1

To check whether the program generates a correct log which has lifecycle-
transitions. We will first check whether the logs adhere to the XES Standard.

77

Figure 6.8: The model used to replay the log on

Figure 6.9: Information panel of the replay of the log from Listing 4.7 on
model 6.8

Then we will check whether the lifecycle-transition attribute has the correct
value for the different options for lifecycle-transition attribute checking all
the possible options for lifecycle-transition attribute.

Result from CPN shown in model 5.4

For the model shown in Figure 5.4, the log from Listing 5.3, Listing 5.4 and
Listing 5.5 were created with complete, start and start & complete as
LTA respectively.

When viewing the the log from Listing 5.4 in the log explorer tool as
shown in Figure 6.10, we can see that the log has one trace, this trace has one
event which has activityName T1 and LTA value start, this is as expected
as we choose the start value as LTA. We can easily see that this log can be
replayed on the model.

When viewing the the log from Listing 5.3 in the log explorer tool as
shown in Figure 6.11, we can see that the log has one trace, this trace has

78

Figure 6.10: Log explorer for the log shown in Listing 5.4

one event which has activityName T1 and LTA value complete, this is as
expected as we choose the complete value as LTA. We can easily see that
this log can be replayed on the model.

Figure 6.11: Log explorer for the log shown in Listing 5.3

When viewing the the log from Listing 5.5 in the log explorer tool as
shown in Figure 6.12, we can see that the log has one trace, this trace has
two event both have activityName T1, one has the LTA value start and the
second one has the LTA value complete. This is as expected. To see if the log
is replayable on the model we have to take in mind that each transition now
has two events associated to it. A start event and an end event. When we
take this in mind we can see that we can replay the log on the T1 transition
thus we are able to replay the log on the model.

Result from CPN shown in model 5.3

For the model shown in Figure 5.3, the log from Listing 5.1 and Listing 5.2
were created with complete and In transition name as LTA respectively.

When viewing the log from Listing 5.1 in the log explorer tool as shown
in Figure 6.13, we can see that the log has one trace, this trace has two
events the first event has activityName T1+start and LTA complete and
the second event has activityName T1+complete and LTA complete. This

79

Figure 6.12: Log explorer for the log shown in Listing 5.5

is as expected, since we have automatically given all the transition the LTA
complete, the entire transition name will stay the same. It is trivial to see
that the log can be replayed on the model.

Figure 6.13: Log explorer for the log shown in Listing 5.1

When viewing the log from Listing 5.2 in the log explorer tool as shown in
Figure 6.14, we can see that the log has one trace, this trace has two events
both events have the activityName T1, while the first event has LTA start,
the second event has LTA complete. This is as expected, since the user
has manually given each activityName a LTA, the LTA are extracted from
the transition name and the transition name is correctly split between the
transition name and the LTA. When replaying the log we first fire transition
T1+start (we can do this as we are ignoring the + start at the end of the
first transition. Then we will fire transition T1+complete. Also ignoring the
+complete part. Thus replaying the log.

80

Figure 6.14: Log explorer for the log shown in Listing 5.2

Result from CPN shown in model 5.5

For the model shown in Figure 5.5, the log from Listing 5.6 is generated
created with In transition name as LTA.

When viewing the log from Listing 5.6 in th log explorer tool as shown in
Figure 6.15, we can see that the log has one trace, this trace has one events
both with activityName T1+comp, the event also does not have the LTA comp

but the standard value for LTA which is complete. This is as expected, since
the user has selected to manually given each activityName a LTA and has
failed to give a valid LTA as discussed in Section 2.5. The replay of the log
is trivial.

Figure 6.15: Log explorer for the log shown in Listing 5.6

Since the examples provided in this example cover all the possible options
the LTA can be used in generating the log we can confidently say that we
can correctly add LTAs to the lag.

81

6.3.4 Setup & Result for section 5.2

Setup for Section 5.2

To check whether the program generates a correct log which has a time
attribute, we will first check whether the log adheres to the XES Standard,
more specifically whether the Time attribute is added to the log conforming
to the XES Standard. Then we will check whether the end time of a transition
is correctly calculated. Lastly we will check if the simulator time is correctly
transformed into a real time.

Result from TCPN shown in model 5.8

From the model shown in 5.8 we generated the log shown in Listing 5.7 we
also generated the logs which are partly shown Listing 5.8, 5.9, 5.10, 5.11
and 5.12. When viewing the log from listing 5.9 in the log explorer tool from
ProM we can see the screen as in Figure 6.16. This log shows that there
is one trace with one element in the trace. We can also see that this event
has a time attribute, which is what we want. The timestamp of the event
is 1970-01-01 00:01:000+1:00, which is one minute after the StartingMoment
which is exactly what we expected.

Figure 6.16: Log explorer for the log shown in Listing 5.7

We also check the logs shown in Listing 5.8, 5.9, 5.10, 5.11 and 5.12. These
logs are all expected to make one time step in their respective TimeUnit, we
can see that this is the case.

Next we check the time generated in the log shown in Listing 5.13 we
expect this time to be the time filled in in the StartingMoment field which
is 1970-01-01 00:00. When checking the log in Listing 5.13 we can see that
this is indeed the time of the first event (this event has LTA start).

Lastly for the model shown in 5.8 we generated the log in Listing 5.14.
For this log we expect the time of the first event to be 2002-02-02 02:02, as
that is the time we filled in as StartingMoment and we only did not add time

82

to the simulation before the first event. We can clearly see that this is the
case.

The above models show that the TimeLog and TokenController module
work for transitions that take deterministic time and LTA that are start,
complete or start+complete.

Result from TCPN shown in model 5.9

From the model shown in 5.9 we generated the log shown in Listing 5.15.
When looking at the time of the events in the log we can see that the first
event has timestamp 1970-01-01 00:00, which is as expected as this event
happened at time 0. We can also see that the second event has timestamp
1970-01-01 00:01, this is correct as the TimeUnit was set to minutes and the
second event was fired at simulator time 1. This proves that when the LTA is
in the transition name the time of that event will be the time the transition
fires.

Result from TCPN shown in model 5.10

From the model shown in 5.10 we generated the log shown in Listing 5.16.
When looking at the time of the event in the log we can see that the first event
has timestamp 1970-01-01 00:00, which is as expected as this event happened
at time 0. We can also see that the second event has timestamp 1970-01-01
00:00:23.489, which is as we expected as the token with time 0.391483647815
is the token produced with the lowest time and 0.391483647815 and we have
selected minutes as TimeUnit which means that 0.391483647815 in the sim-
ulator is 0.391483647815 ∗ 60 = 23.48901 seconds in the log. We also see
that the third event has timestamp 1970-01-01 00:01:23:489, which is as ex-
pected as the token with the highest time consumed is the token with time
1.391483647815 and we have selected the minutes TimeUnit which means
that 1.391483647815 in the simulator is 1.391483647815 ∗ 60 = 1 minute and
23.48901 seconds in the log.

6.3.5 Setup & Result for Section 5.3

Setup for Section 5.3

To check whether the program generates a correct log which has correct
resource attribute, we will first check whether the log adheres to the XES
Standard, more specifically whether the newly added resource attribute are
added to the log conforming to the XES Standard. Then we will check
whether the resources are correctly added to the log.

83

Result from CPN shown in model 5.13

For the model shown in Figure 5.13, the log from Listing 5.18 was generated.
When viewing the log from Listing 5.18 in the log explorer tool as shown in
Figure 6.17, we can see that the log has one trace, this trace has one event
which has activityName T1, lifecycle:transition attribute complete and a
MACHINE:M attribute with value m1. This is exactly what we want. We can
easily see that the log can be replayed on the model if we bind m1 to m and
the caseId variable to x.

Figure 6.17: Log explorer for the log shown in Listing 5.18

Result from CPN shown in model 5.14

For the model shown in Figure 5.14, the log from Listing 5.19 was generated.
When viewing the log from Listing 5.19 in the log explorer tool as shown in
Figure 6.18, we can see that the log has one trace his trace has one event
which has activityName T1, lifecycle:transition attribute complete. We can
also see that this event has a list attribute, the value of this list is MACHINE:M,
and this list contains two value, r0 with value m0 and r1 with value m0. This
is exactly what we want. Replaying the log on the model is trivial.

Result from CPN shown in model 5.15

For the model shown in Figure 5.15, the log from Listing 5.19 was generated,
we already checked this log for correctness and also in this setting this log is
exactly what we wanted. Replaying the log on the model is also trivial.

As we are able to correctly display a resource in a log when it is a singular
resource and when it is a list of resources we are able to successfully use
resources in the log.

84

Figure 6.18: Log explorer for the log shown in Listing 5.19

6.4 Discussion

Section 6.3.1 shows that the generated logs are conforming to the XES Stan-
dard and that the generated logs can be replayed on the initial CPN. We
conclude from this that the logs are correctly generated from a CPN. Sec-
tion 6.3.2 shows that when the requirements shown in the section hold, we can
transform a PN into a CPN with the use of the Petri Net Transformation

module and the Token Generator module while the flow of the model re-
mains the same. A correct log can be generated from these CPNs as shown
in Section 6.3.1. Combining the findings in Section 6.3.1 and Section 6.3.2
we conclude that we can correctly generate a log from a CPN and a PN (If
the PN has certain requirements).

Section 6.3.3 shows that we can correctly add the lifecycle-transition to all
events in the log. As we know that the log before adding lifecycle-transitions
is conforming to the XES Standard, and we know that the added attribute
is added conforming to the XES Standard, we can conclude that we can
generate logs which have a lifecycle-transition attribute conforming to the
XES Standard. Section 6.3.3 also shows that the log produced is still able
to be replayed on the CPN thus we are able to correctly generate a log
containing lifecycle-transition-attributes from a CPN.

Section 6.3.4 shows that we can correctly determine the real time of a
time in the log. The section also shows that we can correctly determine
the time of an event. Lastly the section shows that time is added to the log
conforming to the XES Standard. As we know that the log before adding the
time to the log is conforming to the XES Standard and we have only added
time to the log we conclude that the newly generated log is also conforming
to the XES Standard

Section 6.3.5 shows that we can correctly add resources to the log, both

85

a single resource and a list of resources. As we know that the log before
adding the resources to the log is conforming to the XES Standard and we
only added resources to the log we can conclude that the newly generated
log is also conforming to the XES Standard.

From the statements above we can conclude that we are able to gener-
ate a log that is conforming to the XES Standard and is replayable on the
initial TCPN. This means that a log can be created that can includes a
lifecycle-transition attribute for each event, a timestamp for each event and
the resources used for each event.

86

Chapter 7

Conclusion

As discussed in Section 6.4 the application is able to generate a log conform-
ing to the XES Standard from the simulation of a CPN in which the log can
contain a lifecycle-transition attribute, a timestamp attribute, and resource
attributes.

As discussed in Chapter 2.6 there does not yet exist a program that is
able to generate logs from the simulation of a CPN. By using this program
future researchers will be able to create more specific logs, which can be used
for example for creating new discovery techniques or testing current discov-
ery techniques. In theory researchers should be able to create most logs with
this application.

However we are not yet able to construct all possible logs with the current
implementation in CPN-IDE. The attributes missing in the current imple-
mentation can in my opinion be divided into two parts.

The first part is the log information. When generating logs it is normal
to have some sort of log attributes, which tells something about the log, for
example the distribution of activities, the timespan of the log or the default
event-names. The functionality to create these properties is completely miss-
ing in this program and should be interesting to explore. Next to this trace
attributes could also be added in more detail.

The second component that could be added is noise. Currently the log
does not have any noise as it records the activities and transforms them
into events. As we are generating a log based on a real simulation we can
use this simulation to create more sensible noise, this is noise that would be
more realistic to happen in the real world, for example instead of picking a

87

random transition name to be the noise, we can pick a transition name that
was enabled at the point the transition fired. There are tools that can add
noise to existing logs, including the logs we created. These log generators
however are often not user friendly, they cannot add sensible noise and they
are not already in CPN-IDE. Thus the log first needs to be created and then
exported to an external tool. An extension which would allow the user to
add noise during the recording would be beneficial.

88

Glossary

process A series of steps and decisions made in the way some-
thing is completed

Petri Net (PN) A modelling language for process systems as explained
in 2.1

Colored PN (CPN) An extension on a PN that contains colors as explained
in 2.2

Timed CPN (TCPN) An extension of a CPN which contains time as ex-
plained in 2.3

flow Every possible sequence of fired transitions from a cer-
tain marking of a model.

event A specific activity happening on a specific time
trace A sequence of events
case an identifier a event belongs to
event log a recording of events usually ordered by trace
transition name the name of a transition in a PN
simple event log An event log in which the events only contain the tran-

sition name
color the value of a token as explained in 2.2
color set the datatype of a token as explained in 2.2
real time the time in which the event took place in the real life.

89

Bibliography

[1] Prom process mining software. https://www.promtools.org/doku.

php. version 6.11.

[2] the bpic logs. https://www.tf-pm.org/resources/logs. latest page
update 19-11-2021.

[3] the cpn-ide application. http://cpntools.org/cpn-ide/. Accessed
before writing this thesis.

[4] the xes-standard. https://www.xes-standard.org/_media/xes/

xesstandarddefinition-2.0.pdf. version 2.0.

[5] Timed colored petri nets. http://cpntools.org/2018/01/16/

timed-nets/. Posted January 16, 2018.

[6] Andrea Burattin and Alessandro Sperduti. Plg: A framework for the
generation of business process models and their execution logs. In
Michael zur Muehlen and Jianwen Su, editors, Business Process Man-
agement Workshops, pages 214–219, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[7] Claudio Di Ciccio, Mario Luca Bernardi, Marta Cimitile, and Fab-
rizio Maria Maggi. Generating event logs through the simulation of
declare models. In Joseph Barjis, Robert Pergl, and Eduard Babkin,
editors, Enterprise and Organizational Modeling and Simulation, pages
20–36, Cham, 2015. Springer International Publishing.

[8] Jonghyeon Ko, Jongyup Lee, and Marco Comuzzi. Air-bagel: An in-
teractive root cause-based anomaly generator for event logs. In ICPM
Doctoral Consortium/Tools, pages 35–38, 2020.

[9] Luis Leiva, Jorge Munoz-Gama, Juan Salas-Morales, Victor Galvez, Wai
Lam Jonathan Lee, Rene de la Fuente, Ricardo Fuentes, and Marcos
Sepúlveda. Pomelog: Generating event logs from unplugged processes.
BPM (PhD/Demos), 2420:189–193, 2019.

90

https://www.promtools.org/doku.php
https://www.promtools.org/doku.php
https://www.tf-pm.org/resources/logs
http://cpntools.org/cpn-ide/
https://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
https://www.xes-standard.org/_media/xes/xesstandarddefinition-2.0.pdf
http://cpntools.org/2018/01/16/timed-nets/
http://cpntools.org/2018/01/16/timed-nets/

[10] Alexey A. Mitsyuk, Ivan S. Shugurov, Anna A. Kalenkova, and Wil M.P.
van der Aalst. Generating event logs for high-level process models. Sim-
ulation Modelling Practice and Theory, 74:1–16, 2017.

[11] James L Peterson et al. A note on colored petri nets. Inf. Process. Lett.,
11(1):40–43, 1980.

[12] Ivan Shugurov and Alexey Mitsyuk. Generation of a set of event logs
with noise. 01 2014.

[13] Vasyl Skydanienko, Chiara Di Francescomarino, Chiara Ghidini, and
Fabrizio Maria Maggi. A tool for generating event logs from multi-
perspective declare models. Proceedings of the Dissertation Award,
Demonstration, and Industrial Track at BPM 2018, 2196:111–115, 2018.

91

List of Figures

2.1 The lifecycle model . 16

3.1 The components of the original CPN-IDE application 21
3.2 The modelling state of CPN-IDE 22
3.3 The simulation state of CPN-IDE 23
3.4 An example of a TCPN in CPN-IDE 23

4.1 A simple CPN . 27
4.2 The components of the extended CPN-IDE application 30
4.3 The updated simulation state of the program 31
4.4 The create log panel . 31
4.5 The model . 32
4.6 The modelling state . 33
4.7 The simulation state . 33
4.8 The recording state . 34
4.9 The marking state after firing T1 with the token with color 2 . 34
4.10 The program displays which color should have the value x . . 35
4.11 The program after firing T2 with color x and pressing the

Multi-step fast forward tab . 35
4.12 After running the multi-step fast forward 36
4.13 After opening the create log tab 36
4.14 After pressing run on the create log tab 37
4.15 After saving the log . 37
4.16 Simple CPN model . 39
4.17 CPN model with two tokens of the same color needed 39
4.18 CPN model in which caseId variable is part of an expression . 40
4.19 CPN model with transition needing (not necessary similar)

two tokens . 40
4.20 CPN model which can have two different caseId variables . . . 41
4.21 CPN model with silent transition 42
4.22 An example of a model transformation from a PN to a CPN . 45
4.23 The GUI with the PN modules added 46

92

4.24 PN model of walk-through . 47
4.25 Initial modelling state . 47
4.26 place caseId pop-up screen 48
4.27 Modelling state after applying place caseId changes 48
4.28 The set initial marking pop-up menu after filling in the

values . 49
4.29 The model after all changes have been applied 49
4.30 PN with one token in each place 50
4.31 Transformed PN with one token in each place 50
4.32 PN with multiple token in one place 51
4.33 Transformed PN with multiple token in one place 51

5.1 The lifecycle model . 55
5.2 Screenshot of the create log panel 55
5.3 CPN with manually added LTA 56
5.4 CPN model without LTA attributes 57
5.5 CPN model with incorrect LTA attribute 58
5.6 An updated GUI after the time module was added 62
5.7 The update create log panel 62
5.8 A model with time . 63
5.9 TCPN model with lifecycle-transitions in transition name . . . 64
5.10 TCPN model with non deterministic time and two output arcs

and two input arcs . 65
5.11 TCPN model with non deterministic time and two output arcs

and two input arcs . 65
5.12 A model where a resource is needed to fire a transition 67
5.13 Model with one resource . 69
5.14 Model with a list of resources 69
5.15 Model with a resource in an expression 70

6.1 An example of the log inspector tool in ProM 72
6.2 An example of the MPPE tool in ProM 73
6.3 Log explorer for the log shown in Listing 4.2 74
6.4 Log explorer for the log shown in Listing 4.3 75
6.5 Log explorer for the log shown in Listing 4.4 75
6.6 Log explorer for the log shown in Listing 4.5 76
6.7 Information panel of the replay of the log from Listing 4.8 on

model 4.32 . 77
6.8 The model used to replay the log on 78
6.9 Information panel of the replay of the log from Listing 4.7 on

model 6.8 . 78

93

6.10 Log explorer for the log shown in Listing 5.4 79
6.11 Log explorer for the log shown in Listing 5.3 79
6.12 Log explorer for the log shown in Listing 5.5 80
6.13 Log explorer for the log shown in Listing 5.1 80
6.14 Log explorer for the log shown in Listing 5.2 81
6.15 Log explorer for the log shown in Listing 5.6 81
6.16 Log explorer for the log shown in Listing 5.7 82
6.17 Log explorer for the log shown in Listing 5.18 84
6.18 Log explorer for the log shown in Listing 5.19 85

94

List of Tables

2.1 A possible list of events sorted on eventId 15
2.2 A possible list of events sorted first by traceId then by eventId

traceId . 15
2.3 A possible list of events including extra attributes excluding

eventId . 17

95

	Introduction
	State of the Art
	Research Questions
	Approach
	Findings

	Background
	Petri Nets
	Colored Petri Nets
	Timed Colored Petri Nets
	Simple event log
	Event Logs
	Related work

	Problem Exposition
	Context Understanding
	Data Understanding
	CPN-IDE
	Petri Nets, Colored Petri Nets and Timed Colored Petri Nets
	Logs conforming to the XES Standard

	Detailed Research Questions

	Generating simple event logs
	Generating a simple event log from a Colored Petri Net
	Chapter description
	Recording fired transitions
	Create caseId variable
	Generating the log
	Combining the modules
	Result

	Generating a simple event log from a Petri Net
	Problem description
	Added Modules
	Limitations
	Result
	Creating a log from a PN

	Generating realistic logs
	Adding lifecycle-transitions
	Modules
	Result

	Adding Time
	Modules
	Result

	Adding resources
	Modules
	Results

	Evaluation
	Objective
	Execution tools
	Execution for checking XES Standard and Correctness of Arguments
	Replaying the log
	Checking correctness of lifecycle attributes & time attributes

	Setup & Results
	Setup & Result for section 4.1
	Setup & Result for section 4.2
	Setup & Result for Section 5.1
	Setup & Result for section 5.2
	Setup & Result for Section 5.3

	Discussion

	Conclusion
	APPENDICES

