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Abstract

Angelidakis, Awasthi, Blum, Chatziafratis, and Dan [2] recently obtained a (1 + ϵ)-certified
algorithm (with ϵ > 0) for the planar maximum weight independent set problem with integer
polynomially-bounded weights. The algorithm runs in |V (G)|Ω(1/ϵ) time and we deem its un-
derlying combinatorial properties as difficult to generalize to similar problems. Therefore, we
explored opportunities to obtain an algorithm with an improved running time, which can also
be easily generalized to similar problems.

We contribute by proposing a (1+ ϵ)-certified algorithm that runs in W ·f(m/ϵ) · |V (G)|O(1)

time for each problem on connected planar graphs with integer weights that satisfies the con-
ditions of a notion we introduce as m-locally planar optimized. Here W equals the sum of the
input weights, and m ≥ 1 is equal to 1 for the minimum weight vertex cover problem, 2 for
the minimum weight dominating set problem, and a constant for each fixed H of the mini-
mum weight H-Subgraph-Deletion problem. A linear-time reduction from the minimum weight
vertex cover problem obtains our (1 + ϵ)-certified algorithm for the maximum weight indepen-
dent set problem. Our algorithm is inspired by Baker’s technique [4] for building polynomial
time approximation schemes for problems on planar graphs. Starting from a trivial solution,
our iterative algorithm repeatedly makes local improvements in induced subgraphs that have
a treewidth of O(m/ϵ). When no further improvements of this form can be made, we use a
stronger notion of the pigeonhole principle to prove that the resulting solution is optimal for a
(1 + ϵ)-perturbation of the weight function.
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Chapter 1

Introduction

Many combinatorial optimization problems are NP-complete, meaning that it is unlikely that an
algorithm exists that could find an optimal solution efficiently for general input (see e.g. [22]
for an overview). For over 50 years, researchers have employed various ways to deal with the
intractability of many combinatorial optimization problems, including efficient algorithms for
restricted input classes (see e.g. [31]), approximation algorithms (e.g. [34] gives an overview),
and Downey and Fellows [19] even spawned a new branch of complexity theory, namely that of
parameterized complexity. Consequently, new perspectives and ideas are frequently introduced
to study the worst-case, and beyond the worst-case behavior of various algorithms on different
input. One of these ideas comes from the observation that sometimes there exists a unique
optimal solution i.e. this solution is better than all other solutions for an instance to some
combinatorial optimization problem. The question of exactly how much better this unique
optimal solution is, inspired Bilu and Linial [6] to come up with the notion of γ-stability with
γ ≥ 1. It measures the behavior of the unique optimal solution as we perturb the weights by at
most γ. More specifically, suppose we have weights w that maps the objects that we optimize
over (e.g. vertices of a graph) to positive values, then we could multiply each individual weight
by a factor between 1 and γ to obtain new weights w′ (we say that w′ is a γ-perturbation of
w). Now should there exists a unique optimal solution for some instance to a combinatorial
optimization problem with weights w, and this solution happens to be invariant to all possible
γ-perturbations of w, then we refer to the instance as γ-stable (see Definition 2.13). A powerful
use case of γ-stability is that it might uncover the true optimal solution when our weights are
obtained with possible error. To elaborate, say that some heuristic was used to obtain w, where
the weights are based on arbitrary modeling decisions e.g. we might use the L2-norm, instead
of L1-norm without it being strictly necessary. Should the instance be γ-stable for a sufficiently
large γ, then for any modeling decision that yields a γ-perturbation of w, the structure of the
optimal solution does not change. Therefore, the users get strong justification that the solution
really is the optimal solution that goes beyond their chosen weight function. Moreover, we
could loosely say that, the higher the value of γ of a γ-stable instance is, the more obvious
the structure of the optimal solution becomes. Consequently, algorithms have been proposed
to solve γ-stable instances exactly (see e.g. [24] for a survey). These range from polynomial
time algorithms for fixed values of γ, to algorithms that grow exponentially with respect to a
parameter related to γ.

In this thesis, we study a recent type of algorithm design that is inspired by γ-stability,
namely that of γ-certified algorithms (see Definition 2.14). Certified algorithms were recently
introduced by Makarychev and Makarychev [28] in 2018. They take as input some instance to
a weighted combinatorial optimization problem using weights w, and return a γ-approximate
solution S, together with a γ-perturbation w′ of w such that S is guaranteed to be optimal if
we use the weights w′ (we say that w′ certifies S). Therefore, a γ-certified algorithm behaves
like a γ-approximation algorithm, meaning that the solution S is at most a factor of γ away
from the weight of an optimal solution to the original instance (see Theorem 2.15). However,
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its behavior implies even stronger guarantees, because should the instance be γ-stable, then S
is guaranteed to be the optimal solution for the instance using the original weights w. Now
γ-certified algorithms are also powerful when the user knows that the weights exhibit some
bounded error with respect to γ. This allows the user to justify that the problem could be
modeled using the weights w′, rather than w, while providing the same accuracy for the model.
Finally, as a consequence of γ-certified algorithms behaving like stronger γ-approximation al-
gorithms, a γ-certified algorithm could also behave like a polynomial approximation scheme
(PTAS) (see Definition 2.4). More precisely, a (1 + ϵ)-certified algorithm, where ϵ > 0 is de-
termined by the user, is guaranteed to return a (1 + ϵ)-approximate solution and even solves
(1 + ϵ)-stable instances exactly. We would like to investigate whether PTASs could be extended
to (1 + ϵ)-certified algorithms. Arora, Lund, Motwani, Sudan, and Szegedy [3] proved that
many combinatorial optimization problems on general graphs do not allow for PTASs. How-
ever, there do exist many PTASs when we restrict the input to planar graphs [16]. Planar graphs
are interesting to study, because these pop-up in many real-life problems [8], including various
geographic problems, installing fiber-optic cables underneath roads, and even have applications
in image processing.

The work by Angelidakis, Awasthi, Blum, Chatziafratis, and Dan [2] designed such a (1 +
ϵ)-certified algorithm for the planar maximum weight independent set (MWIS) problem with
strictly positive integer polynomially-bounded weights. Given a weighted graph (G,w), the
MWIS problem seeks a maximum weight S ⊆ V (G) such that no vertices in S are adjacent
(see Definition 2.6). Note that we leave out ’strictly positive’ from now on, because certified
algorithms require that the weights are strictly positive (see Definition 2.14). The running time
of the algorithm is of the form |V (G)|Ω(1/ϵ) for a planar graph G. Furthermore, the algorithm
depends on non-trivial mechanics that we deem as difficult to generalize to similar problems
(see Section 1.2). Therefore, we sought out to investigate whether we could design a new (1+ϵ)-
certified algorithm for the planar MWIS problem that would simultaneously allow for a more
efficient running time, while also exhibiting an underlying combinatorial structure that could
be generalized to similar problems.

1.1 Our contributions

We obtained a (1+ϵ)-certified algorithm for MWIS problem when the input is a connected planar
graph G with integer weights. The algorithm has a running time of W ·f(1/ϵ)|V (G)|O(1), where
f is some computable function and W is the sum of the input weights. Therefore, we propose
a different algorithm that improves the running time of the existing (1 + ϵ)-certified algorithm
[2] of the form |V (G)|Ω(1/ϵ) to FPT time parameterized by 1/ϵ (see Definition 2.3).

Our (1 + ϵ)-certified algorithm follows from a linear-time reduction from a (1 + ϵ)-certified
algorithm that we obtained for the planar minimum weight vertex cover (MWVC) problem with
the same input conditions and running time. The MWVC problem seeks to find a minimum
weight S ⊆ V (G) such that each edge has at least one endpoint in S (see Definition 2.5). Fur-
thermore, we extended this algorithm to also work for the planar minimum weight dominating
set (MWDOM) problem. Given a weighted graph (G,w), the task is to find a minimum weight
S ⊆ V (G) such that each vertex is in S (inclusive) or has a neighbor in S (see Definition 2.9).
We also made the algorithm work for the H-Subgraph-Deletion (H-S-Deletion) problem for any
fixed connected graph H. Here the task is to find a minimum weight S ⊆ V (G) such that
its removal does not contain H as a subgraph (see Definition 2.8). Observe that H-S-Deletion
problem is more general and contains the MWVC problem when H is a single edge. Given the
similarities between the (1 + ϵ)-certified algorithms for each of these problems, we propose a
general (1+ϵ)-certified algorithm under the same input conditions that encompasses these prob-
lems, and more. We do so by introducing the notion of m-locally planar optimized (m-LPO for
short) problems with integer m ≥ 1. Problems that satisfy the conditions of m-LPO problems
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seek to find a minimum weight solution S ⊆ V (G). Moreover, they are typically union-closed
i.e. taking the union of any two solutions yields a feasible solution. In addition, they often have
a local structure, meaning that checking if any solution is feasible can be achieved by testing
a condition for every vertex by looking at its constant size closed-neighborhood. Note that we
dedicate Chapter 3 entirely to m-LPO problems, so all details can be found there. We claim
that each problem that satisfies the conditions of m-LPO for a constant m admits a (1 + ϵ)-
certified algorithm for connected planar graphs with integer weights that runs in FPT time
parameterized by 1/ϵ. We present this main result in our Meta-Theorem 5.9.

Theorem 5.9 (Meta-Theorem). Given any vertex-optimization problem Π that is m-LPO and
an instance (G,w) to Π such that G is a connected planar graph and w : V (G) → Z>0, then
Algorithm 3 invoked on (G,w) and ϵ > 0 is a (1 + ϵ)-certified algorithm that runs in time
W · f(m/ϵ) · |V (G)|O(1) for some computable function f where W := Σu∈V (G)w(u).

Since for each of the above described problems there exists a constant m such that the problem
is m-LPO (with the exception of the MWIS problem), we obtain Corollary 6.14.

Corollary 6.14. Algorithm 3 is a (1 + ϵ)-certified algorithm for the following optimization
problems when the input (G,w) consists of a connected planar graph and w : V (G)→ Z>0:

• MWVC problem with a running time of W · 2O(1/ϵ)|V (G)|O(1);

• For each fixed connected graph H, the H-S-Deletion problem can be solved in time
W · 2O(1/ϵc)|V (G)|O(1) for a constant c ≥ 1;

• MWDOM problem with a running time of W · 2O(1/ϵ)|V (G)|O(1);

• MWIS problem implicitly, by using Algorithm 6, with a running time of
W · 2O(1/ϵ)|V (G)|O(1),

with W := Σu∈V (G)w(u).

The running time of our algorithm heavily relies on the notion of treewidth (see Definition
2.10). Treewidth measures how close a graph is to a tree (i.e. an acyclic graph), because it has
been shown that many problems can be solved efficiently on trees [13, page 151]. Furthermore,
the basic workings of our algorithm are inspired by Baker’s technique [4] to obtain PTASs for
problems on planar graphs (we formally introduce Baker in Section 2.3). Our algorithm starts
from a trivial solution that is assumed to exist for a m-LPO problem, and proceeds to iteratively
make local improvements in induced subgraphs with a treewidth of O(m/ϵ). When we can no
longer find any improvements of this form, we apply a stronger notion of the pigeonhole principle
to prove that the resulting solution is optimal for a (1 + ϵ)-perturbation of the weight function.
Observe that since we use integer weights, we can find at most W improvements, hence its
dependency in the running time. Furthermore, in order to find these local improvements, we
employed existing FPT time algorithms parameterized by treewidth for each of the problems of
Corollary 6.14. More specifically, those for the MWVC, MWIS, and MWDOM problems come
from a book on Parameterized Algorithms [13, page 176], while the one for the H-S-Deletion
problem comes from the work by Cygan, Marx, Pilipczuk, and Pilipczuk [14]. Note that for
presentation purposes we have limited our presentation to connected planar graphs. We can
easily generalize this technique to general planar graphs (see Section 7.1).

In conclusion, we have successfully improved the running time of the existing (1+ϵ)-certified
algorithm for the planar MWIS problem with integer polynomially-bounded weights, while also
proposing a framework to obtain (1 + ϵ)-certified algorithms under the same input conditions
for similar problems.
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1.2 Related work

Most existing work studies γ-stability and γ-certified algorithms for graph partition problems
(e.g. [2, 30]), but also for clustering problems (e.g. [10, 28]). A survey of most existing work for
stability can be found in the work by Hazan, Papandreou, and Tarlow [24]. However, we would
like to put some emphasis on one study in particular, namely the (1 + ϵ)-certified algorithm for
the planar MWIS problem obtained by Angelidakis, Awasthi, Blum, Chatziafratis, and Dan [2].
This algorithm makes extensive use of the Sherali-Adams (SA) hierarchy of convex relaxations.
In essence, SA is a hierarchy of convex relaxations of a integer program such that each round
of SA gets the program closer to the integer hull. This allows us to obtain an optimal solution
by solving the resulting linear program. Given the scope of this thesis, we do not introduce
the SA hierarchy formally here, but instead refer the reader to a survey by Chlamtac and
Tulsiani [9] for a complete introduction. Furthermore, we recommend the book by Conforti,
Cornuéjols, and Zambelli [11], should the reader wish to read more about integer program-
ming. The (1 + ϵ)-certified algorithm relies on Theorem 18 of the original paper [2] that follows
as a corollary from Theorem 1.2 of the work by Bienstock and Ozbay [5]. Should we wish to
generalize the (1+ϵ)-certified algorithm to a new problem Π, then the scenario below must work.

Our problem Π takes as input some weighted graph (G,w). The problem is characterized by
a set of linear constraints imposed onto G and stored in some matrix A. Next, we copy all
vertices of G to a new graph G′ and create an edge in G′ for every pair of vertices in each
individual constraint of A. We proceed to measure the complexity of G′, rather than G by using
the notion of treewidth (see Definition 2.10). We show the dependencies between G, A, and G′

in the diagram below.

G A

G′

constraints of Π for G

determines connectivity of G′copies vertices to G′

SA-based approach complexity

our approach complexity

It can be shown that this approach works for the planar MWIS problem, but not for e.g. the
planar MWDOM problem. Here, graph G′ can become too complex to obtain the same running
times. We show an example in Figure 1.1 of how the graph G′ can get a treewidth in the order
of |V (G)| for the MWDOM problem.

Hence, we deem its underlying combinatorial properties as difficult to generalize to similar
problems. Therefore we focus on a different approach to obtain (1 + ϵ)-certified algorithms
for combinatorial optimization problems on planar graphs. As mentioned previously, (1 + ϵ)-
certified algorithms behave like stronger PTASs (see Theorem 2.15). Consequently, we would
like to investigate whether PTASs can be extended to (1 + ϵ)-certified algorithms. Moreover, it
is easy to see that the running time of a (1+ ϵ)-certified algorithm can only be as efficient as the
tight lower-bound on the running time of a PTAS for the same problem. We refer to a PTAS
as an efficient PTAS (EPTAS for short) when ϵ does not depend on the size of the input in the
running time analysis (see Definition 2.4). Therefore, a (1 + ϵ)-certified algorithm could only
exhibit FPT running time parameterized by 1/ϵ if the problem admits an EPTAS. We proceed
to discuss existing PTASs for combinatorial optimization problems on planar graphs.
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u

(a) Graph G.

u

(b) Graph G′.

Figure 1.1: Example of how G′ becomes a complete graph when G is a star-graph for the MWDOM
problem.

All the way back in the year of 1979, Lipton and Tarjan developed the first framework
to obtain PTASs for problems on planar graphs [26, 27]. Their approach is based on planar
separators, which recursively splits the graph into multiple pieces until each piece is of size
O(1/ϵ). These individual pieces are then solved brute-force and all resulting solutions are
merged to obtain an approximate solution. This approach leads to a PTAS for some problems
e.g. the independent set and vertex cover problems, but not for the dominating set problem
[23]. The technique has two important limitations, namely Demaine and Hajiaghayi [17] argue
that separator-based approaches do not handle weighted variants of problems as well as other
decompositions do. Second, it is subject to very large hidden constants in the size of the O(1/ϵ)
pieces that are solved brute-force [18].

Now both of these limitations are addressed in Baker’s technique to obtain PTASs for
problems on planar graphs [4, 17]. Baker’s technique was first announced in 1983 and published
in 1994 by an author under the same name [4]. In brief, Baker’s technique decomposes the
planar graph into subproblems such that each subproblem exhibits a bounded treewidth of
O(1/ϵ). It solves the problem exactly on each of these subproblems and proceeds to merge
the solutions. The technique works on local problems, meaning that some solution is feasible
if, and only if, some condition in the closed neighborhood of each vertex is satisfied [18]. The
technique obtains EPTASs for e.g. the planar MWIS problem, the planar MWVC problem,
and the planar MWDOM problem. This technique does not obtain PTASs for problems that
exhibit more of a global structure such as the planar feedback vertex set (FVS) problem. More
specifically, the FVS problem seeks a minimum size vertex set such that its removal yields an
acyclic graph.

Now to arrive roughly at the state of the art for PTASs for problems on planar graphs, De-
maine and MohammadTaghi [17] generalized and unified the Lipton-Tarjan separator approach
with Baker’s technique using results from bidimensionality theory (see [15] for an overview).
This framework also yields EPTASs for global problems, including the planar FVS problem.
More research based on bidimensionality theory has been conducted to encompass more prob-
lems that allow for EPTASs (e.g. [20, 21]). There is one important limitation to obtain (1 + ϵ)-
certified algorithms from these EPTASs, namely it is not trivial to extend the framework to
weighted problems, which is required for certified algorithms. This is posed as an open question
in an overview of the applications of bidimensionality theory by Demaine and Hajiaghayi [15].

Given that these frameworks to obtain EPTASs begin with Baker’s technique and Baker’s
technique appears to handle weighted cases well, it is natural for us to investigate if Baker’s
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technique can be generalized to (1+ ϵ)-certified algorithms that run in FPT time parameterized
by 1/ϵ. We dedicate Section 2.3 to Baker’s technique to further elaborate upon its algorithmic
details and we also show how it works for the planar MWIS problem.

1.3 Organization

We organized our work as follows. In Chapter 2 we give an overview of the preliminaries that our
work depends on. We proceed to formally define m-LPO problems in Chapter 3. Furthermore,
in Chapter 4 we elaborate upon the (1 + ϵ)-certified algorithm for a general m-LPO problem
and proceed to prove its correctness and running time in Chapter 5. Moreover, in Chapter 6
we formally prove that for both the H-S-Deletion problem and the MWDOM problem, there
exists an integer m such that the problem is m-LPO. In addition, we provide a (1 + ϵ)-certified
algorithm for the planar MWIS problem by using a reduction from the MWVC problem. Finally,
in Chapter 7 we reflect on our work and discuss possible extensions to the algorithm, and also
elaborate upon limitations and future work.
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Chapter 2

Preliminaries

In this chapter we provide important theory and notation. We specifically elaborate upon results
of graph theory (see Section 2.1), formally introduce γ-stability and γ-certified algorithms (see
Section 2.2), and finally introduce Baker’s technique in general and present it for the MWIS
problem (see Section 2.3).

2.1 Graph theory

We give a brief overview of important results and notation of graph theory. For any notation
that is not explicitly defined here, we refer the reader to a book on graph theory by Bondy and
Murty [32].

2.1.1 Basic results and notation

When we mention a graph G, we always refer to an undirected graph, meaning that all edges are
bidirectional and the graph does not contain self-loops or parallel edges. Moreover, we denote
the vertex set of a graph as V (G) and the edge set as E(G). We often associate the vertices of G
with a weight function w : V (G)→ R, yielding a weighted undirected graph as a pair (G,w). We
refer to a weight function w as positive if w : V (G)→ R>0, and sometimes we restrict the range
of the weight function to only positive integers i.e. w : V (G) → Z>0. We continue to define
the shortest path distance for a graph G as a function dG(u, v) that maps any two vertices
u, v ∈ V (G) to the minimum number of edges on a path between u and v. Should no such
path exist (i.e. u and v are in different connected components of G), then the distance is set to
infinity. Note that the weights are not used to compute the shortest path distance. Furthermore,
we define the diameter of a connected graph G as diam(G) := max{dG(u, v) | u, v ∈ V (G)},
or in other words, the maximum shortest path distance between any pair of vertices in V (G).
We also mention the eccentricity of a vertex u in a graph G, which we define as the maximum
shortest path distance from u to any other vertex of G. Moreover, let X ⊆ V (G) be a vertex
set, then we define its induced subgraph G[X] as a new graph that is obtained after deleting
all vertices of V (G) \ X from G. We make a distinction between an induced subgraph of G
and a subgraph of G, where the latter is a subgraph of G if, and only if, it can be obtained by
deleting both vertices and edges from G. Furthermore, we say that a graph H is isomorphic
to G if there exists a bijection f between vertex sets V (H) and V (G) such that for any pair of
vertices u, v ∈ V (G) we have {u, v} ∈ E(G) if, and only if, {f(u), f(v)} ∈ E(H). We also look
at graph-separators of a graph G. Let u, v ∈ V (G) such that {u, v} /∈ E(G) (non-adjacent),
then we define a (u, v)-separator as a set S ⊆ V (G) \ {u, v} such that u and v exist in different
connected components of G[V (G) \S]. We refer to S as a minimal (u, v)-separator if no proper
subset of S is a (u, v)-separator. Observe that should H be a clique (all vertices of H are
pairwise adjacent), then all vertices of V (H) are pairwise adjacent and hence no separator
exists in H. Furthermore, we make extensive use of the open and closed m-neighborhood of a
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subgraph X ⊆ V (G), which we define formally in Definition 2.1.

Definition 2.1 (open and closed m-neighborhood). Let G be a graph, m ≥ 1 be an
integer, and DG be a function that takes as input a vertex u ∈ V (G) and a vertex set
X ⊆ V (G) and computes the shortest path distance from u to any vertex of X i.e.
DG(u,X) := min{dG(u, v) | v ∈ X}. We define the closed m-neighborhood as

Nm
G [X] := {u ∈ V (G) | DG(u,X) ≤ m}.

Furthermore, we define the open (ℓ,m)-neighborhood as:

Nm,ℓ
G (X) := {u ∈ V (G) | ℓ ≤ DG(u,X) ≤ m},

and should ℓ = 1, then it is conventional to write Nm
G (X).

Finally, there exist different graph classes that restrict the structure of an undirected graph
G. These restrictions could allow for more assumptions on the input and, consequently, oppor-
tunities to design more efficient algorithms for combinatorial optimization problems on graphs
[31]. We often deal with planar graphs, which we define formally as graphs that admit an
embedding without any crossing edges. Much more efficient algorithms can be obtained for
planar graphs [8], however, the planar versions of each of the problems that we discuss remain
NP-complete [1, 2, 14]. Furthermore, a tree is a connected acyclic graph that, consequently,
has a simple structure. Finally, we also mention k-outerplanar graphs, which we define as fol-
lows. A graph G is 1-outerplanar, if it is planar, and admits a 1-outerplanar embedding i.e.
an embedding such that all vertices lie on the exterior face. Recursively, for k ≥ 2 a graph
G is k-outerplanar, if it is planar, and admits a k-outerplanar embedding i.e. an embedding
such that when all vertices on the outer face are deleted, a (k − 1)-outerplanar embedding on
the resulting graph is obtained. We are interested in k-outerplanar graphs, because these are
known to have a bounded treewidth (see Definition 2.10) of 3k − 1 [7]. This is exploited in e.g.
Baker’s technique (see Section 2.3) to obtain the EPTAS running time (see Definition 2.4).

2.1.2 Optimization over vertex sets

There are many combinatorial optimization problems that can be modeled on a weighted graph
(G,w) (see e.g. [13, pages 581-598]). Given that we only discuss combinatorial optimization
problems that seek to minimize (or maximize) the weight of a set of vertices of some weighted
graph (G,w), we formally introduce the concept of a vertex-optimization problem in Definition
2.2.

Definition 2.2 (Vertex-optimization problem). A vertex-optimization problem Π is
modeled on any instance (G,w) such that G is any undirected graph and w : V (G)→
R. Furthermore, Π is specified by a pair (f, g), where:

• f is a function that maps any undirected graph G to subsets of vertices of V (G)
that are feasible solutions to Π in G;

• g is the goal function, which is either a minimization or a maximization objective.

The function f is often encoded implicitly. Our goal is to find an optimal solution
I ∈ f(G) to Π in (G,w), which satisfies:

w(I) = g{Σu∈Sw(u) | S ∈ f(G)}.

As mentioned previously, all vertex-optimization problems (except for possible instances of
H in the H-S-Deletion problem) that we discuss are NP-complete, meaning that no efficient al-
gorithm exists that solves the problem exactly. However, they do allow fixed parameter tractable
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(FPT) time algorithms, which given its importance in our work, we formally introduce. We
define a parameterized problem as a language L ⊆ Σ∗ × N, where Σ is a fixed, finite alphabet
(we could e.g. encode a graph as a string over Σ). For an instance (x, k) ∈ Σ∗×N, variable k is
called the parameter. This parameter measures some aspect of the instance which is typically
much smaller than the size of the input e.g. the number of vertices in some vertex cover. We
define FPT problems in Definition 2.3. For more information about FPT problems and sub-
tleties regarding its running time, we refer the reader to a book on parameterized algorithms
[13, page 13].

Definition 2.3 (FPT). A parameterized problem L is fixed-parameter tractable (FPT)
if there exists an algorithm that can decide whether (x, k) ∈ L in time f(k) · |x|O(1)

for some computable function f that only depends on k.

Furthermore, we mention γ-approximate solutions with γ ≥ 1. Let I be an optimal solution
to some vertex-optimization problem Π. Should Π have a maximization objective, then the
weight of a feasible solution S to Π is called a γ-approximate solution if w(S) ≥ γ−1w(I).
Similarly, should Π have a minimization objective, then w(S) ≤ γw(I). Furthermore, we often
mention algorithms that behave like a polynomial time approximation scheme (PTAS), since
our (1 + ϵ)-certified algorithms are effectively a stronger version of a PTAS. We define these
formally within the context of a vertex-optimization problem in Definition 2.4.

Definition 2.4 (PTAS). Let Π be any vertex-optimization problem, A be an algo-
rithm that takes as input any instance (G,w) to Π that admits an optimal solution I,
together with a parameter ϵ > 0. Then, we refer to algorithm A as a polynomial time
approximation scheme (PTAS) for Π (possibly on restricted input) if in polynomial
time, for any fixed ϵ, algorithm A does the following:

• should Π have a minimization objective, then A returns a solution S that is
within a factor (1 + ϵ) of being optimal i.e. w(I) ≤ w(S) ≤ (1 + ϵ)w(I);

• should Π have a maximization objective, then A returns a solution S that is
within a factor of (1− ϵ) of being optimal i.e. (1− ϵ)w(I) ≤ w(S) ≤ w(I).

A PTAS with a running time of the form f(1/ϵ) · |V (G)|O(1) (i.e. ϵ does not depend
on |V (G)|) for some computable function f is referred to as an efficient polynomial
time approximation scheme (EPTAS).

We proceed to list the vertex-optimization problems that we use in our work. Note that
we introduce these in the setting of finding an optimal solution to the problem, rather than
the more traditional decision-problem setting. First, we introduce the minimum weight vertex
cover (MWVC) problem in Definition 2.5.

Definition 2.5 (MWVC). Given a weighted graph (G,w), the objective of the min-
imum weight vertex cover (MWVC) problem is to find a minimum weight S ⊆ V (G)
such that for each {u, v} ∈ E(G), it holds that {u, v} ∩ S ̸= ∅.

Next, we formally introduce the maximum weight independent set (MWIS) problem in Definition
2.6.

Definition 2.6 (MWIS). Given a weighted graph (G,w), the objective of the maxi-
mum weight independent set (MWIS) problem is to find a maximum weight S ⊆ V (G)
such that for each {u, v} ∈ E(G), it holds that {u, v} ̸⊆ S.

It is well known that an optimal solution to the MWIS problem is the complement of an optimal
solution for the MWVC problem and vice versa. We prove the first direction in Proposition 2.7.
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Proposition 2.7. Given a weighted graph (G,w) with positive weights and an optimal solution
C∗ to the MWVC problem in (G,w), then S∗ := V (G)\C∗ is an optimal solution to the MWIS
problem in (G,w).

Proof. We prove this claim as follows. First, we show that C ⊆ V (G) is a vertex cover of G
if, and only if, S := V (G) \ C is an independent set of G. We start with the first direction,
given a vertex cover C then by definition we have that every edge {u, v} ∈ E(G) satisfies that
at {u, v} ∩ C ̸= ∅. Therefore, should both u and v be in C, then neither will be in S and
hence S is an independent set of G. Similarly, should we have an independent set S, then
we know that for each edge {u, v} ∈ E(G) that it cannot happen that both u and v are in
S. Therefore, in the complement at least u or v must be in C, yielding a vertex cover of G.
Now this shows that in order to obtain a MWIS S∗, we could solve the following expression:
max{w(V (G) \C) | C is a vertex cover of G}, which is upper-bounded by the MWVC C∗. Our
claim follows.

We proceed to introduce the other vertex-optimization problems that we mention. First,
a generalization of the MWVC problem is the H-Subgraph-Deletion (H-S-Deletion) problem,
which we define formally in Definition 2.8.

Definition 2.8 (H-S-Deletion). For each connected graph H, the H-Subgraph-
Deletion (H-S-Deletion) problem is defined as follows: given a weighted graph (G,w),
the objective is to find a minimum weight S ⊆ V (G) such that the graph G[V (G) \S]
does not include H as a subgraph.

Next, we formally introduce the minimum weight dominating set (MWDOM) problem in Defi-
nition 2.9.

Definition 2.9 (WDOM). Given a weighted graph (G,w), the objective of the
minimum weight dominating set (MWDOM) problem is to find a minimum weight
S ⊆ V (G) such that for each u ∈ V (G), we have that N1

G[u] ∩ S ̸= ∅.

In algorithm design for optimization problems on graphs we often exploit the treewidth of
a graph G. Intuitively, treewidth measures how close a graph is to a tree (i.e. an acyclic
connected graph), because it has been observed that optimization problems on graphs are often
easier to solve on trees [13, page 151]. Therefore, a tree has a treewidth of 1, and the further it
is removed from a tree, the larger the treewidth becomes. The most famous result of exploiting
treewidth to design algorithms is Courcelle’s theorem, which was introduced by an author under
the same name [12]. Its statement implies that for any vertex-optimization problem that can
be expressed in monadic second-order logic (see [38] for an overview), an FPT time algorithm
(see Definition 2.3) parameterized by treewidth exists that can solve the problem exactly. We
define the notion of treewidth formally in Definition 2.10.

Definition 2.10 (treewidth [13]). A tree-decomposition of a graph G is a family
{Xi | i ∈ I} of subsets of V (G) (called bags), together with a tree T with V (T ) = I,
satisfying the following properties:

•
⋃

i∈I Xi = V (G);

• every edge of G has both its ends in Xi for some i ∈ I;

• for all v ∈ V (G), the set of nodes {i ∈ I | v ∈ Xi} induces a subtree of T .

The width of a tree-decomposition is defined as max{|Xi| − 1 : i ∈ I}. Now the
treewidth of G is the minimum width of any tree-decomposition of G.
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Furthermore, we need to know a tree decomposition such that its width is close to the
treewidth to effectively use algorithms that exploit treewidth. Since we only use planar graphs
as input to our algorithms, it suffices to provide an algorithm from literature that does so for
planar graphs. Proposition 2.11 states that a tree decomposition with a width in the order of
a known bound k of the treewidth of a planar graph can be found efficiently. Therefore, and
also for the sake of presentation, we do not discuss the computation and requirements of tree
decompositions in any future algorithms or running time analyses.

Proposition 2.11. [25] There exists an algorithm that takes as input a planar graph G with
a bounded treewidth of k ≥ 1, and in time O(k2 log k · |V (G)|) outputs a tree decomposition of
G of width O(k).

We proceed to present Theorem 2.12, which provides an FPT time algorithm parameter-
ized by treewidth for each of the introduced vertex-optimization problems. Note that its tree
decomposition computation is taken into consideration for each of the algorithms (i.e. we take
O(k) instead of k). The running time of the algorithm for the H-S-Deletion problem is designed
for the unweighted case [14], but the analysis does not depend on it. Hence, it easily generalizes
to the non-negative weighted case as well.

Theorem 2.12. Given any weighted planar graph (G,w) with non-negative weights and a
bounded treewidth of k, then we can optimally solve the

• MWVC problem in 2O(k)kO(1) · |V (G)|O(1) [13, page 176];

• MWIS problem in 2O(k)kO(1) · |V (G)|O(1) [13, page 176];

• H-S-Deletion problem in time 2O(kµ(H))|V (G)|O(1), where µ(H) = 1 if H is a clique and
µ(H) is the maximum size of minimal separator in H, otherwise [14];

• WDOM problem in 2O(k)kO(1) · |V (G)|O(1) [13, page 176].

Note that the algorithms from [13, page 176] do not exhibit large hidden constants in O(k).

2.2 Stability and certified algorithms

In this section we formally introduce the notions of stability and certified algorithms.

2.2.1 Stability

The concept of γ-stability was first introduced by Yonatan Bilu and Nathan Linial [6]. However,
we adopt a more refined version described in a recent book chapter by Makarychev, Makarychev,
and Vijayaraghavan [29]. Let (G,w) be a graph with positive weights and γ ≥ 1, then we define
a γ-perturbation w′ of w as a new weight function for V (G) such that for all u ∈ V (G) it holds
that w(u) ≤ w′(u) ≤ γw(u). Equivalently, we can increase the weight of each individual vertex
u ∈ V (G) by at most (γ − 1)w(u). Using the definition of γ-perturbations, we can formally
define γ-stability in Definition 2.13.

Definition 2.13 (γ-stable). Let Π be a vertex-optimization problem that admits a
unique optimal solution I for instance (G,w), where w is a positive weight function.
Then (G,w) is referred to as γ-stable if I remains the optimal solution for all possible
(G,w′) such that w′ is a γ-perturbation of w.

Testing whether an instance to some combinatorial optimization problem is γ-stable is often
a difficult task [29]. However, it has been observed that in practice it is not uncommon that
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instances are γ-stable and, consequently, this is the initial motivation to study γ-stable instances
[6]. Sometimes it does happen that some local part of an optimal solution changes when the
weights are perturbed by at most γ, meaning that the instance would almost be γ-stable [30].
Therefore, a more relaxed (and practical) notion of stability was introduced , namely weak-
stability [30]. We do not introduce weak-stability formally here, but its practicality deserves a
mention. We refer the reader to book chapter by Makarychev, Makarychev, and Vijayaraghavan
[29, page 96] for a formal introduction.

2.2.2 Certified algorithms

The high-level idea of a γ-certified algorithm with γ ≥ 1 is that given any instance (G,w) of
some family of instances F for which some algorithm A is a γ-certified algorithm, A returns a
solution S of G in Π together with a γ-perturbation w′ of w such that S is optimal for (G,w′).
In our case F is equal to all connected planar graphs with positive integer weights. We formally
define γ-certified algorithms in Definition 2.14.

Definition 2.14 (γ-certified algorithm [29]). Let Π be a vertex-optimization problem
and F be a family of instances that Π admits such that each instance exhibits strictly
positive weights. We define a γ-certified algorithm for Π restricted to family F as an
algorithm that takes as input any (G,w) ∈ F and outputs a solution S to Π in G
together with a γ-perturbation w′ of w such that S is an optimal solution for (G,w′).
We say that w′ certifies S.

Informally, we take as input some graph G with strictly positive weights w such that G
has the characteristics of some graph family F (e.g. F could be characterized by all graphs of
bounded degree of 3, that are planar, or all graphs without any odd cycles). Then, a (1 + ϵ)-
certified algorithm utilizes some procedure with respect to w to obtain a γ-perturbation w′

of w, together with a solution S of vertex-optimization problem Π such that S is an optimal
solution for the instance (G,w′). Furthermore, these procedures could be made more explicit
by using one of the two techniques to design (1 + ϵ)-certified algorithms proposed in the recent
book chapter by Makarychev, Makarychev, and Vijayaraghavan [29, page 101]. We do not
introduce these two techniques here, because we did not follow them to obtain our (1 + ϵ)-
certified algorithms. Therefore, we expect that the possibilities for these procedures are much
more rich. Furthermore, γ-certified algorithms are one of the techniques to exploit γ-stable
instances. More specifically, should (G,w) be γ-stable, then A correctly finds the optimal
solution, but is not explicitly aware of this, meaning that w′ does not have to be equal to w.
Given that these results are essential for certified algorithms, we prove these in formally in
Theorem 2.15.

Theorem 2.15 ([29], Theorem 5.11). Consider a γ-certified algorithm A for some vertex-
optimization problem Π on a weighted graph (G,w) with w : V (G)→ R>0, then:

• A finds a γ-approximate solution for (G,w).

• If the instance is γ-stable, then A returns the optimal solution.

Proof. Let I be an optimal solution in (G,w) for Π. Moreover, by definition of a γ-certified
algorithm, A returns a solution S together with a γ-perturbation w′ of w such that S is optimal
for (G,w′). First, we prove that A always returns a γ-approximate solution S by applying
case distinction on the goal functions that Π could have i.e. minimization and maximization
objectives. Let us start by assuming that Π has a maximization objective, then we observe the
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following:

w(S) ≥ 1

γ
w′(S) since w(u) ≤ w′(u) ≤ γw(u) for all u ∈ V (G)

≥ 1

γ
w′(I) because S is optimal for (G,w′)

≥ 1

γ
w(I) since w(u) ≤ w′(u) for all u ∈ V (G).

We conclude that S is a γ-approximate solution for the maximization objective. We continue
to the case where Π has a minimization objective and find that

w(S) ≤ w′(S) since w(u) ≤ w′(u) for all u ∈ V (G)

≤ w′(I) because S is optimal for (G,w′)

≤ γw(I) since w(u) ≤ w′(u) ≤ γw(u) for all u ∈ V (G).

We conclude that S is a γ-approximate solution for both the maximization and minimization
objectives of problem Π.

We continue to prove the second property. Let us assume that (G,w) is γ-stable. By
assumption, I is the unique optimal solution for all possible γ-perturbations of w. Since w′ is
one of such γ-perturbations, we must have that I is an optimal solution for both (G,w) and
(G,w′). We conclude that both properties hold and so our claim must be true.

We have introduced the most important properties of γ-stability and γ-certified algorithms for
our purposes. For any supplementary material we refer the reader to the book chapter by
Makarychev, Makarychev, and Vijayaraghavan [29].

2.3 Baker’s technique

We introduce Baker’s technique [4] by elaborating upon its general approach and by providing
an example for the MWIS problem on connected planar graphs. Baker’s technique exploits
the (outer)planarity of a graph to design PTASs (see Definition 2.4) for various optimization
problems on planar graphs. Examples of applications of Baker’s technique include the MWIS
problem, MWVC problem, and the MWDOM problem. The technique is named after Brenda
Baker, who first announced it during a conference in 1983, and later published it in 1994 in the
Journal of the ACM [4].

On a high level Baker’s technique selects sets of vertices by using a periodic function with
O(1/ϵ) distinct offsets (i.e. distinct positions to start the cycle). Should we have a maximization
objective, then for each set it removes these vertices and solves the problem optimally on the
remaining graph. If we have a minimization objective, then it creates subproblems by consider-
ing every vertex in the selected set exactly twice, while considering the remaining vertices once.
This implies that we under-count in the maximization objective, and over-count in the mini-
mization objective. The key correctness property comes from the famous pigeonhole principle,
where we claim that at least one of the ways we the periodic function selects the vertices, we
over-count (or under-count) at most ϵ times the weight of an optimal solution I. This implies
that at least one of the solutions has an error of at most ϵw(I). Recall that the pigeonhole
principle states that ’Suppose that n items are put into m containers, with n > m, then at least
one container must contain more than one item’. The statement is trivial and dates back as far
as 1624 [35], but can yield very powerful results. Both Baker and our technique make extensive
use of the pigeonhole principle. Finally, Baker’s technique also ensures that both the remaining
graph and each subproblem have a treewidth of O(1/ϵ), meaning that we can use an FPT time
algorithm parameterized by the treewidth to solve the problems exactly.
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2.3.1 Example MWIS problem

We formally introduce Baker’s technique for the MWIS problem (see Definition 2.6) on con-
nected planar graphs. Our presentation is inspired by a lecture on graph theory [37], but slightly
adapted and generalized to the weighted case of the independent set problem i.e. the MWIS
problem. The pseudocode of the algorithm can be found in Algorithm 1.

Algorithm 1 Baker’s technique for MWIS problem on connected planar graphs

Input connected planar graph G, weight function w : V (G)→ R≥0 , error parameter ϵ > 0
Output (1 + ϵ)-approximate independent set S of G

1: k ←
⌈
1
ϵ

⌉
2: Let r be an arbitrary vertex of G.
3: for i← 0, . . . , k − 1 do
4: Vi ← {v ∈ V (G) | d(r, v) (mod k) ≡ i}
5: Gi ← G[V (G) \ Vi]
6: Let Si be an optimal solution to the MWIS problem for (Gi, w) by the algorithm obtained

from Theorem 2.12.
7: end for
8: S ← max{w(Si) | i ∈ {0, . . . , k − 1}}
9: return S

The algorithm takes as input a weighted connected planar graph (G,w) together with a user-
defined error parameter ϵ > 0. It starts with setting k ← ⌈1ϵ ⌉, which determines the worst-case
error guarantee of our solution. More specifically, the higher the value of k, the fewer vertices
we remove, the better the approximation ratio of our independent set becomes. Next, we select
an arbitrary vertex r ∈ V (G) and continue to a for-loop with i ∈ {0, . . . , k − 1}. During each
iteration we select a set of vertices Vi ⊆ V (G) that includes all vertices v ∈ V (G) such that the
shortest path distance from r to v modular k is congruent to i. This is our periodic function
with offset i. We show the construction of each Vi in Figure 2.1.

(a) V0 (blue areas). (b) V1 (green areas). (c) V2 (purple areas).

Figure 2.1: Example of how the periodic function selects all vertices from a distance 0, 3, 6 (a), 1, 4, 7
(b), and 2, 5, 8 (c) away from vertex r ∈ V (G) that lives isolated in the center, for some graph G and
k = 3.

Next we construct the remaining graph Gi obtained from G by removing all vertices of Vi.
We proceed to solve the MWIS problem exactly on (Gi, w) to obtain an independent set Si

using the FPT-time algorithm parameterized by the treewidth stated in Theorem 2.12. The
fundamental reason that Baker’s technique works is because each Gi has a bounded treewidth
of 3k − 1 [4]. The proof is out of scope for our purposes, but the key argument (loosely) comes
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from the way Gi is constructed. More specifically, each connected component becomes a k-
outerplanar graph, which is known to have a treewidth of at most 3k− 1 [7]. Consequently, we
can solve the MWIS problem on Gi in FPT time parameterized by O(1/ϵ) since k = O(1/ϵ).
We illustrate the construction of Gi and the computation of Si in Figure 2.2.

(a) V0 (blue areas). (b) MWIS S0 of G0.

Figure 2.2: Example of how G0 := G[V (G) \ V0] of a graph G is constructed with V0 for k = 3, and in
addition, how the MWIS S0 is computed on G0. Observe that r ∈ V (G) lives isolated in the center. All
vertex weights are 1.

After our for-loop terminates, we return an independent set S of maximum weight from all
of the k computed independent sets i.e. S := max{w(Si) | i ∈ {0, . . . , k − 1}}. We continue
to formally prove that Algorithm 1 yields a PTAS for the MWIS problem on connected pla-
nar graphs. Let us first show a simple result of applying the pigeonhole principle over all Vi

constructed by the algorithm in Lemma 2.16.

Lemma 2.16. Let (G,w) be a weighted connected planar graph and let I be an optimal
MWIS of (G,w), then there exists an i ∈ {0, . . . , k − 1} such that the set Vi := {v ∈ V (G) |
d(r, v) (mod k) ≡ i} satisfies

w(I ∩ Vi) ≤
1

k
w(I).

Proof. Let us, for the sake of contradiction, assume that for each Vi = {v ∈ V (G) | d(r, v) (mod k) ≡
i} with i ∈ {0, . . . , k − 1} it holds that w(I ∩ Vi) >

1
kw(I), then we have that:

k−1∑
j=0

w(I ∩ Vi) >
k−1∑
j=0

1

k
w(I) by assumption

= w(I)

However, all Vi are pairwise disjoint and it is clear to see that its disjoint union is V (G).
Therefore, this would imply that w(I) > w(I), which cannot happen. We have reached a
contradiction and so our claim must be true.

We need a formal statement that all connected components of Gi for all i ∈ {0, . . . , k − 1}
have a treewidth of O(k) to obtain the required PTAS running time. Again, this proof is beyond
the scope of this thesis and we refer the reader to the original paper [4] for formal arguments
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as to why this holds. Note that the lemma is not directly proven in the original paper [4], but
is well known to be the key reason Baker’s technique exhibits the PTAS running time (for a
similar result see [33, Theorem 7.6]).

Lemma 2.17. ([4], cf. [33, Theorem 7.6]) Given a connected planar graph G, then for any r ∈
V (G) and any i ∈ {0, . . . , k−1} we have that every connected component of Gi := G[V (G)\Vi]
with Vi = {v ∈ V (G) | d(r, v) (mod k) ≡ i} has a treewidth of at most 3k − 1.

Now we can formally prove that Algorithm 1 is a PTAS for the MWIS problem on connected
planar graphs in Theorem 2.18.

Theorem 2.18. Algorithm 1 is a PTAS for the MWIS problem on connected planar graphs
and runs in time

2O(1/ϵ)(1/ϵ)O(1) · |V (G)|O(1).

Proof. Let (G,w) be a connected weighted planar graph and I be an optimal MWIS of (G,w).
We start by applying Lemma 2.16 on (G,w) and I to obtain a set Vi with i ∈ {0, . . . , k − 1}
such that

w(Vi ∩ I) ≤ 1

k
w(I).

Algorithm 1 trivially finds this set Vi, because it loops over all possible Vi. We proceed to show
that Si is guaranteed to yield at most ϵw(I) error.

w(Si) ≥ w(I ∩ V (Gi))

since Si is optimal for (Gi, w) (line 6) and I ∩ V (Gi) is an independent set of (Gi, w)

= w(I)− w(I ∩ Vi)

by definition of Gi = G[V (G) \ Vi]

≥ w(I)− 1

k
w(I)

by assumption on the weight of the selected Vi

≥ w(I)− ϵw(I)

since k :=
⌈
1
ϵ

⌉
implies that 1

k ≤ ϵ

= (1− ϵ)w(I).

We conclude that Algorithm 1 indeed yields a solution S with an error of at most ϵw(I) for the
MWIS problem on connected planar graphs.

We proceed to prove that the running time of Algorithm 1 is polynomial for any fixed ϵ > 0.
It is clear to see the running time of the algorithm is dominated by line 6, which we compute
k times. Now by Lemma 2.17, we know that the treewidth of each connected component of
any Gi with i ∈ {0, . . . , k − 1} computed by the algorithm has a treewidth of at most 3k − 1.
Furthermore, by proposition 2.12, we know that an exact algorithm for the MWIS problem
parameterized by treewidth k exists that runs in time

2O(k)kO(1) · |V (G)|O(1).

We conclude that Algorithm 1 runs in time

|V (G)|O(1) + k · 2O(k)kO(1) · |V (G)|O(1) = 2O(k)kO(1) · |V (G)|O(1)

= 2O(1/ϵ)(1/ϵ)O(1) · |V (G)|O(1) since O(k) = O(1/ϵ).

We have proven both the approximation ratio of solution S that algorithm 1 returns and that
its running time is polynomial for any fixed ϵ > 0. Hence, Algorithm 1 is a PTAS for the MWIS
problem on connected planar graphs.

We have introduced all the necessary preliminaries for the reader not to miss any context in
any work of this thesis. In the next chapter we formally introduce what m-LPO problems are.
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Chapter 3

Locally planar optimized problems

In this chapter we identify a class of vertex-optimization problems that we refer to as m-locally
planar optimized problems or m-LPO for short (see Definition 3.3). Here m is a positive integer,
whose value depends on the vertex-optimization problem in question. Each such problem Π
takes as input some weighted graph (G,w) and allows to be modified locally along any induced
subgraph G′ of G by a property that we introduce as m-stitching (see Definition 3.2). This
property effectively serves as the backbone of any m-LPO problem. Moreover, Π requires the
existence of an efficient algorithm to improve a given solution to Π in G, by modifying it along
a given induced subgraph G′ of G, provided that an improvement of this form is possible. Here
the efficiency is expressed in terms of the treewidth (see Definition 2.10) of the graph induced
by vertex set Nm

G [V (G′)] (see Definition 2.1). In Chapter 5 we prove that all such problems
allow for (1 + ϵ)-certified algorithms when the input graph is a connected planar graph and the
vertex-weights are positive integers.

We start by introducing the notions of m-stitching and m-LPO problems formally in Section
3.1, then we apply this theory by showing that the MWVC problem is 1-LPO in Section 3.2.

3.1 Stitching and locally planar optimized problems

We begin with introducing the m-stitch operation of two vertex sets in Definition 3.1.

Definition 3.1 (m-stitch operation). Given an integer m ≥ 0, an induced subgraph
G′ of a graph G, and vertex sets S1, S2 ⊆ V (G), then we define the m-stitch of S2

onto S1 along G′ as the set

S3 := (S1 \ V (G′)) ∪ (S2 ∩Nm
G [V (G′)]).

We refer to the m-stitch operation of replacing S1 with S3 obtained from the m-stitch
of S2 onto S1 along G′.

Let G be any graph, G′ be any induced subgraph of G, and S1 and S2 be any vertex sets
of V (G), then intuitively, we take S1 and proceed to stitch S2 onto S1. This stitching process
occurs locally along V (G′) and its m-open neighborhood Nm

G (V (G′)), implying that S1 and S3

are equal in the remaining graph i.e. (S3 \Nm
G [V (G′)]) = (S1 \Nm

G [V (G′)]). We like to divide
this operation into two steps, namely:

Step 1: Remove all vertices of V (G′) from S1 to obtain (S1 \ V (G′)).

Step 2: Add all vertices of (S2 ∩Nm
G [V (G′)]) to (S1 \ V (G′)) to obtain S3.

We illustrate the m-stitch operation according to these steps in Figure 3.1 by showing the
2-stitch of S2 ⊆ V (G) onto S1 ⊆ V (G) along an induced subgraph G′ of a graph G.
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(a) Vertex set S2.

N2
G[V (G′)]

V (G′)

(b) Vertex set S1 along with N2
G[V (G′)].

N2
G[V (G′)]

V (G′)

(c) Step 1: remove V (G′) from S1.

N2
G[V (G′)]

V (G′)

(d) Step 2: add (S2∩N2
G[V (G′)]) to (S1 \V (G′)).

(e) Resulting vertex set S3.

Figure 3.1: Example of a 2-stitch of S2 onto S1 along G′ for some graph G.

We are interested in vertex-optimization problems (see Definition 2.2) that allow for m-
stitching. This means that given some graph G to a vertex-optimization problem Π, the m-
stitch operation of any two solutions to Π along any induced subgraph of G yields a feasible
solution to Π in G. We define the notion of Π allowing for m-stitching in Definition 3.2.
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Definition 3.2 (m-stitching). We say that a vertex-optimization problem Π allows
for m-stitching if for any graph G, the m-stitch operation of any feasible solution S2

to Π in G onto any feasible solution S1 to Π in G along any induced subgraph G′ of
G yields a feasible solution to Π in G.

We proceed to show the concept of m-stitching by using an example for the MWVC problem
(see Definition 2.5).

Given any graph G, any two vertex covers S1 and S2 in G, and any induced subgraph G′

of G, then we claim that the 1-stitch of S2 onto S1 along G′ results in a vertex cover S3 of G.
We show this is Figure 3.2.

G′

N1
G[V (G′)]

Figure 3.2: Example showing that a graph G together with an induced subgraph G′ of G such
that the 1-stitch S3 (green) of S2 (blue) onto S1 (red) along G′ yields a feasible vertex cover of
G.

The main argument comes from the fact that the diameter of a single edge is exactly one. More
specifically, there cannot exist an edge between vertices of V (G′) and (V (G) \ N1

G[V (G′)]) and
therefore taking the union of both S1 and S2 inside of Nm

G (V (G′)) implies that all edges remain
covered by S3. In Chapter 6 we prove the claim formally (as a corollary of the H-S-Deletion
problem), but for now this showcases how m is identified for the MWVC problem.

We would like to make the observation that, intuitively, the value of m describes how far
apart (S1 \Nm

G [V (G′)]) and (S2∩V (G′)) have to be before these do not influence the feasibility
of one another. Therefore, the minimum value for m such that Π allows for m-stitching could be
seen as a measure of how local problem Π is. We proceed to show that m = 1 is the minimum
value such that the MWVC problem allows for m-stitching.

In Figure 3.3 below, we show that if we would change the 1-stitch to a 0-stitch in the example
shown in Figure 3.2, the set S3 would not be a vertex cover of G.

G′

Figure 3.3: Counterexample showing that the MWVC problem does not allow for 0-stitching.
It shows that the 0-stitch of S2 (blue) onto S1 (red) along G′ is an infeasible solution S3 (green).
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Now that we have shown what it means for Π to allow for m-stitching, we proceed to
elaborate upon how we will apply it. Recall that we are extending Baker’s technique (see
Section 2.3) by making the algorithm iterative. Starting from any solution S to Π in G, we
repeatedly seek to improve S along a bounded number of induced subgraphs of G. Similar
to Baker’s technique, each of these induced subgraphs are guaranteed to exhibit a treewidth
of O(m/ϵ). In order to find these improvements, we use the notion of m-stitching. More
specifically, we need an algorithm AΠ that can update S without violating feasibility for the
remaining graph. In addition, given S and an induced subgraph G′ of G such that the m-stitch
S3 of some unknown solution S2 to Π onto S along G′ improves S i.e. w(S3) < w(S). Then, we
want AΠ to return a solution S∗ to Π in G with w(S∗) < w(S). In other words, whenever an
m-stitch operation onto a given S along a given G′ yields a solution S3 of lower weight than S,
then we obtain a solution S∗ that improves S. Moreover, in order to extend Baker’s technique,
we want our algorithm to run in FPT time parameterized by the treewidth of G[Nm

G [V (G′)]].
The m-stitching property is vital because it effectively guarantees that any local modifications
of this form along G′ never violate the feasibility of the resulting solution in G.

Furthermore, since we start from some trivial solution to Π in G, we also need to know that
for any planar graph G we can compute such a solution efficiently. We define m-LPO problems
formally in Definition 3.3.

Definition 3.3 (m-locally planar optimized). Given a vertex-optimization problem Π,
then we say that Π is m-locally planar optimized (or m-LPO in short) if the following
properties are met.

(i) For any planar instance with positive weights (G,w), we can find a feasible
solution to Π in G in |V (G)|O(1) time.

(ii) For any planar instance (G,w) of Π, we have that problem Π allows for m-
stitching.

(iii) There exists an algorithm AΠ that takes as input a planar graph with positive
weights (G,w), an induced subgraph G′ of G, and a known solution S to Π
in G, and in time f(t) · |V (G)|O(1) with t an upper-bound on the treewidth of
G[Nm

G [V (G′)]] and some computable function f , does the following:

If there exists a feasible solution S3 of Π with w(S3) < w(S) that can be
obtained as an m-stitch of an unknown solution S2 to Π in G onto S along
G′, then AΠ returns a solution S∗ to Π in G with w(S∗) < w(S); otherwise,
it returns S.

To give some more intuition, in Baker’s technique we use an exact algorithm bounded by
treewidth to solve the problem independently on each subproblem. Intuitively, we want to relax
this independence i.e. we want to find a local solution along G′ such that any conditions that
are already satisfied by S \ V (G′) do not have to be satisfied again. Observe that m-stitching
suggests that (S \V (G′)) already satisfies all conditions of Π in the graph outside of Nm

G [V (G′)].
Therefore, the task of AΠ typically reduces to satisfying all conditions of Π in G[Nm

G [V (G′)]]
when (S ∩Nm

G (V (G′))) is already part of the solution.
To familiarize the reader with AΠ, we elaborate upon how AMWV C can be designed for the

MWVC problem (see Definition 2.5) in the next section.
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3.2 Designing AMWVC for the MWVC problem

In this section we discuss a way to design algorithm AMWV C for the MWVC problem. Let
(G,w) be a planar graph with positive weights, G′ be an induced subgraph of G, and S be a
known vertex cover of G such that there exists a 1-stitch S3 of some unknown vertex cover S2

of G onto S along G′ with w(S3) < w(S). Then by definition, AMWV C invoked on (G,w), G′,
and S must find a vertex cover S∗ of G with w(S∗) < w(S).

Let us make a first and incorrect attempt by using the same approach as Baker’s technique.
We solve the MWVC problem exactly on (G[N1

G[V (G′)]], w) to obtain SG′ . This can be done
in FPT time parameterized by the treewidth of G[N1

G[V (G′)]] given by Theorem 2.12. Next,
we want to merge S with SG′ to obtain S∗ of G. Observe that SG′ is only a vertex cover of
G[N1

G[V (G′)]], but it is easy to show that the m-stitch of trivial solution S2 := SG′ ∪ (V (G) \
N1

G[V (G′)]) onto S along G′ yields S∗ as well. However, if SG′ is computed by an algorithm that
is unaware of which vertices are in S∩N1

G(V (G′)), it may cause SG′ to pick vertices to cover edges
that are already covered by S∩N1

G(V (G′)). Observe that w(SG′) ≤ w(S3∩N1
G[V (G′)]), however,

once we add (S \ V (G′)) back to the solution to obtain S∗, we could have that w(S) < w(S∗).
We illustrate this in Figure 3.4.

10

10

10

G′

N1
G[V (G′)]

(a) Known solution S of G.

10

10

10

G′

N1
G[V (G′)]

(b) Unknown solution S2 of G.

10

10

10

G′

N1
G[V (G′)]

(c) m-stitch S3 of S2 onto S along G′.

Figure 3.4: The m-stitch S3 of unknown solution S2 of G onto known solution S of G along G′ such that
w(S3) = 21 < w(S) = 30 for the MWVC problem. All vertex weights are 1 unless indicated otherwise.
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Now if we were to solve the instance (G[N1
G[V (G′)]], w) exactly, then we would obtain

the solution SG′ depicted in Figure 3.5(a). It is clear to see that indeed w(SG′) = 11 < w(S3 ∩
N1

G(V (G′))) = 21. Furthermore, as depicted in Figure 3.5(b) the solution S∗ of G adds S∩V (G′)
to SG′ to ensure feasibility of G; however, this solution has that w(S∗) = 31 > w(S) = 30.

10

10

10

G′

N1
G[V (G′)]

(a) Local solution SG′ .

10

10

10

G′

N1
G[V (G′)]

(b) Solution S∗ of G obtained from SG′

Figure 3.5: Solving the problem exactly on (G[N1
G[V (G′)]], wG′) to obtain SG′ such that w(S) ≤ w(S∗)

while w(S3) < w(S). All vertex weights are 1 unless indicated otherwise.

To summarize: the problem with applying Baker’s approach of simply solving the MWVC
problem on (G[N1

G[V (G′)]], w) is that the algorithm is unaware of which edges in G[N1
G[V (G′)]]

are already covered by S ∩ N1
G(V (G′)). Even though keeping vertices from S ∩ N1

G(V (G′))
in our solution may lead to a suboptimal vertex cover w.r.t. (G[N1

G[V (G′)]), w), the edges
connecting N1

G[V (G′)] to the remainder of the graph may make it advantageous to still use
these vertices to obtain a globally optimal solution. Therefore, we should incorporate the
vertices of S ∩N1

G(V (G′)) into our local subproblem that we solve exactly.
We wish to resolve this issue, meaning that we only want SG′ to include vertices in (S \

N1
G(V (G′))) if it exclusively covers an edge with one endpoint in V (G′) and vice versa. There

may be many approaches to do this by, for instance, creating some gadget graph based on
G[N1

G[V (G′)]] to force the solution to select vertices of S. However, we approach this by
adapting the weight function. More specifically, we construct weights w′

0 that allow the vertices
of S ∩N1

G(V (G′)) to be selected for free, defined as

w′
0(u) :=

{
0, if u ∈ (S ∩N1

G(V (G′)))

w(u), otherwise.

We proceed to solve the instance (G[N1
G[V (G′)]], w′

0) exactly and obtain solution SG′ . Next, we
show that this change fixes the challenge for the MWVC problem depicted in Figure 3.5 and
provide the pseudocode of AMWV C in Algorithm 2.

Figure 3.6(a) shows the instance (G[N1
G[V (G′)]], w′

0), together with its optimal solution to the
MWVC problem. Observe that the only vertex that we selected in S \ N1

G(V (G′)) was exclu-
sively used to satisfy edge e depicted in the figure. This edge was not satisfied by any vertices
in S ∩ N1

G(V (G′)). In the counterexample we selected both endpoints of e, because we did not
take into account that all edges on the outer face of G[N1

G[V (G′)]] were already satisfied by
S ∩N1

G(V (G′)).
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G′

N1
G[V (G′)]

0

10

0

e

(a) Local solution SG′ with w′
0.

10

10

10

G′

N1
G[V (G′)]

(b) Solution S∗ of G.

Figure 3.6: Solving the problem exactly on (G[N1
G[V (G′)]], w′

0) to obtain SG′ such that w(S3) < w(S)
and w(S∗) < w(S). All vertex weights are 1 unless indicated otherwise.

Algorithm 2 AMWV C for the planar MWVC problem

Input planar graph G, weight function w : V (G) → R>0, induced subgraph G′ of G, and
a vertex cover S of G.

Output vertex cover S∗ of G with w(S∗) < w(S) if there exists such a vertex cover that
can be obtained by a 1-stitch onto S along G′; otherwise, S.

1: for u ∈ N1
G[V (G′)] do

2: if u ∈ (S ∩N1
G(V (G′))) then

3: w′
0[u]← 0

4: else
5: w′

0[u]← w[u]
6: end if
7: end for
8: Let SG′ be an optimal solution to the MWVC problem for (G[N1

G[V (G′)]], w′
0) by the algo-

rithm obtained from Theorem 2.12.
9: S∗ ← (S \ V (G′)) ∪ SG′

10: if w(S∗) < w(S) then
11: return S∗

12: else
13: return S
14: end if

The key correctness property comes from the fact that the algorithm can use all vertices
from S ∩ N1

G(V (G′)) for free, while all other vertices have a strictly positive weight. This
preserves feasibility since all such vertices are already in solution S. This implies that vertices
in N1

G(V (G′)) \ S would exclusively be chosen to cover edges such that the other endpoint is
in V (G′). Similarly, we would never select a vertex inside of V (G′) that has its other endpoint
in S ∩N1

G(V (G′)) for the sole reason of covering this edge, because the other endpoint can be
selected with a weight of zero. Therefore, should w(S3) < w(S), then the solution S∗ that is
implicitly obtained from an m-stitch of SG′ ∪ (S \ V (G′)) onto S along G′ must yield a strictly
lower weight than S and hence satisfies the requirements of algorithm AMWV C .

Finally, a short note on the running time. It is clear to see that AMWV C is dominated
by the routine that solves the MWVC problem exactly on (G[N1

G[V (G′)]], w′
0) (i.e. line 8).
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Furthermore, by Theorem 2.12, we know that there exists an FPT time algorithm that is
parameterized by the treewidth of the input graph, and hence our algorithm solves the instance
in FPT time parameterized by the treewidth of G[N1

G[V (G′)]], as required by property (iii) of
a 1-LPO problem.

We have presented AMWV C to elaborate on how such an algorithm could be constructed.
Therefore, we have not proven its correctness formally, but only argued why it intuitively works.
However, in Chapter 6 we prove that for each connected graph H, the H-S-Deletion problem is
m-LPO with m = diam(H). The H-S-Deletion problem contains the MWVC problem when H
equals a single edge, meaning that the proof for the MWVC problem follows as a corollary.

We have introduced the notions of m-stitching and m-LPO problems and provided an extensive
example for the MWVC problem. In the next chapter we provide our (1+ ϵ)-certified algorithm
for a general m-LPO problem.
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Chapter 4

Certified algorithm: overview

The purpose of this chapter is to elaborate upon how the framework to design (1+ϵ)-certified al-
gorithms for m-LPO problems works. Our framework is heavily inspired from Baker’s technique
(see Section 2.3). However, it gives some stronger guarantees, namely in addition to behaving
like a PTAS, it also returns a (1 + ϵ)-perturbation w′ of our weight function that certifies the
solution. Moreover, should the weighted graph be (1 + ϵ)-stable (see Definition 2.13), then our
algorithm returns the optimal solution. Finally, opposed to Baker’s technique, our solution is
guaranteed to be minimal, otherwise it could not be certified by w′. We provide the pseudocode
in Algorithm 3 below.

Algorithm 3 (1 + ϵ)-certified algorithm for m-LPO problem Π

Input: connected planar graph G, weight function w : V (G)→ Z>0, parameter ϵ > 0
Output: solution S to Π in G, (1 + ϵ)-perturbed weights w′ of w that certifies S

1: Let r be an arbitrary vertex of G.
2: dmax ← max{d(v, r) | v ∈ V (G)}
3: for i← 0, 1, . . . dmax do
4: Li ← {v ∈ V (G) | d(v, r) = i}
5: end for
6: Compute a feasible solution S to Π in G using condition (i) m-LPO (see Definition 3.3).
7: k ←

⌈
2m
ϵ

⌉
+ 2m

8: c← 0
9: while c ≤ dmax − k + 2(m + 1) do

10: for ℓ ∈ k −m, k −m + 1, . . . , dmax + m + 1 do
11: B′ ←

⋃ℓ−m−1
i:=ℓ−k+m Li ▷ Block of width k − 2m.

12: Let S′ be the result of invoking algorithm AΠ implied by condition (iii) of m-LPO
on instance (G,w) with solution S, and G′ := G[B′].

13: if w(S′) < w(S) then
14: S ← S′ ▷ m-stitch onto S along G′ that improves S found.
15: c← 0
16: break

17: else
18: c← c + 1
19: end if
20: end for
21: end while
22: w′ ← w
23: for u ∈ (V (G) \ S) do
24: w′[u]← (1 + ϵ)w[u]
25: end for
26: return (S,w′)
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We briefly summarize what our (1 + ϵ)-certified algorithm does. The algorithm takes as
input any connected planar graph G with positive integer weights w. First, we divide the graph
into layers such that adjacent layers may share edges, but non-adjacent layers could not. Next,
we compute any trivial solution S to Π in G implied by condition (i) of Π being m-LPO. We
proceed to iterate over each possible set of k − 2m consecutive layers, where the value of k
is dependent on Π and the user-defined parameter ϵ > 0. During each iteration, we invoke
algorithm AΠ implied by condition (iii) of Π being m-LPO on G, the subgraph induced by
these k − 2m layers, and the known solution S to check if an improvement to S can be found
as a result of an m-stitch onto S along this induced subgraph. Observe that AΠ takes the
closed m-neighborhood over these layers, implying that it uses at most consecutive k layers.
Should AΠ find a solution S∗ to Π in G with a lower weight than S, then we replace S with
S∗; otherwise, we continue to the next k− 2m consecutive layers. Once no more improvements
can be found, we return the final solution and (1 + ϵ)-perturbed weights w′ of w obtained from
maximally increasing the weights of all vertices in V (G) \ S, which we claim certifies S.

We organize this chapter into three sections that correspond to the three different parts of
this algorithm, respectively: constructing the layer decomposition (see Section 4.1), sliding over
the layer decomposition to find improvements (see Section 4.2), and finally how the solution is
certified by manipulating the weights (see Section 4.3). Note that we do not prove correctness
of Algorithm 3 until the next chapter.

4.1 Layer decomposition

(Lines 1-5 of Algorithm 3)

Our layer decomposition is easy to construct and can be computed in polynomial time. First,
we take any vertex r ∈ V (G) that we consider as our starting vertex. Next, we compute the
shortest path distance from r to any vertex u ∈ V (G) (including r) using the function dG(r, u).
Now, every vertex that has the same distance i from r is put into the same layer Li. Let dmax

denote the eccentricity of r, then we obtain exactly dmax + 1 layers. However, we also add
dummy layers to the layer decomposition, which we motivate in the next section. We define
the layer-composition formally in Definition 4.1.

Definition 4.1 (Layer-decomposition LrG). Given a connected graph G, any vertex
r ∈ V (G), then we define a layer Li with i ∈ {0, . . . , dmax} as

Li := {v ∈ V (G) | dG(v, r) = i}.

Furthermore, we define a dummy layer Li with i ∈ {−m, . . . ,−1} and i ∈
{dmax, . . . , dmax + m− 1} as

Li := ∅.

Finally, we define the layer decomposition LrG of G as a set of layers corresponding to
the union of all layers and dummy layers i.e.

LrG := {Li | i ∈ {−m, . . . , dmax + m− 1}.

We show an example of what LrG looks like on a small planar graph G in Figure 4.1. Observe that
Baker’s technique implicitly computes the layer decomposition in the process of constructing Vi

(see Algorithm 1).
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Figure 4.1: Example of a layer decomposition for a small planar graph.

4.2 Sliding over the layer decomposition

(Lines 6-21 of Algorithm 3)

After Algorithm 3 has created the layer decomposition LrG of connected graph G and any
r ∈ V (G), it proceeds to a while-loop that repeats the following process. We iterate over each
possible set of k − 2m consecutive layers of LrG in a for-loop until we find an improvement for
S using AΠ implied by condition (iii) of Π being m-LPO. Should no improvement exist, then
the while-loop terminates. Here, we refer to each set of k − 2m consecutive layers as blocks of
width k − 2m and we formalize these blocks in Definition 4.2.

Definition 4.2 (Block). Given a layer decomposition LrG of a connected graph G and
any r ∈ V (G), then we define a block Bb

a as the sequence of layers in LrG starting with
a and ending with b, where b ≥ a. Should some layer not be defined in the LrG, then
it is handled as an empty set. Moreover, we refer to the width of Bb

a as the number of
layers it consists of i.e. b− a + 1.

Furthermore, we also introduce open and closed m-layer neighborhood operators in Definition
4.3. These are similar to the previously introduced open and closed neighborhood operators (see
Definition 2.1), however they are less strict i.e. they may include vertices that are in different
connected components than the vertices in the block. Therefore, for any block B we have that
Na

G[B] ⊆ δa[B].
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Definition 4.3 (m-layer neighborhood). Given a graph G with its corresponding
layer decomposition LrG with any r ∈ V (G), and a block Bb

a in LrG with b ≥ a. Then
we define its closed m-layer neighborhood δm[Bb

a] as Bb
a together with its m adjacent

layers on both sides i.e.
δm[Bb

a] := Bb+m
a−m.

Moreover, we also define the open m-layer neighborhood δm(Bb
a) as exclusively the m

layers incident to the block on both sides that are adjacent to Bb
a i.e.

δm(Bb
a) :=

a−1⋃
j:=a−m

Lj ∪
b+m⋃

j:=b+1

Lj .

Finally, whenever the operator encounters a layer that is not defined, it considers these
layers as empty sets.

We give an example of a block together with the open and closed m-layer neighborhood in
Figure 4.2.

r
a

c

b

d h
i

g f

e

L0 L1 L2 L3 L4L−1 L5

B3
2

δ2(B
3
2)

δ2[B
3
2 ]

Figure 4.2: Example of a block of width 2, together with its open and closed 2-layer neighbor-
hoods.

Algorithm 3 proceeds to compute a candidate solution S′ to Π in G. This is done by
invoking AΠ on G, G′ := G[B′], and the known solution S to obtain S′. Observe that AΠ takes
Nm

G [V (G′)], which implies that AΠ uses layers from B \ B′ as well. By definition of m-LPO,
should an m-stitch S3 exist of some unknown solution to Π in G onto S along G′ such that
w(S3) < w(S), then we find a solution S∗ to Π in G with w(S∗) < w(S). Should this be the case,
then we update S by replacing it with S′ and reset the while-loop; otherwise, we move on to the
neighboring block by moving all indices by 1. Should this not be possible (i.e. B′ corresponds
to the final block of LrG), then the while-loop terminates. We summarize the while-loop below.
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Run AΠ(G,G[B′], S) to obtain S′B′ ← B`−1+m
`−k−m

S ← S′`← k −m

` > dmax + m + 1?`← ` + 1

break while-loop

w(S′) < w(S)?

yes

yes

no
no

start

end

m-stitch improving S along G[B′] found

no more improvements can be found

go to next block

start at the first block again

Now we can motivate why we add dummy layers to our layer decomposition. Namely, we
want for each non-dummy layer Li that every possible block B′ of width k − 2m that contains
Li is constructed. Therefore, we need at least m dummy layers to the left, and symmetrically,
m dummy layers to the right of the layers as well. We need this because otherwise there would
exist layers (and hence vertices) that are never part of a subgraph G′ that is given as input to
algorithm AΠ. This might cause us to miss possible improvements as a result of m-stitching
onto S along the induced subgraphs of blocks of width k − 2m. Furthermore, we would like
to make an observation here that connects the diameter of subgraphs G′ given to AΠ with the
choice of k (and implicitly ϵ).

Observation 4.4. Should an m-stitch S3 exist of some unknown solution to Π in G
onto known solution S along G′ with w(S3) < w(S), then for any induced subgraph
G∗ ⊇ G′ of G, we have that the m-stitch S4 of S3 onto S along G∗ implies that S3 = S4.
Since w(S4) = w(S3) < w(S), an improvement for S would be found if (G,w), G∗,
and S are given as input to AΠ. Hence, once Algorithm 3 returns solution S, then
there does not exist any induced subgraph G′ of G of diameter at most k − 2m such
that AΠ would find an improvement for S in (G,w) when (G,w), G′ and S are given
as input.

4.3 Certifying the solution

(Lines 22-26 of Algorithm 3)

Once the while-loop terminates, we obtain solution S to Π in G that can no longer be improved
by algorithm AΠ using blocks of at most width k− 2m. To meet the requirements of a (1 + ϵ)-
certified algorithm, we must return weights w′ that is a (1 + ϵ)-perturbation of w such that w′

certifies S (i.e. S is optimal for the instance (G,w′)). We obtain w′ by maximally increasing
the weights of all vertices in V (G) \ S i.e.

w′(u) :=

{
(1 + ϵ)w(u), if u ∈ (V (G) \ S)

w(u), otherwise
.

Since our problem has a minimization objective, it is intuitive that increasing the weights of
all vertices that are not in the solution could only improve the quality of the solution for the in-
stance (G,w′). Our algorithm returns solution S together with w′ and claims that w′ certifies S.

We have presented our (1 + ϵ)-certified algorithm for a general m-LPO problem. In the next
chapter we formally prove the correctness and running time of Algorithm 3.

29



Chapter 5

Certified algorithm: analysis

In this chapter we prove that Algorithm 3 is a (1+ϵ)-certified algorithm for an m-LPO problem
Π when the input is a parameter ϵ > 0 and the instance (G,w) of Π consists of a connected
planar graph and a positive integer weight function. This is the main result of this thesis and
stated in Theorem 5.9.

Theorem 5.9 (Meta-Theorem). Given any vertex-optimization problem Π that is m-LPO and
an instance (G,w) to Π such that G is a connected planar graph and w : V (G) → Z>0, then
Algorithm 3 invoked on (G,w) and ϵ > 0 is a (1 + ϵ)-certified algorithm that runs in time
W · f(m/ϵ) · |V (G)|O(1) for some computable function f where W := Σu∈V (G)w(u).

The key challenge to proving Theorem 5.9 is as follows. We assume for the sake of contra-
diction that S is not certified by w′. Instead, there exists an optimal solution I ′ for (G,w′) with
w′(I ′) < w′(S). We will show that this assumption implies that even if we remove a specific part
of the layer decomposition LrG (see Definition 4.1) with any r ∈ V (G), the weight of (I ′ \ S) is
strictly smaller than the weight of (S \ I ′) in the remaining graph. Furthermore, this remaining
graph is comprised of blocks (see Definition 4.2) that each have a width of at most k− 2m. By
a stronger notion of the pigeonhole principle, we claim that at least one of these blocks B∗ of
width k − 2m allows for an m-stitch onto S along G[B∗] that improves S. By assumption of Π
being m-LPO, we know that AΠ must have found an improvement to S if invoked on (G,w),
S, and G[B∗]. Hence, we reach a contradiction and S is indeed certified by w′.

In Section 5.1 we introduce more logic over layer decompositions. We proceed to use this
logic to prove the correctness of Algorithm 3 in Section 5.2.

5.1 Operators over layer decompositions

We aim to remove part of the layer decomposition such that the remaining graph only consists
of blocks of width at most k − 2m. We do so using the concepts of k-separators and its
corresponding k-remainders. The k-separator Ca

i is similar to how in Baker’s technique, we
remove every periodic k layers in each possible way. However, instead of a single layer being
removed, we remove a layers from the layer decomposition for every periodic k layers. We
formalize k-separators in Definition 5.1.

Definition 5.1 (k-separator Ca
i ). Given a connected graph G, an integer a ≥ 0, an

integer k ≥ a, and a layer decomposition LrG with any r ∈ V (G), then we define the
k-separator Ca

i as a set of layers

Ca
i := {Lj ∈ LrG | j (mod k) ∈ {i, . . . , i + a− 1}}.

Moreover, we wish to construct every distinct k-separator for a fixed layer decomposition
LrG. Observe that the modular function implies that a k-separator behaves periodically with
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a period of k. Therefore, there are k distinct offsets at which a k-separator can start the
cycle. More specifically, we create a k-separator Ca

i for fixed a and for all i ∈ {0, . . . , k − 1},
which generates all distinct k-separators. To illustrate this, we give an example of all possible
k-separators that exist for some layer decomposition of a connected graph in Figure 5.2.

1 2 3 4 5 6 7 8 90

C2
0

. . .

-1-2 10

C2
1

C2
2

C2
3

C2
4

Figure 5.1: Example of all k-separators for a layer decomposition (dummy layers are dashed),
where a = 2 and k = 5. Each row i of layers corresponds to a distinct k-separator C2

i consisting
of the black-colored layers. The green layers are those in its corresponding remainder R(C2

i ).

Next, every k-separator Ca
i has a corresponding k-remainder R(Ca

i ). This remainder consists
of all layers that are not in Ca

i . Moreover, these remaining layers are stored as blocks and are
constructed such that each block is maximal (i.e. no remaining layers exist that are incident to
any block in R(Ca

i )). We formalize k-remainders in Definition 5.2.

Definition 5.2 (k-remainder R(Ca
i )). Given a graph G with a layer decomposition

LrG with any r ∈ V (G) and any k-separator Ca
i of LrG. Then we define the k-remainder

R(Ca
i ) as a set of blocks, each corresponding to a maximal subsequence of consecutive

layers of LrG \ Ca
i . The blocks in the remainder are ordered such that the indices of

the corresponding layers strictly increase.

Observe that if a is even (suffices for all our purposes), then each block (except for the
possible start and end blocks) in Bj ∈ R(Ca

i ) has a width of k− a. Moreover, the possible start
and end blocks have a width of at most k − a. We show which sequence of blocks exists for
some remainder in Figure 5.2.

1 2 3 4 5 6 7 8 90

C2
0

-1-2 10

B1 B2 B3

. . .

Figure 5.2: Example of the k-remainder R(C2
0 ) = {B1, B2, B3, . . . } of a k-separator C2

0 .
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Next, we would like to make an observation about how a k-separator can be partitioned if a is
an even integer. We use this observation in a later proof.

Observation 5.3. Given a connected graph G and the layer decomposition LrG for
any r ∈ V (G), then for any k-separator C2a

i with an integer a ≥ 0, we have that the
set

{δa(Bj) | Bj ∈ R(C2a
i )}

forms a partition of C2a
i for any i ∈ {0, . . . , k− 1} such that each element corresponds

to the a layers to both sides of a block Bj ∈ R(C2a
i ).

We give an example of Observation 5.3 in Figure 5.3 when we set a = 1.

. . .

Bj Bj+1 Bj+2 Bj+3

δ1(Bj) δ1(Bj+1) δ1(Bj+2) δ1(Bj+3)

. . .

Figure 5.3: Example of how the set {δ1(Bj) | Bj ∈ R(C2
i )} forms a partition of a 3-separator

C2
i as stated in Observation 5.3 for an arbitrary i ∈ {0, 1, 2}.

Finally, we would like to make an important statement about the treewidth (see Definition
2.10) of the blocks. We use this in the running time analysis of Algorithm 3.

Lemma 5.4. Given a connected planar graph G, together with its layer decomposition LrG for
any r ∈ V (G). Then for any block B of width k ≥ 0 in LrG, we have that the induced subgraph
G[B] has a treewidth of at most 3k + 2.

Proof. In order to prove this claim, we must obtain a graph Gj with for some j in {0, . . . , O(k)}
stated in Lemma 2.17 such that B is fully contained in Gj . Observe that we can ignore dummy
layers of LrG, since these are empty sets and its induced subgraphs have a treewidth of zero. Let
B begin at layer Lx and end at Lx+k−1 of LrG for some integer 0 ≤ x ≤ dmax − k + 1 . Then,
we need to construct a Vj such that layers Lx−1 and Lx+k are in Vj , while B ∩ Vj = ∅. This is
achieved for the set Vj = {v ∈ V (G) | d(r, v) (mod k + 1) ≡ i} by exactly one j ∈ {0, . . . , k}.
This is because x−1 and x+k are exactly k+ 1 layers apart. Furthermore, by Lemma 2.17, we
know that all connected components of Gj := G[V (G)\Vj ] have a bounded treewidth of 3k+ 2.
Since G[B] is fully contained in Gj , we know that all connected components of G[B] have a
treewidth of at most 3k+2 as well. Finally, computing the treewidth over a disconnected graph
reduces to taking the maximum treewidth over all connected components, hence this bound is
preserved for G[B]. Our claim follows.

5.2 Strengthening the pigeonhole principle

In this section we argue how the weights of solutions are distributed over the layer decomposition
LrG with any r ∈ V (G). In Baker’s technique we make the claim that at least one of the ways
to remove every k periodic layer deletes at most 1/k times the total weight of any vertex set
X ⊆ V (G) (see Lemma 2.16). This is a direct application of the pigeonhole principle. Now we
make a generalized argument using the k-separators. Since we remove a layers rather than one,
this naturally extends to removing at most a/k times the total weight of set X. Observe that
if we set a = 1, then the k-separator exhibits the same behavior the vertex set Vi constructed
in Baker’s Technique. We formalize the generalized claim in Lemma 5.5.
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Lemma 5.5. Given a layer decomposition LrG of a connected weighted graph (G,w) and any
r ∈ V (G), and a set X ⊆ V (G), then for each a ≥ 1 there exists a k-separator Ca

i with
i ∈ {0, . . . , k − 1} such that

w(X ∩ Ca
i ) ≤ a

k
w(X).

Proof. Let us assume for the sake of contradiction that, for all Ca
j with j ∈ {0, . . . , k − 1} it

holds that w(X ∩ Ca
j ) > a

kw(X). Now this implies that if we sum over each Ca
j we obtain:

k−1∑
j=0

w(X ∩ Ca
j ) >

k−1∑
j=0

a

k
w(X) by assumption

=
ak

k
w(X) by independence of terms in summation

= aw(X).

However, observe that any layer of LrG is in a different k-separators. This shows that the sum
over all k k-separators is a times the weight of X i.e.

k−1∑
j=0

w(X ∩ Ca
j ) = aw(X).

We have reached a contradiction and therefore there must exist an i ∈ {0, . . . , k − 1} such that
the k-separator Ca

i has that w(X ∩ Ca
i ) ≤ a

kw(X).

In Baker’s technique we are essentially done at this point, because we directly use this result
to obtain a PTAS (see Definition 2.4). However, we want to prove that Algorithm 3 is stronger
than a PTAS, namely, we want to show that it is a (1 + ϵ)-certified algorithm for connected
planar graphs with integer weights. Our next step is to assume for the sake of contradiction
that w′ constructed by the algorithm does not certify the returned solution S. This implies
that there exists an optimal solution I ′ for (G,w′) such that w′(I ′) < w′(S). We show that if
we apply Lemma 5.5 on the vertex set (S \ I ′) and set a = 2m to obtain C2m

i , then even if we
only consider (S \ I ′) ∩ R(C2m

i ), its weight is still strictly larger than (I ′ \ S) in the original
instance (G,w). Intuitively this means that I ′ would be a significantly better solution than S
in (G,w). We prove this claim formally in Lemma 5.7. However, in order to do so we need
Lemma 5.6, where we prove a simple lower-bound on ϵ with respect to how we define k in line
0 in Algorithm 3.

Lemma 5.6. Suppose we have a positive real ϵ > 0, a non-negative integer m ≥ 0, and an
integer k that is defined as k = ⌈2mϵ ⌉+ 2m, then

ϵ ≥ 2m

k − 2m
.

Proof. We apply case distinction on whether 2m
ϵ ∈ Z or 2m

ϵ /∈ Z. We start with the former case:

k = ⌈2m
ϵ
⌉+ 2m

k =
2m

ϵ
+ 2m by assumption that 2m

ϵ ∈ Z, we have that ⌈2mϵ ⌉ = 2m
ϵ

k − 2m =
2m

ϵ
subtract 2m from both sides

ϵ =
2m

k − 2m
multiply both sides by ϵ

k−2m .
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We proceed to the latter case:

k = ⌈2m
ϵ
⌉+ 2m

k ≥ 2m

ϵ
+ 2m by definition of the ceiling operator

k − 2m ≥ 2m

ϵ
subtract 2m from both sides

ϵ ≥ 2m

k − 2m
multiply both sides by ϵ

k−2m .

We conclude that in both cases ϵ ≥ 2m
k−2m holds.

Lemma 5.7. Let Π be an m-LPO problem, (G,w) be an instance of Π such that G is a
connected planar graph and w : V (G) → R>0, ϵ > 0 a positive real number, k an integer
defined as k = ⌈2mϵ ⌉+ 2m, LrG the layer decomposition of G for any r ∈ V (G), S a solution to
Π in G, and I ′ an optimal solution of Π in (G,w′) with

w′(u) :=

{
(1 + ϵ)w(u), if u ∈ (V (G) \ S)

w(u), otherwise
, ∀u ∈ V (G).

If we in addition assume that w′(I ′) < w′(S), then there exists an i ∈ {0, . . . , k − 1} such that
the R(C2m

i ) of the k-separator C2m
i over LrG satisfies

w((S \ I ′) ∩R(C2m
i )) > w(I ′ \ S).

Proof. Assuming that w′(I ′) < w′(S) allows us to observe the following:

w′(S \ I ′) + w′(I ′ ∩ S) = w′(S) > w′(I ′) = w′(I ′ \ S) + w′(I ′ ∩ S).

Subtracting w′(I ′∩S) from both sides of the strict inequality gives us that w′(S\I ′) > w′(I ′\S).
In addition, since all vertices of S have the same weight for both w and w′ and all other vertices
u ∈ (V (G) \ S) have an additional ϵw(u) weight in w′, we can derive that

w(S \ I ′) = w′(S \ I ′) > w′(I ′ \ S) = (1 + ϵ)w(I ′ \ S). (5.1)

Now we show that there must exist a k-separator C2m
i such that w((S\I ′)∩R(C2m

i )) > w(I ′\S).
First, we invoke Lemma 5.5 on (G,w) and LrG with X = (S \ I ′) to obtain k-separator C2m

i

satisfying w((S \ I ′) ∩ C2m
i ) ≤ 2m

k w(S \ I ′). Next, we show that this k-separator exhibits the
desired property:

w((S \ I ′) ∩R(C2m
i )) = w(S \ I ′)− w((S \ I ′) ∩ C2m

i )

by definition of a k-remainder

≥ w(S \ I ′)− 2m

k
w(S \ I ′)

since our choice of C2m
i implies that w((S \ I ′) ∩ C2m

i ) ≤ 2m
k w(S \ I ′)

=
k − 2m

k
w(S \ I ′)

by multiplying the first term with k/k and combining the fractions

>
k − 2m

k
(1 + ϵ)w(I ′ \ S)
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by strict inequality (5.1)

≥ k − 2m

k
(1 +

2m

k − 2m
)w(I ′ \ S)

because ϵ ≥ ⌈ 2m
k−2m⌉ as stated in Lemma 5.6

=
k − 2m

k
· k

k − 2m
w(I ′ \ S)

since 1 + 2m
k−2m = k−2m

k−2m + 2m
k−2m = k

k−2m

= w(I ′ \ S).

We conclude that our claim is true.

In Lemma 5.7 we proved that there exists an i ∈ {0, . . . , k − 1} such that the remainder of
the k-separator C2m

i satisfies that

w((S \ I ′) ∩R(C2m
i )) > w(I ′ \ S).

Now the pigeonhole principle is embedded in C2m
i and, in addition, we have applied some algebra

over the vertex-weights to obtain this strict inequality. We want to take it one step further by
effectively applying the pigeonhole principle once more. To be more precise, we have a strict
inequality relation over the symmetric difference of I ′ and S that is divided over a finite set of
blocks. Moreover, we observe that taking the disjoint union of δm[Bj ] (see Definition 4.3) for
all Bj ∈ R(C2m

i ) yields V (G). Therefore, there must exist at least one block B∗ ∈ R(C2m
i ) such

that the strict inequality holds locally in the layer decomposition i.e.

w((S \ I ′) ∩B∗) > w((I ′ \ S) ∩ δm[B∗]).

We formalize the existence of block B∗ in Lemma 5.8.

Lemma 5.8. Given a layer decomposition LrG with any r ∈ V (G) of any connected weighted
graph (G,w), together with a k-separator C2m

i and two vertex sets I ′, S ⊆ V (G) such that

w((S \ I ′) ∩R(C2m
i )) > w(I ′ \ S),

then there exists a block B∗ ∈ R(C2m
i ) that satisfies that

w((S \ I ′) ∩B∗) > w((I ′ \ S) ∩ δm[B∗]).

Proof. Let us assume for the sake of contradiction that no such block exists. This implies that
the following must hold:

w((I ′ \ S) ∩ δm[Bj ]) ≥ w((S \ I ′) ∩Bj) ∀Bj ∈ R(C2m
i ). (5.2)

We aim to derive a contradiction by summing over the left-hand side and the right-hand side
of inequality (5.2). We begin with the right-hand side:∑

Bj∈R(C2m
i )

w((S \ I ′) ∩Bj) = w((S \ I ′) ∩R(C2m
i )) (5.3)

This holds because we sum over the remainder of C2m
i exactly. Next, we sum over the left-hand

side term of inequality (5.2).∑
Bj∈R(C2m

i )

w((I ′ \ S) ∩ δm[Bj ]) =
∑

Bj∈R(C2m
i )

w((I ′ \ S) ∩Bj) + w((I ′ \ S) ∩ δm(Bj))
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we can split the two terms in the summation since δm[Bj ] = Bj + δm(Bj)

= w((I ′ \ S) ∩R(C2m
i )) +

∑
Bj∈R(C2m

i )

w((I ′ \ S) ∩ δm(Bj))

summing over all blocks in the remainder yields R(C2m
i )

= w((I ′ \ S) ∩R(C2m
i )) + w((I ′ \ S) ∩ C2m

i )

taking the m-open layer neighborhood of all blocks Bj ∈ R(C2m
i ) forms a partition of C2m

i as
shown in Observation 5.3, implying that the sum over the weight of (I ′ \S) in the open m-layer
neighborhood of all blocks Bj ∈ R(C2m

i ) is equal to the weight of (I ′ \ S) in C2m
i

= w(I ′ \ S). (5.4)

We proceed to derive an upper-bound on w((S \ I ′) ∩ R(C2m
i ) to derive a contradiction with

the preconditions of C2m
i i.e.

w((S \ I ′) ∩R(C2m
i )) =

∑
Bj∈R(C2m

i )

w((S \ I ′) ∩Bj)

by equation (5.3)

≤
∑

Bj∈R(C2m
i )

w((I ′ \ S) ∩ δm[Bj ])

since inequality (5.2) holds for all Bj

= w(I ′ \ S)

by equation (5.4).

However, this is a contradiction with our choice of C2m
i , and hence there must exist a block

B∗ ∈ R(C2m
i ) such that w((I ′ \ S) ∩ δm[B∗]) < w((S \ I ′) ∩B∗).

We have gathered all the necessary ingredients to prove Theorem 5.9. More precisely, now
we can show that the m-stitch S3 of I ′ onto S along G′ := G[B∗] satisfies

w(S3) < w(S).

We show that since Π is m-LPO, we know that the algorithm AΠ with input G, G′, and S finds
a solution S∗ to Π in G such that

w(S∗) < w(S).

Hence, we know that the algorithm could not have returned S yet, implying that we have
reached a contradiction. We show the position of this m-stitch in Figure 5.4.

B∗

. . .. . . . . .

k − 2mm m m k − 2m

. . . . . . . . . . . . . . .

k

δm[B∗]

m

. . .

Figure 5.4: Position of the m-stitch S3 of I ′ onto S along the subgraph induced by block
B∗ ∈ R(C2m

i ) with C2m
i satisfying the conditions of Lemma 5.8.
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Theorem 5.9 (Meta-Theorem). Given any vertex-optimization problem Π that is m-LPO and
an instance (G,w) to Π such that G is a connected planar graph and w : V (G) → Z>0, then
Algorithm 3 invoked on (G,w) and ϵ > 0 is a (1 + ϵ)-certified algorithm that runs in time
W · f(m/ϵ) · |V (G)|O(1) for some computable function f where W := Σu∈V (G)w(u).

Proof. We begin by proving that Algorithm 3 is a (1+ ϵ)-certified algorithm for Π. This implies
that for any input, the algorithm converges, must return a feasible solution S to Π and weights
w′ that is a (1 + ϵ)-perturbation of w such that S is optimal for (G,w′).

First, the algorithm always converges, which becomes clear in the running time analysis.
Second, we argue that the returned weights w′ are a (1 + ϵ)-perturbation of w. It is easy to see
that by construction of w′ (in lines 22 to 25), all unchanged weights are trivially satisfied, and
the weights for vertices u ∈ (V (G) \ S) are set to (1 + ϵ)w(u), which is allowed by definition of
a (1 + ϵ)-perturbation. Next, we argue that S is a feasible solution to Π in G. By definition
of Π being m-LPO, we know that the initial solution computed in line 6 must be a feasible
solution. Moreover, whenever S is replaced in Line 14, it is replaced the solution S′ returned
by AΠ invoked on (G,w), S and the graph G[B′] induced by the current block B′. Since Π is
m-LPO, we know that any such S′ must be a feasible solution to Π in G.

Finally, we argue that S is an optimal solution for (G,w′). Let us assume for the sake of
contradiction that S is not optimal for (G,w′). This implies that there must exist an optimal
solution I ′ of Π in (G,w′) such that w′(I ′) < w′(S). We can invoke Lemma 5.7 on Π, (G,w),
w′, I ′, and S. This gives us a k-separator C2m

i with i ∈ {0, . . . , k − 1} such that

w((S \ I ′) ∩R(C2m
i )) > w(I ′ \ S).

Next, we invoke Lemma 5.8 on C2m
i , S, and I ′ to obtain a block B∗ ∈ R(C2m

i ) of width at most
k − 2m such that

w((S \ I ′) ∩B∗) > w((I ′ \ S) ∩ δm[B∗]).

Let G′ := G[B∗], then we define the m-stitch S3 of I ′ onto S along G′. Since Π is m-LPO, we
know that S3 must be a feasible solution to Π in G. Moreover, it is clear that

w(S3) < w(S);

hence, running AΠ on G, G′, and S would give us a solution S∗ with

w(S∗) < w(S).

Since the for-loop that is nested in the while-loop iterates over all possible blocks of width
k − 2m, one of these must correspond to B∗. Furthermore it would have called algorithm AΠ

on (G,w), S, and G′ and replaced S′ with S∗. Therefore, Algorithm 3 would have found an
improvement to S and have proceeded to reset the while-loop. We have reached a contradiction
and therefore Algorithm 3 correctly returns a weight function w′ that certified the returned
solution S.

We continue to prove the running time of Algorithm 3. It is clear to see that every line that
does not call AΠ can be computed in |V (G)|O(1) time. During every iteration of the while-loop,
we run a for-loop consisting of at most dmax + 2m − k = O(|V (G)|) iterations. During each
iteration the running time is clearly dominated by line 12. By assumption that Π is m-LPO,
we can invoke AΠ on (G,w), S, and G[B′] for some computable function f ′ in time

f ′(tw(G[Nm
G [B′]]) · |V (G)|O(1) ≤ f ′(tw(G[δm[B′]]) · |V (G)|O(1)

because Nm
G [B′] ⊆ δm[B′] and deleting vertices and edges can only decrease the treewidth

≤ f ′(3k + 2) · |V (G)|O(1)
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since δm[B′] is a block of width k, and by Lemma 5.4, we know that its treewidth is at most 3k+2.

It follows that the running time of each iteration of the while-loop becomes

O(|V (G)|) · f ′(3k + 2) · |V (G)|O(1) = f ′(3k + 2) · |V (G)|O(1).

During every iteration of the while-loop, we either conclude that no improvements for a block
of width k − 2m can be found, or we have found an improvement to the solution. Should no
next block exist, then our while-loop terminates. Since w is assumed to consist of positive
integer weights, we must have that any improvement decreases the weight of S by at least one.
Therefore, we can find at most Σu∈V w(u) = W improvements for S. Finally, k = O(m/ϵ) and
thus our running time becomes

W · f(m/ϵ) · |V (G)|O(1)

for some computable function f . Our claim follows.

We have proven that Algorithm 3 is a (1 + ϵ)-certified algorithm that runs in FPT time pa-
rameterized by m/ϵ for an m-LPO problem Π when the input consists of a parameter ϵ > 0,
a connected planar graph G our weights are positive integers. In the next chapter we aim to
populate m-LPO problems beyond the MWVC problem (see Section 3.2). More specifically, we
prove for both the H-S-Deletion problem and the MWDOM problem that there exists an m > 0
such that the problem is m-LPO. We also show that the MWIS problem allows for a (1 + ϵ)-
certified algorithm that runs in FPT time parameterized by (1/ϵ) when the same assumptions
on the input apply.
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Chapter 6

Populating locally planar optimized
problems

In this chapter we seek to populate m-LPO problems by using (variations of) the local improve-
ment approach that was introduced in Section 3.2 for the MWVC problem. In Section 6.1 we
prove that the H-S-Deletion problem is σH -LPO with σH := diam(H). Next, in Section 6.2,
we show that the MWDOM problem is 2-LPO by slightly modifying the approach. Finally, in
Section 6.3, we show that the MWIS problem admits a (1 + ϵ)-certified algorithm by using the
(1 + ϵ)-certified algorithm for the MWVC problem.

6.1 H-S-Deletion problem is locally planar optimized

We show that the H-S-Deletion problem (see Definition 2.8) is σH -LPO. In order to do so we
must show that all three properties of σH -LPO hold (see Definition 3.3). We formally prove the
first property in Lemma 6.1 i.e. some solution can be found efficiently in any planar graph G.

Lemma 6.1. For any connected graph H, the H-S-Deletion problem on any planar graph G
has V (G) as a feasible solution.

Proof. For any subgraph GH of G that is isomorphic to H, we have that V (G) ∩ V (GH) =
V (GH), which implies that V (G) includes at least one vertex of V (GH). Therefore, V (G) is a
feasible H-S-Deletion set of G.

We proceed to show that property (ii) of σH -LPO problems holds as well i.e. the H-S-
Deletion problem allows for σH -stitching (see Definition 3.2).

Lemma 6.2. The H-S-Deletion problem allows for σH -stitching for any connected graph H,
where σH := diam(H).

Proof. Let (G,w) be any instance to the H-S-Deletion problem, S1 and S2 be any two H-S-
Deletion sets of G, and G′ be any induced subgraph of G. Then it suffices to prove that the
set

S3 := (S1 \ V (G′)) ∪ (S2 ∩Nm
G [V (G′)])

is an H-S-Deletion of G. By definition of the H-S-Deletion problem, we must have that for
every subgraph GH of G that is isomorphic to H, there exists at least one vertex in S3∩V (GH).
We apply case distinction on the position of GH in the graph G:

• (V (GH) ∩ V (G′)) = ∅: since (S1 \ V (G′)) ⊆ S3 we must have that all subgraphs GH that
live in (V (G) \ V (G′)) are hit by S3;

• (V (GH) ∩ V (G′)) ̸= ∅: since (S2 ∩ NσH
G [V (G′)]) ⊆ S3 is an H-S-Deletion of NσH

G [V (G′)]
and, by definition, a connected subgraph of G of diameter σH that contains a vertex of
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V (G′) cannot contain a vertex outside of NσH
G [V (G′)]. Therefore, it must be the case that

GH is hit by S3.

Together these two cases are exhaustive and, therefore, S3 is an H-S-Deletion of G. We conclude
that the H-S-Deletion problem allows for σH -stitching.

So far we have shown that both property (i) and property (ii) of σH -LPO problems hold
for the H-S-Deletion problem. We continue to show that property (iii) holds as well. This
requires us to provide an algorithm AHS that meets the requirements of (iii) (HS is short for
the H-S-Deletion problem). This algorithm is a direct generalization of AMWV C of the MWVC
problem provided in Section 3.2. Furthermore, the pseudocode of algorithm AHS can be found
in Algorithm 4.

Algorithm 4 AHS for the planar H-S-Deletion problem

Input planar graph G, weight function w : V (G) → R>0, induced subgraph G′ of G, and
an H-S-Deletion S of G.

Output H-S-Deletion S∗ of G with w(S∗) < w(S) if there exists such an H-S-Deletion
that can be obtained by a σH -stitch onto S along G′; otherwise, S.

1: σH ← diam(H)
2: for u ∈ NσH

G [V (G′)] do
3: if u ∈ (S ∩NσH

G (V (G′))) then
4: w′

0[u]← 0
5: else
6: w′

0[u]← w[u]
7: end if
8: end for
9: Let SG′ be an optimal solution to the H-S-Deletion problem for (G[NσH

G [V (G′)]], w′
0) by the

algorithm obtained from Theorem 2.12.
10: S∗ ← (S \ V (G′)) ∪ SG′

11: if w(S∗) < w(S) then
12: return S∗

13: else
14: return S
15: end if

The algorithm takes as input any weighted planar instance (G,w), an H-S-Deletion set S of
G, and an induced subgraph G′ ⊆ G. The algorithm starts by setting σH equal to the diameter
of H. Next, it constructs the new weights w′ by looping over all vertices in NσH

G [V (G′)].
For each vertex in u ∈ (S ∩ NσH

G (V (G′))), it sets its weight to zero in w′ (i.e. w′
0(u) = 0).

Otherwise, the weight is copied from the original weights w (i.e. w′
0(u) = w(u)). It continues to

compute the H-S-Deletion SG′ of the instance (G[NσH
G [V (G′)]], w′

0) exactly. We use the FPT
time algorithm created by Cygan, Marx, Pilipczuk, and Pilipczuk [14] stated in Theorem 2.12
that is parameterized by the treewidth of the input graph and the maximum size of a minimal
separator in H. Next, it computes the candidate H-S-Deletion S∗ obtained, implicitly, from
the m-stitch operation of SG′ ∪ (V (G) \ NσH

G [V (G′)]) onto S along G′ (see Observation 6.3).
Finally, should the weight of S∗ be strictly lower than that of S, then it returns S∗; otherwise,
it returns S.
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Observation 6.3. Suppose that we invoke Algorithm 4 on any feasible input. The set
SG := SG′ ∪ (V (G) \NσH

G [V (G′)]) is a trivial H-S-Deletion set of G i.e. SG′ intersects
with all subgraphs isomorphic to H in G[NσH

G [V (G′)]], while (V (G) \ NσH
G [V (G′)])

trivially does so for all such subgraphs in the remainder of the graph G. Furthermore,
the set S∗ (computed in line 9) can be obtained from the m-stitch of SG onto S along
G′, since the m-stitch operation does not change solution S outside of NσH

G [V (G′)].

We continue to formally prove that Algorithm 4 satisfies condition (iii) of a σH -LPO problem.
However, first we need to prove a general result about the weight distribution when an m-stitch
exists that yields a lower weight solution in Lemma 6.4.

Lemma 6.4. Suppose we have a weighted graph (G,w) with w : V (G)→ R>0, two vertex sets
S1, S2 ⊆ V (G), and any induced subgraph G′ of G. If the weight of the m-stitch S3 of S2 onto
S1 along G′ satisfies that w(S3) < w(S1), then the following holds:

w((S2 \ S1) ∩Nm
G [V (G′)]) < w((S1 \ S2) ∩ V (G′)).

Proof. We define the m-stitch S3 obtained from stitching S2 onto S1 along G′ as (see Definition
3.1)

S3 := (S1 \ V (G′)) ∪ (S2 ∩Nm
G [V (G′)]).

Since we assume that w(S3) < w(S1), we obtain the following:

w(S3) < w(S1)

w((S1 \ V (G′)) ∪ (S2 ∩Nm
G [V (G′)])) < w(S1)

by definition the m-stitch S3 of S2 onto S1 along G′

w(S1 \Nm
G [V (G′)]) + w((S1 ∪ S2) ∩Nm

G (V (G′))) + w(S2 ∩ V (G′)) < w(S1)

since these three terms are mutually exclusive

w((S1 ∪ S2) ∩Nm
G (V (G′))) + w(S2 ∩ V (G′)) < w(S1 ∩Nm

G [V (G′)])

subtract w(S1 \Nm
G [V (G′)]) from both sides

w((S2 \ S1) ∩Nm
G (V (G′))) + w(S2 ∩ V (G′)) < w(S1 ∩ V (G′))

subtract w(S1 ∩Nm
G (V (G′))) from both sides

w((S2 \ S1) ∩Nm
G (V (G′))) + w((S2 \ S1) ∩ V (G′)) < w((S1 \ S2) ∩ V (G′))

subtract w((S1 ∩ S2) ∩ V (G′)) from both sides

w((S2 \ S1) ∩Nm
G [V (G′)]) < w((S1 \ S2) ∩ V (G′)).

Indeed our claim holds when such an m-stitch along G′ exists.

Using Lemma 6.4, we can formally prove that the H-S-Deletion problem satisfies property
(iii) of a σH -LPO problem formally in Lemma 6.5.

Lemma 6.5. For any connected graph H, we have that given a weighted instance (G,w) where
G is a planar graph and w : V (G)→ R>0, an induced subgraph G′ ⊆ G such that there exists
an m-stitch S3 of G of an unknown H-S-Deletion S2 of G onto a known H-S-Deletion S of G
with

w(S3) < w(S),
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then Algorithm 4 finds an H-S-Deletion S∗ of G such that

w(S∗) < w(S);

otherwise, the algorithm returns S. Furthermore, for any connected graph H, the algorithm
runs in 2O(tµH )|V (G)|O(1) time, where t denotes the treewidth of G[NσH

G [V (G′)]] and µH the
maximum size of a minimal separator in H.

Proof. We prove this claim by first providing an upper-bound for the weight of SG′ computed
in line 6 and then we show that this upper-bound implies that w(S∗) < w(S).

w′
0(SG′) ≤ w′

0(S3 ∩NσH
G [V (G′)])

since SG′ is optimal and S3 ∩NσH
G [V (G′)] is a candidate solution of G[NσH

G [V (G′)]]

= w′
0(((S ∪ S2) ∩NσH

G (V (G′))) ∪ (S2 ∩ V (G′)))

by definition of the m-stitch S3 of S2 onto S along G′

= w′
0((S ∪ S2) ∩NσH

G (V (G′))) + w′
0(S2 ∩ V (G′))

because NσH
G (V (G′)) ∩ V (G′) = ∅, the terms can be split

= w′
0(S ∩NσH

G (V (G′))) + w′
0((S2 \ S) ∩NσH

G (V (G′))) + w′
0(S2 ∩ V (G′))

since (S ∪ S2) = (S ∪ (S2 \ S))

= w′
0((S2 \ S) ∩NσH

G (V (G′))) + w′
0(S2 ∩ V (G′))

since w′
0(S ∩NσH

G (V (G′))) = 0

= w((S2 \ S) ∩NσH
G (V (G′))) + w(S2 ∩ V (G′))

because w and w′
0 are equal unless u ∈ (S1 ∩NσH

G (V (G′)))

= w((S2 \ S) ∩NσH
G [V (G′)]) + w((S2 ∩ S) ∩ V (G′)) (6.1)

by adding w((S2 \ S) ∩ V (G′)) to the first term and subtracting it from the second.

Next, we wish to show that the computed S∗ of line 10 indeed improves S i.e. w(S∗) <
w(S). Observe that (S∗ \NσH

G [V (G′)]) = (S \NσH
G [V (G′)]). Therefore, in order to prove that

w(S∗) < w(S), it suffices to show that w(S∗ ∩NσH
G [V (G′)]) < w(S ∩NσH

G [V (G′)]). We do so as
follows:

w(S∗ ∩NσH
G [V (G′)]) = w(

(
(S \ V (G′)) ∪ SG′

)
∩NσH

G [V (G′)])

by definition of S∗ := (S \ V (G′)) ∪ SG′

= w(
(
(S \ V (G′)) ∩NσH

G [V (G′)]
)
∪ SG′)

since SG′ \NσH
G [V (G′)] = ∅

= w(
(
S ∩NσH

G (V (G′))
)
∪ SG′)

because (S \ V (G′)) ∩NσH
G [V (G′)] = S ∩NσH

G (V (G′))

= w((S ∪ SG′) ∩NσH
G (V (G′))) + w(SG′ ∩ V (G′))
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since V (G′) and NσH
G (V (G′)) are disjoint

= w(S ∩NσH
G (V (G′))) + w((SG′ \ S) ∩NσH

G (V (G′))) + w(SG′ ∩ V (G′))

since the disjoint union of S and (SG′ \ S) is (S ∪ SG′)

= w(S ∩NσH
G (V (G′))) + w(SG′ ∩

(
NσH

G (V (G′)) \ S
)
) + w(SG′ ∩ V (G′))

since (SG′ \S)∩NσH
G (V (G′)) = SG′ ∩ (NσH

G (V (G′))\S) implied by distributive laws over {\,∩}

= w(S ∩NσH
G (V (G′))) + w(SG′ ∩

(
(NσH

G (V (G′)) \ S) ∪ V (G′)
)
)

because (NσH
G (V (G′)) \ S) and V (G′) are mutually exclusive

= w(S ∩NσH
G (V (G′))) + w′

0(SG′)

as w and w′
0 are equal for all vertices outside of (S ∩NσH

G (V (G′)))

≤ w(S ∩NσH
G (V (G′))) + w((S2 \ S) ∩NσH

G [V (G′)]) + w((S ∩ S2) ∩ V (G′))

by inequality (6.1)

< w(S ∩NσH
G (V (G′))) + w((S \ S2) ∩ V (G′)) + w((S ∩ S2) ∩ V (G′))

by Lemma 6.4 with (S1 = S), (S2 = S2), (S3 = S3), (G
′ = G′), and (m = σH)

= w(S ∩NσH
G (V (G′))) + w(S ∩ V (G′))

since the disjoint union of (S \ S2) and (S ∩ S2) is S

= w(S ∩NσH
G [V (G′)]).

Next, as argued in Observation 6.3, the set S∗ can be obtained from an m-stitch of trivial
solution (SG′ ∪

(
V (G) \NσH

G [V (G′)]
)
) onto S along G′. Furthermore, by Lemma 6.2, we know

that the problem allows for σH -stitching. Therefore, S∗ is a feasible H-S-Deletion set of G
with w(S∗) < w(S) that is obtained by Algorithm 4 if there exists an m-stitch S3 of some
unknown solution onto S along G′ with w(S3) < w(S). Should no improvement be found, then
the algorithm returns S, which is trivially a feasible solution.

We proceed to analyze the running time of Algorithm 4. First, it is trivial to see that
all lines of Algorithm 4 can be computed in polynomial time with respect to the size of the
input, except for line 9 of the algorithm. Here we solve the H-S-Deletion problem exactly for
(G[NσH

G [V (G′)]], w′
0). By Theorem 2.12, we know that an FPT time algorithm parameterized

by treewidth and the maximum size of a minimal separator in H (denoted as µH) exists with
the same running time as given in this lemma statement, which implies the running time of
Algorithm 4.

We conclude that Algorithm 4 meets the requirements of algorithm AHS described in re-
quirement (iii) of Definition 3.3.

Finally, as a trivial consequence of Lemma 6.2, Lemma 6.5, and the fact that fixing a graph
H implies that diam(H) = O(1), we present Theorem 6.6.

Theorem 6.6. For any fixed connected graph H, the H-S-Deletion problem is O(1)-LPO.
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6.2 MWDOM problem is locally planar optimized

In this section we prove that the MWDOM problem (see Definition 2.9) is 2-LPO. Our proving
strategy is the same as the previous section, namely we prove that all three properties of 2-LPO
problems (see Definition 3.3) hold for the MWDOM problem. We begin with property (i) i.e.
we show that a trivial dominating set exists for any planar graph G.

Lemma 6.7. Suppose we are given any planar graph G, then the set V (G) is a feasible domi-
nating set of G.

Proof. The set V (G) trivially satisfies that for every u ∈ V (G) there exists a v in its closed
neighborhood that is in V (G).

We continue to property (ii). Here we need to prove that the MWDOM problem allows for
2-stitching (see Definition 3.2) on (planar) graphs.

Lemma 6.8. The MWDOM problem allows for 2-stitching.

Proof. Let (G,w) be any instance to the MWDOM problem, G′ ⊆ G be any induced subgraph
of G and S1 and S2 be any two dominating sets of G. It suffices to prove that the m-stitch S3

of S2 onto S1 along G′ yields a dominating set of G. Therefore we prove for any u ∈ V (G) that
there exists v ∈ N1

G[u] such that v ∈ S3 with

S3 := (S1 \ V (G′)) ∪ (S2 ∩N2
G[V (G′)]).

We apply case distinction on the position of u ∈ V (G).

• u ∈ N1
G[V (G′)]: since S2 ∩ N2

G[V (G′)] ⊆ S3 and no vertices of N1
G[V (G′)] could be

dominated from outside N2
G[V (G′)], we know by feasibility of S2 that there exists a v ∈

N1
G[{u}] with v ∈ S3.

• u ∈ (V (G) \N1
G[V (G′)]): since (S1 \ V (G′)) ⊆ S3 and no vertices of (V (G) \N1

G[V (G′)])
could be dominated from inside V (G′), we know by feasibility of S1 that there exists a
v ∈ N1

G[{u}] with v ∈ S3.

Together these two cases are exhaustive, and therefore, S3 is a feasible dominating set of G. We
conclude that the MWDOM problem allows for 2-stitching.

Finally, we must prove property (iii) of 2-LPO problems by providing Algorithm 5 that
satisfies the requirements of algorithm AMWDOM . In the previous section we have shown that
the H-S-Deletion problem is σH -LPO with σH = diam(H). We approached this by setting the
weight of the vertices in S∩NσH

G (V (G′)) to zero. However, it turns out that this approach does
not generalize directly to the MWDOM problem. This is due to the following observation: let
I be an optimal solution to the H-S-Deletion problem to any instance (G,w), then

min{w(S′) | S′ is an H-S-Deletion of G′} ≤ w(I ∩ V (G′)), ∀G′ ⊆ G.

Or, in other words, solving the H-S-Deletion problem exactly over any subgraph G′ of G yields
a lower-bound over the optimal solution I of G restricted to the vertices of G′. This however,
is not always true for the MWDOM problem. Take any strict subgraph G′ ⊂ G and an optimal
dominating set I of (G,w), then it could be the case that vertices of V (G′) are dominated by
vertices in N1

G(V (G′)). Therefore, should we solve the MWDOM exactly in G′, we would not
take into account that some vertices could be dominated from outside of G′. We show this in
Figure 6.1.
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(a) Graph G and an optimal MWDOM I.

G′

(b) Optimal MWDOM I ′ for instance restricted
to G′ ⊂ G.

Figure 6.1: Example that solving the MWDOM problem exactly for a subgraph G′ of G does not yield
a lower-bound i.e. w(I ′) = 3 > w(I ∩ V (G′)) = 0. All vertex weights are 1.

We essentially need to know which vertices of an optimal solution outside of V (G′) are
dominating vertices of V (G′) i.e. the set I ∩ N1

G(V (G′)). This would allow us to update G′

to include these vertices and set their weights to zero. Now we could dominate the vertices of
V (G′) that are already dominated by I from outside of V (G′) free of cost. Clearly, we cannot
assume that we explicitly know solution I. Alternatively, we could add all vertices of N1

G(V (G′))
to G′ and set their weights to zero and remove these added vertices from the solution afterwards
would yield a lower-bound. However, this may yield infeasibility of the resulting dominating
set of G. We show an example in Figure 6.2.

(a) Graph (G,w) and an optimal MWDOM I.

G′
u

v

w

(b) Resulting infeasible solution if (G′, w) is solved
with u, v, and w added with a weight of zero.

Figure 6.2: Counterexample that shows that using all of N1
G(V (G′)) with weight of zero to solve (G′, w)

may yield an infeasible global dominating set of G. All vertex weights are 1.

We should not forget however, that our approach is based on 2-stitching. More specifically,
we keep all vertices of S \ V (G′) in our solution. This shows that all vertices in N2,2

G (V (G′))
(recall Definition 2.1) remain satisfied by S, because these could only be dominated from vertices
in N3

G(V (G′)). Therefore, we could add all vertices of N3,3
G (V (G′)), all with a weight of zero
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to the instance, without sacrificing the feasibility of the global solution after the 2-stitching
operation.

We wish to extend the approach of Algorithm 4 to also work for the MWDOM problem.
Recall that in the H-S-Deletion problem, we solve the instance (G[NσH

G [V (G′)], w′
0) exactly to

obtain a solution SG′ . Here w′
0 is defined to set all vertices in S∩NσH

G (V (G′)) to zero. Now since
the MWDOM problem allows for 2-stitching, we would solve the instance (G[N2

G[V (G′)], w′
0)

instead where w′
0 sets all vertices of S∩N2

G(V (G′)) to zero. We extend this by adding all vertices

from N3,3
G (V (G′)) to G[N2

G[V (G′)]] and set the weights of its vertices to zero. Therefore, after
the extension, we solve the instance (G[N3

G[V (G′)], w′
0) with

w′
0(u) :=

{
0, if u ∈ (S ∩N2

G(V (G′))) ∪N3,3
G (V (G′))

w(u), otherwise
.

We show the construction of (G[N3
G[V (G′)], w′

0) in Figure 6.3.

G′

(a) Dominating set S and G′.

G′

N2
G[V (G′)]

N3,3
G (V (G′))

0

0

0

0

0

0

0

0

0

0

(b) Construction of instance (G[N3
G[V (G′)]], w′

0),
where the red weights are those updated by Algo-
rithm 5.

0

0

0

0

0

0

0

0

0

0

(G[N3
G[V (G′)]], w′

0)

(c) Final instance (G[N3
G[V (G′)]], w′

0) that Algo-
rithm 5 solves exactly.

Figure 6.3: Construction of instance (G[N3
G[V (G′)]], w′

0) for an instance (G,w) together with a sub-
optimal dominating set S. All vertex weights are 1, unless indicated otherwise.

Finally, we construct the dominating set S∗ of G by removing all of V (G′) from S and by
adding (SG′ ∩N2

G[V (G′)]) to S. Therefore, we remove all of N3,3
G (V (G′)) from SG′ , which does
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not violate feasibility of S∗. We claim that this approach satisfies the requirements imposed by
AMWDOM . We provide the pseudocode in Algorithm 5.

Algorithm 5 AMWDOM for the planar MWDOM problem

Input planar graph G, weight function w : V (G) → R>0, induced subgraph G′ of G, and
a dominating set S of G.

Output dominating set S∗ of G with w(S∗) < w(S) if there exists such a dominating set
that can be obtained as a 2-stitch onto S along G′; otherwise, S.

1: for u ∈ N3
G[V (G′)] do

2: if u ∈ (S ∩NσH
G (V (G′))) ∪ (N3

G(V (G′)) \N2
G(V (G′))) then

3: w′
0[u]← 0

4: else
5: w′

0[u]← w[u]
6: end if
7: end for
8: Let SG′ be an optimal solution to the MWDOM problem for (G[N3

G[V (G′)]], w′
0) by the

algorithm obtained from Theorem 2.12.
9: S∗ ← (S \ V (G′)) ∪ (SG′ ∩N2

G[V (G′)]))
10: if w(S∗) < w(S) then
11: return S∗

12: else
13: return S
14: end if

Observation 6.9. Suppose that we invoke Algorithm 5 on any feasible input. The set
SG := SG′ ∪ (V (G) \N2

G[V (G′)]) is a dominating set of G i.e. SG′ ∪N3,3
G (V (G′)) ⊆ SG

is feasible dominating set of N2
G[V (G′)]. Furthermore, all vertices in V (G)\N2

G[V (G′)]
are all in SG, and hence, SG is a feasible dominating set of G. Furthermore, the set S∗

(computed in line 9) can be obtained from the m-stitch of SG onto S along G′, since
the m-stitch operation does not change solution S outside of N2

G[V (G′)].

We proceed to formally prove that Algorithm 5 satisfies the requirements of property (iii)
of 2-LPO problems in Lemma 6.10 i.e. it satisfies the requirements of AMWDOM . Note that
this proof is very similar to Lemma 6.5, however there are a few subtle differences due to the
extension of setting all weights in N3,3

G (V (G′)) to zero.

Lemma 6.10. Given a weighted planar graph (G,w) with w : V (G) → R>0, an induced
subgraph G′ ⊆ G such that there exists an m-stitch S3 of G of an unknown dominating set S2

of G onto a known dominating set S of G with

w(S3) < w(S),

then Algorithm 5 finds a dominating set S∗ of G such that

w(S∗) < w(S);

otherwise, the algorithm returns S. Furthermore, the algorithm does so in 2O(t)|V (G)|O(1) time,
where t denotes an upper-bound on the treewidth of G[N3

G[V (G′)]].

Proof. We prove this claim by first providing an upper-bound for the weight of SG′ computed
in line 6 and then we show that this upper-bound implies that w(S∗) < w(S).

w′
0(SG′) ≤ w′

0(S3 ∩N2
G[V (G′)] ∪N3,3

G (V (G′)))
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since SG′ is optimal and S3 ∩N3
G[V (G′)]∪N3,3

G (V (G′)) is a candidate solution of G[N3
G[V (G′)]]

= w′
0(S3 ∩N2

G[V (G′)]))

since all vertices of N3,3
G (V (G′)) have a weight of zero in w′

0

= w′
0(((S ∪ S2) ∩N2

G(V (G′))) ∪ (S2 ∩ V (G′)))

by definition of the m-stitch S3 of S2 onto S along G′

= w′
0((S ∪ S2) ∩N2

G(V (G′))) + w′
0(S2 ∩ V (G′))

because N2
G(V (G′)) ∩ V (G′) = ∅, the terms can be split

= w′
0(S ∩N2

G(V (G′))) + w′
0((S2 \ S) ∩N2

G(V (G′))) + w′
0(S2 ∩ V (G′))

since (S ∪ S2) = (S ∪ (S2 \ S))

= w′
0((S2 \ S) ∩N2

G(V (G′))) + w′
0(S2 ∩ V (G′))

since w′
0(S ∩N2

G(V (G′))) = 0

= w((S2 \ S) ∩N2
G(V (G′))) + w(S2 ∩ V (G′))

because w and w′
0 are equal unless u ∈ (S1 ∩N2

G(V (G′)))

= w((S2 \ S) ∩N2
G[V (G′)]) + w((S2 ∩ S) ∩ V (G′)) (6.2)

by adding w((S2 \ S) ∩ V (G′)) to the first term and subtracting it from the second.

Next, we wish to show that the computed S∗ of line 9 indeed improves S i.e. w(S∗) < w(S).
Observe that (S∗ \N2

G[V (G′)]) = (S \N2
G[V (G′)]). Therefore, in order to prove that w(S∗) <

w(S), it suffices to show that w(S∗ ∩N2
G[V (G′)]) < w(S ∩N2

G[V (G′)]). We do so as follows:

w(S∗ ∩N2
G[V (G′)]) = w(

(
(S \ V (G′)) ∪ (SG′ ∩N2

G[V (G′)])
)
∩N2

G[V (G′)])

by definition of S∗ := (S \ V (G′)) ∪ (SG′ ∩N2
G[V (G′)])

= w(
(
(S \ V (G′)) ∩N2

G[V (G′)]
)
∪ (SG′ ∩N2

G[V (G′)]))

by distributing intersection with N2
G[V (G′)]

= w(
(
S ∩N2

G(V (G′))
)
∪ (SG′ ∩N2

G[V (G′)]))

because (S \ V (G′)) ∩N2
G[V (G′)] = S ∩N2

G(V (G′))

= w((S ∪ SG′) ∩N2
G(V (G′))) + w(SG′ ∩ V (G′))

since V (G′) and N2
G(V (G′)) are disjoint

= w(S ∩N2
G(V (G′))) + w((SG′ \ S) ∩N2

G(V (G′))) + w(SG′ ∩ V (G′))

since (S ∪ SG′) can be split into disjoint terms (SG′ \ S) and S

= w(S ∩N2
G(V (G′))) + w(SG′ ∩

(
N2

G(V (G′)) \ S
)
) + w(SG′ ∩ V (G′))

since (SG′ \ S) ∩N2
G(V (G′)) = SG′ ∩ (N2

G(V (G′)) \ S) implied by distributive laws over {\,∩}

= w(S ∩N2
G(V (G′))) + w(SG′ ∩

(
(N2

G(V (G′)) \ S) ∪ V (G′)
)
)
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because (N2
G(V (G′)) \ S) and V (G′) are mutually exclusive

= w(S ∩N2
G(V (G′))) + w′

0(SG′)

as w and w′
0 are equal for all vertices outside of (S ∩N2

G(V (G′))) ∪N3,3
G (V (G′))

≤ w(S ∩N2
G(V (G′))) + w((S2 \ S) ∩N2

G[V (G′)]) + w((S ∩ S2) ∩ V (G′))

by inequality (6.2)

< w(S ∩N2
G(V (G′))) + w((S \ S2) ∩ V (G′)) + w((S ∩ S2) ∩ V (G′))

by Lemma 6.4 invoked on (S1 = S), (S2 = S2), (S3 = S3), (G
′ = G′), and (m = 2)

= w(S ∩N2
G(V (G′))) + w(S ∩ V (G′))

since the disjoint union of (S \ S2) and (S ∩ S2) is S

= w(S ∩N2
G[V (G′)]).

Next, as argued in Observation 6.9, the set S∗ can be obtained from a 2-stitch of trivial
solution (SG′ ∪

(
V (G) \ N2

G[V (G′)]
)
) onto S along G′. Furthermore, by Lemma 6.8, we know

that the problem allows for 2-stitching. Therefore, S∗ is a feasible dominating set of G with
w(S∗) < w(S) that is obtained by Algorithm 5 if there exists an m-stitch S3 of some unknown
solution onto S along G′ with w(S3) < w(S). Should no improvement be found, then the
algorithm returns S, which is a trivial feasible solution.

We proceed to analyze the running time of Algorithm 5. First, it is trivial to see that
all lines of Algorithm 5 can be computed in polynomial time with respect to the size of the
input, except for line 9 of the algorithm. Here we solve the MWDOM problem exactly for
(G[N3

G[V (G′)]], w′
0). By Theorem 2.12, we know that an FPT time algorithm parameterized by

treewidth exists with the same running time given in this lemma statement, which implies the
running time of Algorithm 5.

We conclude that Algorithm 5 meets the requirements of algorithm AMWDOM described in
requirement (iii) of Definition 3.3.

Now that we have proven that the MWDOM problem allows for a trivial solution for any
(planar) graph (Lemma 6.7), allows for 2-stitching (Lemma 6.8), and we have provided an
algorithm that satisfies the conditions of AMWDOM (Lemma 6.10), we obtain Theorem 6.11:

Theorem 6.11. The MWDOM problem is 2-LPO.

6.3 A (1 + ϵ)-certified algorithm for the planar MWIS problem

Finally, we provide a (1 + ϵ)-certified algorithm for the MWIS problem (see Definition 2.6)
for connected planar graphs with positive integer weights. We included this (1 + ϵ)-certified
algorithm to show that the XP running time of the existing (1+ϵ)-certified algorithm for planar
MWIS problem by Angelidakis, Awasthi, Blum, Chatziafratis, and Dan [2] is not necessary to
obtain a (1 + ϵ)-certified algorithm for the planar MWIS problem. Recall from Proposition
2.7, that we can easily obtain an optimal solution for the MWIS problem when we know an
optimal solution to the MWVC problem (see Definition 2.5). This is done by simply taking the
complement of the MWVC.

Now this proposition allows us to design the (1+ ϵ)-certified algorithm for the planar MWIS
problem as follows. Our restrictions on the input are the same as Algorithm 3 i.e. a connected
planar graph G, strictly positive integer weights w, and a parameter ϵ > 0. First, we observe
that the H-S-Deletion with H being equal to a single edge yields the MWVC problem. This
implies that the MWVC problem is 1-LPO, which we state formally in Corollary 6.12 from
Theorem 6.6.
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Corollary 6.12. The MWVC problem is 1-LPO.

Next, we run Algorithm 3 with Π set to the MWVC problem on (G,w) and ϵ and obtain
a solution C to the MWVC problem together with weights w′ such that w′ certifies C. We
proceed to create an independent set S by using Proposition 2.7 i.e. S := (V (G) \ C). Finally,
we return S and w′ and claim that w′ certifies S. We provide the pseudocode in Algorithm 6.

Algorithm 6 (1 + ϵ)-certified algorithm for the MWIS problem

Input: connected planar graph G, weight function w : V (G)→ Z>0, parameter ϵ > 0
Output: independent set S of G, (1 + ϵ)-perturbed weights w′ of w that certifies S

1: (C,w′)← Algorithm 3 for H-S-Deletion (with H a single edge) invoked on (G,w) and ϵ
2: S ← (V (G) \ C)
3: return (S,w′)

The proof that Algorithm 6 is a (1 + ϵ)-certified algorithm for the MWIS problem when the
instance (G,w) consists of a connected planar graph and positive integer weights is a trivial
result from the fact that the MWVC is 1-LPO (Corollary 6.12), we can obtain an optimal MWIS
from an optimal MWVC (Proposition 2.7), and by the correctness of Algorithm 3 (Theorem
5.9). We state this result formally in Theorem 6.13.

Theorem 6.13. Algorithm 6 is a (1+ ϵ)-certified algorithm for the MWIS problem if the input
consists of a connected planar graph G, positive integer weights w, and a parameter ϵ > 0.

We have successfully populated locally planar optimized problems with the H-S-Deletion
problem, the MWDOM problem, the MWVC problem, and implicitly, the MWIS problem.
Therefore, by Theorem 5.9, Theorem 6.6, Theorem 6.11, Corollary 6.12, and Theorem 6.13, we
obtain Corollary 6.14.

Corollary 6.14. Algorithm 3 is a (1 + ϵ)-certified algorithm for the following optimization
problems when the input (G,w) consists of a connected planar graph and w : V (G)→ Z>0:

• MWVC problem with a running time of W · 2O(1/ϵ)|V (G)|O(1);

• For each fixed connected graph H, the H-S-Deletion problem can be solved in time
W · 2O(1/ϵc)|V (G)|O(1) for a constant c ≥ 1;

• MWDOM problem with a running time of W · 2O(1/ϵ)|V (G)|O(1);

• MWIS problem implicitly, by using Algorithm 6, with a running time of W ·2O(1/ϵ)|V (G)|O(1),

with W := Σu∈V (G)w(u).

We have reached the end of the explanation of our contributions. In the next chapter we give
a summary of our findings, followed by a discussion of possible extensions to Algorithm 3, and
future work and limitations.
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Chapter 7

Conclusion

We provided (1 + ϵ)-certified algorithms (with ϵ > 0) for vertex-optimization problems on
connected planar graphs with integer weights that satisfy the conditions of our introduced
notion of m-LPO problems (see Definition 3.3). For any fixed vertex-optimization problem
that admits a constant value for m, the algorithm runs in FPT time parameterized by 1/ϵ.
We showed that the MWVC problem is 1-LPO, the MWDOM problem is 2-LPO, and for any
fixed subgraph H, the H-S-Deletion problem is O(1)-LPO. By a linear-time reduction from the
MWVC problem to the MWIS problem, we have obtained a (1 + ϵ)-certified algorithm for the
MWIS problem as well. Our algorithm extends Baker’s technique for building PTASs on planar
graphs (see Section 2.3). We made the algorithm iterative, meaning that we start from some
trivial solution S and repeat the process of replacing S with lower-weight solutions found locally
along subgraphs, by using our coined notion of m-stitching (see Definition 3.2). Once no more
improvements of this form can be found, we use a stronger notion of the pigeonhole principle to
prove that S is certified by the weight function obtained by perturbing the weights of all vertices
that are not in S by (1+ϵ). Therefore, we have simultaneously improved the running time of the
existing (1 + ϵ)-certified algorithm obtained by Angelidakis, Awasthi, Blum, Chatziafratis, and
Dan [2] for the MWIS problem on planar graphs with positive integer polynomially-bounded
weights, while also providing a framework to design (1+ϵ)-certified algorithms on planar graphs.

In this final chapter, we reflect on our work by discussing possible extensions, limitations, and
future work towards encompassing (1 + ϵ)-certified algorithms for all attainable combinatorial
optimization problems on planar and, possibly, more general graphs that allow for a PTAS.

7.1 Overview of extensions

For the sake of presentation, time, and to avoid cumbersome definitions, we have limited our
presentation to vertex-optimization problems with minimization objectives on connected planar
graphs with positive integer weights.

We can extend our technique very easily to general planar graphs. Should the definition
for m-LPO problems be extended such that the problem can be solved independently on con-
nected components of a general planar graph, then we can apply Algorithm 3 independently
for each connected component and proceed to merge its solutions. Furthermore, it is easy
to convince oneself that the key correctness property of Algorithm 3 follows analogously for
vertex-optimization problems with maximization objectives. Similarly, m-LPO problems (see
Definition 3.3) can be defined for maximization objectives as well with minor effort. However,
the m-stitching operation should take the intersection of two solutions in Nm

G (V (G′)), rather
than the union for some induced subgraph G′ of G. Moreover, the technique also generalizes to
similar local problems that seek to minimize (or maximize) the weight of a set of edges.

Finally, we would like to note that the induced subgraph variant of the H-S-Deletion problem
is likely O(1)-LPO as well for every fixed H. The problem is the same, except that it seeks
to remove all induced subgraphs isomorphic to H. The work by Sau and Souza [36] showed
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that for any fixed connected graph H, there exists an FPT time algorithm parameterized by
treewidth that solves the problem exactly.

7.2 Future work and limitations

We assume that our weight function solely of consists of integers, rather than allowing for
real values as well. This allows us to bound the number of iterations of the while-loop by
W := Σu∈V (G)w(u) i.e. every improvement decreases the weight of S by at least 1, which can
happen at most W times. Should our input consist of arbitrary positive real weights, then
we might only decrease the weight of S by a value arbitrarily close to zero, and hence, our
dependence of W would not be valid. Perhaps there exists some non-trivial way to analyze the
running time of Algorithm 3 such that real weights functions are allowed. However, we leave
this to future research.

Furthermore, compared to the existing (1+ϵ)-certified algorithm for the MWIS problem [2],
our technique does not exhibit the robustness property. The robustness property implies that
the algorithm reports when the instance is (1 + ϵ)-stable. This allows the user to know that an
optimal solution is obtained for the original weight function. However, it is often a difficult task
to obtain the robustness property [29]. Therefore, it might not be possible to obtain a robust
(1 + ϵ)-certified algorithm for m-LPO problems that runs in FPT time parameterized by m/ϵ.
We leave this question to future research.

Finally, we would like to address the restrictions that are imposed on vertex-optimization
problems characterized as m-LPO. Given that our framework extends Baker’s technique to ob-
tain PTASs, it does not come as a surprise that we roughly face the same limitations. Baker’s
technique works on local problems, meaning that some solution is feasible if, and only if, each
vertex of the graph satisfies some condition in its (constant) closed neighborhood [18]. Now
m-stitching (which is a requirement for m-LPO) implicitly measures how local a problem is (see
Section 3.1). It can be shown that no constant value for m exists for global problems such that
the problem is m-LPO. Take e.g. the planar weighted FVS problem (given an instance (G,w),
we seek a minimum weight S ⊆ V (G) such that G[V (G)\S] is acyclic), then for any constant m
the following scenario could happen. Suppose we have two solutions S1 and S2 of G and some
cycle C ⊆ V (G) such that S1 exclusively contains a vertex of C in V (G′), while S2 exclusively
contains a vertex of C outside of Nm

G [V (G′)]. Then, the m-stitch of S2 onto S1 along G′ would
not contain any vertices of C, and hence the resulting solution is infeasible. As reviewed
in Section 1.2, Baker’s technique is not the only framework to obtain PTASs for problems on
planar graphs, and therefore, it might be interesting to investigate the opportunities of extend-
ing other frameworks to (1 + ϵ)-certified algorithms. A natural choice would be the work by
Demaine and MohammadTaghi [17], who generalized Baker and the Lipton-Tarjan separator-
based approach [26] to obtain EPTASs for problems that also exhibit a global structure e.g. the
planar FVS problem. However, Demaine, Hajiaghayi, and MohammadTaghi [15] posed that
the framework does not generalize directly to the weighted case. Perhaps it is possible to gen-
eralize the framework to positive integer weights. Note that this is likely nontrivial, since e.g.
there does not exist an EPTAS for the weighted planar FVS problem. Therefore, it is likely that
the weighted case would no longer yield EPTASs, but we leave these questions to future research.

As a closing remark, given the vast number of ways researchers have designed PTASs for
weighted problems, there is much opportunity to obtain (1 + ϵ)-certified algorithms.
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