
 Eindhoven University of Technology

MASTER

Large-Block Multi-rate Streaming Sort

van Valenberg, Damy F.B.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/48dcfbfc-c1e6-49cc-a20d-96241d96a7fe

Large-Block Multi-rate
Streaming Sort

Master Thesis

Damy van Valenberg
(2087728)

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:
Prof.dr.ir. C.H. van Berkel

Dr. R.H. Mak
Dr.ir. R. Jordans

Version 1.0

Vught, July 2022

Preface

Before you lies the thesis ”Large-Block Multi-rate Streaming Sort”. The purpose of this research
is to improve upon or find a new solution for streaming sorting. The thesis has been written to
fulfil the graduation requirements for the Master’s degree in Embedded Systems at the Eindhoven
University of Technology. I started the research in July 2021 and should be finished in July 2022.

This project was chosen in consultation with Kees van Berkel. The research was conducted
solely for the Eindhoven University of Technology. For me, the research was a lot more difficult
than initially expected. Fortunately, I was still able to provide an answer to the research question
with a design and partial implementation in StaccatoLab. Also, a novel design for parallel sorting
with higher-throughput was found.

I would like to thank my supervisor Kees van Berkel for the excellent guidance, pushing me
out of my comfort zone and for keeping me critical at my own work. I would also like to thank
my family and friends for keeping me motivated and all advice.

I hope you enjoy reading my thesis.

Damy van Valenberg

Vught, June 2022

ii Large-Block Multi-rate Streaming Sort

Abstract

Sorting is an important problem in computer science. It is a very fundamental concept used in
many other algorithms, but is also critical for the performance of databases, for example. If large
data sets or high-performance sorting is required, sorting using only the CPU is often infeasible,
and often only hardware sorting can satisfy the requirements. The simplest solution is sorting on
the GPU, but an FPGA or ASIC can also be used. In this research, we find a solution for the
following problem:

How can a streaming sort
- of large blocks (of variable size) of key-value pairs be achieved
- with a fixed rate greater or equal to two
- while minimizing memory resources and traffic
- given it will be modelled in StaccatoLab
- with possibly an FPGA with external memory implementation?

The research is split up in three phases. In the first phase, some optimizations are made for
the baseline sorter, such as minimizing the memory usage and solving the variable block sizes.
During the second phase, the single rate sorter is parallelized, such that it becomes a multi-rate
sorter. This increases the throughput of the sorter. The parallelization uses a novel method.
The design is pipeline-friendly, which allows very high clock rates. The example provided in this
research uses a parallelization of P = 4, and a clock frequency of 200 MHz, with a key-value pair
size of 128 bits, this results in a throughput of 12.8 GB/s. This throughput is enough to fully
saturate the bandwidth of the DDR3-1600 DRAM memory onboard the Xilinx VC707. But higher
parallelization and clock frequencies are also possible as long as the input and output mediums
can handle the throughput.

In the final phase of the research, the focus lies on sorting large blocks/data sets. The data
is so large, that it must be stored in external memory or even external storage. It is also found
that sorting is limited by the bandwidth of the external memory, which means that the reads
and writes to the external memory must be kept as low as possible. Moreover, it is important to
guarantee 100% bandwidth utilization of the external memory/storage, such that there is no loss
of throughput. The result is a very efficient sorter, which is compared to another existing work,
and reduced the sorting time of sorting 0.5 GB from 2390 seconds to 1650 seconds on the same
hardware. This is a reduction of approximately 31% of sorting time.

Large-Block Multi-rate Streaming Sort iii

Contents

Contents iv

List of Figures vi

List of Tables vii

1 Introduction 1

2 Background information 2

2.1 Dataflow . 2

2.2 Sorting definition . 3

2.2.1 Batch sorting . 4

2.2.2 Streaming sort . 4

2.2.3 Dataflow rate . 4

2.2.4 Throughput . 4

2.2.5 Latency . 5

2.2.6 Sorting algorithms . 5

2.3 Merge sort . 7

3 Existing research 9

4 Problem description 10

5 Single pass sorting 12

5.1 Baseline . 12

5.2 Caching . 13

5.3 Memory usage . 13

5.3.1 Removing slack . 13

5.3.2 Adding indexing . 14

5.4 Variable block sizes . 16

5.5 Implementation . 17

6 Multi-rate sorting 19

6.1 Sorting networks . 19

6.2 Parallel sorting . 21

6.3 Design . 21

6.3.1 Design 1 (Feedback loop) . 21

6.3.2 Design 2 (Min select) . 22

6.4 Implementation . 23

6.4.1 Comparison . 25

6.4.2 Results . 25

iv Large-Block Multi-rate Streaming Sort

CONTENTS CONTENTS

7 Multi pass sorting 26
7.1 K-way merge . 28
7.2 Design . 28
7.3 Buffer sizing . 29
7.4 Implementation . 31

7.4.1 StaccatoLab . 31
7.4.2 Larger implementations . 32
7.4.3 Results . 33

8 Improvements 35

9 Conclusions 36

Bibliography 37

Appendix 39

A Flag derivation 39

B Single pass sorting code 42

C Multi-rate sorting code 48

D Multi pass sorting code 55

Large-Block Multi-rate Streaming Sort v

List of Figures

2.1 Dataflow graph . 2
2.2 FIR filter as a dataflow model . 3
2.3 Radix sort double buffering implementation . 6
2.4 Pseudocode for the merge function of the merge sort 7
2.5 Merge sort, divide and conquer strategy . 8
2.6 Pseudocode for the complete merge sort . 8

4.1 System overview . 10

5.1 Merge sort implementation for N = 8 . 13
5.2 Memory usage trace for the merge stage n = 8 . 15
5.3 Memory usage comparison for a single stage with key size, k=128 16
5.4 Split (spl) node sending all blocks of size 1 to edge A (flow only view) 16
5.5 Split (spl) node code . 17

6.1 Bitonic merge sort . 20
6.2 Batcher Odd-Even Mergesort . 21
6.3 Terabyte sort merger . 22
6.4 Minimum select design for P = 4 . 23
6.5 Logarithmic plot of the comparator count for designs 1 and 2. 23
6.6 Multi-rate first two stages . 24
6.7 Multi-rate last stages . 24
6.8 Memory usage multi-rate sorter . 25

7.1 Difference in arithmetic intensity for several levels of parallelism (P) 27
7.2 Roofline for a block size of 128 MB. The operational intensity is half the arithmetic

intensity for two passes. 27
7.3 4-way merge tree variants . 28
7.4 Multi pass design abstracted overview (for K = 4) 29

vi Large-Block Multi-rate Streaming Sort

List of Tables

2.1 List of comparison sort algorithms . 6

5.1 Merge stage input/output data . 17

6.1 Table of the comparator count for designs 1 and 2. 23

7.1 Arithmetic intensity with a block size of N = 1024 pairs (16 KB) 26
7.2 Optimal solutions for two passes. N is in number of pairs (128-bit per pair) . . . 32
7.3 Optimal solutions for three passes. N ∗K2 = 1 GB for all solutions. 33
7.4 Required N , K and passes to sort 0.5 GB for P 1 up to 32. 33
7.5 512 GB sorting performance from the Terabyte sort paper 34
7.6 512 GB expected sorting performance with the proposed design 34

Large-Block Multi-rate Streaming Sort vii

Chapter 1

Introduction

Sorting is a very well-known problem in computer science. It is often at the core of almost every
application that processes data. For example, databases depend heavily on sorting [17], selecting
and sorting millions of records. Efficiency of the sorting process is critical for these systems. Some
database systems even use hardware acceleration using FPGA’s to improve sorting performance[4].
Besides direct applications of sorting, there are also numerous algorithms that depend on sorting.
For example, searching, checking for uniqueness, min/max selection and many more. Any minor
improvement in sorting performance could potentially have a significant impact on many future
systems.

The research focuses on finding a solution for a streaming sort implementation in hardware,
specifically an FPGA. The research is split up in three parts. In the first part, a single-rate
streaming sorter is designed and implemented. A single-rate streaming sorter takes in a stream
of unsorted data and produces a stream of sorted data. The streams have a rate of one, so one
value enters, and one value exits each clock cycle (hence, the single-rate). In the second part, the
single-rate solution is parallelized, such that the sorter can process more than one value in one
clock cycle. As a result, the input, and output streams also transfer multiple values each cycle.
This sorter is called a multi-rate streaming sort. In the last part of this research, a multi pass
sorter is designed. In which case, data is temporarily stored in external memory. This is needed
when the unsorted data set is so large that it no longer fits in the internal memory of the FPGA.

There is a lot of existing work on sorting in hardware. But most research focuses on batch sort-
ing, not streaming sorting. There is one very detailed paper, ’Terabyte Sort on FPGA-Accelerated
Flash Storage’[9], by Sang-Woo Jun, Shuotao Xu and Arvind. The paper was published in 2017
and contains a lot of design, implementation, and performance details. The performance seems
good and is realistic. This paper was mainly used as a benchmark to compare to this research.

Large-Block Multi-rate Streaming Sort 1

Chapter 2

Background information

2.1 Dataflow

For this research, dataflow is used to solve the sorting problem. There are many variants of
dataflow. Most relevant are static dataflow, cyclo-static and dynamic dataflow. Every dataflow
graph contains nodes, edges and tokens. A basic (flow only) dataflow graph is shown in figure 2.1.
It contains three nodes (A, B and C) and the nodes are connected by (directional) edges. The
edge between node A and B contains a token, indicated by the black dot on the edge. A token
can contain data, which can be a single value or a complex structure (such as tuples). An edge
can also store more than one token. The number of tokens it can store is also called slack. The
tokens on the edges always have FIFO behaviour. In static dataflow, if a token is present on every
input edge of a node, the node will fire, consuming the input tokens and producing a token on
every output edge using its output function(s). In cyclo-static dataflow, the firing is controlled by
a finite state machine (FSM). The state machine uses firing rules that indicate which input tokens
will be consumed and which output tokens will be produced. In dynamic dataflow, the FSM of a
node is dependent on the data in a token.

Figure 2.1: Dataflow graph

StaccatoLab[1] is a tool developed by Kees van Berkel. This tool is used to model and simulate
dataflow graphs. There are many problems that can modelled using a dataflow graph. One simple
example is digital audio filters. In figure 2.2 a FIR (finite impulse response) filter is shown that
was modelled in StaccatoLab. Models in StaccatoLab can be thoroughly analysed, since the input
and output can be fully simulated. StaccatoLab helps to calculate the throughput and latency of
the model (and many other statistics). This also makes it simple to calculate the required clock
frequency if the model is to be implemented in hardware.

Besides simple filters, there are also many other algorithms that can be modelled. For example,
a data stream can be inverted, selecting minimum or maximum values from a stream, or even
sorting, which is the main focus of this research project. The dataflow graphs can also be converted
to hardware implementations. It should be possible to do this conversion automatically, which is
a feature that is still in development in StaccatoLab.

2 Large-Block Multi-rate Streaming Sort

CHAPTER 2. BACKGROUND INFORMATION 2.2. SORTING DEFINITION

fir[0]

fir[1]

b[0]

fir[2]
a[1]
b[1] fir[3]

a[2]
b[2] fir[4]

a[3]

b[3] snk
_a

a[4]

B
b[4]

A
a[0]

A!1
A!2

Figure 2.2: FIR filter as a dataflow model

Traditionally, most implementations of algorithms are designed with memory-based computing
in mind. In which data is read/written from/to a shared memory to achieve the desired result. The
memory bandwidth is often limiting the throughput. Caching or shared memory modules used in
GPU’s can increase performance significantly. In dataflow, the design and implementation is based
on the data and how this moves through the graph. The edges in dataflow graphs are often just
registers or a small block of ram (BRAM) when it is transformed to an FPGA implementation.
The registers and BRAM can be read/written independently, which allows many reads and writes
each cycle. Sorting is also often limited by the memory bandwidth. This is why sorting is an
interesting subject to be modelled with dataflow. Moreover, dataflow simplifies designing for a
known throughput. For example, it is often easy to ensure that a graph will fire every cycle
(although not always possible). In which case, the throughput is mainly dependent on the clock
frequency. This also makes for a very efficient design, since the used hardware will often have a
high utilization.

All the nodes of a dataflow graph can fire independently. This makes parallelism easy to
implement. Without going into too much detail, the FIR filter implementation from figure 2.2
uses pipelining behaviour. The FIR filter must do four multiplications with a coefficient and the
input data and sum the results for the correct output. These multiplications and additions are
done in each fir[1]..fir[4] stage. By using pipeline parallelism, it is possible to stream this FIR
filter, so each cycle one output is produced. An example of another form of parallelism, that is not
pipeline behaviour, would be to duplicate this FIR filter implementation one or more times. This
allows processing of multiple independent streams, essentially raising the throughput. This can
be useful when filtering audio with both a left and right channel, for example, since these streams
are independent.

2.2 Sorting definition

As said before, sorting plays an important part in computer science. But what is sorting, actually?
Let’s first define a sorted list. Assume there is a list A, and ai is the element in list A at index
i. Then the list A is sorted when it satisfies the following condition ∀ [0 ≤ i < |A| − 1 : ai ≥ ai+1].
More specifically, this defines the descending order. The ascending order is defined as follows,
∀ [0 ≤ i < |A| − 1 : ai ≤ ai+1]. Note that a list can contain any type of data (numbers, strings,
etc.) as long as the relation ’≤’ and ’≥’ can be defined for all the elements in the list. A list
is considered unsorted when it satisfies neither the descending nor ascending condition. Sorting
is the process that converts an unsorted list (or sorted if the state of the list is unknown) into a
sorted list, without removing or adding values. Sorting can be done using a sorting algorithm.

Sorting can be done on the CPU, but is also regularly done on the GPU or even specialized
hardware, such as an FPGA. The idea of hardware sorting is to improve the performance compared
to sorting on the CPU, since an FPGA can achieve a very level of parallelism. This also frees the
CPU to do other tasks. In most cases, a block of data is provided to the sorting hardware via

Large-Block Multi-rate Streaming Sort 3

2.2. SORTING DEFINITION CHAPTER 2. BACKGROUND INFORMATION

some kind of shared memory. When the hardware has finished sorting, the data should be sorted
in the same or another block of shared memory.

There are different implementations of sorting algorithms in hardware. Two classifications are
important. Firstly, an implementation can be either a batch sorter or a streaming sorter. Secondly,
an implementation can be either sequential or parallel. These two classifications are independent
of each other. What they exactly mean will be described in the next sections.

2.2.1 Batch sorting

One of the most common ways to implement a hardware sorter is to connect the hardware to
the CPU using shared memory. The shared memory is the bridge between the CPU and sorting
hardware. The CPU signals the sorting hardware when it has finished copying the unsorted data
to the shared memory. The sorting hardware will then start sorting using its algorithm. The
hardware will signal the CPU once it has finished sorting. The CPU can then read the sorted
output from shared memory.

This is an easy way to implement a sorter. However, there are some issues with this approach.
Often the processing time is not constant (this depends on the sorting algorithm), which makes
performance analysis more difficult. Another issue is that the next block of data cannot be copied
to the shared memory until the hardware has finished sorting. This issue could be resolved by
using double buffering. But, as a consequence, this would also mean you need twice the amount
of memory.

2.2.2 Streaming sort

In the case of a streaming sort, a constant stream of data is provided to the hardware. The
samples from the stream arrive at a fixed rate. For example, every cycle, one sample is provided
to the sorter. Interestingly, the hardware sorter can already start sorting when the first sample
arrives. And actually the sorter should start the sorting immediately because otherwise the input
values must be buffered, which would increase the memory required. A good streaming sorter
implementation will often have a low latency and a fixed throughput. However, since the sorter
needs to start sorting when not all data is available yet, only a few sorting algorithms can be used.
Most sorting algorithms require all data before they can start the sorting process.

Such an input stream could be from a sensor, which periodically measures something, or an
audio source, for example. Or if the FPGA is integrated in a PC, this could be a PCIe data
stream. This makes streaming sorters very useful for real-time applications. The main advantage
of a streaming sorter is that the values do not have to be stored in external memory, which reduces
hardware resources and power consumption.

2.2.3 Dataflow rate

In dataflow, a common characteristic of any design is the dataflow rate. It indicates how many
tokens are consumed (and produced) every clock cycle. A graph with rate 1 consumes 1 token
each cycle. A graph with a rate of 0.5 consumes 1 token every 2 cycles. However, a graph can
also have a rate larger than 1. A graph with rate 2 consumes 2 tokens each cycle.

Note that a multi-rate (rate > 1) streaming sort has a higher throughput than a streaming
sort with a rate of 1 assuming the clock frequency is the same, which will be explained now.

2.2.4 Throughput

Throughput is one of the metrics which can be used to measure the performance of a system.
Throughput can be measured (or calculated) at the input or output of a system. In the case of
sorting, the input and output throughput should be equal. This is because the number of tokens
in the system should remain constant, as there is a finite amount of memory to hold the tokens.

4 Large-Block Multi-rate Streaming Sort

CHAPTER 2. BACKGROUND INFORMATION 2.2. SORTING DEFINITION

For a streaming sorter, the throughput is directly related to the dataflow rate. The data
consumed each cycle is determined by the token size and dataflow rate, which can be multiplied
to get the total input size to the system. If the input size is multiplied again by the frequency of
the system, the result shall be the throughput, as shown below.

Throughput = Clock frequency× rate× token size

Throughput can be expressed in different units. The most common units are bits per second (also
known as bitrate) or bytes per second, and are often combined with metric prefixes. For example,
1,000 bit/s = 1 kbit/s or another example, 1,000,000 bytes/s = 1 MB/s.

2.2.5 Latency

Latency is defined as the time delay between the input and the output of a system. It can be
measured in different ways. Consider the following case, a large block of data is consumed element
by element on the input and later produced element by element on the output. Then the latency
can be measured from the first input to the first output, or from the first input to the last output,
etc. So, for latency, it is always important to explicitly indicate or check what is meant.

2.2.6 Sorting algorithms

There are many sorting algorithms. One of the main characteristics used to compare these al-
gorithms is the performance. For this, the big O notation is used. This indicates how the per-
formance will be affected if the number of items to be sorted increases. For example, the insertion
sort has a worst-case performance of O(n2). So, as the number of items to be sorted increases
linearly, the sorting time increases quadratic.

Sorting algorithms are also distinguished by being a comparison sort or not. Comparison sorts,
sort a list of data only by comparing elements. Comparison sorts have been proven to be limited
to O(n log n) as the average case performance [8]. Non-comparison sorts are not bound to this
limit. However, they often have other constraints, such as limited key size or range. The most
well-known comparison sorting algorithms with their performance is shown in table 2.1.

The most important non-comparison sorts are the counting and radix sort. They are used in
many sorters, since they perform extremely well. Counting sort has an average case performance
of O(n + r), where r is the range of the keys. Radix sort has an average case performance of

O(n · k
d

), where k is the size of the key and d is the digit size. [19]

The radix sort is often implemented in software running on the CPU or the GPU. Its per-
formance can be better than a simple merge sort. The ”Designing Efficient Sorting Algorithms
for Manycore GPUs” [18] paper shows an implementation which is faster than a merge sort on
the GPU. Although the radix sort is not limited to a software implementation (as shown in the
paper ”FastRadix: A Scalable Hardware Accelerator for Parallel Radix Sort” [12]), it becomes
unpractical to implement standalone on an FPGA as a streaming sort. Radix sort requires all
data of the block before it can start the sorting process. This has several unwanted consequences
for a streaming sort implementation. Most importantly, the hardware implementation would not
be able to accept new incoming values (which will arrive every cycle, since a streaming sort is re-
quired) until the sorting is complete. This means the incoming values need to be stored/buffered,
before they can enter the sorter. This would most likely be done using double buffering, which
will significantly increase the memory usage. An example of what such an implementation would
look like is shown in figure 2.3. Sorting algorithms that behave like batch sorters often require
this double buffering solution to turn them into streaming sorters. Another result is that all data
needs to be stored in the same BRAM. Every BRAM block in an FPGA often has two read/write
ports. As a result, a very high memory throughput could be reached if these BRAMs are used
independently in parallel. But if all the data needs to be stored in ’joined’ BRAM blocks, this
limits the read/write operations to two per cycle.

Large-Block Multi-rate Streaming Sort 5

2.2. SORTING DEFINITION CHAPTER 2. BACKGROUND INFORMATION

Name Best (O) Average (O) Worst (O) Method
Quicksort n log n n log n n2 Partitioning
Merge sort n log n n log n n log n Merging
Introsort n log n n log n n log n Partitioning & Selection
Heapsort n log n n log n n log n Selection
Insertion sort n n2 n2 Insertion
Block sort n n log n n log n Insertion & Merging
Timsort n n log n n log n Insertion & Merging
Selection sort n2 n2 n2 Selection
Cubesort n n log n n log n Insertion
Shellsort n log n n4/3 n3/2 Insertion
Bubble sort n n2 n2 Exchanging
Exchange sort n2 n2 n2 Exchanging
Tree sort n log n n log n n log n Insertion
Cycle sort n2 n2 n2 Selection
Library sort n log n n log n n2 Insertion
Patience sorting n n log n n log n Insertion & Selection
Smoothsort n n log n n log n Selection
Strand sort n n2 n2 Selection
Tournament sort n log n n log n n log n Selection
Cocktail shaker sort n n2 n2 Exchanging
Comb sort n log n n2 n2 Exchanging
Gnome sort n n2 n2 Exchanging
Odd–even sort n n2 n2 Exchanging

Table 2.1: List of comparison sort algorithms with their corresponding complexity in big-O nota-
tion. [19]

Figure 2.3: Radix sort double buffering implementation

6 Large-Block Multi-rate Streaming Sort

CHAPTER 2. BACKGROUND INFORMATION 2.3. MERGE SORT

2.3 Merge sort

The merge sort algorithm lends itself extremely well to hardware implementations, which will be
shown later (in chapter 5.1). The merge sort is a simple sorting algorithm, and has a complexity
of O(n log n), which means it scales optimal for a comparison sorting algorithm.

The core of the merge sort is the merge function. It takes in two sorted lists, which it merges
to produce one sorted output list. The merging is done by only looking at the front of each
list, since they contain the lowest elements. The lowest of the two elements is removed from the
corresponding list and is appended to the back of the output list. This process is repeated until
both lists are empty. Pseudocode for the merge algorithm is shown in figure 2.4.

f unc t i on merge (l e f t , r i g h t) i s
var r e s u l t := empty l i s t

whi l e l e f t i s not empty and r i gh t i s not empty do
i f f i r s t (l e f t) <= f i r s t (r i g h t) then

append f i r s t (l e f t) to r e s u l t
l e f t := r e s t (l e f t)

e l s e
append f i r s t (r i g h t) to r e s u l t
r i g h t := r e s t (r i g h t)

// Ei ther l e f t or r i g h t may have e lements l e f t ; consume them .
// (Only one o f the f o l l ow i n g loops w i l l a c t u a l l y be entered .)
whi l e l e f t i s not empty do

append f i r s t (l e f t) to r e s u l t
l e f t := r e s t (l e f t)

whi l e r i g h t i s not empty do
append f i r s t (r i g h t) to r e s u l t
r i g h t := r e s t (r i g h t)

re turn r e s u l t

Figure 2.4: Pseudocode for the merge function of the merge sort[20]

The merge sort algorithm uses the divide and conquer strategy to sort an input list with
random data. This is well illustrated in figure 2.5. The unsorted list on top in red is broken up
into smaller parts, until only one element remains in all lists. The merge function is then used to
build increasingly larger lists (in green), until the final output list is produced. The pseudocode
for the complete merge sort algorithm can be seen in figure 2.6.

Large-Block Multi-rate Streaming Sort 7

2.3. MERGE SORT CHAPTER 2. BACKGROUND INFORMATION

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82 10

38 27 43 3 9 82

27 38 3 43 9 82

10

10

3 27 38 43 9 10 82

3 9 10 27 38 43 82

Figure 2.5: Merge sort, divide and conquer strategy[7]

f unc t i on merge sor t (l i s t m) i s
// Base case . A l i s t o f ze ro or one e lements i s sorted , by d e f i n i t i o n .
i f l ength o f m <= 1 then

return m

// Recurs ive case . F i r s t , d i v id e the l i s t i n to equal−s i z e d s u b l i s t s
// c o n s i s t i n g o f the f i r s t h a l f and second ha l f o f the l i s t .
// This assumes l i s t s s t a r t at index 0 .
var l e f t := empty l i s t
var r i g h t := empty l i s t
f o r each x with index i in m do

i f i < (l ength o f m) /2 then
add x to l e f t

e l s e
add x to r i g h t

// Recur s ive ly s o r t both s u b l i s t s .
l e f t := merge sor t (l e f t)
r i g h t := merge sor t (r i g h t)

// Then merge the now−so r t ed s u b l i s t s .
r e turn merge (l e f t , r i g h t)

Figure 2.6: Pseudocode for the complete merge sort[20]

8 Large-Block Multi-rate Streaming Sort

Chapter 3

Existing research

Finding applicable, high-quality papers of existing work also makes up a large part of the research.
Many papers exist about dataflow, but none that combine dataflow with sorting. But, papers about
sorting algorithms are plentiful. Most FPGA implementations use some kind of merge sorter or
a combination with another sorter, such as sorting networks. Sorting networks also seems to be
an important part of many implementations. There are also many papers that use the parallelism
of the GPU with different algorithms. Most of the GPU papers seem irrelevant, since there is
a too much of a difference between a GPU and an FPGA, but these could be used to compare
performance. Some papers are discussed in the next paragraphs.

The paper ”Terabyte Sort on FPGA-Accelerated Flash Storage” by Sang-Woo Jun, Shoutao
Xu and Arvind[9] was by far the most important for this research. This paper gives an in-depth
design and implementation of a parallel hardware sorter. The smallest part or core component
of their sorter is actually a streaming sort. Not only that, it is also a multi-rate sorter, which
is helpful for the second phase of the research. This component is reused in other components
that are required to create a larger sorting network. The streaming sorter uses merge sorting as
a sorting algorithm. The streaming sorter has a throughput of 4 GB/s at 125 MHz. The paper
also gives a solution for sorting large data-sets (up to 1 TB, hence the name of the paper). They
utilize a 1 TB PCIe SSD to load and store the data. All things combined make the paper very
valuable to this research.

Another paper called ”Hardware Acceleration of Sorting Algorithms Using Reconfiguration
Technics” by Pawel Russek and Kazimierz Wiatr ([17]) contains in depth information about the
implementation of sorting nets for FPGA’s. This paper connects closely with the previous paper
by Sang-Woo Jun. It includes half cleaners, but also full sorting nets, which will be useful again for
implementing a multi-rate design. Moreover, it also includes some practical limits for the sorting
nets.

NVIDIA published a paper in 2009 called ”Designing Efficient Sorting Algorithms for Manycore
GPUs” written by Nadathur Satish, Mark Harris and Michael Garland ([18]). The paper claimed
to have the fastest sorter at that time. It combines radix sort, counting sort and merge sort into
one sorting algorithm. The sorting is done in parallel on the streaming processors of a GPU.
The NVIDIA GPU’s contain many layers of memory[13]. It has external memory, L2 cache and
L1 cache. This is not available in an FPGA, since that only has BRAM. The bandwidth of the
external memory (GDDR5X) of a GTX 1080 is around 320GB/s, which is much higher than that
compared of the DDR3 dram of 12.8GB/s used in this research. The architecture differs too much
to adapt the implementation for hardware/dataflow. But, it shows how fast the radix sort can be.

Finally, in the paper ”FastRadix: A Scalable Hardware Accelerator for Parallel Radix Sort”
by Xingyu Liu and Yangdong Deng ([12]) they also implemented a radix sort in hardware. They
propose the ”FastRadix” hardware accelerator, which differs slightly from the standard radix sort.
The sorter was implemented on an FPGA and works together with the CPU. The paper includes
some implementation details about their radix sort, which can be very valuable if, at a certain
point, a radix sorter will be designed in StaccatoLab for the research project.

Large-Block Multi-rate Streaming Sort 9

Chapter 4

Problem description

As said in the introduction, sorting is a basic but also crucial problem. In software, the problem
has been very well researched, and most recent improvements come from using the GPU. But
when sorting in hardware, there are many ways to implement a single algorithm as there is a
lot more freedom in the architecture. This makes hardware sorting so interesting. The most
common hardware implementations use an FPGA or ASIC. In this research, the main focus lies
on FPGA’s, but is also applicable to an ASIC. A hardware sorter is often used as a form of
hardware acceleration as part of a server, but could also be used standalone. Both the FPGA and
ASIC are capable of achieving a very high level of parallelism, which can increase the performance
of such algorithms drastically. As a consequence of using hardware acceleration, the CPU will also
be freed to do other work while the hardware is sorting.

Existing research focuses mainly on batch sorting. There are only few existing streaming sort
solutions. This research project will take a step even further. The focus will be on creating an
efficient streaming sort implementation in StaccatoLab with a data-rate larger than 1 for any data
block size. This research will explore some new area’s and will hopefully be able to improve the
existing implementations. A minor improvement to existing sorting solutions could already have
a significant impact because sorting is so essential to many other (aforementioned) applications.

For the final design, the target will be to sort large data sets that will not fit inside the memory
of an FPGA. As a result, the FPGA must fall back to external memory, such as DRAM or even
other (external) storage, such as an SSD or HDD. The data sets could even be so large, that the
FPGA would require multiple passes over the data, which means the same data must be read and
written multiple times from/to external memory.

A very basic diagram of the system is shown in figure 4.1. This is not a design to solve the
problem, but is shows the environment in which the problem exists. The hardware which will be
used for the research is the same as the hardware used in the Terabyte sort paper. Namely, the
Xilinx VC707 Evaluation Kit. It contains a Virtex-7 (XC7VX485T-2FFG1761C) as the FPGA
and the board has 1 GB of DDR3-1600 memory.

FPGA

External Memory

Unsorted input
stream

Sorted output
stream

Figure 4.1: System overview

10 Large-Block Multi-rate Streaming Sort

CHAPTER 4. PROBLEM DESCRIPTION

Sorting is almost always done using a key-value pair. The keys are what is looked at for the
sorting. The value is not used for the sorting itself, but it contains the reference to the actual
data. Using a key-value pair avoids having to move a large amount of unused data around. For
this research, both the key and value are assumed to be 64-bit, so one key-value pair is 128-bits
in total.

The research question is formulated as follows:

How can a streaming sort
- of large blocks (of variable size) of key-value pairs be achieved
- with a fixed rate greater or equal to two
- while minimizing memory resources and traffic
- given it will be modelled in StaccatoLab
- with possibly an FPGA with external memory implementation?

The research question is divided up into three parts. In the first part, a baseline solution is
analysed and improved to sort small (but variable) block sizes at rate 1, using minimal internal
memory. The second part will use the knowledge of the first part to parallelize the solution and
make it multi-rate. In the final part, multi pass sorting is researched to be able to sort the large
block sizes.

There could be many solutions for each sub problem, which makes it extra important to prop-
erly compare the solutions. Each solution will be measured/analysed by the following statistics:

• Throughput (bytes per second) or sorting time (total seconds)

• Comparators used

• BRAM (internal memory) used

• DRAM (external memory) used

Large-Block Multi-rate Streaming Sort 11

Chapter 5

Single pass sorting

5.1 Baseline

The merge sort algorithm has multiple phases. Each phase merges two sorted lists from the
previous phase to create a sorted list that has the length of both input lists combined. So, each
phase produces a sorted list twice as large as the previous phase. If the phase is defined as 1 ≤ p,
then n = 2p is the size of the sorted output list. For an unsorted list of size N (for now N is
assumed to be a power of two), there are log2(N) phases. In the last phase n = 2log2(N) = N .
In a first phase, the inputs are two lists containing one element and the output will be a list
containing n = 2 elements in sorted order. But there will be N/2 sorted lists (of size 2) produced.
In any phase, to produce a list of size n, at least n − 1 comparisons are required in the worst
case. So for a list of size N , a phase requires N

n ∗ (n − 1) comparisons. But, each phase will of

course process exactly N elements. The N
n number of lists produced in each phase are completely

independent, which actually means that once two lists are available, the next phase of the merge
sort can already start. This allows a pipelining behaviour. In hardware, each phase is modelled
as a stage. Each stage has a rate of 1 and processes N elements. As a result, in the long run, each
stage has a throughput of 1 and a utilization of 100%.

In 1991 Edward Ashford Lee published a paper which presents a streaming merge node for two
monotonically increasing input streams in dataflow[10]. This is essentially one stage of a complete
merge sorter. The book ’Mutli-Processor System-on-Chip: Vol. 2’[1], gives a full implementation
of a merge sorter in StaccatoLab, which were based on the findings of Lee. Figure 5.1 shows
the implementation of the merge sorter in StaccatoLab. The implementation sorts blocks of size
N = 8. The src node produces a random data stream with values between 0 and 100. The srt

node is the first stage that does a merge sort. It takes two tokens, sorts them, and produces them
back on its output edge (producing n = 2 sorted list). The next stage of the merge sorter actually
includes two nodes, namely the spl and mrg nodes. The spl node is basically a switch to move
the sorted sub-lists from the previous stage to the correct input edge for the mrg node. Once there
are tokens on both the spl!0 and spl!1 edges, then the mrg node will start merging these two
sub-lists to produce a sorted list of length N = 4. The next stage again consists of the spl and
mrg nodes. Note that this spl node switches lists of size N = 4. The last mrg node produces a
list of size N = 8. The number of stages the merge sorter has is equal to log2(N).

This implementation has a rate of 1. Which means that each cycle, one token is consumed, and
one token is produced. That makes this implementation a streaming sort. The average latency of
a token is also relatively low and equal to exactly N + 2 · (log2(N) − 1).

12 Large-Block Multi-rate Streaming Sort

CHAPTER 5. SINGLE PASS SORTING 5.2. CACHING

srt splsrt!0
2

mrg
spl!0
spl!1

splsrt!0 mrg
spl!0
spl!1 snksrt!0

src src!0
2

src!1

Figure 5.1: Merge sort implementation for N = 8

5.2 Caching

The spl!0 and spl!1 edges from figure 5.1 quickly become too large when N is increased for the
edges to be stored in registers. For these edges, BRAM would be used instead of registers. The
mrg node compares the front of the spl!0 and spl!1 edges, so it reads these from the BRAM
every cycle. The BRAM in an FPGA are dual port, so it is possible to do one write and one
read simultaneously each cycle. And since the spl!0 and spl!1 do not share the same BRAM
module, it is possible to read from both edges in the same cycle as well. But when merging two
lists, only the smallest value is sent to the output, the larger value will be used next cycle in the
next comparison. This essentially results in two or more reads of the same value. By caching the
front of both lists, it is possible to remove one of the reads. Essentially, this means that each cycle
only one value is read from the spl!0 or spl!1 edge, but never both. This is useful later on, when
the spl!0 or spl!1 will be combined into one edge / one BRAM.

5.3 Memory usage

Using Little’s Law, it is possible to determine how many tokens will be in the system as a long-term
average. Little’s Law is defined as follows[11]:

L = λW

• L - the average number of tokens in the system.

• λ - the average number of tokens arriving in the system per cycle.

• W - the average processing time / latency per token.

Since the system is a streaming sort, λ will be equal to 1, which means the average number of
tokens in the system is equal to the latency. However, another important note is that because the
system is a streaming sort, the number of tokens in the system does not change after the startup
period. This means that the number of tokens will always be equal to or less than our latency
(N + 2 · (log2(N)− 1)). When deriving the current memory usage from the graph (which is equal
to the sum of the slack of all the edges), this is equal to 2N − 2 + 2 · (log2(N) − 1). Hence, N − 2
registers are always empty. If these registers could be removed, this would be a reduction of almost
a factor of 2.

5.3.1 Removing slack

Figure 5.2(a) illustrates the problem in the current design. The spl!0 edge (from figure 5.1)
contains list A, and edge spl!1 will contain list B as it arrives. At t = 4, the A list has already
fully arrived and has filled up the buffer. The buffer is the slack/capacity of each edge in this case.
At t = 5 the first token from the B list arrives at the edge. Now the merger will take the lowest
valued token (in this case from the B list) and produce it on the output edge. So, at t = 6, the
value 1 is produced and the next value of B arrived. At t = 7, again the B token was produced,

Large-Block Multi-rate Streaming Sort 13

5.3. MEMORY USAGE CHAPTER 5. SINGLE PASS SORTING

since it had the lowest value. At t = 8, the token in the A list is produced. Observe that now the
B edge also contains 2 tokens, but the A edge contains 3 tokens.

After the initialization phase, on average only
5

8
of the slack of the mrg node edges is utilized,

which can also be seen in figure 5.2(a). Note that neither the slack of the A nor B edges can be
reduced. The A edge will always fill up when a new sorted list arrives. And the B edge will be
filled in the extreme case when all values of A are lower than all values of B. One of the ways to
reduce the memory usage, is first to make the realization that the A and B edges combined use

exactly
5

8
places of the buffers. More specific n/2 + 1 per merge node. So, what can be done is

that the A and B lists can be combined into one buffer. Since this can no longer be stored as slack
on edges, the implementation becomes slightly more complicated, but the idea remains the same.
Figure 5.2(b) shows how this works. At t = 4, the buffer is still being filled from the initialization
phase. At t = 5, the buffer is filled with both the A list and the first value of B. At t = 6, the
first value of B was produced on the output and the next value of B was placed in the buffer. At
t = 8, the value of A list was removed, since it had the lowest value. Note that B now fills more
of the buffer, and the A list fills less of the buffer.

In this implementation, all places in the buffer would always be filled. So, the memory utiliz-
ation is 100%. The rate and latency remain unchanged from the baseline implementation.

5.3.2 Adding indexing

Another problem arises with the proposed solution, however. The buffer stores two FIFO queues
in a shared space. This results in four cases of where tokens are placed and removed, listed below.

1. Take head from queue A, store new element at end of A

2. Take head from queue A, store new element at end of B

3. Take head from queue B, store new element at end of A

4. Take head from queue B, store new element at end of B

This prevents the implementation of a single ring buffer, since there are multiple heads and tails.
As a result, this would require shifting (of parts) of the buffer, which is not feasible for large
buffers and would certainly not be possible to do in a single cycle. If shifting is not allowed, a
new element must be stored at the place where an element will be removed. Since, there are no
guarantees if this will be (at the tail) in queue A or B, it is required to keep track where elements
are stored. This adds a layer of indirection.

Because of the indirection, it is now also required to store these references to the elements,
which in turn adds more memory. Zooming in again on a single merge stage, the input is two
blocks of length n/2 and the output will be one block of length n. The buffer size will be n/2 + 1
(as shown in 5.3.1). The length of queue A and B will both be n/2 at maximum, so n places
are required for the indices in total. The indices require at least ⌈log 2(n/2 + 1)⌉ bits to store the
highest index. The maximum block size will always be equal to a power of two, so log 2(n) can
be used instead, which has the same value when n is a power of two. Thus, the memory usage is
increased for each stage with n ∗ log2(n) bits.

Note that the key-value pair size is also critical to determine if this indirection is beneficial
for the memory usage. A larger key-value size will profit more than a small size. If the key-value
size is small enough, it will even have the opposite effect and cost more memory to have this layer
of indirect. For this research problem, the key-value pair uses 128-bits (64-bit key, 64-bit value),
so here it will still be beneficial. Figure 5.3 shows how much memory each approach uses for a
key-value size of 128-bits up to n = 220. The total memory usage of this solution still grows faster
than the baseline solution in relation to n. However, the reference solution would only be worse
after around n > 285, which will never be a problem (the FPGA used only has 225 bits of memory,
which already exceeded at n > 221). With an element size of 32-bits, this referencing solution

14 Large-Block Multi-rate Streaming Sort

CHAPTER 5. SINGLE PASS SORTING 5.3. MEMORY USAGE

7 5 4 3

A

B
8,6,2,1

1

7 5 4 3

A

B
8,6,2

2

7 5 4 3

A

B
8,6

1

6

7 5 4 3

A

B
8

2

8 6

7 5 4

A

B

3

?,?,?,?

t=4

t=5

t=6

t=7

t=8

(a) Provided implementation

5 4 3 ?7
8,6,2,1

7 5 4 31
8,6,2

7 5 4 32
8,6

1

7 5 4 36
8

2

6 7 5 48
?,?,?,?

3

AB

AB

AB

AB

AB

t=4

t=5

t=6

t=7

t=8

(b) Improved implementation

Figure 5.2: Memory usage trace for the merge stage n = 8

would only be beneficial up to around n = 221, which could have been a problem if such a small
element size were used.

Large-Block Multi-rate Streaming Sort 15

5.4. VARIABLE BLOCK SIZES CHAPTER 5. SINGLE PASS SORTING

(a) Memory usage logarithmic plot (b) Memory usage linear plot

Figure 5.3: Memory usage comparison for a single stage with key size, k=128

5.4 Variable block sizes

The baseline solution can only sort block sizes of exactly N. Also, N must be a power of two. As
stated in the problem description, the sorter should be able to sort any block size as long as the
block size is smaller than the designed N. For example, if the sorter is configured for maximum
size N, that sorter should be able to sort any block of size (S) as long as 1 ≤ S ≤ N .

Consider the case where N = 2 and all blocks have a length of 1. Then it is important to
alternate each block over the A and B edges, since if all blocks would enter the A edge, the select
node would never fire, as illustrated in figure 5.4. The figure is a flow only view, so the numbers
on each edge indicate the number of tokens, not values.

spl
sel

3
0

srp
0

src

1

mrk
1 1

1

snk
0

Figure 5.4: Split (spl) node sending all blocks of size 1 to edge A (flow only view)

Instead of sending blocks to a single edge, blocks will be equally distributed over the two edges.
But currently there is the issue that blocks cannot be kept apart. For an input stream where the
block size for every block is 1, then the output stream should be equal to the input stream (FIFO
behaviour). However, if there is a block on edge A and edge B, it cannot be known which block
must be selected. The solution used is to add a block number to each block. This way, it is also
possible to sort on the ’oldness’ of elements. The block number is combined with the value in a
tuple, and will look like this: (blocknr., key). Now it is possible to do a lexicographical comparison
on the elements, this way older blocks will always be considered to have ’a lower value’, thus being
output first. Blocks with the same block number will still be sorted by their key.

The current firing finite state machine (FSM) still expects elements of the same block on the
A and B edges, which can also no longer be guaranteed with variable block sizes. Just adding the
block number is not enough to make this sorter functional. The FSM would require a new design,

16 Large-Block Multi-rate Streaming Sort

CHAPTER 5. SINGLE PASS SORTING 5.5. IMPLEMENTATION

or, another approach is to simplify the FSM and add another value to the lexicographical ordering.
Let’s call this value rank, and insert it between the block number and the key: (blocknr., rank,
key).

Each stage of the merge sorter sorts an increasing number of elements. E.g. the first stage
sorts a block of two elements. The second stage sorts four elements, the third stage eight elements,
etc. Using the rank, these elements are grouped together. So, elements that should be in the same
block as a merge stage output will have the same rank. Generating the ranks is done by simply
adding the count / index of the element in the block. So, the first element gets a rank of 0, the
second element gets a rank of 1, the third element a rank of 2, etc. In each merge stage, the rank
is divided by 2 (a simple bit shift), such that the group of each rank get larger at each merge stage
as explained above. Table 5.1 shows an example of a small block of N = 4 with the inputs of each
stage and the final output. Note that elements with the same block number and rank are always
in sorted order.

Stage 1 2 Output

Inputs

Element 0 (0, 0, 79) (0, 0, 62) (0, 0, 17)
Element 1 (0, 1, 62) (0, 0, 79) (0, 0, 62)
Element 2 (0, 2, 17) (0, 1, 17) (0, 0, 74)
Element 3 (0, 3, 74) (0, 1, 74) (0, 0, 79)

Table 5.1: Merge stage input/output data

Having the rank and block number is now also sufficient to ensure that the A and B edges
shall always be filled. The elements in the same block can be alternated between the A and B
edges by checking if the rank is odd or even (the last bit). However, for a stream of blocks with
a length of one, all elements would still be sent to the same edge, so the same can be done with
the block number. The blocks are alternated over the A and B edges by checking the oddness of
the blocknumber. This is combined with the rank check by a simple XOR. Figure 5.5 shows the
implementation of the split node.

c l a s s S p l i t (Node) :
de f i n i t (s e l f , I = []) :

super (Sp l i t , s e l f) . i n i t (I=I)
pass0 = Rule (I =(1 ,) , O=(1 ,0)) # Output to edge A
pass1 = Rule (I =(1 ,) , O=(0 ,1)) # Output to edge B
s e l f . s e t f sm ([S e l e c t ([pass0 , pass1])])
s e l f . s e t f s ([lambda x : (x [0] & 1) ˆ (x [1] & 1)]) # pass0 i f 0 , pass1 i f 1
s e l f . s e t f o ([lambda x : (x [0] , x [1] / / 2 , x [2]) , lambda x : (x [0] , x [1] / / 2 , x [2])])

Figure 5.5: Split (spl) node code

5.5 Implementation

All the previous discussed improvements are combined into one implementation. The code for the
single-rate sorter is attached as appendix B.

A significant drawback of the block number and rank becomes visible when calculating the
overhead. To guarantee uniqueness for the block and rank numbers, both need at least ⌈log2((N +
1)/2)⌉ = log2(N) bits (since N is a power of two). Although, the rank does lose a bit after every
stage. Adding the block and rank numbers increases the memory requirement for the FPGA when
implemented in hardware. For small values of N , the extra memory is not significant, but at
N = 220, it adds 40 bits to each 128 bit key-value pair, which is an increment of ≈ 31%. But an
even more important concern is how this affects the comparators. The Xilinx VC707 uses DSP
slices as a comparator. Only, each DSP slice has a bit-width of 48-bits. Since the key size is

Large-Block Multi-rate Streaming Sort 17

5.5. IMPLEMENTATION CHAPTER 5. SINGLE PASS SORTING

64-bits, this requires at least 2 DSP slices. Meaning, 32-bits are left for the block number and
rank. It is important to stay at or below this number when choosing the maximum block size. The
maximum block size (N) is limited to 216, otherwise it would use more DSP slices. This translates
to a block size of 1 MB. These overheads become significantly smaller for multi-rate sorting, as
will be shown next chapter.

Formula 5.1 can be used as an approximation for the total memory usage of all stages combined
for any block size N and key-value pair size k.

⌈log2(N)⌉∑
p=2

(k + 2 ∗ log2(N)) ∗ (2p−1 + 9) + 2p ∗ p (5.1)

18 Large-Block Multi-rate Streaming Sort

Chapter 6

Multi-rate sorting

Multi-rate sorting will require multiple inputs and outputs to be consumed and produced each
cycle. So, for example, a multi-rate sorter of rate four, consumes four inputs and produces four
outputs in one cycle. StaccatoLab does not provide a way to consume multiple tokens in one cycle,
so instead inputs and outputs will be bundled in one token as a tuple, e.g., (a,b,c,d), where a,
b, c and d are all independent key-value pairs. Let us call the sorting rate P . The tuple token
width is then equal to P , such a token will also often be called an element. If P > 1 is used in a
sorter, this is then considered a parallel sorter.

6.1 Sorting networks

A regular merge sort has no way of sorting multiple values in a single cycle. A component must
be created that can take in P inputs and produce P outputs in a single cycle to create a multi-
rate sorter. The most common way to do this is utilizing the well-researched sorting networks.
Sorting networks are based on one component with two inputs and outputs. The inputs are
compared and swapped if necessary such that the outputs are in a non-decreasing order. Using
this ’swap’ component, it is possible to construct a network with multiple inputs and outputs,
such that all outputs are in sorted order. Sorting networks are often illustrated with horizontal
and vertical lines. The data from an input follows the horizontal line from left to right and can
be swapped with another horizontal line via a vertical line. The vertical line represents such a
’swap’ component. Figure 6.1 shows such a large sorting network. If the direction of the ’swap’
components are all the same, then the arrowheads are often omitted. There are two important
properties of any sorting network. The first is the total number of comparators needed (which
is equal to the amount of ’swap’ components). The second is the depth of the sorting network.
The depth is equal to the maximum number of comparators that can be encountered on any path.
There are many variants of the sorting networks. Each variant having a different purpose. For
example, minimizing these two factors, total comparator count and depth. Some sorting networks
are known to be optimal[5][6]. For example, the minimal depths are known until P = 18 and
the minimal size until P = 12. There are many ways to construct larger sorting networks, but
these are not optimal. Sorting networks scale poorly, known (practical) implementations often
have O(n log2 n) space complexity, which is why P should be minimized if possible.

Ken Batcher published two sorting networks in 1968[2]. These are both very commonly used
to implement such a network. The first network is the bitonic merge sort. Figure 6.1 shows the
implementation of the network for P = 16. The input of each stage (each blue and green block in
the figure) is a bitonic sequence. A bitonic sequence is defined as follows.

x0 ≤ ... ≤ xk ≥ ... ≥ xn−1 for some k, 0 ≤ k ≤ n

In each stage the two previous stages are merged, so it should be obvious that k = n/2 at the
input of each stage. However, each stage can actually sort any bitonic sequence for any k[15]. This

Large-Block Multi-rate Streaming Sort 19

6.1. SORTING NETWORKS CHAPTER 6. MULTI-RATE SORTING

is an important fact for the next section. What can already be noticed is that the merger of each
stage in the single-rate sorter has two sorted inputs. So, if one of those inputs would be ’flipped’,
this is a bitonic sequence. Thus, only requiring the very last stage of the bitonic merge sort (for
size P). This saves many comparators. Equation 6.1 can be used to calculate the comparators
of the last stage of the bitonic sorter (thus requiring a bitonic sequence as input). k is used to
denote the degree of the sorting network. A sorting network of degree k has 2k inputs.{

s(1) = 1

s(k) = 2s(k − 1) + 2k−1
(6.1)

This recursive formula can also be simplified to a non-recursive variant, given by equation 6.2
below.

s(k) = k ∗ 2k−1 (6.2)

Observe that the depth of the last stage is simply equal to the degree (k) of the sorting network.

Figure 6.1: Bitonic merge sorter, source: Wikipedia[3]

The other sorting network is Batcher’s odd-even merge sort. This method performs well to
minimize the comparator count of the sorting network compared to other methods. However, it
does not have the same property as the bitonic sort, namely that the last stage can sort a bitonic
sequence[15]. So, Batcher’s odd-even merge sort has a lower comparator count only if the input
is not guaranteed to be a bitonic sequence. A visualization for P = 8 is shown in figure 6.2. It is
very similar to the bitonic merge sort. The number of comparators for the last stage is reduced
by 2k−1 + 1 compared to the bitonic merge sort, as shown by equation 6.3.

o(k) = k ∗ 2k−1 − 2k−1 + 1 (6.3)

The total number of comparators is then shown in equation 6.4.{
h(1) = o(1) = 1

h(k) = 2 ∗ h(k − 1) + o(k)
(6.4)

And this can also be written as the non-recursive variant shown in equation 6.5

h(k) = 2k−2 ∗ ((k − 1) ∗ k + 4) − 1 (6.5)

The depth of the output stage is the same as that of the bitonic variant, so for all stages this
is equal to equation 6.6. And in the non-recursive variant, equation 6.7.{

d(1) = 1

d(k) = d(k − 1) + k
(6.6)

d(k) = (k + 1) ∗ k/2 (6.7)

20 Large-Block Multi-rate Streaming Sort

CHAPTER 6. MULTI-RATE SORTING 6.2. PARALLEL SORTING

Figure 6.2: Batcher Odd-Even Mergesort, source: Wikipedia[14]

6.2 Parallel sorting

The first idea to create a parallel sorter might be to duplicate the single rate solution P times.
Using some kind of parallel merge, these P input streams could be merged. However, there is a
problem with this idea. Let’s call these sorters S0..SP . Then for example, if all output elements
from S0 are less than the elements of S1..SP , then this would require P elements from S0 every
cycle (until all elements from S0 are depleted). Thus, the sorters must also have a rate of P , which
means the ’single-rate’ sorters cannot be used. Also note that the utilization over the long term
will be equal to 1/P for each sorter Si (and even lower for preceding stages). So, this is not a very
efficient design (since it leads to a very low utilization and high resource cost).

Another idea could be to parallelize the merge stages themselves. Currently, for the single-rate
sorter, the input stream is split into two inputs at the split node. The merge node then sorts
these two input streams. The split node can easily divide the inputs at rate P , so the only thing
required to make this work is to find a solution for a merge node that can sort two input streams
with a rate of P .

6.3 Design

A parallel merge node would have two inputs. Again, let’s call these A and B. And let’s call the
elements ai with a0 being the front of the A input. And do the same for bi, with b0 being the front
of the B input. Then since it is a merge sort, we assume that ∀i,j [0 ≤ i < j < N : ai ≤ aj∧bi ≤ bj],
in other words, the inputs of A and B will already be sorted. The problem to solve for the parallel
merge node is that the P lowest value elements should be output. However, these could be all in
A or all in B or a combination. This means there are 2 ∗P candidates that must be considered for
only P outputs. Another factor that must be considered is, what happens with the P elements
that were not the lowest?

6.3.1 Design 1 (Feedback loop)

Two papers that implemented the merge sort and solved this problem used some form of a feedback
loop[9][16]. One such design is shown in figure 6.3(a). This is a merger with P = 4. However,
it can be seen, that a sorting network of size 2 ∗ P is required. The sorting network is shown in
figure 6.3(b). The bitonic half-cleaner isolates the lower half values from the higher values. This is
why the bitonic sorters can also be separated from the half-cleaner and the sorting of the smaller
halves can be done at a later stage. Note that this is not done in the feedback loop, since there is
no register between the half cleaner and the bitonic sorter. There is only one register present, the
single blue box after the bitonic sorter, in the feedback loop. So, this could be considered as one
edge with a slack of one in StaccatoLab.

There is one important drawback in this design. Since 2∗P values are sorted each cycle, the P
highest values must be fed back into the sorter, hence the feedback loop. However, these must be
immediately available, since they could contain the lowest values that must be output in the next

Large-Block Multi-rate Streaming Sort 21

6.3. DESIGN CHAPTER 6. MULTI-RATE SORTING

(a) Merger overview (b) Sorting network

Figure 6.3: Terabyte sort merger (where P = 4), from [9]

cycle. For example, consider the following inputs with P = 2: A = [0, 0, 2, 2], B = [1, 1, 3, 3]. In
the first cycle the front of A is compared with the front of B, the lowest values will be the output
([0, 0]), the highest values ([1, 1]) will be fed back into the sorter. The second cycle the [1, 1] is
expected as the output, so this loop must already be present at the input of the bitonic sorter.
Although this is possible (as shown in the existing paper), this creates a critical path that cannot
be pipelined. So, this could limit the possible clock rate when implemented in hardware. Also
note that this would get worse as P grows.

6.3.2 Design 2 (Min select)

For the second design, the idea was based on the fact that only the P lowest values are required to
be sorted each cycle. So, if these P values can be selected from A and B, then there is no need to
have such a feedback loop as in the previous design. Actually, selecting the P lowest values is not
that difficult. Let us define a new variable k as the number of elements that should be picked from
the (front of the) A input. Then, the number of elements picked from the (front of the) B input
will be equal to P − k elements, such that we have a total of P elements. This k will be picked in
such a way that these elements {a0..ak} ∪ {b0..bP−k} is the subset containing the smallest values
from the A and B inputs. Note that such a k does exist, as shown by the formula below, for which
a full proof is provided in Appendix A. In the special cases, a0 ≥ bP−1 and b0 > aP−1, k = 0 and
k = P can be used respectively.

∀i,j [0 ≤ i < j < P : ai ≤ aj ∧ bi ≤ bj] =⇒
(∃k[1 ≤ k < P : ak−1 < bP−k ∧ bP−k−1 ≤ ak] ∨ a0 ≥ bP−1 ∨ b0 > aP−1)

Consider the following example, where P = 4, A = [0, 2, 4, 6] and B = [1, 3, 5, 7]. Then k = 2
should be selected such that the minimum set is equal to [0, 2, 1, 3]. Also note that k = 2 satisfies
the ∃-formula, since a1 < b2 ∧ b1 ≤ a2 is indeed satisfied.

In hardware, this k can be found by testing all combinations, but combining the comparisons
will result in exactly P comparisons total. This is because the second comparison in the ∃-formula
is the negation of the first formula for k−1: ¬(bP−(k−1)−1 ≤ ak−1) ≡ bp−(k−1)−1 > ak−1 ≡ ak−1 <
bP−k.

When the P smallest elements are selected, the values can be arranged in the following sequence
(a0..ak, bP−k..b0), which is a bitonic sequence. This sequence can then be sorted by a bitonic
sorting network as described in chapter 6.1. Note that this design can easily be pipelined, since
there is no feedback loop. Figure 6.4 illustrates a simplified version of the design.

22 Large-Block Multi-rate Streaming Sort

CHAPTER 6. MULTI-RATE SORTING 6.4. IMPLEMENTATION

Figure 6.4: Minimum select design for P = 4

6.4 Implementation

To fairly compare the designs, the comparator count per stage must also be calculated. For design
1, it is assumed that only 1 comparator is needed to make a selection between the A and B
queues (this is possible if the multiplexers use the same select signal, which would come from 1
comparator). The total comparator count is then equal to 1+s(log2(2P)) = 1+log2(2P)∗P (using
equation 6.2). The comparator count for design 2 is equal to P + s(log2(P)) = P + log2(P) ∗P/2.
All practical values for P until P = 64 are shown in figure 6.5 and in table 6.1. Note that any P
higher than 64 would probably be unrealistic, since this would create very long (critical) paths.

The maximum depth will be calculated from register to register. For design 1 this is simply
log2(P) + 1 (on the loop). For design 2, it depends on if there is a register between the minimum
selection and bitonic sorter stage. In the final implementation this is the case, so then the maximum
depth is equal log2(P) (otherwise it would be the same as that of design 1).

Figure 6.5: Logarithmic plot of the comparator
count for designs 1 and 2.

P 2 4 8 16 32 64
Design 1 5 13 33 81 193 449
Design 2 3 8 20 48 112 256

Table 6.1: Table of the comparator count for
designs 1 and 2.

From all the discussed differences between design 1 and 2, it can already be seen that design
2 is better. This is why design 2 was implemented in StaccatoLab and will be compared to the
implementation of the Terabyte sort paper as a reference. The sorting is still very similar to the
single rate sorting. Figure 6.6 shows the first two stages. The first stage is simply the ’net’ node.
This is an odd-even merging network to sort the unsorted tuples from the input. A bitonic sorter
cannot be used for this, since the input is not a bitonic sequence. Fortunately, this node will only
be used once and is always the first stage. The second stage is the ’spl’, ’pss’ and ’bnet’ nodes.
The ’spl’ node is functionally the same as that of the single rate sorter. It moves the tuples to
the correct edge based on the rank and block number. The ’pss’ node does the minimum value

Large-Block Multi-rate Streaming Sort 23

6.4. IMPLEMENTATION CHAPTER 6. MULTI-RATE SORTING

selection and outputs a tuple which values form a bitonic sequence. The ’bnet’ finally sorts this
bitonic sequence (using Batcher’s bitonic sorter), such that the output tuple is fully sorted.

net splsrt!0

pssspl!0
spl!1

pss!1

bnetpss!0 srt!0
src

src!1

tagsrc!0 tag!0

tag!1

Figure 6.6: Multi-rate first two stages

In chapter 5.3.1 it was explained that the memory requirement can be halved by storing the
A and B inputs in block memory (on a self loop). For the single rate implementation, it was
possible to combine all the required logic in one node. For the multi-rate design, it would also be
possible to implement all of this in the ’pss’ node. However, this node was already very complex
and adding this functionality (also with the references etc.) would make this unmanageable. So
instead, this functionality was kept separate. Storing the A and B inputs is now managed by the
’buf’ node, which can be seen in figure 6.7. From the ’buf’ node, there are two edges to the ’pss’
node. These edges represent the A and B inputs and have a small fixed slack. The ’buf’ node does
not know whether it needs to produce an A or B input for the ’pss’ node. So, there is a signal
back from the ’pss’ node which signals if the last consumption was from the A or B input. Using
this signal, the ’buf’ knows which input/edge it should refill.

Because of this feedback loop, some latency is present. As a result, the slack of the inputs of
the ’pss’ node must be sufficiently large such that it always has and A and B input (otherwise the
node cannot fire). This extra slack adds a small (fixed) amount of extra memory for each stage.
This is the reason that for stages two and three, the ’spl’ node is still used (figure 6.6). Stages
four and beyond use the ’buf’ node.

bnetpss!0 bufsrt!0

buf!2
buf!3
buf!4

pss

buf!0

buf!1

pss!2

pss!1

bnetpss!0 srt!0

Figure 6.7: Multi-rate last stages

As a final implementation detail, the rank, and block number are attached to the tuple and
not for every value in the tuple. This essentially reduces the relative memory overhead of these
additional values. Unfortunately, this does constrain the variable block size to be a multiple of P .
It is still possible to sort blocks that are not a multiple of P by adding padding values. However,
this is not automatically managed by the sorter. The total memory consumption calculation is
shown as formula 6.8. The formula has not changed much from the single rate formula, but the
element size is now k ∗ P and there are few stages to sum.

⌈log2(N/P)⌉∑
r=2

(P ∗ k + 2 ∗ log2(N)) ∗ (2r−1 + 9) + 2r ∗ r (6.8)

Again, a full implementation of a multi-rate sorter is attached in appendix C.

24 Large-Block Multi-rate Streaming Sort

CHAPTER 6. MULTI-RATE SORTING 6.4. IMPLEMENTATION

6.4.1 Comparison

The Terabyte sort paper is mainly constrained by reading the input from flash memory. The flash
memory has a throughput of 2.4 GB/s. The paper has designed a page sorter with a throughput
of 0.5 GB/s. To fully saturate the flash memory, 5 instances of the page sorter are used. Each
page sorter outputs a block of 8 KB in size, and uses a key-value pair size of 64-bits (one block
contains 1024 elements). In total 65 comparators are used for this sorter. The sorter operates at
a clock frequency of 125MHz.

Comparing this fairly with the proposed minimum select design is a bit difficult. To get the
same throughput of 2.5 GB/s, an element throughput of 312.5 Melements/second is required. This
is equivalent to 2.5 elements per cycle. The elements produced per cycle should be equal to the
parallelism; however, this must be a power of 2. So, the option is P = 2 or P = 4, which results in a
throughput of 2 GB/s with 28 comparators or 4 GB/s with 69 comparators respectively. Achieving
a throughput of 2.5 GB/s cannot be done without changing the clock frequency. However, the
amount of page sorters used in the terabyte sort paper can be scaled to match the 2 GB/s and 4
GB/s throughputs, by using 4 and 8 instances of their page sorter. This would result in 52 and 104
comparators, respectively, which is significantly higher than the newly designed streaming sorter.

6.4.2 Results

Since the proposed design can also be pipelined, a higher frequency of 200MHz and parallelism of
P = 4 is assumed to be achievable. Furthermore, a key-value pair size of 128-bits is used instead,
as specified by the problem description. This would result in a throughput of 12.8 GB/s.

The memory usage of the sorter depends mainly on the block size. However, as said before,
a larger level of parallelism decreases the overhead of the additional rank and block number
parameters. This effect is very noticeable until around P = 8. Figure 6.8(a) shows the memory
usage for three different levels of parallelism. Each sorter starts at N = P , which is why the
starting points are not the same. Moreover, while the block size is still small, there is a high
overhead from the caching and self loop edges. This is why they all start off high, but come
closer together for larger block sizes. Figure 6.8(b) highlights the overhead effect of the additional
rank and block size values. E.g., more parallelism results in lower memory usage. Moreover, the
memory usage of P = 8 and P = 64 is almost the same, even for larger block sizes.

The maximum block size is limited by the on-chip memory of the FPGA it would be imple-
mented on. The Xilinx VC707 has 4635 KB of BRAM. So, for P = 4 with 128-bits for key-value
pairs, the maximum block size is equal 218 elements, which is almost 4.2 MB.

(a) Memory usage overview (b) Memory usage from N = 213

Figure 6.8: Memory usage multi-rate sorter

Large-Block Multi-rate Streaming Sort 25

Chapter 7

Multi pass sorting

Currently, the maximum block size is 4.2 MB as shown in chapter 6.4.2. The limiting factor
was the amount of on-board BRAM. When blocks of even larger size need to be sorted, external
memory will be required. To sort larger blocks, it is then possible to make multiple passes over
the data, which intermediate results can be stored in the external memory. For example, in a first
pass 4 blocks of 4.2 MB can be sorted using the multi-rate sorter. Each block can be stored in the
external memory. For a second pass, these blocks can be read from memory and merged with a
merge sorter, such that there are now two sorted blocks of 8.4 MB. And then a third pass could
do the same to create one sorted block of 16.8 MB, which is then sent to the output.

The problem with the method above is that every read and write (or pass) decreases the sorting
throughput. This is because the DRAM performance limits the sorting throughput. This relation
becomes clearly visible when a roofline analysis is constructed. For simplicity, when constructing
the roofline, it is assumed that the input and output will also be stored in the DRAM. That
means, in the first pass, each element would be read and written once. In a second pass twice, etc.
To make the roofline, first, the memory performance must be calculated. The Xilinx VC707 has
1 GB of DDR3 memory. The clock rate of the memory is 1600 MHz and has a bit width of 64.
This translates to a peak read/write performance of 12.8 GB/s. Secondly, the arithmetic intensity
must be calculated. The arithmetic intensity is defined as the number of operations divided by
the input plus output size in bytes. In this case, one comparison is considered to be one operation.
The VC707 has 2800 DSP slices, which each can run at up to 741 MHz. But since one comparison
requires two DSP slices, the computational roof is equal to 2800 ∗ 741/2 ≈ 1037 Gops/s. The
number of comparisons required to sort a whole block depends on the block size, the amount of
parallelism (displayed in table 7.1) and the number of passes. Figure 7.1 shows how the arithmetic
intensity scales as the block size increases for several values of P . From the arithmetic intensity
(Ia), the operational intensity (Io) can be calculated. Since for each pass the number of reads and
writes are the same as the block size, the operational intensity is simply equal to Io = Ia/passes.
So, for two passes, the operational intensity is half that of the arithmetic intensity.

P 1 4 16 64
Comparators 10 69 351 1567
Cycles 1024 256 64 16
Total comparisons 10240 17664 22464 25072
Arithmetic intensity 0.625 1.08 1.37 1.53

Table 7.1: Arithmetic intensity with a block size of N = 1024 pairs (16 KB)

It is important to note that a higher arithmetic intensity does not necessarily mean better
performance. For example, using P = 4 for sorting, resulted in a throughput of 12.6 GB/s.
Using P = 4 from table 7.1, shows Ia = 1.08 (for sorting 16 KB). Now assuming the input and
output bandwidth is also limited by 12.6 GB/s, then raising P to P = 64 would result in a higher

26 Large-Block Multi-rate Streaming Sort

CHAPTER 7. MULTI PASS SORTING

arithmetic intensity (Ia = 1.53). One could argue the performance is better since a higher number
of operations per second is achieved, but this does not increase the actual performance. The higher
P solution needs more comparisons for the same amount of work (sorting 16 KB in this case).
Both P = 4 and P = 64 sort blocks of 16 KB at 12.6 GB/s. So, raising P when the sorting is
already bandwidth limited (on the input or output) does not provide any benefits.

There is now enough information to construct a roofline. For the roofline, assume P = 4 and a
block size of N = 223 (128 MB) needs to be sorted. The roofline for these parameters is shown in
figure 7.2. It includes the operational for both single and two passes. From this figure, it is apparent
that sorting will always be memory bounded. Since, to be computation bounded, an operational
intensity of approximately 100 would be needed, which is not achievable. As a result, the passes
should be minimized, since each extra pass significantly decreases the operational intensity.

Figure 7.1: Difference in arithmetic intensity for several levels of parallelism (P)

Figure 7.2: Roofline for a block size of 128 MB. The operational intensity is half the arithmetic
intensity for two passes.

Large-Block Multi-rate Streaming Sort 27

7.1. K-WAY MERGE CHAPTER 7. MULTI PASS SORTING

7.1 K-way merge

A way to reduce the number of passes could be to merge multiple blocks instead of only two per
pass. This is called a K-way merge. K is used to indicate the number of inputs or blocks in this
case. There are multiple ways to do this, but the most common is the K-way merge tree. Another
method is the flattened variant of the merge tree. Figure 7.3 shows both variants. The main
difference between these mergers is the number of comparisons that are done. For the regular
merge tree, each stage uses twice the number of comparisons done in the previous stage. So,
for the 4-way merge tree, this is results in 2N + 2N + 4N = 8N comparisons. In the flattened
merge tree, each stage requires the same number of comparisons as the previous stage, plus the
size of the extra block. Which for a 4-way, results in 2N + 3N + 4N = 9N comparisons. So, the
flattened merge tree needs slightly more comparisons. However, the number of comparators is still
the same, since both variants have the same amount of merge nodes. The main difference here is
the utilization. The regular merge tree has a lower average utilization. This would translate to a
lower energy consumption when implemented on an FPGA. Another difference is the latency. The
regular merge tree has a latency of log2(K), whereas the flattened variant has a latency of K. The
advantage of the flattened merge tree is that it most likely maps better to an FPGA. However,
because of all the other factors, the regular merge tree seems like the most logical choice.

(a) Regular merge tree (b) Flattened merge tree

Figure 7.3: 4-way merge tree variants

7.2 Design

The multi pass sorter will exist out of three main components:

1. Multi-rate (single pass) sorter

2. K-way merge tree

3. External memory (DRAM)

The first pass will be done by a single pass sorter to create a sorted block of length N . K blocks are
then stored in DRAM. The K-way merge tree will then merge these K blocks. Because DRAM is
slow when reading small amounts of data from random locations. To solve this, a ’read’ or ’write’
request will always be a page of size C. In the Terabyte sort paper, a page size of 8 KB was used,
with which they achieved 10 GB/s writing/reading random pages to/from DRAM. So, also here
C ≥ 8KB is assumed to get similar or better performance. Each input of the K-way merge tree
should buffer a certain number of values, such that these pages can be immediately stored. The
buffers will generate an event when they are almost empty, such that they are refilled in time.
The required size of the buffers will be explained next chapter.

Figure 7.4 shows an overview of the design. The ’Srt’ node handles the first sorting pass of the
data. Via a switch, ’R/W ctrl’, the read and write requests are sent to the DRAM. When it is

28 Large-Block Multi-rate Streaming Sort

CHAPTER 7. MULTI PASS SORTING 7.3. BUFFER SIZING

Figure 7.4: Multi pass design abstracted overview (for K = 4)

time to load a new page, the occupations of the buffers is read and the ’empties’ buffer is selected
for refilling. Note that it is a simplified design, since there is a great deal of bookkeeping logic to
keep track of and load the correct pages. Furthermore, when a page is loaded, it should be sent
to the correct input buffer of the merge tree.

There are two options how the writing and reading can be handled. In the first method, the
reading and writing are divided into two phases. During the writing phase, K ∗ N tuples are
written to DRAM. This allows for the maximum K, where K ∗N could potentially fill the entire
DRAM. During the reading phase, pages of size C are read until the DRAM is depleted, after
which the writing phase will be start again. A problem with this method is that it would not be
possible to do more than two passes, since 1) it would not have any space in DRAM to store the
sorted output block. And 2) even if there would be space available, there is no time allocated to
write the sorted output block to DRAM.

The second method uses round-robin scheduling for the reads and writes to DRAM. So, one
period exists of two slices. In the first slice a page will be written and in the second slice a page will
be read. In this case, it must be prevented that the writing of a page must not overwrite a page
that is still pending to be read. The best way to prevent this would be to use double buffering,
such that the reading and writing addresses are always separated. This solves all the problems
from the first method, but the double buffering would restrict the maximum size of K ∗N to half
the DRAM size. However, as will be shown later, the first method cannot utilize the full DRAM
size anyway as K ∗ N = 1 GB is unreachable because of the limited available resources on the
FPGA.

7.3 Buffer sizing

Choosing the correct buffer size is not a trivial task. First, it is important to realize that because
the external memory is limiting the throughput, a utilization of 100% of the external memory
bandwidth allows for maximum performance. So, it must be avoided at all cost that the external
memory is idle. The external memory can be idle if there is no read or write request. Of course,
a write request will always be available, but this cannot be ensured for the read requests yet. It
turns out that the buffer sizing plays a critical role to ensure an optimal bandwidth utilization of
the external memory.

For all the examples, calculations and proofs, the following assumptions were made. Firstly,
for a fixed period (T), exactly one page of size C is read, and a new page is written to one input
buffer. Which buffer will be written to, is decided at the start of the period and cannot change
during this period T . Furthermore, for simplicity it is assumed that in the sub-period T/C, one
element is read, and a new element is placed in the input buffer. All calculations are also done in

Large-Block Multi-rate Streaming Sort 29

7.3. BUFFER SIZING CHAPTER 7. MULTI PASS SORTING

’number of elements’, where an element is a tuple that contains P key-value pairs.

As an important reminder, if any of the inputs of a node is empty, the node cannot fire. So, if
one input buffer is empty, the merge tree will not fire. A cycle where the merge tree cannot fire is
called a stall. A consequence of the stall is that (assuming that a page is being loaded) the total
number of elements in the buffers will increase.

Next, an example is given to show why the buffer sizing is critical. The first idea might be to
give the K buffers a size of C. During the startup period, all K buffers are still empty. So, each
period T a buffer is filled, and they will stay filled at level C until the last buffer has an element
in the buffer. The first time the merge tree can fire is at time (K− 1) ∗T +T/C. Now the (worst)
case is considered where there is an equal draw from all the buffers (this depends on the data, but
is possible since each input has an independent set of keys). At time K ∗ T , all buffers will be
filled up to C −C/K. Now a buffer should be picked to start reading a new page, but none of the
buffers have space for a new page. So, clearly for any K, the buffer size must be larger than C.

From the example, it can be seen that, to ensure a read request can always be done, there must
always be one buffer that has a free space of size C. Moreover, this property must be maintained
when a stall occurs, since that will increase the total number of elements in the buffers.

So, to ensure 100% utilization of the DRAM, it must first be proven that there is a limit to
the number of stalls that can occur, since otherwise the buffer would need to have an infinite size.

Let qi,t denote the number of elements in buffer i, where 1 ≤ i ≤ K at time t, where t ∈ N.
If at the start of each period (p ∗ T , where p ∈ N) the buffer chosen to be refilled will be buffer
min{q1,p∗T , .., qK,p∗T }. Then we can prove with strong induction that for every value of K where
K ≥ 2, there exists an s such that there cannot occur a stall (∀i,t[i ∈ N+ ∧ i ≤ K, t ∈ N : qi,t ≥ 0])

if the sum of all buffers is equal to or greater than this s (∀t[t ∈ N :
∑K

i=1 qi,t ≥ s]).

First, the base case (K = 2) must be proven. Then let s = 2 ∗ C. If 0 ≤ q1,p∗T < q2,p∗T
for some p ∈ N (p ∗ T is the start of a period), then min{q1,p∗T , q2,p∗T } = q1,p∗T is selected to
be refilled with a new page. The smallest q1,(p+1)∗T can get is equal to q1,p∗T , which happens if
all elements are taken from buffer 1 (q2,t). So, we have q1,(p+1)∗T ≥ q1,p∗T ≥ 0. The smallest
q2,(p+1)∗T can get is then equal to q2,p∗T −C, which happens if all elements are taken from buffer
2 (q2,t). Then, since q1,p∗T + q2,p∗T = 2 ∗ C and q1,p∗T < q2,p∗T , we know that q2,p∗T > C.
Also, then q2,p∗T − C > 0 =⇒ q2,(p+1)∗T > 0. Because of symmetry, it is also obvious that
q1,(p+1)∗T > 0 and q2,(p+1)∗T ≥ 0 holds if 0 ≤ q2,p∗T < q1,p∗T . Then for the most critical case,
when q1,p∗T = q2,p∗T = C. Either buffer could be selected to be refilled. So, let’s assume that
buffer 1 (q1,p∗T) is selected. Then the lowest value of min{q1,(p+1)∗T , q2,(p+1)∗T } happens when
all elements are taken from buffer 2 (q2,t). So, then q2,(p+1)∗T = q2,p∗T − C = 0. Thus also
q2,(p+1)∗T ≥ 0 holds. Then s = 2 ∗ C is the witness for K = 2, and thus the base case holds.

Now we must prove the same for K > 2. To simplify the proof, we will first prove the
lemma that, at any time t ≥ 0, if ∀i[1 ≤ i ≤ K : 0 ≤ qi,t ≤ (

∑K
i=1 qi,t)/K + C] holds, then

max{q1,t+T , .., qK,t+T } ≤ (
∑K

i=1 qi,t)/K + C. So, in other words, (
∑K

i=1 qi,t)/K + C is an upper
bound for the maximum number of elements in any buffer at time t + T . For any buffer, the only
way to increase the number of elements it contains happens when a page is read from DRAM and
placed in that buffer. However, the buffer that will be refilled is chosen at the start of a refill
period (so, at time p ∗ T for p ∈ N) and the buffer chosen to refill is min{q1,p∗T , .., qK,p∗T }. The
maximum amount that the number of elements in a buffer can increase in one period is C (the size
of a page), and that happens when a buffer is selected to be refilled and no element is removed
from this buffer throughout the refill period (so, until (p + 1) ∗ T). As a result, the maximum
number of elements in a buffer occurs when min{q1,p∗T , .., qK,p∗T } is maximized, since then, this
buffer will contain min{q1,p∗T , .., qK,p∗T } + C elements at time (p + 1) ∗ T . To maximize this
minimum, the elements should be equally divided over all the buffers, so all buffers should contain
(
∑K

i=1 qi,t)/K elements. Hence, the maximum number of elements is equal to (
∑K

i=1 qi,t)/K + C
at time t + T .

Now we prove the original statement for K > 2. Let m be the witness from K − 1, such that
no stall could occur. Then let’s choose s = K ∗ m+C

K−1 and assume that ∀t[t ∈ N :
∑K

i=1 qi,t ≥ s].
We should then prove that

∑
({q1,t, .., qK,t} ∩ {max{q1,t, .., qK,t}}c) ≥ m for every value of t ∈ N,

30 Large-Block Multi-rate Streaming Sort

CHAPTER 7. MULTI PASS SORTING 7.4. IMPLEMENTATION

or equivalently, we should prove that max{q1,t, .., qK,t} ≤ s − m for every value of t ∈ N. Then
from the lemma we know that maximum value of max{q1,t, .., qK,t} = s/K + C. So, we must
prove that s/K + C ≤ s−m.

s/K + C ≤ s−m

=⇒ (K ∗ m + C

K − 1
)/K +

C ∗ (K − 1)

K − 1
≤ K ∗ m + C

K − 1
− m ∗ (K − 1)

K − 1

=⇒ m + C

K − 1
+

KC − C

K − 1
≤ Km + KC

K − 1
− Km−m

K − 1

=⇒ KC + m

K − 1
≤ KC + m

K − 1

Hence, s is a witness such that no stall can occur. Thus, the proposition also holds for K > 2. As
a result, we have proven via strong induction that the proposition holds for all K ≥ 2.

The value of the witness (s) can also be caught in a formula:

b(k) =

{
2C for k = 2

k ∗ b(k−1)+C
k−1 for k > 2

(7.1)

So for each K > 2, s = b(K) was used as a witness. Finally, the buffer sizes should then be equal
to b(K)/K + C, which is derived directly from the lemma. This also means that there is always
space in at least one buffer to fit a new page. So, this also ensures 100% utilization of the DRAM.

When latency is introduced in the system, then this would also influence the buffer sizes. There
are two forms of latency. The first form we will call Lr, which is the read latency. So, this is the
latency from the time a buffer is chosen to be refilled (at time p ∗ T) until the first element from
this page reaches the buffer (p∗T +Lr). The second form of latency we will call Ls, and this is the
selection latency for finding min{q1,p∗T , .., qK,p∗T }. The total latency is defined as L = Lr + Ls.
Both latencies have an impact on the lemma. If at time p ∗ T −Ls, q1,p∗T−Ls

is being refilled and

∀i[1 ≤ i ≤ K : qi, p ∗ T − Ls =
∑K

i=1 qi,t, then at time p ∗ T , min{q1,p∗T−Ls
, .., qK,p∗T−Ls

} is used
and could mean buffer 1 is selected. As a result, there are still Ls extra elements that can be placed
in the time from p∗T−Ls until p∗T . The same reasoning can be used for the read latency, such that
at time (p+1)∗T until (p+1)∗T +Lr, there are Lr extra elements that can be placed in the buffer.

As a result max{q1,p∗T+Lr
, .., qK,p∗T+Lr

} ≤ (
∑K

i=1 qi,t)/K+C+Ls +Lr = (
∑K

i=1 qi,t)/K+C+L.
This changes the witness (s) in the proof. Now max{q1,t, .., qK,t} ≤ s−m =⇒ s/K + L + C ≤
s−m =⇒ s ≥ K∗(L+C+m)

K−1 . The definition of b(k) then changes to:

b(k) =

{
2(C + L) for k = 2

k ∗ b(k−1)+C+L
k−1 for k > 2

(7.2)

And then the buffers sizes should be equal to b(K)/K + C + L elements. Note that the size of
each buffer is increased by 2L at K = 2, but increases as K grows. Even 2L is already significant.
For example, consider a total latency of L = 10 and parallelism of P = 4, and a key-value pair of
size 128 bits. Then the increment of 2∗L∗P ∗ (128/8) = 1280 bytes per buffer. So, it is important
to limit the latency.

7.4 Implementation

7.4.1 StaccatoLab

An earlier version of the design was implemented in StaccatoLab. It uses the first method, where
the reading and writing are split into two separate phases. Moreover, at the time of development,
it was not yet clear that the minimum selection of the buffer occupations would be required.

Large-Block Multi-rate Streaming Sort 31

7.4. IMPLEMENTATION CHAPTER 7. MULTI PASS SORTING

Instead, the implementation works solely via events that are sent when a buffer has space for a
page. The problem when ’minimum selection’ is not used to prioritized buffer refilling is that there
could occur a long queue of events. Each event would request a page to be loaded, but if they are
not prioritized, one buffer could be empty (and at the back of the queue) and must wait for all the
other read requests to finish before the empty buffer is refilled. To compensate for this, gigantic
buffers would be required. The latest implementation is again provided as appendix D.

Another problem with the StaccatoLab implementation is that the simulation times are very
long. Even for a single pass with K = 4, P = 4 and N = 2048, a simulation of 40,000 cycles
takes more than 3 minutes to complete. Fortunately, there is sufficient information to create an
accurate analysis for larger implementations.

7.4.2 Larger implementations

In short, multi pass sorting exists out of two stages. The first stage, ’Srt’ in figure 7.4, sorts blocks
until size N , which is considered the first pass. From the second pass onward, the second stage is
used, which merges K blocks. If m indicates the number of passes, then N ∗Km−1 indicates the
final output block size. So, for an optimal implementation, the goal is to maximize the output
block size in as few passes as possible and also ensuring the hardware resource limits are not
exceeded. To summarize, the resource limits for the Xilinx VC707 are:

• 4746240 bytes of BRAM

• 1 GB of DRAM

• 2800 DSP slices

To create a fair final comparison with the Terabyte sort paper, the same page size is used of
C = 8 KB in the calculations. For now, a parallelism of P = 4 is used. As latency L = 10 is
assumed. When setting K = 1 (which results in no hardware usage for the merge tree), then
N = 262144 key-value pairs (equivalent to 4 MB) is the maximum value of N . The resource
utilization is 99.3% for the BRAM and 9.5% for the DSP slices for this N . Finding the maximum
K can be done by setting N = C. Which finds K = 64 as a maximum with 68.3% memory
and 36.0% DSP slice utilization. From this is it already clear that both stages are limited by the
available amount of BRAM.

Finding the optimal N and K to maximize N ∗K for a two pass solution is simply done by
testing all combinations. This returns N ∗ K = 4194304 pairs (64 MB) as a maximum and has
two possible solutions for N and K. These solutions are shown in table 7.2. Note that, apart
from the difference in utilization, the solutions are equivalent in sorting time/throughput. This is
because for both solutions, the number of bytes written to and read from DRAM is identical. So
for only two passes, K = 32 is clearly better, since it requires less resource. But, if more than two
passes are done, then K = 64 will be better, since N ∗Km−1 grows faster if K is larger.

N K Memory utilization DSP slice utilization
65536 64 92.9% 44.4%

131072 32 79.3% 26.6%

Table 7.2: Optimal solutions for two passes. N is in number of pairs (128-bit per pair)

To find the optimal solution for a three pass sorter, the same strategy is used to solve for N
and K, but now N ∗K2 is maximized instead. This yields one solution, which is, N = 65536 pairs
and K = 64. Then N ∗ K2 = 4 GB. Unfortunately, this exceeds the DRAM size. Since double
buffering is required for more than two passes, N ∗ K2 ≤ 512 MB is another restriction. When
solving N and K with this extra constraint, this yields three solutions shown in table 7.3. Again,
all solutions are equivalent apart from their resource usage. Both K = 32 and K = 16 seem like
good solutions.

32 Large-Block Multi-rate Streaming Sort

CHAPTER 7. MULTI PASS SORTING 7.4. IMPLEMENTATION

Because there is still memory available, it is probably a good idea to try to maximize the page
size, as this will slightly increase the DRAM performance. The page size can be increased to 32
KB. Then only the K = 16 solution is still viable, but the memory utilization changes to 98.0%.
However, as said before, for the comparison with the Terabyte sort paper later on, C = 8KB is
used instead for all calculations.

N K Memory utilization DSP slice utilization
8192 64 71.4% 42.6%

32768 32 42.2% 25.5%
131072 16 62.2% 17.5%

Table 7.3: Optimal solutions for three passes. N ∗K2 = 1 GB for all solutions.

These calculations can be made for different levels of parallelism. Of course, each level of
parallelism requires a different frequency to ensure the DRAM bandwidth is maximized. Table
7.4 shows these solutions. The indicated minimum frequency is required to achieve at least 6.4
GB/s, which is half the DRAM frequency. This way, if the read and writes have a 50% duty cycle,
the DRAM bandwidth is maximized. For low levels of P (until P = 4), there were again multiple
solutions (the solutions displayed have the lowest amount of memory utilization). Solutions where
P ≥ 8, are limited by the amount of DSP slices available. And there are no solutions for K = 64
if P ≥ 8 because of this. This indicates that for more than 3 passes (or even if the DRAM would
be larger), P ≤ 4 would be optimal.

P N K Passes (m) N ∗Km−1 (MB)
Memory

utilization
DSP slice
utilization

Minimum
frequency (MHz)

1 32768 32 3 512 44.4 % 3.3 % 400
2 32768 32 3 512 42.3 % 9.7 % 200
4 32768 32 3 512 42.2 % 25.5 % 100
8 32768 32 3 512 44.0 % 62.8 % 50

16 8192 16 4 512 18.9 % 86.8 % 25
32 2048 4 8 512 4.4 % 85.7 % 12.5

Table 7.4: Required N , K and passes to sort 0.5 GB for P 1 up to 32.

7.4.3 Results

The Terabyte sort paper presents a detailed performance overview of their sorter for sorting 512
GB of data. This overview can be seen in table 7.5. The performance is split per pass and there
are a total of 8 passes to sort 512 GB. In the terabyte sort paper, they were also limited by the
bandwidth of DRAM, but also flash, which they used as the input and output medium. Since
the sorter that is proposed in this report is also bandwidth limited, the same sorting times can
be assumed (note that the bandwidth is directly related to the sorting time of one pass, e.g.,
239 bytes
5e9 B/s ≈ 110 s).

Since 512 GB needs to be sorted, K is maximized to 64 inputs to minimize the passes. Fur-
thermore, N is adjusted to N = 213 (131 KB) such that the 3rd pass outputs blocks of exactly 0.5
GB to fill half the DRAM. Then only two more passes are needed to complete the sorting. Using
this configuration with P = 4, the memory utilization is 71.4% and the DSP slice utilization is
42.6%. So, in total, only 5 passes are required to sort 512 GB of data. This is significantly lower
than the 8 passes required in the Terabyte sort paper.

Why fewer passes are required might not be clear yet. In the Terabyte sorter, a page sorter was
used to sort the input stream into sorted blocks of the page size (213 bytes). But the page sorter
did not have enough bandwidth to handle the bandwidth of the input stream. As a result, they
duplicated the page sorter 5 times, to saturate the input bandwidth. But this gives many small,

Large-Block Multi-rate Streaming Sort 33

7.4. IMPLEMENTATION CHAPTER 7. MULTI PASS SORTING

Pass
Sorted Block Size

log2(bytes)
Medium Bandwidth (GB/s) Time (s)

1 13 flash-DRAM 2,4 220
2 17 DRAM-DRAM 5 110
3 21 DRAM-DRAM 5 110
4 25 DRAM-DRAM 5 110
5 29 DRAM-flash 2 280
6 33 flash-flash 1 520
7 37 flash-flash 1 520
8 41 flash-flash 1 520

Total 2390

Table 7.5: 512 GB sorting performance from the Terabyte sort paper[9]

sorted blocks. In the multi-rate sorter proposed in this design, the sorting stages are sequential.
Since the stages are sequential, the resulting block size is one large block (217 bytes). So, the
proposed design needs only 1 pass instead of 2 to sort up to 217 bytes.

After the initial pass, the multi pass sorter with the merge tree is used. The Terabyte sort
paper uses a 16-way merge tree (this is also clear from the 24 increment each pass from table 7.5).
But because a feedback loop was used in their sorter, the sorter has only a bandwidth of 4 GB/s.
As a result also two merge trees were used to saturate the DRAM bandwidth (5 GB/s for writing
5 GB/s for reading). In the newly proposed design, the mergers have a much higher throughput,
which means only one merge tree is required. So, instead of having two separate merge trees, one
and twice as large merge tree is used. However, the proposed merge tree has K = 64, not K = 32.
So, there must be a second reason for this factor of 2 difference. Since, the size of the merge trees
are not DSP limited, but memory limited, the only explanation is that the newly proposed input
buffers are smaller than the buffers used in the Terabyte sort paper. Unfortunately, the Terabyte
sort paper does not provide any information on their buffer sizes. This makes it difficult to verify,
but this is the most likely.

Note that the first stage (which contains the multi-rate solution) is severely limited by the
bandwidth of the flash memory. Actually, to the point where a single rate solution (P = 1)
running at 150 MHz is sufficient to still maximize the flash throughput.

Pass
Sorted Block Size

log2(bytes)
Medium Bandwidth (GB/s) Time (s)

1 17 flash-DRAM 2,4 220
2 23 DRAM-DRAM 5 110
3 29 DRAM-flash 2 280
4 35 flash-flash 1 520
5 41 flash-flash 1 520

Total 1650

Table 7.6: 512 GB expected sorting performance with the proposed design

34 Large-Block Multi-rate Streaming Sort

Chapter 8

Improvements

In the last chapter, we have seen that both the multi-rate sorter and the K-way merge tree are
bounded by the available BRAM on the FPGA. Minimizing the memory should be a fairly high
priority. This also means that, although it works well, the solution for sorting variable block
sizes was a bit short-sighted. Adding two extra fields (blocknr. and rank) to each token adds a
significant memory overhead on the tokens (especially when P is low). In hindsight, it would have
been better to create a more complex finite state machine to handle the variable block sizes.

A problem that has been present from the single rate design has to do with the fact how
dataflow works. The merge node has two inputs, but only one of the two inputs is produced to
the output. But when one input is empty, the node cannot fire, since it is missing one input. As
a result, some tokens get ’stuck’ in the system, until new tokens are sent to the input. For the
streaming sorters, this is not really an issue, since there is a constant stream of input tokens. But
in the multi pass sorting, this really becomes a problem. Once a large-block has finished sorting,
the last ∼ 10 tokens get stuck in the merge tree. They will not be released until the next block is
present in the merge tree. But this can take a long time, since the new inputs must first be stored
in DRAM etc. To solve this, some sort of flushing mechanism should be implemented to force the
last tokens out at the end of a large-block.

There is a chance that the input buffers of the K-way merge tree could be reduced significantly.
As shown in chapter 7.3, if throughput of the DRAM and the merge tree is equal, then once the
total number of elements get above a certain s, then stalls can no longer occur and the number of
elements will no longer increase. The reason the number of elements increases up to s, is because
a stall of the merge tree can occur, which happens if one of the inputs of the merge tree is empty.
But if the throughput of the merge tree is increased by some factor, the outflow of tokens could
be higher than the inflow of tokens, even when a stall occurs. This could lower the value of s
significantly, and as a result, the size of the buffers also reduce. Proving this relation between
the throughput and the buffer sizes is most likely a lot more difficult. However, since the K-way
merge tree was also memory bounded, this could potentially allow for a higher K.

Large-Block Multi-rate Streaming Sort 35

Chapter 9

Conclusions

In this research, we searched for a solution to the following problem:

How can a streaming sort
- of large blocks (of variable size) of key-value pairs be achieved
- with a fixed rate greater or equal to two
- while minimizing memory resources and traffic
- given it will be modelled in StaccatoLab
- with possibly an FPGA with external memory implementation?

In total, multiple contributions were made with designs and simulations, but there is no fully
integrated solution. Because there was no FPGA implementation, the frequencies used in the
results had to be estimated. These estimations were based on the existing solutions from the
Terabyte sort paper.

After the first and second phase of the research, a multi-rate streaming solution was proposed.
The multi-rate solution selects the minimum values in advance, so these can be sorted in parallel
using a smaller bitonic sorting network. The consequence was that the feedback loop, required
in traditional sorters, does not exist and thus pipelining is possible. This allows a much higher
clock frequency, and as a result, a much higher bandwidth. The example that was provided uses
parallelism of 4 and runs at a clock frequency of 200 MHz. This results in a bandwidth of 12.8
GB/s which is the same as the DDR3-1600 bandwidth present on the VC707. The maximum block
size possible was 218 key-value pairs, which is almost 4.2 MB. The limiting factor of the block size
was the amount of available BRAM on the FPGA.

In the last phase of the research, a solution was given for sorting large blocks. From the roofline
diagram (figure 7.2), it was clear that the throughput/sorting time of all solutions using a merge
sort are always bounded by the external memory/storage bandwidth. It could also be concluded
that the number of passes should be as low as possible, to keep the operational intensity high and
reduce the sorting time. To achieve this, the largest possible K-way merge tree (K = 64 inputs) is
used when more than 3 passes are required. Mostly because of the improvements to the multi-rate
sorter, the largest K-way merge tree is 4 times larger than the size of the merge tree used in the
Terabyte sort paper. As a result, 3 fewer passes are required than the Terabyte sort solution when
sorting 0.5 GB of data. This reduces the sorting time from 2390 seconds to 1650 seconds, which
is a reduction of approximately 31%. And although some aspects of the research question are
incomplete, the multi pass design is a crude, first iteration solution that could solve the research
problem.

36 Large-Block Multi-rate Streaming Sort

Bibliography

[1] Liliana Andrade and Frederic Rousseau. Multi-Processor System-on-Chip 2: Applications,
volume 2020, pages 145–176. Wiley-ISTE, 1 edition, 2020. 2, 12

[2] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page 307–314, New York,
NY, USA, 1968. Association for Computing Machinery. 19

[3] Bitonic at English Wikipedia, CC0, via Wikimedia Commons. Bitonic Sort, 06 2011. 20

[4] Jared Casper and Kunle Olukotun. Hardware acceleration of database operations. In Pro-
ceedings of the 2014 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’14, page 151–160, New York, NY, USA, 2014. Association for Computing
Machinery. 1

[5] Michael Codish, Lúıs Cruz-Filipe, Thorsten Ehlers, Mike Müller, and Peter Schneider-Kamp.
Sorting Networks: to the End and Back Again. arXiv e-prints, page arXiv:1507.01428, July
2015. 19

[6] Michael Codish, Lúıs Cruz-Filipe, Michael Frank, and Peter Schneider-Kamp. Twenty-Five
Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten). arXiv e-prints,
page arXiv:1405.5754, May 2014. 19

[7] Wikimedia Commons. File:merge sort algorithm diagram.svg — wikimedia commons, the
free media repository, 2020. [Online; accessed 13-June-2022]. 8

[8] Thomas H. Cormen, Charles Eric. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to algorithms, pages 191–194. The MIT Press, 3rd edition, 2009. 5

[9] Sang-Woo Jun, Shuotao Xu, and Arvind. Terabyte sort on fpga-accelerated flash storage. In
2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 17–24, 2017. 1, 9, 21, 22, 34

[10] E.A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and Distributed
Systems, 2(2):223–235, 1991. 12

[11] Alberto Leon-Garcia. Probability, Statistics, and Random Processes for Electrical Engineer-
ing. Prentice Hall, Upper Saddle River, NJ, Verenigde Staten, 2008. 13

[12] Xingyu Liu and Yangdong Deng. Fast radix: A scalable hardware accelerator for parallel
radix sort. In 2014 12th International Conference on Frontiers of Information Technology,
pages 214–219, 2014. 5, 9

[13] NVIDIA Corporation. NVIDIA GeForce GTX 1080. https://international.download.n

vidia.com/geforce-com/international/pdfs/GeForce GTX 1080 Whitepaper FINAL.p

df, 2016. 9

[14] Octotron, CC BY-SA 3.0 ¡https://creativecommons.org/licenses/by-sa/3.0¿, via Wikimedia
Commons. Batcher Odd-Even Mergesort for eight inputs, 04 2009. 21

Large-Block Multi-rate Streaming Sort 37

https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Yehoshua Perl. Better understanding of batcher’s merging networks. Discrete Applied Math-
ematics, 25(3):257–271, 1989. 19, 20

[16] Artjom Rjabov. Hardware-based systems for partial sorting of streaming data. In 2016 15th
Biennial Baltic Electronics Conference (BEC), pages 59–62, 2016. 21

[17] Pawe l Russek and Kazimierz Wiatr. A24: Hardware acceleration of sorting algorithms using
reconfiguration technics. IFAC Proceedings Volumes, 37(20):136–140, 2004. IFAC Workshop
on Programmable Devices and Systems - PDS 2004, Cracow, Poland, November 18-19, 2004.
1, 9

[18] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms for
manycore gpus. In 2009 IEEE International Symposium on Parallel Distributed Processing,
pages 1–10, 2009. 5, 9

[19] Wikipedia contributors. Sorting algorithm — Wikipedia, the free encyclopedia. https:

//en.wikipedia.org/w/index.php?title=Sorting algorithm&oldid=1046859530, 2021.
[Online; accessed 29-September-2021]. 5, 6

[20] Wikipedia contributors. Merge sort — Wikipedia, the free encyclopedia. https://en.wik

ipedia.org/w/index.php?title=Merge sort&oldid=1086155116, 2022. [Online; accessed
13-June-2022]. 7, 8

38 Large-Block Multi-rate Streaming Sort

https://en.wikipedia.org/w/index.php?title=Sorting_algorithm&oldid=1046859530
https://en.wikipedia.org/w/index.php?title=Sorting_algorithm&oldid=1046859530
https://en.wikipedia.org/w/index.php?title=Merge_sort&oldid=1086155116
https://en.wikipedia.org/w/index.php?title=Merge_sort&oldid=1086155116

Appendix A

Flag derivation

(1) A(k) := ak−1 < bP−k ∧ bP−k−1 ≤ ak, for 1 ≤ k ≤ P

(2) B(k) := ak−1 < bP−k ∧ bk−1 ≤ aP−k, for 1 ≤ k ≤ P

(3) ∀i,j [0 ≤ i < j < P : ai ≤ aj ∧ bi ≤ bj]

(4) ¬(a0 ≥ bP−1 ∨ b0 > aP−1)

(5) ¬(a0 ≥ bP−1) ∧ ¬(b0 > aP−1)

(6) a0 < bP−1 ∧ b0 ≤ aP−1

(7) ∀k[1 ≤ k < P : ¬A(k)]

(8) var m : 1 ≤ m ≤ P

(9) ∀j [1 ≤ j < m : B(j)]

{ Case m=1; Definition of B(k) on (6): }

(10) B(1), hence B(m) holds for m = 1

{ Case m > 1, ∀-elim }

(11) B(m− 1)

{ Definition of B(k) on (11): }

(12) a(m−1)−1 < bP−(m−1) ∧ b(m−1)−1 ≤ aP−(m−1)

{ ∀-elim on (7) with k = m− 1 and definition of A(k): }

(13) ¬(a(m−1)−1 < bP−(m−1) ∧ bP−(m−1)−1 ≤ a(m−1))

{ De Morgan: }

(14) ¬(a(m−1)−1 < bP−(m−1)) ∨ ¬(bP−(m−1)−1 ≤ a(m−1))

{ ∨-elim on (12) and (14): }

(15) ¬(bP−(m−1)−1 ≤ a(m−1))

(16) bP−(m−1)−1 > a(m−1)

Large-Block Multi-rate Streaming Sort 39

APPENDIX A. FLAG DERIVATION

(17) am−1 < bP−(m−1)−1

(18) am−1 < bP−m

{ ∀-elim on (7) with k = P − (m− 1) and definition of A(k): }

(19) ¬(a(P−(m−1))−1 < bP−(P−(m−1)) ∧ bP−(P−(m−1))−1 ≤ aP−(m−1))

(20) ¬(aP−m < bm−1 ∧ b(m−1)−1 ≤ aP−(m−1))

(21) ¬(aP−m < bm−1)

(22) aP−m ≥ bm−1

(23) bm−1 ≤ aP−m

{ ∧-intro on (18) and (23): }

(24) am−1 < bP−m ∧ bm−1 ≤ aP−m, hence B(m) holds.

{ For every value of m, we have: }

(25) B(m)

{ =⇒ -intro on (9) and (25): }

(26) ∀j [1 ≤ j < m : B(j)] =⇒ B(m)

{ ∀-intro on (8) and (26): }

(27) ∀m[1 ≤ m ≤ P : ∀j [1 ≤ j < m : B(j)] =⇒ B(m)]

{ Strong induction on (27): }

(28) ∀n[1 ≤ n ≤ P : B(n)]

{ ∀-elim on (28) for n = P and definition of B(k): }

(29) aP−1 < b0 ∧ bP−1 ≤ a0

(30) aP−1 < b0

{ ∀-elim on (3) for i=0, j=P-1: }

(31) a0 ≤ aP−1 ∧ b0 ≤ bP−1

(32) a0 ≤ aP−1 < b0

(33) a0 < b0

(34) bP−1 ≤ a0

(35) b0 ≤ bP−1 ≤ a0

(36) b0 ≤ a0

(37) a0 ≥ b0

(38) ¬(a0 < b0)

{ False-intro on (33) and (38): }

(39) False

40 Large-Block Multi-rate Streaming Sort

APPENDIX A. FLAG DERIVATION

{ ∃-intro on (7) and (39): }

(40) ∃k[1 ≤ k < P : A(k)]

{ ∨-intro on (4) and (40): }

(41) ∃k[1 ≤ k < P : A(k)] ∨ a0 ≥ bP−1 ∨ b0 > aP−1

{ =⇒ -intro on (3) and (41): }

(42) ∀i,j [0 ≤ i < j < P : ai ≤ aj ∧ bi ≤ bj] =⇒

(∃k[1 ≤ k < P : A(k)] ∨ a0 ≥ bP−1 ∨ b0 > aP−1)

Large-Block Multi-rate Streaming Sort 41

Appendix B

Single pass sorting code

42 Large-Block Multi-rate Streaming Sort

In []: import sys
from StaccatoLab import *
import numpy as np

In []: class Split(Node):
 def __init__(self, I=[]):
 super(Split, self).__init__(I=I)
 pass0 = lambda s: Rule(I=(1,), O=(1,0), s=s)
 pass1 = lambda s: Rule(I=(1,), O=(0,1), s=s)
 self.set_fsm([Select([pass0(0), pass1(0)])])
 self.set_fs([lambda x: ((x[0] & 1) ^ (x[1] & 1))])
 self.set_fo([lambda x: (x[0],x[1]//2,x[2]),
 lambda x: (x[0],x[1]//2,x[2])])

class Sel(Node):
 def __init__(self, I=[]):
 super(Sel, self).__init__(I=I)
 self.f= lambda x: x[0] <= x[1]
 pass0 = lambda s: Rule(I=(1,0), O=(1,), s=s)
 pass1 = lambda s: Rule(I=(0,1), O=(1,), s=s)
 self.set_fsm([Select([pass0(0), pass1(0)])])
 self.set_fs([lambda x: 0 if self.f(x) else 1])
 self.set_fo([lambda x: x[0] if self.f(x) else x[1]])

class Merge(Node):
 def __init__(self, I=[], N=2):
 super(Merge, self).__init__(I=[self, self, self, self, I])
 # x[0] - Array token (A/B lists)
 # x[1] - indices a
 # x[2] - indices b
 # x[3] - Cache + len(A) (cache (a,idx), cache (b,idx), len(A))
 # x[4] - Input token

 # len(a) len(b) helper functions
 self.len_a = lambda x: x[3][2]
 self.len_b = lambda x: (N//2+1)-self.len_a(x)

 self.tin = lambda x: (x[4][0], x[4][1]//2, x[4][2])

 # How to do this without concatenate?
 self.replace = lambda a,d,i : (
 np.concatenate([a[:i], [d], a[i+1:]])
)

 # Decide to take from a or b,
 # make sure len(b) > 0 else take a.
 # Otherwise a if a <= b else b
 # True - Take A
 # False - Take B
 self.ft = lambda x: (
 True if self.len_b(x) == 0 else
 False if self.len_a(x) == 0 else
 tuple(x[3][0]) <= tuple(x[3][1])
)

 # Decide to place in a or b
 # True - Place A
 # False - Place B
 self.fp = lambda x: (x[4][1] % 2) == 0

 # Valid b cache?

 self.b_cached = lambda x: self.len_b(x)-(not self.ft(x)) <= 0

 # Get index to replace
 self.idx = lambda x: x[3][0][1] if self.ft(x) else x[3][1][1]

 # FSM to take token from a or b index list
 tapa = lambda s: Rule(I=(1,1,0,1,1), O=(1,1,0,1,1), s=s)
 tapb = lambda s: Rule(I=(1,1,0,1,1), O=(1,0,1,1,1), s=s)
 tbpa = lambda s: Rule(I=(1,0,1,1,1), O=(1,1,0,1,1), s=s)
 tbpb = lambda s: Rule(I=(1,0,1,1,1), O=(1,0,1,1,1), s=s)
 byps = lambda s: Rule(I=(1,0,0,1,1), O=(1,0,0,1,1), s=s)
 empb = lambda s: Rule(I=(1,0,0,1,1), O=(1,1,0,1,1), s=s)
 filb = lambda s: Rule(I=(1,1,0,1,1), O=(1,0,0,1,1), s=s)
 self.set_fsm([Select([tapa(0), tapb(0), tbpa(0), tbpb(0),
 byps(0), empb(0), filb(0)])])
 self.set_fs([lambda x:
 4 if (self.len_a(x) == 1 and self.fp(x) and self.ft(x)) or
 (self.len_b(x) == 1 and not self.fp(x) and not self.ft(x)) else
 5 if (self.len_b(x) == 1 and self.fp(x) and not self.ft(x)) else
 6 if (self.len_b(x) == 0 and not self.fp(x)) else
 2*(not self.ft(x)) + (not self.fp(x))]
)

 # Output functions
 self.set_fo([
 # Next array value
 lambda x: self.replace(x[0], self.tin(x), self.idx(x)),
 # Indices a
 lambda x: self.idx(x),
 # Indices b
 lambda x: self.idx(x),
 # Cache, len(a)
 lambda x: (
 x[3][0] if not self.ft(x) else
 (self.tin(x), self.idx(x)) if self.len_a(x) == 1 else
 (tuple(x[0][x[1]]), x[1]),

 (self.tin(x), self.idx(x)) if
 (self.len_b(x) == 0 and not self.fp(x)) or
 (self.len_b(x) == 1 and not self.fp(x) and not self.ft(x)) else
 x[3][1] if self.ft(x) else
 (tuple(x[0][x[2]]), x[2]),

 self.len_a(x) - self.ft(x) + self.fp(x)
),
 # Output value
 lambda x: x[3][0][0] if self.ft(x) else x[3][1][0]
 # lambda x: tuple(
 # x[0][0] if self.ft(x) else
 # x[0][self.len_a(x)]
 #)
])

class Sort(Subgraph):
 def __init__(self, I=[], N=2):
 super(Sort, self).__init__(I=I)
 self.N = N
 self.set_attributes(label='Sort.'+str(N))
 if N&(N-1) != 0:
 print('N must be a power of 2')
 elif N==2:
 self.spl = Split(I=self.I[0])
 self.sel = Sel(I=[self.spl, self.spl])
 else:

Gsort (Graph) : no errors

spl
selspl!0

spl!1

mrgsrt!0

mrg!0
mrg!1
mrg!2
mrg!3

mrgsrt!0

mrg!0
mrg!1
mrg!2
mrg!3

mrgsrt!0

mrg!0
mrg!1
mrg!2
mrg!3

srpsrt!0src

src!1

mrksrc!0 mrk!1

cnt

snksrp!0

 #cycles real time cpu time #events SDF=N rate=1.000 Hz
 400 400s 1.0s 7192 pause (7ke/cs)

 self.srt = Sort (I=self.I[0], N=N//2)
 self.mrg = Merge(I=self.srt, N=N)
 Conn(self.sel if N==2 else self.mrg, self.O[0])
 self.pop()
 def init(self):
 if self.N>2:
 buff_size = self.N//2+1
 self.mrg.O[0].init(D=1, x=np.array([(0,0,0)]*buff_size))
 self.mrg.O[1].init(D=buff_size-1,
 x=list(range(1,buff_size)))
 self.mrg.O[2].init(D=0, S=buff_size)
 self.mrg.O[3].init(D=1,
 x=(((0,0,0),0), ((0,0,0),-1), buff_size))
 elif self.N==2:
 self.spl.O[0].init(S=3)
 self.spl.O[1].init(S=2)

In []: N=16
BS=N

Gsort = Graph ()
G = Gsort
G.src = SRC (f= lambda x: np.int16(np.random.randint(1, 99)))

G.mrk = Node(I=G.src, fo=[lambda x: x[1]+1,
 lambda x: (x[1]//BS, x[1]%BS, x[0])])
G.cnt = Edge(G.mrk, G.mrk, D=1, x=0)

G.srt = Sort(I=G.mrk, N=N)

G.srp = Node(I=[G.srt], fo=lambda x: x[2])

G.snk = Node(I=[G.srp])

G.build(make_circuit=False)

G.plot_graph(depth=8)

Out[]:

In []: np.random.seed(0)
Gsort.reset()
Gsort.sim(T=400)
Gsort.plot_flow(Edges=Gsort._E+Gsort.srt._E);

In []: G.plot_data(Edges=[Gsort.src.O[0], Gsort.snk.I[0]]);

In []: din = Gsort.src.O[0].data()
dat = Gsort.snk.I[0].data()

latency = 0
for d in dat:
 if (d > 0):
 break
 latency += 1

dat = dat[latency:]
dat = dat[:BS*(len(dat)//BS)]

No errors detected. Output matches sorted input. Checked 23 blocks.

din = din[:len(dat)]

split = [dat[i:i+BS] for i in range(0, len(dat), BS)]
splin = [din[i:i+BS] for i in range(0, len(din), BS)]

print(split)
errors = 0
for i in range(0, len(split)):
 if not np.array_equal(split[i], sorted(splin[i])):
 print('Block', i, 'is not sorted')
 print('Block was', split[i])
 print('expected ', sorted(splin[i]))
 errors += 1

if errors == 0:
 print("No errors detected. Output matches sorted input. Checked",
 len(split), "blocks.")

Appendix C

Multi-rate sorting code

48 Large-Block Multi-rate Streaming Sort

In []: import sys
from StaccatoLab import *
import numpy as np

In []: class Net4(Node):
 def __init__(self, I=[]):
 super(Net4, self).__init__(I=I)
 self.set_attributes(label='net')
 self.con = lambda a,b: ((a,b) if a < b else (b,a))
 self.n0 = lambda x: self.con(x[0], x[1])
 self.n1 = lambda x: self.con(x[2], x[3])
 self.n2 = lambda x: self.con(self.n0(x)[0], self.n1(x)[0])
 self.n3 = lambda x: self.con(self.n0(x)[1], self.n1(x)[1])
 self.n4 = lambda x: self.con(self.n3(x)[0], self.n2(x)[1])

 self.set_fo(lambda x: (
 self.n2(x)[0],
 self.n4(x)[0],
 self.n4(x)[1],
 self.n3(x)[1],
 x[4],
 x[5]
))

In []: class BNet4(Node):
 def __init__(self, I=[]):
 super(BNet4, self).__init__(I=I)
 self.set_attributes(label='bnet')
 self.con = lambda a,b: ((a,b) if a < b else (b,a))
 # self.n0 = lambda x: self.con(x[0], x[1])
 # self.n1 = lambda x: self.con(x[2], x[3])
 # self.n2 = lambda x: self.con(self.n0(x)[0], self.n1(x)[0])
 # self.n3 = lambda x: self.con(self.n0(x)[1], self.n1(x)[1])
 # self.n4 = lambda x: self.con(self.n3(x)[0], self.n2(x)[1])
 self.n0 = lambda x: self.con(x[0], x[2])
 self.n1 = lambda x: self.con(x[1], x[3])
 self.n2 = lambda x: self.con(self.n0(x)[0], self.n1(x)[0])
 self.n3 = lambda x: self.con(self.n0(x)[1], self.n1(x)[1])

 self.set_fo(lambda x: (
 self.n2(x)[0],
 self.n2(x)[1],
 self.n3(x)[0],
 self.n3(x)[1],
 x[4],
 x[5]
))

In []: class Buffer(Node):
 def __init__(self, N=2**10, W=1, I=[], T=None):
 super(Buffer, self).__init__(I=I, T=T)
 self.size = N*W
 self._graph._errors.check(self, self.size, 'size', 'scalar', 'nat')
 self._graph._errors.check(self, W, 'W', 'scalar', 'nat')
 self.W = W
 self.ram= np.zeros(self.size, dtype=np.int16)
 self.a = Edge (self.O[2], self.I[1])
 self.a.init(D=1, x=[self.ram], incremental=True) # initial token=RAM

 self.i = [Edge(self.O[3], self.I[2]), Edge(self.O[4], self.I[3])]
 self.i[0].init(D=N//2, S=N, x=list(range(0,N//2)))
 self.i[1].init(D=N//2+1, S=N, x=list(range(N//2,N)))

 # x[0] - Input
 # x[1] - Read/Write Address
 # x[2] - Indices A
 # x[3] - Indices B
 # x[4] - Feedback

 self.convi = lambda x: (x[0][0], x[0][1], x[0][2],
 x[0][3], x[0][4], x[0][5]//2)

 tapa = Rule(I=[1,0,1,0,1], Of=[1,0,0,1,0], Od=[1,0,1,1,0], s=0)
 tapb = Rule(I=[1,0,0,1,1], Of=[0,1,0,1,0], Od=[0,1,1,1,0], s=0)
 tbpa = Rule(I=[1,0,1,0,1], Of=[1,0,0,0,1], Od=[1,0,1,0,1], s=0)
 tbpb = Rule(I=[1,0,0,1,1], Of=[0,1,0,0,1], Od=[0,1,1,0,1], s=0)
 absorb = Rule(I=[1,0,0,0,0], Of=[0,0,0,0,0], Od=[0,0,0,0,0], s=0)
 self.set_fsm([Select([tapa, tapb, tbpa, tbpb, absorb])])
 self.set_fs([lambda x:
 4 if x[0][0] == 0 else (
 2*((x[0][4] & 1) ^ (x[0][5] & 1)) +
 x[4]
)
])

 self.fin= lambda x: x[2] if x[4] == 0 else x[3]
 self.ro = lambda x: self.fin(x)*W
 self.fh = lambda x: ((False))
 self.fh_m= 'address out of range'
 self.fo =[lambda x: tuple(x[1][x[2]*self.W:(x[2]+1)*self.W]),
 lambda x: tuple(x[1][x[3]*self.W:(x[3]+1)*self.W]),
 # (address, value)
 lambda x: (self.ro(x), self.convi(x)),
 self.fin,
 self.fin
]

 def write(self, a, v, M):
 print('RAM: write: ', a, v)
 M[a:a+self.W]= v
 # print('RAM: write: ', M)
 return M

In []: class Split(Node):
 def __init__(self, I=[]):
 super(Split, self).__init__(I=I)

 take_a = Rule(I=[1], O=[1,0], s=0)
 take_b = Rule(I=[1], O=[0,1], s=0)
 self.fsm.add(0, Select([take_a, take_b]))
 # Switch A and B for each block:
 self.set_fs(lambda x: (x[4] & 1) ^ (x[5] & 1))

 fo = lambda x: (x[0], x[1], x[2], x[3], x[4], x[5]//2)
 self.set_fo([fo, fo])

class Pass(Node):
 def __init__(self, I=[], feedback=False):
 super(Pass, self).__init__(I=I)
 self.M = 4
 self.d = Edge(self.O[1], self.I[2])
 self.d.init(D=1,x=[(self.M,self.M)])

 self.ia = lambda x, i: ((x[2][0]+i)//self.M, (x[2][0]+i)%self.M)
 self.ib = lambda x, i: ((x[2][1]+i)//self.M, (x[2][1]+i)%self.M)

 # Comparing (a3,a2,a1,a0) with (b3,b2,b1,b0)
 # a0 - x[0][self.ia(x,0)[0]][self.ia(x,0)[1]]
 # a1 - x[0][self.ia(x,1)[0]][self.ia(x,1)[1]]
 # a2 - x[0][self.ia(x,2)[0]][self.ia(x,2)[1]]
 # a3 - x[0][self.ia(x,3)[0]][self.ia(x,3)[1]]
 # b0 - x[1][self.ib(x,0)[0]][self.ib(x,0)[1]]
 # b1 - x[1][self.ib(x,1)[0]][self.ib(x,1)[1]]
 # b2 - x[1][self.ib(x,2)[0]][self.ib(x,2)[1]]
 # b3 - x[1][self.ib(x,3)[0]][self.ib(x,3)[1]]

 self.ca = lambda x: (
 0 if (x[1][self.ib(x,3)[0]][4], x[1][self.ib(x,3)[0]][5],
 x[1][self.ib(x,3)[0]][self.ib(x,3)[1]]) <
 (x[0][self.ia(x,0)[0]][4], x[0][self.ia(x,0)[0]][5],
 x[0][self.ia(x,0)[0]][self.ia(x,0)[1]]) else
 4 if (x[0][self.ia(x,3)[0]][4], x[0][self.ia(x,3)[0]][5],
 x[0][self.ia(x,3)[0]][self.ia(x,3)[1]]) <
 (x[1][self.ib(x,0)[0]][4], x[1][self.ib(x,0)[0]][5],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]]) else
 1 if (x[1][self.ib(x,2)[0]][4], x[1][self.ib(x,2)[0]][5],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]]) <
 (x[0][self.ia(x,1)[0]][4], x[0][self.ia(x,1)[0]][5],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]]) else
 3 if (x[0][self.ia(x,2)[0]][4], x[0][self.ia(x,2)[0]][5],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]]) <
 (x[1][self.ib(x,1)[0]][4], x[1][self.ib(x,1)[0]][5],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]]) else
 2
)
 self.cb = lambda x: self.M-self.ca(x)

 cons_a = Rule(I=[1,0,1], O=[1,1], s=0)
 cons_b = Rule(I=[0,1,1], O=[1,1], s=0)
 self.set_fsm([Select([cons_a, cons_b])])

 self.ifs= lambda x: (
 0 if x[2][0] >= self.M else 1
)
 self.fs = self.ifs

 self.fo0 = lambda x: (
 (x[1][self.ib(x,3)[0]][self.ib(x,3)[1]],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 0 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 1 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 2 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],

 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 3 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]],
 x[0][self.ia(x,3)[0]][self.ia(x,3)[1]],
 x[0][self.ia(x,0)[0]][4],
 x[0][self.ia(x,0)[0]][5])
)
 self.fo1 = lambda x: (
 (x[2][0]-self.M if self.ifs(x) == 0 else x[2][0]) + self.ca(x),
 (x[2][1]-self.M if self.ifs(x) == 1 else x[2][1]) + self.cb(x)
)
 if (feedback):
 self.set_fo([self.fo0, self.fo1, self.ifs])
 else:
 self.set_fo([self.fo0, self.fo1])

In []: class MSort(Subgraph):
 def __init__(self, I=[], N=2):
 super(MSort, self).__init__(I=I)
 self.N = N
 self.set_attributes(label='Sort.'+str(N))
 if N&(N-1) != 0:
 print('N must be a power of 2')
 elif N==4:
 self.net = Net4 (I=self.I[0])
 else:
 self.srt = MSort(I=self.I[0], N=N//2)
 self.spl = Split(I=self.srt)
 self.pss = Pass (I=[self.spl, self.spl])
 self.net = BNet4 (I=self.pss)
 Conn(self.net, self.O[0])
 self.pop()
 def init(self):
 if self.N>4:
 self.pss.I[0].init(D=0,S=self.N//4,
 x=[(0,0,0,0,-1,-self.N*2-1),(0,0,0,0,-1,-self.N*2)])
 self.pss.I[1].init(D=0,S=self.N//4,
 x=[(0,0,0,0,-1,-self.N*2-1),(0,0,0,0,-1,-self.N*2)])
 print((self.N//4, self.N//4))

In []: class MBSort(Subgraph):
 def __init__(self, I=[], N=2):
 super(MBSort, self).__init__(I=I)
 self.N = N
 self.M = 4
 self.set_attributes(label='Sort.'+str(N))
 if N&(N-1) != 0:
 print('N must be a power of 2')
 elif N <= 16:
 self.srt = MSort(I=self.I[0], N=N)
 Conn(self.srt, self.O[0])
 else:
 self.srt = MBSort(I=self.I[0], N=N//2)
 self.buf = Buffer(I=self.srt, N=N//self.M+1, W=self.M+2)
 self.pss = Pass(I=[self.buf, self.buf], feedback=True)
 self.net = BNet4(I=self.pss)

(4, 4)
(2, 2)
Gsort (Graph) : no errors

net splsrt!0
pssspl!0

spl!1
pss!1

bnetpss!0 splsrt!0 pssspl!0
spl!1

pss!1

bnetpss!0 bufsrt!0

buf!2
buf!3
buf!4

pss

buf!0

buf!1
pss!2

pss!1

bnetpss!0 snksrt!0

src

src!1

tagsrc!0 tag!0

tag!1

 #cycles real time cpu time #events SDF=N rate=1.000 Hz
 12 12.0s 0.1s 106 pause

 #cycles real time cpu time #events SDF=N rate=1.000 Hz
 4000 4000s 5.9s 79610 pause. (13ke/cs)

 Edge(self.pss.O[2], self.buf)
 Conn(self.net, self.O[0])
 self.pop()
 def init(self):
 if self.N > 16:
 self.pss.I[0].init(D=2,S=2, x=[(0,0,0,0,0,0),(0,0,0,0,0,0),
 (0,0,0,0,0,0),(0,0,0,0,0,0)])
 self.pss.I[1].init(D=2,S=2, x=[(0,0,0,0,0,0),(0,0,0,0,0,0),
 (0,0,0,0,0,0),(0,0,0,0,0,0)])

In []: M=4
N=M*8
BS=N

Gsort = Graph()
G = Gsort
G.src = SRC(f=lambda x: (
 np.int16(np.random.randint(1,99)),
 np.int16(np.random.randint(1,99)),
 np.int16(np.random.randint(1,99)),
 np.int16(np.random.randint(1,99))
))

G.tag = Node(I=G.src, fo=[lambda x: (x[0][0], x[0][1], x[0][2], x[0][3],
 x[1]//(BS//M), x[1]%(BS//M)), lambda x: x[1]+1])
G.tag.d = Edge(G.tag.O[1], G.tag.I[1])
G.tag.d.init(D=1, x=[0])

G.srt = MBSort(I=G.tag, N=N)

G.snk = Node(I=G.srt)
G.build()
G.plot_graph(depth=8)

Out[]:

In []: np.random.seed(0)
Gsort.reset()
Gsort.view(sim=True)
Gsort.sim(T=12)

In []: np.random.seed(0)
Gsort.reset()
Gsort.sim(T=4000)

In []: Gsort.plot_flow();

No errors detected. Output matches sorted input. Checked 494 blocks.

In []: M = 4

din = Gsort.src.O[0].data()
din = [e for s in din for e in s]

dat = Gsort.snk.I[0].data()
dat = [e for s in dat for e in s[:M]]

latency = 0
for d in dat:
 if (d > 0):
 break
 latency += 1

dat = dat[latency:]
dat = dat[:BS*(len(dat)//BS)]
din = din[:len(dat)]

split = [dat[i:i+BS] for i in range(0, len(dat), BS)]
splin = [din[i:i+BS] for i in range(0, len(din), BS)]

print(split)
errors = 0
for i in range(0, len(split)):
 if split[i] != sorted(splin[i]):
 print('Block', i, 'is not sorted')
 print('Block was', split[i])
 print('expected ', sorted(splin[i]))
 errors += 1

if errors == 0:
 print("No errors detected. Output matches sorted input. Checked",
 len(split), "blocks.")

Appendix D

Multi pass sorting code

Large-Block Multi-rate Streaming Sort 55

In []: import sys
import matplotlib as mpl
import matplotlib.pyplot as plt
from StaccatoLab import *
import numpy as np
from pprint import pprint

In []: class Net4(Node):
 def __init__(self, I=[]):
 super(Net4, self).__init__(I=I)
 self.con = lambda a,b: ((a,b) if a < b else (b,a))
 self.n0 = lambda x: self.con(x[0], x[1])
 self.n1 = lambda x: self.con(x[2], x[3])
 self.n2 = lambda x: self.con(self.n0(x)[0], self.n1(x)[0])
 self.n3 = lambda x: self.con(self.n0(x)[1], self.n1(x)[1])
 self.n4 = lambda x: self.con(self.n3(x)[0], self.n2(x)[1])

 self.set_fo(lambda x: (
 self.n2(x)[0],
 self.n4(x)[0],
 self.n4(x)[1],
 self.n3(x)[1],
 x[4],
 x[5]
))

class BNet4(Node):
 def __init__(self, I=[]):
 super(BNet4, self).__init__(I=I)
 self.set_attributes(label='bnet')
 self.con = lambda a,b: ((a,b) if a < b else (b,a))
 self.n0 = lambda x: self.con(x[0], x[2])
 self.n1 = lambda x: self.con(x[1], x[3])
 self.n2 = lambda x: self.con(self.n0(x)[0], self.n1(x)[0])
 self.n3 = lambda x: self.con(self.n0(x)[1], self.n1(x)[1])

 self.set_fo(lambda x: (
 self.n2(x)[0],
 self.n2(x)[1],
 self.n3(x)[0],
 self.n3(x)[1],
 x[4],
 x[5]
))

class Pass(Node):
 def __init__(self, I=[], feedback=False):
 super(Pass, self).__init__(I=I)
 self.M = 4
 self.d = Edge(self.O[1], self.I[2])
 self.d.init(D=1,x=[(self.M,self.M)])

 self.ia = lambda x, i: ((x[2][0]+i)//self.M, (x[2][0]+i)%self.M)
 self.ib = lambda x, i: ((x[2][1]+i)//self.M, (x[2][1]+i)%self.M)

 # Comparing (a3,a2,a1,a0) with (b3,b2,b1,b0)
 # a0 - x[0][self.ia(x,0)[0]][self.ia(x,0)[1]]
 # a1 - x[0][self.ia(x,1)[0]][self.ia(x,1)[1]]
 # a2 - x[0][self.ia(x,2)[0]][self.ia(x,2)[1]]
 # a3 - x[0][self.ia(x,3)[0]][self.ia(x,3)[1]]
 # b0 - x[1][self.ib(x,0)[0]][self.ib(x,0)[1]]

 # b1 - x[1][self.ib(x,1)[0]][self.ib(x,1)[1]]
 # b2 - x[1][self.ib(x,2)[0]][self.ib(x,2)[1]]
 # b3 - x[1][self.ib(x,3)[0]][self.ib(x,3)[1]]

 self.ca = lambda x: (
 0 if (x[1][self.ib(x,3)[0]][4], x[1][self.ib(x,3)[0]][5],
 x[1][self.ib(x,3)[0]][self.ib(x,3)[1]]) <
 (x[0][self.ia(x,0)[0]][4], x[0][self.ia(x,0)[0]][5],
 x[0][self.ia(x,0)[0]][self.ia(x,0)[1]]) else
 4 if (x[0][self.ia(x,3)[0]][4], x[0][self.ia(x,3)[0]][5],
 x[0][self.ia(x,3)[0]][self.ia(x,3)[1]]) <
 (x[1][self.ib(x,0)[0]][4], x[1][self.ib(x,0)[0]][5],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]]) else
 1 if (x[1][self.ib(x,2)[0]][4], x[1][self.ib(x,2)[0]][5],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]]) <
 (x[0][self.ia(x,1)[0]][4], x[0][self.ia(x,1)[0]][5],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]]) else
 3 if (x[0][self.ia(x,2)[0]][4], x[0][self.ia(x,2)[0]][5],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]]) <
 (x[1][self.ib(x,1)[0]][4], x[1][self.ib(x,1)[0]][5],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]]) else
 2
)
 self.cb = lambda x: self.M-self.ca(x)

 cons_a = Rule(I=[1,0,1], O=[1,1], s=0)
 cons_b = Rule(I=[0,1,1], O=[1,1], s=0)
 self.set_fsm([Select([cons_a, cons_b])])

 self.ifs= lambda x: (
 0 if x[2][0] >= self.M else 1
)
 self.fs = self.ifs

 self.fo0 = lambda x: (
 (x[1][self.ib(x,3)[0]][self.ib(x,3)[1]],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 0 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[1][self.ib(x,2)[0]][self.ib(x,2)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 1 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[1][self.ib(x,1)[0]][self.ib(x,1)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 2 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]],
 x[1][self.ib(x,0)[0]][self.ib(x,0)[1]],
 x[1][self.ib(x,0)[0]][4],
 x[1][self.ib(x,0)[0]][5]) if self.ca(x) == 3 else
 (x[0][self.ia(x,0)[0]][self.ia(x,0)[1]],
 x[0][self.ia(x,1)[0]][self.ia(x,1)[1]],
 x[0][self.ia(x,2)[0]][self.ia(x,2)[1]],
 x[0][self.ia(x,3)[0]][self.ia(x,3)[1]],
 x[0][self.ia(x,0)[0]][4],

 x[0][self.ia(x,0)[0]][5])
)
 self.fo1 = lambda x: (
 (x[2][0]-self.M if self.ifs(x) == 0 else x[2][0]) + self.ca(x),
 (x[2][1]-self.M if self.ifs(x) == 1 else x[2][1]) + self.cb(x)
)
 if (feedback):
 self.set_fo([self.fo0, self.fo1, self.ifs])
 else:
 self.set_fo([self.fo0, self.fo1])

In []: class KMergeP4(Subgraph):
 def __init__(self, I=[], k=2):
 super(KMergeP4, self).__init__(I=I)
 self.k = k
 self.set_attributes(label='Mrg.'+str(k))

 assert len(I)==k
 if k&(k-1) != 0:
 print('k must be a power of 2')
 elif k<2:
 print('k must be greater than or be equal to 2')
 elif k==2:
 self.pss = Pass(I=self.I)
 else:
 il = [self.I[i] for i in range(0,k//2)]
 ir = [self.I[i] for i in range(k//2,k)]
 self.mrgl = KMergeP4(I=il, k=self.k//2)
 self.mrgr = KMergeP4(I=ir, k=self.k//2)
 self.pss = Pass(I=[self.mrgl, self.mrgr])

 self.net = BNet4(I=self.pss)
 Conn(self.net, self.O[0])
 self.pop()
 def init(self):
 self.pss.I[0].init(D=0,S=1, x=[(0,0,0,0,0,0),(0,0,0,0,0,0)])
 self.pss.I[1].init(D=0,S=1, x=[(0,0,0,0,0,0),(0,0,0,0,0,0)])

In []: class Buffer(Node):
 def __init__(self, N=2**10, W=1, I=[], T=None):
 super(Buffer, self).__init__(I=I, T=T)
 self.size = N*W
 self._graph._errors.check(self, self.size, 'size', 'scalar', 'nat')
 self._graph._errors.check(self, W, 'W', 'scalar', 'nat')
 self.W = W
 self.ram= np.zeros(self.size, dtype=np.int16)
 self.a = Edge (self.O[2], self.I[1])
 self.a.init(D=1, x=[self.ram], incremental=True) # initial token=RAM
 self.i = [Edge(self.O[3], self.I[2]), Edge(self.O[4], self.I[3])]
 self.i[0].init(D=N//2, S=N, x=list(range(0,N//2)))
 self.i[1].init(D=N//2+1, S=N, x=list(range(N//2,N)))

 # x[0] - Input
 # x[1] - Read/Write Address
 # x[2] - Indices A
 # x[3] - Indices B
 # x[4] - Feedback

 self.convi = lambda x: (x[0][0], x[0][1], x[0][2],
 x[0][3], x[0][4], x[0][5]//2)

 tapa = Rule(I=[1,0,1,0,1], Of=[1,0,0,1,0], Od=[1,0,1,1,0], s=0)
 tapb = Rule(I=[1,0,0,1,1], Of=[0,1,0,1,0], Od=[0,1,1,1,0], s=0)
 tbpa = Rule(I=[1,0,1,0,1], Of=[1,0,0,0,1], Od=[1,0,1,0,1], s=0)
 tbpb = Rule(I=[1,0,0,1,1], Of=[0,1,0,0,1], Od=[0,1,1,0,1], s=0)
 absorb = Rule(I=[1,0,0,0,0], Of=[0,0,0,0,0], Od=[0,0,0,0,0], s=0)
 self.set_fsm([Select([tapa, tapb, tbpa, tbpb, absorb])])
 self.set_fs([lambda x:
 4 if x[0][0] == 0 else (
 2*((x[0][4] & 1) ^ (x[0][5] & 1)) +
 x[4]
)
])

 self.fin= lambda x: x[2] if x[4] == 0 else x[3]
 self.ro = lambda x: self.fin(x)*W
 self.fh = lambda x: ((False))
 self.fh_m= 'address out of range'
 self.fo =[lambda x: tuple(x[1][x[2]*self.W:(x[2]+1)*self.W]),
 lambda x: tuple(x[1][x[3]*self.W:(x[3]+1)*self.W]),
 # (address, value)
 lambda x: (self.ro(x), self.convi(x)),
 self.fin,
 self.fin
]

 def write(self, a, v, M):
 print('RAM: write: ', a, v)
 M[a:a+self.W]= v
 # print('RAM: write: ', M)
 return M

In []: class Split(Node):
 def __init__(self, I=[]):
 super(Split, self).__init__(I=I)

 take_a = Rule(I=[1], O=[1,0], s=0)
 take_b = Rule(I=[1], O=[0,1], s=0)
 self.fsm.add(0, Select([take_a, take_b]))
 # Switch A and B for each block:
 self.set_fs(lambda x: (x[4] & 1) ^ (x[5] & 1))

 fo = lambda x: (x[0], x[1], x[2], x[3], x[4], x[5]//2)
 self.set_fo([fo, fo])

In []: class MSort(Subgraph):
 def __init__(self, I=[], N=2):
 super(MSort, self).__init__(I=I)
 self.N = N
 self.set_attributes(label='Sort.'+str(N))
 if N&(N-1) != 0:
 print('N must be a power of 2')
 elif N==4:
 self.net = Net4 (I=self.I[0])
 else:
 self.srt = MSort(I=self.I[0], N=N//2)
 self.spl = Split(I=self.srt)
 self.pss = Pass (I=[self.spl, self.spl])
 self.net = BNet4 (I=self.pss)
 Conn(self.net, self.O[0])
 self.pop()
 def init(self):

 if self.N>4:
 self.pss.I[0].init(D=0,S=self.N//4,
 x=[(0,0,0,0,-1,-self.N*2-1),(0,0,0,0,-1,-self.N*2)])
 self.pss.I[1].init(D=0,S=self.N//4,
 x=[(0,0,0,0,-1,-self.N*2-1),(0,0,0,0,-1,-self.N*2)])

class MBSort(Subgraph):
 def __init__(self, I=[], N=2):
 super(MBSort, self).__init__(I=I)
 self.N = N
 self.M = 4
 self.set_attributes(label='Sort.'+str(N))
 if N&(N-1) != 0:
 print('N must be a power of 2')
 elif N <= 16:
 self.srt = MSort(I=self.I[0], N=N)
 Conn(self.srt, self.O[0])
 else:
 self.srt = MBSort(I=self.I[0], N=N//2)
 self.buf = Buffer(I=self.srt, N=N//self.M+1, W=self.M+2)
 self.pss = Pass(I=[self.buf, self.buf], feedback=True)
 self.net = BNet4(I=self.pss)
 Edge(self.pss.O[2], self.buf)
 Conn(self.net, self.O[0])
 self.pop()
 def init(self):
 if self.N > 16:
 self.pss.I[0].init(D=2,S=2, x=[(0,0,0,0,0,0),(0,0,0,0,0,0),
 (0,0,0,0,0,0),(0,0,0,0,0,0)])
 self.pss.I[1].init(D=2,S=2, x=[(0,0,0,0,0,0),(0,0,0,0,0,0),
 (0,0,0,0,0,0),(0,0,0,0,0,0)])

In []: class Signal(Node):
 def __init__(self, I=[]):
 super(Signal, self).__init__(I=I)
 self.set_fsm([Choice([
 Rule(I=[1], O=[1,1], s=0),
 Rule(I=[0], O=[0,1], s=0),
], round_robin=False)])
 self.set_fo([lambda x: x, lambda x, r: 1-r])

class Count(Node):
 def __init__(self, S, I=[]):
 super(Count, self).__init__(I=I)
 self.sig = S
 self.s=Edge(self.O[1], self.I[2])
 self.set_fo([lambda x: 1, lambda x: x[2]+x[0]-x[1]])

 r_empty = Rule(I=(1,1,1), O=(1,1))
 r_full = Rule(I=(1,1,1), O=(0,1))
 self.set_fsm([Select([r_full, r_empty])])
 self.fs = lambda x: x[2] <= self.sig

 def init(self):
 self.s.init(D=1, x=[0])

class ResetEvent(Node):
 def __init__(self, C, R, I=[]):
 super(ResetEvent, self).__init__(I=I)
 self.C = C
 self.R = R
 Edge(self.O[1], self.I[1])
 self.set_fsm([

 Select([
 Rule(I=[1,1], O=[0,1]),
 Rule(I=[1,1], O=[1,1]),
])
])
 self.fs = lambda x: x[1]>=self.C
 self.fo = [
 lambda x: 1,
 lambda x, r: x[0] if r else (x[1]+x[0])
]
 def init(self):
 self.I[1].init(D=1, x=self.C-self.R)

class EmptyEvent(Node):
 def __init__(self, I=[]):
 super(EmptyEvent, self).__init__(I=I)
 # I = [Buffer empty, Finished filling event]
 # O = [Empty event]

 self.set_fsm([
 Choice([# Full state
 Rule(I=(1,1), O=(1,), s=1), # Send empty signal
 Rule(I=(1,0), O=(1,), s=1), # Send empty signal
 Rule(I=(0,1), O=(0,), s=0), # Still full, consume done filling event
], round_robin=False),
 Choice([# Empty state
 Rule(I=(1,1), O=(1,), s=1), # Still empty, send empty signal
 Rule(I=(1,0), O=(0,), s=1), # Do nothing
 Rule(I=(0,1), O=(0,), s=0), # Now full
], round_robin=False)
])
 self.set_fo([lambda x: 1])

class CBuffer(Subgraph):
 def __init__(self, N, C, R, I=[], S=0):
 super(CBuffer, self).__init__(I=I)
 self.N = N
 self.sig = N//2 if S == 0 else S

 self.first = Signal(I=self.I[0])
 self.second = Signal(I=self.first.O[0])
 self.sdel = Node(I=self.second.O[1])
 self.spl = Node(I=self.first.O[1])
 self.count = Count(I=[self.spl, self.sdel], S=self.sig)
 self.revt = ResetEvent(I=self.spl, C=C, R=R)
 self.evt = EmptyEvent(I=[self.count, self.revt])
 Conn(self.second.O[0], self.O[0])
 Conn(self.evt, self.O[1])
 def init(self):
 self.second.I[0].init(D=0, S=self.N)

In []: class BSwitch(Node):
 def __init__(self, I=[], C=4):
 super(BSwitch, self).__init__(I=I)
 self.c = C

 self.set_fsm([
 Choice([
 Rule(I=(1,0), O=(1,0,0), s=1),
 Rule(I=(0,1), O=(0,1,1), s=2)
], round_robin=False),
 Repeat(C-1, iter=Rule(I=(1,0), O=(1,0,0), s=1),
 exit=Rule(I=(1,0), O=(1,0,0), s=0)),

 Repeat(C-1, iter=Rule(I=(0,1), O=(0,1,1), s=2),
 exit=Rule(I=(0,1), O=(0,1,1), s=0))
])

 self.fo=[
 lambda x: x[0],
 lambda x: x[1][0],
 lambda x: x[1][1]
]

In []: class MinSel(Node):
 def __init__(self, I=[]):
 super(MinSel, self).__init__(I=I)
 self.k = len(I)
 Edge(self.O[1], self.I[self.k])

 self.set_fsm([

])

 self.fo = [
 lambda x: x[self.k][2],
 lambda x: (
 (x[self.k][0]+1)%self.k,
 (x[0],0) if x[self.k][0] == 0 else
 (x[x[self.k][0]], x[self.k][0]) if x[x[self.k][0]] < x[self.k][1][0] else
 x[self.k][1],
 x[self.k][1][1] if x[self.k][0] == 0 else x[self.k][2]
)
]
 def init(self):
 self.O[1].init(D=1, x=(0,(0,0),0))

class AddrShift(Node):
 def __init__(self, N, I=[]):
 super(AddrShift, self).__init__(I=I)
 self.k = len(I)
 rules = []
 for i in range(0,k):
 r_in = [0,]*self.k
 r_in[i] = 1
 rules += [Rule(I=r_in, O=(1,))]
 self.set_fsm([Choice(rules)])
 self.fo=lambda x,r: (r*N+x[r][0], x[r][1])

class ReadBK(Node):
 def __init__(self, N, M, C, I=[]):
 super(ReadBK, self).__init__(I=I)
 self.offset = C*M
 self.pages = N//M//C
 Edge(self.O[2], self.I[2])

 # I = [evt, w_fin_evt, self_bk]
 # O = [load, full_evt, self_bk]

 self.set_fsm([
 Select([# All pages read
 Rule(I=(1,1,1), O=(1,0,1), s=1)
]),
 Select([# Ready to read
 Rule(I=(1,0,1), O=(1,0,1), s=1),
 Rule(I=(1,0,1), O=(1,1,1), s=0),
])

])
 self.fs = [lambda x: 0, lambda x: x[2][0] == self.pages-1]

 self.fo = [
 lambda x: (x[2][0]*self.offset, x[2][1]),
 lambda x: 1,
 lambda x,r: (0 if r == 1 else x[2][0]+1, x[2][1]+r)
]
 def init(self):
 self.I[2].init(D=1, x=[(0,1)])

In []: class WriteController(Node):
 def __init__(self, N, M, L, I=[]):
 super(WriteController, self).__init__(I=I)
 Edge(self.O[2], self.I[2])
 Edge(self.O[3], self.I[3])

 # I = [data, empty block, self, self fsmcnt]
 # O = [data, full block, self, self fsmcnt]

 self.set_fsm([
 Select([
 Rule(I=(1,1,1,1), O=(1,0,1,1)),
 Rule(I=(1,0,0,1), O=(1,0,0,1)),
 Rule(I=(1,0,0,1), O=(1,1,0,1))
])
])
 self.fs = lambda x: 0 if x[3] == 0 else 2 if x[3] == N//M-L else 1

 self.fo = [
 lambda x: (N*(x[1] if x[3]==0 else x[2])+M*x[3],
 (x[0][0],x[0][1],x[0][2],x[0][3])),
 lambda x: x[2],
 lambda x: x[1],
 lambda x: (x[3]+1) % (N//M),
]

 def init(self):
 self.O[2].init(D=1, x=0)
 self.O[3].init(D=1, x=0)

class ReadDistribution(Node):
 def __init__(self, k, I=[]):
 super(ReadDistribution, self).__init__(I=I)
 rules = []
 for i in range(0, k):
 r_o = [0]*k
 r_o[i] = 1
 rules += [Rule(I=[1,1], O=r_o)]
 self.set_fsm([Select(rules)])
 self.fs = [lambda x: x[1][0]]
 self.fo = [lambda x: (x[0][0], x[0][1], x[0][2], x[0][3], x[1][1], 0)]*k

class EventDistribution(Node):
 def __init__(self, k, I=[]):
 super(EventDistribution, self).__init__(I=I)
 self.set_fsm([
 Repeat(k, iter=Rule(I=[1], O=[0]*k), exit=Rule(I=[1], O=[1]*k, s=0))
])

class EventMerge(Node):
 def __init__(self, I=[], k=0):
 super(EventMerge, self).__init__(I=I)

 self.k = len(I) if k == 0 else k
 rules = []
 for i in range(0,k):
 r_in = [0,]*self.k
 r_in[i] = 1
 rules += [Rule(I=r_in, O=(1,))]
 self.set_fsm([Choice(rules, round_robin=False)])
 self.fo=lambda x,r: r

In []: # Buffer size calculation
def b(K, C, L):
 if K == 2:
 return 2*(C+L)
 else:
 return K*(b(K-1,C,L)+C+L)/(K-1)

def bs(K,C,L):
 return b(K,C,L)/K+C+L

In []: C=16 # Page block size
k=4 # Merge tree width
M=4 # Sorter parallelism
N=M*512 # Maximum streaming sort size
BS=N # Block size <= N

Gsort = Graph()
G = Gsort
G.src0 = SRC(f=lambda x: (
 np.int16(np.random.randint(1,999)),
 np.int16(np.random.randint(1,999)),
 np.int16(np.random.randint(1,999)),
 np.int16(np.random.randint(1,999))
))

G.tag0 = Node(I=G.src0, fo=[
 lambda x: (x[0][0], x[0][1], x[0][2], x[0][3], x[1]//(BS//M), x[1]%(BS//M)),
 lambda x: x[1]+1])
G.tag0.d = Edge(G.tag0.O[1], G.tag0.I[1])
G.tag0.d.init(D=1, x=[0])

G.srt0 = MBSort(I=G.tag0, N=N)

G.filt = Node(I=G.srt0)
G.filt.set_fsm([Select([
 Rule(I=(1,), O=(1,)),
 Rule(I=(1,), O=(0,))
])
])
G.filt.fs = lambda x: x[0] == 0

G.rfin = EventMerge(k=k)
G.del0 = Node(I=G.rfin) # add 1 cycle delay to this signal
G.wcnt = WriteController(I=[G.filt, G.del0], N=N, M=M, L=4)
G.wcnt.I[1].init(D=k, x=list(range(0,k)))

G.trans = LM(L=C, fo=[lambda x, r: x[0]+r*M, lambda x: (x[0]//N, x[1])])

G.switch = BSwitch(I=[G.trans,G.wcnt], C=N//M*k)

G.dram = RAM(I=[G.switch, G.switch, G.switch], size=N*k, W=M)

Gsort (Graph) : no errors

src0

src0!1

tag0src0!0

tag0!1

Sort
.2048

tag0!0 filt wcntfilt!0
rfin

del0

rfin!0

del0!0

wcnt!2
wcnt!3

switch

wcnt!0

bkdstwcnt!1

trans

trans!0
16

rdst

trans!1
16

dram

switch!0
switch!1
switch!2

dram!1

dram!0

buff
[0]

rdst!0

buff
[1]

rdst!1

buff
[2]

rdst!2

buff
[3]

rdst!3

rbk
[0]

bkdst!0

rbk
[1]

bkdst!1

rbk
[2]

bkdst!2
rbk
[3]

bkdst!3

rbk[0]!1

rbk[0]!2

a_sft

rbk[0]!0

rbk[1]!1

rbk[1]!2

rbk[1]!0

rbk[2]!1

rbk[2]!2

rbk[2]!0

rbk[3]!1

rbk[3]!2

rbk[3]!0

a_sft!0

1

snk

srt0!0

buff[0]!1

Mrg
.4

buff[0]!0

buff[1]!1

buff[1]!0

buff[2]!1

buff[2]!0

buff[3]!1

buff[3]!0
mrg!0

 #cycles real time cpu time #events SDF=N rate=1.000 Hz
 600 600s 3.3s 47553 pause (14ke/cs)

 #cycles real time cpu time #events SDF=N rate=1.000 Hz
 2400 2400s 13.6s 223978
 4000 4000s 24.1s 336269
 6100 6100s 34.1s 479351
 8100 8100s 44.5s 631305
 10300 10300s 55.0s 783919
 12100 12100s 65.2s 922245
 14300 14300s 75.5s 1070068

G.rdst = ReadDistribution(I=[G.dram, G.trans], k=k)
G.rdst.I[1].init(S=10)

latency = 8
G.buff = [CBuffer(I=G.rdst, N=math.ceil(bs(k,C,latency)),
 C=C, R=C-latency, S=C-1) for i in range(0,k)]
G.mrg = KMergeP4(I=G.buff, k=k)

G.bkdst = EventDistribution(I=G.wcnt.O[1], k=k)
G.rbk = [ReadBK(I=[G.buff[i], G.bkdst], N=N, M=M, C=C) for i in range(0,k)]

G.a_sft = AddrShift(I=G.rbk, N=N)
Edge(G.a_sft, G.trans, S=k-1)

[Edge(G.rbk[i], G.rfin) for i in range (0,k)]

G.snk = Node(I=G.mrg)

G.build()
G.plot_graph()

Out[]:

In []: np.random.seed(0)
G.reset()
G.view(sim=True)
G.sim(T=220)
G.sim(T=600)
G.sim(T=1000)
G.sim(T=3890)
G.sim(T=16050)

In []: T=40000
G.sim(T=T)

 16300 16300s 85.7s 1222620
 18400 18400s 95.8s 1366206
 20300 20300s 105.9s 1514181
 22500 22500s 116.0s 1662267
 24700 24700s 126.2s 1823093
 26800 26800s 136.3s 1977562
 29000 29000s 146.6s 2127322
 31000 31000s 156.6s 2283033
 33200 33200s 166.8s 2426855
 35200 35200s 177.2s 2587838
 37400 37400s 187.4s 2726828
 39400 39400s 197.8s 2893635
 40000 40000s 203.9s 2953569 pause (14ke/cs)

In []: G.plot_flow(Edges=[Gsort.src0.O, Gsort.switch.O, Gsort.rdst.O, Gsort.snk.I]);

In []: din = Gsort.src0.O[0].data()
din = [e for s in din for e in s]

dat = Gsort.snk.I[0].data()
dat = [e for s in dat for e in s[:M]]

latency = 0
for d in dat:
 if (d > 0):
 break
 latency += 1

dat = dat[latency:]
dat = dat[:k*BS*(len(dat)//(k*BS))]
din = din[:len(dat)]

split = [dat[i:i+BS*k] for i in range(0, len(dat), k*BS)]
splin = [din[i:i+BS*k] for i in range(0, len(din), k*BS)]

print(split)
errors = 0
for i in range(0, len(split)):

No errors detected. Output matches sorted input. Checked 8 blocks.

[29, 27, 27, 30]

 if split[i] != sorted(splin[i]):
 print('Block', i, 'is not sorted')
 print('Block was', split[i])
 print('expected ', sorted(splin[i]))
 errors += 1

if errors == 0:
 print("No errors detected. Output matches sorted input. Checked",
 len(split), "blocks.")

In []: max_lines = 1
buff_fullness = [Gsort.buff[i].count.O[1].data() for i in range(0,k)]
print([max(buff_fullness[i]) for i in range(0,k)])
[plt.plot(buff_fullness[i][9000:18000]) for i in range(0,min(k,max_lines))];

	Contents
	List of Figures
	List of Tables
	Introduction
	Background information
	Dataflow
	Sorting definition
	Batch sorting
	Streaming sort
	Dataflow rate
	Throughput
	Latency
	Sorting algorithms

	Merge sort

	Existing research
	Problem description
	Single pass sorting
	Baseline
	Caching
	Memory usage
	Removing slack
	Adding indexing

	Variable block sizes
	Implementation

	Multi-rate sorting
	Sorting networks
	Parallel sorting
	Design
	Design 1 (Feedback loop)
	Design 2 (Min select)

	Implementation
	Comparison
	Results

	Multi pass sorting
	K-way merge
	Design
	Buffer sizing
	Implementation
	StaccatoLab
	Larger implementations
	Results

	Improvements
	Conclusions
	Bibliography
	Appendix
	Flag derivation
	Single pass sorting code
	Multi-rate sorting code
	Multi pass sorting code

