
 Eindhoven University of Technology

MASTER

Experimental Analysis of Algorithms for the Dynamic Graph Coloring Problem

Theunis, Menno

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/31cd2a3d-3a97-486e-821c-fa5a8f535f83

Department of Mathematics and Computer Science
Algorithms, Geometry & Applications

Experimental Analysis of Algorithms for the Dynamic
Graph Coloring Problem

Master’s thesis

Menno Theunis

25-07-2022

Supervision:
Marcel Roeloffzen

Assessment committee:
Marcel Roeloffzen
Wouter Meulemans
Yanja Dajsuren

Credits: 30

This is a public Master’s thesis.

This Master’s thesis has been carried out in accordance with the rules of the TU/e Code
of Scientific Conduct.

Abstract

This thesis focuses on the dynamic graph coloring problem, a dynamic variant based
on the well-researched graph coloring problem. This variant of the problem not only
considers the number of colors used in the coloring for a graph, but also how many
nodes in this graph need to change their color when the graph is changed. The balance
between these two measures of quality, as well as running time, creates an inherent trade-
off, in which algorithms solving this problem often only focus on one or the other. A
variety of such algorithms already exist and are compared, as well as improved upon, in
this thesis. Each of these algorithms uses different variables to measure its effectiveness,
making it difficult to compare their advantages and disadvantages. Finding the right
option for a practical application is thus unnecessarily difficult. By implementing the
different algorithms and comparing them experimentally, we get a better insight of the
strong and weak points of these algorithms. Using this knowledge we propose two new
improved variants of these algorithms, obtained by combining aspects of the existing
ones. We find that this approach of combining existing algorithms with different strong
points often yields superior results and allows for a more versatile trade-off within the
algorithm, making it suitable for a broader range of practical applications.

i

Contents

1 Introduction 1
1.1 Background and motivation . 1
1.2 Contributions and organization . 3
1.3 Related work . 3

2 Preliminaries 5

3 Introduction to the Algorithms 8

4 Implementation Details 10
4.1 Static Greedy Algorithm . 10
4.2 Random Warm-Up . 10
4.3 Small- and Big-Bucket Algorithms . 12
4.4 Static-Dynamic Algorithm . 14
4.5 DC-Orient . 16

5 Additional Algorithms 19
5.1 Static-Simple . 19
5.2 DC-Simple . 20

6 Experiments 21
6.1 Experiment Parameters . 23
6.2 General Observations . 24
6.3 Small vs. Large graphs . 27
6.4 Constant Update Stream . 33
6.5 Degree Variation . 35
6.6 Update Spread . 39
6.7 Reddit Dataset . 42

7 Conclusion 45

8 Future Work 47

Appendices 50

ii

A Comparison Tables 51
A.1 Random Warm-Up Version Comparison 51
A.2 Static-Dynamic Version Comparison . 52
A.3 DC-Orient Version Comparison . 53
A.4 DC-Simple Version Comparison . 54
A.5 Parameter Comparison . 55

B Pseudocode

iii

Chapter 1

Introduction

1.1 Background and motivation

The graph coloring problem is one of the most well known problems in computer science
and combinatorics. The aim of this problem is to find a way of coloring some graph G
such that no two adjacent elements have the same color. There are many variations of
this problem, some of which consider different elements to color. The vertex coloring
problem considers the coloring of the graph’s vertices, only disallowing two vertices to
have the same color if they are connected by an edge. The edge coloring problem, on
the other hand, considers edges with colors and is restricted by whether two edges are
connected to the same vertex or not. Both of these graph coloring problems can be
extended to a weighted variant, where each element is assigned more than one color,
none of which may be the same as any of the colors occupied by another connected
element. The two problems can also be combined into the total graph coloring problem,
in which both edges and vertices are assigned a color.

Regardless of the variation, one aspect generally remains the same: the number of
colors used to color the graph in a valid manner is required to be as low as possible. To
this extend, various goals exist when dealing with the graph coloring problem. Some
approaches focus on finding the smallest number of colors the graph can be colored with,
called the chromatic number, whereas other approaches attempt to find out whether or
not a graph can be colored with a predefined number of colors.

Both of these problems have, however, been shown to be NP-hard, meaning there is
no polynomial time algorithm available that solves it exactly. It is therefore that many
research papers have been written about heuristic algorithms for the graph coloring
problem, allowing some practical, if not exact, approaches for finding valid colorings
with relatively few colors. These heuristics can be split into two categories: those that
pre-order the vertices before coloring them according to this order and those that do not
pre-order the vertices but rather decide which vertex to color next based on the partial
coloring already created.

The graph coloring problem is interesting because it can be used to model sev-
eral real-world situations, usually by following the general structure in which vertices
represent items of interest, edges represent a binary relation between these items and

1

colors represent available resources. A few examples of real-world situations that can
be modeled this way are timetable scheduling and frequency assignment. In timetable
scheduling, for lectures at a university for example, vertices represent lectures, colors
represent timeslots and edges are present between two vertices only if the lectures they
represent are given by the same lecturers. When this graph is colored according to
the rules of the graph coloring problem, lectures given by the same lecturer are thus
assigned a different color and will not be scheduled into the same timeslot. Finding
a coloring with the least amount of colors allows the schedule to use as few timeslots
as possible. The frequency assignment case works in a similar manner, where vertices
represent customers using a network, colors represent available frequencies and edges
are present only if two customers are within a certain distance of each other, in order to
avoid interference. The graph coloring problem, in it’s various forms, can thus be used
to solve various real-world problems.

While the majority of the research performed on this problem focuses on this static
situation of coloring an entire graph from scratch. Other varieties have more recently
come into focus that solve a related problem, but allow for different real-world situations
to be modeled. Two such alternatives are the online, or streaming, graph coloring
problem and the dynamic graph coloring problem. The online variant poses the problem
of coloring a graph incrementally. The graph is updated over time by repeatedly adding
a vertex and its edges to the vertices already present. A coloring is thus only a snapshot
of one particular moment. Once a vertex has been colored in the online variation of the
graph coloring problem, the color is fixed and cannot be changed. The dynamic graph
coloring problem, set in a somewhat similar environment, where updates can consist
of additions or removals of vertices or edges, differs in the way that it does allow for
vertices to change color after already being assigned one during a previous update step,
which allows the total number of colors required to be lowered by recoloring already
existing vertices to a more optimal coloring. The dynamic variation still aims to keep
these so called recolors to a minimum however, since changing the color of a vertex could
have a high cost in the corresponding real-world problem. This thus creates a trade-off
between the number of colors used and the number of recolors required. Depending
on the situation the algorithms are applied in, recoloring vertices may or may not be
possible and its cost might differ, making the choice between the streaming or dynamic
variation and a preference for number of colors or number of recolors highly situational.

In this thesis, we will take a closer look at the trade-off presented by the dynamic
graph coloring problem. We will do so in the context of unweighted vertex coloring,
such that each vertex is assigned a color and edges are not. We believe this variation
of the graph coloring problem is especially interesting in current times, where networks
and data are constantly evolving to reflect the present situation. The dynamic graph
coloring problem allows us the luxury of changing a vertex’ color in a later update, even
after it had already been assigned one, a welcome property when dealing with large
ever-changing graphs.

Even though multiple approaches have already been proposed to efficiently solve this
dynamic graph coloring problem, it remains unclear which one of them is best used in

2

which situation. The information provided about their performance are mostly limited
to theoretical amortized bounds on running time, recolors and total number of colors
used, and oftentimes these bounds include variables specific to each approach, making
it difficult to compare them to each other. In this work we summarize the most popular
approaches to solve the dynamic graph coloring problem and compare their effectiveness
and trade-offs by running multiple experiments. We also propose two competitive new
algorithms created by combining the existing approaches.

1.2 Contributions and organization

The main contributions this work provides are a clear comparison of the existing algo-
rithms solving the dynamic graph coloring problem and the two new combination al-
gorithms static-simple and DC-Simple. The general comparison of the algorithms aims
at stimulating further research into different algorithms and into when each variation
should be used. Currently it is difficult to find the correct algorithm to use for a project,
since the papers introducing them do not clearly state the advantages and disadvantages
as compared to the other available algorithms. In comparing these algorithms and run-
ning the experiments, the ideas for two new algorithms presented themselves, formed
by combining some of the investigated algorithms together. These algorithms turn out
to be quite competitive and provide a trade-off for some of the considered algorithms
that do not normally allow for a parameter to control the importance of the number of
colors versus the number of recolors. The implementations of these new algorithms, as
well as any other files used during this thesis, can be found in the accompanying GitHub
repository [1].

The rest of the work is structured as follows. Chapter 2 presents the terminology
and prerequisite knowledge required to understand this thesis. In Chapter 3 each of
the compared algorithms is introduced in short, after which Chapter 4 expands on the
exact approach taken and specific implementation used for each algorithm. Chapter
6 introduces the experiments ran as part of this research and also includes the most
important results. Finally, Chapter 7 and 8 draw conclusions based on the results and
discuss what could be done to further this research.

1.3 Related work

The graph coloring problem, as summarized in [2], is a well studied problem. Many
research papers have been dedicated to proving various aspects of this problem and to
finding solutions for it. It has already been shown that finding the chromatic number
of a graph [3] and finding out whether a graph can be colored with k > 3 colors [4][5]
are both NP-hard problems. Despite this result, many practical algorithms have already
been found for the static graph coloring problem that allow the coloring of graphs using
heuristics that oftentimes result in using fairly few colors [6][7]. Many of such heuristics
depend on first ordering the vertices and then coloring them one by one in the selected
order. It has been proven that there must exist at least one such ordering of vertices

3

for every graph that results in an optimal coloring, but finding this ordering is still an
NP-hard problem. The first and most well known such ordering is based on the degree
of the vertices and described in [8].

Apart from the static graph coloring algorithm, the online and dynamic graph col-
oring problems have been studied to a lesser extend as well, as such there are papers
presenting algorithms for the online variant of the graph coloring problem [9], papers
outlining a comparison between the different online algorithms [10], and papers pre-
senting a similar comparison for the dynamic variation of the problem, but focusing on
theoretical upper bounds and biparite graphs [11].

In this work we will expand this source of knowledge by presenting an experimental
analysis for some of the most interesting and popular algorithms for the dynamic graph
coloring problem and comparing their results. The algorithms we will consider are those
proposed by Bhattacharya et al. [12], Barba et al. [13], Solomon et al. [14] and Yuan et
al. [15], as described in Sections 4.2, 4.3, 4.4 and 4.5 respectively.

4

Chapter 2

Preliminaries

Central to this work is the idea of colorings, being an assignment of colors to the vertices
of a graph. Such a coloring is valid if all vertices have been assigned a color and no edge
has two endpoints with the same color. Such a valid coloring uses a limited set of distinct
colors, which we will call the total number of colors used. This total is lower bounded by
the chromatic number C, which is the optimal, or lowest, number of colors required to
get a valid coloring for a graph. Note that finding the chromatic number is not always
viable, as the graph coloring problem is NP-hard. In this work we therefore approximate
C by running a static greedy coloring algorithm on a graph which does not guarantee,
but is likely to produce a ’good’ coloring with close to C colors. The particular static
greedy coloring we use is the one described in [8] and detailed in Section 4.1 of this
thesis, and has been chosen for its simplicity and popularity in research papers and
graph libraries.

For ease of implementing the algorithms and talking about different colors we occa-
sionally refer to colors as if they are numbers: green, red or blue may be represented by
1, 2 or 3. As long as the color values are different for two adjacent nodes the coloring is
correct. With this idea of numbers representing colors comes the idea of a lowest color,
being the color that has the lowest number associated with it, this definition will allow
algorithms to find an unoccupied color more efficiently, and helps guarantee that the set
of colors being used remains small.

Apart from colorings, this work will largely focus on the number of times a vertex
that was already assigned a color is assigned a different color in order to resolve conflicts
or improve a coloring. This process of changing the color of a vertex will be referred
to as a recolor, and a conflict is defined as two adjacent nodes, connected by an edge,
having the same color and thus violating one of the properties that makes a coloring
valid. If a conflict occurs at least one of the involved vertices needs to be recolored by
an algorithm to ensure a valid result.

With these definitions we can define the dynamic graph coloring problem considered
in this work more precisely: The input of the problem will consist of two parts, the initial
graph and the update sequence. The initial graph will consist of all nodes required at any
point during the update sequence and a set of edges forming the initial connections. The
initial graph is assumed to start with a good coloring, which we generate using the static

5

greedy algorithm from Section 4.1. The second part of the input, the update sequence,
is represented by a list of tuples, each tuple consisting of an edge and a Boolean stating
whether that update corresponds to the addition or removal of that edge. We ensure
that updates are always possible, and thus do not allow for edge insertions of edges
already present, or between non-existent nodes, we also do not allow for edge removals
of edges not present in the graph at that point in time. Note that while vertex additions
and removals could also be modeled in these update sequences, these actions are of little
interest in the algorithms considered here and are thus omitted. This is because the
addition of a vertex with edges can be simulated by first adding a disconnected vertex
and adding the corresponding edges using normal edge additions after. The removal of a
vertex with edges can be simulated by using regular edge removal actions before removing
the disconnected vertex. Since the removal or addition of a disconnected vertex is trivial
and the edge removal and addition actions are already defined, we do not explicitly
define these vertex related actions. Also note that, while the update sequence may be
generated in full before the start of an experiment, the algorithms only receive these
updates one at a time and do not have any knowledge on which, or even how many,
updates will follow.

With this input the goal of the problem is for the algorithms to generate and output
a valid coloring for each of the states the graph is in after executing an update from the
update sequence. The average number of colors used and average number of recolors
required are saved, as well as the time spent on generating all the colorings. These
are values the algorithms will be compared on, and the aim is thus to achieve colorings
with as few colors as possible, while also avoiding recolors whenever possible. These
two opposing factors are the cause of an inherent trade-off many of the algorithms are
capable of making.

This trade-off that is present in many of the algorithms we consider is often guided
by a parameter that can be adjusted to focus more on the number of colors used or on
the number of recolors. These parameters differ from algorithm to algorithm, and some
of the algorithms do not provide one at all.

Some additional important variables are N , representing the number of nodes in a
graph and ∆, representing the maximum degree of a graph at some point in the update
sequence. The maximum degree can change during an update sequence by adding or
removing edges, giving this variable different values over time. It is because of this
behaviour and the fact that keeping track of these changes can be quite inefficient, that
we decide to not use ∆ in the algorithms, but rather replace it with δ where necessary,
with δ representing the local degree of a node in the graph. While ∆ is often used in
bounds for the number of colors or recolors in graph coloring algorithms, the algorithms
considered here actually also function properly by using the local degree δ. We thus
decide use δ in the algorithms, but keep ∆ as an upper bound to reason with.

Since the maximum degree ∆ is simply the maximum of all local degrees δ, this
substitution does not create any problems and allows us to continue to bound certain
algorithms using ∆ as a variable.

Finally, some algorithms make use of black-box algorithms, meaning the algorithm

6

will use a different graph coloring algorithm to create a coloring for some (sub)graph,
of which the result can later be used to create a more complete or efficient coloring.
The input and output of such a black-box algorithm are accessible to the overarching
algorithm but the fact that it is a black-box means the inner workings of the algorithm
being used as a subroutine cannot be influenced, changed or observed. This also means
that any algorithm with the correct input and output can be used as such a black-box,
if a more efficient algorithm is found, the algorithms currently used as black-boxes can
be swapped out for the more efficient variant, making the overarching algorithm more
efficient as well without having to redesign anything.

7

Chapter 3

Introduction to the Algorithms

In this chapter we introduce the algorithms by assigning them a unique name, providing
an intuitive notion of their workings, stating known asymptotic bounds and presenting
their potential strengths or weaknesses.

Static Greedy Algorithm While the static greedy algorithm, as described in [8] and
[7], will not have an explicit presence in the experiments, it is worth mentioning as it is
the oldest and simplest of the static greedy algorithms that is commonly used. In this
thesis it will serve as a baseline for all dynamic algorithms. An evolving graph could be
recolored by simply recalculating the entire coloring using a static algorithm such as this
one. This approach would be very inefficient when it comes to number of recolorings
and running time, but would provide a high quality coloring, with few colors, almost
every time. We thus use this algorithm as a suitable baseline for the total number of
colors used when comparing the dynamic algorithms considered in this thesis. These
dynamic algorithms are likely to be much more efficient when it comes to recolors and
running time but are unlikely to achieve the same total number of colors. The static
greedy algorithm works by assigning a priority to each vertex based on their degrees, and
assigning the vertices a color in a specific order, as further described in Section 4.1. This
algorithm is also used whenever another algorithm requires a static black-box algorithm
as a subroutine.

Random Warm-Up This randomized coloring algorithm, as further described in Sec-
tion 4.2 is a combination based on the two warm-up results from [12]. While it is not
the main algorithm presented in the paper, it does achieve the same bound on colors
used, namely ∆ + 1 colors where ∆ is the maximum degree in the graph at the time
of the coloring. The random warm-up algorithm used in this thesis randomly assigns a
’free’ color to a vertex that needs to be recolored, where a free color is defined as a color
not occupied by one of the vertex’ neighbors. Such a free color always exists, making
this the simplest and fastest algorithm discussed here. It additionally uses only very few
recolors, due to recoloring at most one node per update and low probability of causing
conflicts. This random warm-up algorithm is also the algorithm that is used whenever
another algorithm requires a dynamic black-box algorithm as a subroutine.

8

Small- and Big-Bucket Algorithms The small- and big-bucket algorithms as described
in [13] and Section 4.3, divide the vertices of a graph into different sets of buckets, each
with their own color palette. Each bucket uses a static black-box algorithm to color its
subgraph and the final coloring is obtained by combining the colorings of all buckets.
These algorithms use a parameter d to manage the trade-off between number of recolors
and number of colors used. This parameter should lie within the range [1.. logN], with
N the number of nodes in the graph. A high value of d causes the trade-off to be more
balanced, whereas a low value of d makes the algorithms skew further to one of the
extremes. The small-bucket algorithm favors fewer recolors and manages to only use
O(d) amortized recolors per update, while using O(dN1/dC) colors, with C being the
chromatic number. The big-bucket algorithm favors fewer total colors used and achieves
O(dC) total colors while having O(dN1/d) amortized recolors per update. The small-
and big-bucket algorithms produce more similar results as d increases up until they
converge at d = logN . The small- and big-bucket algorithm are therefore one of the
more versatile options when it comes to providing a trade-off, as the combination of
these two algorithms allows coverage of the whole spectrum in the trade-off between
recolors and number of colors used.

Static-Dynamic Algorithm The static-dynamic algorithm is described as the algorithm
for general graphs in [14] and further detailed in Section 4.4. This algorithm uses a
parameter l to manage its trade-off, and revolves around using some dynamic graph
coloring algorithm to resolve conflicts for l update steps before running a static coloring
algorithm on an intelligently selected subset of nodes in order to improve the quality of
the coloring. The amount of steps l before a static black-box step is given as a parameter.
The authors claim to achieve bounds of Ô(Cβ log2N) total colors and O(β) expected
recolors per update, where the total color bound suppresses polyloglog(N) factors and
β = logN

l . The variable N representing the number of nodes in the graph. To obtain
the coloring produced by the algorithm each vertex is assigned a tuple consisting of
its dynamic and its static color (c1, c2). Since these tuples are then viewed as colors
themselves, the total number of colors used in this algorithm is comparatively high.

DC-Orient The DC-Orient algorithm as described in [15] and detailed in Section 4.5
does not focus on the number of recolors per update, but rather aims at simulating the
greedy static algorithm from Section 4.1 in a dynamic manner. The algorithm works by
generating a priority ordering among the vertices based on their degrees and creating a
directed version of the graph to use internally. When a conflict arises the vertex with
higher priority is allowed to keep its color and the lower priority vertex must change
its color to one not occupied by one of its in-neighbours in the directed graph. When
a vertex changes color it also recursively recolors its out-neighbors with lower priority
if necessary. By updating the colors in this way the coloring and thus also the total
number of colors used is generally identical to the one that would be generated by the
greedy static algorithm. As a trade-off, however, the number of recolors per update and
running time are both relatively high when compared to the other dynamic algorithms.

9

Chapter 4

Implementation Details

In this chapter the workings of the algorithms are expanded upon to allow for easier
understanding and reproduction of the implementations used in this thesis. Each algo-
rithm is described textually as well as using pseudocode if none was present in the cited
paper.

4.1 Static Greedy Algorithm

The static greedy algorithm used in this thesis is the greedy coloring algorithm provided
by the NetworX Python library [16], which corresponds to the Greedy-Color method
described in [7].

It assigns each node a priority based on its degree, in which higher degree nodes
gain higher priority, and arbitrarily orders the nodes with identical degree. Using this
priority ordering the algorithm colors the nodes one by one, starting with the node that
has the highest priority. Whenever a node is colored in this way, it is assigned the lowest
color that does not cause conflicts on any of its edges. Since any node in the graph can
have at most edges equal to the maximum degree ∆, there can be at most ∆ colors that
are already occupied by a node’s neighbour. Each node can therefore be colored using
a color value of ∆ + 1 or lower.

4.2 Random Warm-Up

The random warm-up algorithm stems from [12], in which three variations of a random-
ized coloring algorithm are proposed. The first and second of which are warm-up results
leading up to the main algorithm presented by the authors. Each of these variations has
its advantages and disadvantages, and for this thesis a combination of the first two will
be used.

In the first warm-up result, the authors propose a simple algorithm that uses ran-
domness to quickly and simply recolor any node involved in a conflict. When such a
conflict occurs, this warm-up result picks one of the two nodes involved in the conflict,
more specifically the one that has been recolored most recently, and generates two sets
of colors: one set containing 2∆ colors, the complete color palette for the graph, and

10

another set containing only the colors occupied by the neighbours of the node to be
recolored. The algorithm then computes the difference between these two sets and ob-
tains a set of colors that are not yet occupied by the node’s neighbours and could thus
be assigned to the node without creating a new conflict. The algorithm decides on one
of these colors uniformly at random and assigns the node this new color, resolving the
conflict. Unlike in the static greedy algorithm from Section 4.1, a color palette of 2∆
rather than ∆ + 1 is decided on here, in order to prevent a malicious adversary from
providing updates that force the algorithm into choosing only a single free color. By
making the color palette larger, the algorithm will never be predictable and an adversary
is thus unable to force the coloring of the algorithm in any direction.

The second warm-up result provided in the paper suggests a different way of avoiding
predictability. This variation of the algorithm does use a color palette of ∆+1, but also
allows a node to be assigned a color already occupied by its neighbor, provided that
only a single one of its neighbors currently uses that color. By selecting the new color
in this way, the set of colors to randomly choose from is always larger than one, and
the behaviour of the algorithm therefore never predictable. It does, however, potentially
create new conflicts during the assignment of this color, and resolves these by recursively
recoloring the neighbor with the chosen color in the same manner. This way of resolving
conflicts could lead to a long chain of recursive recolors and is difficult to analyse because
of it. The number of colors used in this variation is lower than in the first random warm-
up, however.

The final variation of this algorithm presented in [12] is the authors’ main contribu-
tion. The approach is very similar to that of the second warm-up, differing only in the
way the nodes are structured. By using a leveled structure of nodes, the main algorithm
becomes more difficult to implement, but easier to analyse. The authors state that by
only recursively recoloring nodes with a lower level, it is possible to bound the number
of recursions and prove that termination is eventually reached while still retaining the
small color palette of ∆ + 1 and unpredictability of the algorithm.

Because we will not consider a malicious adversary with knowledge and the ability
to affect the update sequence, however, in this thesis we opt for a combination of the
first and second warm-up results. The algorithm called the random warm-up in this
work, will function almost identically to the first warm-up from [12], while only using
a color palette of ∆ + 1. This allows for a simple and efficient implementation, while
retaining the lower bound for number of colors used. Even though the unpredictability
of the algorithm is therefore partially sacrificed, this fact is irrelevant for the experiments
performed in this thesis and outweighed by the advantages of having a simple and efficient
implementation.

Additionally, because the remaining algorithms considered in this work do not have
knowledge about the maximum degree ∆, we will instead use the adjustment proposed
in [12] for using the local degree rather than the maximum degree. The difference caused
this way is that the palette of available colors when a node is recolored is as large as
δ + 1 rather than ∆ + 1, with δ being the degree of the node to be recolored at that
point in the update sequence. This change does not affect the upper bound of ∆ + 1

11

colors used in total.
It is worth noting that during the implementation phase of this thesis some prelimi-

nary experiments were performed on different versions of the algorithms in order to come
to a suitable final variant. A small comparison between this final random warm-up and
the second warm-up result from [12], based on both maximum degree ∆ and local degree
δ is provided in appendix A, Section A.1.

4.3 Small- and Big-Bucket Algorithms

The small- and big bucket algorithms as proposed by Barba et al. in [13] are two
complementary algorithms that allow for a trade-off between recolors and total number
of colors used. Central to both of these algorithm is the idea of vertices being put in
different buckets and each bucket executing a static black-box coloring algorithm on
the subgraph consisting of the vertices in that bucket. Since each bucket uses its own
independent color palette, if each bucket is validly colored this means the union of all
these colorings is also a valid coloring for the entire graph.

The complementary aspect of the algorithms is that, depending on a parameter
d, these algorithms can achieve different ranges of the trade-off between recolors and
total number of colors used. The small-bucket algorithm favors fewer recolors and uses
only O(d) amortized recolors per update, but uses O(dN1/dC) colors, with N being the
number of vertices in the graph and C being the chromatic number. The big-bucket
algorithm skews the other way and favors fewer total colors, using only O(dC) colors
but requiring O(dN1/d) amortized recolors per update. As parameter d increases, the
small- and big-bucket algorithms produce more similar results up until they converge at
d = logN , after this point, higher values for d will have no effect.

The overall structure of the small- and big-bucket algorithms consists of a set of
buckets divided over different levels. When a node is added to one of these buckets, that
bucket’s coloring is recomputed using the static black-box coloring algorithm. If the
buckets on a level are deemed to be full, they are all grouped together and moved into
the first bucket on the next level. The sizes of the buckets as defined in the algorithm
ensure such a transfer is always possible. After moving up a level, the new bucket will
statically recolor its nodes. This process of adding vertices to buckets and moving nodes
from lower to higher levels continues until the end of the leveled structure is reached and
a full reset occurs.

Depending on the parameter d the algorithms will use more or fewer levels of buckets,
each with different capacity: in the small-bucket algorithm there are d levels (0..d-1) of
relatively small buckets where each level has s buckets with capacity si, where i is the

bucket’s level, s = N
1/d
R and NR is the number of nodes in G at the moment the buckets

are created. The big-bucket version of the algorithm also has d levels (1..d) of buckets,
but each level has only a single bucket of capacity si. Additionally, both versions of the
algorithm have a final level with only one bucket that has no limit on its capacity. This
final bucket is the overflow or reset bucket. A visual representation of the bucket levels
and each bucket’s capacity is shown in Figures 4.1 and 4.2

12

Figure 4.1: Visual representation of the buckets used in the small-bucket algorithm.
Figure taken from [13].

Figure 4.2: Visual representation of the buckets used in the big-bucket algorithm. Figure
taken from [13].

Because of the way the bucket levels and capacity are defined, the nodes from all
buckets at level i − 1 can fit into only a single bucket at level i. Both variants of the
algorithm have some invariant to guarantee there is enough space to move vertices from
one level to the next: the small-bucket algorithm has a space invariant stating that
each level always has at least one empty bucket and the big-bucket algorithm has a
high point invariant stating that each level contains at most si − si−1 vertices. These
invariants allow the algorithm to always have enough room to move all vertices from a
certain level to a single bucket on the next level.

Finally, the algorithms handle updates as follows. Initially all vertices are in the
overflow bucket and a static coloring is generated using the black-box algorithm on the
entire graph. Whenever an edge is added to the graph, one arbitrary endpoint of this
edge is removed and reinserted into the graph in order to simulate a vertex addition
update. Whenever a vertex is added to the graph it is put into a bucket on the first
level: in the small-bucket algorithm the space invariant guarantees there is at least one
empty bucket in the first level and in the big-bucket algorithm the high point invariant
guarantees the bucket on the first level has enough room left for an additional vertex.
If these additions to the buckets invalidate the corresponding invariant, all vertices on
the lowest level are moved to the first empty bucket on the next level or added to the
only bucket on the next level, for the small- and big-bucket variants accordingly. At the
second level this movement of vertices may have invalidated the invariant and the process
is repeated until all levels satisfy the invariant or until the reset bucket is reached. In
the first case, each bucket that changed contents recomputes its coloring using the static

13

black-box algorithm for the subgraph consisting of the vertices in that bucket. In the
second case, the entire graph is recolored using the static black-box algorithm and all

buckets are removed and created again with an updated value for s = N
1/d
R .

While edge and vertex removals are not explicitly mentioned by the authors, we
extend these algorithms to allow for these in the simplest way possible. When an edge is
removed, the graph representation is simply updated without changing the contents of
the buckets and when a vertex is removed, we simply remove it from whichever bucket
it was in without running the static black-box algorithm again for that bucket. This
way of handling removals will never invalidate either of the invariants, nor will it create
conflicts within the coloring of the graph.

The pseudocode used to implement both the small- and big-bucket algorithms can
be found in algorithm 1 and 2, located in appendix B.

4.4 Static-Dynamic Algorithm

The static-dynamic algorithm for general graphs as described by Solomon et al. in
[14] aims at combining static and dynamic black-box algorithms in an intelligent way
that allows for a trade-off between the advantages of both. In order to achieve this the
algorithm uses two representations of the same graph: the full graph G as also used by
other algorithms for use with the static black-box algorithm and a sparse variant G’ of
this graph with the same vertex set but only very few edges for use with the dynamic
black-box algorithm. Both of these graphs will have a coloring for all vertices as provided
by the black-box algorithm used on that graph. The final coloring the static-dynamic
algorithm produces for each vertex is a combination of both of those colors, in the form
of a tuple (c1, c2).

After each update at least one of the black-box algorithms is run on a relevant part of
the graph in order to ensure conflicts are resolved. It is worth noting that if a conflict is
solved in one of the black-box algorithms it is not necessary to also solve it in the other,
since the combined tuples (c1, c2) of the conflicting vertices will already be different and
there is thus no conflict in the final coloring. The decision of when to run the static and
when to run the dynamic black-box algorithm and on what subgraph to run them exactly
depends on two central concepts: update segments and the recent degree of vertices.

In this static-dynamic algorithm the entire sequence of updates is split into update
segments of length Nl with N being the number of nodes in the graph and l a parameter
used to guide the trade-off in the algorithm. One update segment of size Nl is defined
to be at level 0 and a leveled structure is created by splitting the segments of each level
into two for each next level. This causes level logN segments to have length l and in
general causes level i segments to have length Nl/2i. The authors state that for ease
of use, update segments with identical endpoints are removed until only the one at the
lowest level remains. A visual representation of the created segments can be found in
Figure 4.3. If the update being executed at some point in time is part of an update
segment at some level in this structure, we call this level active, if no update segment
covers the current update on a level, this level is considered inactive.

14

Figure 4.3: Visual representation of the update segments used in the static-dynamic
algorithm. Figure taken from [14].

Depending on the parameter l the trade-off this algorithm makes can be influenced.
The authors claim to achieve bounds of Ô(Cβ log2N) total colors and O(β) expected
recolors per update, where the total color bound suppresses polyloglog(N) factors and
β = logN

l . Higher values of l should thus intuitively lead to fewer recolors but potentially
more total colors used.

Apart from separating the updates to be executed into different segments, this leveled
structure also keeps track of which nodes will be involved in a static recoloring step
later. To this end, each level will be assigned a node set, initially empty, that represents
the nodes to be recolored statically whenever the update segment on that level ends.
Which nodes are assigned to these node sets depends on their recent degree, an integer
representing how many edges have been added to a node since it was involved in a static
recoloring.

When an update is executed, both graphs G and G’ are updated to reflect the change.
Vertices involved in an edge addition also keep track of their new recent degree. The
recent degrees of all vertices start at 0, and get increased whenever an edge is added
to a node. If after an update a node that is not yet in an active level’s node set has
the highest recent degree, it is added to all active levels’ node sets it is not yet part
of, ensuring this node will be involved in the static recoloring that occurs at the end of
those levels’ update segments.

It is worth noting that the nodes part of these node sets are not well defined in [14],
only stating that nodes with highest recent degree at the end of an update interval or
subinterval should be part of it, without clarifying how such a subinterval is defined.
The way we handle these node sets assumes a subinterval can have any size smaller or
equal to an update segment, but always starts at the same point the update segment it
is a subset of does. This way of defining a subinterval falls within the general scope of
the term used in [14].

If after an update the end of any update segment in the leveled structure has not

15

been reached, potential conflicts are handled by the dynamic black-box algorithm by
running it on (the most recently added edge in) G’. If, however, the endpoint of one
of the update segments has been reached, a static black-box algorithm is ran on the
subgraph consisting of the vertices in the node set corresponding to the level of that
update segment, after which this node set is emptied. This static recoloring of such a
subgraph is defined to use a color palette unique to the level of which the update segment
has just ended. When a static black-box algorithm is ran, all chosen vertices reset their
recent degree to zero and all edges adjacent to any of these vertices are removed from G’.
If a conflict still occurs after the static recoloring of the chosen subgraph, for example
when an edge is added between two vertices with the same color, but neither of them
have the highest recent degree and are thus not included in the static recoloring, then
a dynamic recolor still occurs based on the updated G’. By running the updates in
this manner conflicts are always resolved by either the static or the dynamic black-box
algorithm.

Note that, while G and G’ are immediately updated when an update occurs, their
coloring remains the same until a static or dynamic black-box algorithm is triggered.
Intuitively this seems reasonable but in practice we find that updating G’ will auto-
matically trigger the dynamic black-box algorithm to also update its coloring. Because
this is not desired behaviour the black-box dynamic algorithm, in our case the random
warm-up from Section 4.2, is adjusted slightly to also allow for adding edges without
triggering an update to the coloring. By doing this the dynamic algorithm is officially no
longer a black-box. Since this is how the original paper [14] defines these terms, however,
and since it improves readability, we opt to keep this terminology in place regardless.

When the endpoint of the update segment at level zero is reached, all vertices are
recolored using the static black-box algorithm and new update segments are generated.
From this it follows that all vertices also reset their recent degree to zero and that G’
clears all its edges. Note that the authors do not mention resetting the dynamic colors
present in G’ at this point, which results in using more combined colors (c1, c2) than
necessary after such a full reset of the static coloring of G occurs. An alternative version
of this algorithm that does reset the dynamic graph as well has been implemented too.
A small comparison between this variation and the main version of the algorithm can
be found in appendix A, Section A.2.

The pseudocode for the static-dynamic algorithm can be found in algorithm 3, located
in appendix B. Note that we do not presume to know all update steps in advance and
thus do not explicitly generate the ’update segments’ in advance, but rather keep track
of our position within the leveled structure by using counters.

4.5 DC-Orient

The final algorithm considered in this work is DC-Orient as described in [15]. What
sets this algorithm apart from the rest is its aim to simulate the static greedy algorithm
discussed in Section 4.1 in a dynamic manner. The authors observed that when a colored
graph is recolored using the static algorithm after one update occurred, only few of the

16

vertices change color in many of the cases. This observation is the only attempt at
reducing the number of recolors in this algorithm, as there is no parameter available
for a trade-off. It thus heavily leans towards a small total number of colors used and is
practically the opposite of the random warm-up algorithm discussed in Section 4.2.

DC-Orient does not provide a guarantee on the number of recolors but does achieve
the same coloring as the static greedy algorithm, which could be bounded with an upper
bound of O(∆ + 1), with ∆ the maximum degree in the graph, although this bound is
rarely accurate, considering DC-Orient aims at achieving a total coloring with close to
C colors. The difficulty in bounding the number of colors used stems from the fact that
the chromatic color C is also difficult to bound, and heuristic algorithms such as the
greedy static coloring algorithm DC-Orient was based upon are actually used to upper
bound this chromatic number. An accurate bound for this approach is thus unavailable.

The algorithm works by defining a priority ordering based on the degree of the
vertices in the graph, much like the static greedy algorithm, where high degree nodes
get priority over low degree nodes. A directed graph G* is generated in which the edges
of G are pointed from high priority to low priority nodes as can be seen in Figure 4.4.

Figure 4.4: Example of a directed graph G* created and used by DC-Orient. Figure
taken from [15].

When an update occurs G* is first updated to reflect the new priority ordering of
the vertices and potential conflicts are then resolved by executing a CAN step in which
the vertex of highest priority involved in a conflict first collects the colors not occupied
by it’s in-neighbors in G*, then assigns itself the ’lowest’ color from the set of available
colors and finally it notifies it’s out-neighbors in G* that they might have to do a CAN
step as well, in case a color was chosen that one of these lower priority nodes had assigned
to them. Because G* is directed and acyclic this chain of CAN steps is guaranteed to
finish.

Because of the way the authors structured their paper [15], many different versions
of DC-Orient exist. The basic version of the algorithm is the easiest to understand, but
is very slow in practice. The authors therefore introduce different ways to make their
algorithm more efficient. One of these additions is a Dynamic In-Neighbor Color Index
(DINC-Index) to keep track of the colors of each node’s in-neighbors. By maintaining
this DINC-Index the algorithm no longer needs to access each node’s neighbors to assign

17

it a new color, which in practice turns out to be much more efficient. Furthermore, some
pruning strategies are suggested to avoid unnecessary recursions to nodes that do not
cause conflicts. Both the basic and the optimized versions of the algorithm have been
implemented, but since the results, apart from the running time, are identical we have
decided to use the optimized version in our experiments. A small experiment to compare
the running times of both versions can be found in appendix A, Section A.3.

The pseudocode for the basic algorithm, as well as for all the extensions, can be
found in the original paper [15].

18

Chapter 5

Additional Algorithms

In addition to the four classes of algorithms taken from the relevant papers, we have
implemented two combinations of these algorithms that can overcome some of the issues
the original versions face.

5.1 Static-Simple

When testing the algorithm implementations, it becomes apparent that not all of them
perform as well as one would expect. For example, one would expect the results from the
static-dynamic algorithm to fall somewhere in between the results of the random warm-
up and DC-Orient, considering these are the extremes when it comes to a focus on low
average number of recolors or low total number of colors used. During preliminary exper-
iments it became apparent that, unlike other algorithms, the static-dynamic approach
does not seem to fall into this expected range, but instead performs objectively worse in
many cases. More specifically, the number of colors used was significantly higher than
the alternative algorithms for almost all values of parameters. We hypothesise that the
main reason for this issue is the multiplication in total number of colors used that occurs
when combining the static coloring and the dynamic coloring into a single combined
color (c1, c2). We therefore introduce a simpler version of the algorithm named static-
simple. The static-simple algorithm is identical to the static-dynamic algorithm when
it comes to the static black-box component. Static black-box algorithms are still ran at
the same moments and on the same subgraphs. The difference with static-dynamic is
that there is no sparse graph G’ on which a black-box dynamic algorithm is ran, instead,
we simply use the same approach as the random warm-up algorithm from Section 4.2,
when a conflict occurs that is not solved by any static black-box executions, simply pick
one of the conflicting vertices and assign it a random color from the set {0, .., δ} that is
not occupied by any of its neighbors yet. Such a color always exists, and by handling dy-
namic conflicts in this manner we prevent the need of creating combined colors (c1, c2).
The new bound on colors used thus becomes O(∆+1), as both black-box algorithms use
at most ∆ + 1 colors. Additionally, this randomized process for solving conflicts is very
similar to that used in static-dynamic, considering the random warm-up from Section
4.2 is used as the dynamic black-box in that algorithm.

19

5.2 DC-Simple

The second new combination of algorithms aims at creating a trade-off between the two
extreme algorithms DC-Orient and the random warm-up. These algorithms both provide
excellent results in one aspect, but less than desirable results in the others because both
focus strongly on either recolors or number of colors used, without much regard for the
other aspect and no trade-off to allow for any nuance. The random warm-up manages
to handle updates with very few recolors in a very short time, but uses a lot of colors in
the process. DC-Orient on the other hand achieves a high quality coloring with a low
number of colors but needs many recolors and takes long to run. By combining the two
algorithms and adding a parameter to control which of the two to use, we allow a trade-off
between recolors, number of colors and running time. The resulting algorithm is DC-
Simple, which combines DC-Orient and the random warm-up algorithm in the simplest
way possible. A parameter p between 0 and 1 is added to the algorithm, representing
the probability of taking a random warm-up step rather than a DC-Orient step. If an
update occurs the algorithm decides randomly with weight p whether to do a random
step or a DC-Orient step. A random step uses the same approach as in static-simple:
one of the conflicting nodes is assigned a random color from the set {0, .., δ} not occupied
by one of its neighbors. When a DC-Orient step is executed, the algorithm does exactly
what DC-Orient would do, and thus intuitively ’overwrites’ some of the randomly chosen
colors in its CAN step chain. We thus expect the total number of colors used to remain
quite low, while the average number of recolors should be reduced. Note that in the
optimized version of DC-Orient the DINC-Index needs to be maintained whenever an
update occurs, in the optimized version of DC-Simple we therefore always maintain this
DINC-Index, even if a random step is taken. A small comparison between the basic and
optimized versions of DC-Simple can be found in appendix A, Section A.4.

We note that both the random warm-up algorithm and DC-Orient have the same
bound on total number of colors used, namely O(∆+1). By combining these algorithms,
knowing neither algorithm will ever assign a vertex a color outside of the color palette
{0, ..,∆} we can conclude that DC-Simple will also use at most O(∆+1) colors, although
likely much fewer, since this bound is not tight for DC-Orient. The expected number of
recolors per update is more difficult to bound because neither of the original algorithms
state a clear upper bound on the number of recolors. We can tell from the way the
random warm-up works that at most a single node is recolored in each update step and
could thus bound the recolors per update for a random step by O(1). The recursive
nature of the DC-Orient CAN steps make it difficult to bound the expected number of
recolors per update for that algorithm, which results in difficulties bounding DC-Simple
recolors as well.

20

Chapter 6

Experiments

This chapter provides a look at the experiments performed during this research. Its aim
is to measure the performance of each algorithm in different situations and to test some
hypotheses formed in the implementation phase of the algorithms. Each experiment will
consist of an explanation, motivation, results and discussion.

Most experiments consist of a generated graph and update sequence. The graph will
function as a starting point and the update sequence will provide updates to this graph.
The implementation of these allows us to generate graphs and update sequences with
various properties. The graph can have a predetermined number of nodes or edges and
allows for different distributions of the degrees in the graph. More precisely, the most
basic graphs generated are simple random graphs with a set number of vertices and
a parameter for edge density. This density parameter represents the probability that
an edge from the set of all potential edges between all nodes is actually present in the
graph. Additionally, the generation of these graphs allows for a skewed distribution of
edges, in which nodes are assigned a priority and edges adjacent to nodes with a higher
priority get a higher probability of being added to the graph. The strength of this effect
can be adjusted and thus allows for experimenting with the effect of this bias on the
different algorithms. A more detailed description of the implementation of this skewed
edge selection can be found in Section 6.5.

Two separate methods of generating update sequences are used: increasing and
stream based. For the increasing update sequence we generate a sequence of updates
that consists of edge additions only, we start with an empty graph that only has ver-
tices, obtained by removing edges from the initially generated graph, and add one edge
back at a time until the final generated graph has been built. The update sequence, in
this situation, thus consists of the edges that were originally present in the generated
graph. This variation allows for the edge additions to occur in a randomized order or
in a more organized ’expanding’ or ’node focused’ order. The expanding order allows us
to simulate a breadth-first-search type behaviour, in which the edge insertion updates
are ordered in such a way that edges adjacent to the connected component so far are
added first with higher probability. Similarly the node focused approach assigns each
node a priority and adds edges adjacent to nodes with higher priority first, this means
the updates will likely be concentrated on one node at a time. More details about the

21

expanding and node focused approaches can be found in Section 6.6.
Alternatively we can generate an update stream consisting of both edge insertions and

deletions, in this case we start with the generated graph and add and remove edges with
the same probability, such that the number of edges remains largely the same throughout
the update stream. The edges that are removed over time can be picked at random or
have an increased probability to be removed as they remain in the graph for a longer
period. These two options are given the names random stream and decaying stream.
Note that in the stream variant of the experiments, the generated graph, including its
edges, functions only as a starting point. The edge additions or removals in the update
sequence are generated after the starting graph has been generated, and uses either the
random or decaying approach. More information on the decaying approach is presented
in Section 6.4

Optionally the generation of both the graph and update sequence allow for some
randomized ’variation’ such that two graphs or sequences generated with the same pa-
rameters will result in similar but different instances. It is therefore possible that graphs
intended to fall into the same range, size or density-wise, slightly differ from each other.
This slight variation should help reduce the chance of a recurring outlier. Each experi-
ment will clearly state the size and density of the graph and with which biases the graph
and update sequence were generated. Every experiment will also provide an estimate
for the average chromatic number C, obtained by running the greedy static algorithm
on the graph after each update and counting how many colors are used on average.

The generated experiments described in this work consist of a set of experiments
covering the effect of variations to the input graph on the algorithms, such as number of
nodes, density or degree distribution within the graph. Furthermore, various experiments
provide an insight on the effect that different orders of an update sequence can have on
the algorithms, checking both the performance on random order and a more node-focused
order of the same updates. Finally, a stream based update sequence is experimented
with, in order to find out how the algorithms function during extended use in a fairly
stable environment. This stream experiment is ran on both random and decaying update
sequences, in which edges are likely to be removed as they become older.

Apart from these generated graphs and update sequences we also consider a real world
dataset. This dataset, as found in [17], models the hyperlinks between various subgroups
called ’subreddits’ on the social media platform Reddit. This dataset, contrary to most
generated experiments, provides us with some real-world properties and biases, such as
being much larger, but also rather sparse around some nodes and highly concentrated
around others. The aim of this final experiment is to see whether the results obtained
from the generated graphs are representative for real-world usage of the algorithms, and
otherwise, what differences occur in their performance.

All algorithms were implemented in Python 3 using the NetworX library [16]. The
experiments were executed using the notebook functionality in Visual Studio Code on
a system with an octacore Intel i7-6700K CPU at 4 GHz and 16 GBs of RAM. The
timing of the algorithms was performed using the perf counter() functionality available
in Python’s time library.

22

6.1 Experiment Parameters

In each generated experiment the algorithms are ran multiple times on the same data.
Each instance with different parameter values in order to get a better impression of how
the algorithm trade-offs work. Each algorithm is executed with up to a hundred different
parameters and any algorithms using a lot of randomness are ran three times as often,
using the same parameters, in order to find a more stable average performance. In more
detail, the different algorithms are used as follows:

The random warm-up algorithm is ran three times to get a reasonable average,
and has no parameters.

The small- and big-bucket algorithms are ran on parameters in the range from
1 to 30. This range is rather small because the small- and big-bucket algorithms con-
verge at d = logN , making this range large enough to cover any graph with less than
a billion nodes. Since these algorithms only take integers as parameter, it only has 30
different iterations. Each parameter is only ran once, as these algorithms use very little
randomization.

The static-dynamic algorithm is ran on parameters between 1 and 200, this range is
quite wide, as the original paper [14] gives little guidance as far as picking proper values
for this parameter goes. One hundred separate instances of the algorithm are ran on the
same graph and update sequence, all with a different parameter within the given range.
Each instance with a parameter value is also ran three times in order to obtain a more
stable result, which is necessary because of the random warm-up part of this algorithm,
which is being used as the dynamic black-box.

DC-Orient is only ran once, since it has no parameters that allow for a trade-off nor
any randomness that makes it unpredictable.

The static simple algorithm is ran on the same parameter values as static-dynamic,
since it is an improved variant of the same algorithm. It is also ran three times per
parameter to obtain average results.

DC-Simple is ran on a hundred different probability parameters in the range 0.4 to
1. This range has been decided on because preliminary experiments have shown that
parameters closer to 1 produce more interesting results than those closer to 0. Each
parameter is ran three times for this algorithm as well, since a large component of this
algorithm is the unpredictable random warm-up algorithm.

23

6.2 General Observations

Each of the following experiments will provide a number of graph pairs displaying the
results obtained during that experiment. These graph pairs will always consist of a plot
displaying the relation between average number of colors used and average recolors on
the left side, and a plot displaying the relation between total time taken per instance of
the algorithm and average recolors on the right side. Because the x-axis for both plots
are identical, the two plots can be combined in order to obtain all three components of
the algorithm output: number of colors, number of recolors and time taken.

The lines present in each plot represent the trade-off each algorithm can make. Each
point a line passes through corresponds to one datapoint obtained by running the algo-
rithm with a certain parameter. The arrow displayed on each line represents the direction
of increasing parameters, meaning that the arrow points towards datapoints with higher
parameter values, this allows us to intuitively understand the effect the parameter has
on the trade-off, and whether increasing or decreasing its value is required to obtain the
target results. Some of the algorithms are represented by a point rather than a line,
this means the algorithm was not executed using multiple different parameters and no
trade-off is therefore visible. In most cases this is due to the algorithms in question not
having a trade-off parameter to begin with, but in the case of the Reddit dataset the
long running times prevented more datapoints from being generated.

Because the importance of number of colors, number of recolors and running time
can vary from application to application, it is difficult to define when an algorithm per-
forms better than another algorithm. The plots therefore have to be read in a distinctive
way. Since for all aspects, colors, recolors and running time, lower values are preferred,
this means algorithms closer to the left-bottom corner are those that are most interest-
ing. Algorithms that achieve similar results on one aspect as another algorithm, but
outperform it on the others, are considered to produce better results, as they have a
more efficient trade-off. We will therefore focus largely on whether lines or points lie left
of or below other lines in order to compare them. Additionally, it is worth noting that
the axis scales for each experiment are different, since each experiment uses a different
graph and update sequence. The focus while comparing these various results will be the
relative location between the algorithms within a plot, and how they compare to the
ideal estimate for the average chromatic number C.

Most of the plots generated by the experiments look rather similar, we therefore first
discuss the aspects of the results that are generally the same, before going into detail
per experiment. We discuss the general observations per algorithm below. Figure 6.3 in
Section 6.3 and Table A.9 in appendix A provide a visual and numerical representation
of the most general experiment to support these observations.

Random Warm-Up This random warm-up algorithm, which has randomness as its
main component, is built in such a way that it will only recolor at most one node during
each update. Additionally, the relatively large color palette and random method of

24

assigning these colors makes the probability of a conflict occurring rather small when
compared to the different algorithms, in which many of the nodes are assigned the
same color if possible. This means that, in the random warm-up algorithm, often no
nodes have to be recolored at all when an edge is inserted. This algorithm is therefore
expected to produce extreme results skewed towards few recolors and short running time
but high number of colors used. While we do see this extreme bias toward few recolors
and short running time in the experiment results, one may notice that there are other
algorithms that use even more colors than this one, even when requiring a similar number
of recolors. This occurrence has very little to do with the performance of the random
warm-up algorithm, however, and is likely due to the implementations of these other
algorithms. More details about this occurrence can be found in the general observation
sections of those algorithms. We will thus continue referring to the random warm-up
result as one of the extremes, namely the one focusing on low number of recolors and
short running time.

Small- and Big-Bucket Algorithms The small- and big-bucket algorithms cover a large
range when it comes to their trade-off. The experiment plots show that, together, these
two algorithms can reach from using very few colors but many recolors to the opposite
case of using many colors but few recolors. All while also being competitive with the
other algorithms, as the trade-off line of these two algorithms is curved towards the
bottom-left corner. We can also indeed observe that as the parameters of the two
algorithms increase, they produce more similar results until they converge in the middle.
These two algorithms thus indeed seem to complement each other well, and allow for
a wider trade-off than most other algorithms. The running time of the small- and big-
bucket algorithms seems competitive with the other algorithms, as these results are very
densely grouped together in most plots. As the number of recolors increases, the big- and
small bucket algorithms, as well as the others, seem to increase in running time. This
observation can be explained by the fact that the algorithms only have to perform non-
trivial actions when nodes need to be recolored. If an update occurs in which no nodes
have to be recolored, the algorithm does not have to perform a significant amount of work
and the running time will thus increase based on number of recolors. Additionally, it is
worth noting that the small-bucket algorithm produces results with considerably more
colors used than the random warm-up algorithm only when its parameter is set to 1. It
is unsurprising that this algorithm produces such extreme results with this parameter,
since a parameter value of 1 will cause the bucket structure to consist of single level with
a high number of buckets that can only fit one node, each with a distinct color palette.
This result therefore simply indicates that the small-bucket algorithm was not meant to
be used with parameter values that low.

Static-Dynamic Algorithm As expected, the experiment plots show that, even in the
same range of recolors, the static-dynamic algorithm requires many more colors than all
other algorithms (with the exception of the small-bucket algorithm with parameter 1).
This result is explained by the fact that this algorithm uses two different colorings, the

25

static coloring and the dynamic coloring, which it combines by creating color tuples (c1,
c2). This process practically multiplies the number of colors used in the static coloring
with those used in the dynamic coloring, creating an unnecessarily large color palette.
An interesting observation is that, if the parameter used is very small, the static-dynamic
algorithm produces results closer to the competitive area of the other algorithms and
in the direction of DC-Orient. This is because at very low parameter values the static-
dynamic algorithm executes a full static recolor almost every update. Since DC-Orient
simulates the colorings the greedy static coloring algorithm would produce (which is
the static black-box used in static-dynamic) these two algorithms end up producing
more similar results. Similarly at very high parameter values, static-dynamic seems to
produce results more similar to the random warm-up algorithm. Once again this effect
is explained by the fact that at very high parameter values a static reset almost never
occurs and every step is simply a dynamic black-box step, and thus in this case a random
warm-up step. The interesting part of this behaviour is that while many more algorithms
within the plots display such a balance between the random warm-up and DC-Orient,
this static-dynamic line does not curve to the bottom-left, but rather upwards. This
peak reinforces the belief that the multiplication of the static and dynamic colorings
is the cause of the high number of colors used, since this multiplication would reach
its highest value when the static and dynamic parts of the algorithm have a similar
importance, and thus a similar number of colors. The static-dynamic algorithm does
seem to be competitive when it comes to running time, but is not significantly faster to
compensate for the high number of colors used.

DC-Orient Almost all left-hand side plots show DC-Orient in the far bottom-right
corner, making this algorithm the second extreme option. Where the random warm-up
focuses on low number of recolors and has short running time, we can see that DC-
Orient has a focus on low number of colors used and has the highest running time of
all the algorithms. These results are as expected, since the DC-Orient algorithm was
not designed with a focus on low number of recolors. While the running time and high
number of recolors make this algorithm viable only if the quality of the colorings is of
utmost importance, it does provide us with a second anchor point, together with the
random warm-up, for our two new algorithms.

Static-Simple Static-simple was designed to be an improvement over static-dynamic.
Where static-dynamic combined the random warm-up algorithm and DC-Orient by using
them as black boxes and later combining their separate colorings, static-simple instead
uses only a single coloring. This simple change in the way these algorithms are combined
removes the blow-up of colors used that was present in static-dynamic and, as can be
seen in the experiment plots, reduces the number of colors significantly while retaining
the same range when it comes to recolors. The running time, while differing somewhat, is
still competitive with static-dynamic and the other algorithms and overall it thus seems
that this improved variant of static-dynamic has succeeded in its goal. The relatively
small range of recolors that was covered by static-dynamic, especially when compared

26

to the small- and big-bucket algorithms, has not been increased however, meaning that
while the trade-off is much more efficient, it is not as versatile as certain other options.

DC-Simple Finally, DC-Simple, created to be the simplest combination of the random
warm-up algorithm and DC-Orient is shown to have succeeded in its purpose. Not only
does its trade-off line move accurately towards both of these algorithm results, it does
so with a bottom-left curve that is lower than the other algorithms considered so far.
This means that the trade-off between colors and recolors offered by this algorithm is
the most efficient one so far, making this the ideal option when both colors and recolors
are important in the application in question. This efficient trade-off comes at a cost,
however, since the running time aspect of this algorithm is less than desirable for most
parameter values. While the running time of DC-Simple does considerably improve upon
that of DC-Orient, even for relatively low parameter values, it is only competitive with
the other algorithms at high ones. This high running time is something to consider when
deciding on an algorithm for a specific application. Additonally, peaks in the trendline
for running time can be observed in some of the plots for DC-Simple. These peaks are
likely not due to the parameter values of the algorithm, but rather to the way the experi-
ments were executed. Because of the long running time for this algorithm, the collection
of the datapoints required to generate the plots has taken a considerable amount of time.
During this timeframe the device used to run the experiments was occasionally also used
to perform other, short-term, tasks. These background processes have likely caused the
computer to slow down its processing speed, causing an occasional peak in the timeline
of this algorithm.

With these general observations about the different algorithms clarified, the rest of the
experiments will focus on the differences in the results that occur when running the algo-
rithms on different types of graphs and update sequences. These experiments will allow
insight into different situations in which certain algorithms might have an advantage due
to how they work internally.

6.3 Small vs. Large graphs

The first and simplest of the experiments is the one related to the size of the generated
graph. Various algorithms, like the bucket-based and the static-dynamic algorithms,
rely on the number of nodes in a graph when creating its underlying data structure.
The small-bucket algorithm will create more buckets per level as the number of nodes
in a graph increases and the static-dynamic algorithm will have more levels of update
segments. We hypothesise that these algorithms will produce better results on larger
graphs, since they will get the opportunity to use their data structures to the fullest.

In order to test this hypothesis, we run all algorithms on graphs of different sizes.
We do this by generating random graphs with increasing amount of nodes and edges and
take the update sequence to be a one by one addition of the graph’s edges in a random
order. We pick this randomized method to reduce bias as much as possible.

27

The results for increasing number of nodes can be found in Figures 6.2, 6.3 and 6.4
and the those for increasing number of edges in Figures 6.5, 6.6 and 6.7. In these figures,
two plots are shown, the left of which displays the trade-off between colors used and
recolors, and the right of which displays the running time as related to the number of
recolors. By looking at these graphs side-by-side the relationship between number of
colors used and running time can also be deduced. Additionally, a zoomed-in version of
the time plot from Figure 6.4 is provided in Figure 6.1. This zoomed variant allows us to
see how the running times compare of the algorithms that are grouped close together in
most other plots. The experiment with a large graph has been chosen to zoom into, as
this will provide us with more stable, and thus more representative values, as compared
to smaller graphs.

Figure 6.1: Zoomed-in plot of the running time from Figure 6.4.

28

Figure 6.2: Results for a small number of nodes with random edges and
random update sequence. 30 nodes, 217 edges and estimated average C =
5.21.

Figure 6.3: Results for a medium number of nodes with random edges and
random update sequence. 200 nodes, 11940 edges and estimated average C
= 22.

29

Figure 6.4: Results for a large number of nodes with random edges and
random update sequence. 600 nodes, 89850 edges and estimated average C
= 42.

Figure 6.5: Results for a small number of random edges and random update
sequence. 200 nodes, 5970 edges and estimated average C = 12.

30

Figure 6.6: Results for a medium number of random edges and random
update sequence. 200 nodes, 11940 edges and estimated average C = 21.

Figure 6.7: Results for a large number of random edges and random update
sequence. 200 nodes, 17910 edges and estimated average C = 33.

31

In the results for increasing number of nodes, it is clearly visible that at a small
number of nodes, three different algorithms eventually converge at the random warm-up
results. The static-dynamic, static-simple and DC-Simple algorithms do indeed all make
use of this random warm-up as a subroutine and an extreme value for their parameters
can cause their results to become very similar. As the number of nodes increases, how-
ever, we see that only static-simple and DC-Simple remain in the same range as the
random warm-up, whereas the number of colors used in static-dynamic are immediately
too high to be competitive. For static-dynamic we thus conclude that the multiplication
occurring when combining its two colorings outweighs the advantage obtained from using
a reset step during the update sequence, making it unsuitable for large graphs. The two
algorithms that remain in a similar range as the random warm-up, together with this
random warm-up itself do seem to remain quite competitive even as the number of nodes
increases, although the number of colors used by the random warm-up increases at a
much faster rate than our estimate for C. This acceleration could indicate that the ran-
dom warm-up and the two combination algorithms, with high parameters, may not scale
well on even larger graphs, potentially due to the lack of reset steps in the algorithms,
resulting in more suboptimal colors being left behind in the coloring, or potentially due
to the average degree being higher in larger graphs, thus increasing the palette size of
these algorithms. The small- and big-bucket algorithms display the opposite effect: in
the small example, the combined line of these algorithms is almost straight from the
top-left to the bottom-right corner, only a small part of this range is interesting, as the
other algorithms perform objectively better for most of the range. As the number of
nodes increases in the medium and large example, however, we find that this combined
line curves to the bottom-left in an increasingly strong manner, making the algorithms
competitive on a much larger part of the covered range. Additionally, the big-bucket
algorithm is the only one that achieves similar number of colors used as DC-Simple and
DC-Orient, while requiring a lot less time to do so. The small- and big-bucket algo-
rithms thus show themselves to be scalable, likely due to their reset behaviour. Finally,
DC-Orient consistently performs well when it comes to number of colors used, but as
the graphs become larger starts falling behind in number of recolors and running time
quickly. This also explains why the running time line of DC-Simple seems to become
steeper as the graphs get larger: it traces a line between the random warm-up and DC-
Orient, and DC-Orient increases its running time at a much faster rate than the random
warm-up does.

The increasing density experiment shows us similar occurrences, albeit in a much
more minimal manner. The static-dynamic number of colors still blow up, but the
random warm-up number of colors used increases at a similar rate to the estimate of
C, and the number of recolors for DC-Orient barely changes at all between the medium
and large density tests. Additionally we can observe that the strength of the curve for
the small- and big-bucket algorithms remains largely the same over the course of the
different experiments, indicating that the density of the graph has little to no effect on
its performance.

Finally, in the zoomed-in plot of Figure 6.1 we can see that the random warm-up

32

does seem to be the fastest option in general, allowing for some random variation when
comparing it to the static-simple line. Apart from this result, however, it seems none of
the algorithms consistently perform the quickest. The static-dynamic and static-simple
algorithms are both almost as fast as the random warm-up when their parameters are
high, but as their parameters decrease become on-par with the small- and big-bucket
algorithms, at which point they would increase at a faster rate if not for the fact that
the parameter range ends here. The small- and big-bucket algorithm seems the most
consistent in its running time at this small scale, but Figure 6.4 shows that there is some
increase in running time at the large scale, albeit much lighter than that of DC-Simple.

6.4 Constant Update Stream

In this experiment we generate a stream of updates including both edge additions and
removals, such that many updates are executed without changing the properties like size
and density of the graph much. We generate two different update streams of a hundred
thousand updates, one in which random edges are removed to maintain the same size
and the other in which older edges are removed with a higher probability. The starting
point of both update sequences is a random graph of a medium size, with 200 nodes and
11940 edges.

For the update sequence in which older edges are more likely to be removed, which we
call the decaying update stream, initially each edge in the graph has the same probability
to be removed once an edge removal step occurs. To signify this, all edges are assigned
a weight of 1. With each update that is performed, all edges in the graph increase their
weight by 1. As such, older edges will have a higher weight. When a new edge is added
to the graph, its weight is initialized at 1, making it much less likely to be removed
during an edge removal step than those already present in the graph for longer. When
an edge removal step needs to occur in order to keep the number of edges in the graph
stable, a weighted random selection is done, selecting one edge from the set of edges
currently present in the graph, based on their current weight.

This experiment is meant to give an insight in how well the algorithms deal with
extended use, and whether or not they will start performing worse over time if they
were to be implemented in a real-life application. We expect algorithms that include full
resets, such as the small- and big-bucket algorithms to not be negatively affected in this
situation, but more randomized algorithms such as the random warm-up or the dynamic
part of static-dynamic might cause the number of colors used to increase significantly in
such an update stream.

The results are provided in Figures 6.8 and 6.9.

33

Figure 6.8: Results for a random stream of 100.000 updates, 200 nodes and
estimated average C = 35.

Figure 6.9: Results for a decaying stream of 100.000 updates, 200 nodes and
estimated average C = 35.

34

From these results it is clear, when comparing them to the results from Section
6.3, that indeed algorithms with reset functionality perform better on such long update
streams than the more randomized algorithms do. The random warm-up point lies much
higher as compared to the other algorithms, for example, whereas the small- and big-
bucket algorithms remain in the same range. The static-dynamic algorithm performs
relatively well, as it is quite close to the random warm-up and static-simple. It seems
the reset functionality of its static component may be countering the increase of colors
used caused by the otherwise detrimental multiplication of static and dynamic colors.
Surprisingly DC-Simple does not produce significantly worse results when executing
100.000 updates, even when nodes are colored randomly with a very high probability
parameter. This would indicate that ’incorrect’ colors caused by taking random coloring
steps are not often left behind in the coloring and are relatively quickly overwritten by
a DC-Orient CAN step. This result, combined with the fact that at high parameter
values the running time of DC-Simple is almost competitive with the other algorithms,
makes it a strong contender in the case of long update streams. The difference between
a random stream or a decaying stream seems negligible from these results, as the only
considerable difference is the peak in the DC-Simple time line, which is likely caused by
external factors as explained in Section 6.2.

6.5 Degree Variation

In this section we explore the effect degree variation has on the different algorithms. We
run the algorithms on graphs with similar sizes and randomly ordered updates, but vary
the nodes these updates focus on. For the first experiment, random edges are selected,
making the degree distribution in the graph mostly fair, secondly a light and heavily
skewed degree distribution are generated using node priorities, in order to see the effect
an uneven degree distribution has on the algorithms. Finally, an experiment is ran in
which the degree is mostly fairly distributed, apart from a single node with a very high
degree. This difference in the maximum degree of the graph could have an effect on the
algorithms that select a color from a palette based on the degree of a node, such as the
random warm-up.

For the light and heavily skewed experiments, two graphs are generated in which
edges are unevenly distributed. To achieve this, we use a process that makes edges
adjacent to some nodes more likely to occur in the initial graph. A process which we
call node prioritization. This prioritization is achieved by assigning each node a priority
between 0 and 1 during the graph generation phase. Whenever an edge is considered
for being part of the initial graph the edge priority is obtained by combining the node
priorities of the two adjacent nodes. This edge priority indicates the probability it is
indeed added to the graph, decided by a weighted coin toss. If the result of this coin
toss is negative, a new edge, which could potentially be the same one, is selected for
consideration until the target number of edges is obtained. The distribution of these
edge priorities thus influences how skewed the degrees in the initial graph become. If
the edge priorities are fairly similar, only a light skew occurs, whereas if edge priorities

35

differ more, a heavier skew will occur in the resulting graph. To achieve both these
options we combine the node priorities into edge priorities in two different ways. In
order to get a light skew we combine node priorities into edge priorities by taking their
average, whereas in order to obtain a heavy skew we combine node priorities by squaring
them both and multiplying them together. This square and multiplication enlarges the
difference between the original node priorities and thus cause the edge priorities to be
further apart. As such, we obtain both a graph with lightly skewed degree distribution
and one with heavily skewed degree distribution.

The results of this experiment can be found in Figures 6.10, 6.11, 6.12 and 6.13

36

Figure 6.10: Results for a fair distribution of degrees. 265 nodes, 10623 edges
and estimated average C = 15.

Figure 6.11: Results for a lightly skewed distribution of degrees. 259 nodes,
14852 edges and estimated average C = 19.

37

Figure 6.12: Results for a heavily skewed distribution of degrees. 250 nodes,
13769 edges and estimated average C = 26.

Figure 6.13: Results for a mostly fair degree distribution with a single high
degree. 264 nodes, 19167 edges, maximum degree of 263 and estimated av-
erage C = 25.

38

From these results we can conclude that almost all algorithms have very similar
performance as in other experiments, regardless of the distribution of degrees. The only
point of interest here is that DC-Orient, and to a lesser extent therefore also DC-Simple,
seem to require fewer recolors as the distribution of degrees becomes skewed, an effect
which causes the other lines in the plot to appear more spread-out horizontally. We thus
conclude DC-Orient is the only algorithm performing more efficiently on a graph with
skewed degree distribution. This aspect of DC-Orient makes it a more viable option
in certain biased situations, rather than only being an algorithm focused on number of
colors. This effect does not seem present when only a single node of high degree is added
to the graph, nor does this addition seem to significantly affect the other algorithms.

6.6 Update Spread

This section focuses not on the edges added during the update sequence, but on the
order in which these updates are executed. We hypothesise that this order will make
a large difference in algorithms such as static-dynamic, since it only statically recolors
nodes with a high recent degree, obtained by adding many edges to a node in relatively
few updates. The three methods used to generate this update order are: randomly,
prioritized based on an expanding breadth-first-search principle, where all edges are
likely to be part of a single connected component, and lastly prioritized on node, where
updates adjacent to a node with high priority are more likely to occur early in the update
sequence.

Note that at the point in the experiment setup process at which the update order
is decided upon, the edges which will make up the edge addition updates are already
determined, as these are the edges in the already generated random graph. The variety
of update spread is only due to the order in which these edges are added. As such,
the random update order is simply obtained by taking the already selected edges and
shuffling them at random.

The expanding order is achieved by initially assigning each node a weight value of
1. The first edge in the update sequence is then selected by a weighted random sample
using calculated edge weights, which are obtained by summing the node weights of the
edge’s endpoints. The nodes adjacent to the selected edge increase their weight by 1
before selecting the edge to be added next in the update sequence. This makes edges
adjacent to a node that already has an edge in the update sequence more likely to be
added sooner, but does not have a strong enough effect as to focus edge additions around
a specific node. This process continues until all edge addition updates are ordered and
provides us with an order reminiscent of a breadth-first-search approach.

The node prioritized update sequence is generated by assigning each node a priority
between 1 and 1000, after which these priorities are taken to the power of some pa-
rameter x. This parameter can be adjusted to increase or decrease the strength of the
prioritization. As found in preliminary experiments, however, this approach requires the
parameter to be quite large, only clearly showing the intended effect of focusing mostly
on one node at a time when using a value of 100. The result of this computation is

39

thus that the priorities of the nodes are very spread out. After this computation each
node has a set priority and edges are selected as follows: first a node is selected using
a weighted random sample using the node priorities. From the set of available edge
additions, a list is created of edges that are adjacent to this selected node, and from this
list one edge is selected at random. This edge is put first in the update order and the
whole process is repeated for the next position. If a node has no more adjacent edges in
the available edge update set, it is removed from the random sample pool. This manner
of ordering the edges is very likely to first add all available edges adjacent to the node
with the highest priority and after that continue with adding all available edges that are
adjacent to the node with the second highest priority, and so on. The ordering resulting
from this method is thus grouped strongly.

The results for this experiment can be found in Figures 6.14, 6.15 and 6.16.

Figure 6.14: Results for a randomly ordered update sequence. 228 nodes, 12440 edges
and estimated average C = 20.

40

Figure 6.15: Results for an expanding update sequence. 228 nodes, 12440
edges and estimated average C = 19.

Figure 6.16: Results for an update sequence with strong node prioritization.
228 nodes, 12440 edges and estimated average C = 17.

41

Indeed we find that the static-dynamic algorithm is once again lowered in number
of colors used to become closer to the results of the random warm-up, especially in
the case of the node prioritized experiment. Additionally we once again see DC-Orient
profit from a skewed update set. In this case it achieves fewer recolors in the expanding
update sequence, while still obtaining the optimal number of total colors used. The same,
but much more extreme effect can be observed in the results for the node prioritized
update sequence, where the average number of recolors for DC-Orient drops as low as
the convergence point of the small- and big-bucket algorithms. This decrease in recolors
also allows the running time of DC-Orient to be almost equal to the other, usually faster,
algorithms. This surprisingly effective behaviour of DC-Orient, especially combined with
the results from the degree distribution experiment in Section 6.5, make it a much more
versatile option than initially expected. The DC-Simple algorithm can be seen to profit
to a lesser extend from these same skewed update sequences, as it only uses a DC-Orient
step occasionally, depending on the chosen parameter. This surprising location of the
DC-Orient datapoint also effects the big-bucket line, as the big-bucket algorithm with a
very low parameter often uses a reset step, which has been implemented using the static
greedy coloring algorithm that DC-Orient aims to simulate. It is therefore also visible in
these plots that the big-bucket algorithm line moves towards the position of DC-Orient,
making for some strange curves, as this is not where the DC-Orient datapoint would
normally lie.

6.7 Reddit Dataset

For the final experiment, we use a real-life dataset representing hyperlinks between
different ’subreddits’ on the social media platform Reddit. This dataset originates from
a Stanford University research paper by Kumar et al. [17]. Some preprocessing was
done to make this dataset applicable to our work. The directed edges in the dataset
were interpreted as undirected ones and any duplicate edges caused by this process were
removed. Remaining are 35776 nodes and 124330 edges, which the greedy static coloring
algorithm can color using only 34 colors. The graph is thus large, but not very dense. In
this experiment we hope to see which algorithms work best in a real-life example, rather
than generated graphs with specific properties.

The results of this experiment can be found both in Table 6.1 and Figure 6.17.

42

Table 6.1: The results of running the algorithms on a real-life Reddit dataset.

35776 Nodes; 124330 Edges; C = 23.05 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Random Warm-Up 0.11 78.3 3321.593

Small-Bucket algorithm (d = 5) 3.93 137.31 3494.585

Big-Bucket algorithm (d = 5) 5.39 51.1 3167.058

Static-Dynamic algorithm (l = 10) 1.24 283.54 7779.184

Static-Dynamic algorithm (l = 100) 0.22 343.64 7375.252

DC-Orient 2.48 23.05 7444.115

Static-Simple algorithm (l = 10) 1.13 94.65 2862.408

Static-Simple algorithm (l = 100) 0.2 93.35 2904.748

DC-Simple (p = 0.8) 24.21 37.16 15795.713

DC-Simple (p = 0.998) 2.9 61.8 6857.528

Figure 6.17: Visual plot of the results of the real-life Reddit dataset, based on the values
of Table 6.1

We find that most algorithms behave as expected. The random warm-up uses rela-
tively many colors but has a very low number of recolors and running time. The small-
and big- bucket algorithms do not provide the best results but do achieve a fairly efficient
trade-off. Static-dynamic uses a total number of colors that is much higher than all other
algorithms and static-simple simply improves upon static-dynamic in all aspects. What
is surprising about these results is how well DC-Orient manages to perform on a large
real-life dataset. Whereas previously DC-Orient has usually been the slowest algorithm

43

with by far the most recolors, in this case the number of recolors is quite competitive
with the other algorithms even when it has the lowest total number of colors used. Ad-
ditionally the running time for DC-Orient is on par with static-dynamic and even lower
than the DC-Simple algorithm for low parameter values, this is unlike what could be
observed with the generated graphs. In this case DC-Simple is not able to outperform
DC-Orient, although the final instance with p = 0.998 comes close. The efficiency of
DC-Orient on this real-life dataset could be due to an inherent skew in either the edges
or order of the updates in the dataset. As has been shown in Sections 6.5 and 6.6,
DC-Orient performs better on datasets with some aspect that is not evenly distributed.
The authors of the paper from which the dataset originates [7] do mention that many
’conflicts’ between subreddits are caused by only 1% of the existing subreddits. These
concentrated conflicts could be the cause of many cross-referencing hyperlinks between
such ’aggressive’ subreddits and make it likely for this dataset to indeed contain an unfair
distribution of edges. Since the effect observed here is much stronger than seen during
the generated experiments, including the experiment from Section 6.6, which included a
very strong skew already, it seems that this real-life dataset may contain biases that are
much stronger than anticipated.

44

Chapter 7

Conclusion

From the results obtained in Chapter 6 a number of conclusions can be drawn. These
conclusions are grouped per algorithm and presented in this chapter.

Random Warm-Up The random warm-up algorithm has shown to only be a good
option when dealing with a rather small graph with a relatively short lifetime. If the
graph grows too large or undergoes a large number of updates, the randomness of this
approach will cause the total number of colors to be higher than necessary. Even so, it is
known to theoretically be bounded by the maximum degree ∆ + 1, and if the number of
recolors or running time is of most importance, there is no other algorithm that achieves
a lower number of recolors or faster running time than this one.

Small- and Big-Bucket Algorithms These algorithms turned out to be the baseline, or
middle of the road, when it comes to the trade-off between recolors and total number of
colors used. The two complementary algorithms cover the entire range of the trade-off
by using different parameters, as is evident from the figures in Chapter 6, and perform
competitively in all except the most extreme cases. While not the most efficient solution
for every case, these algorithms are a reasonable choice when looking for a middle ground
between recolors and number of colors used, on top of which they also scale well with
both graph size and update sequence length, performing just as well when either of these
increases.

Static-Dynamic Algorithm The static-dynamic algorithm is somewhat of an exception
in that the idea behind it is intuitively quite smart, but the execution causes its per-
formance to be less than desirable. The multiplicative growth in number of colors used
caused by using two separate color palettes that need to later be combined makes this
algorithm the least attractive choice in many situations. It is therefore not recommended
to use this algorithm in any of the cases considered in this work.

DC-Orient While DC-Orient was always expected to be the go-to algorithm in cases
where the total number of colors used are most important, the experiments have shown
a whole new property of this algorithm. Where normally DC-Orient would require many

45

more recolors and time to run compared to other algorithms, this disadvantage seemingly
disappears when ran on a highly skewed dataset. On datasets with unfair distribution of
degrees or an ordered update sequence DC-Orient can compete with all other algorithms
discussed in this work while still retaining the lowest number of colors used of them all.

Static-Simple The new static-simple algorithm has proven to be a strict improvement
over the original static-dynamic algorithm. It manages to produce results with the same
number of recolors, but a much lower number of total colors used. It also remains com-
petitive with the small-bucket algorithm and the random warm-up, often outperforming
the small-bucket algorithm and providing a reasonable trade-off in the range of low num-
ber of recolors. The static-simple algorithm does not manage to cover the same range
as the big-bucket, DC-Orient or DC-Simple algorithms when it comes to low number
of colors, however. Additionally, the random element of this algorithm, that becomes
especially important for higher parameter values can make the results for this algorithm
quite unpredictable, which is something to consider when deciding to use static-simple.

DC-Simple Possibly the most surprising and promising result of the experiments is the
quality of the results produced by DC-Simple. This simple combination of the random
warm-up and DC-Orient is seemingly able to simulate either one of them, but is also
able to produce competitive results anywhere in the range between them. Similarly to
DC-Orient, DC-Simple requires fewer recolors when the dataset is skewed somehow, but
since the random-warm up algorithm displays no such behaviour, this effect is lessened
with higher values for parameter p, in some cases, like the real-life Reddit dataset, it
can thus occur that DC-Simple with some parameter p is outperformed by the original
DC-Orient. The biggest drawback of DC-Simple remains its running time which, even
though it considerably improves upon that of DC-Orient, is still not competitive with
the alternative algorithms discussed in this work. This algorithm should thus only be
used if the number of colors and recolors is sufficiently more important than the time it
takes to run.

These conclusions indicate that, depending on the situation, almost all of the discussed
algorithms are the best option in at least some cases. Aside from outlining what these
cases are in order to improve decision making, we also introduced two new combination
algorithms, proving that cooperation between multiple approaches can lead to results
that surpass either approach by themselves. With this lesson and an extension to the
available experimental data on the dynamic graph coloring problem, we hope this work
will stimulate further research into this versatile problem.

46

Chapter 8

Future Work

Even though many experiments were performed over the course of the research for this
work, the many variables make it impossible to run a test for each and every combina-
tion. Many of the algorithms have different versions available and most of them use a
parameter to manage their trade-off. Apart from the options each algorithm provides,
the graph and update sequence generation methods also allow for parameters to set the
number of vertices, edges, the distribution of the degrees, maximum degree, order of
updates and variation allowed in each of these. With all these options available there
are many more experiments imaginable, in which a multitude of different combinations
can be investigated.

Additionally, due to the limited access to time and computing power over the course
of this work, an upper bound to the size of the experiments introduced itself. Future
work might consider running experiments on even larger graphs, using the findings from
this work as a guideline. As such, large graphs could be experimented on to find out if
the algorithms deemed to scale better do indeed perform significantly better on an even
larger scale. Apart from size, future work may also consider running experiments on
graphs with even more significantly skewed aspects such as uneven degree distribution
or node focused update sequence ordering. These inputs have proven to considerably
change the relative performance of the different algorithms discussed in this work, and
it would be interesting to see how strong this effect can become, as well as finding
practical applications in which such skewed graphs naturally occur. Additionally, the
parameter ranges used in Chapter 6 could be extended by considering more extreme
values for the parameters. The plots could also be smoothed out even further by plotting
more datapoints for each algorithm and taking the average of more instances for the
randomized algorithms. More datapoints can also be computed for the Reddit dataset,
allowing for further insight into the trade-off for these algorithms in a real-life application.

Another aspect that could prove interesting is the difference between measuring the
average number of colors and recolors as compared to the maximum of these values. Since
many of the algorithms perform an occasional reset step to reduce the number of colors
used, the quality of the coloring for such an algorithm could vary quite significantly while
still obtaining a reasonable average. Depending on the practical application this could be
problematic behaviour. Future research could thus be conducted on which algorithms

47

most clearly display this behaviour, how it could affect a practical application, and
whether or not a trade-off may be possible between stability and quality.

Apart from these additional experiments, the combination algorithms presented in
this thesis could also be extended upon. While both of the new algorithms introduced in
this work are seemingly competitive with many of the original algorithms, no theoretical
analysis has been performed to prove asymptotic bounds for either of the two algorithms.
The conclusions in this work are merely based on an intuitive understanding of each
algorithm and the experiments that were performed. As such, different methods of
combining the original algorithms may exist that perform even better than those found
here, or improvements upon these algorithms might exist that allow them to perform
even more efficiently with only minor changes. These new algorithms, but especially
the idea of combining existing algorithms, is therefore an interesting topic for further
research.

48

Bibliography

[1] M. Theunis. (2022) Dynamic graph coloring thesisx. GitHub repository. Available:
https://github.com/mtheunistue/DynamicGraphColoring

[2] P. M. Pardalos, T. Mavridou, and J. Xue, The Graph Coloring Problem: A
Bibliographic Survey. Boston, MA: Springer US, 1998, pp. 1077–1141. ISBN
978-1-4613-0303-9. doi: 10.1007/978-1-4613-0303-9 16

[3] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA: Springer
US, 1972, pp. 85–103. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9

[4] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified np-complete graph
problems,” Theoretical Computer Science, vol. 1, no. 3, 1976, pp. 237–267. doi:
10.1016/0304-3975(76)90059-1

[5] L. Stockmeyer, “Planar 3-colorability is polynomial complete,” SIGACT News,
vol. 5, no. 3, jul 1973, p. 19–25. doi: 10.1145/1008293.1008294

[6] R. Lewis, J. Thompson, C. Mumford, and J. Gillard, “A wide-ranging
computational comparison of high-performance graph colouring algorithms,”
Computers Operations Research, vol. 39, no. 9, 2012, pp. 1933–1950. doi:
10.1016/j.cor.2011.08.010

[7] A. Kosowski and K. Manuszewski, “Classical coloring of graphs,” Graph Colorings,
2004, p. 1–19. doi: 10.1090/conm/352/06369

[8] D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number
of a graph and its application to timetabling problems,” The Computer Journal,
vol. 10, no. 1, 01 1967, pp. 85–86. doi: 10.1093/comjnl/10.1.85

[9] S. Vishwanathan, “Randomized online graph coloring,” Journal of Algorithms,
vol. 13, no. 4, 1992, pp. 657–669. doi: 10.1016/0196-6774(92)90061-G

[10] L. Ouerfelli and H. Bouziri, “Greedy algorithms for dynamic graph coloring,” in
2011 International Conference on Communications, Computing and Control Appli-
cations (CCCA), 2011, pp. 1–5. doi: 10.1109/CCCA.2011.6031437

49

https://github.com/mtheunistue/DynamicGraphColoring

[11] J. Bossek, F. Neumann, P. Peng, and D. Sudholt, “Runtime analysis of randomized
search heuristics for dynamic graph coloring,” in Proceedings of the Genetic and
Evolutionary Computation Conference, ser. GECCO ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1443–1451. ISBN 9781450361118.
doi: 10.1145/3321707.3321792

[12] S. Bhattacharya, D. Chakrabarty, M. Henzinger, and D. Nanongkai, Dynamic
Algorithms for Graph Coloring, pp. 1–20. doi: 10.1137/1.9781611975031.1

[13] L. Barba, J. Cardinal, M. Korman, S. Langerman, A. van Renssen, M. Roeloffzen,
and S. Verdonschot, “Dynamic graph coloring,” Algorithmica, vol. 81, no. 4, Apr.
2019, pp. 1319–1341. doi: 10.1007/s00453-018-0473-y

[14] S. Solomon and N. Wein, “Improved dynamic graph coloring,” ACM Trans.
Algorithms, vol. 16, no. 3, jun 2020. doi: 10.1145/3392724

[15] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang, “Effective and efficient dynamic
graph coloring,” Proceedings of the VLDB Endowment, vol. 11, 11 2017, pp. 338–
351. doi: 10.14778/3157794.3157802

[16] A. Hagberg, D. Schult, and P. Swart. Networkx reference release 2.8.4.
NetworkX. Available: https://networkx.org/documentation/stable/ downloads/
networkx reference.pdf

[17] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Jurafsky, “Community interaction
and conflict on the web,” in Proceedings of the 2018 World Wide Web Conference on
World Wide Web. International World Wide Web Conferences Steering Committee,
2018, pp. 933–943. doi: 10.1145/3178876.3186141

50

https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf
https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf

Appendix A

Comparison Tables

This appendix consists of experimental results obtained during preliminary experimenta-
tion on the various algorithms to find out which versions to focus on. The results in this
appendix are provided in the form of tables in which the version of the algorithm, aver-
age number of recolors per update, average number of colors used in the coloring after
each update and total time taken for all updates are provided as columns. Additionally,
in the top left cell of each table, some more information is provided about the graph
used in the preliminary experiment. The number of nodes, edges and average estimate
for the chromatic number C after each update are given. The experiments provided here
follow the same set-up as described in Section 6, we thus consider increasing graphs and
stream experiments.

A.1 Random Warm-Up Version Comparison

In Tables A.1 and A.2 we provide a small comparison of the different implementations of
the random warm-up algorithm. The version named ’Random Warm-Up (local degrees)’
is the one used in the main experiments.

Table A.1: Comparison of the random warm-up algorithms on a random graph and
update sequence.

250 Nodes; 23623 Edges; C = 32.14 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Random Warm-Up (local degrees) 0.04 82.11 3.687

Random Warm-Up 2 (local degrees) 0.07 84.05 3.851

Random Warm-Up (max degree) 0.01 164.51 3.854

Random Warm-Up 2 (max degree) 0.02 164.17 3.909

51

Table A.2: Comparison of the random warm-up algorithms on a random update stream
of length 10.000.

161 Nodes; 4043 Edges; C = 18.72 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Random Warm-Up (local degrees) 0.01 53.7 1.012

Random Warm-Up 2 (local degrees) 0.03 52.95 0.991

Random Warm-Up (max degree) 0.01 80.79 0.951

Random Warm-Up 2 (max degree) 0.01 82.55 0.947

As can be seen in both tables, the difference in performance between the random
warm-up result 2 as described in the paper by Bhattacharya et al. [12] and the combined
random warm-up algorithm are fairly insignificant and mostly due to the randomness
involved. When comparing the results between using local degrees or a global maximum
degree however, it is clear that the local degree version has a bias towards using fewer
colors in total but recoloring more often as compared to the global maximum degree.
This result is intuitively correct, since making each color palette the size of the maximum
degree allows for more colors to be chosen, increasing the total of colors but reducing the
number of conflicts. It is thus worth noting that an additional trade-off for the random
warm-up algorithm is possible by using the maximum degree based version instead of
the one used in the main experiments.

A.2 Static-Dynamic Version Comparison

In Tables A.3 and A.4 we provide a small comparison between the two different imple-
mentations for the static-dynamic algorithm: one with and one without resetting the
dynamic graph whenever a full reset is called. The version without a dynamic reset is
the one presented in [14] and the main version considered in this work.

Table A.3: Comparison of the static-dynamic algorithm with and without dynamic reset
on random graph and update sequence.

235 Nodes; 18528 Edges; C = 27.17 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Static-Dynamic (l = 10) no dynamic reset 1.06 132.49 6.902

Static-Dynamic (l = 10) dynamic reset 1.19 108.14 6.929

Static-Dynamic (l = 100) no dynamic reset 0.18 163.82 6.158

Static-Dynamic (l = 100) dynamic reset 0.2 155.13 6.494

52

Table A.4: Comparison of the static-dynamic algorithm with and without dynamic reset
on a random update stream of length 10.000.

207 Nodes; 7315 Edges; C = 24.54 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Static-Dynamic (l = 10) no dynamic reset 0.51 124.94 2.513

Static-Dynamic (l = 10) dynamic reset 0.56 108.34 2.814

Static-Dynamic (l = 100) no dynamic reset 0.11 157.7 2.421

Static-Dynamic (l = 100) dynamic reset 0.11 157.13 2.336

From these results it appears the dynamic reset variant provides a slight skew towards
fewer total colors used and more recolors. While this could be an interesting trade-off,
especially since the effect on number of colors used seems to be much larger, it is not
significant enough to make this algorithm competitive with the others considered in this
thesis. We therefore decide to use the original version as described in [14] in the rest of
the work, in order to get a clearer comparison between the algorithms from the different
papers.

A.3 DC-Orient Version Comparison

A comparison between the performance of the basic and optimized versions of DC-Orient
can be found in Tables A.5 and A.6.

Table A.5: Comparison of the basic and optimized versions of DC-Orient on a random
graph and update sequence.

178 Nodes; 6332 Edges; C = 14.3 Average nr. of Recolors Average nr. of Colors Time Taken (s)

DC-Orient without optimizations 17.22 14.3 108.322

DC-Orient with optimizations 17.22 14.3 21.71

Table A.6: Comparison of the basic and optimized versions of DC-Orient on a random
update stream of length 10.000.

225 Nodes; 13645 Edges; C = 40.06 Average nr. of Recolors Average nr. of Colors Time Taken (s)

DC-Orient without optimizations 38.3 40.06 2073.542

DC-Orient with optimizations 38.3 40.06 172.858

As is apparent from these results, both versions of DC-Orient are identically effective
when it comes to recolors and total number of colors used. The only difference between
the two lies in the running time. Because of this, the optimized DC-Orient version is
used in the rest of this work. It is also worth noting that indeed the number of colors
used by DC-Orient are identical to those used by the static greedy approach used to
approximate C, as is apparent from these values being identical in both experiments.

53

A.4 DC-Simple Version Comparison

Tables A.7 and A.8 show the difference in performance between the basic and optimized
versions of DC-Simple.

Table A.7: Comparison of the basic and optimized versions of DC-Simple on a random
graph and update sequence.

231 Nodes; 8383 Edges; C = 14.25 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Basic DC-Simple (p = 0.8) 5.63 16.27 52.536

Optimized DC-Simple (p = 0.8) 5.47 17.04 13.881

Basic DC-Simple (p = 0.998) 0.2 30.93 6.145

Optimized DC-Simple (p = 0.998) 0.25 30.03 5.307

Table A.8: Comparison of the basic and optimized versions of DC-Simple on a random
update stream of length 10.000.

225 Nodes; 9148 Edges; C = 27.37 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Basic DC-Simple (p = 0.8) 9.32 27.76 277.483

Optimized DC-Simple (p = 0.8) 9.24 27.86 39.038

Basic DC-Simple (p = 0.998) 0.26 38.2 17.299

Optimized DC-Simple (p = 0.998) 0.22 42.37 11.105

A similar result as for DC-Orient can be observed here: the results of both versions
are very similar while the running time of the optimized version is much lower, especially
for the iteration with p = 0.8. The reason the results are not identical for the different
versions is that the random warm-up element included in DC-Simple causes an element
of randomness to affect the final results, it is therefore highly unlikely that even the
same algorithm produces the exact same result twice. We thus also use the optimized
version of DC-Simple in the main experiments.

54

A.5 Parameter Comparison

Table A.9: The results of the algorithms ran using various parameters on the same graph
and update sequence as Figure 6.3.

200 Nodes; 11940 Edges; C = 21.5 Average nr. of Recolors Average nr. of Colors Time Taken (s)

Random Warm-Up 0.05 54.64 1.521

Small-Bucket algorithm (d = 1) 0.31 175.12 4.427

Small-Bucket algorithm (d = 3) 3.26 44.35 3.326

Small-Bucket algorithm (d = 5) 3.92 40.9 3.75

Small-Bucket algorithm (d = 10) 4.39 45.37 4.793

Small-Bucket algorithm (d = 20) 4.39 45.43 5.356

Big-Bucket algorithm (d = 1) 24.64 21.5 14.318

Big-Bucket algorithm (d = 3) 6.97 26.19 4.267

Big-Bucket algorithm (d = 5) 5.25 30.16 3.773

Big-Bucket algorithm (d = 10) 4.47 39.34 5.205

Big-Bucket algorithm (d = 20) 4.47 39.34 5.206

Static-Dynamic algorithm (l = 1) 4.9 64.88 5.885

Static-Dynamic algorithm (l = 2) 3.33 83.26 4.906

Static-Dynamic algorithm (l = 5) 1.77 100.34 4.086

Static-Dynamic algorithm (l = 10) 1.04 108.64 3.803

Static-Dynamic algorithm (l = 50) 0.29 130.59 3.274

Static-Dynamic algorithm (l = 100) 0.17 127.95 3.141

DC-Orient 24.64 21.5 83.747

Static-Simple algorithm (l = 1) 4.76 34.88 5.76

Static-Simple algorithm (l = 2) 3.09 38.33 4.349

Static-Simple algorithm (l = 5) 1.56 42.32 3.052

Static-Simple algorithm (l = 10) 0.89 45.55 2.453

Static-Simple algorithm (l = 50) 0.24 56.7 1.674

Static-Simple algorithm (l = 100) 0.14 60.37 1.629

DC-Simple (p = 0.2) 20.22 21.96 71.565

DC-Simple (p = 0.5) 14.23 22.38 54.849

DC-Simple (p = 0.8) 6.84 23.63 31.353

DC-Simple (p = 0.998) 0.31 40.33 10.059

DC-Simple (p = 0.9999) 0.06 54.5 8.768

55

Appendix B

Pseudocode

In this appendix, the pseudocode for the small-bucket algorithm, the big-bucket algo-
rithm and the static-dynamic algorithm are provided. This pseudocode represents the
manner in which the algorithms have been implemented during this thesis and may thus
vary slightly from the algorithms as described in the original papers [13] [14]. The tex-
tual description of the small- and big-bucket algorithms can be found in Section 4.3 and
the description of the static-dynamic algorithm in Section 4.4.

Algorithm 1 Small-Bucket Algorithm

1: Parameters: d, G
2: Initialization:
3: resetBuckets(G)
4: Return;
5:

6: Update graph:
7: if Edge or Vertex removed then:
8: Update all relevant subgraphs without changing colors

9: if Vertex added then:
10: Add vertex to an empty bucket b on the first level
11: updateBuckets(b);

12: if Edge added then:
13: Choose one of the endpoints of the edge to be ve
14: Remove ve from whichever bucket it is in and add it to an empty bucket b on the

first level
15: updateBuckets(b);

16:

17: updateBuckets(b):
18: i := 0;
19: while i < d do
20: if Still an empty bucket at level i then:
21: Let bg denote the subgraph of the nodes in b
22: staticColoring(bg);
23: Return;
24: else:
25: Empty all level i buckets into a single level i+1 bucket, update b to point at

the new bucket
26: i++;

27: resetBuckets(G);
28: Return;
29:

30: resetBuckets(G):
31: NR := number of vertices in G
32: s := N

1/d
R

33: Create d levels of s buckets each, having si capacity for level i, starting at 0
34: Create a final level d with a single bucket without a limit on capacity
35: staticColoring(G);
36: Return;
37:

38: staticColoring(g):
39: Use the available static graph coloring algorithm to color subgraph g
40: Return;

Algorithm 2 Big-Bucket Algorithm

1: Parameters: d, G
2: Initialization:
3: resetBuckets(G)
4: Return;
5:

6: Update graph:
7: if Edge or Vertex removed then:
8: Update all relevant subgraph without changing colors

9: if Vertex added then:
10: Add vertex to bucket b on the first level
11: updateBuckets(b);

12: if Edge added then:
13: Choose one of the endpoints of the edge to be ve
14: Remove ve from whichever bucket it is in and add it to bucket b on the first level
15: updateBuckets(b);

16:

17: updateBuckets(b): i := 1;
18: while i < d+ 1 do
19: if Less than or equal to si − si−1 vertices in b then:
20: Let bg denote the subgraph of the nodes in b
21: staticColoring(bg);
22: Return;
23: else:
24: Empty b into the level i+1 bucket, update b to point at the new bucket
25: i++;

26: resetBuckets(G);
27: Return;
28:

29: resetBuckets(G):
30: NR := number of vertices in G
31: s := N

1/d
R

32: Create d levels of a single bucket each, having si capacity for level i, starting at 1
33: Create a final level d+ 1 with a single bucket without a limit on capacity
34: staticColoring(G);
35: Return;
36:

37: staticColoring(g):
38: Use the available static graph coloring algorithm to color subgraph g
39: Return;

Algorithm 3 Static-Dynamic Algorithm for General Graphs

1: Parameters: l, G
2: Initialize:
3: let n be the number of vertices in G
4: c := 0; Counter variable
5: staticBlackBox(G, 0);
6: let G’ be G without edges
7: Initialize all colors in G’ as 0
8: let r0...rlogn be an empty set of nodes
9: let R(r) be a subgraph of G depending on a selection of nodes r

10: Activate levels 0..log n;
11:

12: Update graph:
13: if Edge or Vertex removed then:
14: Update G and G’ without changing colors

15: if Vertex added then:
16: Add vertex to G and G’
17: Assign new vertex arbitrary colors c1 and c2

18: if Edge added then:
19: Let e be the added edge
20: Increase recent degree of endpoints by 1
21: Add edge to G and G’
22: Add node with the highest recent degree to rlevel for each active level

23: c := c+ 1 mod l;
24: if c mod l == 0 then:
25: Set level to be the highest of the active levels
26: if level == 0 then:
27: staticBlackBox(G, level)
28: else
29: staticBlackBox(R(rlevel), level);
30: Deactivate level
31: Activate all levels higher than level
32: Return;

33: if Edge added then:
34: if e still in G’ then:
35: dynamicBlackBox(G’, e);

36: Return;
37:

38: staticBlackBox(g, level):
39: Compute valid coloring for g using the colors from level
40: Assign vertices in g the computed color c1
41: Reset recent degree for all vertices in g to 0
42: Remove all edges adjacent to vertices in g from G’
43: Remove all nodes from rlevel
44: Return;
45:

46: dynamicBlackBox(g, e):
47: Compute valid coloring for nodes adjacent to e in g
48: Assign vertices in g the computed color c2
49: Return;

	Introduction
	Background and motivation
	Contributions and organization
	Related work
	Preliminaries
	Introduction to the Algorithms
	Implementation Details
	Static Greedy Algorithm
	Random Warm-Up
	Small- and Big-Bucket Algorithms
	Static-Dynamic Algorithm
	DC-Orient

	Additional Algorithms
	Static-Simple
	DC-Simple

	Experiments
	Experiment Parameters
	General Observations
	Small vs. Large graphs
	Constant Update Stream
	Degree Variation
	Update Spread
	Reddit Dataset

	Conclusion
	Future Work
	Appendices
	Comparison Tables
	Random Warm-Up Version Comparison
	Static-Dynamic Version Comparison
	DC-Orient Version Comparison
	DC-Simple Version Comparison
	Parameter Comparison
	Pseudocode

