
 Eindhoven University of Technology

MASTER

Improving JavaScript performance using call graphs and graph databases

Strookappe, P.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e92d60f6-7c66-4c91-b838-8ad077adea26

Improving JavaScript
performance using call

graphs and graph
databases.

Patrick Strookappe

Department of Mathematics and Computer Science
Database Research Group

Supervisor:
dr. Daniele Bonetta

Other assessment committee members:
dr. Odysseas Papapetrou

dr. Renata Medeiros de Carvalho

Eindhoven, May 2022

Abstract

Language Virtual Machines often feature a Just-in-time (JIT) compiler that can optimize an ap-
plication at runtime, without the need for any Ahead-of-time knowledge. GraalVM is an example
of such a virtual machine. It supports multiple programming languages and is able to both use
AOT and JIT compilation. This thesis researches how static AOT information can be used to
improve the performance of the JIT compiler. The information is gathered by building a polyglot
tool that implements a call graph profiler. The resulting call graph is analysed by a graph data-
base and provides the JIT compiler with targets for compilation. This thesis shows that the static
information from a call graph can provide valuable information that improves both the startup
time and total performance of a virtual machine.

ii

Contents

Contents iii

List of Figures iv

1 Introduction 1
1.1 Problem statement . 2
1.2 Outline . 2

2 Background 3
2.1 Call graphs . 3
2.2 Graph databases . 4
2.3 GraalVM . 5
2.4 Runtime Dynamic (JIT) Compilation . 5

3 Related work 9
3.1 Call Graphs . 9
3.2 Profile-guided optimisation . 10

4 Methodology 11

5 The call graph profiling tool 13
5.1 CallTracerInstrument . 14
5.2 CallTracer . 14
5.3 CalltracerCLI . 17
5.4 Call graph validation . 17

6 Using a graph database to analyze a call graph 19

7 Improving GraalVM performance 24

8 Experimental evaluation 27
8.1 Experimental setup . 27
8.2 Benchmarks . 28
8.3 Warm up and peak performance measurement . 29
8.4 Typescript . 30
8.5 Terser . 34
8.6 Prettier . 36
8.7 Espree . 38
8.8 Babel-minify . 39
8.9 Acorn.js . 41
8.10 Chai.js . 42
8.11 General Results . 44
8.12 Inlining . 47

iii

CONTENTS CONTENTS

8.13 Threats to validity . 49

9 Conclusion 50

Bibliography 51

iv

List of Figures

2.1 Source code of example JavaScript application. 4
2.2 Edge list resulting from profiling call graph from example JavaScript program in

figure 2.1. 4
2.3 Call graph resulting from source code 2.1 and edge list 2.2 4
2.4 Impression of how tiered execution influences performance [48]. 6
2.5 Compilation queue before new entry is added. 7
2.6 Compilation queue after new entry is added. 7
2.7 Call graph after inlining function a() from call graph in figure 2.3. 7
2.8 Call graph after splitting function c() into c1() and c2(). 8

4.1 Project structure of all implementation parts of the thesis. 11

5.1 Source code of example JavaScript program. 13
5.2 AST of the Intermediate Representation of GraalVM of figure 5.1 13
5.3 Program Structure of the CallTracer profiling tool. 14
5.4 Example JavaScript unit test. 17

6.1 Example InputList for virtual machine, where the query results are directly used
as compilationThresholds. 22

6.2 Example InputList for virtual machine, where the query results are multiplied by
some factor K to result in the compilationThreshold. This ensures that the functions
are entered into the compilation queue in the correct order. 22

8.1 Example compilation queue for default compilation strategy. 30
8.2 Example compilation queue for graph based compilation strategy. 30
8.3 Example compilation queue for default compilation strategy after most tier 1 func-

tions have been compiled. 30
8.4 Example compilation queue for graph based compilation strategy with warm up

time after most tier 1 functions have been compiled 30
8.5 Number of iterations per second for the TypeScript benchmark. 50 Iterations per

run. 20 runs per strategy. Higher is better. 32
8.6 Number of iterations per second for the TypeScript benchmark. 500 Iterations per

run. 20 runs per strategy. Higher is better. 32
8.7 Eventplot of TypeScript. Average time each event takes place with 95% confidence

intervals for last event. Denser is better typescript. 33
8.8 Boxplot of total number of compilations (tier 1 and tier 2) for TypeScript. 33
8.9 Boxplot of percentage of tier 1 versus tier 2 compilations for TypeScript. 34
8.10 Number of compilations per time frame for TypeScript. Tier 1 and tier 2 compilations. 34
8.11 Number of iterations per second for the Terser benchmark. 50 Iterations per run.

20 runs per strategy. Higher is better. 34
8.12 Number of iterations per second for the Terser benchmark. 500 Iterations per run.

20 runs per strategy. Higher is better . 34

v

LIST OF FIGURES LIST OF FIGURES

8.13 Eventplot of Terser. Average time each event takes place with 95% confidence
intervals for last event. 35

8.14 Boxplot of total number of compilations (tier 1 and tier 2) for Terser. 35
8.15 Boxplot of percentage of tier 1 versus tier 2 compilations for Terser. 36
8.16 Number of compilations per time frame for Terser. 36
8.17 Number of iterations per second for the Prettier benchmark. 50 Iterations per run.

20 runs per strategy. 36
8.18 Number of iterations per second for the Prettier benchmark. 500 Iterations per run.

20 runs per strategy. 36
8.19 Example graph input and compilation queue in the case where a splittable function

has low priority in compilation. 37
8.20 Example graph input and compilation queue in the case where a splittable function

has high priority in compilation. 37
8.21 Eventplot of Prettier. Average time each event takes place with 95% confidence

intervals for last event. 37
8.22 Boxplot of total number of compilations (tier 1 and tier 2) for Prettier. 37
8.23 Boxplot of percentage of tier 1 versus tier 2 compilations. 38
8.24 Number of compilations per time frame. 38
8.25 Number of iterations per second for the Prettier benchmark. 50 Iterations per run.

20 runs per strategy. 38
8.26 Number of iterations per second for the Prettier benchmark. 500 Iterations per run.

20 runs per strategy. 38
8.27 Eventplot of Espree. Average time each event takes place with 95% confidence

intervals for last event. 39
8.28 Boxplot of total number of compilations (tier 1 and tier 2) for Espree. 39
8.29 Boxplot of percentage of tier 1 versus tier 2 compilations for Espree. 39
8.30 Number of compilations per time frame for Espree. 39
8.31 umber of iterations per second for the Babel-minify benchmark. 50 Iterations per

run. 20 runs per strategy. 40
8.32 Number of iterations per second for the Babel-minify benchmark. 500 Iterations

per run. 20 runs per strategy. 40
8.33 Eventplot of Babel-minify. Average time each event takes place with 95% confidence

intervals for last event. 40
8.34 Boxplot of total number of compilations (tier 1 and tier 2) for Babel-minify. 40
8.35 Boxplot of percentage of tier 1 versus tier 2 compilations for Babel-minify. 41
8.36 Number of compilations per time frame for Babel-minify. 41
8.37 Number of iterations per second for the Acorn benchmark. 50 Iterations per run.

20 runs per strategy. 41
8.38 Number of iterations per second for the Acorn benchmark. 500 Iterations per run.

20 runs per strategy. 41
8.39 Eventplot of Acorn. Average time each event takes place with 95% confidence

intervals for last event. 42
8.40 Boxplot of total number of compilations (tier 1 and tier 2) for Acorn. 42
8.41 Boxplot of percentage of tier 1 versus tier 2 compilations for Acorn. 42
8.42 Number of compilations per time frame for Acorn. 42
8.43 Number of iterations per second for the Chai benchmark. 50 Iterations per run. 20

runs per strategy. 43
8.44 Number of iterations per second for the Chai benchmark. 500 Iterations per run.

20 runs per strategy. 43
8.45 Eventplot of Chai. Average time each event takes place with 95% confidence inter-

vals for last event. 43
8.46 Boxplot of total number of compilations (tier 1 and tier 2) for Chai. 43
8.47 Boxplot of percentage of tier 1 versus tier 2 compilations for Chai. 44
8.48 Number of compilations per time frame for Chai. 44

vi

LIST OF FIGURES LIST OF FIGURES

8.49 Boxplot of combination of all benchmarks for first 10 iterations as percentage of
default strategy. 46

8.50 Boxplot of combination of all benchmarks for the first 50 iterations as percentage
of default strategy. 46

8.51 Boxplot of combination of all benchmarks for all 500 iterations as percentage of
default strategy. 46

8.52 Boxplot performance of leaf inlining strategy as percentage of no size strategy with
default inlining. 48

8.53 Number of iterations per second for Source-map benchmark and inlining. 50 Itera-
tions per run. 20 runs per strategy. 48

8.54 Number of iterations per second For Source-map benchmark and inlining. 50 Iter-
ations per run. 20 runs per strategy. 48

8.55 Number of iterations per second for Postcss benchmark and inlining. 500 Iterations
per run. 20 runs per strategy. 49

8.56 Number of iterations per second for Postcss benchmark and inlining. 500 Iterations
per run. 20 runs per strategy. 49

vii

Chapter 1

Introduction

A Language Virtual Machine is an engine that provides a platform for compatible languages
to be executed regardless of the underlying hardware. Besides their portability these languages
are also flexible as they can inter operate with each other, due to a shared underlying bytecode.
Because optimisation efforts can be focused on a single virtual machine instead of on each language
individually, these virtual machines often manage to obtain good performance.

One problem in optimising dynamic languages, such as JavaScript and Python, is that many
optimisations can only be inferred at runtime. This forces an underlying virtual machine to try
to perform these optimisation with incomplete runtime knowledge, such that heuristics have to
be used. These heuristics often require trade offs to reach good performance. Just In Time (JIT)
compilation is the process of using runtime information to make decisions that improve virtual
machine performance. It also uses this runtime information to produce machine code.

One way to increase the performance of virtual machines using JIT compilation is to provide
the virtual machine with additional information that is provided Ahead Of Time (AOT). This is
also called profile-guided optimisation.

In order to help the virtual machine make compilation decisions, information about the func-
tions in the applications is needed. Additional information can be found by looking at the calls
between functions. These calls can suggest interprocedural optimisations to be performed, further
improving the virtual machine performance.

Call graphs are one of the profiling methods that can gather information on both the functions
and calls in a program execution [4]. A call graph is a data structure that shows calls made from
one function to another function. These call graphs can not only help virtual machines make
decisions on optimisation, but also help developers debug their program. Call graphs are therefore
ideal candidates to use for gathering AOT information to assist the virtual machine in making
compilation decisions.

In order for a virtual machine to extract useful data from a call graph, it must be in a readable
data model. Graph databases are a logical candidate for this. A graph database is a database type
used for highly connected and very large graphs. Graph databases have especially large advantages
in querying speed for queries often used in graphs, such as path queries.

Once the call graph is stored in a graph database, queries can be used to identify functions
that might provide useful information to the virtual machine. Another approach is to look for
interprocedural optimisations that can be performed between functions, for example using mono-
morphization or inlining. These suggestions can then be sent to the virtual machine, which will
use this information to improve compilation performance [16].

GraalVM is a polyglot JDK distribution that is developed to provide a high performance
runtime for various programming languages [30]. It provides a framework that allows developers
to build profiling tools that support multiple languages. This instrumentation framework leverages
the underlying VM, which is compatible with multiple languages, such that a single profiling tool
built with this framework can be used with all compatible VM languages.

Besides a framework to build polyglot tools in, GraalVM also provides a high performance

1

1.1. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

runtime environment. This runtime makes JIT decisions about which parts of the source code to
interpret and which to compile. Using the call graph in the graph database, queries can identify
parts of the source code that may benefit from compilation and pass these on to be compiled
instead of interpreted.

Because GraalVM supports multiple languages, the profiling tool should be compatible with all
supported languages of GraalVM. However, choosing a single language for benchmarking purposes
makes the process of validation and comparison much easier. For this reason JavaScript is chosen
as the focus of this thesis. Multiple JavaScript benchmarks will be profiled and optimised. GraalJS
is an implementation of JavaScript that is built to work on GraalVM [32]. GraalJS will be used
to exceute the JavaScript benchmarks, such that they can be further profiled and optimised in
GraalVM.

1.1 Problem statement

This master thesis aims to use the GraalVM instrumentation framework to create a tool that can
analyse an instance of the execution of an application. This analysis tool then produces a dynamic
call graph, representing the execution of this application. Although performance of the call graph
analysis tool is not a focus, it should still excecute without excessive overhead. The call graph
tool will be tested and validated on JavaScript, but should be able to be easily extended to other
programming languages.

The second goal of the thesis is to output this call graph in a format that can be easily
imported into a graph database. The graph database should be able to create visualisations that
help understand and debug source code. The graph database should also allow efficient querying
over the call graph. These queries should analyse the graph and return functions that assist the
virtual machine in making decisions on compilation strategy.

These returned functions should focus on two areas: Functions that have a high performance
impact when compiled and functions that benefit from interprocedural optimisations.

Finally, the compilation strategy of the virtual machine should be adapted such that it can
use these returned functions in a way that improves it’s compilation strategy.

1.2 Outline

Section 2 describes the required background information on call graphs, graph databases and
GraalVM necessary for the succeeding sections. Section 3 discusses the related work on call
graph profiling and using call graphs for optimisation. Section 5 describes the methodology and
implementation of the call graph profiler in GraalVM. Section 6 discusses how the call graphs are
imported into Neo4j and what queries are run on the database, and how the output is transformed
into a format that can be used by the VM. Section 7 discusses how these query results are used to
improve the compilation strategy. Section 8 discusses the benchmarking procedure, the resulting
call graphs, and the performance impacts the call graph output has on the VM. Finally the master
thesis concludes with the conclusion and discussion in section 9.

2

Chapter 2

Background

2.1 Call graphs

In order to understand the behaviour of applications either to debug or optimise them they need
to be profiled. Profiling is the process of extracting information from an application either dy-
namically, by executing the program, or statically. One popular profiling technique is to create a
representation of an application execution. There are multiple approaches to realise this, but one
of the most popular is to use graphs.

A graph is a data structure that consists of nodes and edges. These nodes may be connected to
each other by edges. These edges may have a specific direction or they may imply an undirected
relationship between nodes. These nodes are generally uniquely identifiable and may have other
attributes that are not unique. Edges must be connected on both sides by nodes, either between
2 different nodes or as a self loop.

There are multiple graph representations that can be used to profile an application, such as
control flow or data flow graphs. The most widely used and most applicable to this research is
the call graph. A call graph is a graph that represents the calling relationships between between
functions in a computer program. Each node represents a function and each edge represents a
call from one function to another or its self. For this project, each node represents a JavaScript
function. These functions are either defined in the source code of a specific benchmark, or by
builtin functions of the JavaScript language. Each edge represents a call, or invocation, between
functions. These calls can have several attributes, such as arguments types when the call is made,
or return types when the call is completed. The nodes can also have multiple attributes, for
example, an estimation of its size. Figure 2.3 shows an example of the call graph of a simple
computer program.

Figure 2.1 shows a simple JavaScript program that starts with a main being called from the
program body. This call can be seen on the first line in figure 2.2, which is a list of all calls.
Figure 2.3 shows all the functions in the program and how they are connected by calls. There
can be multiple calls that connect the same functions. This is the case when attributes of the
call are different, in this case the arguments. There can also be multiple calls for the same nodes
when either the call site or the return type differs. The call site is the exact location where the
call is made and, if in a function the same call is performed in different locations, these would be
considered as different edges. The call target is defined as the function that is being called from
some call site.

3

2.2. GRAPH DATABASES CHAPTER 2. BACKGROUND

f unc t i on main () {
a () ;
b () ;

}

f unc t i on a () {
}

f unc t i on b () {
c (15) ;
c (” someString ”) ;

}

f unc t i on c (argument) {
}

main () ;

Figure 2.1: Source code of example
JavaScript application.

Source Call Argument Target
:program null main()
main() null a()
main() null b()
b() integer c()
b() string c()

Figure 2.2: Edge list resulting from profiling
call graph from example JavaScript program
in figure 2.1.

inte
ger

stri
ng

null

null

nul
l

b

main
c

a

:program

Figure 2.3: Call graph resulting from source code 2.1 and edge list 2.2

Call graphs can either be dynamic or static. Dynamic call graphs represent a specific instance of
an execution of an application. Static call graphs model every possible execution of an application
without running the program. Both methods have advantages and disadvantages. Static call
graphs are great at debugging large software projects, as code need not be run to get a graph.
In the introduction there was already a discussion about why JIT compilers are a necessity when
optimising dynamically typed languages such as JavaScript. For the same reason, dynamic call
graphs are also a necessity when profiling a dynamic language. This is because at compile time
the types of variables are not known yet and thus the calls that are going to be made often cannot
be known.

In this thesis dynamic call graphs are used. Specifically, context-insensitive call graphs are
analysed. This means that each function corresponds to exactly one node in the call graph, and
each node in the call graph represents a single function. Contextual information, such as argument
types, are not used to uniquely identify a function. However, some optimisations, such as splits,
can only be decided on if the arguments of a function are known. To solve this problem the
arguments will be stored in the calls [13].

2.2 Graph databases

After profiling a computer program the resulting call graph needs to be imported into a database
so that it can be queried on. In order to decide which kind of database to use, it is important to
look at the important characteristics of the data and what type of queries are required. In order
to do research on interprocedural patterns it is important to be able to traverse the graph and

4

CHAPTER 2. BACKGROUND 2.3. GRAALVM

look at local structures. Traditional relational databases generally do not perform well on these
type of queries [49].

The solution to this problem is to not use a traditional relational database, but a different
database type: A graph database. Graph databases have a data-model that is explicitly designed
for efficiently storing and performing queries on large and highly interconnected graphs. These
advantages are accomplished by leveraging some unique attributes of graphs and adapting the
database schema model towards it. An example of such an attribute is that graph connections
have local constructs: A connection is strictly between two nodes. Trying to query over such a
local constructs in a relational database will involve traversing over much unrelated data, while
graph databases use small local lists within each node or edge that are very quickly traversed [24].

A schema must be used that describes how to store the data retrieved from the application.
A convenient way is to only store the edges. Because each edge must be connected on both sides
by nodes, the node identifiers can be added to the edge data, together with its attributes. These
nodes can then later be abstracted from the edge list when it is loaded in a graph database.
This technique is shown in figure 2.2 and is called an edge list. Each tuple in the database
corresponds to one edge in the graph. By adding information about this edge to each tuple, a
triple is created. such a triple, where there is an subject, an edge, and an object also corresponds
to the Resource Description Framework (RDF). The RDF is designed to allow easy communication
between different formats on the World Wide Web. Using this format allows the call graph to
be easily compared to others and compatible with other applications [5]. This approach has
successfully been used to create call graph profiling tools. Gprof, an early example of a call graph
profiling tool, suggests a schema that collects the call count information in the edges, and then
abstract from these edges the incoming calls for each function [12].

2.3 GraalVM

GraalVM is a polyglot implementation of a JDK. It is designed to let developers use multiple
languages, either JVM languages or others, in the same environment without the penalties that
would normally be associated with foreign language calls [34].

GraalVM supports multiple programming languages through its Truffle Language Implement-
ation Framework. This framework allows language developers to implement language interpreters
that can interact with the underlying GraalVM compiler. An advantage of using such a polyglot
framework is that more time can be spent on optimising a single underlying virtual machine and
then having all supported languages benefit from these optimisations, instead of having to spend
time optimising many different languages separately [36] [33].

An example of such a language is JavaScript. GraalJS uses the Truffle Language Implementa-
tion Framework to interpret JavaScript [39]. Since JavaScript can now be run in GraalVM through
GraalJS, performing optimisations on GraalVM will increase the performance of JavaScript pro-
grams.

Another feature of the Truffle Language Implementation Framework is the ability to create
cross-language tools, which work on all Truffle supported languages [35]. This is the framework
used for the call graph profiler in this thesis.

In order for all these tools to operate across languages an Intermediate Representation (IR) is
needed between the source code language and the JVM. A Truffle language, for example GraalJS,
will translate the JavaScript application into this IR, which can then be read by the GraalVM
compiler. this IR is in the form of an Abstract Syntax Tree (AST). Each node in the AST
represents a single value,statement, or operation in the guest language [44].

2.4 Runtime Dynamic (JIT) Compilation

One of the goals of this thesis is to investigate whether static information gathered ahead of
time can assist the virtual machine in making decisions about compilation strategy. In order to

5

2.4. RUNTIME DYNAMIC (JIT) COMPILATION CHAPTER 2. BACKGROUND

Figure 2.4: Impression of how tiered execution influences performance [48].

understand what sort of static information needs to be gathered, it is important to investigate
how the default dynamic compilation strategy of the virtual machine works.

There are three levels of execution available for each JavaScript function. The first level is an
interpreter. Here, the JavaScript source code is executed directly by the GraalJS interpreter. The
second level is tier 1 optimisation. In this case, the function is compiled and small optimisations
are made, such as inlining. The third level is tier 2 compilation. This compilation mode takes
the most time and tries to further optimise the already compiled tier 1 code. Figure 2.4 shows
an impression of a functions lifespan through a virtual machine. A function is interpreted until it
reaches a threshold and then during a short compilation period it gets compiled. After compilation
its performance has increased and will now execute faster until it reaches a second threshold, where
tier 2 compilation takes place. This thesis focuses on the interpretation and the tier 1 compilation
stage.

The virtual machine keeps count of how often every function is executed. This will be referred to
as the callCount. In order to make sure that compilation resources are not wasted on infrequently
used functions there is a compilation threshold. Functions that are below this threshold are
interpreted. Whenever a function hits this threshold it gets submitted to the compilation queue.

The threshold is changed dynamically based on the size of the current compilation queue. This
is a measure to ensure that the compilation queue does not grow too large.

Figure 2.5 shows the compilation queue where a new function b() is about to be added. The
function first receives a priority based on the callCount and the compilation tier. Since b() has
only been interpreted until this point tier 1 compilation is performed. Figure 2.6 shows that based
on its callCount b() is placed between SomeFunction2() and SomeFunction3(). Based on its tier it
is placed before SomeFunction4() even though SomeFunction4 has a much higher callCount. This
heuristic is based on the fact that in the time it takes to perform a tier 2 compilation many tier
1 compilations can be performed, which almost always results in better performance.

6

CHAPTER 2. BACKGROUND 2.4. RUNTIME DYNAMIC (JIT) COMPILATION

Compilation threshold: 300
New Entry:

Function callCount Tier
b() 301 tier 1

Compilation queue:
SomeFunction1() 5000 tier 1
SomeFunction2() 400 tier 1
SomeFunction3() 100 tier 1
SomeFunction4() 11000 tier 2
SomeFunction5() 4000 tier 2

Figure 2.5: Compilation queue before new
entry is added.

Compilation threshold: 400
Compilation queue:

SomeFunction1() 5000 tier 1
SomeFunction2() 400 tier 1
b() 301 tier 1
SomeFunction3() 100 tier 1
SomeFunction4() 11000 tier 2
SomeFunction5() 4000 tier 2

Figure 2.6: Compilation queue after new
entry is added.

After the compiler requests a new compilation target the whole compilation queue is scanned
for the function with the highest weight value. Weight is a continuously updating value, based on
the callCount, and the callCount in the past millisecond. This causes functions that are currently
not being called frequently to be moved to the bottom of the queue [38].

Besides looking at when to compile functions, the virtual machine also decides when interpro-
cedural optimisations are performed, such as inlining and splitting.

When a call is made from a call site to a call target, it is possible to place the whole target
function at the location of the call site. Doing this has two major advantages. First, a call
costs a small amount of compute time. By eliminating calls there a small performance increase
is realised. Especially for small and often called functions eliminating call overhead improves
performance significantly. Figure 2.7 shows how inlining can decrease the size of a call graph.

inte
ger

stri
ng

null

null

b

c
:program main

Figure 2.7: Call graph after inlining function a() from call graph in figure 2.3.

The other interprocedural optimisation technique is splitting. Splitting is used in cases where
a single function may be called with different arguments, such as function c() in example figure
2.3. When trying to optimise c(), the compiler needs to check what sort of argument is send with
each occurrence of the call. Because, for example, String additions are optimised differently than
Integer additions, different compilations approaches are necessary. By splitting the function c()
into two functions, c1() and c2(), the compiler does not need to perform expensive type checking
within the compiled code [37]. Another benefit is that now both these functions can separately be
considered for compilation. If, for example, c1() is called a 1000 times and c2() only 50 times, the
call graph in figure 2.3 can only compile c() as a whole. In figure 2.8 only c1() can be targeted,
improving compilation efficiency.

7

2.4. RUNTIME DYNAMIC (JIT) COMPILATION CHAPTER 2. BACKGROUND

integer

str
ing

null

null

nu
ll

b

main

c1

c2

a

:program

Figure 2.8: Call graph after splitting function c() into c1() and c2().

8

Chapter 3

Related work

3.1 Call Graphs

Much work has been done in research on profiling static and dynamic call graphs. One major
problem in the creation of static call graphs is that the size of the graph increases rapidly as the
number of functions in a program increases [20]. A solution for this problem is to use a sampling
based approach to create a graph. Sampling, however, may leave unconnected areas in the graph,
decreasing the usefulness of the results. Another approach is to survey only a small part of the
graph at a time. This can for example be done by only looking at local clusters of functions
[1]. Other approaches focus on ignoring a specific subset of functions, such as external or builtin
functions [3]. The problem however remains, since no execution of the program is performed,
parts of the graph will be overestimated, and, with larger programs, parts will be underestimated.
This bias can be especially prevalent in low overhead time based sampling approaches, where some
functions may take longer to complete than others. Some work has been done on mitigating this
issue by correcting the sampling interval based on the spacing of call events [22]. Further problems
occur when trying to create static call graphs for dynamically typed languages such as python
[41], since the differing types of variables cause even more possible calls to evaluated.

Dynamic call graphs generally do not have this problem. As an execution of the program is
traced, there is only overhead for each call that occurs. This penalty is generally low, and the
number of calls will be linearly related to time it takes to run a program. There is, however, still
a trade-off between the cost of creating the call-graph and the accuracy of this graph. Running a
single execution of a application will very cheaply create a call graph, but it may not be represent-
ative of all possible iterations of an application. Running the call graph profiler constantly would
negate any potential improvements that additional optimisations provide. Thus still, a suitable
time frame should be chosen after which the call graph is deemed to be complete. Then, analysis
will be based on this ’complete’ graph. The time frame chosen could significantly impact the
accuracy of the call graph and thus the analysis that results from it [14].

This complication is deemed outside the scope of this thesis and thus deterministic benchmarks
will be used. In a deterministic benchmark a single iteration resembles the correct complete graph.
It is important to note that the call graph does still change slightly during compilation due to
the compiler making changes to the functions because of interprocedural optimisations, such as
inlining. The call graphs are constructed without these optimisations enabled. Thus the call graph
may still be slightly different from the one being benchmarked on.

For a dynamic call graph profiler to work, listener code must be inserted either on the source
code or byte code level [52]. An advantage to using the byte code level is that for some program-
ming languages the same byte code may be shared. An example is that it is possible to use the
underlying JVM byte code to create a generalised call graph constructor for languages that use the
same underlying JVM. These systems could be extended, but also made simpler by using polyglot
frameworks [2].

9

3.2. PROFILE-GUIDED OPTIMISATION CHAPTER 3. RELATED WORK

After a call graph is created it needs to be made available either to a developer or to a machine
so that analysis can take place.

Call graph visualisation is one of the key instruments in software visualisation. One of its key
problem is that in both dynamic and static call graphs the numbers of nodes and edges quickly
become unreadable due to their size [21]. A popular solution is to not only sample during the
creation of the call graph, but also during its visualisation. An example is time based sampling:
Parts of the call graph may be separately gathered or rendered. This not only provides the
user with a more manageable view, but also provides additional information in the form of the
progression of the calls in a computer program [7].

Other research in the time domain suggests an interesting variable to add might be that of
execution time. In order to do this during execution time, functions must be kept available if they
are active. Since the number of active functions is generally fairly low, this causes low overhead
[43].

If knowledge of the execution times is present this may then be further used to optimise the
edge collection and visualisation by only looking at parts of the graph that have a high performance
impact [8].

Other work on visualising call graphs focuses on the differences between different executions
of a program. This technique is interesting both for the ability to show graphs evolving over time,
and for being able to compare different executions of a graph [6]. Even if the executions of a graph
are the same, as is the case in this thesis, different compilations techniques still change how the
graph evolves over time. Looking at these differences together with performance statistics may
provide valuable insights.

Comparing call graphs is also important in validating their correctness and performance. Espe-
cially when low overhead is a priority sampling decisions may influence the call graph significantly.
Research has been done on creating tools which provide similarity statistics and allows users to
visually inspect differing areas [23].

A final possible use for call graphs is security. In dynamic languages such as JavaScript
there are often many dependencies in large software programs. It is important to know what
these dependencies are and how they are used. Call graphs might be a tool to investigate this
[29]. Another use case for security uses previously discussed comparison methods. By making
comparisons between call graphs of different malware programs classifications can be made about
what the malware does. This might help security specialists identify solutions to protect against
it [17].

3.2 Profile-guided optimisation

Another use case for call graphs is profile-guided optimisation. Profile-guided optimisation is the
process of using profiling information to inform optimisation decisions. Profile guided optimisation
is used successfully to analyse dynamic behaviour with for example machine learning [40]. Other
profile-guide optimisation approaches target different parts of programs, such as inter process
communication [19] or binary level rewriting [51].

One of the problems in AOT compilers is that especially in dynamically typed languages, not
all optimisations that JIT compilers can find are also identified by AOT compilers. Profile-guided
optimisation may help these AOT compilers find these optimisations. Furthermore, profile-guided
optimisation may enable compilers to use both AOT and JIT information to further optimise code
[42]. Another solution to optimising dynamic languages is to use profile-guided optimisation to
statically infer the types [9] or classes [15].

One of the challenges in profile-guided optimisation is to keep overhead as low as possible.
In order to achieve this a trade-off needs to be made between profile accuracy and profile cost.
Some profile-guided optimization techniques can achieve performance increases of 15%, while only
having close to 1 % overhead cost [50]. Profile-guided optimization techniques have successfully
been implemented in large software projects such as Google Chrome [10],GCC, and Intel’s C++
compiler [18].

10

Chapter 4

Methodology

Figure 4.1: Project structure of all implementation parts of the thesis.

Figure 4.1 shows an overview of the project structure. Starting with the source code of the JavaS-
cript benchmarks. GraalJS performs the translation from the source code to the Abstract Syntax
Tree (AST) that GraalVM can execute. This AST is a form of an Intermediate Representation
(IR).

Section 5 discusses the CallTracer tool. This tool will execute an iteration of the JavaScript
benchmark. During this execution CallTracer will profile the IR and the resulting call graph will
be exported into an edge list.

Section 6 discusses how this edge list is imported into the graph database. After querying
for relevant information the graph database queries return a list of important functions that can
be used to improve the compilation strategy. These query results must first be processed into a
format that can be used by the virtual machine. This results in an InputList that is given to the

11

CHAPTER 4. METHODOLOGY

virtual machine.
At this point it is important to note that the first two steps occur in a separate process from

the last step. Using three iterations of the benchmark, the InputList is created. After this, the
benchmark is run again from the start. Section 7 describes how the InputList is used to replace
and improve the default compilation strategy.

12

Chapter 5

The call graph profiling tool

The CallTracer tool is based on the instrument API of GraalVM. The instrument API allows the
tracking of events during runtime of an application. Figure 5.1 shows an example of a piece of
JavaScript source code. Some important terminology for this chapter is that the location of a call
(line 3) is called the callSite. The callTarget is the location of a function being called, in this case:
Line 5-7. The callNode represents the call itself and contains both the callSite and callTarget.
Figure 5.2 shows how the translation is made between a piece of source code and the AST. This
figure shows how the GraalVM manages different languages. It makes a representation that would
be the same in different languages. The context encompasses a section of this AST and a tag
describes a single node in the AST.

1 func t i on main () {
2 i = 5 ;
3 a (5) ;
4 }
5 func t i on a (arg) {
6 arg + arg ;
7 }

Figure 5.1: Source code of example
JavaScript program.

Figure 5.2: AST of the Intermediate Rep-
resentation of GraalVM of figure 5.1

Figure 5.3 shows the structure of the CallTracer tool. The CallTracerInstrument decides
whether or not profiling is enabled. If it is enabled it sends a sourceSectionFilter towards the
CallTracer. The sourceSectionFilter decides what parts of the source code are going to be profiled.
The CallTracer then profile all these sourceSections and retrieves call and function information
from them. It sends this profiled information to the CallTracerCLI. The callTracerCLI transforms
this information into a schema that can be read by the graph database: The EdgeList.

13

5.1. CALLTRACERINSTRUMENT CHAPTER 5. THE CALL GRAPH PROFILING TOOL

Figure 5.3: Program Structure of the CallTracer profiling tool.

The CallTracer classes are based on the implementation of an existing tool: CPUTracer [31].
CPUTracer tracks the source code location and the number of times either a call is made, a root
is visited, or a statement occurs. The most important aspects of the CallTracer and the design
decision behind it will be discussed next. Complete code can be found in the the Github repository
[46].

5.1 CallTracerInstrument

The CallTracerInstrument is the starting point of the CallTracer tool. It implements the TruffleIn-
strumentClass, which is the framework of the instrument API. This class enables and initialises
the instrumentation and has two important methods: onCreate() and getSourceSectionFilter().

The onCreate() method retrieves all selected options from the CallTracerCLI class. These
options determine what data is going the be gathered by the CallTracer. For example, whether
to add return types or call times to the call graph. Most importantly however, it sets up the
SourceSectionFilter.

The SourceSectionFilter decides what parts of the source code are being profiled. Specifically
of interest are the internals: The functions that are not in the original JavaScript files, such as
builtins, like Math.div() or array.push(). These functions are an ideal candidate for compilation
or inlining, since they are generally small and called often.

Another important part of the SourceSectionFilter is the Roots filter. Enabling the Roots filter
causes the CallTracer to look at every AST node that contains a rootTag. The rootTag denotes
a node which, in the case of JavaScript, is the root of a function. Figure 5.2 shows the nodes of a
simple AST with tags. The CallTracer decides on when a call is made by looking at the rootTag.
The idea behind this approach is that whenever a new rootTag appears in the AST it must have
been called from somewhere, and thus a call can be recorded.

5.2 CallTracer

The CallTracer class performs the profiling of the AST. ResetTracer() is the entry point for
the CallTracer class. It check whether there is an available SourceSectionfilter and enables the

14

CHAPTER 5. THE CALL GRAPH PROFILING TOOL 5.2. CALLTRACER

ExecutionEventFactory. This ExecutionEventFactory listens to the nodes from the AST that
correspond to the SourceSectionfilter. Whenever the ExecutionEventFactory finds a corresponding
node it creates an ExecutionEventNode. This ExecutionEventNode represents an event that needs
to be profiled. Additional information that is connected to this node can be found in the context,
as can be seen in figure 5.2. For each ExecutionEventNode the information that is useful to the
profiling is stored in a Payload Object by getCounter().

Algorithm 1 ResetTracer()

Ensure: The tool is still enabled
Assign SourceSectionfilter
if no filter is present then

Retrieve filter from SourceSectionfilter
end if

5: for each Node that corresponds to the SourceSectionfilter do
payload = getCounter(context)
CounterNode(payload)

end for

GetCounter() uses the context to retrieve the sourceSection and the rootNode of the Ex-
cecutionEventNode. These two variables are needed to uniquely identify each function and form a
hashKey. A new Payload object is created based on the current node and its context. This Payload
object stores information the instrumenter has access to such as the rootNode, the sourceSection,
and tags. This Payload object is then saved in a hash table payloadMap, using the previously
created hashKey and finally the payload is returned.

Algorithm 2 getCounter(context)

Get sourceSection
Get rootNode
if RootNode ̸= null & sourceSection ̸= null then

Hash(RootNode,sourceSection)
5: else

Hash(rootNode)
end if
Assert sourceSection ̸= null
payload = Payload(location,context)

10: Add payload to payloadMap(hash,payload)
Return payload

The returned payload is then used to create a new CounterNode object. The CounterNode
object stores all necessary information to create a call. When a function is completed it registers
the call and sends it for further processing by CallTracerCLI. The reason it registers a call when
a function is finished instead of entered is to be able to retrieve the return types, which would be
unavailable at the start of a function, because of the dynamic typing.

Counternode notes the first time any object is returned in the whole program. Then, after a
warmup time has passed, it starts collecting calls. First, a new Key object is created. Then, from
the previous frame on the stack, the callNode is retrieved.

A callNode represents a call from a callsite to a callTarget. For the previous frame, the
callTarget is the current payload and the callSite is the function where the call originated. Then
the following variables are always gathered and used as key for an edge:

1. SourceRootNode and targetRootNode: These are qualified names that should repres-
ent a function uniquely. There may be cases where a qualified name is not available and
thus the rootNode may not be unique to a specific function.

15

5.2. CALLTRACER CHAPTER 5. THE CALL GRAPH PROFILING TOOL

2. SourceSourceSection and targetSourceSection: The sourceSection represents a piece
of source code. These are the main identifiers for a function or callSite location. It may
happen that a sourceSection is not unique or not available.

Then, if more information needs to be gathered, such as the exact location of the callSite, the
following options may be enabled and added to the key.

1. Arguments: Arguments play a key role in researching homomorphisation of functions.
Splitting decisions can be based on argument types in a function call and provide more
inlining opportunities. Arguments can also identify uninlineable functions by scanning for
indirect calls.

2. Return: Return types may provide additional compilation strategies. Examples being that
a boolean return might be easily optimised by a compiler. It may also be used to gauge
function compute cost, as for example, returning a float suggests more compute expense
than a string.

3. Object instances: An object instance is a Javascript specific option that may be used
to track objects through the execution of a program. This may be useful for debugging
purposes.

4. Specific source location: Describes the exact location of where a call is made. This option
is important for making inlining decisions. As inlining is an action that is specific to a single
call location instead of the whole source function.

Furthermore, the rootSize and targetSize values may be gathered, but not used as identifiers.
These values provide an estimation of how difficult it is to compile a function. Every unique Key
object is then added to a keyMap.

Finally, for each key in the keyMap, the number of times this key occurs during execution is
saved in the countMap. This countMap is where the final call counts are retrieved from.

Algorithm 3 CounterNode(payload)

procedure onReturnValue(frame,result)
if FirstIteration then

InitialTime = time
end if

5: if (currentTime-initialTime)>warmupTime then
Create new key Object
node = getCallNode()
while node == null do

Iterate through Frames on the stack
10: if node ̸= null then

key.sourceRootNode = node.getRootnode
key.targetRootNode = payload.getRootnode
key.sourceSourceSection = node.getSourceSection
key.targetSourceSection = payload.getRootNode.getSourceSection

15: if Any options then
key.option = payload.getOptions

end if
Add key to keyMap
Increase count for current key in countMap

20: end if
end while

end if
end procedure

16

CHAPTER 5. THE CALL GRAPH PROFILING TOOL 5.3. CALLTRACERCLI

5.3 CalltracerCLI

In the CallTracerCLI class the results of the instrument are processed and exported. Three output
foormats are available: JSON, CSV, and a command line interface printout (CLI). In this project
CLI was created as a debugging tool. It prints the calls and their counts in the terminal. CSV
was used for exporting the call graphs, as it is easily imported into Neo4j. The JSON format has
some advantages in processing, since Neo4j returns query results by default in JSON.

The CSV is created by looping through all the keys in the keyMap and creating an edge for
each unique key. Using this key, the execution counts are then retrieved from the countMap. The
delimiter for the CSV format is ”,”. It might occur that in some rootNode names, source code,
and lists, a comma character ”,” appears. Thus it is important to strip all ”,” characters. These
are replaced with blank spaces. Algorithm 4 is an example of how a simple Edge List in CSV
format looks like.

Algorithm 4 Example edge list

SourceLocation,TargetLocation,Count,rootSize,targetSize,sourceNode,targetNode,CallLocation,
acorn.js63-63:24-1, acorn.js64-64:19-1, 1633, 453, 42, pp3.parse, pp6.finish, acorn.js63:200-20,
acorn.js188-188:5-5, builtin1-1:1-1, 94, 109, 22, isKey, RegExptest, acorn.js188208:721-722,

5.4 Call graph validation

It is important for the call graph to accurately represent the the execution of a benchmark. If the
call graph contains wrong edges or wrong invocation counts, then the strategy that will be based
on these numbers may perform worse. There are two methods used to validate the results to a
reasonable degree of certainty.

The first method is unit testing. GraalVM provides a unit testing framework that can be used
to test correctness of tools implemented with the instrumentation framework. The CallTracerTest
is the test program that is created to ensure changes made during development do not change
previously verified results.

Two simple JavaScript programs are used for unit testing. These programs are designed such
that all options can be tested on them. Figure 5.4 shows the recursive unit test of CallTracerTest.
The test contains calls with different arguments, different return types, and different call locations.
In total 8 unit tests are performed on these two JavaScript test programs. These unit tests confirm
that the number of edges, and the counts of these edges are correct for a variety of combinations
of options.

The unit tests confirm that the graph is correct for simple JavaScript patterns. There might
still be ways in which JavaScript applications can behave outside of these patterns. Especially for
the chosen benchmarks it is not feasible to completely validate if every edge in the graph is profiled

1 func t i on sum(x) {
2 re turn x ;
3 }
4 func t i on c a l c (x , y) {
5 i f (y>5){ r e turn ;}
6 f o r (y=y ; y<5 ; y++) { c a l c (x) } ;
7 f o r (var i =0; i <10; i++) {sum(x) } ;
8 }
9 func t i on main () {

10 c a l c (” h e l l o ” ,0) ;
11 c a l c (5 , 0) ;
12 }
13 main () ;

Figure 5.4: Example JavaScript unit test.

17

5.4. CALL GRAPH VALIDATION CHAPTER 5. THE CALL GRAPH PROFILING TOOL

and whether every profiled edge is present as a call in the source code. The second approach to
validation is to manually inspect parts of the profiled edge list. This is done on simple JavaScript
benchmarks and on a selection of the benchmarks. By selecting a random sample of edges from
the EdgeList and then checking in the source code whether these edges exist, it can be confirmed
with reasonable certainty that all edges in the EdgeList also exist as calls in the source code.

18

Chapter 6

Using a graph database to analyze
a call graph

Now that the JavaScript application is represented as a call graph information can be gathered
from it. This information can then later be used to improve the virtual machine. The information
is currently in a CSV format as an EdgeList. In order to query on this EdgeList first the CSV
needs to be imported into a graph database.

Neo4j community version 4.3.7 [27] is used as the graph database. Neo4j provides a fast way
to import and query on large graphs. It also has a tool that enables visualisation of graphs: Neo4j
Bloom. These graph visualisations assist in finding mistakes in the call graph and can thus help
with verification of correctness. Furthermore, the visualisations provide a way to gain more insight
on what is happening in a call graph with respect to hot functions or possibly inlineable structures.

The configuration options for Neo4j can be found in the Github repository [46].
The language used to communicate with Neo4j is called Cypher [28]. Algorithm 5 shows the

Cypher command used to import the EdgeList into Neo4j.
First, each row in the EdgeList is loaded into the database. Then, nodes are created with

the primary key: SourceNode, SourceLocation or targetNode, targetLocation. sourceNode and
targetNode are qualified names and should uniquely identify the nodes. SourceLocation and
targetLocation are the sourceSection locations. A pair of these variables uniquely tie each node
in the graph database to a function in the JavaScript application.

These nodes then need to be connected to each other with edges. This is done by again scanning
through all the rows in the database. For each row in the database the corresponding source and
target node are found and the call characteristics are added to the call edge.

Algorithm 5 Cypher command for importing data into Neo4j.

LOAD CSV WITH HEADERS FROM file:///bench.csv AS row FIELDTERMINATOR ’,’,
MERGE (a:Node id:row.sourceNode,location:row.SourceLocation)
MERGE (b:Node id:row.targetNode,location:row.TargetLocation)
CREATE (a)−[r:Call]− >(b)
SET r = row,
r.Count = toInteger(row.Count),
r.targetSize = toInteger(row.targetSize),
r.sourceNode = row.sourceNode,
r.targetNode = row.targetNode
r.SourceLocation = row.SourceLocation,
r.TargetLocation = row.TargetLocation,
r.CallLocation = row.CallLocation;

Now that the whole call graph is loaded into Neo4j the only variables in the nodes are the

19

CHAPTER 6. USING A GRAPH DATABASE TO ANALYZE A CALL GRAPH

identifiers. Some additional variable are added to the nodes that assist in performing queries and
help in visualisation.

The first Cypher command adds the total number of incoming calls to each function. This is
done by summing over all counts of the incoming edges. This command also adds the estimated
compilation time of the target function to the node.

The second Cypher command adds the distinct number of callSite locations to each node. This
call site location is a crucial variable for determining inlining decisions.

Algorithm 6 Additional Cypher commands.

MATCH ()−[r:Call]− >(b:Node)
WITH SUM(r.Count) as sum,b, AVG(r.targetSize) as size
SET b.inc = sum,
b.size = size;

MATCH ()−[r:Call]− >(b:Node)
WITH b, count(DISTINCT r.CallLocation) as distinct
SET b.distinct = distinct;

Now that the graph database is ready, queries can be performed to extract information that
might be useful to the virtual machine. One of the key indicators of how much performance is
gained by compiling a function is the number of times it is executed. A minimum for how often a
function is executed is the number of times the function is invoked. This is the main measure on
which the proposed compilation strategies are based.

Algorithm 7 shows the query that returns the number of times each function is called. First,
all nodes are gathered that have an incoming call. Then, for each of these nodes, all the counts
of the incoming calls are combined. This results in the total number of times a function is called
and thus executed. The final variable that is also returned is the average estimated compilation
time.

This is because very large functions may help improve performance, but in the time it takes
to compile time them, many other functions could have been compiled. This is the same reason
that the default strategy prioritizes tier 1 over tier 2 compilations. The goal of this variable is
to investigate whether compiling many smaller functions is better than compiling fewer larger
functions. The resulting query returns for each function its number of incoming calls and its
estimated compilation time.

Algorithm 7 Query for determining compilation strategies.

MATCH ()−[r:Call]− >(b)
WITH SUM(r.Count) as count, r.TargetLocation as id, r.targetNode as TargetName,
AVG(r.targetSize) as size
RETURN count,id,TargetName,size;

Besides using the call graph to improve the compilation strategy it can also be used to improve
virtual machine performance by looking at interprocedural optimisations. Query 8 is used for
gathering a list of potential inlining candidates. The inlining strategy is based on the idea that
inlining small callTargets increases the size of the callSite function and thus provides additional
opportunities for optimisations. One important note is that these callTarget functions should not
be too large as this may complicate later compilation of the callSite function. When inlining a
function the first tier of compilation is also performed. When an inlined function still has an
outgoing call it may happen that the callTarget of this outgoing call is inlined into the already
compiled callSite function. In this case the earlier inlined function must first be deoptimised,
wasting the earlier compilation time. To avoid this it makes sense to only look at leaf nodes,
where there are no outgoing calls.

20

CHAPTER 6. USING A GRAPH DATABASE TO ANALYZE A CALL GRAPH

The query works by first looking at all nodes. Nodes are selected that have not outgoing calls,
that have only 1 distinct incoming call, and that have a size of below 30. Only having 1 distinct
incoming call is a requirement for inlining to be possible. The functions are then ordered on the
number of incoming calls and returned. The incoming calls are necessary for sorting on the most
impactful leaves.

Algorithm 8 Query for determining leaf inlining strategy.

MATCH (a)
WHERE NOT (a)−[]− >() AND a.distinct < 2 + AND a.size < 30
RETURN DISTINCT a.id, a.inc,a.location
ORDER BY a.inc DESC

Now that the query results have been returned they need to be processed so that they are in
a format usable by the virtual machine. The lists are reordered based on the chosen strategy. For
graph based compilation there are three strategies that use the information provided by the call
graph:

1. Linear size penalty: The linear size penalty first takes the total number of incoming calls
for each function. It then divides this number of incoming calls by the compilation difficulty
estimate. Finally, these are then ordered on this new weight and send to the compilation
queue in this order.

2. Square root size penalty: The square root size penalty uses the same approach as the
linear penalty but divides the number of incoming calls by the square root of the size of the
function. This results in a less severe penalty that possibly causes larger but more impactful
functions to be prioritised.

3. no size penalty: The no size penalty strategy does not use the difficulty approximation of
the compilations. By only sorting on the incoming calls, the most impactful functions are
compiled first. These functions may be very large and hard to compile, causing less total
compilations to occur.

In order to execute these strategies the query results need to be reordered based on size and
incoming calls. The formula used is:

order = count ∗ 1/(sizex)

Where count is the number of incoming calls, size is the estimated compilation time of the target
function, and x is a variable that controls the penalty severity of size. The variable x is set to 0
for the no size strategy, 0,5 for the square root strategy, and 1 for the linear strategy. The target
functions are then ordered on the order variable.

Now there is a list of functions sorted on the importance of compiling them. If this list is directly
transferred into the compilation queue in the current order than the compilation strategies can be
tested.

This is done by using the fact that the iterations are deterministic and thus the same every
time. The virtual machine already keeps track of the number of times a function is called with
the callCount variable discussed earlier. The default strategy then uses a threshold to determine
when the a function may be entered into the compilation queue. This compilation threshold is the
same for every function and thus functions entering the compilation queue is entirely dependent
on the callCount of the function.

By making this compilation threshold unique for every function functions can be given more or
less priority in being submitted to the queue. Furthermore, since the callCount is deterministic,
it can be fairly accurately controlled when a function is added to the compilation queue.

Figure 6.1 shows an example of how the list looks after it is returned from the graph database
query and ordered. When setting, for each function individually, the compilation threshold to the

21

CHAPTER 6. USING A GRAPH DATABASE TO ANALYZE A CALL GRAPH

callCount all functions will be executed during the first iteration. However it cannot be decided
exactly in which order, since there is no knowledge of when exactly during the benchmark these
functions were executed. Thus, in this example the compilation queue ordering is completely
random.

This can be solved by multiplying the callCount by a larger factor for each successive func-
tion down the list. Figure 6.2 is an example of this technique, where the queried callCount of
someFunction2() is multiplied by 2 and the callCount of someFunction3() by 3 to produce the
compilationThresholds. Since the results are deterministic someFunction2() will be called 3000
times every iteration. Setting the threshold to 6000 causes it to be put in the compilation queue
sometime in the second iteration. SomeFunction() will still be entered into the queue during the
first iteration. Thus, with a First In First Out queue, the compilation queue in the virtual machine
is now in the correct ordering.

The InputList for the virtual machine is thus a list of compilations thresholds for each function.

Function names compilationThreshold
someFunction() 7000
someFunction2() 3000
someFunction3() 800

Figure 6.1: Example InputList for virtual
machine, where the query results are directly
used as compilationThresholds.

Function names compilationThreshold
someFunction() 7000
someFunction2() 6000
someFunction3() 2400

Figure 6.2: Example InputList for virtual
machine, where the query results are multi-
plied by some factor K to result in the com-
pilationThreshold. This ensures that the
functions are entered into the compilation
queue in the correct order.

Even though sending 1 function to the compiler each iteration will provide the exact desired
compilation queue, it will also cause idle time for the compiler, since the compilation queue will
often be empty.

The variable entriesPerIteration determines how many functions are sent to the compilation
queue each iteration. An example entriesPerIteration = 50 indicates that each iteration 50 func-
tions are sent to the compilation queue. Since these iterations are deterministic, the first 50
functions should be sent in the first iteration and the second 50 functions in the second, so there
is a correct ordering between these two batches of functions. Within these batches of 50 functions
it could be possible that the ordering is not exact. An example is that if a function’s executions
all appear in the beginning of an iteration, it will also be sent to the compilation queue early in
the iteration. This happens even if it is ordered lower on the list.

This problem can be solved by decreasing the number of functions sent to the compilation
queue each iteration. Such that, for example, only 20 functions have a non exact ordering each
iteration. This however, causes the compiler to idle or compile tier 2 function, which is not good
for performance. 50 entries per iteration was chosen as a good compromise between idle time
and ordering precision. Other complications arise when considering function splits and dequeues.
These also have an effect on queue length. To avoid complications, entriesPerIteration was fixed
at 50. The multiplication by 3 is necessary because the call graph and thus the callCount is based
on three iterations of a benchmark.

Algorithm 9 Input List Creation

K = 0
for x in output query list do

Add to InputList: callCount*K +sourceSection location + rootName
K=K+1/(entriesPerIteration*3)

end for

22

CHAPTER 6. USING A GRAPH DATABASE TO ANALYZE A CALL GRAPH

The virtual machine needs two variables to uniquely identify a function and give it a threshold:
The rootNode and the sourceSection. The final variable needed is the callCountThreshold: The
number of calls after which the virtual machine sends the function into the compilation queue.
Algorithm 10 shows an example of the InputList that is sent to the virtual machine.

Algorithm 10 Example InputList passed to GraalVM

0@@typescript.js 553614-553616:9-9token
2375@@typescript.js 543323-543323:26-57getStartPos
3479@@<builtin>1-1:1-1Map.prototype.get

23

Chapter 7

Improving GraalVM performance

Improving the GraalVM performance is done by implementing the strategies discussed in previous
section. The goal is to provide a better compilation queue to the compiler, such that early and
late performance is improved.

This starts by importing the InputList into GraalVM. The InputList consists out of a key
and a value. The key is the function identifier which consists out of the sourceSection location
(sourceCallTarget) and qualified function name (rootNode). The value is the callCount multiplied
by the priority factor K. This value will be used as a compilation queue threshold. The changes to
the compiler are made in the OptimisedCallTarget class, which is invoked whenever a callTarget
is executed by the virtual machine.

The InputList for the compilation queue and inlining are stored by GraalVM in two hash tables:
precomputedCounts and precomputedCountsInlined. Two methods of the OptimisedCallTarget
class have been changed to implement the before mentioned altered compilation strategies.

The first is the constructor optimisedCallTarget() in algorithm 11. It is excecuted whenever a
function is called for the first time. The optimisedCallTarget() constructor sets initial values for
each callTarget, uniquely identified by sourceCallTarget and rootNode. Especially important that
here the compilation thresholds are initialised.

In the case that either flags USEGRAPH or INLINE are used the non default initialisation
is enabled, which loads the results from the InputList. These initialised values are added to the
callTarget as threshold later used in the shouldCompileImpl() method.

First, a locationdescriptor is constructed from the current callTarget, following the same tem-
plate as the InputList. Then, this locationdescriptor is checked versus all locationdescriptors in
the hash tables. If a locationdescriptor matches, then it is identified as a compile target by the
query and the threshold for the compilation queue is set as aotCompilationCallCount or aotIn-
lineCallCount.

24

CHAPTER 7. IMPROVING GRAALVM PERFORMANCE

Algorithm 11 optimizedcallTarget

procedure optimizedCallTarget(sourceCallTarget,rootNode)
if USEGRAPH || INLINE then sourceSection ̸= null

locationdescriptor = benchName + location + rootNode
else

locationdescriptor = empty
end if
if precomputedCounts contains locationDescriptor then

aotCompilationCallCount = precomputedCounts.get()
else

aotCompilationCallCount = Max integer
end if
if precomputedCountsInlined contains locationDescriptor then

aotInlineCallCount = precomputedCountsInlined.get()
else

aotInlineCallCount = Max integer
end if

Use standard initialisation

end procedure

Now that for each function the compilation threshold is set the shouldCompileImpl() method
will check when the required aotCompilationCallCount threshold has been reached in algorithm
12.

If inlining is enabled, the callNode is retrieved. The callNode represent a direct call from a
callSite to a callTarget. Thus, if there are multiple calls from different callSites it will become null.
If this callNode is not null, inlineable and not already forced to be inlined. Then, the callTarget
will be force inlined into the callsite. This happens whenever it is picked up by the compiler from
the compilation queue.

Furthermore, if the FORCEINLINE flag is turned on, the callTarget is immediately added to
the compilation queue, so that the inlining happens as soon as possible. The earlier a function is
inlined, the earlier optimisation can be performed on larger combined parts of the source code.

If USEGRAPH is enabled a check is made whether the callTarget has been executed enough
compared to the aotCompilationCallCount threshold, which is set according to the InputList. The
callTarget is increased each time the virtual machine interprets the function. After a callTarget
has been tier 1 compiled a new threshold will be set for tier 2 compilation. This threshold is
determined by the default strategy. Only tier 1 compilations are considered for the graph based
strategies.

The default compilation strategy checks whether a function should be compiled based on two
criteria: a callThresholdInInterpreter, that dynamically changes size based on the length of the
compilation queue, and a callAndLoopThresholdInInterpreter, that looks for loops.

25

CHAPTER 7. IMPROVING GRAALVM PERFORMANCE

Algorithm 12 shouldCompileImpl

procedure shouldCompileImpl(intCallCount,intLoopCallCount)
if INLINE then

if intCallCount >= aotInlineCallCount then
callNode = getSingleCallNode()
if callNode ̸= null & callNode.isInlinable() & !callNode.isInliningForced() then

Inline callNode
if FORCEINLINE then

Add function to Compilation queue
end if

end if
end if

end if
if USEGRAPH then

if intCallCount >= aotCompilationCallCount then
Add function to Compilation queue

end if
else

if intCallCount >= callThresholdInInterpreter &
intLoopCallCount >= scaledThreshold(callAndLoopThresholdInInterpreter) then

Add function to compilation queue
end if

end if
end procedure

26

Chapter 8

Experimental evaluation

In this section first the experimental setup and benchmarks are discussed. Then, a comprehensive
discussion of a selection of benchmarks is performed. For these benchmarks the performance
results and other compilations statistics are discussed. These will be focused on the in section 6
discussed compilation difficulty penalty compilation strategies.

After the selected benchmarks, a general overview of all benchmarks is shown and a conclusion
is made on the effectiveness of the compilation penalty strategies. Then, the leaf inlining strategy
and its performance is discussed.

The final section will discus the threats to validity of the performance evaluation. Here, it is
discussed how the methodology can have unexpected effects on the performance of benchmarks.

8.1 Experimental setup

All tests were conducted on a AMD Ryzen 5 5600x 6-core processor and 16GB of memory. The
benchmarks were performed using the recommendations set out by LLVM [26]. Address space
randomization is turned off and SMT is disabled. Then, 3 out of 6 cores were reserved for
benchmarking using cpuset [25]: One for executing the Javascript benchmarks, one for compilation,
and one for other overhead, such as Python.

To evaluate the performance of the new compilations strategies a custom fork of GraalVM was
built using Java 17 [46]. A development version of GraalVM 22.0 was used to build the call graph
and perform the benchmarks. Exact versioning of GraalJS and GraalVM can be found in the
Github repository [45]. The following flags were enabled or disabled based on the specific tests
performed. A selection of flags is discussed in more details. The full Bash command to run the
benchmarks can be found in the Github repository.

1. –vm.DcallTarget.useGraph: This option enables the usage of information provided by
the graph database. It also enables the improved compilation queue strategy instead of the
default strategy.

2. –vm.DcallTarget.inline: This option enables the use of the leaf inlining strategy.

3. –vm.DcallTarget.forceCompileInline This option causes all the leaf functions in the
inlining list to also immediately be submitted to the compilation queue. This forces leaves
to be compiled earlier in the benchmark for better optimisation possibilities later.

4. –engine.PriorityQueue: This option enables the use of a priority number based on cal-
lAndLoopCount before a function is put into the compilation queue. If enabled, a function
will not be placed into the queue in a First In First Out manner, but given a place in the
queue based on its number of function invocations. If turned on together with useGraph,
both compiler information and graph information are used to make a decision on placement.
If turned off only the graph information is used for compilation queue ordering. This flag

27

8.2. BENCHMARKS CHAPTER 8. EXPERIMENTAL EVALUATION

can be enabled to use all information available and in some cases improves performance
slightly. It is turned off in the benchmarks to better differentiate between the graph based
and default strategies.

5. –engine.TraversingCompilationQueue: The traversing compilation queue is the default
compilation queue of GraalVM. It reorders functions in the compilation queue based on how
hot a function is. It should be turned off when enabling useGraph, as enabling it will cause
reordering based on compiler information and disable the FIFO ordering. Another reason
to disable it is that useGraph does not use dynamic compilation thresholds. This causes the
compilation queue to grow indefinitely. Repeatedly scanning and reordering a large queue
may cause performance overhead.

6. –engine.CompilerThreads=1: Only one thread is available for compilation by the com-
piler. This provides more stability in benchmarking and increases the importance of having
good ordering, as the number of compilations that can be done per iteration are limited.

7. –engine.TraceInlining: Every inlining decision is traced. It provides information on how
the altered inlining decisions effect the inlining decisions by the compiler.

8. –engine.TraceCompilationDetails: Every compilation and compilation queue entry is
traced. This provides an overview of how the compilation queue changes over time and how
much functions are compiled every second. Furthermore other compilation information such
as tier, split and compilation time are given.

9. –engine.CompilationStatistics: General statistics on the performed compilations, such
as number of deoptimised compilations and split decisions.

8.2 Benchmarks

14 JavaScript benchmarks were used as benchmarks for performance tests. The benchmarks can
be found in the Github repository [47]. The benchmarks are provided by the Google V8 web
tooling benchmark [11].

Table 8.2 shows the general characteristics of the call graphs of the benchmarks. The number
of functions in the benchmarks vary from 490 to 2560. The number of functions are important
as that is one of the factors in estimating how long it takes to go through all tier 1 compilations.
As discussed in section 7, the graph based compilation strategies only make decisions on when
interpreted functions are sent in for tier 1 compilation. Thus, once all tier 1 compilations have
been completed, the graph information is no longer used. This causes the benchmarks with more
functions to be more heavily influenced by the chosen compilation strategy.

The other factor in how long it takes for all tier 1 compilations to complete is the time it
takes to perform each tier 1 compilations. The number of nodes in the AST of a function is used
as a measure for compilation time. This measure is referred to as the size of the function. The
difference between benchmarks is smaller here, with the lowest mean size of 61 and the largest
144.

The number of calls is the best available indicator for how long a benchmark will take without
performing any compilation. The reason for this is that after every call a function must be
executed. The range of these is very large, where the largest benchmark executes over 8 times
more functions in 3 iterations than the smallest.

The number of edges and the number of inlineable leaves are interesting to look at for inlining
decisions. A function is inlineable if it has only a single incoming caller. When the number of
edges is close to the number of nodes, most will have only a single edge connected to them. If the
difference between these is very high, then likely every node has multiple incoming edges and can
thus not be inlined. Specifically for the leaf inlining strategy it is interesting to look at how many
candidate leaves there are.

28

CHAPTER 8. EXPERIMENTAL EVALUATION8.3. WARM UP AND PEAK PERFORMANCE MEASUREMENT

Typescript Acorn Babel-minify Babylon Buble

Number of nodes 2560 608 1720 658 766
Number of edges 7049 1404 4554 1537 1882
Number of calls (millions) 16.4 50.3 18.5 31.4 14.4
Mean function size 108 85 93 92 97
Number of inline-able leaves 466 239 552 239 272

Esprima Jshint Source-map Prepack Postcss

Number of nodes 490 620 512 1756 1325
Number of edges 1162 1304 831 6423 2509
Number of calls (millions) 39.2 12.6 44.2 19.7 24.8
Mean function size 95 99 61 120 70
Number of inline-able leaves 206 251 305 346 575

Prettier Terser Chai Espree Combined

Number of nodes 886 1133 1061 654 980
Number of edges 2542 3574 8232 1331 1847
Number of calls (millions) 23.4 9.7 5.8 51.3 25.8
Mean function size 110 100 144 81 97
Number of inline-able leaves 298 331 187 324 328

Table 8.1: General information about call graphs of benchmarks.

8.3 Warm up and peak performance measurement

An important aspect to discuss about the benchmarks is the warm up time. Warm up times are
crucial to get good benchmarking results out of the call graph based compilation strategies. This
is because of the way the benchmarks are constructed. Each benchmark starts with a preparation
phase wherein the benchmark is made ready for testing. In this preparation phase mostly unique
functions are used. These are not used during the iterations of the benchmark.

In the default compilation strategy, leaving these functions in is not much of a problem. Because
of the dynamic compilation threshold few of these functions end up in the compilation queue. The
startup functions that are in the compilation queue will quickly be pushed towards the bottom by
the traversing compilation queue, because they are not being called anymore after the initialisation
phase. These functions are then only compiled when all other functions have already been compiled
to tier 1. An example can be seen in figure 8.1, where the functions that are useful for performance
improvement are still on top of the compilation queue and the startup functions that will not
improve the performance are pushed to the bottom.

In the graph based strategy there is no dynamic threshold and thus all initialisation phase
functions will be placed in the compilation queue. There is also no queue reordering, so the
functions will not be sent to the bottom of the queue, but will be scattered throughout the queue.
Whenever one of these functions is compiled no performance improvement is achieved, as the
compiled function is not executed anymore. This would effect the performance of the graph based
strategies much more than the default strategy. An example can be seen in figure 8.2, where the
early iterations need to compile many startup functions that do not improve performance.

29

8.4. TYPESCRIPT CHAPTER 8. EXPERIMENTAL EVALUATION

Function names callCount
UsefullFunction() 7000
UsefullFunction() 3000
UsefullFunction() 800
UsefullFunction() 200
StartupFunction() 8000
StartupFunction() 4000
StartupFunction() 800

Figure 8.1: Example compilation queue for
default compilation strategy.

Function names callCount
StartupFunction() 8000
UsefullFunction() 7000
StartupFunction() 4000
UsefullFunction() 200
StartupFunction() 500
UsefullFunction() 30
StartupFunction() 10

Figure 8.2: Example compilation queue for
graph based compilation strategy.

A solution to this is to use a warm up time when constructing the call graph, such that
calls are only collected when the benchmark iterations have started. This ensures that none of the
initialisation phase functions are in the graph database or InputList. Therefore, these initialisation
phase functions will not be entered into the compilation queue of the graph based strategies.

A warm up time of 4 seconds was chosen for all benchmarks. This ensures that for no bench-
mark any of the preparation phase functions are present in the call graph. However, some smaller
benchmarks require shorter preparation phase times than 4 seconds. For these benchmarks the
start of the call graph would be cut off. To remedy this the first 3 iterations are profiled instead
of only the first one. This ensures that all functions are represented in the call graph, but the call
count of the first few functions is slightly underestimated.

A problem with this approach is that a warm up is not possible to do in the default compilation
strategy, since the compilation queue decisions are decided just in time.

This creates a disadvantage for the default compilation strategy. The preparation phase func-
tions are pushed to the bottom of the list, but will still eventually be compiled. This will happen
after all useful functions have been tier 1 compiled, but before the useful tier 2 compilations can be
performed. This would then delay these important tier 2 compilations, especially in benchmarks
where all tier 1 compilations are performed quickly. It would not affect large benchmarks that
still have tier 1 compilations in the queue at the end of the run.

Figure 8.3 shows the situation where the default compilations strategy must first compile
preparation phase functions before it can start doing useful tier 2 compilations. Because of the
dynamic compilation threshold, this should generally be a low number of functions. Figure 8.4
shows the advantage that the graph based strategy has. Since it does not need to compile any
preparation phase functions it can start performing tier 2 compilations straight away, improving
performance earlier.

Function names callCount Tier
UsefullFunction() 200 tier 1
StartupFunction() 8000 tier 1
StartupFunction() 4000 tier 1
StartupFunction() 800 tier 1
UsefullFunction() 7000 tier 2
UsefullFunction() 3000 tier 2
UsefullFunction() 800 tier 2

Figure 8.3: Example compilation queue for
default compilation strategy after most tier
1 functions have been compiled.

Function names callCount Tier
UsefullFunction() 80 tier 1
UsefullFunction() 8000 tier 2
UsefullFunction() 3000 tier 2
UsefullFunction() 600 tier 2

Figure 8.4: Example compilation queue for
graph based compilation strategy with warm
up time after most tier 1 functions have been
compiled .

8.4 Typescript

The Typescript benchmark performs the compilation of the Typescript language in JavaScript.

30

CHAPTER 8. EXPERIMENTAL EVALUATION 8.4. TYPESCRIPT

There are four compilation strategies tested for each benchmark:

• Default compilation: The default compilation strategy is the one GraalVM uses by de-
fault. No graph information is used. The traversing compilation queue, the priority queue,
and the dynamic threshold are enabled. In these benchmarks the default inlining strategy
is used

The other three strategies use the graph information provided by the graph database. The
traversing compilations queue, the priority queue, and the dynamic threshold are disabled. In
these benchmarks also the default inlining strategy is used.

• Linear size penalty: The linear size penalty first takes the total number of incoming calls
for each function. It then divides this number of incoming calls by the compilation time
estimate.

• Square root size penalty: The square root size penalty uses the same approach as the
linear penalty but divides by the square root of the size of the function. This results in a less
severe penalty that possibly causes larger but more impactful functions to be prioritised.

• no size penalty: The no size penalty strategy does not use the cost approximation of the
functions. By only sorting on the incoming calls, the most impactful functions are compiled
first. These functions may be very large and hard to compile, causing less total compilations
to occur.

Besides only looking at the final performance, it is also interesting to take a closer look at the
startup time of a benchmark. This is because after the most impactful compilations have been
performed the performance of the different strategies tend to converge. This has however not yet
happened at the early iterations and it is here that large differences between strategies are visible.

Figure 8.5 shows, for the first 50 iterations of the Typescript benchmark, the number of itera-
tions per second that are being performed. The opaque bands show the 95% confidence intervals.

Figure 8.5 shows that the no size penalty strategy performs significantly better than the other
strategies for the first 50 iterations. With the linear and square root penalty performing worse
respectively. This suggest that, for the TypeScript benchmark, it is more important to compile the
most impactful functions, rather than to compile many but less impactful ones. Another thing to
note is that the default compilation strategy is significantly worse than the graph based strategies.
The confidence interval is also much wider than the graph based strategies. Since the graph based
strategies receive the same ordered compilation queue for every benchmark run, the difference
between benchmark runs is very small. For the default strategy, the compilations are entered into
the queue slightly differently each time. This is partly due to the dynamic compilation thresholds.
Furthermore, the traversing compilation queue reorders the queue every 1 millisecond. This small
time frame causes even small variations in execution speed to change the compilation order.

Figure 8.6 shows the strategies for the full 500 iterations. The default compilation strategy
does catch up with the graph based strategies, but the improvements plateau near the end. In
this figure it also becomes clear that the three graph based strategies are finished with their 500
iterations earlier than the default strategy, but it is unclear which of the strategies is best and
whether the difference between them is significant.

31

8.4. TYPESCRIPT CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.5: Number of iterations per second
for the TypeScript benchmark. 50 Iterations
per run. 20 runs per strategy. Higher is
better.

Figure 8.6: Number of iterations per second
for the TypeScript benchmark. 500 Itera-
tions per run. 20 runs per strategy. Higher
is better.

Figure 8.7 shows the average time at which each iteration is finished for all 500 iterations.
The darker the line gets, the more iterations are finished in that period of time. It shows more
clearly that the default strategy takes longer to increase its performance early on, as there are less
lines in that time period. This figure also shows that the default strategy is significantly slower
than the graph based strategies. Furthermore, the no size penalty strategy performs slightly ,but
significantly, better than the other graph based strategies.

Figure 8.8 shows the total number of compilations performed for each strategy. It is important
to note that this is not the final number of compiled functions. Each successfully completed
compilation is counted for both tier 1 and tier 2 compilation levels. It also might happen that
functions get deoptimised. These deoptimisations are not taken into account. Again, the large
confidence intervals of the default strategy stand out. One reason for the wide confidence intervals
is the large total variance in how long a benchmark takes to be completed. Slower benchmarks
have a longer time to perform compilations and thus will have compiled more at the end of the
benchmark and vice-versa. A large range in total benchmark run time would also cause a large
range in number of compilations, even if the compilation ordering is exactly the same. The fact
that the no size penalty strategy has less compilations than the square root and linear strategies
also makes sense as the linear strategy should penalise costly functions and thus perform more
smaller compilations. However, due to the fact that the benchmarks is finished slightly earlier, it
could also happen that it performs less compilations, as it had slightly less time to perform them.
From this follows the expectation that the default strategy compiles more functions than the other
three, but this is not the case.

32

CHAPTER 8. EXPERIMENTAL EVALUATION 8.4. TYPESCRIPT

Figure 8.7: Eventplot of TypeScript. Av-
erage time each event takes place with 95%
confidence intervals for last event. Denser is
better typescript.

Figure 8.8: Boxplot of total number of com-
pilations (tier 1 and tier 2) for TypeScript.

Figure 8.9 shows the number of tier 1 compilations that were performed as a fraction of the
total number of compilations. The remaining compilations are thus tier 2 compilations, since
interpreted functions are not measured here. This figure shows that the default strategy performs
significantly more tier 2 compilations than the graph based strategies. This might be the reason
that the default strategy does not perform more total compilations. These tier 2 compilations
take much more time then tier 1 compilations and thus the total number of compilations will be
lower if many tier 2 compilations are performed. Due to the priority rules, tier 2 compilations can
only be performed when no tier 1 compilations are left in the compilation queue. However, 8.2
shows that Typescript is the benchmark with the largest number of functions and should not be
running out of functions to perform tier 1 compilations on.

The reason this happens is the dynamic threshold of the default compilation strategy. While
tier 1 compilations will still be performed first, tier 2 compilations are constantly added to the
queue. At some point the number of tier 2 compilations queued will make the threshold too large
for any tier 1 functions to be added and at this point tier 2 compilations will be performed, because
there are no more tier 1 compilations left in the queue.

A similar trend can be seen between the three graph based strategies. Comparing the linear
with the no size penalty strategy shows a significant difference between tier 2 compiled functions.
In this case the strategies should perform more similar. Since every iteration 50 tier 1 compilations
are being added to the compilation queue very little tier 2 compilations should be performed. The
reason for this is the earlier discussed problem of determining how fast functions should be added
to the compilation queue. The rate of 50 functions per iteration provides good performance later
in the benchmark. Early in the benchmark, however, the compilation queue might run out of new
tier 1 compilations to perform and switch to tier 2 compilations. This effect is worse in the linear
size penalty strategy because the functions are being ordered on the compilation time estimate.
Since these functions are compiled faster, the compilation queue will also become empty faster,
thus causing more tier 2 compilations to occur.

Figure 8.10 divides the total benchmark time into 10 bins. In this case each bin represents
about 25 seconds. In each bin the number of compilations in that time frame per strategy is
displayed. This figure shows that the graph based compilations strategies are working as intended.
The linear size penalty performs the most compilations early on, even though it is also still doing
tier 2 compilations. In the first bins the no size penalty strategy performs the least compilations.
Because there is no penalty, the size of these functions are larger and thus take longer to compile.

33

8.5. TERSER CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.9: Boxplot of percentage of tier 1
versus tier 2 compilations for TypeScript.

Figure 8.10: Number of compilations per
time frame for TypeScript. Tier 1 and tier
2 compilations.

8.5 Terser

Terser is a tool that provides JavaScript compression.

Figure 8.11 shows that the default strategy outperforms the graph based strategies early on.
Especially the linear strategy performs worse. This might suggest that there are some important
functions early on in the benchmark that the linear strategy delays due to their size. Figure
8.12 shows a large drop in performance for the default strategy. The confidence intervals are not
especially wide, so this is not a unique event, but happens at every benchmark run. These drops
happen in multiple different benchmarks. One of the reasons for this might be that inlining and
splitting optimisations may require the compiler to deoptimise earlier compiled functions. In the
end the different strategies do tend to go to the same performance. This makes sense because,
as the number of available tier 1 compilations are running out, the strategies have compiled the
same functions. Tier 2 functions are not decided on by the graph based strategies, so these are
compiled in a similar order as the default strategy, but without reordering and priority.

Figure 8.11: Number of iterations per
second for the Terser benchmark. 50 Iter-
ations per run. 20 runs per strategy. Higher
is better.

Figure 8.12: Number of iterations per
second for the Terser benchmark. 500 Itera-
tions per run. 20 runs per strategy. Higher
is better

34

CHAPTER 8. EXPERIMENTAL EVALUATION 8.5. TERSER

Figure 8.13 shows that in this benchmark it is better to take extra time to compile less larger
functions, instead of compiling more smaller functions, as the linear strategy is significantly worse
than all others. It is also clear that the default strategy performs much better than the graph
based strategies.

Figure 8.14 shows that the default compilation strategy performs much less compilations then
the graph based strategies. The three graph based strategies, however, have very similar number
of compilations. This make senses, because when all tier 1 compilations are performed, the fact
that the linear strategy performs more compilations early does not matter, as all strategies have
the same total number of tier 1 compilations to perform.

Figure 8.13: Eventplot of Terser. Average
time each event takes place with 95% con-
fidence intervals for last event.

Figure 8.14: Boxplot of total number of
compilations (tier 1 and tier 2) for Terser.

Figure 8.15 shows that the graph based strategies have fairly low percentage of tier 1 compila-
tions. This suggests that indeed there were no more tier 1 compilations to be performed near the
end and tier 2 compilations have started. Interestingly the default approach has performed more
tier 1 compilations than the graph based strategies. This is unusual, as the graph based strategies
sends all functions in the graph be compiled and thus it should sent at least as many functions to
the compiler. One reason this may occur is the earlier discussed warm up time problem. During
the preparation phase of the benchmark some functions will be added to the compilation queue.
After the setup phase has ended these functions will not be called anymore and thus provide no
optimisation. They are, however, still in the compilation queue and will have priority over any tier
2 compilations. This causes the default strategy to sometimes perform more tier 1 compilations
than the graph based strategies. Another reason has to do with how splits are handled differently
by both strategies.

Figure 8.16 shows that the difference in number of compilation in figure 8.14 is not only
caused by it being finished with the benchmark earlier. Especially early on there are much less
compilations performed. This suggests that there should be more tier 2 compilations performed
by the default strategy. This furthers the idea that the preparations phase compilations are not
the only cause of the extra tier 1 compilations.

35

8.6. PRETTIER CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.15: Boxplot of percentage of tier 1
versus tier 2 compilations for Terser.

Figure 8.16: Number of compilations per
time frame for Terser.

8.6 Prettier

Prettier is a tool that provides consistent formatting and styling for a JavaScript application.
Figure 8.17 shows that in the first few iterations the performance of all the strategies is very

similar. The default strategy does increase its performance slightly above the rest. Figure 8.18
shows that indeed this performance difference is kept until the end of the benchmark, where the
strategies converge to the same performance.

Figure 8.17: Number of iterations per
second for the Prettier benchmark. 50 It-
erations per run. 20 runs per strategy.

Figure 8.18: Number of iterations per
second for the Prettier benchmark. 500 It-
erations per run. 20 runs per strategy.

Figure 8.21 confirms that in this case the default strategy performs the best. Figure 8.22 shows
that the no penalty strategy performs much more compilations then the others. It is expected to
be the other way. The no penalty strategy should have less compilations since the most expensive
compilations are performed in this strategy. The reason for this has to do with how splits are
dealt with.

A split function inherits the compilation threshold that is given by the graph database to the
original function. Figure 8.19 is an example where a splittable function has a low priority. The
compiler splits this function and for each split separately keeps the callCount. If this priority is
low, its threshold is high and will be hard to reach, since all incoming calls are divided amongst the

36

CHAPTER 8. EXPERIMENTAL EVALUATION 8.6. PRETTIER

splits. Thus only the splits with the highest incoming invocations will be sent to the compilation
queue. Figure 8.20 shows an example of a situation such as the no penalty strategy in figure 8.22.
The splittable function has a high priority and even though the callCounts are divided amongst
the splits, still many splits are entered into the compilation queue. This results in more available
functions for tier 1 compilation.

InputList from call graph
Function name callCountThreshold

someFunction1() 200
someFunction1() 800
SplittableFunction() 2000

Compilation queue

Function name Split

someFunction1() None
someFunction2() None
SplittableFunction() split 1
SplittableFunction() split 2

Figure 8.19: Example graph input and com-
pilation queue in the case where a splittable
function has low priority in compilation.

InputList from call graph
Function name callCountThreshold

SplittableFunction() 200
someFunction1() 800
someFunction2() 2000

Compilation queue

Function name Split

SplittableFunction() split 1
SplittableFunction() split 2
SplittableFunction() split 3
SplittableFunction() split 4
SplittableFunction() split 5
SplittableFunction() split 6
someFunction1() None

Figure 8.20: Example graph input and com-
pilation queue in the case where a splittable
function has high priority in compilation.

Figure 8.21: Eventplot of Prettier. Average
time each event takes place with 95% con-
fidence intervals for last event.

Figure 8.22: Boxplot of total number of
compilations (tier 1 and tier 2) for Prettier.

Figure 8.24 shows that, especially in the start of the benchmark, the no-size penalty performs
much more compilations. This strengthens the hypothesis that many splits of a small function are
being performed.

37

8.7. ESPREE CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.23: Boxplot of percentage of tier 1
versus tier 2 compilations.

Figure 8.24: Number of compilations per
time frame.

8.7 Espree

The third benchmark is Espree. Espree is an ECMAScript parser.
Figure 8.25 shows that, for the first iteration, both the linear and square root strategies perform

significantly worse than the default and no size strategy. This suggests that some important larger
functions were delayed by these strategies. It also shows that the default strategy has a very slow
startup time the first few iteration until about 18 seconds.

Figure 8.26 shows that the default strategy very quickly catches up to the others, but the
performance improvements also stalls again around the middle of the benchmark. The other
strategies keep improving performance gradually, causing the benchmarks to be finished earlier.

Figure 8.25: Number of iterations per
second for the Prettier benchmark. 50 It-
erations per run. 20 runs per strategy.

Figure 8.26: Number of iterations per
second for the Prettier benchmark. 500 It-
erations per run. 20 runs per strategy.

Figure 8.27 confirms that the no penalty strategy is significantly better than the others and
that all three graph based strategies perform better than the default strategy. Figure 8.28 shows
the no penalty strategy has the least performed compilations. The default strategy having more
compilations can again be caused either by a higher number of performed splits, more warmup
functions being performed, or because of the longer execution time. Figure 8.29 does show that
many tier 2 compilations have been performed for all benchmarks and that thus the tier 1 com-

38

CHAPTER 8. EXPERIMENTAL EVALUATION 8.8. BABEL-MINIFY

pilations have run out. Figure 8.30 shows that the no size penalty strategy performs only half the
compilations that the other graph based strategies do in the first bin. This shows that performing
over double the compilations does not necessary improve the performance if these functions are
not impactful. It again confirms that the penalty strategies perform their desired effect.

Figure 8.27: Eventplot of Espree. Average
time each event takes place with 95% con-
fidence intervals for last event.

Figure 8.28: Boxplot of total number of
compilations (tier 1 and tier 2) for Espree.

Figure 8.29: Boxplot of percentage of tier 1
versus tier 2 compilations for Espree.

Figure 8.30: Number of compilations per
time frame for Espree.

8.8 Babel-minify

Babel-minify is a minifyer for the Babel tool. The Babel tool is a transpiler for translating es6 to
older JavaScript versions.

Figure 8.31 shows that all three strategies have very similar performance for the early iterations.
The default strategy improves quickly after that and keeps outpacing the other strategies. At
some point, the performance of all strategies converge. Interestingly, there is a sudden increase in
performance at round the 75 second mark in figure 8.32 for the square root and no size penalty
strategies. This increase occurs later in the linear penalty. This might suggest that there is a
group of impactful functions that are fairly large. This group of functions is found by the no size
strategy quite early, but later for the linear penalty. Another idea might be that it is a group of
split functions that only reach a threshold much later in the graph based strategies.

39

8.8. BABEL-MINIFY CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.31: umber of iterations per second
for the Babel-minify benchmark. 50 Itera-
tions per run. 20 runs per strategy.

Figure 8.32: Number of iterations per
second for the Babel-minify benchmark. 500
Iterations per run. 20 runs per strategy.

Figure 8.33 confirms that the default strategy is significantly better. It is also clear that the
square root strategy outperforms the other two graph based strategies. Again, figure 8.34 shows
the reverse of what is expected. The linear penalty should compile the most functions. Both
because of the penalty, and because the it runs the longest.

Figure 8.33: Eventplot of Babel-minify. Av-
erage time each event takes place with 95%
confidence intervals for last event.

Figure 8.34: Boxplot of total number of
compilations (tier 1 and tier 2) for Babel-
minify.

Looking at figure 8.36 an explanation can be found. Similarly to previous benchmarks, the
same trend is visible comparing figures 8.35 and 8.36. The linear penalty strategy performs more
tier 2 compilations. this suggests that there are less available tier 1 functions. The reason might
be that the linear strategy has more idle time early on, or that the other strategies perform more
compilations of split functions.

40

CHAPTER 8. EXPERIMENTAL EVALUATION 8.9. ACORN.JS

Figure 8.35: Boxplot of percentage of tier 1
versus tier 2 compilations for Babel-minify.

Figure 8.36: Number of compilations per
time frame for Babel-minify.

8.9 Acorn.js

Acorn is a JavaScript parser that is also used by many other benchmarks in this thesis, such as
Babylon and Babel.

Figure 8.37 shows that for the Acorn benchmark the default strategy has poor performance
early on. Figure 8.38 shows that the benchmark barely improves its performance throughout the
first 100 seconds. Only at the 125 second mark, when the graph based strategies have almost
completed, it sharply increases its performance in only a few iterations. This suggests that there
is a very small number of functions whose compilations provides most of the performance improve-
ment. In the ideal scenario these functions could be identified in the very first iterations. The
graph based strategies do find these gradually over a longer period of time, but not as sudden as
the default strategy does.

Figure 8.37: Number of iterations per
second for the Acorn benchmark. 50 Iter-
ations per run. 20 runs per strategy.

Figure 8.38: Number of iterations per
second for the Acorn benchmark. 500 It-
erations per run. 20 runs per strategy.

Figure 8.40 shows that the number of compilations performed by the default strategy is much
higher. Figure 8.39 shows that this number can be explained by the fact that it runs longer and thus
has more time to perform compilations. In the early iterations in figure 8.42 the default strategy

41

8.10. CHAI.JS CHAPTER 8. EXPERIMENTAL EVALUATION

performs a similar amount of compilations as the linear penalty strategy. It does however keep
compiling when the other strategies have already finished their iterations and stopped compiling.

Figure 8.39: Eventplot of Acorn. Average
time each event takes place with 95% con-
fidence intervals for last event.

Figure 8.40: Boxplot of total number of
compilations (tier 1 and tier 2) for Acorn.

Figure 8.41: Boxplot of percentage of tier 1
versus tier 2 compilations for Acorn.

Figure 8.42: Number of compilations per
time frame for Acorn.

8.10 Chai.js

Chai is a library that provides testing tools for JavaScript code.

Chai shows the opposite of Acorn. Figure 8.43 shows that the graph based strategies do not
increase their performance much after 15 seconds, while the default strategy slowly improves.
Figure 8.44 shows that from 15 seconds on the graph based strategies are barely improving their
performance. The default strategy, however, already reaches its maximum performance in 25
second and does not increase at all after that. This suggests that there are many functions that
are not useful to compile and there are a few that are extremely important.

42

CHAPTER 8. EXPERIMENTAL EVALUATION 8.10. CHAI.JS

Figure 8.43: Number of iterations per
second for the Chai benchmark. 50 Itera-
tions per run. 20 runs per strategy.

Figure 8.44: Number of iterations per
second for the Chai benchmark. 500 Iter-
ations per run. 20 runs per strategy.

Figure 8.45 shows that the default strategy indeed performs much better early and completes
significantly earlier.

Figure 8.45: Eventplot of Chai. Average
time each event takes place with 95% con-
fidence intervals for last event.

Figure 8.46: Boxplot of total number of
compilations (tier 1 and tier 2) for Chai.

Figure 8.48 shows that the number of compilation over time changes much more than in
previous benchmarks. At the 25 and 50 second bin the no size penalty has a sharp decrease in
number of compilations performed. This suggests that very large functions are being compiled,
either very large tier 1 or many tier 2 compilations. The fact that later the no size penalty starts
compiling at a normal speed again suggests that these are not tier 2 compilations, as the tier 1
compilations performed later would have been prioritised. Thus, it is likely that there are some
very expensive tier 1 compilations. It makes sense that this happens for the no size strategy first,
as it does not penalise these large functions. At 75 seconds the same happens for the other three
strategies. These times correspond with a period of very little performance improvement in figure
8.44. This suggests that these very large functions do not add much performance, so without
them, the benchmarks might have increased performance sooner.

43

8.11. GENERAL RESULTS CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.47: Boxplot of percentage of tier 1
versus tier 2 compilations for Chai.

Figure 8.48: Number of compilations per
time frame for Chai.

8.11 General Results

Looking at the benchmarks one by one provides ideas about what is going on within the compiler.
The results are mixed and do not show a clear overview of the performance of the new compilation
strategies. The different benchmarks also vary a lot in their size and duration, making it harder
to compare them. In order to make a comparison between benchmarks this section shows the
performance of the three graph based strategies as a percentage of the default strategy. This
makes a comparison possible between the default and the graph based strategies, with the goal
of definitively answering whether the proposed compilation strategies have a positive or negative
effect on performance of the virtual machine.

44

CHAPTER 8. EXPERIMENTAL EVALUATION 8.11. GENERAL RESULTS

Typescript Acorn Babel-minify Babylon Buble

10 iterations Linear 15.9±4.1 87.2±11.0 5.7±2.6 76.1±8.0 -0.8±1.6
50 iterations Linear 12.7±6.5 122.7±4.0 -14.1±3.0 106.9±3.6 4.8±2.0
500 iterations Linear 14.7±9.3 39.3±2.9 -14.5±1.6 41.0±1.2 7.0±6.1
10 iterations Square Root 6.9±3.3 92.7±2.4 8.6±2.3 107.9±2.6 -2.7±1.6
50 iterations Square Root 27.0±7.3 139.8±4.2 -10.9±1.5 113.3±3.3 -1.8±1.6
500 iterations Square Root 17.2±9.4 46.8±0.9 -8.5±1.1 44.2±1.0 8.4±5.7
10 iterations No Size -5.0±3.2 68.0±3.2 -0.5±2.1 92.9±3.5 -5.1±1.3
50 iterations No Size 36.2±8.2 140.0±6.5 -16.6±2.0 80.5±6.7 -1.5±1.6
500 iterations No Size 20.1±9.9 49.1±1.3 -10.1±1.8 38.0±2.7 9.4±5.9

Esprima Jshint Source-map Prepack Postcss

10 iterations Linear 72.9±8.2 13.9±2.0 2.5±5.1 4.8±2.4 1.2±5.1
50 iterations Linear 152.0±1.3 6.1±2.6 -16.6±2.5 -4.1±4.8 19.5±8.6
500 iterations Linear 27.6±0.8 -4.1±1.9 -20.8±1.1 9.5±6.1 17.5±4.1
10 iterations Square Root 124.0±5.8 13.2±2.8 1.3±4.4 -5.1±2.2 6.1±6.0
50 iterations Square Root 160.5±2.1 6.2±3.0 -16.4±2.5 -1.9±5.4 18.3±9.5
500 iterations Square Root 29.5±1.2 -5.9±1.6 -22.5±1.5 10.3±6.0 14.6±4.0
10 iterations No Size 108.6±5.0 12.3±2.0 -1.6±4.3 -11.8±1.7 -1.8±4.6
50 iterations No Size 139.8±2.9 -5.6±2.9 -9.0±3.0 11.0±6.2 10.6±8.1
500 iterations No Size 27.1±1.4 -7.5±1.5 -6.4±2.5 16.1±6.8 14.7±4.3

Prettier Terser Chai Espree Combined

10 iterations Linear -12.1±1.0 -27.5±1.3 -2.9±1.9 32.6±2.4 19.2±17.7
50 iterations Linear -10.2±2.7 -29.0±0.9 -13.6±1.1 -1.3±3.7 24.0±29.3
500 iterations Linear -8.2±1.4 -19.2±1.2 -15.4±0.7 5.7±1.9 5.8±10.5
10 iterations Square Root 7.4±1.3 -29.0±1.3 -1.2±2.3 16.1±2.3 24.7±23.7
50 iterations Square Root -8.9±2.6 -23.9±1.0 -19.6±1.7 -0.3±4.2 27.3±32.4
500 iterations Square Root -8.1±1.6 -14.0±1.1 -18.3±0.7 5.4±2.7 7.0±11.0
10 iterations No Size 4.4±1.9 -32.5±1.4 0.9±2.2 10.9±2.2 17.1±21.0
50 iterations No Size -18.7±1.3 -23.1±1.1 -22.4±1.0 5.5±4.4 23.3±28.4
500 iterations No Size -8.6±1.1 -13.8±1.4 -20.9±0.6 10.6±2.0 8.4±10.5

Table 8.2: Performance statistics of graph based strategies as percentage of the default strategy.

Overall there are 5 benchmarks where both the startup and the total benchmark time of the
graph based strategies was lower than the default strategy. There are also 5 benchmarks where
the default strategy outperforms the graph based strategies in both situations. The remaining 4
have mixed results. Individually, nearly all results are significant with a 95 % confidence interval.
The combined result of all benchmarks show a fairly large mean positive effect after a startup
time of 50 iterations. The square root penalty strategy has the largest increase. It is 27% faster
then the default strategy. The other two graph based strategies perform a bit worse. This might
suggest that having no size penalty is problematic due to large functions being prioritised over
more compilations and that a linear penalty might be too harsh and compiles more, but less
impactful functions. The differences between the graph based strategies are fairly small. For
the full 500 iterations the no size strategy performs the best overall, finishing the benchmark 8
% faster than the default strategy. Even though the number of positive and negative results is
about equal, there is a definite difference in how much difference the positive and negative results
measure. Especially in the first 50 iterations some of the benchmarks perform over twice as fast
with the graph based strategies as opposed to the default strategy.

Figure 8.49 shows the combined performance of the strategies after 10 startup iterations. The
linear strategy performs the best with the 50 % box of the benchmarks clearly positive. Table 8.2
also confirms that for the first 10 benchmarks the Linear and Square root strategies are significantly

45

8.11. GENERAL RESULTS CHAPTER 8. EXPERIMENTAL EVALUATION

better than the default strategy.

Figure 8.49: Boxplot of combination of all benchmarks for first 10 iterations as percentage of
default strategy.

Figure 8.50: Boxplot of combination of all
benchmarks for the first 50 iterations as per-
centage of default strategy.

Figure 8.51: Boxplot of combination of all
benchmarks for all 500 iterations as percent-
age of default strategy.

Figure 8.50 further shows this point. The median benchmark has close to 0 % improvement over
the default strategy. The 50 % boxes are also largely centered around 0 with a slight improvement
in regards to the default strategy. This figure shows that there are some very large positive outliers.
These outliers suggest that, especially for the startup iterations, the graph based strategies have
a very large performance advantage for some benchmarks.

Figure 8.51 shows that after 500 iterations the differences for these outliers have decreased.
There is now a clearer positive effect visible. The median benchmark is positive. The 50 % boxes
for the square root and no penalty strategies also suggest that there is a clear performance increase
over the default strategy. The whiskers are at most negative 20%, but the positive whiskers go up
to 40%.

46

CHAPTER 8. EXPERIMENTAL EVALUATION 8.12. INLINING

8.12 Inlining

Besides making decisions on the compilation queue, the virtual machine also decides on interpro-
cedural optimisations, such as inlining and splitting.

The leaf inlining strategy inlines leaf functions early on in the benchmark run in order to get a
performance advantage later on. The idea is that early on time is spend on inlining a function that
does not have the highest impact. But, as it is now inlined into its calSite function, later on, when
the callSite function is being compiled, more optimisations might be performed. Furthermore,
inlining functions have the additional performance gain of removing a call.

The expectation is thus that there might be a slight disadvantage early on, as less desirable
functions are being compiled in front of functions with higher impact. This should, however, be
small, as the leaf functions are chosen to have short compile times.

From the graph database all leaves are retrieved below the size of 30. This size of 30 represents
only very small functions. This is important for two reasons. First, the inlining is performed at
the start of the benchmark, even before the most called functions. If these functions are too large,
and thus take too long to inline, it can delay the compilation of the more important functions by
too much. The second reason is that functions which are very large can become quite expensive
to compile. If a large function is inlined into another large function, this might cause performance
problems.

Only leaves were chosen that have a direct call from a single call site. This ensures that the
function may be inlined straight away, without having to wait for splitting decisions.

In order to ensure that the compilation of the functions, chosen by the graph based strategy, is
not delayed by too long, the 50% leaves with the lowest incoming call count are discarded. This is
a trade off that needs to be made between performance early and possible increased performance
later on.

The no size strategy with default inlining was chosen as a baseline to compare the leaf inlining
strategy to. This is done because in the current implementation the default strategy cannot be
combined with a different inline strategy. Of all the graph based strategies, the no size penalty
strategy is considered to be the base.

Table 8.3 shows that only for Acorn, the hypothesis that early speed is traded in for later
performance gain holds true. There are 9 benchmarks that perform worse, 3 that perform better
and 2 that are mixed. A difference with the graph based versus default strategy is that for inlining,
very little results are significantly different from the default inlining strategy. This implies that not
enough changes have been performed to the strategy to cause a measurable increase or decrease
in performance.

The combined results are overall negative, but not significantly different from the default
inlining strategy.

Typescript Acorn Babel-minify Babylon Buble

50 iterations No Size -3.7±0.9 -3.5±1.6 -0.1±2.9 -1.0±1.9 -3.5±1.7
500 iterations No Size -2.9±1.2 3.2±1.6 -1.1±3.9 -1.8±1.6 -1.8±1.3

Esprima Jshint Source-map Prepack Postcss

50 iterations No Size -1.5±2.4 -1.8±1.9 4.7±5.0 1.2±1.1 1.9±1.5
500 iterations No Size -0.8±0.8 -1.1±2.3 2.3±2.3 -0.2±1.8 1.2±1.2

Prettier Terser Chai Espree Combined

50 iterations No Size -3.5±2.2 -3.8±2.0 -0.3±1.0 2.1±1.5 -0.9±1.3
500 iterations No Size -2.0±2.3 -0.1±2.3 -0.1±0.8 1.5±2.2 -0.7±0.8

Table 8.3: Performance statistics of inline leaf strategy vs no changed inline strategy for No size
strategy.

47

8.12. INLINING CHAPTER 8. EXPERIMENTAL EVALUATION

Figure 8.52 shows that the median benchmark of the leaf inlining strategy performs slightly
worse than the default inlining strategy. Similar to figure 8.50 and 8.51 the range for the first 50
iterations is larger than for the whole 500 iterations, suggesting that the differences do become
smaller over time. These results do show that the overall performance has decreased as opposed
to the default inlining strategy.

Figure 8.52: Boxplot performance of leaf inlining strategy as percentage of no size strategy with
default inlining.

Figure 8.53 shows that for the Source-map benchmark the leaf inlining strategy behaves a bit
worse than the default inlining strategy early on. Looking at the whole benchmark in figure 8.54
the leaf inlining strategy seems to catch up to the default inlining and at points is even slightly
better, although not significantly at any point.

Figure 8.53: Number of iterations per
second for Source-map benchmark and in-
lining. 50 Iterations per run. 20 runs per
strategy.

Figure 8.54: Number of iterations per
second For Source-map benchmark and in-
lining. 50 Iterations per run. 20 runs per
strategy.

In the Postcss benchmark, the leaf strategy performs very slightly better than the default
strategy, although this does seem to be within statistical noice levels. Looking at both figure 8.55
and 8.56 it stands out that the leaf inlining strategy is very slightly better throughout the whole

48

CHAPTER 8. EXPERIMENTAL EVALUATION 8.13. THREATS TO VALIDITY

benchmark. This compounded improvement causes the leaf strategy to almost be significantly
better than the default inlining strategy according to table 8.3.

Figure 8.55: Number of iterations per
second for Postcss benchmark and inlining.
500 Iterations per run. 20 runs per strategy.

Figure 8.56: Number of iterations per
second for Postcss benchmark and inlining.
500 Iterations per run. 20 runs per strategy.

8.13 Threats to validity

Some decisions made in the options, the call graph creation, and in the compilation strategy may
influence the performance of the benchmarks in unexpected ways. This section discusses these
decisions.

The first decision is to restrict the number of CPU cores available to the compiler. By only
allowing the compiler to use 1 core, the results become very consistent. It also slows down the
performance improvement of the virtual machine. This especially influences the default strategy, as
the reordering of the compilation queue and the dynamic compilation threshold might be optimised
for more compilation speed. The restricted number of compilations has the advantage of making
it more important in what order functions are being compiled, which highlights the difference in
performance of different strategies.

Splitting was already discussed in some of the benchmark sections. The splitting strategy is not
taken into account during the creation of the call graphs. If a function is split during compilation,
both callTargets are considered separate functions, and thus its callCounts get split between both
these newly created functions. The graph based compilation strategy does still assume that both
split functions are combined and thus the compilations threshold is much higher than intended.
This causes the function to be added to the compilation queue later. This causes the default
compilation strategy to perform more compilations on split functions.

A function that has many distinct incoming calls, and thus many split opportunities, will
generally also have a high callCount and thus a high compilation priority. This high priority may
lead to the function receiving a low compilation threshold. This low threshold is then shared
among all splits of this function. In some cases this causes many of the splits of the function
to be entered into the compilation queue very early, even though the splits are not called often
individually.

49

Chapter 9

Conclusion

In conclusion, GraalVM provides a good framework for profiling instruments, such as a call graph
tool. The instrumentation framework in combination with the Intermediate Representation allows
the tool to work with multiple programming languages. The call graph profiling takes approxim-
ately 8 times longer than the non-profiled execution. This is reasonable for offline ahead of time
computation, but must be optimised further if used just in time.

The graph database allows the call graphs to be quickly and easily imported. Querying is also
fast and the visualisation possibilities of Neo4j can help developers who are knowledgeable about
their profiled application.

A problem with the virtual machine is that functions are never removed from the compilation
queue. The initialisation functions that are present in all benchmarks are submitted in the com-
pilation queue and are then never executed again. These functions still have priority over all tier
2 compilations. In the graph based strategies this can be solved by using warm up times, but in
the default strategy this problem remains.

Another issue is that tier 1 compilations always have priority over tier 2 compilations. In the
graph based strategies all functions are added to the compilation queue at some point. Some of
these functions are only rarely executed, however they still have priority over tier 2 compilations of
functions that are executed very often. In the graph based strategies this can be solved by slowly
submitting functions to the compilation queue. The default strategy fixes this problem with the
dynamic compilation threshold. This threshold will prevent rarely used interpreted functions from
being sent to the compilation queue, while very often executed tier 1 compiled functions may still
enter the queue to be tier 2 compiled.

The final issue concerns splitting for graph based strategies. It might be a good idea to allow
splitting decisions to be made during call graph profiling. Even if not all splitting decisions are
made by the compiler in the small time available for profiling, it still helps to relieve the problems
discussed in the previous section on threats to validity.

Overall, the performance of the graph based strategies is good. By only performing a single
offline iteration good intuitions can be gained about which functions are important to compile.
It is important to note that the benchmarks were deterministic and that in real life scenarios
the performance may decrease due to increased difference between the call graphs. There is a
significant performance improvement in early startup phase for the graph based strategies over the
default strategy. There is also a large increase in performance after 50 and 500 iterations, although
this increase is not statistically significant. Some benchmarks can definitely be improved greatly
by using this offline graph data. The difference between the different graph based compilation
strategies is less clear. The effect the compilation time of a function has on the performance of
the total benchmark should be researched further.

The leaf inlining strategy overall had a slightly negative effect on performance. More test can
be performed on whether it makes sense to inline either larger or more functions.

To conclude, a call graph is a valuable representation of an application and provides information
that can help improve runtime performance in a virtual machine.

50

Bibliography

[1] Rakan Alanazi, Gharib Gharibi, and Yugyung Lee. Facilitating program comprehension with
call graph multilevel hierarchical abstractions. Journal of Systems and Software, 176:110945,
2021. 9

[2] K. Ali, X. Lai, Z. Luo, O. Lhotak, J. Dolby, and F. Tip. A study of call graph construction
for jvm-hosted languages. IEEE Transactions on Software Engineering, 47(12):2644–2666,
dec 2021. 9

[3] Karim Ali and Ondřej Lhoták. Application-only call graph construction. In James Noble,
editor, ECOOP 2012 – Object-Oriented Programming, pages 688–712, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. 9

[4] M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph profiles in virtual
machines. pages 51–62, 2005. 1

[5] Maciej Besta, Emanuel K. Peter, Robert Gerstenberger, Marc Fischer, Michal Podstawski,
Claude Barthels, Gustavo Alonso, and Torsten Hoefler. Demystifying graph databases:
Analysis and taxonomy of data organization, system designs, and graph queries. ArXiv,
abs/1910.09017, 2019. 5

[6] Michael Burch. The dynamic call graph matrix. pages 1–8, 09 2016. 10

[7] Michael Burch, Christoph Müller, Guido Reina, Hansjoerg Schmauder, Miriam Greis, and
Daniel Weiskopf. Visualizing Dynamic Call Graphs. In Michael Goesele, Thorsten Grosch,
Holger Theisel, Klaus Toennies, and Bernhard Preim, editors, Vision, Modeling and Visual-
ization. The Eurographics Association, 2012. 10

[8] Mikhail Dmitriev. Profiling java applications using code hotswapping and dynamic call graph
revelation. SIGSOFT Softw. Eng. Notes, 29(1):139–150, jan 2004. 10

[9] Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. Profile-guided static typing for
dynamic scripting languages. SIGPLAN Not., 44(10):283–300, oct 2009. 10

[10] Google. https://blog.chromium.org/2016/10/making-chrome-on-windows-faster-with-
pgo.html. 10

[11] Google. https://github.com/v8/web-tooling-benchmark. 28

[12] S.L. Graham and Peter Kessler. Gprof: A call graph execution profiler. ACM SIGPLAN
Notices, 17, 06 1982. 5

[13] David Grove and Craig Chambers. Ibm research report an assessment of call graph construc-
tion algorithms. 06 2000. 4

[14] David Grove and Craig Chambers. A framework for call graph construction algorithms. ACM
Trans. Program. Lang. Syst., 23(6):685–746, nov 2001. 9

51

BIBLIOGRAPHY BIBLIOGRAPHY

[15] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. Profile-guided receiver
class prediction. SIGPLAN Not., 30(10):108–123, oct 1995. 10

[16] Mary W. Hall and Ken Kennedy. Efficient call graph analysis. ACM Lett. Program. Lang.
Syst., 1(3):227–242, sep 1992. 1

[17] Mehadi Hassen and Philip K. Chan. Scalable function call graph-based malware classification.
In Proceedings of the Seventh ACM on Conference on Data and Application Security and Pri-
vacy, CODASPY ’17, page 239–248, New York, NY, USA, 2017. Association for Computing
Machinery. 10

[18] Intel. https://www.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/optimization-and-programming/profile-guided-
optimization-pgo.html. 10

[19] Erik Johansson and Sven-Olof Nyström. Profile-guided optimization across process boundar-
ies. SIGPLAN Not., 35(7):23–31, jan 2000. 10

[20] Mehdi Keshani. Scalable Call Graph Constructor for Maven, page 99–101. IEEE Press, 2021.
9

[21] Mátyás Komáromi, István Bozó, and Melinda Tóth. An efficient graph visualisation frame-
work for refactorerl. Studia Universitatis Babes, -Bolyai Informatica, 63:21–36, 06 2018. 10

[22] Byeongcheol Lee. Adaptive correction of sampling bias in dynamic call graphs. ACM Trans.
Archit. Code Optim., 12(4), dec 2015. 9

[23] Ondrej Lhoták. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’07, page 37–42,
New York, NY, USA, 2007. Association for Computing Machinery. 10

[24] Justin J. Miller. Graph database applications and concepts with neo4j. 2013. 5

[25] neo4j. https://github.com/lpechacek/cpuset. 27

[26] neo4j. https://llvm.org/docs/benchmarking.html. 27

[27] neo4j. https://neo4j.com/. 19

[28] Neo4j. https://neo4j.com/developer/cypher/. 19

[29] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of node.js applications. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2021, page
29–41, New York, NY, USA, 2021. Association for Computing Machinery. 10

[30] Oracle. https://github.com/oracle/graal. 1

[31] Oracle. https://github.com/oracle/graal/blob/master/tools/src/com.oracle.truffle.tools.profiler/src/com/oracle/truffle/tools/profiler/cputracer.java.
14

[32] Oracle. https://github.com/oracle/graaljs. 2

[33] Oracle. https://www.graalvm.org/22.0/reference-manual/java/compiler/. 5

[34] Oracle. https://www.graalvm.org/22.1/docs/getting-started/get-started-with-graalvm. 5

[35] Oracle. https://www.graalvm.org/22.1/graalvm-as-a-platform/implement-instrument/. 5

[36] Oracle. https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-
framework/. 5

52

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Oracle. https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-
framework/splitting/monomorphizationusecases/. 7

[38] Oracle. https://www.graalvm.org/22.1/graalvm-as-a-platform/language-implementation-
framework/traversingcompilationqueue/. 7

[39] Oracle. https://www.graalvm.org/22.1/reference-manual/js/. 5

[40] Nadav Rotem and Chris Cummins. Profile guided optimization without profiles: A machine
learning approach, 2021. 10

[41] Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dimitris Mitro-
poulos. Pycg: Practical call graph generation in python. In Proceedings of the 43rd Inter-
national Conference on Software Engineering, ICSE ’21, page 1646–1657. IEEE Press, 2021.
9

[42] Denys Shabalin and Martin Odersky. Interflow: Interprocedural flow-sensitive type inference
and method duplication. In Proceedings of the 9th ACM SIGPLAN International Symposium
on Scala, Scala 2018, page 61–71, New York, NY, USA, 2018. Association for Computing
Machinery. 10

[43] J. M. Spivey. Fast, accurate call graph profiling. Softw. Pract. Exper., 34(3):249–264, mar
2004. 10

[44] Lukas Stadler, Thomas Würthinger, Doug Simon, Christian Wimmer, and Hanspeter
Mössenböck. Graal ir : An extensible declarative intermediate representation. 2013. 5

[45] P Stookappe. https://github.com/patricksss/graal. 27

[46] P Stookappe. https://github.com/patricksss/graal/tree/master/auxiliryfiles. 14, 19, 27

[47] P Stookappe. https://github.com/patricksss/graal/tree/master/auxiliryfiles/benchmarks. 28

[48] Tobias Hartmann, Zoltán Majó . The java hotspot vm under the hood.
url: chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://cr.openjdk.

java.net/~thartmann/talks/2016-Hotspot_Under_The_Hood.pdf, 2 2016. 6

[49] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and DawnWilkins.
A comparison of a graph database and a relational database: A data provenance perspective.
volume 10, page 42, 01 2010. 5

[50] Baptiste Wicht, Roberto A. Vitillo, Dehao Chen, and David Levinthal. Hardware counted
profile-guided optimization, 2014. 10

[51] David Williams-King and Junfeng Yang. Codemason: Binary-level profile-guided optimiza-
tion. In Proceedings of the 3rd ACM Workshop on Forming an Ecosystem Around Software
Transformation, FEAST’19, page 47–53, New York, NY, USA, 2019. Association for Com-
puting Machinery. 10

[52] Tao Xie and David Notkin. An empirical study of java dynamic call graph extractors. 2001.
9

53

chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://cr.openjdk.java.net/~thartmann/talks/2016-Hotspot_Under_The_Hood.pdf
chrome-extension://oemmndcbldboiebfnladdacbdfmadadm/http://cr.openjdk.java.net/~thartmann/talks/2016-Hotspot_Under_The_Hood.pdf

	Contents
	List of Figures
	Introduction
	Problem statement
	Outline

	Background
	Call graphs
	Graph databases
	GraalVM
	Runtime Dynamic (JIT) Compilation

	Related work
	Call Graphs
	Profile-guided optimisation

	Methodology
	The call graph profiling tool
	CallTracerInstrument
	CallTracer
	CalltracerCLI
	Call graph validation

	Using a graph database to analyze a call graph
	Improving GraalVM performance
	Experimental evaluation
	Experimental setup
	Benchmarks
	Warm up and peak performance measurement
	Typescript
	Terser
	Prettier
	Espree
	Babel-minify
	Acorn.js
	Chai.js
	General Results
	Inlining
	Threats to validity

	Conclusion
	Bibliography

