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Abstract

This report investigates the ins and outs of applying HHL to a known plaintext attack on AES,
using the Macaulay matrix approach. The goal is on the one hand to raise awareness for the
HHL algorithm and the fact that the applications might be further reaching than expected.

Hopefully this will show the urgency for more research into HHL, before cryptosystems, that are
considered quantum safe, are assumed not to be threatened by HHL. On the other hand, this
report gives better insights in the complexity of the HHL algorithm in combination with the

Macaulay approach and shows that certain bounds from the literature might be misleading. The
report shows that it is doubtful whether HHL in combination with the Macaulay approach can be
used to construct an attack on AES that is significantly more efficient than Grover search. Even

though this report investigates a certain strategy (the Macaulay approach) and it can not be
concluded that this leads to a significant speed-up, it does not mean that such a speed-up is not

possible.
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1 Introduction

The past decades have witnessed an immense development of digital connectivity. This goes hand
in hand with a growing dependency on online communication (e.g. online banking) and connected
devices in the IoT (e.g. medical devices and vehicles), which play a vital role in our daily life.
Therefore, digital security is paramount. Cryptographic primitives are used to achieve security
goals. Commonly used examples are: the Advanced Encryption Standard (AES) for confidentiality
and sometimes integrity, elliptic curve cryptosystems (ECC) for integrity and authentication, and
the Elliptic Curve Diffie-Hellman (ECDH) algorithm for exchanging keys used in, for example,
AES.

However, cryptographic schemes are threatened by the recent advances in quantum computing.
Post-quantum cryptography is cryptography under the assumption that the attacker has a large
quantum computer. In this scenario, many commonly used cryptosystems will be completely
broken; post-quantum cryptosystems strive to remain secure.

Even though it is not clear when large scale quantum computers will come into existence, it is
important to start working on post-quantum security now. It is believed that only significant
engineering obstacles need to be overcome, which might happen in the near future. An increase is
expected in research in post-quantum cryptography, stimulated by NIST’s competition, resulting in
more designs, more optimizations and implementations, and also more attacks. Besides, attackers
can record long-term confidential documents and state secrets, that have to stay secure for many
years, and break the encryption when quantum computers become available. Therefore, it is a race
against time to deploy post-quantum cryptography.

To determine if a cryptographic primitive, and therefore the cryptographic schemes based on
this primitive, is quantum secure, it needs to be investigated how an adversary could attack
the primitive by quantum cryptanalysis. This research should consist of finding new quantum
algorithms and of investigating how known and new algorithms can be used in an attack. Even
though quantum computers are really good at solving some problems, they can only handle a
limited selection of problems. For instance, efficient algorithms for factoring are known, meaning
the end of the security of RSA. However, at this moment, no efficient (meaning more efficient than
for example Grover’s search or lattice sieving) attacks are known on multivariate cryptography
(like UOV), lattice-based crypto (like NTRU) or AES. Be that as it may, there is an algorithm
that can solve a system of linear equations efficiently and AES can be written as a system of linear
equations.

Rijndael is a cryptographic algorithm created by Joan Daemen and Vincent Rijmen. In November
2001, the NIST accepted it as the new standard, replacing DES and renaming it AES (advanced
encryption standard). Now it is the most popular and widely used block cipher. It is expected that
the rise of quantum computers does not yield a serious problem for the security of AES(-256), in
contrast to many other cryptosystems. However, in 2008, Harrow et al. published a paper on the
HHL algorithm; an algorithm for solving linear systems of equations. Since AES can be written
as such a system, it is very surprising that the research on HHL is still very scarce.

The normal definition of ’broken’ is that a better attack than the generic ones (like for instance,
exhaustive key search) exists. In post-quantum, attacks should be compared to its best generic
quantum attack (i.e. Grover’s search). Therefore, this report compares an attack using HHL to
an attack using Grover. This report will extend this research to reinforce the trust in AES as a
post-quantum cryptosystem, yet shows that security proofs are not within reach, by answering the
following research question:

’Does HHL facilitate an attack on AES,
that is more efficient than an attack using Grover?’
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1.1 Related work and contributions

The basic notions of quantum computing are collected from [9]. More details about phase estima-
tion are added from [16]. The AES and the Mini-AES algorithm in this report are copied from [1]
and [7] respectively. For the S-box equations, [5], [4], [8], and [14] are consulted.

The analysis of the HHL algorithm in this report is based on [15] and [10]. However, at some points
this report concludes the papers to be erroneous. This means that the first contribution of this
report is highlighting some mistakes in the details of these papers. Besides, this report improves
some results that can be found in the literature.

Reference [2] gives a system of equations that needs to be solved to conduct a known plaintext
attack on AES. However, some details were missing. Therefore, the second contribution of this
report is to fill in those gaps.

The same paper also states methods to translate equations from GF(2) to C and to make the
equations sparser. This report contributes by discussing another method for both, of which the
method to make the equations sparser is way more efficient for the attack in this report.

Furthermore, this paper explains how to contruct a Macaulay matrix. However, [2] makes two
decisions in this process, without explaining why these decisions are made, without even specifying
that decisions were made. This report investigates all options and shows that the Macaulay matrix
based on [2] is probably not the most efficient one. Besides, this report shows that there are three
strategies to go from a system of equations over GF(2) to a Macaulay matrix, whereas, [2] makes
it seem like there is only one strategy, which is not the most efficient one.

Finally, [11] tries to lower bound the complexity of the HHL algorithm, using an upper bound on
D (where D is the upper bound on the degree of the monomials in the Macaulay matrix), given
by [2]. This report discusses two problems with that. A lower bound on D is used to construct
an upper-bound on the complexity, meaning that it assumes that the system of equations derived
from AES is a worst-case non-linear system, even though the literature does not make claims about
this. Besides, this report shows that [2] does not use the most efficient Macaulay matrix nor the
most efficient strategy, as described above. This means that the upper-bound on D could be way
too loose.

1.2 Structure of the report

The goal of this report is to describe a known plaintext attack on AES, using HHL, and to investigae
the complexity of such an attack. In order to do so, Section 3 explains how the HHL algorithm
works, what input is needed, what output is produced, and what the complexity is. To make this
section understandable, also for readers with limited knowledge of quantum computing, Section 2
gives all the required background.

As the goal of this report is to describe a known plaintext attack on AES, the AES algorithm
is explained in detail in Section 4. This results in a system of equations. Since the number
of variables and equations are quite large for AES, Mini-AES is explained in the same section.
Section 5 gives the system of equations for Mini-AES, after which Section 6 investigates the size of
the problem. From this section it can be concluded that three steps need to be taken to conduct
a known plaintext attack. Section 7 elaborates two of these steps, using some simple examples,
and Section 8 explains the remaining step: creating a Macaulay matrix. All of this is needed for
Section 9, to construct the input for the HHL algorithm. After evaluating this known plaintext
attack on Mini-AES, the report uses the same structure for the attack on AES.

Section 10 describes the differences between the system of equations for Mini-AES, and the one
for AES. Then Section 11 evaluates the size of this problem. Finally, Section 12 explains what it

7



means to conduct a known-plaintext attack on AES using HHL and compares this with an attack
using Grover search. Based on this, the report ends with a discussion and a conclusion in Section
13 and 14 respectively.
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2 Basic notions of quantum computing

Section 3 assumes knowledge about quantum computing, that is summarized in this section. First
the main idea of quantum computing is explained, followed by the two operations on a state (mea-
surements and unitary operations). Then the concept of entangled states is described and some
important gates are defined. The section ends with an explanation of the phase estimation algo-
rithm. The HHL algorithm uses a subalgorithm that is similar to the well-known phase estimation
algorithm. Therefore, this section explains the phase estimation algorithm and Section 3 explains
how HHL uses phase estimation as a subroutine.

The main difference between classical computing and quantum computing is the notion of qubits.
Whereas classical computing works with bits, quantum computing works with qubits. A qubit
’lives’ in Hilbert space C2. A Hilbert space is a vector space in which an inner product is defined.
Note that C2 can be spanned by two orthogonal vectors, i.e. basis states. There are multiple
options for these basis states. When the two most convenient basis states are used, the basis is
referred to as the computational basis.

For the concept of a computational basis might cause confusion, this report always uses the z-basis
states: |0〉 and |1〉, corresponding to (0, 1), (1, 0) ∈ C2 respectively. Then the computational basis
is the span by |0〉 and |1〉 and in bra-ket notation a qubit is denoted |ϕ〉 = α0 |0〉 + α1 |1〉, where
α0, α1 ∈ C are the amplitudes of |0〉 and |1〉 respectively and |α0|2 + |α1|2 = 1. This is commonly
explained as ’ϕ is a little bit zero and a little bit one at the same time’, which contrasts classical
bits which can only be either zero or one. If α0 = 0∧α1 = 1, or α0 = 1∧α1 = 0, the qubit is said
to be in a classical state (note the correspondence with classical bits). The term ’classical state’
is used for any state |ϕ〉 ∈ CN , N = 2n, n ∈ N , which has amplitude one for some basis state and
amplitude zero for all other basis states.

Qubits can be combined in two ways; tensor products of classical states or creating a superposition
of classical states. A tensor product of multiple classical states results in a classical state again, as
shown by Example 2.1.

Example 2.1. Let |α〉 =

(
α0

α1

)
and |β〉 =

(
β0

β1

)
be classical states. Then the tensor product of

|α〉 and |β〉 is again a classical state:

|α〉 ⊗ |β〉 = |α〉 |β〉 = |αβ〉 =

(
α0

α1

)
⊗
(
β0

β1

)
=

α0

(
β0

β1

)
α1

(
β0

β1

)
 =


α0β0

α0β1

α1β0

α1β1

. (1)

By combining more classical states, the resulting ket can get extended to a ket of a bit string
of any length, resulting in consecutive tensor products. Any bit-string can be represented by
a natural number. Sometimes, it is more convenient to write a natural number inside of a ket
than a bit-string (for instance, if n = ak−1ak−2...a1a0 and ak−1, ak−2, ..., a1, a0 ∈ {0, 1} then
|n〉 = |ak−1ak−2...a1a0〉 = |ak−1〉 ⊗ |ak−2〉 ⊗ ...⊗ |a1〉 ⊗ |a0〉) This notation is especially convenient
when the numbers get bigger or when the ket is a term of a summation.

Tensor products can not only be used to combine classical states, but also to combine superposi-
tions.

Note that tensor products essentially combine different Hilbert spaces: if |0〉 , ..., |N − 1〉 are an
orthonormal basis of space HA and |0〉 , ..., |M − 1〉 are an orthonormal basis of space HB , then
the tensor product space H = HA ⊗ HB is an NM -dimensional space spanned by the set of
states {|i〉 ⊗ |j〉 |i ∈ {0, ..., N − 1}, j ∈ {0, ...,M − 1}}. An arbitrary state in H is of the form

9



∑N−1
i=0

∑M−1
j=0 αij |i〉⊗|j〉. Such a state is called bipartite and sometimes denoted |iAjB〉 to indicate

the space that the qubits belong to. Similarly, tripartite states that ’live’ in a Hilbert space that
is the tensor product of three smaller Hilbert spaces can be defined, etc.

Besides combining classical states using tensor products, a pure quantum state can be created. A
pure quantum state is a superposition (corresponding to a linear combination in classical comput-
ing) of classical states, denoted:

|φ〉 = α0 |0〉+ α1 |1〉+ ...+ α2n−1 |2n − 1〉 =


α0

α1

...
α2n−1

, (2)

where αi ∈ C is the amplitude of |i〉. Note that a multi-qubit system of n qubits has N = 2n

computational basis states denoted as |00...00〉 , |00...01〉 , ..., |11...11〉 and these states form an
orthonormal basis of an N -dimensional Hilbert space. The states |00...00〉 and |11...11〉 of n qubits
are sometimes abbreviated to |0〉⊗n and |1〉⊗n respectively.

Now that quantum states are defined, the difference between two states can be computed according
to Definition 2.1.

Definition 2.1. (2-Norm for quantum states) The difference between states |ϕ̃〉 and |ϕ〉 is defined
by:

|| |ϕ̃〉 − |ϕ〉 ||2 =
√

2(1−Re 〈ϕ̃|ϕ〉). (3)

Note that the above norm is `2-norm:

|| |ϕ̃〉 − |ϕ〉 ||2 =
√
〈ϕ̃− ϕ|ϕ̃− ϕ〉 (4)

=
√
〈ϕ̃|ϕ̃〉+ 〈ϕ|ϕ〉 − 〈ϕ̃|ϕ〉 − 〈ϕ|ϕ̃〉

=
√

1 + 1− 2Re 〈ϕ̃|ϕ〉.

2.1 Measurements

When measuring |φ〉 in the computational basis (the only kind of measurement that this report
considers), the state collapses to one of the basis states of the Hilbert space. The probability that

|φ〉 collapses to |i〉 is |αi|2. Therefore, |φ〉 is only well-defined if
∑2n−1
i=0 |αi|2 = 1. It is important to

note that all qubits in a superposition can influence the measurement outcome, as demonstrated
by Example 2.2. This example uses the notions defined in Definitions 2.2 and 2.3.

Definition 2.2. (Auxiliary qubit) Quantum operations can use qubits that do not store the inputs
or outputs of the operation. Since these extra qubits do not contain useful information before or
after the operation, their role is auxiliary, for which they are called auxiliary qubits. Some quantum
circuits require auxiliary qubits, some quantum circuits can be made more efficient using auxiliary
qubits.

Definition 2.3. (Phase query) Let f : {0, 1}m 7→ {0, 1}n. A qubit query is a transformation Of ,
acting on input register |x〉 of m qubits, writing f(x) into the phase of the resulting state |a〉 of n
qubits, as follows:

Of : |x, c, w〉 = (−1)f(x)c |x, c, w〉 , (5)

where |c〉 is a control register that controls whether the query happens and |w〉 are auxiliary qubits.

10



Example 2.2. Suppose we have a 2-bit input x = x0x1 and two phase queries:{
Ox,± : |b〉 |0〉 7→ (−1)xb |b〉 |0〉 for b ∈ {0, 1}
O′x,± : |b〉 |0〉 7→ (−1)xb |b〉 |b〉 for b ∈ {0, 1}. (6)

In other words, both queries map |b〉 to (−1)xb |b〉. However, in contrast to O′x,±, Ox,± sets the
auxiliary qubit back to zero. This is an important difference, since applying (H ⊗ I)Ox,±(H ⊗ I)
or (H ⊗ I)O′x,±(H ⊗ I) to |00〉 lead to a different probability distribution when measuring the first
qubit.

First for Ox,±:

(H ⊗ I) |00〉 =
1√
2

(
|0〉+ |1〉

)
|0〉 ⇒ (7)

Ox,±(H ⊗ I) |00〉 =
1√
2

(
(−1)x0 |0〉+ (−1)x1 |1〉

)
|0〉

=
(−1)x0

√
2

(
|0〉+ (−1)x0⊕x1 |1〉

)
|0〉 ⇒

(H ⊗ I)Ox,±(H ⊗ I) |0〉 =
(−1)x0

√
2

(
1√
2

(
|0〉+ |1〉

)
+

1√
2

(−1)x0⊕x1

(
|0〉 − |1〉

))
|0〉 .

Consider 2 cases:{
x0 ⊕ x1 = 0⇒ (H ⊗ I)Ox,±(H ⊗ I) |00〉 = (−1)x0√

2
2√
2
|00〉 = (−1)x0 |00〉

x0 ⊕ x1 = 1⇒ (H ⊗ I)Ox,±(H ⊗ I) |00〉 = (−1)x0√
2

2√
2
|00〉 = (−1)x0 |10〉 .

(8)

So (H ⊗ I)Ox,±(H ⊗ I) |00〉 = (−1)x0 |x0 ⊕ x1〉 |0〉. Hence, measuring the first qubit in the compu-
tational basis results in |x0 ⊕ x1〉 with probability 1.

Now for O′x,±:

(H ⊗ I) |00〉 =
1√
2

(
|0〉+ |1〉

)
|0〉 =

1√
2

(
|00〉+ |1〉

)
⇒ (9)

O′x,±(H ⊗ I) |00〉 =
1√
2

(
(−1)x0 |00〉+ (−1)x1 |11〉

)
⇒

(H ⊗ I)O′x,±(H ⊗ I) |00〉 =
1

2

(
(−1)x0 |00〉+ (−1)x0 |10〉+ (−1)x1 |01〉 − (−1)x0 |11〉

)
.

Measuring the first qubit in the computational basis results in |0〉 with probability 1/2 and |1〉 with
probability 1/2.

This means that whether or not auxiliary qubits are put back to their initial value clearly influences
the measurement outcomes. Therefore, it is important to make sure an algorithm always ends with
all auxiliary qubits equal to their initial value.

The fact that measurements of superpositions are stochastic, highly influences the success prob-
ability of quantum algorithms. Even though an algorithm might lead to a superposition of the
desired output, there is no guarantee that this output will be measured. To increase the amplitude
of the desired output, i.e. increase the success probability of a quantum algorithm, amplitude am-
plification is commonly used. Even though this report uses the notion of amplitude amplification
to bring down the complexity of the HHL algorithm, the amplitude amplification algorithm will
not be discussed in detail. The only knowledge about the amplitude amplification algorithm that
is needed in this report is given in Theorem 2.1.
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Theorem 2.1. (Amplitude amplification [10]) If an algorithm A has success probability p, then
amplitude amplification needs O(1/

√
p) repetitions of A to increase the success probability arbitrar-

ily close to one.

2.2 Unitary operations

A unitary operation changes a state |φ〉 to |ψ〉 = β0 |0〉+β1 |1〉+ ...+βN−1 |N − 1〉. Since quantum
mechanics only allows linear operations, such an operation can be represented by an N×N complex
matrix U :

U


α0

α1

...
αN−1

 =


β0

β1

...
βN−1

 (10)

Note that subscripts are sometimes used to denote the number of qubits that a operation is acting
on.

Since the U |φ〉 = |ψ〉 and |ψ〉 should be a well-defined quantum state again, i.e.
∑
|βi|2 = 1,

Lemma 2.2 requires operation U to be unitary, as defined in Definition 2.4.

Definition 2.4. (Unitary) A matrix U is unitary if it is invertable and its inverse U−1 equals its
conjugate transpose U∗.

Lemma 2.2 uses the notion of bra’s whereas before only kets were used (as Lemma 2.2 is commonly
known and easy to prove, a proof is omitted in this report). A ket |φ〉 can be denoted by a column
vector and a bra is simply the transpose of a ket, denoted by 〈φ|. This also allows to denote the
inner product of two kets |φ〉 and |φ′〉 by 〈φ|φ′〉 or 〈φ, φ′〉 (note the correspondence with the inner
product of vectors).

Lemma 2.2. Let V be a finite dimensional inner product space and U an operation working on
V . Then the following are equivalent:

1. Matrix U is unitary, i.e. U∗U = UU∗ = I.

2. ||Ux|| = ||x|| for all x ∈ V .

3. 〈Ux,Uy〉 = 〈x, y〉 for all x, y ∈ V .

2.3 Entangled states

It is important to understand what entangled states, as defined in Definition 2.5, are and how they
impact measurements. This impact is shown in Example 2.3.

Definition 2.5. (Entanglement) Let HA and HB be two Hilbert spaces. A bipartite state |φ〉 ∈
H = HA ⊗ HB is called entangled if it cannot be written as a tensor product |φA〉 ⊗ |φB〉, where
|φA〉 lives in the first space and |φB〉 lives in the second space.

Example 2.3. Say Alice and Bob each have one qubit and these qubits together form an EPR-pair
(note there are 4 maximally entangled states of two qubits, called EPR-pairs or Bell states):

|φ〉 =
1√
2
|0A0B〉+

1√
2
|1A1B〉 (11)
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It is easy to verify that |φ〉 can not be written as a tensor product of some |φA〉 and |φB〉, where
|φA〉 and |φB〉 are the qubits of Alice and Bob respectively. Furthermore, neither of the two qubits
is in a classical state (|0〉 or |1〉). However, if one qubit is measured, this determines the value of
the other qubit. Say that the first qubits gets measured and |0〉 is observed, then the EPR-pair has
collapsed to |00〉. This means that the second qubit has been collapsed to |0〉 as well.

2.4 Important gates

First the Hadamard gate is defined in Definition 2.6. Theorem 2.3 gives a variation of this gate,
after which Lemma 2.4 shows that this gates also results in a well defined quantum state.

Definition 2.6. (Hadamard gate) The Hadamard gate is defined as:

H =
1√
2

(
1 1
1 −1

)
. (12)

This means that applying the Hadamard gate to a state |i〉 results in:

⇒ H⊗t |i〉 =
1√
2t

∑
j∈{0,1}t

(−1)i·j |j〉 , (13)

where i · j denotes the inner product of two bit-strings.

Theorem 2.3. The Hadamard-like gate (denoted by H ′t), applied to t qubits, results in:

H ′t : |0〉⊗t 7→ |Ψ0〉 =

√
2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 . (14)

Lemma 2.4. Quantum gate H ′t applied to |0〉⊗t results in a well defined quantum state.

The proof of this lemma can be found in Appendix E.

The second important gate is the controlled rotation, defined in Definition 2.7.

Definition 2.7. (Controlled rotation) Let θ ∈ R and let θ̃ ∈ {0, 1}t be the representation of θ
using t bits. Define the unitary matrix:

R =
∑

θ̃∈{0,1}t

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
⊗ |θ̃〉〈θ̃|. (15)

Then R acts as:

R : |0〉 |θ̃〉 7→
(
cos(θ) |0〉+ sin(θ) |1〉

)
|θ̃〉 . (16)

Note that f(θ), where f(·) can be any function, can also be used instead of θ. Then Rf is defined
as:

Rf =
∑

θ̃∈{0,1}t

(
cos(f(θ)) − sin(f(θ))
sin(f(θ)) cos(f(θ))

)
⊗ |θ̃〉〈θ̃|, (17)

and acts as:

Rf : |0〉 |θ̃〉 7→
(
cos(f(θ)) |0〉+ sin(f(θ)) |1〉

)
|θ̃〉 . (18)

The next important gate is the controlled U -gate, defined in Definition 2.8.
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Definition 2.8. (Controlled U-gate) Let U be a unitary with eigenvector u and eigenvalue λ =
e2πiφ. Let it be possible to write the phase φ ∈ [0, 1) using t bits, where T = 2t for some T ∈ N
(an estimation of t bits results in a similar analysis of the algorithm [16]). The controlled U-gate
is defined as:

U |b〉 |u〉 = e2πibφ |b〉 |u〉 , (19)

where b is a binary vector.

Note that this definition holds for any eigenvector u of U , but does not depend on u being an
eigenvector. If U is applied to a state that is not an eigenstate of U , then this state can be written
as a superposition of eigenvectors of U . One can easily verify that the same reasoning as above
holds for a superposition of eigenvectors.

These controlled-U gates can be summarized by U ′t,n =
∑T−1
k=0 |k〉〈k|⊗eiUkt0/T , called Hamiltonian

simulation. Section 3 uses this notation.

The last important gate is the quantum Fourier transform, defined in Definition 2.9. After the
definition, this operation is rewritten to the form that is needed in the next subsection.

Definition 2.9. (Quantum Fourier transform) Let FT be the unitary matrix (for row j and column
k):

FT =
1√
T

∑
j,k∈{0,...,T−1}

(e2πi/T )jk |j〉 〈k| = 1√
T


...

. . . (e2πi/T )jk . . .
...

 ∈ CT×T . (20)

Matrix FT implements the quantum Fourier transform (QFT ) and its inverse (QFT †):

|k〉 QFT−−−→ 1√
T

T−1∑
j=0

e2πijk/T |j〉 and (21a)

|j〉 QFT †−−−−→ 1√
T

T−1∑
k=0

e−2πijk/T |k〉 . (21b)

The quantum Fourier transform can be rewritten using k = φ, T = 2t and j = j0...jt−1:

FT |φ〉 =
1√
2t

2t−1∑
j=0

e2πiφ·(j0...jt−1)2−t |j0...jt−1〉 (22)

=
1√
2t

2t−1∑
j=0

e2πiφ·(
∑t
l=0 jl2

−l) |j0...jt−1〉

=
1√
2t

t⊗
l=1

(
|0〉+ e2πiφ·2−l |1〉

)
.

Consider the following example to see why the last equality holds.

Example 2.4. For t = 2:

1√
22

3∑
j=0

e2πiφ(2−1j1+2−2j2) |j1j2〉 =
1√
22

[
e2πiφ(2−10+2−20) |00〉+ e2πiφ(2−10+2−21) |01〉+

e2πiφ(2−11+2−20) |10〉+ e2πiφ(2−11+2−21) |11〉
] (23)
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=
1√
22


1

e2πiφ2−2

e2πiφ2−1

e2πiφ(2−1+2−2)


=

1√
22

(
1

e2πiφ2−1

)
⊗
(

1

e2πiφ2−2

)
=

1√
22

(
|0〉+ e2πiφ2−1

|1〉
)
⊗
(
|0〉+ e2πiφ2−2

|1〉
)

=
1√
22

2⊗
l=1

(
|0〉+ e2πiφ2−l |1〉

)
.

2.5 Phase estimation

This section is based on [16]. The goal of the phase estimation algorithm is to determine the
eigenvalues of a unitary operation. For an eigenstate u of unitary matrix U , phase estimation finds
a numerical estimation for ψ in eiψ, where eiψ is an eigenvalue of U . Figure 1 is an overview of the
phase estimation algorithm. The algorithm assumes that |u〉 can be prepared and that operation

U2j can be applied and sees this as black boxes (i.e. oracles). Since phase estimation makes use of
these black boxes, it is not a stand-alone procedure; it can only be used as subroutine, but it can
do very interesting and important computations needed for other modules. For instance, phase
estimation is a very important subroutine in the HHL algorithm.

H

QFT †

U20

Phase estimation

|u〉

register Ct

register In


|0〉
...

|0〉

H

· · · U2n−1

· · ·

· · ·

|0〉+ e2πiφ2n−1 |1〉

|0〉+ e2πiφ20 |1〉

|u〉

|2nφn〉

|2nφ1〉

Figure 1: Phase estimation algorithm overview

Phase estimation works on two registers: register Ct containing t qubits, and register In containing
n qubits. For notation purposes define N = 2n and T = 2t. To choose the value of t the number
of digits of accuracy of the estimation and the probability that the phase estimation procedure is
successful, should be taken into account. These dependencies will become clear in the following
analysis. The value of n is determined by the number of qubits that is needed to store |u〉.
The algorithm uses Hadamard gates, controlled U -gates, and the quantum Fourier transform,
defined in Definition 2.6, 2.8, and 2.9 respectively.
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The algorithm starts by applying Hadamard gates, as defined in Definition 2.6, to all qubits in
register Ct. After the Hadamard gates, register Ct contains:

1√
2t

[(
|0〉+ |1〉

)
⊗ ...⊗

(
|0〉+ |1〉

)]
, (24)

i.e. the t qubits in register Ct are all in the superposition 1√
2

(
|0〉+ |1〉

)
. Next, controlled U-gates

are applied to |u〉 in register In, for which the qubits in register Ct act as control bits. This means

that for j = 0, ..., t, the j-th qubit in register Ct determines whether or not U2j is applied to |u〉
in register In. Since all the qubits in register Ct are in the same superposition, the effect of each
power of the controlled U gate can be described generally using Definition 2.8:

U2j 1√
2

(
|0〉+ |1〉

)
|u〉 =

1√
2

(
|0〉 (e0)2j |u〉+ (e2πiφ)2j |1〉 |u〉

)
=

1√
2

(
|0〉 |u〉+ (e2πiφ)2j |1〉 |u〉

)
.

(25)

Note that this did only alter the qubits in register Ct (the control qubits) and not the qubits in
register In (the target qubits), which means that register Ct contains:

1√
2t

[(
|0〉+ (e2πiφ)2t−1

|1〉
)
⊗ ...⊗

(
|0〉+ (e2πiφ)20

|1〉
)]

=
1√
2t

t⊗
l=1

(
|0〉+ e2πiφ2t−l |1〉

)
. (26)

Remark. The phase can be written as φ = 0.φ1...φt =
∑t
k=1 2−kφk, where φ0, ..., φt ∈ {0, 1}. The

bits of φ are now in the exponents:

(e2πiφ)2t−l = (e2πi)
∑t
k=1 2t−l−kφk (27)

= (e2πi)2t−l−1φ1 · ... · (e2πi)20φt−l · (e2πi)2−1φt−l+1 · ... · (e2πi)2−lφt

= 1 · ... · 1 · (e2πi)2−1φt−l+1 · ... · (e2πi)2−lφt

= (e2πi)φt−l+1...φt .

So, l = 1 leads to the last bit of φ and l = 2 leads to the last 2 bits of φ, and so on.

Since the different bits of φ are now in the frequency domain, the inverse of the Fourier transform
is applied to register Ct to move this information to the time domain. Using Equation (22), it
is clear that Equation (26) equals the Fourier transform of |φ〉. Note that the quantum Fourier
transform swaps around the order of the qubits. So, applying QFT † on the qubits in register Ct
results in |φt〉 ⊗ ...⊗ |φ1〉. Define φ′ = φt...φ1 to summarize phase estimation:

|0〉⊗t |u〉 7→ |φ′〉 |u〉 . (28)

The last step of the phase estimation is to measure register Ct. Measuring the first register of the
above quantum state, results in |φ′〉, i.e. the t most important bits of the phase, with certainty (if
the quantum computations occurred without error, which can happen on paper but rarely happens
in practice). At the beginning of this section is mentioned that t should be chosen with both the
preferred precision of the estimation and the success probability of the algorithm in mind. So, this
boils down to choosing t equal to the preferred precision of the estimation. Therefore, t can be
called the precision of the phase estimation algorithm.

As phase estimation is used as subroutine in HHL, no measurements will be done at this point.
Measuring now would lead to one eigenvalue, but that is not enough to find x such that Ax = b.
Instead of doing a measurement at this point, controlled rotation is used to ’store’ the information
about the eigenvalue in an auxiliary qubit.
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3 HHL algorithm

Let Ax = b be a system of linear equations that needs to be solved, where A ∈ CN×N and x, b ∈ CN
for some N = 2n with N,n ∈ N. The goal of the HHL algorithm is to find A−1b. This can also
be done classically. The best general purpose classical matrix-inversion algorithm, the conjugate-
gradient method, runs in O(Nsκ log(1/ε)), where s is the sparsity of A, as defined in Definition
3.1, and κ the condition number of A [10]. Since N is very big for AES, because AES is not
linear and linearization results in an enormous system of linear equations, the complexity is very
high. Up until now, there is no practically executable attack know, using this approach. The HHL
algorithm might change this. The complexity of HHL is O

(
log(N)s2κ2ε

)
. So a quadratic speed-up

in N , however, the dependency on s, κ, and ε is worse. Since N is known to be big for AES and s
is known to be small for AES, it is worth investigating whether or not the HHL algorithm can be
used instead of the conjugate-gradient method.

Definition 3.1. (Sparsity) A matrix is called s-sparse, if every row of this matrix has at most s
non-zero terms. Since every term of an equation corresponds to a non-zero term in the matrix, for
the Macaulay approach, this report considers an equation s-sparse if it has at most s terms.

The rest of this section is based on [15] and [10] which both provide an analysis of the HHL
algorithm, overlapping in some parts; complementing each other in other parts. However, at some
points this report considers the papers to be erroneous. Another reason that this section deviates
from the papers is that this section only considers well-conditioned matrices. It is indicated where
the report deviates from the literature.

Remark. The reason to only invert well-conditioned matrices (or only the well-conditioned part of
the matrix) is that the algorithm extracts the eigenvalues of A−1 at some point. Therefore, the
algorithm essentially works with 1/λ where λ is an eigenvalue of A, which means it is important
to take into account the numerical stability of the algorithm. If the algorithm would be used to
invert an eigenvalue λ that is small with respect to κ, for instance λ = εκ/κ for 0 < εκ << 1,
then 1/λ = κ/εκ. A small relative error in 1/εκ, will give a result deviating from the true value by
many times κ. Since κ is considered the characteristic scale of the matrix, this would mean that
the relative error is big. HHL uses filter functions to make sure only the eigenvalues that are at
least 1/κ are inverted. These filter functions make the analysis of the algorithm harder and less
intuitive. Therefore, this project only considers well-conditioned matrices, which makes the filter
functions unnecessary.

The input of the HHL algorithm consists of an Hermitian matrix A ∈ CN×N , according to Defi-
nition 3.2, with condition number κ = |λmax/λmin|, where λmax and λmin are the eigenvalues of A
with respectively the maximum and minimum `2-norm, error ε, and vector b ∈ CN . The goal of
the HHL algorithm is to find a vector x ∈ CN , satisfying Ax = b. However, instead of computing
x = A−1b the HHL algorithm writes:

|b〉 =

N∑
i=1

bi |i〉 =

N∑
j=1

βj |uj〉 , (29)

where u1, ..., uN are the eigenvectors of A, and tries to find an x̃, using quantum computing, such
that :

||A |x̃〉 − |b〉 ||2 ≤ ε, (30)

with probability at least 1/2. Note that the goal is to get this probability close to one, however, if
the probability is at least 1/2, amplitude amplification can be used to increase this probability.
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Definition 3.2. (Hermitian matrix) Matrix A is Hermitian iff A = A† where A† is the conjugate
transpose of A.

Let λ1, ..., λN be the eigenvalues of A, then with out loss of generality |λ1| ≥ ... ≥ |λN |. Rescale A
such that |λ1| = 1 and κ = 1/|λN |, where κ is the condition number of A. Scale |b〉 such that it is
a normalized state, i.e. 〈b|b〉 = 1.

Since the eigenvectors of a Hermitian matrix are orthogonal and A is a Hermitian matrix, it is
diagonalizable, i.e. it can be written as:

A =

N∑
j=1

λj |uj〉〈uj | ⇒ A−1 =

N∑
j=1

1

λj
|uj〉〈uj |, (31)

where λ1, ..., λN and u1, ..., uN are the eigenvalues and eigenvectors of A respectively. Combining
this with Equation 29 results in:

A |b〉 =

N∑
j=1

λjβj |uj〉 ⇒ A−1 |b〉 =

N∑
j=1

βj
λj
|uj〉 . (32)

Even though this can be written theoretically, the values λj and the vectors uj are unknown at
this point. However, this expression is used to recognize the solution later on.

3.1 Algorithm overview

The main idea of the HHL algorithm is that phase estimation can estimate the eigenvalues of
a matrix. These can be inversed transposed to the amplitudes of an auxiliary qubit, meaning
that the amplitudes of the basis states |0〉 and |1〉 in the qubit depend on the eigenvalues. By
uncomputing the garbage that ended up in the other registers, the input vector b is multiplied by
these amplitudes (up to normalization). This essentially computes A−1b = x.

Ht QFT †t QFTt H†t

Ut,n U†t,n

Rt,1

Phase estimation’ Rotation Uncompute

|0〉

|0〉⊗t

|b〉

|1〉

|0〉⊗t

|x〉

register S1

register Ct

register In

Figure 2: HHL′(|b〉 , A, t0, T )

Figure 2 gives an overview of the HHL algorithm. The algorithm uses:

• register S1 (consisting of one qubit) used as auxiliary qubit,

• register Ct (consisting of t qubits, with 2t = T , where t is the precision of the phase estimation
as explained in Section 2.5) used to store an estimate of the phases of matrix eiA, and
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• register In (consisting of n qubits, where 2n = N ∈ N and b ∈ CN ) used to store a represen-
tation of vector b.

Because HHL uses an N -dimensional Hilbert space to store the result x, one can only learn logN =
n bits of x from one run of the algorithm.

Algorithm 1: HHL

Input: Vector b ∈ CN , matrix A ∈ CN×N (s-sparse matrix with oracle access to its
elements), and parameters t0 = O

(
κ
ε

)
, T = O

(
log(N)s2t0

)
, and ε (the desired

precision).

1 Prepare quantum state vector |b〉.

2 Apply O(κ) round of amplitude amplification on HHL′(|b〉 , A, t0, T ).

HHL′(|b〉 , A, t0, T )

Phase estimation (P̃ )
3 Prepare state |Ψ0〉, i.e. apply Ht to register Ct.
4 Create in register Ct a superposition of quantum states that correspond to the

eigenvalues of A, i.e. apply Ut,n to register In, controlled by register Ct.
5 Transpose the information on the eigenvalues of A from the kets to the amplitudes,

i.e. apply QFT†t to register Ct.

6 Relabel |k〉 with |λ̃k〉, where λ̃k = 2πk/t0.

Rotation

7 Transform qubit S1 to |h(λ̃k)〉, with |h(λ)〉 as defined in Equation (47), i.e. apply
Rt,1 to qubit S1, controlled by register Ct .

Uncompute
8 Undo the relabeling of |k〉.
9 Undo QFT†t , i.e. apply QFTt to register Ct.

10 Undo Ut,n, i.e. apply U†t,n to register In, controlled by register Ct.

11 Undo Ht, i.e. apply H†t to register Ct.

Post-selection
12 Measure qubit S1.
13 if Measurement results in 0 then

Go back to step 1.
else if Measurement results in 1 then

Return register In.

Output: Quantum state vector |x̃〉.

In order to apply the HHL algorithm, vector b needs to be prepared as a quantum state |b〉 in
register I, and |0〉⊗t needs to be prepared in register Ct.

As shown in Figure 2, the HHL algorithm starts with a subroutine that is similar to phase esti-
mation. Section 2 explains how phase estimation works. The subroutine that the HHL algorithm
uses, is not exactly the same as the phase estimation algorithm: it does not use Hadamard gates, it
uses a gate that is similar to Hadamard gates. The rest of the subroutine is the same as the phase
estimation algorithm: a Hamiltonian evolution on register In controlled by register Ct, followed by
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an inverse quantum Fourier transform on register Ct. Section 2.5 explains that phase estimation
results in the bits of an eigenvalue being contained in register Ct. However, in order to solve
A |x〉 = |b〉, knowing one eigenvalue of A is not sufficient. Therefore, instead of a measurement, a
controlled rotation is done to move the value from the qubits in register Ct to the coefficients of the
superposition of the qubit in register In. Controlled rotation consists of only one gate: a rotation
gate on auxiliary qubit S1 controlled by register Ct. The HHL algorithm ends with uncomputing
the phase estimation which consists of the inverse of the gates that are used in the phase estimation,
in reversed order: first a quantum Fourier transform on register Ct, then a Hamiltonian evolution
on register In controlled by register Ct, and finally the inverse of the Hadamard-like gates that the
algorithm started with.

The details of the HHL algorithm can be found in Algorithm 1. The next section analyses how
the states change with every step of the algorithm.

3.2 Analysis of the basic HHL algorithm

This section will show every step of the HHL algorithm in a bit more detail. However, to increase
readability, the technical details are left out and can be found in Section 3.3.

3.2.1 Preparation

For HHL, the input register In is prepared as Equation (29).

3.2.2 Phase estimation

The first step of the HHL algorithm is to decompose |b〉 in the eigenvector basis, using phase
estimation as explained in Section 2.5.

Phase estimation uses Hamiltonian simulation Ut,n, to apply the unitary matrix e−iA, τ times.
This corresponds to τ time-steps of evolution induced by Hamiltonian A. Therefore, the state
that Ut,n is applied to can be seen as a clock register. Clocks can be based on different states.
However, quantum clocks based on |ψ0〉, as defined in Equation (33), seem to be particularly
desirable according to [18].

Remark. Note that [18] denotes the optimal state by |ψopt〉 and the state create by Hadamard
gates by |ψ0〉, whereas this report denotes the optimal state by |ψ0〉.

To create this optimal state, the HHL algorithm uses Hadamard-like gates, instead of Hadamard
gates. According to Theorem 2.3, this results in the quantum state:

|Ψ0〉 =

√
2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 , (33)

which is a well-defined quantum state according to Lemma 2.4. Note that using Hadamard gates
instead would result in an algorithm which should give the same output, however, it will be less
efficient.

After the H ′t gate, controlled Ut,n gates, as defined in Definition 2.8, need to be applied on |Ψ0〉⊗|b〉.
The input matrix A is used as unitary matrix to define Ut,n, hence Ut,n =

∑T−1
k=0 |k〉〈k| ⊗ eiAkt0/T ,

where t0 = O(κ/ε). This operation acts on registers In and Ct:
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[
T−1∑
k=0

|k〉〈k| ⊗ eiAkt0/T
]
·

[√
2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 ⊗

N∑
j=1

βj |uj〉

]
(34)

=

[
T−1∑
k=0

|k〉〈k| ⊗ eiAkt0/T
]
·

[√
2

T

N∑
j=1

βj

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 ⊗ |uj〉

]

=

√
2

T

N∑
j=1

βj

T−1∑
k=0

T−1∑
τ=0

[
sin

(
π(τ + 1/2)

T

)
|k〉〈k| · |τ〉

]
⊗

[
eiAkt0/T · |uj〉

]
note that 〈k| · |τ〉 = δkτ

=

√
2

T

N∑
j=1

βj

T−1∑
k=0

T−1∑
τ=0

[
sin

(
π(τ + 1/2)

T

)
|k〉 δkτ

]
⊗

[
eiAkt0/T · |uj〉

]
note that

∑
k

δkτf(k) = f(τ)

=

√
2

T

N∑
j=1

βj

T−1∑
τ=0

[
sin

(
π(τ + 1/2)

T

)
|τ〉

]
⊗

[
eiAτt0/T · |uj〉

]
note that f(A) |uj〉 = f(λj) |uj〉

=

√
2

T

N∑
j=1

βj

T−1∑
τ=0

[
sin

(
π(τ + 1/2)

T

)
|τ〉

]
⊗

[
eiλjτt0/T · |uj〉

]

=

√
2

T

N∑
j=1

βj

[
T−1∑
τ=0

eiλjτt0/T sin

(
π(τ + 1/2)

T

)
|τ〉

]
⊗ |uj〉 .

The summation
∑T−1
τ=0 sin

(π(τ+1/2)
T

)
eiλjτt0/T |τ〉 contains eiλjτt0/T , which is a function in τ with

frequency λj . Since this is essentially the value that the HHL algorithm is looking for, the next
step is to extract this frequency. So, an inverse Fourier transform, as defined in Definition 2.9, is
applied:

T−1∑
τ=0

eiλjτt0/T sin

(
π(τ + 1/2)

T

)
|τ〉 QFT †t−−−−→ (35)

T−1∑
τ=0

eiλjτt0/T sin

(
π(τ + 1/2)

T

)
1√
T

T−1∑
k=0

e−2πikτ/T |k〉

=
1√
T

T−1∑
k=0

T−1∑
τ=0

eiλjτt0/T e−2πikτ/T sin

(
π(τ + 1/2)

T

)
|k〉 .

Substituting this back leads to:√
2

T

N∑
j=1

βj

[
T−1∑
τ=0

eiλjτt0/T sin

(
π(τ + 1/2)

T

)
|τ〉

]
⊗ |uj〉

I1⊗QFT †t ⊗In−−−−−−−−−→

√
2

T

N∑
j=1

βj

[
1√
T

T−1∑
k=0

T−1∑
τ=0

eiλjτt0/T e−2πikτ/T sin

(
π(τ + 1/2)

T

)
|k〉

]
⊗ |uj〉 .

(36)

21



Simplify this to:√
2

T

N∑
j=1

βj

[
1√
T

T−1∑
k=0

T−1∑
τ=0

eiλjτt0/T e−2πikτ/T sin

(
π(τ + 1/2)

T

)
|k〉

]
⊗ |uj〉

=

N∑
j=1

βj

T−1∑
k=0

αk|j |k〉 ⊗ |uj〉 ,

(37)

by defining:

αk|j =

√
2

T

T−1∑
τ=0

eiλjτt0/T e−2πikτ/T sin

(
π(τ + 1/2)

T

)
. (38)

According to Lemma 3.4, |αk|j | is only large when k ≈ λjt0
2π . This means that the state can

be approximated by only taking into account the terms in which k ≈ λjt0
2π . The terms that are

neglected will lead to some error. The proof of Lemma 3.4 gives an upper bound on the omitted
terms. Relabeling basis states |k〉 by defining λ̃k = 2πk

t0
leads to:

N∑
j=1

βj

T−1∑
k=0

αk|j |k〉 ⊗ |uj〉 =

N∑
j=1

βj

T−1∑
k=0

αk|j |λ̃k〉 ⊗ |uj〉 . (39)

To summarize the phase estimation:

|0〉S |0
⊗t〉C |b〉I

I1⊗H′t⊗In−−−−−−−→|0〉 ⊗
√

2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 ⊗ |b〉

I1⊗U ′t,n−−−−−→|0〉 ⊗

[
T−1∑
k=0

|k〉〈k| ⊗ eiAkt0/T
]
·[√

2

T

T−1∑
τ=0

sin

(
π(τ + 1/2)

T

)
|τ〉 ⊗

N∑
j=1

βj |uj〉

]

= |0〉 ⊗
√

2

T

N∑
j=1

βj

[
T−1∑
τ=0

eiλjτt0/T sin

(
π(τ + 1/2)

T

)
|τ〉

]
⊗ |uj〉

I1⊗QFT †t ⊗In−−−−−−−−−→|0〉⊗
N∑
j=1

βj

[
T−1∑
k=0

√
2

T

T−1∑
τ=0

eiλjτt0/T e−2πikτ/T sin

(
π(τ + 1/2)

T

)
|k〉

]
⊗ |uj〉

= |0〉 ⊗
N∑
j=1

βj

T−1∑
k=0

αk|j |λ̃k〉 ⊗ |uj〉 .

(40)

3.2.3 Controlled rotation

After phase estimation, information about λ is stored in the quantum state in register C. However,
this information needs to be stored in the coefficients, not in the ket. To achieve this, controlled
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rotation, as defined in Definition 2.7, is used with f(θ) = arcsin(c/λ̃k) and c = O(1/κ). The reason
behind the choice for this f and θ is explained in Section 3.3.2. The controlled rotation results in:

|0〉 ⊗
N∑
j=1

βj

T−1∑
k=0

αk|j |λ̃k〉 ⊗ |uj〉 =

N∑
j=1

βj

T−1∑
k=0

αk|j |0〉 ⊗ |λ̃k〉 ⊗ |uj〉

Rt,1⊗In−−−−−→
N∑
j=1

βj

T−1∑
k=0

αk|j
(
cos(λ̃k) |0〉+ sin(λ̃k) |1〉

)
⊗ |λ̃k〉 ⊗ |uj〉

=

N∑
j=1

βj

T−1∑
k=0

αk|j

(√
1− c2

λ̃k
2 |0〉+

c

λ̃k
|1〉

)
⊗ |λ̃k〉 ⊗ |uj〉 .

(41)

3.2.4 Uncompute

Even though the controlled rotation results in the desired states for qubit S and the qubits in
register I, Example 2.2 illustrates how important it is that the qubits in register C are transformed
back to the initial zero qubits. Therefore, the phase estimation needs to be uncomputed. The
derivation of the uncompute step can be found in Appendix F. The uncompute step results in:

N∑
j=1

(√
1− c2

λ2
j

|0〉+
c

λj
|1〉

)
⊗ |Ψ0〉 ⊗ βj |uj〉

I1⊗H′†t ⊗In−−−−−−−→

N∑
j=1

(√
1− c2

λ2
j

|0〉+
c

λj
|1〉

)
⊗ |0〉 ⊗ βj |uj〉 .

(42)

3.2.5 Measurement

The result of uncompute, Equation (152), can be written as:

N∑
j=1

(√
1− c2

λ2
j

|0〉+
c

λj
|1〉

)
⊗ |0〉 ⊗ βj |uj〉 = N∑

j=1

βj

√
1− c2

λ2
j

|0〉 |0〉 |uj〉

+

 N∑
j=1

βj
c

λj
|1〉 |0〉 |uj〉

.
(43)

Measurement of the first qubit would result in |0〉 with probability
∑N
j=1 |βj |2

(
1− c2

λ2
j

)
and would

result in |1〉 with probability
∑N
j=1 |βj |2

c2

λ2
j
. More importantly, if the register that is measured has

collapsed to |1〉, this results in state (up to normalization):

N∑
j=1

βj
c

λj
|1〉 |0〉 |uj〉 = c |1〉 |0〉

N∑
j=1

βj
λj
|uj〉 . (44)

Considering normalization, this would be:

c

√
1

c2
∑N
j=1 β

2
j /λ

2
j

|1〉 |0〉
N∑
j=1

βj
λj
|uj〉 =

√
1∑N

j=1 β
2
j /λ

2
j

|1〉 |0〉
N∑
j=1

βj
λj
|uj〉 . (45)
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3.3 Error analysis and complexity

This section analysis the error and derives the complexity of the HHL algorithm. The error in the
HHL algorithm is induced by: error induced by the preparation of |b〉, imperfect gates (Hadamard-
like gate, Hamiltonian simulation, QFT, and controlled rotation), phase estimation, and by post
selecting.

This section follows the main ideas of [15], however, where the paper considers matrices with a
well-conditioned part as well as an ill-conditioned part, this report only considers well-conditioned
matrices.

3.3.1 Error analysis and complexity of preparation

Since the error of the preparation of state |b〉 highly depends on the way that state |b〉 is produced
(as part of a larger algorithm, or as a standard state preparation procedure etc.), this error will be
neglected for now. Section 9 gives more detail about this error when applying HHL to Mini-AES.

Furthermore, it is assumed that |b〉 can be prepared in logarithmic time, which is possible according
to Lemma 3.1. This assumption is made to make sure that, also in the context of time, the
preparation of |b〉 can be neglected in comparison with the rest of the HHL algorithm.

Lemma 3.1. (qRAM loading [10]) If b ∈ RN , ||b||2 = 1, and b is stored in the quantum RAM,

then |b〉 =
∑N
i=1 bi |i〉 can be prepared in time O(log(N)).

3.3.2 Error analysis and complexity of quantum gates

As Section 3.2.2 shows, phase estimation consists of a Hadamard-like gate, Hamiltonian simulation
and a Quantum Fourier Transform.

Phase estimation starts with the Hadamard-like gate to prepare state |Ψ0〉. According to [15], this
state state can be prepared up to error εΨ in time TΨ = O(poly(log(T/εΨ))).

The second step of phase estimation is Hamiltonian simulation. The error and complexity of
Hamiltonian simulation is dominated by the simulation of eiAt. According to the literature [15],
this can be performed up to error εH in time TH = Õ(log(N)s2t0), if A is s-sparse and t ≤ t0.
Note that this is the only part of the algorithm that requires A to be sparse. Since there are other
types of Hamiltonian, this requirement can be relaxed. Note furthermore that this running time
determines what number of qubits (t = log(T )) should be used in register Ct.

Phase estimation ends with reversed Quantum Fourier Transform, which can be done efficiently
(the complexity is negligible to the complexity of phase estimation).

To conclude, phase estimation can be performed up to error O(εψ + εH) and the running time is
dominated by the running time of Hamiltonian simulation, which is O(log(N)s2t0).

After the phase estimation, controlled rotation is applied. This can be performed efficiently (the
complexity is negligible to the complexity of phase estimation) up to t bits of precision. However,
since phase estimation also works with a precision of t bits, controlled rotation does not induce
any extra error.

Since in the controlled rotation f(θ) = arcsin(c/λ̃k) and c = O(1/κ) were chosen, it is important
to zoom in on the reason for these choices. Since [15] did not give any argumentation, one can only
guess. However, it does state that it considers all eigenvalues λ ≥ 1/κ′ as the well-conditioned part
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of the matrix and all other eigenvalues as the ill-conditioned part, for some κ′ > κ. This κ′ can
be chosen by the reader to obtain the preferred ratio between error complexity and running time
on one hand and the number of eigenvalues that will be computed on the other hand, for example
κ′ = 2κ. Since this section considers a well-conditioned matrix, all eigenvalues must fall in the
well-conditioned part. Therefore, κ is used instead of κ′ (note that for all eigenvalues λ ≥ 1/κ).

Besides, controlled rotation results in a pure quantum state with amplitudes cos(f(θ)) and sin(f(θ)),
it must hold that cos2(f(θ)) + sin2(f(θ)) = 1, | cos(f(θ))| ≤ 1, and | sin(f(θ))| ≤ 1. This obviously
holds, regardless of f and θ. So, f and θ must be chosen such that | sin(f(θ))| ≤ 1 and that the
eigenvalues can be extracted from this value. Therefore, it makes sense to choose f and θ such
that sin(f(θ)) scales the eigenvalues to a value between zero and one. However, the eigenvalues as
well as the range in which the eigenvalues fall are not known, which makes it hard to scale them
to the desired range. Here κ′ comes in handy, since this value can be chosen freely. Since κ′ > κ
and λ ≥ 1/κ for the well-conditioned part of the matrix:∣∣∣∣ 1λ · 1

κ′

∣∣∣∣ ≤ ∣∣∣∣ 1λ · 1

κ

∣∣∣∣ =

∣∣∣∣ 1λ · λmin

λmax

∣∣∣∣ ≤ ∣∣∣∣ 1

λmin
· λmin

λmax

∣∣∣∣ ≤ 1, (46)

since without loss of generality is assumed that |λ1| = 1. This means that choosing f(θ) =
arcsin(c/λ̃k) and c = O(1/κ) is a smart way of making sure that the controlled rotation re-
sults in a well-defined pure quantum state with amplitudes from which the eigenvalues can be
determined, making use of the desired κ′ instead of the unknown κ. Note that [15] considers a
hypothetical case. Therefore, it is possible to write κ instead of κ′, just as it is possible to write
|b〉 =

∑N
i=1 bi |i〉 =

∑N
j=1 βj |uj〉, even though the eigenvectors are not known.

The last part of the HHL algorithm is the uncompute. Since the uncompute part of the algorithm
does not introduce any new transformations, it does not influence the error of the complexity or
the analysis.

3.3.3 Error analysis and complexity of phase estimation

Let HHL be the desired output of the algorithm (without any error), HHL′ be the real output

algorithm, and H̃HL be the output of the algorithm in which everything is perfect except for
phase estimation. The error induced by the phase estimation equals the difference between HHL

and H̃HL. This section is devoted to prove the upper bound for ||H̃HL −HHL||2 that is given
in Lemma 3.2.

Lemma 3.2. The error of the variant of the HHL algorithm in which everything works perfect

except for the phase estimation is bounded by ||H̃HL−HHL||2 ≤ O(κ/t0).

In order to prove Lemma 3.2, Lemmas 3.3 and 3.4 are needed.

Lemma 3.3. For well-conditioned matrices, the auxiliary qubit ends up in the state:

|h(λ)〉 =

√
1− c2

λ2
|0〉+

c

λ
|1〉 . (47)

Then the map λ 7→ |h(λ)〉 is O(κ)-Lipschitz continuous, i.e.:

|| |h(λ1)〉 − |h(λ2)〉 ||2 ≤ Cκ|λ1 − λ2|, (48)

for some constant C.
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Proof. It is sufficient to prove |∂h∂λ |
2 ≤ (Cκ)2 for all eigenvalues λ:∣∣∣∣∂h∂λ

∣∣∣∣2 =

∣∣∣∣∣− c2

λ3

√
1− c2

λ2

− c

λ2

∣∣∣∣∣ (49)

=

∣∣∣∣∣ 2λ
∣∣∣∣∣
2∣∣∣∣∣ c2

λ
√

1− c2

λ2

+ c

∣∣∣∣∣
≤ κ2

∣∣∣∣∣ c2

λ
√

1− c2

λ2

+ c

∣∣∣∣∣
= κ2

(
c2√

λ2 − c2
+ c

)

≤ κ2

(
c2√

λ2
min − c2

+ c

)
= (Cκ)2.

Remark. Note that [15] and [10] use filter functions to invert only the well-conditioned part of the
matrix, which leads to a different h(λ). This results in a slightly different version of Lemma 3.3
and the corresponding proof.

Lemma 3.4. |αk|j | is only large when k ≈ λjt0
2π , assuming 2π ≤ δ ≤ T/10, where δ = λjt0 − 2πk.

The proof can be found in Appendix G.

Now Lemma 3.2 can be proved.

Proof. Define P̃ the phase estimation part of the HHL algorithm. Using Equation (39), adding
the auxiliary qubit S1, and undoing the relabeling of |k〉 it can be seen that P̃ maps:

|in〉 |0〉⊗t |b〉 7→
N∑
j=1

T−1∑
k=0

βjαk|j |in〉 |k〉 |uj〉 , (50)

where in denotes the initial value of the auxiliary qubit.

Using Equation (29), this defines:

P̃ =

N∑
j=1

T−1∑
k=0

αk|j |in〉 〈in| ⊗ |k〉 〈k| ⊗ |uj〉 〈uj | . (51)

Remark. Note that this definition of P̃ differs from the definition given in [15], but it is believed
that the definition given there is not correct. The first mistake with this definition is the dimen-
sion, the computations do not work for this dimension. This problem can be fixed by replacing
|k〉 by |k〉〈k|. Furthermore, their definition uses |garbage(j, k)〉〈in| instead of |in〉〈in|. This re-

port uses
∑N
j=1

∑T−1
k=0 |in〉〈in| |in〉 =

∑N
j=1

∑T−1
k=0 |in〉 I =

∑N
j=1

∑T−1
k=0 |in〉. Using the definition

of [15], this would claim
∑N
j=1

∑T−1
k=0 |garbage(j, k)〉〈in| |in〉 =

∑N
j=1

∑T−1
k=0 |garbage(j, k)〉〈I| =∑N

j=1

∑T−1
k=0 |in〉.
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Since the HHL algorithm results in uncomputing the phase estimation of Equation (41), the output
can be written as:

|ϕ̃〉 = P̃ †
N∑
j=1

T−1∑
k=0

βjαk|j |h(λ̃k)〉 |k〉 |uj〉 , (52)

where the relabeling of |k〉 is again undone and |h(λk)〉 is defined in Equation (47). However, HHL
would ideally result in:

|ϕ〉 =

N∑
j=1

|h(λj)〉 ⊗ |0〉 ⊗ βj |uj〉 . (53)

The difference between H̃HL and HHL now boils down to the difference between |ϕ̃〉 and |ϕ〉.
Hence, the proof consists of showing that || |ϕ̃〉 − |ϕ〉 ||2 = O

(
κ
t0

)
, for the norm as defined in

Definition 2.1. For 〈ϕ̃|ϕ〉 = 〈P̃ ϕ̃|P̃ϕ〉, the next step is to compute the real part of the inner
product 〈ϕ̃|ϕ〉. Use Equations (51), (52), and, (53) to see:

P̃ ϕ̃=

N∑
j=1

T−1∑
k=0

βjαk|j |h(λ̃k)〉 |k〉 |uj〉 (54a)

P̃ϕ=

 N∑
j=1

T−1∑
k=0

αk|j |in〉 〈in| ⊗ |k〉 〈k| ⊗ |uj〉 〈uj |

·
 N∑
j=1

|h(λj)〉 ⊗ |0〉 ⊗ βj |uj〉


=

N∑
j=1

T−1∑
k=0

βjαk|j |h(λj)〉 ⊗ |k〉 ⊗ |uj〉 .

(54b)

So, the inner product equals:

〈P̃ ϕ̃|P̃ϕ〉 =

N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 〈h(λ̃k)|h(λj)〉 · 〈k|k〉 · 〈uj |uj〉

=

N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 〈h(λ̃k)|h(λj)〉 .

(55)

Remember that only the real part of the inner product is important:

Re 〈P̃ ϕ̃|P̃ϕ〉 =Re

 N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 · 〈h(λ̃k)|h(λj)〉


=

N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 ·Re 〈h(λ̃k)|h(λj)〉 .

(56)

According to Lemma 3.3:

|| |h(λ1)〉 − |h(λ2)〉 ||2 ≤ Cκ|λ1 − λ2|, (57)
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for some constant C. By using Definition 2.1:√
2(1−Re 〈h(λ̃k)|h(λj)〉) ≤Cκ|λ̃k − λj | ⇒

2(1−Re 〈h(λ̃k)|h(λj)〉) ≤C2κ2|λ̃k − λj |2 ⇒

Re 〈h(λ̃k)|h(λj)〉 ≥1− C2κ2|λ̃k − λj |2

2
.

(58)

In the proof of Lemma 3.4 is already defined δ = λjt0 − 2πk. Using the relabeling of k to λ̃k this

can be written as δ = t0(λj − λ̃k). Substituting this leads to:

Re 〈h(λ̃k)|h(λj)〉 ≥1− C2κ2|λ̃k − λj |2

2

=1− C2κ2δ2

2t20
.

(59)

Substituting this in Equation (56) results in:

Re 〈P̃ ϕ̃|P̃ϕ〉 =

N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 ·Re
(
〈h(λ̃k)|h(λj)〉

)

≥
N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 · 1−
C2κ2δ2

2t20

≥

 N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 · 1

−
 N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 ·
C2κ2δ2

2t20



(60)

Note that Equation (52) (among many others) shows that βjαk|j are the amplitudes in a quantum

state, meaning that
∑N
j=1

∑T−1
k=0 |βj |2 · |αk|j |2 · 1 = 1. The remaining sum will be computed in two

parts, for |δ| ≤ 2π, i.e. for
λjt0
2π − 1 ≤ k ≤ λjt0

2π + 1, and for |δ| > 2π, i.e. for k <
λjt0
2π − 1 or

k >
λjt0
2π + 1. In the first part, 2π will be used as an upper bound of δ, in the second part Lemma

3.4 will be used for an upper bound of |αk|j |2 ≤ 144
δ2 . Note that Lemma 3.4 can be applied, since

in this case 2π ≤ δ and T is sufficiently large such that δ ≤ T/10, so all assumptions of the Lemma
are met.

N∑
j=1

T−1∑
k=0

|βj |2|αk|j |2
C2κ2δ2

2t20
=

 N∑
j=1

λjt0
2π +1∑

k=
λjt0
2π −1

|βj |2|αk|j |2
C2κ2δ2

2t20

+ (61)

 N∑
j=1

λjt0
2π −1∑
k=0

|βj |2|αk|j |2
C2κ2δ2

2t20

+

 N∑
j=1

T−1∑
k=

λjt0
2π +1

|βj |2|αk|j |2
C2κ2δ2

2t20


≤

 N∑
j=1

λjt0
2π +1∑

k=
λjt0
2π −1

|βj |2|αk|j |2
C2κ2δ2

2t20

+
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2

 N∑
j=1

∞∑
k=

λjt0
2π +1

|βj |2|αk|j |2
C2κ2δ2

2t20


≤

 N∑
j=1

λjt0
2π +1∑

k=
λjt0
2π −1

|βj |2|αk|j |2
C2κ2(2π)2

2t20

+

2

 N∑
j=1

∞∑
k=

λjt0
2π +1

|βj |2
144

δ4

C2κ2δ2

2t20


=

2C2κ2π2

t20

 N∑
j=1

λjt0
2π +1∑

k=
λjt0
2π −1

|βj |2|αk|j |2

+

144C2κ2

t20

 N∑
j=1

|βj |2
∞∑

k=
λjt0
2π +1

1

δ2


≤2C2κ2π2

t20
+

144C2κ2

t20

 N∑
j=1

∞∑
k=

λjt0
2π +1

|βj |2
1

δ2


=

2C2κ2π2

t20
+

144C2κ2

t20

 N∑
j=1

|βj |2
∞∑

k=
λjt0
2π +1

1

(λjt0 − 2πk)
2


=

2C2κ2π2

t20
+

144C2κ2

t20

 N∑
j=1

|βj |2
∞∑
k′=1

1

(2πk)
2


=

2C2κ2π2

t20
+

144C2κ2

4 · 6t20

 N∑
j=1

|βj |2


≤2C2κ2π2

t20
+

144C2κ2

4 · 6t20
≤ 2C2κ2π2

t20
+

15C2κ2π2

4 · 6t20

=
2C2κ2π2

t20
+

5
8C

2κ2π2

t20
=

21C2κ2π2

8t20
.

Substituting this back results in:

Re 〈P̃ ϕ̃|P̃ϕ〉 ≥

 N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 · 1

−
 N∑
j=1

T−1∑
k=0

|βj |2 · |αk|j |2 ·
C2κ2δ2

2t20


≥1− 21C2κ2π2

8t20

(62)

This concludes the proof, since:

|| |ϕ̃〉 − |ϕ〉 ||2 =
√

2(1−Re 〈ϕ̃|ϕ〉) (63)

=

√
2
(

1−Re 〈P̃ ϕ̃|P̃ϕ〉
)
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≤

√
2

(
1− 1 +

21C2κ2π2

8t20

)

≤

√
21C2κ2π2

4t20
=

√
21

4
Cπ

κ

t0
= O

(
κ

t0

)
Remark. Note that a better upper bound is derived than the upper bound of || |ϕ̃〉−|ϕ〉 ||2 ≤ 4Cπ κ

t0
in [15].

3.3.4 Error analysis and complexity of post-selection

According to Section 3.2.5, measurement leads to the desired output with probability
∑N
j=1 |βj |2

c2

λ2
j
,

i.e. it induces an error of:

O

 N∑
j=1

|βj |2
(

1− c2

λ2
j

) =O

 N∑
j=1

|βj |2 −
N∑
j=1

|βj |2
c2

λ2
j


=O

(
1− c2

)
.

(64)

Since c = O(1/κ), the error induced by the post-selection step is O(1/κ2). Using amplitude
amplification, this error can be made negligibly small when running the algorithm O(κ) times,
according to Theorem 2.1.

3.3.5 Total error and complexity

To determine the total error, an upper bound for ||HHL−HHL′||2 needs to be determined. For

all norms it holds that ||HHL−HHL′||2 ≤ ||HHL′− H̃HL||2 + ||H̃HL−HHL||2. Sections 3.3.2

and 3.3.1 derive ||HHL′−H̃HL||2 ≤ O(εψ+ εH) and according to Lemma 3.2 ||H̃HL−HHL||2 ≤
O(κ/t0). Therefore, ||HHL − HHL′||2 ≤ O(εψ + εH + κ/t0). As described in Section 3.3.2, the
errors εψ and εH can be made smaller than ε within a running time of O(log(N)s2t0). To get an
overall error of O(ε), t0 = O

(
κ
ε

)
should be used. Substituting this in the running time results

in O(log(N)s2κ/ε). However, to deal with the error induced by the measurement, the algorithm
should be run O(κ) times. This means that the running time is

O(log(N)s2κ2/ε), (65)

as given in [15].

3.4 Improvements

The algorithm above is a basic version of the HHL algorithm. It makes assumptions that could
be relaxed by making adjustments to the algorithm. Previously is already discussed that A only
needs to be sparse for the method of Hamiltonian simulation that is used, but that there are other
methods possible that do not need this assumption on A [10, Ch. 2]. Also the assumption that
A needs to be Hermitian can be omitted, since a non-Hermitian matrix can be transformed to a
Hermitian matrix using zero-blocks and the complex conjugate of the matrix [15, Ch. 2]. The
assumption that A is well-conditioned can be relaxed [10, Ch. 3].

Besides, the algorithm can be adjusted to solve more specific problems, like solving boolean systems
[2, Ch. 4].
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4 AES

This project aims to determine the complexity of a known-plaintext attack on AES, using HHL.
However, as Section 12 shows, the system of equations derived for AES, becomes, after linearization,
far too big to be workable. In order to be able to investigate the effects of all ideas, techniques, and
computations, these will first be applied to Mini-AES [7]. Mini-AES has a very similar structure
to AES, but, as the name suggests, is smaller than AES (16 key bits and 2 rounds). Due to this
similar structure, it is expected that attacks that work on Mini-AES also work for AES. So, with
respect to this report’s attack strategy for AES (creating a system of equations and then solving
this system), Mini-AES is a suitable toy example. However, it is only fair to note that Mini-AES,
in contrast to AES, is easily solvable by a brute-force attack on the key. Since Mini-AES uses a
key of only 16 bits, there are only 65536 possible keys. For any plaintext-ciphertext pair, it takes
Sage about five minutes to check if encrypting the plaintext with every possible key results in the
desired ciphertext.

Before diving into attack ideas on any of the two encryption systems, both systems will be explained
in full detail in this section. Due to the correspondence between the structure of the systems, this
is not much more work than explaining only AES.

First, some parameters need to be set:

Generic Mini-AES AES-128 AES-192 AES-256
Size of an element in bits Se 4 8 8 8
Number of words in a block Nb 2 4 4 4
Number of elements in a word Ne 2 4 4 4
Number of words in a key Nk 2 4 6 8
Number of rounds Nr 2 10 12 14
Block size in bits Bs 16 128 128 128

Note that:

• (Mini-)AES works with blocks, this means that both the key (initial key and round key) and
the states are called blocks. Blocks consist of Nb words, which consist of Ne elements, which
consist of Se bits.

• The number of elements in a word is equal to number of words in a block.

• The number of rounds is denoted by Nr, including one final round and Nr−1 middle rounds.
Note that the initial key addition is not counted as a round.

• r = 0, ..., Nr is the round number: r = Nr for the final round and r = 1, ..., Nr − 1 for the
middle rounds. Define r = 0 for the initial key addition.

Define the following variables:

• wi and xi are blocks, they represent the round key and the state after addRoundKey of round
i respectively. These are specified further using wi(j,m) and xi(j,m) to describe bit m of
element j. A visualization of a state is given in Figure 3. This state belongs to Mini-AES,
but can easily be extended to a state for AES. Besides, by replacing x by w, the figure is an
example of a round key.

• All round keys combined are called the extended key and denoted by w.

• w̄i and x̄i are the results of eltSub working on wi and xi respectively.
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• rcon ∈ GF (2Se)10×Ne are the round constants. So, rconr is the round constant for round
r, where r = 1, ..., Nr. Note that depending on whether Mini-AES, AES-128, AES-192 or
AES-256 is used, too many constants are defined, which means that not all rcon values are
used.

Figure 3: Example of a Mini-AES state

Note that:

• An element refers to a nibble when using Mini-AES and to a byte when using AES-128,
AES-192, and AES-256.

• The encryption key k ∈ GF (2Se)NkNe will be extended to the round keys wi(j,m). Note that
in Mini-AES and in AES-128 the size of the key corresponds to the size of a state, whereas in
AES-192 and in AES-256 the key is larger than a state. Therefore, different parameters are
needed to describe the rounds in the key expansion for AES-192 and for AES-256 and the
word ’round key’ becomes a bit ambiguous: every round of encryption uses a round key and
the round keys are created using the key expansion algorithm; in these contexts ’round’ does
not mean the same. In the encryption a round key means Nb words. In the key expansion
a round key means Nk words. Therefore, other letters will be used to indicate these rounds.
So, wi(j,m) for the encryption and wı(,m) for the key expansion, where ı = 0, ..., 10 and
 = 0, ..., Nk − 1. Since Nb(Nr + 1) words of round keys are needed for the encryption, and
every round of the key expansion creates Nk new words, dNb(Nr + 1)/Nke rounds of the
key expansion are needed. Note that the key expansion algorithm now creates an extended
key w ∈ GF (2Se)NedNb(Nr+1)/NkeNk even though only w ∈ GF (2Se)NeNb(Nr+1) is needed.
Therefore, the key expansions for AES-192 and AES-256 do not finish the last round, instead
they stop as soon as enough words are created.

• (w)i is word i of the round key.

• Word s(j : j+Nb, :) ∈ GF (2Se)Nb is word j of state s. Note that j : j+Nb is used to denote
entries j, j + 1, ..., j +Nb and : is used to denote all entries.

• (s)i,j is element i, j of state s.
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4.1 Algorithm overview

All algorithms that are needed for AES encryption can be found in Appendix B. First of all,
the AES encryption algorithm is given in Algorithm 2. A visual representation of the Mini-AES
encryption and of the AES encryption are given in Figure 4 and Figure 5 respectively. Both AES
and Mini-AES are based on the same rounds, however, Mini-AES only has 1 middle round whereas
AES performs the middle round multiple times.

Figure 4: Mini-AES encryption

Figure 5: AES encryption

Both AES and Mini-AES work with an extended key (round keys). In the initial round of the
encryption, only the round key is added. This is done by the linear function addRoundKey. In
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addRoundKey, the new state is created by computing the element-wise XOR of the old state
and the round key. A visual representation of addRoundKey can be found in Figure 6 and the
corresponding algorithm can be found in Algorithm 7.

Figure 6: AES addRoundKey

The middle rounds of the encryption consist of applying four functions, always in the same order:
first eltSub, then rotation, followed by mixColumns, and finally addRoundKey. The final round
differs from the middle rounds; it omits the mixColumns function.

A visual representation of eltSub, rotation, and mixColumns can be found in Figure 7, Figure 8,
and Figure 9 respectively. The corresponding algorithms can be found in Algorithm 8, Algorithm
6, and Algorithm 9 respectively. The eltSub algorithm uses a look-up table and the mixColumns
algorithm uses a matrix. The look-up table and matrix can be found in Appendix A. The eltSub
algorithm works element-wise. It replaces every element with the element it corresponds to in the
S-box. This operation is non-linear, it is defined by a multiplicative inverse over GF(2Se) followed
by an affine transformation over GF(2). The rotation algorithm is a linear transformation that
works row-wise. For every row, it takes some of the elements on the left and inerts them on the
right, shifting the other elements to the left. The number of elements that get rotated equals the
row number. The mixColumns algorithm is described element-wise. It takes all the bits in an
element and converts it to an element over GF (2Se). The columns of the new state are created
by multiplying the old column by the mixColumnMatrix on the left. This results in elements of
GF (2Se) which are then converted back to bits. However, as Lemma 5.1 states, these conversions
are only a matter of notation, since all computations can also be done bit-wise. Therefore, the
mixColumns algorithm can be considered a linear operation.

Figure 7: AES eltSub
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Figure 8: AES rotation

Figure 9: AES mixColumns

Since every round uses a round key, the AES encryption algorithm needs to start with deter-
mining the round constants, followed by creating the round keys. The key expansion algorithm
is different for Mini-AES and for AES, since Mini-AES uses eltSub((w)i−1), whereas AES uses
eltSub(rotWord((w)i−1)). The rotWord algorithm is a linear transformation that works column-
wise. It takes the element on the top and places it on the bottom, shifting all other elements one
position up. A visualization of rotWord can be found in Figure 10 and the corresponding algorithm
can be found in Algorithm 5. Note that in Mini-AES this eltSub works on a nibble and therefore
rotWord is unnecessary.

Figure 10: AES rotWord
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Figure 11: Key expansion AES-128 byte level

A visualization of the key expansion algorithm of Mini-AES and of AES-128, AES-192, and AES-
256 can be found in Figure 12, Figure 11, Figure 13, and Figure 14 respectively. The corresponding
algorithms can be found in Algorithm 4 and Algorithm 3 respectively.

In the key expansion of AES-128, the original key is exactly the same size as a state, which means it
is exactly the size that we need for one round key. The first step is to copy the original key into the
first round key. All other round keys are created based on the previous round key by the following
computations. The first word of a new round key is created by computing the element-wise XOR
of the first word of the previous round key, the round constant, and eltSub of the last word of the
previous round key. However, before the eltSub is applied, the last word of the previous round key
is rotated. This is done by the rotWord algorithm. All other words of the round key are created
by computing the element-wise XOR of the corresponding word of the previous round key and the
previous word of the same round key. A visual representation of the rotWord algorithm can be
found in Figure 10 and the corresponding algorithm can be found in Algorithm 5.

As explained above, a Mini-AES state consists of two words, which each contain two elements.
However, representing the Mini-AES round keys as four words, each containing just one element,
underlines the similarities between the key expansion of AES and the key expansion of Mini-AES.
The only difference between the two key expansions is that the key expansion of AES uses the
rotWord algorithm and the key expansion of Mini-AES omits this operation. However, in the key
expansion of Mini-AES, the rotWord algorithm is the identity, since a word consists of only one
element. A visual representation of the key expansion of Mini-AES can be found in Figure 12 and
the corresponding algorithm can be found in Algorithm 4.

The key expansions of AES-192 and AES-256 are similar to the key expansion of AES-128. The
main difference is that the original key is now larger than one state. Therefore, the key expansions
of AES-192 and AES-256 both work on states with more than four words. This means that the
rounds of the key expansion and the rounds of the encryption are not synchronized anymore. One
round of the key expansion creates more material than needed for one round of the encryption.
Therefore, other variables for the number of rounds and the number of words are defined (ı and 
respectively). By defining these notions of rounds and words, the key expansions of AES-192 and
AES-256 essentially work the same as the key expansion of AES-128. The only difference is that
in the key expansion for AES-256 an additional S-box is applied to the fourth word of the round
key, when computing the fifth word of the round key. A visual representation of the key expansion
of AES-192 and AES-256 can be found in Figure 13 and 14 and the corresponding algorithm is the
same as the algorithm for the key expansion of AES-128, i.e. it can be found in Algorithm 3.

36



Figure 12: Key expansion Mini-AES nibble level

Figure 13: Key expansion AES-192 byte level
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Figure 14: Key expansion AES-256 byte level
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5 Mini-AES equations

This section derives a system of non-linear equations for a full Mini-AES encryption, to go from a
key and a plaintext to a ciphertext, using Mini-AES encryption, which is given in Algorithm 2. At
the end of this section, a list of bit-wise equations will be given, that fully describe the Mini-AES
encryption. If a plaintext-ciphertext pair is inputted in these equations, then the solution of the
resulting system results is a key that encrypts the chosen plaintext to the known ciphertext. Hence,
solving the system of equations equals a successful chosen plaintext attack.

The mixColumns algorithm uses a matrix M . In this section this matrix equals M0, as defined in
Appendix A. However, the notation M is used, to underline the similarity with AES. If omitted:
j = 0, ..., NbNe − 1, m = 0, ..., Se − 1, and i = 1, ..., Nr. Hence, for Mini-AES: j = 0, 1, 2, 3,
m = 0, 1, 2, 3, and i = 1, 2. To simplify notation, modulos are omitted, but indices work modulo
NbNe = 4.

5.1 Encryption equations

The initial round only consists of the initial key addition:

x0 = p⊕ w0, (66)

and can easily be written bit-wise:

x0(j,m) = p(j,m)⊕ w0(j,m). (67)

The middle round computes:

xi = mixColumns(rotation(x̄i−1))⊕ wi. (68)

In order to see what happens bit-wise, use the definitions of rotation and mixColumns:

rotation(x̄i−1) =rotation

((
x̄i−1(0, :) x̄i−1(2, :)
x̄i−1(1, :) x̄i−1(3, :)

))
=

(
x̄i−1(0, :) x̄i−1(2, :)
x̄i−1(3, :) x̄i−1(1, :)

)
, (69)

and :

mixColumns(rotation(x̄i−1)) =M · rotation(x̄i−1)

=

(
M(0, :) M(2, :)
M(1, :) M(3, :)

)
·
(
x̄i−1(0, :) x̄i−1(2, :)
x̄i−1(3, :) x̄i−1(1, :)

)
.

(70)

When the round key is added, this results in:

xi(j, :) = wi(j, :)⊕
Nb−1∑
j′=0

M(jm + j′Nb, :)x̄i−1(jp + j′(Nb + 1), :), (71)

where jm = j mod Nb and jp = bj/NbcNb. This can be written bit-wise by defining new notation∑
j′M(j′, 0 : Se)x̄i−1(j′, 0 : Se) =

∑
j′
∑Se−1
m′=0M(j′,m′)x̄i−1(j′,m′):

xi(j,m) = wi(j,m)⊕
Nb−1∑
j′=0

Se−1∑
m′=0

M(jm + j′Nb,m
′)x̄i−1(jp + j′(Nb + 1),m′). (72)

Lemma 5.1. Multiplying an element by 2 or 3 can be done bitwise.
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Proof. Let [b0, b1, b2, b3] be an element, where b0, b1, b2, b3 ∈ {0, 1} are bits. Then:

3 · [b0, b1, b2, b3] ≡ (x+ 1)(b0x
3 + b1x

2 + b2x+ b3) mod x4 + x+ 1

≡ b0x4 + (b0 + b1)x3 + (b1 + b2)x2 + (b2 + b3)x+ b3 + b0(x4 + x+ 1)

≡ [b0 + b1, b1 + b2, b0 + b2 + b3, b0 + b3],

(73a)

2 · [b0, b1, b2, b3] ≡ x(b0x
3 + b1x

2 + b2x+ b3) mod x4 + x+ 1

≡ b0x4 + b1x
3 + b2x

2 + b3x+ b0(x4 + x+ 1)

≡ [b1, b2, b0 + b3, b0].

(73b)

The final round does not use the mixColumns, so for i = Nr:

c = xNr = rotation (x̄Nr−1)⊕ wNr . (74)

Using Equation (69), this can be written as:

c(j, :) = x̄Nr−1(jr, :)⊕ wNr, (75)

where jr = j + (j mod Nb)Nb. This can be written bit-wise:

c(j,m) = x̄Nr−1(jr,m)⊕ wNr. (76)

Furthermore:

x̄i−1 = eltSub (xi−1), (77)

needs to be computed in the middle rounds and in the final round. So, compute Equation (77) for
i = 1, ..., Nr. The equations needed to describe this step bit-wise are explained in Section 5.2.

5.2 sBox equations

Mini-AES uses a substitution box, called S-box, for the substitution step. This S-box can be found
in Appendix A.

In order to describe the S-box as a function of the input and output bits, Karnaugh maps [5,
Chapter 4] are used in which [b0, b1, b2, b3] is the input and [y0, y1, y2, y3] is the output, where
b0, b1, b2, b3, y0, y1, y2, y3 ∈ {0, 1} and are bits. A visualization of these Karnaugh maps can be
found in Figure 16 in Appendix C. This results in:

y0 =b3b̄1b̄0 + b2b̄1b0 + b̄3b1b̄0 + b̄3b̄2b1b0 + b3b2b1b0 (78a)

y1 =b̄3b̄1b̄0 + b3b̄2b̄1 + b̄3b2b̄1b0 + b3b2b1b0 + b̄3b2b1b̄0 + b3b̄2b1b̄0 (78b)

y2 =b̄3b̄2b̄0 + b̄3b̄1b0 + b3b1b0 + b3b̄2b1b̄0 + b3b2b̄1b̄0 (78c)

y3 =b̄3b̄2b̄1 + b2b̄1b0 + b3b̄2b0 + b̄3b2b1, (78d)

which can be simplified by using b′ = b+ 1. Define the set of equations to describe the S-box:

S ={s0, s1, s2, s3}

=


0 =y0 + b2b3 + b2b1b3 + b3 + b2 + b2b1 + b2b1b0 + b0 + 1,

0 =y1 + b3b1b0 + b3b1 + b3 + b2b0 + b2 + b1b0 + 1,

0 =y2 + b2b3 + b2b1b3 + b1b3 + b2b0b3 + b0b3 + b2b1 + b1 + b2b0 + b1b0 + b0 + 1,

0 =y3 + b3b1b0 + b3b0 + b3 + b2b0 + b1,

.
(79)
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Doing more rewriting, the set S can even be written using only polynomials of degree two. Note
that it is possible for any 4-bit to 4-bit S-box to be described by quadratic equations [4]. The
method to create such equations for the AES S-box is described in [8]. For Mini-AES, this report
extracted the quadratic equation that Sage uses for Mini-AES. These quadratic equations are given
in Equation (142) in Appendix C.

As Section 5.1 explains, the S-box equations are used to compute Equation (77). So, add :

S(xi−1(j, 0), ..., xi−1(j, se− 1), x̄i−1(j, 0), ..., x̄i−1(j, se− 1)), (80)

to the list of equations.

5.3 Key expansion equations

Mini-AES uses the addRoundKey algorithm. This algorithm needs round keys as input. These
round keys are constructed using the key expansion algorithm. According to Algorithm 4, the key
bits are first copied into the first roundkey:

w0(j, :)← k(j, :), (81)

which can easily be written bit-wise:

w0(j, :) = k(j, :). (82)

However, this just creates unnecessary variables and equations. Therefore, this equation is omitted
and the variables w0(j,m) are used instead of the variables k(j,m).

The other roundkeys, w1(j,m), ..., wNr (j,m), are computed as follows:{
w(j, :) = eltSub(w(j − 1, :))⊕ rconj/N2

b
⊕ w(j −N2

b , :) if j = 0 mod N2
b

w(j, :) = w(j − 1, :)⊕ w(j −N2
b , :) for all other j’s.

(83)

This means that if j = 0 mod N2
b :

wi(0, :) = wi−1(0, :)⊕ w̄i−1(N2
b − 1, :)⊕ rconi(0, :), (84)

needs to be computed, where w̄i−1(N2
b − 1, :) means, the eltSub of element N2

b − 1 of the roundkey
of round i − 1. Hence, Equation (79) needs to describe the substitution of wi−1(N2

b − 1, :). This
means that Equation (79) needs to be added to the list of equations, with wi−1(N2

b − 1, :) as input
and w̄i−1(N2

b − 1, :) as output:

S(wi−1(N2
b − 1, 0), ..., wi−1(N2

b − 1, se− 1), w̄i−1(N2
b − 1, 0), ..., w̄i−1(N2

b − 1, se− 1)). (85)

Besides, for the other j′s:

wi(j, :) = wi−1(j, :)⊕ wi(j − 1, :), (86)

needs to be computed, which can be written bit-wise:

wi(j,m) = wi−1(j,m)⊕ wi(j − 1,m). (87)

This is the final equation that should be added to the list of equations.

The next subsection will collect all the equations derived above to create a system of equations.
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5.4 System of equations for Mini-AES

If omitted: j = 0, ..., N2
b −1, m = 0, ..., se−1, and i = 1, ..., Nr. Hence, for Mini-AES: j = 0, 1, 2, 3,

m = 0, 1, 2, 3, and i = 1, 2.

The previous sections derived a lot of equations. This section collects all equations needed to
describe Mini-AES encryption and key expansion. This list consists of Equations (67), (72), (76),
(84), (87), (80), and (85). Adding all the terms on the left-hand-side to both the left-hand-side
and right-hand-side result in:

0 =x0(j,m)⊕ p(j,m)⊕ w0(j,m) (88a)

0 =xi(j,m)⊕ wi(j,m)⊕
Nb−1∑
j′=0

Se−1∑
m′=0

M(jm + j′Nb,m
′)x̄i−1(jp + j′(Nb + 1),m′)

For i = 1 (88b)

0 =c(j,m)⊕ x̄Nr−1(jr,m)⊕ wNr (88c)

0 =wi(0,m)⊕ wi−1(0,m)⊕ w̄i−1(N2
b − 1,m)⊕ rconi(0,m) (88d)

0 =wi(j,m)⊕ wi−1(j,m)⊕ wi(j − 1,m) For j = 1, 2, 3 (88e)

0 =S(xi−1(j, 0), ..., xi−1(j, se− 1), x̄i−1(j, 0), ..., x̄i−1(j, se− 1)) (88f)

0 =S(wi−1(N2
b − 1, se− 1), ..., wi−1(N2

b − 1, 0),

w̄i−1(N2
b − 1, se− 1), ..., w̄i−1(N2

b − 1, 0))

(88g)

This system of equations can be linearized by defining a new variable for each non-linear term.
Then, the system can be represented by the matrix in Figure 15. As an attempt to simplify this
matrix, row reduction over GF(2) is applied. The result of this row reduction is included in the
same figure. Note that both the degree two and degree three representation of the sBox are included
in the figure, using Equation (142) and Equation (79) respectively. The degree two representation
clearly results in more equations and more variables. The figure also shows that row reduction is
not enough to find a solution of the system of equations, for neither representation of the S-box.
The next section investigates whether it is possible to find a solution and, if so, what steps should
be executed.
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(a) Coefficient matrix, deg(sBox)=3 (b) Coefficient matrix row-reduced, deg(sBox)=3

(c) Coefficient matrix, deg(sBox)=2 (d) Coefficient matrix row-reduced, deg(sBox)=2

Figure 15: Mini-AES (p = [9, 12, 6, 3], k = [12, 3, 15, 0])

43



6 Known plaintext attack for Mini-AES

The considered challenge is a known-plaintext attack on Mini-AES, as defined in Definition 6.1,
using HHL.

Definition 6.1. (Known-plaintext attack (KPA)) The attack model KPA assumes that the attacker
knows as many plaintext-ciphertext pair as he needs and tries to gain information that reduces the
security of the encryption scheme.

To be able to use HHL for the known-plaintext attack, the system of equations, given in Equation
(88), needs to be transformed into a well determined linear system Ax = b over C, since this is
what HHL uses as input. This will be done in Section 8.

Before this can be done, a closer look needs to be taken at Equation (88). Section 6.1 first counts
the number of equations and the number of variables for a known-plaintext attack to get an an idea
of the size of this problem. Then it describes a method to linearize Equation (88) and concludes
that this leads to an underdetermined linear system. Before trying to transform this system into
a well determined linear system, the question whether this is possible will be answered in Section
6.2.

6.1 Size of the problem

Variables c and p are known, whereas all other variables are unknown. For the encryption this
means that x0, ..., xNr−1 and x̄0, ..., x̄Nr−1 are unknown, this gives 2 ·Nr ·Nb ·Ne ·Se = 64 variables.
For the key expansion this means that w0, ..., wNr and w̄0(Se−1, :), ..., w̄Nr−1(Se−1, :) are unknown,
this gives another ((Nr + 1) ·Nb ·Ne +Nr) · Se = 56 variables.

Now let’s count the number of equations. Equations (88a), (88b), and (88c) are for the encryption.
For each equation j = 0, ..., NeNb − 1 and m = 0, ..., Se − 1, this gives another Ne · Nb · Se = 16
equations per equation, i.e. 48 in total. Equations (88d) and (88e) describe the key expansion. In
Equation (88d) it holds that i = 1, ..., Nr and m = 0, ..., Se− 1, this gives Nr ·Se = 8 equations. In
Equation (88e) i = 1, ..., Nr, j = 1, 2, 3, and m = 0, ..., Se − 1. This gives another Nr · 3 · Se = 24
equations. This means that 8 + 24 = 32 equations are obtained for the key expansion.

Furthermore, Equations (88f) and (88g) describe the S-box equations for the encryption and the
key expansion respectively. When computing these substitutions, nonlinear terms are introduced.
In order to get a linear system, each nonlinear term is considered a new variable. For now, consider
the degree three S-box polynomials as described in Equation (79). To compute one output bit of
the substitution, one polynomial is used and four bits of input. Each S-box polynomial consists of∑Se−1
i=2

(
Se
i

)
=
∑3
i=2

(
4
i

)
= 10 nonlinear terms (combinations of the four input bits). However, to

compute all output bits of a nibble, the same ten nonlinear terms are used. So, a S-box polynomial
introduces (at most) ten new variables, but, other polynomials to compute the other substituted
bits in a nibble do not introduce new variables. Note that a different representation of the S-box
may lead to a different number of variables and equations introduced by the S-box polynomials.

Equations (88f) and (88g) describe the S-box equations for the encryption and the key expansion
respectively. For the encryption, x̄0, ..., x̄Nr−1 need to be computed, this gives Nr ·Nb ·Ne ·Se = 32
equations, which leads to 10 ·Nr ·Nb ·Ne = 80 new variables. For the key expansion this means
Nr · 1 · Se = 8 equations, which leads to 10 ·Nr · 1 = 20 new variables.

The above is summarized in Table 1. The most important thing to notice in this table is that there
are 120 variables and equations, which means that the system of equations is well-determined.
However, linearization introduces 100 more variables, resulting in 220 variables and only 120 equa-
tions. These extra variables come from the non-linear terms in the S-box equations. Therefore,
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Table 1: Mini-AES equations and variables

it might be convenient to choose another representation for the S-box. The number of non-linear
terms decreases as the degree of the S-box equations decreases, which means that it might be most
efficient to use S-box equations of degree two (note that linear equations are not possible without
introducing more variables as the S-box operation is not linear). Even though [14] shows that a
quadratic representation might not result in the most efficient attack, this report will use quadratic
equations since [2] also does this for AES.

The quadratic representation of the Mini-AES S-box can be found in Equation (142), in Appendix
C. It consists of 21 equations, with only quadratic terms, meaning that each equation will only
introduce 7! = 28 variables after linearization. For the key expansion this means 21 ·Nr ·Nb ·Ne =
168 equations instead of 32, which leads to 28 · Nr · Nb · Ne = 224 new variables instead of 80.
For the key expansion this means 21 ·Nr · 1 = 42 equations instead of 8 and 28 ·Nr · 1 = 56 new
variables instead of 20.

These numbers can also be found in Table 1. From this table can be concluded that, when
the degree two S-box equations are used, the number of equations is higher than the number
of variables, before linearization. This means that not all equations are linearly independent.
However, since the number of variables after linearization exceeds the number of equations, this
does not really matter since it is clear that after linearization the system is under-determined. The
next subsection will determine whether or not it is possible to transform this linear system into a
well-determined linear system by answering the question whether the solution of this linear system
is unique.
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6.2 Unique solution

For both Mini-AES and AES, for a given key and plaintext, the ciphertext is uniquely defined.
Besides, for a given key and ciphertext, the plaintext is uniquely defined. This is true because
otherwise encryption and/or decryption would not be deterministic. However, the question at
hand is the other way around: given a plaintext and a ciphertext, is the key uniquely defined?

Unfortunately, this is not the case for Mini-AES. For instance, one could encrypt plaintext [1, 1, 1, 1]
with keys [0, 1, 2, 10] and [0, 1, 3, 15] and find ciphertext [3, 2, 2, 10] in both cases.

So, the answer to the question whether or not there is a unique solution to a chosen plaintext
attack on AES, is generally: no. However, there will be a lot of plaintext-ciphertext pairs that
have a unique key. To substantiate this claim, the probability that a certain plaintext-ciphertext
pair has a unique key will be computed, as well as the expected number of keys.

Let T be the sets of all possible plaintexts and ciphertexts and let K = {k1, ..., k|K|} be the set
of all possible keys. Note that every plaintext, ciphertext and key consists of the same number of
bits, hence |T | = |K|. Pick p1 ∈ T and let c1 ∈ T be the corresponding ciphertext, using without
loss of generality key k1 ∈ K. plaintext-ciphertext pair (p1, c1) has a unique key, when for all other
keys in K hold that encrypting p1 with this key does not result in c1. Hence:

P(plaintext-ciphertext pair (p1, c1) has a unique key) (89)

= P(AES(p1, k1) = c1)P(AES(p1, k2) 6= c1)...P(AES(p1, k|K|) 6= c1)

= P(AES(p1, k1) = c1)(1− P(AES(p1, k2) = c1))
|K|−1

= 1 ·
(

1− 1

|T |

)|K|−1

= 1 ·
(

1− 1

|K|

)|K|−1

≈ 0.4 for Mini-AES and AES-128

It is clear that for each plaintext-ciphertext pair, the expected number of keys, that encrypt this
specific plaintext to this specific ciphertext, is not very large.

To strengthen the result from these computations, a random sample of 100 plaintexts out of the
65536 possibilities was considered for Mini-AES. All these plaintexts were encrypted with all 65536
possible keys and it was counted how often the same ciphertext occurred. Suppose a ciphertext
was found twice when encrypting the same plaintext, this means that there are two possible keys
for this plaintext-ciphertext pair. So, the number of recurring ciphertexts per plaintext, equals the
possible number of keys for the system. According to the sample, the minimum, mean, median,
and maximal number of keys is respectively one, 1.580, one, and nine. Based on this, it is expected
that around one in three plaintext-ciphertext pairs will have only one solution (key).

The fact that there might not be an unique key for a plaintext-ciphertext pair, could cause a
problem. In this report’s attack, a plaintext is considered, which is encrypted with a certain key.
This results in the known ciphertext. The goal of the attack is to find the key that was used.
However, since the plaintext-ciphertext pair does not uniquely determine the key that was used,
it might be the case that another key is found, such that encryption of our plaintext leads to our
ciphertext. This is a problem, because this is not the key that the other party used. The goal of the
attack is to find the key that was used by the sender, because this has the practical applications:
an attacker can decrypt more ciphertexts of the same sender (as long as the key is reused), the
attacker can encrypt messages of his liking and impersonate the sender (as long as the receiver
expects the sender to use the same key), etc. All of this is not possible if the attacker finds another
key that coincidentally works for the known plaintext-ciphertext pair, so this defeats the purpose
of a chosen plaintext attack.

However, the desired key is a solution of the system of equations. So, finding all the solutions of the
system of equations would mean that the right key is among them. This means that if the number
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of solutions is not too large, one could try all solutions (on a new plaintext-ciphertext pair) and
see which key works. Note that the complexity of trying one of the keys is simply the complexity
of one encryption with (Mini-)AES, which can be done efficiently. Above is determined that in the
worst case, nine keys can work for a plaintext-ciphertext pair. This means that finding all possible
keys for a certain plaintext-ciphertext pair will solve the problem, since it is no problem to check
nine keys.

If the attack, on the other hand, does not find all possible keys, but just one, the problem can
be solved by performing the attack multiple times. In a known plaintext attack, the attacker is
assumed to have access to as many plaintext-ciphertext pairs as necessary. If the attacker has
access to multiple plaintext-ciphertext pairs, that used the same key, he can perform the attack
on all these pairs. As long as the result of each attack is a random pick out of the possible keys
for this plaintext-ciphertext pair and the number of possible keys per plaintext-ciphertext pair is
limited, the attacker will eventually find the desired key using this strategy.

This raises the idea that it would be beneficial to combine multiple plaintext-ciphertext pairs, with
the same key, into one attack. However, this backfires for this report’s attack, as explained in
Appendix H.1.1.

The next section is devoted to reducing the solution space. Before doing so, the next subsection
will describe how the solution space can be determined.

6.3 Determining solution space

The goal of this subsection is to create a strategy to determine whether applying HHL to a certain
linearized system will result in a solution to the system of non-linear equations that the input
for HHL is a linearization of. The strategy of this section will not be applied to the linearized
system corresponding to (Mini-)AES, since this includes row-reduction and if row-reduction would
be possible, the HHL algorithm would not be needed. The strategy is merely a way to evaluate the
methods that are explained in later sections. These methods are applied to small examples and
the strategy of this section is used to determine whether or not these methods result in solvable
matrices. The hope is that this analysis can be extended for larger matrices, i.e. leads to an
estimate of the size of the matrix vector system for (Mini-)AES to which HHL has to be applied.

First, a linear system will be considered. For a matrix vector system, corresponding to a linear
system of equations, the number of solutions can be determined according to Theorem 6.1. The
system of linear equations has a unique solution if and only if the matrix vector system has a
unique solution.

The same line of reasoning can be extended to a linearized system. The difference between the
two of them is that for the matrix corresponding to a system of linear equations, each column
corresponds to an independent variable, whereas some columns of the matrix corresponding to a
linearized system correspond to products of variables. Therefore, the linearized system Ax = b
might have more solutions than the system of non-linear equations. Example 6.1 clearly shows
how this is possible.

Theorem 6.1. (Number of solutions of a linear system) Let Ax = b be a linear system over C
and let A have dimensions m× n.

• If rank([A|b])=rank(A) = n, then Ax = b has a unique solution.

• If rank([A|b]) >rank(A), then Ax = b has no solution.

• If rank([A|b])=rank(A) < n, then Ax = b has multiple solutions.
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Example 6.1. Consider the following system of non-linear equations over C:
a = 1

b = 1

c = 1

ab− bc = 0

⇒ [A|b] =

a b c ab ac bc 1
1 0 0 0 0 0 1

0 1 0 0 0 0 1
0 0 1 0 0 0 1
0 0 0 1 0 −1 0

(90)

From the rows above the horizontal line can be concluded that a = b = c = 1. This solves the system
of non-linear equations and from this the values of ab and bc can also be determined. This results
in the solution vector ẋ = (1, 1, 1, 1, 1, 1)T and indeed Aẋ = b. However, rank([A|b])=rank(A) =
4 < n = 6 which means according to Theorem 6.1 that there are multiple solutions. Indeed, for all
vectors ẋ = (1, 1, 1, v1, v2, v3)T , where v1 = v2, it holds that Aẋ = b.

From Example 6.1 can be concluded that Theorem 6.1 is not sufficient to determine whether a
system of non-linear equations has a unique solution. Instead, the definition of a solvable matrix
will be given in Definition 6.2 and Theorem 6.2 will tell when a matrix vector system is solvable.

Definition 6.2. (Solvable matrix vector system) Let Ax = b be a linear system, corresponding to a
system of non-linear equations on n′ variables and m equations, over C. Without loss of generality,
the first n′ columns of A correspond to the linear terms. Then A, x and b can be written as:

A =

(
A1 A2

A3 A4

)
, x =

(
y
z

)
and b =

(
b1
b2

)
, (91)

where A1 ∈ Cn′×n′ , y = (x1, ..., xn′)
T , z = (xn′+1, ..., xn)T , and b1 ∈ Cn′ . The system Ax = b

is considered solvable if the system uniquely determines y. Note that z = (xn′+1, ..., xn) can be
uniquely determined if y = (x1, ..., xn′) is known.

Note that this definition concludes that a matrix vector system is solvable if all linear variables
can be uniquely determined. This is even more strict than needed for the matrix vector system for
(Mini-)AES, since in this case only the key bits have to be uniquely determined. In fact, even if
a small number of key bits can not be uniquely determined, these can be brute-forced. However,
extending this idea to small examples in the following sections is quite vague. Therefore, this
report will assume that all linear variables will have to be uniquely determined. Demanding that
all variables need to be uniquely determined versus only the key bits will probably not lead to very
different conclusions, because of how AES is defined: uniquely determined key bits (and a known
plaintext-ciphertext) fixes all other variables.

Theorem 6.2. (Number of solutions of a non-linear system) The system as defined in Definition
6.2, is solvable if and only if row-reduction of [A, b] results in :

[A′, b′] =

(
A′1 A′2 b′1
A′3 A′4 b′2

)
, (92)

where A′1 has rank n′ and A′2 = 0. Then the system of non-linear equations has a unique solution.

Proof. Let row reduction of A result in:

[A′, b′] =

(
A′1 A′2 b′1
A′3 A′4 b′2

)
, (93)

Suppose A′1 has rank n′ and A′2 = 0. Then rank([A′1|b′1]) =rank(A′1) = n′ ≤ m. So according to
Theorem 6.1 A1y = b1 has a unique solution. This uniquely defines all variables x1, ..., xn′ . So the
system of non-linear equations has a unique solution.
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Suppose A′1 has rank 6= n′ (i.e. < n′). Then rank([A′1|b′1]) >rank(A1) or rank([A′1|b′1]) =rank(A1) <
n′. According to Theorem 6.1, A1y = b1 has no solution or multiple solutions respectively.

Suppose A′1 has rank n′ and A′2 6= 0. Then there is a linear variable or a combination of linear
variables of which the value can only be determined, depending of the value of some non-linear
term. However, the matrix vector system can not determine the value of this non-linear term
(otherwise row-reduction would not be finished, since the non-zero entry in A′2 could be removed
by altering the corresponding value in b′1 with the correct value of the non-linear term). This
means that not all values of the linear terms can be extracted from the matrix vector system, i.e.
y is not uniquely determined by the matrix vector system. Hence, this system is considered not
solvable by Definition 6.2.

According to Theorem 6.2, it can be determined whether a matrix vector system is solvable, based
on the rank of the (sub)matrix. Therefore, the next step is to determine the rank of the matrix.
This can be done by row-reduction of the matrix, therefore, a ring has to be determined over which
row-reduction will take place.

Since HHL considers a complex matrix as input, the row-reduction should be done over the complex
field. To underline this, Section 7 shows that even though the (Mini-)AES equations are defined
over GF(2) row-reduction over GF(2) is not sufficient. This section also translates the equations
from GF(2) to C, resulting in a complex matrix. Row-reduction over C now has the desired effect.
However, for row-reduction over C numerical methods are needed, using floating points, which
might lead to floating point errors, whereas row-reduction over Q does not have this problem (it
is precise, but works only as long as the numerators and denominators do not become so big that
they lead to memory problems). Therefore, it is desired to use row-reduction over Q instead of
over C.

Translating equations from GF(2) to C, using the method described in Section 7, results in a
matrix over C, but with entries that actually do not contain complex values (they can also be
expressed in Q). Therefore, Theorem 6.3 concludes that the row-reduction can be done over Q
instead of over C. This avoids floating point errors, especially for larger matrices. Therefore, the
rest of this report will be using row-reduction over Q.

Theorem 6.3. Let A be a matrix with coefficients in Q. Row-reduction of A over C results in the
same matrix as row-reduction over Q.

Proof. The main idea of this proof is to show that for every step of the row-reduction over C,
the resulting matrix has only coefficients in Q. From that it can be concluded that row-reduction
over Q or over C results in the same matrix. Each step in row-reduction is one of the following
operations:

1. Change order of rows.

2. Multiplying a row by a scalar.

3. Add a multiply of a row to another row.

The first option does not change the coefficients. For option two, the resulting matrix will have
only coefficients in Q, as long as one does not multiply by a scalar that is not in Q, since Q is
closed under multiplication. The goal of this step is to set the first non-zero entry of a row to one.
Before this step the first non-zero entry was in Q, hence one should multiply this row by a scalar
in Q. Therefore, after multiplication, all the coefficients in the row will still be in Q. For option
three similar reasoning can be used, since Q is also closed under addition. This step considers
two rows, row i and row j. The goal of this step is to create a zero entry in row j and some
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column k. Therefore, one searches for a scalar s, such that for entries (j, k) and (i, k) it holds that
(j, k) + s · (i, k) = 0. For Q is closed under addition and multiplication and both entries (j, k) and
(i, k) are in Q, the scalar s will also be in Q. Therefore the entries (j, l) + −s · (i, l) for all other
columns l will also be in Q.

From this subsection, a method can be extracted to check whether applying a linear system solver
(such as HHL) to a certain matrix vector system will result in a solution for all the linear variables
or not. To check whether a certain matrix will give the desired output, simply row-reduce over Q.
If A′1 has rank n′ and A′2 = 0, then the linear system solver will give the desired output.
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7 Transforming equations

The equations in Equation (88) are defined over GF(2) [2]. However, HHL takes a complex matrix
as input. As Example 7.1 demonstrates, for a linear system that is defined over GF(2) , the
corresponding matrix-vector system cannot directly be assumed to hold over C. Therefore, Section
7.1 discusses how to transform a system over GF(2) to a system over C. When transforming a
system from GF(2) to C, non-boolean solutions become possible. Section 8.1 describes how to
handle this problem. Furthermore, depending on the approach used to transform a system from
GF(2) to C, the resulting system might not be sparse anymore, even if the original system was.
Section 7.2 discusses how to deal with this.

Example 7.1. Consider the following system of equations:
a+ b+ c = 0 mod 2

b = 1 mod 2

c = 0 mod 2

a+ c = 1 mod 2.

(94)

First transform this system of equations into a linear system Ax = y:

A =


1 1 1
0 1 0
0 0 1
1 0 1

, x =

ab
c

, y =


0
1
0
1

, (95)

Consider ẋ = (1, 1, 0) as a possible solution for this linear system. If this system is row-reduced
over C, the following might happen:

1 1 1 0
0 1 0 1
0 0 1 0
1 0 1 1

 ∼


1 0 0 −1
0 1 0 1
0 0 1 0
1 0 0 1

 (96)

This states that a = −1 and a = 1. This means that ẋ is not a solution anymore, in fact, it means
that there is no solution. This should never happen; if ẋ is a solution before row-reduction then ẋ
should also be a solution after row-reduction. However, ẋ = (1, 1, 0) is a solution to the system of
equations over GF(2) and it is not a solution to the system of equations over C. This means that
if a system of equations is defined over GF(2) and transformed into a matrix-vector system, this
matrix cannot be considered as a matrix over C.

7.1 From GF(2) to C

The mistake made in Example 7.1 is that the equations are defined over GF(2) and do not hold
over C. This means that the problem can be fixed by making sure that the equations do hold over
C. The next two subsections describe two different approaches to do so. The first approach is
to transform the equations to a matrix first and then transform the matrix, whereas the second
approach transforms the equations before they are transformed to a matrix.

7.1.1 Approach 1: matrix based

The first solution originates in the insight that if an equation equals zero modulo two, there is
an integer k such that the equation minus 2k equals 0 over C. The only downside is that this
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number k is not known (assuming that the solution of the system is not known) and is therefore
an additional variable in the system. Example 7.2 shows how this approach works.

Example 7.2. System Ax = y can be transformed to:

(A|2I) =


1 1 1 2 0 0 0
0 1 0 0 2 0 0
0 0 1 0 0 2 0
1 0 1 0 0 0 2

, x′ =



a
b
c
k1

k2

k3

k4


, y =


0
1
0
1

. (97)

The solution ẋ now corresponds to ẋ′ = (1, 1, 0,−1, 0, 0, 0)T , since only the first equation equals
two for ẋ and the other equations already equal 0 over C. Row reduction now leads to:

1 1 1 2 0 0 0 0
0 1 0 0 2 0 0 1
0 0 1 0 0 2 0 0
1 0 1 0 0 0 2 1

 ∼


1 0 0 0 0 −2 2 1
0 1 0 0 2 0 0 1
0 0 1 0 0 2 0 0
0 0 0 1 −1 0 −1 −1

 (98)

The solution ẋ′ is still a solution to this linear system. This means that this did solve the problem;
it did transform the equations over GF(2) to equations over C. However, it created as many new
variables, in the process, as there were equations to start with.

Example 7.2 shows that this approach introduces as many new variables as there are equations.
For the linear system of Mini-AES, this would mean that the system would never become well-
determined; even if the system would be written with more independent equations that variables,
adding a new variable per equation results in more variables than equations. Therefore, a different
approach [2, Chapt 5] will be used to transform the equations over GF(2) to equations over C.

Note that this matrix based approach is a useful approach in some other cases, for example the
Coppersmith attack. In this case, the modulus is assumed to be big and the resulting problem is
solved over the integers using LLL.

7.1.2 Approach 2: equation based

This approach rewrites all equations one by one: f 7→ C(f). It first distinguishes special cases
for equations with at most three terms, after which it solves the general case. One could use the
general approach for every case, but this leads to unnecessary equations and variables.

Let f be an equation and ẋ a boolean solution, meaning that f(ẋ) = 0 mod 2. Note that each
term of f can be at most one, since each entry of ẋ is boolean. Furthermore, if f(0) = 0 mod 2
or f(0) = 1 mod 2, then also f(0) = 0 or f(0) = 1 over C respectively.

If f has at most one term, then f(ẋ) also equals zero over C. So, take C(f) = f .

If f has two terms, then it can be written as f = a + b. Since f(ẋ) = 0 mod 2, either a = b = 0
or a = b = 1 in ẋ. In both cases a− b = 0 over C. So, in this case C(f) = a− b.
If f has three terms and f(0) = 1, then it can be written as f = a+ b+ 1. This means that in ẋ
either a = 0, b = 1 or a = 1, b = 0 and in both cases f(ẋ) = 2. This means that it works to take
C(f) = f − 2.

If f has three terms and f(0) = 0, then it can be written as f = a + b + c. It can be verified by
trying the four possible solutions that it works to pick C(f) = 2ab+ 2ac+ 2bc− f .
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When f has more than three terms, no such approach is known. However, if f has t terms, it is
known that f(ẋ) is at most t and that one of the equations f(ẋ), f(ẋ)− 2, f(ẋ)− 4, ..., f(ẋ)− 2b t2c
equals zero over C. If one of these equations equals zero over C, then the product of these equations

equals zero over C. So, in this general case, use C(f) =
∏bt/2c
k=f(0)(f − 2k). Note that if f(0) = 1,

then there is no reason to add f to the product, therefore it is sufficient to start at k = f(0).

Example 7.3. Above, several different cases are discussed:

t = 1
t = 2 f(0) = 1
t = 2, f(0) = 0
t = 3, f(0) = 1
t = 3 f(0) = 0
t = 4 f(0) = 1
t = 4 f(0) = 0


⇒

f1 = a
f2 = a+ 1
f3 = a+ b
f4 = a+ b+ 1
f5 = a+ b+ c
f6 = a+ b+ c+ 1
f7 = a+ b+ c+ d


⇒

C(f1) = a
C(f2) = a− 1
C(f3) = a− b
C(f4) = a+ b− 1
C(f5) = 2ab+ 2ac+ 2bc− f5

C(f6) = (f6 − 2)(f6 − 4)
C(f7) = f7(f7 − 2)(f7 − 4).

(99)

Clearly, for i = 1, ..., 7, if ẋ ∈ {0, 1}4 is a solution of function fi, i.e. fi(ẋ) ≡ 0 mod 2, then ẋ is
a solution of D(fi), i.e. C(fi(ẋ)) = 0. Note that f ’s with t ≥ 4 work just like f6 or f7.

By transforming the equations over GF(2) to C so systematically, it also becomes possible to com-
pute the number of terms of the resulting equations, using the multinomial theorem [12, Chapt.4
]. Let f have t terms and f(0) = 0 and take q = d t2e+ 1. Then the number of terms in C(f) is:

T (C(f)) =

(
t+ q

t

)
− 1. (100)

Let f have t terms and f(0) = 1 and take q = d t2e (when not confusing, f is said to have t + 1
terms). Then the number of terms in C(f) is:

T (C(f)) =

(
t+ q

t

)
. (101)

This approach can be used to transform all equations in Equation (88) to equations over C, one by
one. A lot of these equations only have two or three terms to start with, meaning that transforming
them will not add any variables or equations. However, there are also some equations with more
terms and transforming these will result in equations with a larger number of terms. This increased
number of terms increases the complexity of the problem, since it decreases the sparsity and the
complexity of HHL depends on this sparsity. Section 7.2 will elaborate this point.

7.2 Decrease sparsity

Equation (65) states that the complexity of HHL depends on the sparsity (s) of the input matrix,
where s is defined in Definition 3.1.

By transforming the equations according to Section 7.1, the equations are not as sparse anymore.
Therefore, this section discusses two approaches of creating a sparser matrix. The first approach
is to rewrite every single equation, introducing more variables (u’s), as done in [2]. In the second
approach, the non-sparse matrix is created first. The main idea of this approach is that every time
a row contains to many non-zero’s, some of these non-zero’s are moved to a new row and column
(note the correspondence with the u variables).

Both approaches are very similar, in both cases new rows and columns are added every time a row
contains too many non-zero’s. The main difference is that in the first approach new variables are
defined, whereas the second approach does not lead to more variables. The effect of this difference
will become clear in Section 8.
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7.2.1 Approach 1: equation based

Every equation can be made 3-sparse by introducing new equations and new variables. A commonly
known way to do so, creates as many new equations as new variables. This means that the
solution space of the linear system is not affected by this approach. This method is also described
in [2, Chapt 5]. However, this reports makes some adjustment and includes an example to show
that the approach described by [2, Chapt 5] is not correct and the method described in this report
is correct.

Let s > 2, s ∈ N be the desired sparsity and f =
∑t
k=1mk be a polynomial with more than s

terms, i.e. t > s. Set St = d t−ss−2e. The following method will construct polynomial set S(f, s) =

{f̂1, ..., f̂St+1} that has the same solution set as f and that consists of polynomials that are all
s-sparse, i.e. polynomials that have (at most) s terms.

Define a set of new variables Uf = {u1, ..., uSt} and define S(f, s) = {f̂1, ..., f̂St+1}, where:

f̂1 = −u1 +

s−1∑
k=1

mk (102a)

f̂j = uj−1 − uj +

j(s−2)+1∑
k=(j−1)(s−2)+2

mk for j = 2, ..., St (102b)

f̂St+1 = uSt +

t∑
k=St(s−2)+2

mk. (102c)

It is easy to verify that each f̂ in Equation (102) is s-sparse. Besides, the solution of f is also a

solution to all f̂ ’s. This can be shown by picking:

u1 =

s−1∑
k=1

mk (103a)

uj =

j(s−2)+1∑
k=1

mk for j = 2, ..., St. (103b)

For this results in:

f̂1 = −
s−1∑
k=1

mk +

s−1∑
k=1

mk = 0 (104a)

f̂j =

(j−1)(s−2)+1∑
k=1

mk −
j(s−2)+1∑
k=1

mk +

j(s−2)+1∑
k=(j−1)(s−2)+2

mk

= −
j(s−2)+1∑

(j−1)(s−1)+2

mk +

j(s−2)+1∑
k=(j−1)(s−2)+2

mk = 0 for j = 2, ..., St

(104b)
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f̂St+1 =

St(s−2)+1∑
k=1

mk +

t∑
k=St(s−2)+2

mk

=

d t−ss−2 e(s−2)+1∑
k=1

mk +

t∑
k=d t−ss−2 e(s−2)+2

mk

=

t−s+1∑
k=1

mk +

t∑
k=t−s+2

mk =

t∑
k=1

mk = f.

(104c)

This means that f̂j = 0 for j = 1, ..., St and that f̂St+1 = 0 if and only if f = 0. So, this method
results in a set of polynomials that are each s-sparse and have the same solution set as f .

Remark. In [2, Chapt 5], similar f̂ ’s are defined. However, in the paper, the approach is applied
to equations over GF(2). Therefore, the minus signs are omitted. In Section 9, this approach is
both applied to equations over GF(2) and to equations over C.

Example 7.4 shows the differences between the method described in this section and the one
described in [2, Chapt 5]. The example uses s = 3 since that is what [2, Chapt 5] prescribes for
the attack on AES.

Example 7.4. Let s = 3 and f = a + b + c + d + e, i.e. t = 5. Then St = d t−ss−2e = 2 and
Uf = {u1, u2}.
For the approach described in [2, Chapt 5]:

f̂1 = a+ b+ u1 (105a)

f̂2 = c+ u1 + u2 (105b)

f̂3 = d+ e+ u2. (105c)

If each f̂ has to be zero, one can conclude from the first two equations that u1 = −(a + b) and
u2 = −c − u1 = a + b − c. Substituting this in the final equation results in d + e + a + b − c = 0.
Since f also has to be zero, one could also write a+ b+ c+ d+ e = 0, hence d+ e+ a+ b = −c.
Combining the two results in −2c = 0 and this can not be what the authors have meant.

For the method in this report:

f̂1 = a+ b− u1 (106a)

f̂2 = c+ u1 − u2 (106b)

f̂3 = d+ e+ u2. (106c)

From the first two of these equations can be concluded that u1 = a+ b and u2 = c+ u1 = a+ b+ c.
Then the third equation reads d+ e+ a+ b+ c which equals f . So, these equations are all zero if
and only if f equals zero, which is probably what the authors meant. Also note the similarity with
the u variables constructed in this example and the ones defined in Equation (103).

Remark. The reason that they prescribe this is not entirely clear. Using s < 3 does not work, since
then f̂j for j = 2, ..., St will only consist of u variables and there will not be new terms of f added
to the polynomials. However, one could of course use an s > 3. The paper probably uses s = 3
since the complexity of HHL depends on s, so it might pay of to decrease the sparsity as far as
possible. However, the complexity only contains a quadratic term of s. This means that the total
complexity might be lower if a bigger s is used to decrease the number of variables and equations
added in this step.
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7.2.2 Approach 2: matrix based

The main idea of the previous approach is that for each equation, one takes as many terms as
possible (i.e. s− 1) and then adds a new variable to create a correct equation again. Then a new
equation is created, starting with the new variable and adding as much of the original equation
as possible again. If needed, a new variable is added to create a correct equation again. This
continues until the last term of the original equation is added. The same can be done with rows
of a matrix. This is best explained by Example 7.5.

Example 7.5. Assume s = 3, the same as in Example 7.4. Consider matrix A, this matrix will
be altered, resulting in the 3-sparse matrix A′.

The first three rows of A already have at most three non-zero entries, so these rows will just be
copied. This is the top left part of A′. For row four, which is 4-sparse, one new row and column
will be added. This results in the part of A′ between the two line, both horizontally and vertically.
For row five, which is 5-sparse, two new rows and columns will be added. This results in the part
of A′ below the second horizontal line and right of the second vertical line.

A =


0 1 0 0 0
1 0 0 1 0
0 1 1 1 0
1 1 0 1 1
1 1 1 1 1

⇒ A′ =



0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 1 0 0 0 −1 0 0
0 0 0 1 1 1 0 0
1 1 0 0 0 0 −1 0
0 0 1 0 0 0 1 −1
0 0 0 1 1 0 0 1


. (107)
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8 Macaulay matrix approach

Section 6 shows that the matrix vector system derived from Mini-AES, is not full rank. An
advanced linearization technique, that results in a full rank matrix, is to create a Macaulay matrix.
This approach uses shifts of the polynomials. A shift of a polynomials is simply a multiplication
of a polynomial with a monomial to create a new polynomial with degree d for some d ∈ N. The
idea is that by doing this for all polynomials and all monomials, with the only restriction that
the polynomials have degree d ≤ D, more equations than variables are created. Therefore, if D
is chosen large enough, this approach should lead to a full rank matrix. This general approach of
shifting the polynomials with all possible monomials will create an exponentially large matrix.

Note that it might be possible to chose these shifts smarter. The general approach is to shift
each polynomial by each monomial (with the restriction on the degree). However, one can also
try to find combinations of polynomials and monomials for which multiplication results in more
new equations than new non-linear terms, without multiplying every equation with the monomial.
These are called smart shifts. However, the effect of these are limited in the case of (Mini-)AES,
as shown in Appendix H.1.2. Therefore, this idea will not be used in the rest of this report; only
the general Macaulay approach will be considered.

Note furthermore, that Section 6 also shows that there might not be a unique solution. However,
if a matrix can be created with a sufficiently large rank, the number of solutions will be limited
enough to have reasonable probability of finding the desired solution.

This section gives a general definition of a Macaulay linear system and a Macaulay matrix. In the
process of creating a Macaulay matrix, there are two decisions to be made; both consisting of two
options, which leads to four slightly different Macaulay matrices. The first decision is the method
to make sure that non-boolean solutions are excludes. These methods will first be explained in
Section 8.1. Then the definition of a Macaulay matrix will be given in Section 8.2. This section
ends with a comparison of these four Macaulay matrices in Section 8.3.

Remark. Even though this section has great similarities with [2], a slightly different notation is
used to make sure that the other options can also be easily defined with the same notation.

8.1 Non-boolean solutions

As described in Section 7.1, by transforming a system of equations from GF(2) to C, also non-
boolean solutions are made acceptable. Example 8.1 shows that this does not have to be a problem,
since some solutions can be easily transformed to boolean solutions. In contrast, Example 8.2 shows
that some solutions are not that easily transformed.

Example 8.1. Consider the following system of equations:
0 = x2 − 1

0 = y − x2y

0 = y2 − 2y.

(108)

Over C the following solutions are possible (1, 0), (1, 2), (−1, 0) and (−1, 2), while over GF(2) the
unique solution is (1, 0). However, if these values for the variables are taken modulo 2, every
solution boils down to the boolean solution (1, 0). So, irrespectively to which of these four solutions
was found, the correct boolean solution can be derived.
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Example 8.2. Consider the following system of equations:{
0 = x2 − y
0 = y2 − 2y.

(109)

Over C both (−
√

2, 2), (
√

2, 2) and (0, 0) are correct solutions, while over GF(2) the unique solution
is (0, 0). If one would find (

√
2, 2) or (−

√
2, 2), it is not clear how to transform this into a correct

boolean solution.

8.1.1 Approach 1: add field equations

Variable x is a boolean over C if and only if x2 − x = 0. Therefore, the first approach adds
equations x2 − x = 0 for each variable in the system. These equations are called field equations
for they ensure that the solutions lie in the correct field. Example 8.3 shows that this approach
works as expected.

Example 8.3. This approach will first be applied to Example 8.1 and then to Example 8.2.

0 = x2 − 1
0 = y − x2y
0 = y2 − 2y

⇒
0 = x2 − 1
0 = y − x2y
0 = y2 − 2y
0 = x2 − x
0 = y2 − y

⇒ (x, y) = (1, 0). (110a)

0 = x2 − y
0 = y2 − 2y

}
⇒

0 = x2 − y
0 = y2 − 2y
0 = x2 − x
0 = y2 − y

⇒ (x, y) = (0, 0). (110b)

One can easily verify that the given solutions are the only solutions (over C) of the system, which
means that this approach finds all the solutions of the original system and excludes any non-boolean
solutions.

8.1.2 Approach 2: remove squares

This approach is also based on the idea of field equations. However, instead of adding the equations
to the system, all equations will be simplified using these field equations. This means that every
power greater than one will be replaced by one (since x2 − x = 0⇒ x = x2 = x3 = ...). Example
8.4 shows that this approach works as expected.

Example 8.4. This approach will first be applied to Example 8.1 and then to Example 8.2.

0 = x2 − 1
0 = y − x2y
0 = y2 − 2y

⇒ 0 = x− 1
0 = y − xy
0 = y − 2y

⇒ (x, y) = (1, 0). (111a)

0 = x2 − y
0 = y2 − 2y

}
⇒ 0 = x− y

0 = y − 2y

}
⇒ (x, y) = (0, 0). (111b)

One can easily verify that the given solutions are the only solution (over C) of the system, which
means that this approach finds all the solutions of the original system and excludes any non-boolean
solutions.
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Remark. Note that, if one tries to solve a system of non-linear equations directly, this approach
does not necessarily work. However, it does work when the Macaulay approach is used, as explained
in the next subsection.

8.2 Definition of the Macaulay matrix

In order to create a Macaulay matrix, a decision has to made about the definition of the set of
polynomials that will be considered. The AES equations are defined over GF(2). However, the
HHL algorithm treats the input matrix as a complex matrix. Section 7.1 already showed how
to make sure that the equations are correct over C and Section 8.1 described to ways to exclude
non-boolean solutions.

In Section 5 the set of polynomials that need to be solved for Mini-AES are defined. The variables
can be denoted as X = {x1, ..., xn}, using lexicographic monomial ordering for x1 > ... > xn. The
polynomials can then be denoted as F1 = (f11

, ..., f1r ) ⊂ B[X] and a is a solution of F1 if and only
if ∀i=1,...,r : f1i(a) = 0 and ∀j=1,...,n : aj = 0 ∨ aj = 1. Defining F1 over B[X] essentially means
simplifying all exponents to one (for example x2 7→ x, x3 7→ x). The same set of solutions can be
defined using polynomials over the complex field F2 = (f21 , ..., f2r ) ⊂ C[X] and adding the field
equations H = (x2

1−x1, ..., x
2
n−xn) ⊂ C[X]. This corresponds to the two approaches to make sure

that non-boolean solutions are excluded, discussed in Section 8.1.

Clearly VB(F1) = VC(F2,H), where VB(F1) denotes the set of boolean solutions of F1 and
VC(F2,H) denotes the complex solutions that are both a solution to F2 and to H. So, the first
decision that needs to be made is whether to use the representation F = F1 or F = F2 ∪ H, i.e.
whether to add field equations or to remove squares.

Remark. This method will always result in the same solution as the method in which the field
equations are added. Consider a Macaulay matrix based on F = F2 ∪ H. Every term that is
found in (shifts of) an equation in F2 is also found in (a shift of) an equation in H. This means
that row-reduction will simplify all (shifts of all) equations in F2, essentially by substituting the
field equations, until only the (shifts of) the equations in H contain squares. If the squares are
only in (shifts of) the equations in H, then these (shifts of) the equations in H do not give any
additional information to the system about the rest of the the linearized system (normally the field
equations give the information that x = x2, but if this x2 only appears in the field equations the
linearized system only knows that x is equal to some other variable). Since, the (shifts of) the
equations in H do not give any additional information at this point, they can be removed. The
remaining linearized system is exactly the system that would have been created if the Macaulay
matrix was based on F1 (note that F1 and F2 contain the same equations, the only difference
is that the equations in F1 are defined over B[X] and the equations in F2 are defined over C[X])
and the squares would have been removed in every step instead of at the end. Note that even
though both methods (using the field equations or removing the squares) will result in the same
solution, this does not mean that the choice for the method does not influence the dimensions of
the Macaulay matrix.

Definition 8.1. (Maximum degree) For variables x1, ..., xn and powers p1, ..., pn, where n, p1, ..., pn ∈
N+, the max degree of monomial xp11 x

p2
2 · · ·xpnn equals max{p1, ..., pn}.

Definition 8.2. (Total degree) For variables x1, ..., xn and powers p1, ..., pn, where n, p1, ..., pn ∈
N+, the total degree of monomial xp11 x

p2
2 · · ·xpnn equals p1 + ...+ pn.

When a set F = (f1, ..., fk) is chosen, the key concept of the Macaulay matrix approach is to create
a set of monomials and multiply (i.e. shift) all the polynomials by all these monomials, with the
restriction that the resulting polynomial has a degree below a certain upper bound. Here degree
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can either mean maximum degree or total degree, as defined in Definition 8.1 and Definition 8.2
respectively. This is the second decision that needs to be made. Denote degm(f) and degt(f) the
maximum and total degree of polynomials f respectively. Define Xi = xi11 x

i2
2 ...x

in
n and Dm and

Dt the upper bound of the maximum degree and the total degree respectively. Then the set of
monomials, for the max degree and the total degree respectively, can be defined as:

m≤Dm =
{
Xi|i = (i1, ..., in) ∈ {0, ..., Dm}n

}
(112a)

m≤Dt =
{
Xi|i = (i1, ..., in) ∈ {0, ..., Dt}n, 0 ≤ i1 + ...+ in ≤ Dt

}
. (112b)

Denote D the upper-bound for either the maximum degree or the total degree. The Macaulay
matrix is created by multiplying polynomial fl ∈ F for l = 1, ..., r by monomial (m≤D)c,l for
c = 1, ..., |m≤D| where (m≤D)c,l is defined as:

(m≤D)c,l =

{
(m≤D)c if deg((m≤D)c · fl) ≤ D
0 otherwise.

(113)

Remark. Note that using (m≤D)c,l instead of (m≤D)c ensures the restriction on the degree of
the resulting polynomial. If the multiplication leads to a polynomial with degree ≤ D then the
resulting polynomial is included in the Macaulay matrix, otherwise, a zero-row is included in the
Macaulay matrix. The reason to include this zero-row and not skip this multiplication has to do
with the query complexity of the HHL algorithm [2].

The Macaulay linear system is MF,DmD = bF,D, where MF,D is called the Macaulay matrix,
defined in Equation (114a), and mD and bF,D are defined in Equations (114b) and (114c).

MF,D =

(m≤D)1,1 · f1

(m≤D)2,1 · f1

...
(m≤D)|m≤D|,1 · f1

(m≤D)1,2 · f2

...
(m≤D)|m≤D|,r · fr



(m≤D)1 < (m≤D)2 < ... < (m≤D)|m≤D|

. . .

. . .

. . .

. . .

. . .

. . .

. . .


(114a)

mD =


(m≤D)1

(m≤D)2

...
(m≤D)|m≤D|

 (114b)

bF,D =



(m≤D)0 = 1

(m≤D)1,1 · f1(0)

(m≤D)2,1 · f1(0)

...

(m≤D)|m≤D|,1 · f1(0)

(m≤D)1,2 · f2(0)

...

(m≤D)|m≤D|,r · fr(0)


(114c)
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8.3 Four different Macaulay matrices

As explained above, there are four different Macaulay matrices possible; Macaulay matrix using

• max degree and field equations, or,

• max degree and removing squares, or,

• total degree and field equations, or,

• total degree and removing squares.

8.3.1 Dimensions

For each Macaulay matrix, the dimensions can be expressed in the number of variables n, the
number of equations r, and the upper-bound on the solving degree. Note that an upper bound
on the solving degree corresponds to an upper bound on D. These expressions are summarized in
Table 2.

The number of columns in a Macaulay matrix equals the number of monomials in set m≤D. Recall
Equation (112a) for the max degree. The are n entries in i, which can each take one of D + 1
values. This are (D + 1)n monomials, excluding the constant monomial results in (D + 1)n − 1
columns. Note that this only holds for the method of adding field equations. Removing squares of
the monomials, essentially means that now i ∈ {0, 1}n. For D ≥ 1 (which can be assumed without
loss of generality, for D = 0 would only include the constant monomial and will not lead to a useful
Macaulay matrix) this leads to 2n monomials, excluding the constant monomial results in 2n − 1
columns.

Now recall Equation (112b) for the total degree. This essentially divides the total degree d =
1, ..., D over n entries of i. The number of monomials of a certain degree d ∈ {1, ..., D}, equals the
number of terms in (x1 + ...+ xn)d (this product results in a sum, with coefficients, of the specific
monomials). The number of terms in (x1 + ... + xn)d can be computed using the multinomial
theorem [12, Chapt. 4]. For a specific d ∈ {1, ..., D}, the number of monomials is

(
d+n−1
n−1

)
, so the

total number of columns is
∑D
d=1

(
d+n−1
n−1

)
. Now for removing the squares, the total degree of a

monomial is simply the number of variables in this monomial. For a certain degree d ∈ {1, ..., D},
this essentially picks d variables out of the total of n variables, this gives

(
n
d

)
monomials. So, the

total number of columns is
∑D
d=1

(
n
d

)
.

The number of rows can be easily computed. The number of columns equals the number of
monomials that each equation will be multiplied by and each multiplication leads to one row in
the matrix. Note that the constant one is not considered as a column of the Macaulay matrix (it is
included in the vector bF,D). However, the equations multiplied by one should also be included in
the Macaulay matrix. This means that if the method of removing the squares is used, the Macaulay
matrix will have (#cols+1)r rows, where #cols is the number of columns in the Macaulay matrix.
When using field equations, also these equations are multiplied by all monomials and there are n
field equations. Therefore, this option leads to (#cols+ 1)(n+ r) rows.

Above is already mentioned that the solving degree is at least one (i.e. D should be at least one)
and there are more trivial bounds on the solving degree (i.e. on D). These trivial bounds are
summarized in Table 3.

When using field equations, the solving degree is at least two (i.e. D should be at least two), for
both using the max degree and the total degree. Field equations are of the form x2−x = 0, which
means they have a total degree and a max degree of two. When an upper bound on the degree of
less than two is used, the field equations will be excluded from the Macaulay matrix.
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Field equations Remove squares

Number of columns Number of rows Number of columns Number of rows

M
a
x

d
eg

re
e

(D + 1)n − 1 (#cols+ 1)(n+ r) 2n − 1 (#cols+ 1)r

T
ot

a
l

d
eg

re
e

∑D
d=1

(
d+n−1
n−1

)
(#cols+ 1)(n+ r)

∑D
d=1

(
n
d

)
(#cols+ 1)r

Table 2: Dimensions of Macaulay matrices

Field equations Remove squares

M
ax

d
eg

re
e

2 ≤ D ≤ 3n D = 1

T
ot

al
d

eg
re

e

2 ≤ D ≤ 3n2 1 ≤ D ≤ n

Table 3: Trival bounds on D for each Macaulay matrix

Removing squares leads to an upper-bound for the solving degree (i.e. for D) both when using
max degree as when using total degree. When removing powers of the variables, each monomial
will have a max degree of one, and total degree ≤ n. So, one should use for the max degree D = 1
and for the total degree D ≤ n.

When the max degree and field equations are used, one should use D ≤ 3n, according to [2]. In
according to [2] 3n is called the complete solving degree (CSD), meaning that for a general system
of equations, the Macaulay matrix using D = 3n will always be solvable. This translates to a total
degree of 3n2, when using field equations.

Besides, note that the degree of the original equations does not have to be a lower-bound of the
solving degree (i.e. D). Choosing a D lower than the degree of the original equations does mean
that some equations are not included in the Macaulay matrix. However, this does not necessarily
mean that information is lost, since the equations are not necessarily independent.

8.3.2 Comparison

The literature [2] uses the Macaulay with max degree and field equations. One of the benefits of
working with a complex field and adding field equations is that this method is easy to implement.
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The down side is that a lot more variables need to be defined. It might be more work to create
a Macaulay matrix when working with a boolean field, since this means that after every multipli-
cation a simplification needs to be done (essentially removing all the squares, which Sage can do
automatically). However, this does result in less non-linear terms (for instance x2

1x2 7→ x1x2) and
remember that for each non-linear term a new variable needs to be defined in order to linearize
the system.

Furthermore, working with field equations results in more equations (the field equations). It is not
trivial whether this is a benefit or not. More equations might result in a higher rank, which means
a lower D can be used. However, adding field equations instead of removing squares results in an
exponentially larger matrix. When max degree is used this results in (D + 1)n − 1 columns, for
D ≥ 2, versus 2n − 1 columns. When total degree is used and the same D is used, this results in∑D
d=1

(
d+n−1
n−1

)
columns versus

∑D
d=1

(
n
d

)
columns. Note that the number of rows depends linearly

on the number of columns.

Besides, if the same D is used, working with the max degree instead of the total degree means
that more monomials will be added. For example when D = 2 the monomials x2

1x2, x1x
2
2 and x2

1x
2
2

will be included when the maximum degree is used (since they all have maximum degree two) and
will be excluded when the total degree is used (since they have total degree three, three and four
respectively).

It can be concluded that for the same D, working with field equations instead of removing squares
results in a larger Macaulay matrix and working with max degree instead of with total degree
results in a larger Macaulay matrix. This raises the question whether this method, as used in [2],
actually results in the most efficient Macaulay matrix. The most efficient Macaulay matrix, means
the Macaulay matrix with smallest dimensions, that results in a solvable system according to
Definition 6.2. To be able to answer this question, for a specific set of r equations on n variables,
one has to known what the smallest D is for which the Macaulay matrix is solvable. This is called
the solving degree (SD). Then the dimensions of each Macaulay matrix, for the corresponding
solving degree, can be computed and the most efficient one can be picked. The hope is that one of
the Macaulay matrices is the most efficient, for each set of r equations on n variables, or at least
for similar sets. If this is the case, then one can try a small example, similar to the real problem
at hand, pick the most efficient Macaulay matrix and create this Macaulay matrix for the real
problem. In order to investigate which Macaulay matrix is the most efficient, a program is written
that decides for each options what upper-bound for the degree is needed, i.e. what the solving
degree is. All options are tested for two sets of polynomials. These tests can be found in Examples
8.5 and 8.6.

Example 8.5. Consider the following system of non-linear equations in two variables:{
0 = x0 − 1

0 = x0x1 − 1
(115)

The corresponding matrix vector system is

[A|b] =

(
1 0 0 1
0 0 1 1

)
(116)

This matrix is clearly not solvable according to Definition 6.2. Therefore, the four different
Macaulay matrices are created. The dimensions of these matrices are given in Table 4, this table
also states for each matrix whether or not it is solvable. Some example matrices of this table are
given in Appendix I.
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Field equations Remove squares

Dimensions Solvable Dimensions Solvable

M
a
x

d
eg

re
e 1 - - 8× 3 Y

2 36× 8 Y - -

3 64× 15 Y - -

T
ot

a
l

d
eg

re
e

1 - - 6× 2 N

2 24× 5 Y 8× 3 Y

3 40× 9 Y 8× 3 Y

Table 4: Macaulay matrices for system 1

Example 8.6. Consider the following system of non-linear equations in three variables:
0 = x0 − 1

0 = x0x1 − 1

0 = x0x2 + x1x2.

(117)

The corresponding matrix vector system is

[A|b] =

 1 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 1 1 0

 (118)

This matrix is clearly not solvable according to Definition 6.2. Therefore, the four different
Macaulay matrices are created. The dimensions of these matrices are given in Table 5, this table
also states for each matrix whether or not it is solvable. Some example matrices of this table are
given in Appendix I.

Field equations Remove squares

Dimensions Solvable Dimensions Solvable

M
ax

d
eg

re
e 1 - - 24× 7 Y

2 162× 26 Y - -

3 384× 63 Y - -

T
ot

al
d

eg
re

e

1 - - 12× 3 N

2 60× 9 N 21× 6 N

3 120× 19 Y 24× 7 Y

Table 5: Macaulay matrices for system 2
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The conclusion of Examples 8.5 and 8.6 is that the smallest solvable matrix is found when either
the max or the total degree is used and the squares are removed. Also when the total degree
is used and the squares are removed, a smaller matrix is sufficient than when the max degree
and field equations are used. This means that for these examples, the option used by [2] is the
least efficient. This is not enough evidence to conclude that the literature uses the least efficient
Macaulay matrix and that removing squares with either the max or the total degree leads to the
most efficient Macaulay matrix. However, it is clear that for the same D the Macaulay matrix
with field equations and max degree has the largest dimensions, so it is wise to seriously doubt the
strategy chosen by [2] and do further research on Macaulay matrices for AES specifically.
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9 Applying HHL to Mini-AES

As Sections 7 and 8 show, to go from (Mini-)AES to input that is suitable for HHL, four things
should be handled: translating from GF(2) to C, decrease sparsity, and creating a Macaulay matrix,
excluding non-boolean solutions in the process of creating a Macaulay matrix.

Section 7.1 discusses two approaches to transform the equations. However, it is also shown that
the matrix based approach is not suitable for this report’s attack. Therefore, only the equation
based approach is considered. This means that this has to be done before creating the Macaulay
matrix.

Section 7.2 discusses two approaches to decrease the sparsity. The equation based approach has
to be done before creating the Macaulay matrix. It can be done before or after transforming the
equations from GF(2) to C. The matrix based approach has to be done after creating the Macaulay
matrix. Besides, one could also choose to not decrease the sparsity. The HHL algorithm will still
work on a less sparse matrix, only the complexity will be higher. Since the complexity depends
on both the sparsity and the dimensions of the input matrix, where decreasing the sparsity will
increase the dimensions of the matrix, this is a trade-off. Note that decreasing sparsity actually
means decreasing sparsity to some value s > 2 ∈ N, where s is the maximum number of non-zeros
per row of the matrix (or terms per equation since s terms in an equation results in s non-zeros
in a row of the matrix). So one could try some different values for s to check which leads to de
lowest complexity. However, for simplicity reasons, this project will only consider decreasing the
sparsity to s = 3 or not decreasing the sparsity at all.

Remark. The complexity of HHL is minimal for s = 3 when the matrix based approach of de-
creasing the sparsity is used, assuming that this does not influence κ too much. If A is an s0-
sparse Macaulay matrix of dimensions N × N and A′ is the corresponding s1-sparse Macaulay
matrix, where s1 < s0, created using the matrix based approach, then A′ has dimensions N ′×N ′,
where N ′ ≤ N + (s0 − s1)N . The complexity of HHL applied to A′ is O

(
log (N ′)s2

1κ
2/ε
)

=

O
(
log (N + (s0 − s1)N)s2

1κ
2/ε
)
. Since log (N + (s0 − s1)N)s2

1 is an increasing function for in-
creasing s1, the complexity is minimal for the smallest possible s1, i.e. s1 = 3.

Section 8.1 discusses two approaches for excluding the non-boolean solutions. Both approaches are
executed in the process of making the Macaulay matrix. Here the field equations are added to the
set of equations, or the squares are removed when new equations are formed.

9.1 Four strategies to create the input for HHL

This means that there are four strategies to go from the (Mini-)AES equations to input for HHL.
Strategy:

1. Transform equations from GF(2) to C, then create Macaulay matrix.

2. Transform equations from GF(2) to C, then create Macaulay matrix, then decrease sparsity
of Macaulay matrix.

3. Transform equations from GF(2) to C, then decrease sparsity of equations, then create
Macaulay matrix.

4. Make equations 3-sparse, transform sparse equations from GF(2) to C, then create Macaulay
matrix.

In the strategies above, there are two points in which the dimensions of the Macaulay matrix are
heavily influenced. Transforming non-sparse equations from GF(2) to C, which is done in Stratgies
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1, 2 and 3, results in a lot of terms. This means that it is a lot of work to make the equations sparse
afterwards. When the equations are made sparse before creating the Macaulay matrix, which is
done in Strategy 3, this introduces a lot of new variables. This is the second point that heavily
influences the dimensions of the Macaulay matrix. This can be avoided by creating the Macaulay
matrix first, which is done in Strategies 1 and 2. It is possible to make the Macaulay matrix sparse
at this point, which is done in Strategy 2.

Also the first point in which the dimensions of the Macaulay matrix are heavily influenced can
be avoided. Transforming 3-sparse equations from GF(2) to C results in equations of at most six
terms. Therefore, it might be beneficial to make the equations 3-sparse first, which is done in
Strategy 4, and then transform the equations from GF(2) to C. This way, the equations that are
made three sparse have less terms than in the strategies above, which results in introducing less
variables in the step of decreasing the sparsity. This strategy is done in [2].

Intuitively, it is best to not start by transforming the equations from GF(2) to C, since a blow-up
here results in a way bigger blow-up in the next step. To evaluate the strategies, the dimensions
of the matrix resulting of Strategies 2, 3, and 4 will be investigated using a small example. Also
Strategy 1 will be investigated as a reference. All four strategies will be applied on all four possible
Macaulay matrices as defined in Section 8.3. This experiment is given in Example 9.1.

Example 9.1. Consider the following system of non-linear equations on two variables, over GF(2):

F =


0 = x0x1 + x0 + x1 + 1,
0 = x0 + 1,
0 = x2 + 1,
0 = x0x1 + 1

. (119)

Transforming these equations from GF(2) to C, using the equation based approach from Section
7.1, results in:

C(F) =


0 = x2

0x
2
1 + 2x2

0x1 + 2x0x
2
1 + x2

0 − 2x0x1 + x2
1 − 4x0 − 4x1 + 3,

0 = x0 − 1,
0 = x2 − 1,
0 = x0x1 − 1

. (120)

Then making the equations 3-sparse, using the equation based approach from Section 7.2, results
in:

S(C(F), 3) =



0 = x2
0x

2
1 + 2x2

0x1 − u1,
0 = u1 + 2x0x

2
1 − u2,

0 = u2 + x2
0 − u3,

0 = u3 − 2x0x1 − u4,
0 = u4 + x2

1 − u5,
0 = u5 − 4x0 − u6,
0 = u6 − 4x1 + 3,
0 = x0 − 1,
0 = x2 − 1,
0 = x0x1 − 1



. (121)

Making the equations in F 3-sparse, using the equation based approach from Section 7.2, results
in:

S(F , 3) =


0 = x0x1 + x0 − u
0 = u+ x1 + 1
0 = x0 + 1
0 = x2 + 1
0 = x0x1 + 1.

(122)
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Then transforming these equations from GF(2) to C, using the equation based approach from Sec-
tion 7.1, results in:

C(S(F , 3)) =


0 = 2x0x1x0 + 2x0x1u+ 2x0u− x0x1 − x0 − u
0 = u+ x1 − 1
0 = x0 − 1
0 = x2 − 1
0 = x0x1 − 1.

(123)

Strategies 2 and 1 create Macaulay matrices of C(F), Strategy 2 creates a Macaulay matrix of
S(C(F), 3), and Strategy 4 creates a Macaulay matrix of C(S(F , 3)). The results of creating all
four Macaulay matrices, using all four strategies, are summarized in Table 6. The D’s in this table
the minimum values such that the corresponding Macaulay matrix is solvable.

Field equations Remove squares

Dimensions D Dimensions D

S
tr

.
1 Md 189× 26 2 32× 7 1

Td 70× 9 2 28× 6 2

S
tr

.
2 Md 201× 38 2 34× 9 1

Td 71× 10 2 29× 7 2

S
tr

.
3 Md 255879× 19683 2 6656× 511 1

Td 550× 54 2 520× 51 2

S
tr

.
4 Md 729× 80 2 80× 15 1

Td 135× 14 2 55× 10 2

Table 6: Macaulay matrices for strategies 1,2,3 and 4

The conclusion of Example 9.1 for each strategy is that the Macaulay matrix with total degree
and removing the squares is the most efficient. For this Macaulay matrix, Strategy 3 is the least
efficient.

Strategies 1 and 2 include the same equations and monomials, but the Macaulay matrices in
Strategy 1 are 4-sparse whereas the Macaulay matrices in Strategy 2 are made 3-sparse, resulting
in a slight difference in dimensions. The reason for this minimal difference , is the limited number
of variables in this example. Only two variables were used, meaning that after removing squares,
only four monomials exist: x0, x1, x0x1, and 1. Therefore, the matrix for removing squares is
only 4-sparse and decreasing the sparsity of this matrix only includes one more column and row.
However, the more variables are used, the more new columns and rows have to be added to create
a 3-sparse matrix. Since the complexity of HHL depends quadratically on the sparsity s and
logarithmically on the size of the matrix, and the matrix grows only linearly in Strategy 2, this
strategy is considered more efficient than Strategy 1, when applied to (Mini-)AES.

Strategy 3 transforms the equations from GF(2) to C, then makes the equations 3-sparse and
creates the Macaulay matrix afterwards. Therefore, the Macaulay matrix is created using more
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variables, resulting in more monomials for the same degree. This means that the number of rows
and the number of columns is way larger in Strategy 3 than in Strategies 1 and 2.

Strategy 4 also creates a Macaulay matrix using more variables than Strategies 1 and 2, but less
variables than Strategy 3. Therefore, the dimensions of the Macaulay matrices in Strategy 4 are
larger than in Strategies 1 and 2, but smaller than in Strategy 3. Furthermore, the Macaulay
matrices in Strategy 4 are always at most 6-sparse, since the equations are first made 3-sparse and
transforming equations that are 3-sparse from GF(2) to C result in equations that are at most
6-sparse. This means that it would not be fair to compare the dimensions of the matrices in this
strategy with the dimensions of the matrices in Strategy 2, since these are 3-sparse. However, the
matrices in Strategy 1 are 4-sparse in this example, meaning that this strategy result in sparser
matrices with smaller dimensions than Strategy 4, hence Strategy 1 is the better strategy for this
example.

To conclude the analysis, it most be noted that Strategy 4 scores worse in this example than
Strategies 1 and 2 due to the limited number of terms of the equations in F . The more terms in
the equations, the bigger the blow-up in the number of terms when transforming these from GF(2)
to C, which results in a way bigger blow-up when the equations are made sparse again. When the
equations of F have more terms, it might become beneficial to first decrease the sparsity and than
transform them from GF(2) to C. This means that unlike this example, Strategy 4 might still be
the best strategy for Mini-AES.

9.2 Four strategies applied to Mini-AES

Evaluating the three strategies for (Mini-)AES is a bit harder, since it is not possible anymore to
create all four Macaulay matrices, with increasing degree, until a solvable matrix is found. The
resulting matrices are too big to fit in the memory of a regular laptop.

However, from Table 2 can be concluded that it is sufficient to look at the number of columns of the
Macaulay matrices, to evaluate the strategies, since this is the dominant factor in computing the
number of rows. Furthermore, Table 2 summarized the the dimensions of the Macqaulay matrices
and Table 3 summarized the trivial bounds on D. Combining these results in the trivial bounds on
the number of columns of the Macaulay matrices given in Table 7. Note that these do not depend
on D anymore, so they can be used to bound the number of columns even if the solving degree,
i.e. the smallest D for which the corresponding Macaulay matrix is solvable, is unknown.

Field equations Remove squares

M
ax

d
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re
e

3n − 1 ≤ #cols ≤ (3n+ 1)n − 1 #cols = 2n − 1

T
ot

al
d

eg
re

e

1
2n(n+ 3) ≤ #cols ≤ (3n+ 1

n )
(
n(3n+1)
n−1

)
− 1 n ≤ #cols ≤ 2n − 1

Table 7: Trival bounds on #cols for each Macaulay matrix

This means that to evaluate the three strategies, only the number of variables needs to be deter-
mined. According to Table 1, Mini-AES consists of n = 56+64 = 120 variables, 32+48 = 80 linear
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equations, and 42 + 168 = 210 non-linear equations. The linear equations consist of 8 equations
with three terms and 72 equations with four terms. The non-linear equations come from ten nibble
subs, each of which needs 21 equations with a different number of terms. This is summarized in
Table 8. All strategies start by transforming the equations to C, according to the equation based
approach discussed in Section 7.1. This results in the same number of equations, but more terms
per equation. The number of terms per equation is given in Table 8. Depending on the strategy,
the sparsity of the equations over C will be decreased to three. For a function of t > 3 terms, this
introduces t− 3 new equations and variables.

Over GF(2) Over C

# eq. # terms # eq. # terms

L
in

ea
r

eq
u

a
ti

on
s

8 3 8 6

72 4 72 34

P
er

n
ib

b
le

su
b

(1
0

in
to

ta
l)

1 4 1 34

1 5+1 1 56

2 6 2 209

4 7+1 4 330

4 8 4 1286

1 8+1 1 495

2 9 2 2001

3 9+1 3 2002

2 10 2 8007

1 11+1 1 12376

1 12+1 1 18564

Table 8: Mini-AES equations, transformed to C and decreased sparsity

Strategies 1 and 2 will create a Macaulay matrix on n1 = 120 variables and r1 = 80 + 210 = 290
equations. Strategy 3 will create a Macaulay matrix with:

8 · 3 + 72 · 31 + 10 · (31 + 53 + 2 · 206 + 4 · 327 + 4 · 1283 + 492+

2 · 1998 + 3 · 1999 + 2 · 8004 + 12373 + 18561) = 642886,
(124)

additional variables and equations, i.e. n3 = 120 + 642886 = 643006 and r3 = 290 + 642886 =
643176.

Strategy 4 will create a Macaulay matrix with:

72 · 1 + 1 · 1 + 3 · 3 + 8 · 5 + 3 · 6 + 5 · 7 + 1 · 9 + 1 · 10 = 194, (125)
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additional variables and equations, i.e. n4 = 120 + 194 = 314 and r4 = 290 + 194 = 484.

These n1, n3 and n4 substituted in Table 7 directly result in bounds on the number of columns for
the Macaulay matrices for Strategies 1 and 3. Strategy 2 starts with the same Macaulay matrix
as Strategy 1, but to decrease the sparsity it adds as many columns (and rows) as the number of
variables added in Strategy 3, i.e. 642886. This results in the bounds on the number of columns
given in Table 9.

Field equations Remove squares

S
tr

.
1 Md 1.8× 1057 ≤ #cls ≤ 8.0× 10306 #cls = 1.3× 1036

Td 7.4× 103 ≤ #cls ≤ 3.2× 10357 1.2× 102 ≤ #cls ≤ 1.3× 1036

S
tr

.
2 Md 1.8× 1057 ≤ #cls ≤ 8.0× 10306 #cls = 1.3× 1036

Td 6.5× 105 ≤ #cls ≤ 3.2× 10357 6.4× 105 ≤ #cls ≤ 1.3× 1036

S
tr

.
3 Md 6.8× 10306791 ≤ #cls ≤ 1.2× 104041509 #cls = 1.2× 10193564

Td 2.1× 1011 ≤ #cls ≤ 3.0× 104320765 6.4× 105 ≤ #cls ≤ 1.2× 10193564

S
tr

.
4 Md 6.5× 10149 ≤ #cls ≤ 1.8× 1047042 #cls = 3.3× 1094

Td 5.0× 104 ≤ #cls ≤ 4.4× 101068 3.1× 102 ≤ #cls ≤ 3.3× 1094

Table 9: Number of columns of Macaulay matrices for Mini-AES

Table 9 shows that the lower-bound on the number of columns for the Macaulay matrix with max
degree and field equations is already higher than the upper-bound on the number of columns for
Macaulay matrices with removing squares. Therefore, it can be concluded that Macaulay matrices
with removing squares are more efficient for Mini-AES than the Macaulay matrix with max degree
and field equations. It is harder to compare the Macaulay matrix with total degree and field
equations to the other Macaulay matrices, since this Macaulay matrix has quite a low lower-bound
and the highest upper-bound. In Example 9.1, the Macaulay matrix with total degree and field
equations did not have the best result nor the worst. However, this example is too small to derive
a conclusion from.

Furthermore, Table 9 shows that Strategies 1 and 2 result in Macaulay matrices of similar size.
This is, as explained above, due to the fact that decreasing the sparsity of the matrices created in
Strategy 1, only increases the size linearly in the sparsity.

Next, it can be concluded that Strategy 3 results in way bigger matrices, for similar values of D,
than any other strategy. This conclusions excludes the case that total degree is used with removing
squares and D = 1 appears to be enough. However, if D = 1 would be enough, this would mean
that only the linear equations of Mini-AES would be enough to uniquely determine the variables.
It is safe to assume that this is not the case. When total degree is used with removing squares and
D = 2, the number of columns in Strategies 1, 2, 3, and 4 equals 7.3× 103, 6.5× 105, 2.1× 1011,
and 4.9 × 104 respectively. Hence, for Mini-AES, Strategy 3 results in way bigger matrices, for
similar values of D.
This is as expected since these matrices are created with way more variables and this is the
dominant term in the number of columns. However, the upper bound on the number of columns
in Strategies 1, 2, and 4 are not always lower than the lower-bound on the number of columns in
the corresponding Macaulay matrix of Strategy 3. Therefore, it is not proven that Strategy 3 is
the least efficient. However, this strategy only results in a smaller matrix if a lower D is used and
there is no reason to believe that this strategy will work with a lower D than the other strategies.
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This is based on the reasoning that even though decreasing the sparsity of the equations does add
new equations (and variables), it does add not more information about the variables, nor does it
influence the linear dependency between equations. Therefore, it should have no influence on the
solvability of the matrix, nor on the solvability of the Macaulay matrix. Assuming that similar
D’s are needed for all strategies, it is clear that Strategy 3 is least efficient.

Now that Strategy 3 is out of the picture, the question remains whether Strategy 2 or Strategy
4 is more efficient. When the max degree is used and the squares are removed it is clear that
Strategy 2 is more efficient than Strategy 4. When max degree and field equations are used, the
lower bound and the upper bound on the number of columns in Strategy 2 are smaller than the
corresponding bounds in the Strategy 4. The reason for this is that the number of monomials,
in the case of max degree, for D ≥ 2 already becomes very large for n4 = 314 with respect to
the number of variables that are added to make the matrices in Strategy 3-sparse. So, for similar
values of D and using max degree, Strategy 2 is more efficient than Strategy 4. However, since the
upper bound of Strategy 2 is higher than the lower bound of Strategy 4, when using max degree
and field equations, it can not be concluded that Strategy 2 is necessarily more efficient.
When the total degree is used, Strategy 4 has a lower lower bound and a higher upper bound on
the number of columns than Strategy 2, which means that no conclusion can be made other than:
for small values of D is Strategy 4 more efficient and for large values of D Strategy 2 is more
efficient. This is also as expected, since Strategy 4 creates a Macaulay matrix on more variables,
but does not have to be made sparse afterwards and Strategy 2 adds a constant number of columns
at the end to make the matrix sparse. For small values of D, the number of variables does not
influence the dimension as much, meaning that it is better to create a Macaulay matrix on some
more variables than to add 642886 columns in the end to make the matrix sparse.
Note that it is not entirely fair to compare the matrices of Strategy 2 with the matrices of Strategy
4, since in the first case the matrices are 3-sparse and in the second case they are 6-sparse. However,
as explained above, this does not influence the result that much.

72



10 AES Equations

Section 5 provides a list of equations, of which the solution is the solution of a chosen plaintext
attack for Mini-AES, meaning that the solution of the system of equations equals a key that
encrypts the chosen plaintext to the known ciphertext. This section does the same for AES instead
of Mini-AES. Therefore, this section has great similarities with Section 5, the main difference is
that the constants in this section are bigger. Other differences between the equations for Mini-AES
and AES will be explained below.

The mixColumns algorithm uses a matrix M . In this section this matrix equals M1, as defined in
Appendix A. However, the notation M is used, to underline the similarity with AES. If omitted:
j = 0, ..., NbNe−1, m = 0, ..., se−1, i = 1, ..., Nr,  = 0, ..., NkNe−1, and ı = 1, ..., dNb(Nr+1)/Nke.
Hence, for AES j = 0, ..., 7, m = 0, ..., 7, and i = 1, ..., Nr. To simplify notation, modulos are
omitted, but indices work modulo NbNe = 16.

10.1 Encryption equations

For the initial round for Mini-AES Equation (67) was derived. This equation remains the same
for AES. However, where Mini-AES used a 2 × 2 matrix of which every element was a nibble to
define x0, p and w0, AES uses 4× 4 matrices that are filled with bytes. This difference is captured
in the different values for j and m.

For the middle rounds, Equation (72) was derived. Again this equation stays the same for AES.
However, by definition:

rotation(yi) = rotation

(
yi(0, :) yi(4, :) yi(8, :) yi(12, :)
yi(1, :) yi(5, :) yi(9, :) yi(13, :)
yi(2, :) yi(6, :) yi(10, :) yi(14, :)
yi(3, :) yi(7, :) yi(11, :) yi(15, :)


)

=


yi(0, :) yi(4, :) yi(8, :) yi(12, :)
yi(5, :) yi(9, :) yi(13, :) yi(1, :)
yi(10, :) yi(14, :) yi(2, :) yi(6, :)
yi(15, :) yi(3, :) yi(7, :) yi(11, :)

,

(126)

and :

mixColumns(rotation(yi)) =M1 · rotation(yi) (127)

=


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·

yi(0, :) yi(4, :) yi(8, :) yi(12, :)
yi(5, :) yi(9, :) yi(13, :) yi(1, :)
yi(10, :) yi(14, :) yi(2, :) yi(6, :)
yi(15, :) yi(3, :) yi(7, :) yi(11, :).


This difference is again captured in the different values for j and m that are used for AES versus
the values that were used for Mini-AES.

For the final round, Equation (76) was derived. However, this was the addition of 2 × 2 matrices
filled with nibbles and this means now the addition of 4 × 4 matrices filled with bytes. This
difference is once more captured by the different values for j and m.

The final equation that was derived for the encryption in Mini-AES is Equation (77). In order to
write this bit-wise, Equation (79) was used to derive Equation (80). However, AES uses a different
sBox, so, a significantly different system of equations arises. These equations are derived in Section
10.2.
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10.2 sBox equations

To describe x̄i−1(j,m) = x̄i−1(j,m), a set S of sBox equations is defined. The equations in this
set are given in Appendix D. The following equations are needed for the encryption:

S(xi−1(j, 0), ..., xi−1(j, se− 1), x̄i−1(j, 0), ..., x̄i−1(j, se− 1)). (128)

Since AES also uses the sBox to substitute the last word of each round key, also w̄ı−1(,m) =
eltSub(wı−1(,m)) for  = Ne(Nk − 1), ..., NeNk − 1 need to be described. Define for these param-
eters:

S(wı−1(j, 0), ..., wı−1(j, Se − 1), w̄ı−1(j, 0), ..., w̄ı−1(j, Se − 1)). (129)

10.3 Key expansion equations

In Algorithm 3 the key expansion is described in the words of the key and the words of the
round keys. This description will be used to express the round keys by their bytes. If omitted:
ı = 1, ..., dNb(Nr + 1)/Nke − 1, and  = 0, ..., NkNe − 1.

For  = 0, ..., NkNe − 1

w0(, :)← k(, :) (130a)

For l = Nk, ..., Nb(Nr + 1)− 1

wı(0 : Ne, :)← eltSub(rotWord(wı−1(−Ne : 0, :)))⊕
rconı(:, :)⊕ wı−1(0 : Ne, :)

(130b)

wı(lNe : (l + 1)Ne, :)← eltSub(wı((l − 1)Ne : lNe, :))⊕
wı−1(lNe : (l + 1)Ne, :)

if Nk > 6, l = 4 mod Nk (130c)

wı(lNe : (l + 1)Ne, :)← wı((l − 1)Ne : lNe, :)⊕
wı−1(lNe : (l + 1)Ne, :)

otherwise (130d)

Equation (130a) tells to copy the words of the key  = 0, ..., NkNe − 1 into the first words of the
round key. This can be written bit-wise:

w0(,m) =k(,m). (131)

However, this again only creates unnecessary variables and equations. Therefore, these equations
will be omitted and the variables w0(,m) will be used instead of the variables k(,m).

Equation (130b) tells that for the first word of every round key (ı = 1, ..., dNb(Nr + 1)/Nke − 1)
the eltSub of the rotWord of the last word (which is the last word of the previous round key) needs
to be taken and this needs to be XORed with the same (first) word of the previous round key and
the round constant corresponding to this round. Applying eltSub and rotWord to the last word of
the previous round key, results in (for  = 0, ..., Ne − 1):

wı(, :) =w̄ı−1(−Ne + 1, :))⊕ rconı(, :)⊕
wı−1(, :)

For  = 0, ..., Ne − 2 (132a)

wı(Ne − 1, :) =w̄ı−1(Ne(Nk − 1), :))⊕
rconı(Ne − 1, :)⊕ wı−1(Ne − 1, :),

(132b)

which can easily be written bit-wise (for  = 0, ..., Ne − 1):

wı(,m) =w̄ı−1(−Ne + 1,m))⊕ rconı(,m)⊕
wı−1(,m)

For  = 0, ..., Ne − 2 (133a)
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wı(Ne − 1,m) =w̄ı−1(Ne(Nk − 1),m))⊕
rconı(Ne − 1,m)⊕ wı−1(Ne − 1,m).

(133b)

For Equations (130c) and (130d), a distinction needs to be made between Nk ≥ 6 and Nk < 6.
First consider the case that Nk < 6. Then Equation (130c) can be ignored and Equation (130d)
prescribes to XOR the previous word with the same word of the previous round. This can be
written bit-wise (for  = Ne, ..., NkNe − 1):

wı(,m) =wı−1(,m)⊕ wı(−Ne,m). (134)

Now consider the case that Nk ≥ 6. Then Equation (130c) describes that for every fourth word of
a round key (excluding the first round key) one should take the XOR of the eltSub of the previous
word and the same word of the previous round. So, the only difference is that now the eltSub
needs to be computed before we XOR. Equation (130d) describes again that in the other cases (if
l 6= 4 mod Nk) the XOR of the previous word and the same word of the previous round needs to
be computed. So this can be written bit-wise:

wı(,m) =wı−1(,m)⊕ w̄ı(−Ne,m) For  = 4Ne, ..., 5Ne − 1 (135a)

wı(,m) =wı−1(,m)⊕ wı(−Ne,m) For  = Ne, ..., 4Ne − 1 or

 = 5Ne, ..., NkNe − 1.

(135b)

10.4 System of equations for AES

If omitted: i = 1, ..., Nr,j = 0, ..., NeNb − 1,m = 0, ..., Se − 1,  = 0, ..., NkNe − 1, and ı =
1, ..., dNb(Nr + 1)/Nke − 1.

This section collects all equations needed to describe AES encryption and key expansion. This list
consists of Equations (67), (72), (76), (128), (129), (133a), (134), and (135a). Adding all the terms
on the left-hand-side to both the left-hand-side and right-hand-side, results in:

0 =x0(j,m)⊕ p(j,m)⊕ w0(j,m) (136a)

0 =xi(j,m)⊕ wi(j,m)⊕
Nb−1∑
j′=0

Se−1∑
m′=0

M(jm + j′Nb,m
′)

x̄i−1(jp + j′(Nb + 1),m′)

For i = 1, ..., Nr − 1 (136b)

0 =c(j,m)⊕ x̄Nr−1(jr,m)⊕ wNr (j,m) (136c)

0 =S(xi−1(j, 0), ..., xi−1(j, Se − 1),

x̄i−1(j, 0), ..., x̄i−1(j, Se − 1))

(136d)

0 =S((wı−1(j, 0), ..., wı−1(j, Se − 1),

w̄ı−1(j, 0), ..., w̄ı−1(j, Se − 1))

For  = Ne(Nk − 1), ..., NeNk − 1 (136e)

0 =wı(,m)⊕ w̄ı−1(−Ne + 1,m))⊕
rconı(,m)⊕ wı−1(,m)

For  = 0, ..., Ne − 2 (136f)

0 =wı(Ne − 1,m)⊕ w̄ı−1(Ne(Nk − 1),m))⊕
rconı(Ne − 1,m)⊕
wı−1(Ne − 1,m)

(136g)

For Nk ≤ 6
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0 =wı(,m)⊕ wı−1(,m)⊕ wı(−Ne,m) For  = Ne, ..., NkNe − 1 (136h)

For Nk > 6

0 =wı(,m)⊕ wı−1(,m)⊕ w̄ı(−Ne,m) For  = 4Ne, ..., 5Ne − 1 (136i)

0 =wı(,m)⊕ wı−1(,m)⊕ wı(−Ne,m) For  = Ne, ..., 4Ne − 1

 = 5Ne, ..., NkNe − 1

(136j)
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11 Known plaintext attack for AES-128

Section 6 established the size of the chosen plain-text attack for Mini-AES, this section will do the
same for AES-128. The parameters for AES-128 are Se = 8, Nb = 4, Ne = 4, Nk = 4, Nr = 10,
and Bs = 128. Note that for AES-128 Nk ≤ 6, so only the last word of a round key goes into the
S-box.

Variables c and p are known, whereas all other variables are unknown. For the encryption
x0, ..., xNr−1 and x̄0, ..., x̄Nr−1 are unknown, i.e 2 · Nr · Nb · Ne · Se = 2560 variables. For the
key expansion w0, ..., wdNb(Nr+1)/Nke−1 and w̄0(,m), ..., w̄dNb(Nr+1)/Nke−2(,m) for  = (Nk −
1)Ne, ..., NkNe − 1 and m = 0, ..., Se − 1 are unknown, i.e. dNb(Nr + 1)/Nke · NeNk · Se +
(dNb(Nr + 1)/Nke − 1) ·Ne · Se = 1728 variables.

Now let’s count the number of equations. Equations (136a), (136b), and (136c) are for the encryp-
tion, in each line j = 0, ..., NeNb − 1 and m = 0, ..., Se − 1 and in the middle line i = 1, ..., Nr − 1,
this gives another Ne ·Nb ·Se · (2 +Nr−1) = 1408 equations. Equations (136f), (136g), and (136h)
describe the key expansion for AES-128 (note that Nk = 4 ≤ 6 for AES-128). In both Equations
(136f) and (136g) it holds that ı = 1, ..., dNb(Nr + 1)/Nke − 1 and m = 0, ..., Se − 1. Furthermore,
in Equation (136f) it holds that  = 0, ..., Ne− 2. This gives (dNb(Nr + 1)/Nke − 1) ·Ne ·Se = 320
equations. In Equation (136h) it holds that ı = 1, ..., dNb(Nr + 1)/Nke − 1,  = Ne, ..., NkNe − 1,
and m = 0, ..., Se − 1, this gives (dNb(Nr + 1)/Nke − 1) · Ne(Nk − 1) · Se = 960 equations. This
means that 320 + 960 = 1280 equations are used for the key expansion.

Furthermore, Equations (136d) and (136e) describe the S-box equations for the encryption and the
key expansion respectively. When computing these substitutions, nonlinear terms are introduced.
In order to get a linear system, each nonlinear term is considered as a new variable. If a similar
representation (with no restriction on the degree) of the S-box is used for AES as for the S-box
of Mini-AES as presented in Section 5.2, this will lead to the following number of equations and
variables. To compute one output bit of the substitution, one polynomial is used and eight bits of
input. Each S-box polynomial consists of (at most)

∑2Se−1
i=2

(
2Se
i

)
=
∑15
i=2

(
16
i

)
= 246 non-linear

terms (terms of degree two) and possibly some linear terms. However, to compute all output bits
of a byte, the same 246 nonlinear terms are used. So, each S-box polynomial introduces (at most)
246 new variables, but other polynomials to compute the other substituted bits in a byte do not
introduce new variables.

Equations (136d) and (136e) describe the S-box equations for the encryption and the key expansion
respectively. For the encryption, x̄0, ..., x̄Nr−1 need to be computed, this gives Nr ·Nb ·Ne ·Se = 1280
equations. Which leads to 246 · Nr · Nb · Ne = 39360 new variables. For the key expansion
w̄0(,m), ..., w̄dNb(Nr+1)/Nke−2(,m) for  = (Nk − 1)Ne, ..., NkNe − 1 and m = 0, ..., Se − 1 need
to be computed, this gives (dNb(Nr + 1)/Nke − 1) · Ne · Se = 320 equations. This leads to 246 ·
(dNb(Nr + 1)/Nke − 1) ·Ne = 9840 variables.

The above is summarized in Table 10. From this table it can be concluded that the number of
variables (before linearization) equals the number of equations and since all equations are linearly
independent, this means that the system is well-determined. However, the number of non-linear
variables is very high and it turns out that a different representation of the S-box can result in way
less non-linear terms (i.e. variables after linearization). This representation is given in Appendix
D. It consists of 39 equations, with only quadratic and linear terms. Meaning that each equation
will only introduce (at most) 120 variables after linearization. For the encryption this means
39 ·Nr ·Nb ·Ne = 6240 equations instead of 1280 and 120 ·Nr ·Nb ·Ne = 19200 variables instead of
39360. For the key expansion this means 39(dNb(Nr + 1)/Nke − 1) ·Ne = 1560 equations instead
of 320 and 120 · (dNb(Nr + 1)/Nke − 1) ·Ne = 4800 variables instead of 9840.

The above is also summarized in Table 10. From this table it can be concluded that the number
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Key expansion Encryption
Total

Linear Non linear Linear Non linear
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1728 4800 2560 19200 28288

Table 10: AES-128 equations and variables

of equations is higher than the number of variables, before linearization. This means that not
all equations are linearly independent anymore. However, since the number of variables after
linearization exceeds the number of equations, this does not really matter since it is clear that
after linearization the system is under-determined.
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12 Applying HHL to AES-128

Similar to Section 9.2, this section will investigate the bounds on the dimensions of the four
Macaulay matrices for all three strategies. Based on these bounds, an estimation for κ is derived.
This bound on κ is used to compare the complexity of the attack described in this report to
a Grover’s search attack on the AES-128 key. The literature [11] claims that, depending on
the Hamming weight of the solution, a Grover search is more efficient than the HHL algorithm.
This section investigates what this claim means for a known plaintext attack on AES. Therefore,
the most efficient Macaulay matrix is used and all variables are chosen as optimistic as possible
(resulting in the lowest complexity). The reason behind this is that if the complexity of the most
optimistic case of this attack is higher than the complexity of the complexity of Grover’s search
(which considers an average case), then it can be concluded that Grover’s search would be the
better choice.

12.1 Input of HHL

According to Table 10, AES-128 results in n1 = 1728 + 2560 = 4288 variables, 1280 + 1408 = 2688
linear equations, and 1560 + 6240 = 7800 non-linear equations, so r1 = 2688 + 7800 = 10488
equations in total. The linear equations consist of 2368 equations with three terms and 320
equations with four terms. The non-linear equations come from 200 byte substitutions, each of
which needs 39 equations with a different number of terms. This is summarized in Table 11.

Recall Table 7 for the trivial bounds on the number of columns of the four Macaulay matrices.
Combining this with Table 11 concludes that Strategy 3 will create a Macaulay matrix on n3 =
4288+1.27×1022 = 1.27×1022 variables and r3 = 10488+1.27×1022 = 1.27×1022 equations and
Strategy 4 will create a Macaulay matrix on n4 = 4288 + 1395 = 5683 variables and r4 = 10488 +
1395 = 11833 equations. This results in dimensions of the Macaulay matrices as summarized in
Table 12.

The conclusions drawn from Table 9, also hold for Table 12. This means that for AES:

• Macaulay matrices that remove squares are more efficient than Macaulay matrices that use
max degree and field equations.

• No hard conclusion can be made about Macaulay matrices that use field equations and total
degree.

• Strategy 3 is the least efficient.

• When using max degree and removing squares, Strategy 2 is more efficient than Strategy 4.

• When using max degree and field equations Strategy 2 is more efficient, for similar values of
D, than Strategy 4.

• When using total degree, for small values of D Strategy 4 is more efficient and for large
values of D Strategy 2 is more efficient.

Next subsection will use the most efficient Macaulay matrices. It distinguishes between max degree
and total degree. According to Table 12, the most efficient Macaulay matrix for max degree results
from Strategy 2 and removing squares (6.6×101290 columns) and the most efficient Macaulay matrix
for total degree results from Strategy 4 and removing squares (5.7× 103 columns).
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Over GF(2) Over C

# eq. # terms # eq. # terms

L
in
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s

2368 3 2368 6

320 4 320 34
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le

su
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(2
00

in
to

ta
l)

3 24 3 3.56 · 109

1 24 + 1 1 1.25 · 109

3 25 3 15.08 · 109

2 26 2 23.21 · 109

1 27 1 98.67 · 109

3 28 3 151.53 · 109

1 28 + 1 1 52.86 · 109

1 29 1 646.63 · 109

2 30 2 991.49 · 109

1 30 + 1 1 344.87 · 109

4 31 4 4.24 · 1012

1 31 + 1 1 1.50 · 1012

3 32 3 6.50 · 1012

2 32 + 1 2 2.25 · 1012

3 33 3 27.90 · 1012

1 34 + 1 1 14.77 · 1012

1 35 1 183.65 · 1012

3 36 3 280.58 · 1012

2 37 2 1.21 · 1015

1 38 + 1 1 636.98 · 1015

Table 11: AES-128 equations, translated to C and decreased sparsity
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Field equations Remove squares
S

tr
.

1 Md 7.9× 102045 ≤ #cls ≤ 1.4× 1017621 #cls = 6.6× 101290

Td 9.2 · 106 ≤ #cls ≤ 1.3× 1019481 4.3× 103 ≤ #cls ≤ 6.60× 101290

S
tr

.
2 Md 7.9× 102045 ≤ #cls ≤ 1.4× 1017621 #cls = 6.6× 101290

Td 1.27× 1022 ≤ #cls ≤ 1.3× 1019481 1.27× 1022 ≤ #cls ≤ 6.6× 101290

S
tr

.
3 Md 101021.78 ≤ #cls ≤ 101023.46

#cls = 101021.59

Td 101021.89 ≤ #cls ≤ 101023.47

1.27× 1022 ≤ #cls ≤ 101021.59

S
tr

.
4 Md 3.0× 102711 ≤ #cls ≤ 10107.188

#cls = 5.7× 101710

Td 1.6× 107 ≤ #cls ≤ 4.3× 1026514 5.7× 103 ≤ #cls ≤ 5.7× 101710

Table 12: Number of columns of Macaulay matrices for AES-128

12.2 Estimation of κ

According to [11, Theorem 4.5], the condition number κ for Macaulay linear system MF,DmD =
bF,D is bounded by:

κ ≥

{ √
(D + 1)h − 1 if max degree is used√(
D+h
h

)
− 1 if total degree is used

, (137)

where h is the Hamming weight of the solution.

Remark. Equation (137) uses that the number of solutions (called t in [11, Theorem 4.5]) is equal
to one. This is a safe lower-bound that might actually by achieved by AES, i.e. there might be
a plaintext-ciphertext pair with a unique key. Even if there is no such plaintext-ciphertext pair
(or the instance that is tried to be solved has multiple keys that work), the lower-bound on κ still
holds if this assumption is made.

Table 3 already gave trivial bounds on D: D ≥ 2 when field equations are used and D ≥ 1 when
squares are removed. The previous subsection already established that the most efficient Macaulay
matrices were created by removing squares and not by adding field equations. Therefore, only the
lower bound of D ≥ 1 for the remove squares option will be considered:

κ ≥

{ √
2h − 1 ≈ 2h/2 if max degree is used√(

2+h
h

)
− 1 =

√
h if total degree is used.

(138)

Remark. Note that [11] uses the upper bound of D ≤ 3n given by [2], to evaluate this lower bound
on κ. Obviously, this results in a way more pessimistic lower bound on κ. However, at this point,
there is no reason to believe that D = 3n is indeed needed to get a solvable Macaulay linear
system. It is very well possible that AES is not a worst-case problem in that sense, i.e. a lower
D might already be sufficient. Therefore, there should be reasonable doubt that the lower bound
κ ≥ (3n)h/2, given by [11], might not hold for AES.

The only unknown in the equations above is the Hamming weight. The system described in Section
11 has n1 = 4288 variables. By construction of AES, the solution of this system is expected to
have a Hamming weight of approximately n1/2 = 2144. This must hold since this includes the
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plaintext-ciphertext, key, and all intermediate states of the AES encryption. Note that if this
would not be the case, there might be a certain plaintext and key which leads to an out standing
Hamming weight, which would seriously decrease the security of AES.
However, the input matrix for HHL will be the result of the Macaulay matrix created in one of
the four strategies explained in Section 9. This means that some columns correspond to products
of variables and some u variables are considered. Since HHL treats each column as a variable,
the Hamming weight of the solution is the Hamming weight of the vector that includes all the n1

variables, the u variables, and all the product terms.

Creating a Macaulay matrix, i.e. extending the solution vector with products of variables, decreases
the Hamming weight of the solution vector, relatively speaking. If each variable is non-zero with
probability 1/2 then the product of d such variables is non-zero with the probability 1/2d. However,
decreasing the sparsity of either the equations or the matrix, increases the Hamming weight. If
polynomial a + b + c + ... will be made 3-sparse, then u1 = a + b is only zero if both a and b are
zero, i.e. this happens with probability 1/4. Furthermore, u2 = u1 + c which means that u2 is only
zero if both u1 and c are zero, which happens with probability 1/8. Similar reasoning can be used
for the case that the matrix will be made sparse.

Since this section considers a best case and the Hamming weight of the solution to the Macaulay
system is at least the Hamming weight of the solution to the system described in Section 11, an
approximated Hamming weight of h = 2144 will be used. Combining this with Equation 138 results
in the following approximation of κ:

κ ≈
{

21072 if max degree is used√
2144 ≤ 26 if total degree is used.

(139)

12.3 Comparison to Grover Search

The estimation of κ can give more insight in the complexity of HHL applied to the attack described
in Section 11, which makes it possible to compare this complexity, to a known plain-text attack on
AES using Grover search. The complexity of HHL is given in Equation 65. It uses N ≥ n where N
is a power of 2. For simplicity reasons, set N equal to the number of columns of the input matrix.
For the most optimistic case defined above, this means N = 6.6× 101290 when max degree is used
and N = 5.7× 103 when max degree is used.
Furthermore, the complexity uses the sparsity of the input matrix. Note that for max degree,
Strategy 2 should be used, whereas for total degree the most efficient Macaulay matrix was derived
when using Strategy 4. Recall that Strategy 2 and Strategy 4 result in a 3-sparse matrix and a
6-sparse matrix respectively.
Finally, ε has to be at least 1/2, so use ε = 1/2 and combine all of this with Equation 65 and
Equation 139 to find:

O(log(N)s2κ2/ε) ≈
{
O(2.97× 103 · 9 · 22144/ε) ≈ O(22157) if max degree is used
O(8.65 · 36 · 212/2) ≈ O(219.28) if total degree is used.

(140)

According to [11] the complexity of Grover search is O
(
h
√(

n
h

))
. However, in any brute-force kind

of attack such as Grover search, only the key bits of AES will be brute-forced. This means that
in case of AES-128 n = 128. Furthermore, when only the key bits are considered, the expected
Hamming weight of the solution is h = n/2 as explained above. This results in a complexity of:

O

(
n

2

√(
n

n/2

))
= O

(
128

2

√(
128

128/2

))
= O

(
268.09

)
. (141)
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This O-notation is unpolished and [13] derives the more precise complexity of 1.19 × 286. In an
attempt to determine which attack (using HHL or Grover’s search) is more efficient, this complexity
is compared to Equation 140. This is difficult since the complexity of HHL is only given in a O-
notation and not precisely for a specific case. This means the actual complexity is a multiplication
of the term in the O-notation, multiplied by an unknown scalar. However, it is clear that if max
degree is used, this scalar has to be at most ≈ 2−2100,which is unexpectedly small, for HHL to be
the more efficient attack. On the other hand, if total degree is used and D = 2 is sufficient, HHL
is more efficient than Grover’s search, if this scalar is at most 1.446 × 1020, which is way more
conventional.
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13 Discussion

The goal of this report is to investigate the complexity of a known-plaintext attack on AES using
HHL. The most important thing to note is that this report chooses a specific method (Macaulay
matrices) to translate a known-plaintext attack on AES to an input for HHL. This means that
the outcome of this complexity only holds for this method and not for a known-plaintext attack
on AES using HHL. It might be possible to use a different method which leads to a different,
maybe lower, complexity. Therefore, the complexity discussed in this report should be seen as an
upper-bound on the complexity of a known-plaintext attack on AES using HHL and should not be
used to blindly conclude that AES is quantum-safe with respect to the HHL algorithm.

To take a step back out from the Macaulay matrices, Sections 13.1 and 13.2 shortly point out some
important aspects that this report did not consider (in detail) so far, but are very important for
everyone who wants to construct a practical attack against AES using HHL. During the study on
HHL needed for this report, other ideas for applications of the HHL algorithm did arise. Some of
these are mentioned in Section 13.3.

13.1 Input of HHL

In this report’s attack, the input matrix of HHL is a Macaulay matrix. It is not yet proven that
the Macaulay matrix meets all the requirements of the input matrix of HHL: it might not be
Hermitian. However, Section 3.4 describes that the HHL algorithm can be adjusted as necessary.

Furthermore, it is worth noting that creating these matrices on a classical computer will be prob-
lematic because of memory issues. Theoretically, a classical computer should be able to store n×n
matrices for n up to 2128, in practice it will only be doable for n up to 264 or maybe 280. This means
that independent on D, the matrices using max degree will not fit in memory, the same for the
matrices using field equations and total degree in Strategy 3. The other matrices only fit for very
limited values of D. However, it is not needed to create the entire Macaulay matrix on a classical
computer. The only requirement is that the matrix can be queried efficiently. This holds for the
Macaulay matrix described in [2]. This report does some adjustments to their Macaulay matrix,
that are not expected to influence the query complexity. To find an entry, one can simply multiply
the desired polynomial by the desired monomial and look for the coefficient of this monomial in
the resulting polynomial. Which set of monomials is used, max degree or total degree, does not
influence this process. Removing squares instead of adding field equations does require an extra
step: the result of every multiplication should be simplified before the coefficient of the desired
polynomial is determined (x2 + x → 2x, so the coefficient of x is two and not one). However,
these simplifications can be done efficiently and therefore this will likely not influence the query
complexity.

Besides, the Macaulay matrix can possibly be improved to decrease the complexity of the HHL
algorithm. For instance, the complexity depends on κ which is believed to be related to the
Hamming weight of the solution. This Hamming weight can perhaps be decreased by combining
this attack with a brute-force attack, guessing some bits. Every one that is guessed correctly, does
not only decrease the size of the matrix but it especially decreases the Hamming weight of the
solution. Every zero that is guessed correctly, decreases the number of non-zeros in the Macaulay
matrix drastically, since guessing only one zero will already lead to several monomials that will
be zero. It would be very interesting to investigate how the dimensions of the smallest solvable
matrix would behave as a function of the number of guessed bits and how this translates to the
overall complexity of this attack.

One last note on the Macaulay matrices should be made: this report considers the smallest solvable
Macaulay matrix to be the most efficient Macaulay matrix. However, the complexity of HHL does
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not only depend on the size of the matrix, it also depends on the condition number of the matrix.
It might be possible that the condition number of a certain small matrix is so much bigger than the
condition number of a certain larger matrix, that HHL applied to the larger matrix will be more
efficient than HHL applied to the smaller matrix. With the limited knowledge that there is about
condition numbers of matrices, it is not possible to draw any conclusions on this. Therefore, this
report assumes that the size of the matrices is dominant in comparing the complexity of applying
HHL to different matrices.

HHL also requires some ε as input. What value should be chosen depends on the desired output
and is discussed in the next subsection.

13.2 Output of HHL

This report does not consider the output of the HHL algorithm at all. The output of HHL is a
quantum state |x〉. Since x should contain all the key bits (and other variables), this x should be
boolean. To make sure that the output is boolean, one should use the boolean variant of the HHL
algorithm [2].

When this |x〉 is created, there are two options to use this; either get classical information about x
(by doing multiple rounds of HHL and measurements on |x〉), or use quantum state |x〉 in a quantum
AES en-/decryption. However, before doing so, it is important to note that state |x〉 includes an
unknown normalization factor. This normalization factor can be found by the measuring the first
register multiple times to estimate the probability of obtaining |1〉. Then the normalization factor
can be accounted for.

First of all, it is worth investigating applications of the key as a quantum state. In [17] a quantum
version of the AES cryptosystem is explained, which uses a quantum state of the key as input. It
might be possible to, instead of creating this quantum state from a classical input, copy the (right
part of) the output of the HHL algorithm to this register. Further research on this part is very
fitting, since this known plaintext attack on AES already assumes that the attacker has access to
a quantum computer. Several practical attack scenarios are possible. For instance a MITM attack
in which an attacker intercepts a plaintext-ciphertext pair, applies HHL to construct the key as
a quantum state and uses this to encrypt a message of his choice to send to the receiver instead.
It would be interesting to see what the influence is of the error on the key, induced by the HHL
algorithm.

On the other hand, when the goal is to extract classical information about the key bits, one
would need to run the HHL algorithm multiple times, because one measurement only gives limited
information. Even if one would do enough measurements to extract all bits of x, this might not
give the desired result as the entries of x might differ quite a bit from the desired key bits. Section
3 bounds that error of HHL by ||Ax̃ − b||2 ≤ ε, which is bounded by the condition number of A.
However, no matter how small ε is chosen, this does not ensure that x̃−x is small as well (consider
for example an A with a zero row). This can cause a problem when one tries to extract the key bits
from the output of HHL. For certain bits this output might differ more than 1/2 from the correct
key bit, making it impossible to ensure that the correct key bit is guessed correctly. Furthermore,
one can only learn logN bits of x from one run of the algorithm. This problem might be overcome
by running the algorithm multiple times, or not trying to get classical information about x at all.
Since for AES-128 only 128 key bits need to be determined, this does not seem to influence the
overall complexity too much.

Furthermore, not entire |x〉 is interesting, as it not only contains key bits, but also consists of all
intermediate states. Therefore, extracting classical information about the key bits is not as complex
as trying to determine all bits in |x〉. This might also be a starting point for improvements on
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the HHL algorithm. The algorithm now constructs all qubits of |x〉, with a certain error. It might
be possible to decrease the complexity of the algorithm by constructing only the key bits, or by
allowing a greater error in the other bits.

Whether the goal is to extract classical information about x, or to use |x〉 in another quantum
algorithm, it is important to choose between the regular HHL algorithm or the boolean variant
discussed in Section 3.4. When classical information has to be extracted it might be more efficient
to use the boolean variant as this might give smaller errors on the entries since the error would
either be zero or one. However, when using |x〉 as input for another quantum algorithm, it might
not be that important that the entries are boolean.

13.3 HHL applied to other cryptosystems

This report focused on breaking AES with the use of HHL. However, it is also interesting if
HHL might be used to break other cryptosystems. Especially if these systems are assumed to be
quantum safe. Since there seems to be a connection between the Hamming weight of the solution
and κ, it is interesting to focus on cryptosystems with a low Hamming weight, such as a public-
key cryptosystem via Mersenne Numbers [3]. This system is particularly interesting because the
system contains a lot of linearity, just as AES. Also lattice based cryptosystems contain a lot of
linearity, which means it is also worth investigating how HHL can be used to attack those systems.
Furthermore, cryptographic systems are created, based on cryptographic hashes, since these are
assumed to be quantum safe. Therefore, it is also interesting to see if HHL can be used to affect
the security of hashes.

14 Conclusion

At this point, no hard conclusion can be made, since there is not enough information about the
precise complexity of HHL applied to a specific matrix-vector system. However, it seems unrealistic
that an attack using max degree will result in an attack that is more efficient than Grover’s search.
On the other hand, there is more hope for an attack using total degree. However, this hope is
based on a best case scenario, using a lower bound on D and on κ. On the other hand, there
might be another way to translate a known-plaintext attack on AES to an input for HHL, yielding
a lower complexity for HHL.

So, this report does raise reasonable doubt about the bounds on κ found in the literature, ques-
tioning the conclusion that the complexity of HHL will be high, but it did not find evidence that a
certain attack using HHL will be more efficient than the known Grover’s search attack. Therefore,
this report is on the one hand another reassurance that HHL does not harm the security of AES.
On the other hand, this report underlines that it should not be forgotten that it is still not proven
that a Macaulay attack using HHL is less efficient than Grover’s search and that there might be
other attacks possible using HHL. Therefore, the main conclusion is that further research in HHL
is necessary, encouraging and above all very fascinating.
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Appendices

A AES matrices

Matrix M ∈ GF (2Se)NeNb for mixColumn function:

M0 =

(
3 2
2 3

)
∈ GF (24)2×2 for Mini-AES

M1 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ∈ GF (28)4×4 for AES.

Look-up table S-box, with elements in GF (2Se)2Se for eltSub function. Note that for Mini-AES, a
bit representation is used, whereas for AES a hexadecimal representation is used: 13

Mini-AES
x0x1

00 01 10 10

x2x3

00 1110 0010 0011 0101
01 0100 1111 1010 1001
10 1101 1011 0110 0000
11 0001 1000 1100 0111

Table 13: S-box for Mini-AES

AES
x0x1x2x3

0 1 2 3 4 5 6 7 8 9 a b c d e f

x4x5x6x7

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 14: S-box for AES
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B Algorithms

This appendix states generic algorithms that describe both AES and Mini-AES, denoted by (Mini-
)AES, as well as algorithms solely used for AES or Mini-AES.

Algorithm 2: (Mini-)AES encryption

Input: Nr ∈ R, p ∈ GF (2Se)NeNb , k ∈ GF (2Se)NkNe

Set global variables such that other functions can use them
if Nk = 2 then

sBox← sBox0

α← α0

w ← Mini-AESkeyExpansion (k,Nr, Nk)

else
sBox← sBox1

α← α1

Determine round constants

rcon1 =
(
0116 0016 0016 0016

)T
for i = 2, ..., dNb(Nr + 1)/Nke do

if rconi−1[0] < 80B16 then
rconi =

(
2rconi−1[0] 0016 0016 0016

)
else

rconi =
(
2rconi−1[0]⊕ 11B16 0016 0016 0016

)
w ← Mini-AESkeyExpansion (k,Nr, Nk)

Encryption
Initial round (r = 0)

x0 ← addRoundKey(p, w0)

Middle round(s)
for i = 1, ..., Nr − 1 do

x̄i−1 ← eltSub (xi−1)
xi ← mixColumns(rotation(x̄i−1))⊕ wi

Final round (i = Nr)
x̄Nr−1 ← eltSub(xNr−1)
xNr ← rotation(x̄Nr−1)⊕ wNr
c← xNr

Output: ciphertext c ∈ GF (2Se)NeNb

89



Algorithm 3: AES keyExpansion

Input: Nr ∈ N, Nk ∈ N, k ∈ GF (2Se)Nk

First words of the round keys are copies of the words of the key
for  = 0, ..., NkNe − 1 do

w0(, :)← k(, :)

Other words of the round keys
for ı = 1, ..., dNb(Nr + 1)/Nke − 1 do

wı(0 : Ne, :)← invSub(rotword(wı−1(−Ne : 0, :)))⊕ rconı(:, :)⊕ wı−1(0 : Ne, :)
for l = 1, ..., Nk − 1 do

if Nk > 6 ∧ l = 4 mod Nk then
wı(lNe : (l+1)Ne, :)← invSub(wı((l−1)Ne : lNe, :))⊕wı−1(lNe : (l+1)Ne, :)

else
wı(lNe : (l + 1)Ne, :)← wı((l − 1)Ne : lNe, :)⊕ wı−1(lNe : (l + 1)Ne, :)

Output: extended key w ∈ GF (2Se)dNeNb(Nr+1)/NkeNk

Algorithm 4: Mini-AES keyExpansion

Input: Nr ∈ R, Nk ∈ R, k ∈ GF (2Se)Nk

First nibbles of the round keys are copies of the nibbles of the key
for j = 0, ..., NeNb − 1 do

w(j, :)← k(j, :)

Other words of the round keys
for j = NeNb, ..., NeNb(Nr + 1)− 1 do

if j = 0 mod NeNb then
w(j, :)← eltSub(w(j − 1, :))⊕ rconj/NeNb ⊕ w(j −NeNb, :)

else
w(j, :)← w(j − 1, :)⊕ w(j −NeNb, :)

Output: extended key w ∈ GF (2Se)NeNb(Nr+1)
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Algorithm 5: AES rotWord

Input: word s(j : j +Ne, :) ∈ GF (2Se)Ne

for k = 0, ..., Ne − 1 do
s(j + k, :) = s(j + k + 1 mod Ne, :)

Output: word s(j : j +Ne, :) ∈ GF (2Se)Ne

Algorithm 6: (Mini-)AES rotation

Input: state matrix s ∈ GF (2Se)NeNb

for l = 0, ..., Ne − 1 do
for j = 0, ..., Nb − 1 do

(s)l,j ← (s)l,j+l mod Nb

Output: s ∈ GF (2Se)NeNb

Algorithm 7: (Mini-)AES addRoundkey

Input: state matrix s ∈ GF (2Se)Nb×Nb , round key wi ∈ GF (2Se)Nb

for j = 0, ..., Nb − 1 do
for m = 0, ..., Se do

xi(j,m)← si(j,m)⊕ wi(j,m)

Output: state matrix s ∈ GF (2Se)Nb×Nb

Algorithm 8: (Mini-)AES eltSub

Input: collection of elements, might be state s ∈ GF (2Se)NeNb , might be single element
s ∈ GF (2Se) etc.

for every element e in s do
e← sBoxe
Note that this is equal to computing an inverse first and then applying an affine
transformation.

Output: s of the same size as the input

Algorithm 9: (Mini-)AES mixColumns

Input: state matrix s ∈ GF (2Se)NeNb , matrix M ∈ GF (2Se)NeNb

for j = 0, ..., NeNb − 1 do
compute matrix vector multiplication

s(j, :)←
Nb−1∑
j′=0

M((j mod Nb) +Nbj
′, :) · s(bj/NecNe + j′, :)

Output: s of the same size as the input

91



C Mini-AES S-box

Figure 16: Karnaugh maps for S-box of Mini-AES

The S-box of Mini-AES, written as polynomials of degree two:

0 =b0b3 + b0y1 + b0y2 + b0y3

0 =b0b1 + b0b3 + b1b3 + b0y2 + b2 + y3

0 =b0b3 + b1y0 + b0y2 + b0 + b1 + b2 + b3 + y0 + y3 + 1

0 =b0b1 + b1b2 + b0y0 + b1y1 + b0y2 + b0 + b1 + b2 + b3 + y0 + y3 + 1

0 =b0b1 + b0b2 + b0b3 + b0y1 + b0y2 + b1y2 + b0 + b1 + b2 + y0 + y1 + y2 + 1

0 =b0b1 + b0b2 + b1b2 + b0y0 + b0y1 + b0y2 + b1y3 + b2 + y3

0 =b0b2 + b0b3 + b2b3 + b1 + b2 + y1 + y3 + 1

0 =b0b2 + b2y0 + b0y1 + b0y2 + b0 + b1 + b2 + y0 + y2 + y3

0 =b0b1 + b1b2 + b0y1 + b2y1 + b1 + b2 + y0 + y2 + y3

0 =b0b1 + b1b2 + b0y0 + b0y1 + b2y2 + b2 + y0 + y1 + y2 + 1

0 =b0b3 + b0y1 + b0y2 + b2y3 + b0 + y0 + y1 + y2 + 1

0 =b0b2 + b0b3 + b0y0 + b3y0 + b0y1 + b0y2 + b2 + y3

0 =b0b2 + b3y1 + b1 + b2 + b3 + y1 + y3 + 1

0 =b0b2 + b0y0 + b0y1 + b0y2 + b3y2 + y0 + y1 + y2 + y3 + 1

0 =b0b2 + b3y3 + b0 + b1 + y1 + 1

0 =b0b2 + b0y1 + y0y1 + b0 + b1 + b2 + b3 + y0 + y1 + y2

0 =b0y2 + y0y2 + b2 + b3 + y0 + y2 + y3 + 1

0 =b0b2 + b0b3 + b0y1 + b0y2 + y0y3 + b1 + y0 + y2

0 =b0b1 + b0b2 + b1b2 + y1y2 + b0 + b3 + y1 + y3

0 =b0b1 + b1b2 + y1y3 + b0 + b1 + b2 + y1 + 1

0 =b0b1 + b0b2 + b1b2 + y2y3 + b2 + y3

(142)

D AES S-box

The literature [6] states that the S-box equations of AES can be written as polynomials of degree
two:

0 =b5b7 + b5b6 + b3b7 + b3b6 + b2b4 + b1b7 + b1b6 + b1b5 + b1b3 + b1b2 + b0b7 + b0b3 + b0b2+
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b6y7 + b7y6 + b6y6 + b7y5 + b5y5 + b7y4 + b1y4 + b2y3 + b0y3 + b6y2 + b4y2 + b3y2 + b0y2+

b4y0 + b2y0 + b7 + b5 + b3 + y7 + y2 + y0 + 1

0 =b6b7 + b5b7 + b4b7 + b4b6 + b4b5 + b3b4 + b2b5 + b1b7 + b1b6 + b1b5 + b1b4 + b1b3 + b1b2+

b0b5 + b0b1 + b6y6 + y5y7 + b3y4 + y4y7+

y4y5 + b5y3 + b0y3 + y3y6 + y3y4 + b3y2 + b0y2 + y2y4+

y2y3 + b5y0 + b3y0 + b1y0 + y0y7 + y0y3 + y0y1 + b5 + b3 + b0 + y2 + 1

0 =b1y7 + b0y7 + y6y7 + b7y5 + b6y5 + y5y7 + b7y4 + b5y3 + b2y3 + y3y6 + b2y2 + b0y2 + y2y5 + b6y1+

b4y1 + b1y1 + y1y2 + b6y0 + b5y0 + b4y0 + y0y7 + y0y6 + y0y5 + y0y4 + y0y3 + b3 + b1 + y3 + y2 + y1 + 1

0 =b6b7 + b4b6 + b3b7 + b2b7 + b1b4 + b0b6 + b0b3 + b6y7 + b4y7 + b3y7 + b7y6 + b3y6 + b7y5+

b7y4 + b1y4 + b5y3 + b4y3 + b1y3 + b6y2 + b2y2 + b6y1 + b5y1 + b3y1 + b1y1 + b0y1 + b7y0+

b6y0 + b5y0 + b3y0 + b2y0 + b1y0 + b6 + b1

0 =b6y7 + b5y7 + b1y7 + b0y7 + b5y6 + b4y6 + b3y6 + b4y4 + b3y4 + b2y4 + b4y3 + b3y3 + y3y5+

b2y2 + y2y7 + y2y4 + y2y3 + b7y1 + b4y1 + b3y1 + b1y1 + y1y7 + y1y6 + y1y5 + y1y2 + b7y0 + b5y0+

b4y0 + b3y0 + y0y4 + y0y3 + y0y2 + b6 + b4 + b3 + y2

0 =b2y7 + y5y6 + b1y4 + b7y3 + b2y3 + b1y3 + b0y3 + y3y6 + y3y4 + b4y2 + b2y2 + b0y2 + y2y6+

y2y5 + y2y3 + b5y1 + b3y1 + y1y7 + y1y5 + y1y4 + y1y3 + y1y2 + b5y0 + b4y0 + b3y0 + b0y0 + y0y6+

y0y1 + b7 + b6 + b3 + b2 + b1 + y4 + y2 + y1 + y0

0 =b5y7 + b3y6 + b2y6 + b0y6 + b6y5 + b5y5 + b0y5 + b6y4 + b5y4 + b3y4 + b2y4 + b0y4 + y4y7+

y3y6 + y3y5 + b3y2 + b2y2 + b0y2 + y2y7 + y2y6 + y2y5 + b3y1 + b2y1 + y1y7 + y1y6 + y1y3 + b5y0+

b4y0 + b1y0 + y0y7 + y0y2 + b6 + b1 + y4 + y3 + y1

0 =b6y7 + b3y7 + b0y7 + b2y6 + b4y4 + b2y4 + b0y4 + b7y3 + b6y3 + b3y3 + b2y3 + b1y3 + b0y3+

b5y2 + b2y2 + b1y2 + b3y1 + b2y1 + b1y1 + b3y0 + b6 + b2 + b1 + b0 + y2

0 =b7y7 + b4y7 + b1y7 + b7y6 + b6y6 + b1y6 + y6y7 + b7y5 + b6y5 + b2y5 + b0y5 + b6y4 + b4y4+

b2y4 + y4y5 + b4y3 + b3y3 + b2y3 + b1y3 + b0y3 + y3y6 + y3y5 + b3y2 + y2y4 + b6y1 + b5y1 + b4y1+

y1y5 + y1y2 + b6y0 + b2y0 + b1y0 + y0y6 + y4 + y3

0 =b4y7 + b3y7 + b4y6 + b2y6 + b1y6 + b0y4 + b3y3 + b1y3 + b0y3 + b7y2 + b3y2 + b2y2 + b1y2+

b0y2 + b7y1 + b6y1 + b5y1 + b4y1 + b3y1 + b0y1 + b4 + b2 + b1 + y2

0 =b3b6 + b2b5 + b1b4 + b1b2 + b0b4 + b0b1 + b4y6 + b2y6 + b1y6 + b7y5 + b7y4 + b2y4 + b6y3+

b4y3 + b3y3 + b2y3 + b7y2 + b0y2 + b4y1 + b3y1 + b5y0 + b2y0 + b1y0 + b4 + b1 + y4 + y3 + y0 + 1

0 =b4b7 + b2b3 + b1b5 + b1b4 + b0b7 + b0b6 + b0b5 + b0b4 + b0b1 + b7y7 + b4y7 + b1y6 + b2y4+

b1y4 + b0y4 + b7y3 + b4y3 + b3y3 + b4y2 + b3y2 + b0y2 + b7y1 + b5y1 + b2y1 + b1y1 + b0y1+

b1y0 + b0y0 + b7 + b1 + b0 + y2

0 =b6b7 + b4b5 + b3b7 + b3b5 + b2b5 + b2b4 + b2b3 + b1b7 + b0b6 + b0b4 + b2y7 + b0y7 + b1y6+

b6y5 + b2y4 + b6y3 + b5y3 + b2y3 + b6y2 + b4y2 + b3y2 + b2y2 + b1y2 + b7y1 + b5y1 + b6y0+

b5y0 + b4y0 + b3y0 + b0y0

0 =b5b7 + b3b6 + b1b7 + b1b2 + b0b4 + b0b3 + b1y7 + b2y6 + b1y6 + b6y5 + b4y5 + b2y5 + b0y4+

b5y3 + b2y3 + b6y2 + b5y2 + b1y2 + b0y2 + b7y1 + b6y0 + b5y0 + b0y0 + b6 + b1 + y6 + y2 + y1

0 =b1y7 + b0y7 + b2y6 + b6y5 + b2y5 + b4y4 + b3y4 + b2y4 + b1y4 + b0y4 + b5y3 + b2y3 + b1y3+

b7y2 + b4y2 + b3y2 + b1y2 + b6y1 + b3y1 + b2y1 + b1y1 + b0y1 + b5y0 + b0y0 + b3 + y2

0 =b5b7 + b3b6 + b1b7 + b1b2 + b0b4 + b0b3 + b6y7 + b3y7 + b0y7 + b4y6 + b5y5 + b2y5 + b4y4+

b3y3 + b1y2 + b0y2 + b7y1 + b5y1 + b4y1 + b2y1 + b7y0 + b6y0 + b1y0 + b6 + b5 + b4 + b2 + b0 + y7
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0 =b7y7 + b7y6 + b6y6 + b4y6 + b2y6 + b1y6 + b7y5 + b2y5 + b7y4 + b1y4 + b0y4 + y4y6 + b7y3+

b3y3 + y3y5 + y3y4 + b7y2 + b4y2 + b3y2 + y2y4 + y2y3 + y1y6 + b3y0 + b2y0 + b1y0 + y0y6 + y0y4+

y0y2 + y0y1 + b5 + b4 + b3 + b1 + y4 + y2 + y1

0 =b7y6 + y6y7 + b7y5 + b3y5 + y5y7 + b7y4 + b0y4 + y4y7 + y4y5 + b6y3 + b4y3 + b3y3 + b1y3+

y3y7 + y3y6 + y3y5 + y3y4 + b6y2 + b5y2 + b4y2 + b1y2 + b0y2 + y2y5 + b6y1 + b5y1 + b4y1 + b0y1+

y1y7 + y1y4 + y1y2 + b5y0 + b4y0 + y0y7 + y0y5 + y0y4 + b0 + y0

0 =b6y6 + b1y6 + b5y5 + b3y4 + b0y4 + b7y3 + b6y3 + b5y3 + b1y3 + b0y3 + b7y2 + b7y1 + b6y1+

b4y1 + b3y1 + b0y1 + b4y0 + b2y0 + b7 + b6 + b4 + b3 + b0 + y2

0 =b6b7 + b5b7 + b4b6 + b3b7 + b2b7 + b2b5 + b1b7 + b0b6 + b0b1 + b7y7 + b3y7 + b1y7 + b5y6 + b0y4+

b6y3 + b1y3 + b7y2 + b6y2 + b5y2 + b4y2 + b3y2 + b4y1 + b2y1 + b5y0 + b3y0 + b5 + b2 + b1 + b0 + y3 + y2

0 =b0y7 + b2y6 + b0y6 + b5y5 + b0y5 + b6y4 + b3y4 + b2y4 + b0y4 + b7y3 + b6y3 + b4y3 + b3y3+

b2y3 + b4y2 + b3y2 + b4y1 + b2y1 + b7y0 + b2y0 + b0y0 + b7 + b4 + b2 + b1 + y4 + y1 + y0

0 =b5b7 + b5b6 + b4b6 + b3b5 + b2b6 + b2b5 + b1b7 + b1b6 + b0b7 + b0b6 + b0b3 + b0b1 + b6y7 + b3y6+

b3y4 + b0y4 + b7y3 + b4y3 + b3y3 + b5y2 + b4y2 + b6y1 + b4y1 + b2y1 + b1y1 + b1y0 + b5 + b0 + y4 + y2

0 =b5b7 + b5b6 + b3b7 + b3b4 + b2b6 + b2b4 + b1b4 + b1b3 + b1b2 + b0b6 + b7y7 + b6y7 + b4y7+

b3y7 + b1y6 + b1y4 + b7y3 + b3y3 + b2y3 + b6y2 + b2y2 + b0y2 + b7y1 + b5y1 + b4y1 + b3y1+

b6y0 + b3y0 + b1y0 + b6 + b3 + b2 + y4

0 =b5b7 + b4b6 + b4b5 + b3b5 + b2b7 + b2b4 + b2b3 + b0b4 + b0b1 + b4y6 + b2y6 + b7y5 + b7y4+

b6y4 + b1y4 + b6y3 + b5y3 + b2y3 + b1y3 + b7y2 + b5y2 + b7y1 + b6y1 + b0y1 + b4y0 + b3y0+

b1y0 + b3 + b1 + y4 + y3

0 =b5b7 + b4b6 + b3b7 + b3b5 + b3b4 + b2b4 + b1b6 + b1b3 + b1b2 + b0b7 + b4y7 + b3y7 + b0y7+

b4y6 + b2y6 + b0y6 + b5y5 + b0y5 + b6y4 + b6y3 + b6y2 + b4y2 + b3y2 + b1y2 + b5y1 + b4y1+

b5y0 + b1y0 + b0y0 + b7 + b5 + y1 + y0

0 =b6b7 + b4b6 + b4b5 + b2b6 + b2b5 + b2b3 + b1b7 + b1b5 + b1b4 + b1b3 + b0b2 + b1y7 + b2y6 + b1y6+

b6y5 + b2y5 + b2y4 + b3y3 + b7y2 + b3y2 + b2y2 + b7y1 + b5y1 + b1y1 + b7 + b3 + b0 + y6 + y4 + y2 + y1

0 =b7y5 + b7y4 + b2y4 + b7y3 + b6y3 + b0y3 + b5y2 + b4y2 + b0y2 + b7y1 + b3y1 + b2y1 + b0y1+

b7y0 + b5y0 + b4y0 + b2y0 + b1y0 + b2 + b1 + b0 + y4 + y2 + y1 + 1

0 =b5b6 + b3b7 + b3b6 + b2b5 + b2b4 + b1b6 + b1b5 + b1b4 + b1b3 + b1b2 + b0b7 + b0b2 + b0b1+

b5y7 + b1y6 + b4y4 + b2y4 + b0y4 + b5y3 + b4y3 + b1y3 + b0y2 + b5y1 + b2y1 + b1y1 + b3y0+

b0y0 + b6 + b5 + b1 + y3 + y2

0 =b6y7 + b3y7 + b1y7 + b6y6 + b5y6 + b1y6 + b5y5 + b1y5 + b6y4 + b6y3 + b5y3 + b4y3 + b3y2+

b7y1 + b6y1 + b1y1 + b6y0 + b3y0 + b2y0 + b5 + y7 + y3 + y2 + y1 + y0

0 =b5b6 + b4b6 + b3b6 + b3b5 + b3b4 + b1b7 + b1b5 + b0b3 + b0b2 + b5y7 + b1y6 + b6y5 + b2y5+

b2y4 + b0y4 + b6y2 + b4y2 + b2y2 + b1y2 + b6y1 + b5y1 + b4y1 + b2y1 + b5y0 + b3y0 + b7 + b6+

b4 + b0 + y6 + y4 + y2 + 1

0 =b5y7 + b4y7 + b3y7 + b1y7 + b0y7 + b7y6 + b4y6 + b7y5 + b3y5 + b7y4 + b4y4 + b3y4 + b7y3+

b6y3 + b4y3 + b3y3 + b1y3 + b6y2 + b5y2 + b2y2 + b2y1 + b7y0 + b3y0 + b2y0 + b1y0 + y6 + y2 + y0

0 =b7y7 + b4y7 + b1y7 + b6y6 + b5y6 + b5y5 + b2y3 + b1y3 + b0y3 + b5y2 + b4y2 + b2y2 + b1y2+

b7y1 + b0y1 + b6y0 + b5y0 + b4y0 + b0y0 + b6 + b2 + b1 + b0 + y7

0 =b7y7 + b4y7 + b2y7 + b4y6 + b6y5 + b5y5 + b1y5 + b6y4 + b4y4 + b7y3 + b6y3 + b6y2 + b5y2+

b0y2 + b6y1 + b2y1 + b6y0 + b4y0 + b5 + b4 + b3 + b1 + b0 + y7 + y4 + y2
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0 =b4b6 + b4b5 + b3b5 + b3b4 + b2b7 + b2b6 + b2b4 + b2b3 + b1b6 + b1b5 + b1b4 + b1b2 + b0b7+

b0b6 + b0b2 + b0b1 + b0y5 + b6y4 + b3y4 + b0y4 + b6y3 + b3y3 + b2y3 + b6y2 + b5y2 + b4y2+

b0y2 + b7y1 + b5y1 + b0y0 + b7 + y1 + 1

0 =b6y7 + y6y7 + b7y5 + y5y7 + b7y4 + y4y7 + b7y3 + b6y3 + b2y3 + b1y3 + y3y5 + y3y4 + b7y2+

b6y2 + b0y2 + y2y3 + b4y1 + b3y1 + b2y1 + b1y1 + b0y1 + y1y5 + y1y2 + b7y0 + b1y0 + y0y7 + y0y6+

y0y3 + y0y1 + b2 + y5 + y4

0 =b4y7 + b3y7 + b1y7 + b5y6 + b4y6 + b1y6 + b4y5 + b0y5 + b7y4 + b6y4 + b4y4 + b2y4 + b1y4+

b5y3 + b4y3 + b3y3 + b0y3 + b3y2 + b0y1 + b6y0 + b1y0 + b6 + b4 + b2 + y6 + y2 + y1

0 =b5b7 + b4b7 + b2b5 + b2b3 + b1b7 + b1b5 + b0b7 + b0b6 + b0b5 + b0b4 + b0b3 + b4y5 + b6y4 + b5y3+

b4y3 + b0y3 + b7y2 + b3y2 + b2y2 + b5y1 + b3y1 + b0y1 + b5y0 + b3y0 + b0y0 + b7 + b5 + b1 + b0 + y4+

y0 + 1

0 =b7y7 + b4y7 + b0y7 + b6y6 + b5y6 + b0y6 + b0y5 + b6y4 + b5y4 + b3y4 + b7y3 + b6y3 + b0y3+

b7y2 + b3y2 + b2y2 + b6y1 + b3y1 + b1y1 + b5y0 + b4y0 + b3y0 + b1y0 + b3 + y3

0 =b4b5 + b3b7 + b3b6 + b3b4 + b2b7 + b2b5 + b2b3 + b1b6 + b1b4 + b1b3 + b0b7 + b1y7 + b2y6 + b1y6+

b6y5 + b2y5 + b4y4 + b3y4 + b7y3 + b3y2 + b5y1 + b2y1 + b0y1 + b4y0 + b3y0 + b0y0 + b3 + y3 + y2+

y1 + y0

Remark. Note that [6] uses x instead of b, but because x is already used as a variable for the states
of (Mini-)AES this might cause confusion. Therefore, this report uses a new variable b for the
input bits of the S-box.
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E Proof of Lemma 2.3

Proof. It needs to be shown that
∣∣|Ψ0〉

∣∣ = 1. First note that:

∣∣|Ψ0〉
∣∣2 =

∣∣∣∣∣
√

2

T

∣∣∣∣∣
2

·

∣∣∣∣∣
T−1∑
τ=0

sin

(
π(τ + 1

2 )

T

)
|τ〉

∣∣∣∣∣
2

(143)

=
2

T
·

∣∣∣∣∣
(

sin

(
π(0 + 1

2 )

T

)
, . . . , sin

(
π((T − 1) + 1

2 )

T

))>∣∣∣∣∣
2

=
2

T
·

∣∣∣∣∣
T−1∑
τ=0

sin2

(
π(τ + 1

2 )

T

)∣∣∣∣∣
note that sin(x) =

1

2
− 1

2
cos(2x)

=
2

T
·

∣∣∣∣∣
T−1∑
τ=0

[
1

2
− 1

2
cos

(
2π(τ + 1

2 )

T

)]∣∣∣∣∣
=

2

T
·

∣∣∣∣∣
T−1∑
τ=0

[
1

2

]
−
T−1∑
τ=0

[
1

2
cos

(
2π(τ + 1

2 )

T

)]∣∣∣∣∣.
Using cos(x) = 1

2 (eix + e−ix), note that:

T−1∑
τ=0

1

2
cos

(
2π(τ + 1

2 )

T

)
=

1

4

(
T−1∑
τ=0

ei
2π(τ+1

2
)

T +

T−1∑
τ=0

ei
−2π(τ+1

2
)

T

)
(144)

=
1

4

(
e
iπ
T

T−1∑
τ=0

(
ei

2πi
T

)τ
+ e−

iπ
T

T−1∑
τ=0

(
e−i

2πi
T

)τ)

=
1

4

(
e
iπ
T

1− e2πi

1− e2πi/T
+ e−

iπ
T

1− e−2πi

1− e−2πi/T

)

=
1

4

(
e
iπ
T

1− 1

1− e2πi/T
+ e−

iπ
T

1− 1

1− e−2πi/T

)
= 0.

So, it holds that:

∣∣|Ψ0〉
∣∣2 =

2

T
·

∣∣∣∣∣
T−1∑
τ=0

[
1

2

]
−
T−1∑
τ=0

[
1

2
cos

(
2π(τ + 1

2 )

T

)]∣∣∣∣∣
=

2

T
·

∣∣∣∣∣T2 − 0

∣∣∣∣∣ = 1.

(145)
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F Derivation of uncompute

First the relabeling is undone. So, write |k〉 instead of |λ̃k〉 and substitute back Equation (38):

N∑
j=1

βj

T−1∑
k=0

αk|j

(√
1− c2

λ̃k
2 |0〉+

c

λ̃k
|1〉

)
⊗ |λ̃k〉 ⊗ |uj〉 =

N∑
j=1

βj

T−1∑
k=0

√
2

T

T−1∑
τ=0

e−2πikτ/T sin

(
π(τ + 1/2)

T

)(√
1− c2

λ̃k
2 |0〉+

c

λ̃k
|1〉

)
⊗

|k〉 ⊗ eiλjτt0/T |uj〉 .

(146)

Then the QFT †t needs to be reversed. So, apply QFTt as defined in Definition 2.9:

N∑
j=1

βj

T−1∑
k=0

√
2

T
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)(√
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QFTt−−−−→
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√
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T
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(147)

Assuming phase estimation was perfect, the substitution λ̃k = λj , can be done and results in:
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(148)
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Since,
∑
k δkτf(k) = f(τ) and f(A) |uj〉 = f(λj) |uj〉, it holds that:
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⊗
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T
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(
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T
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Reversing U ′t on the third register, controlled on the second, makes the term in the brackets
disappear:
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(150)

Now substitute back |Ψ0〉 =
√

2
T

∑T−1
τ=0 sin

(
π(τ+1/2)

T

)
|τ〉:
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(151)
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Finally, undo the H ′t on the second register to see that this register is set back to zero. It results
in:

N∑
j=1

(√
1− c2

λ2
j

|0〉+
c

λj
|1〉

)
⊗ |Ψ0〉 ⊗ βj |uj〉

I1⊗H′†t ⊗In−−−−−−−→

N∑
j=1

(√
1− c2

λ2
j

|0〉+
c

λj
|1〉

)
⊗ |0〉 ⊗ βj |uj〉 .

(152)

Note that from Equation (150) on, all register were uncoupled. So, the remaining steps of uncom-
pute were unnecessary. These were only done to make the notation easier.
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G Proof of Lemma 3.4

Proof. Rewrite Equation (38) as follows:

αk|j =

√
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1

2i
(eix − e−ix)

=
1

i
√

2T

T−1∑
τ=0

e
iτ
T (λjt0−2πk)

(
ei
π(τ+1/2)

T − e−i
π(τ+1/2)

T

)
define δ = λjt0 − 2πk

=
1

i
√

2T

T−1∑
τ=0

(
e
iπ
2T eiτ

δ+π
T − e

−iπ
2T eiτ

δ−π
T

)
two geometric sequences

=
1

i
√

2T

(
e
iπ
2T

1− ei(δ+π)

1− ei δ+πT
− e

−iπ
2T

1− ei(δ−π)

1− ei δ−πT

)
=

1

i
√

2T

(
e
iπ
2T

1 + eiδ

1− ei δ+πT
− e

−iπ
2T

1 + eiδ

1− ei δ−πT

)
=

1 + eiδ

i
√

2T

(
e
iπ
2T

1

1− ei δ+πT
− e

−iπ
2T

1

1− ei δ−πT

)
=

1 + eiδ

i
√

2T

(
1

e
−iπ
2T (1− ei δ+πT )

− 1

e
iπ
2T (1− ei δ−πT )

)
=

1 + eiδ

i
√

2T

(
e
−iδ
2T

e
−iδ
2T

1

e
−iπ
2T (1− ei δ+πT )

− e
−iδ
2T

e
−iδ
2T

1

e
iπ
2T (1− ei δ−πT )

)
=

1 + eiδ

i
√

2T

(
e
−iδ
2T

e−
i

2T (δ+π) − e i
2T (δ+π)

− e
−iδ
2T

e−
i

2T (δ−π) − e i
2T (δ−π)

)
=

(1 + eiδ)e
−iδ
2T

i
√

2T

(
1

e−
i

2T (δ+π) − e i
2T (δ+π)

− 1

e−
i

2T (δ−π) − e i
2T (δ−π)

)
=

(1 + eiδ)e
−iδ
2T

i
√

2T

(
1

−2i sin( δ+π2T )
− 1

−2i sin( δ−π2T )

)
=

(1 + eiδ)e
−iδ
2T

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e−

iδ
2T + e

iδ
2T (2T−1)

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e
iδ
2 (− 1

T ) + e
iδ
2 (2− 1

T )

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e
iδ
2 (1− 1

T −1) + e
iδ
2 (1− 1

T +1)

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e
iδ
2 (1− 1

T )(e−
iδ
2 + e

iδ
2 )

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)

100



=
e
iδ
2 (1− 1

T )2 cos( δ2 )

−2i · i
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e
iδ
2 (1− 1

T ) cos( δ2 )
√

2T

(
1

sin( δ+π2T )
− 1

sin( δ−π2T )

)
=
e
iδ
2 (1− 1

T ) cos( δ2 )
√

2T

sin( δ−π2T )− sin( δ+π2T )

sin( δ+π2T ) sin( δ−π2T )

=
e
iδ
2 (1− 1

T ) cos( δ2 )
√

2T

2 cos( δ
2T ) sin(−π2T )

sin( δ+π2T ) sin( δ−π2T )

= −
e
iδ
2 (1− 1

T ) cos( δ2 )
√

2T

2 cos( δ
2T ) sin( π

2T )

sin( δ+π2T ) sin( δ−π2T )

= −
e
iδ
2 (1− 1

T ) cos( δ2 )

T

√
2 cos( δ

2T ) sin( π
2T )

sin( δ+π2T ) sin( δ−π2T )
.

Remark. Note that this differs a factor -2 from [15] and [10]. However, these papers start with
the same equation as this report, so one who believes the steps used in this report, doubts the
correctness of those papers.

Now use |e iδ2 (1− 1
T )| = 1 since δ and T are real, sin(x) ≤ x for x ≥ 0, and cos(x) ≤ 1 in the

nominator. Use that sin(x) ≥ x− x3/6 for x ≥ 0 in the denominator. This results in:∣∣∣∣∣−e
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Remark. Note that a different and tighter upper bound is derived than in [15] and [10].
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From this it can be concluded that |αk|j |2 ≤ 144
δ4 , when |k − λjt0

2π | ≥ 1. A visualization of the
tightness of this upper-bound is given in Figure 17.

Figure 17: Tightness of upper bounds alpha (two plots with same bounds, different point of view)
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H Failed attempts

Since there might not be a unique solution to the chosen plaintext attack, it makes no sense to
take one plaintext-ciphertext pair and try to create as many (independent) equations as variables.
So, the next step is figuring out how far the number of solutions can be limited, if only one
plaintext-ciphertext pair is considered and what happens if multiple plaintext-ciphertext pairs are
considered. The next subsection will do both.

H.1 Creating a system of equations with a limited number of solutions

Intuitively, adding more plaintext-ciphertext pairs should give more information about the key.
Section H.1.1 looks into the question whether or not adding more plaintext-ciphertext indeed
limits the number of solutions of the system of equations.

A general approach from linear algebra to create a full rank matrix out of an under-determined
polynomial system is to create a Macaulay matrix. This general approach of shifting the poly-
nomials with all possible monomials will create an exponentially large matrix. In contrast to a
general system of equations, the systems of equations in this report are well defined, which means
that there might be a smarter choice in polynomials and monomials for the shifts. Section H.1.2
will look into these, so called, smart shifts.

H.1.1 Adding more plaintext-ciphertext pairs

One option to create more equations is to simply add more plaintext-ciphertext pairs. The idea
is that only the key bits are of interest, and intuitively, adding more equations with the same key
bits as answer would make the system less under-determined. However, new variables need to
be introduced for all the encryption variables. Note that since the key did not change, it is not
necessary to introduce new variables for the key expansion, unfortunately this does also not lead
to new equations.

According to Table 1 this would mean that 64 + 80 = 144 new variables and 48 + 32 = 80 new
equations would need to be created for the representation of the S-box with degree three. So,
adding a new plaintext-ciphertext pair leads to 365 variables (if one is also counted as a variable)
and only 200 equations. Similarly, for the representation of the S-box with degree two, according
to Table 1 this would create 64 + 224 = 288 new variables and 48 + 168 = 216 new equations.
So, adding a new plaintext-ciphertext pair leads to 689 new variables (if one is also counted as a
variable) and only 506 new equations.

The above is visualized in Figure 18. It can be concluded that for both representations of the S-
box, the ratio between variables and equations gets worse by adding new plaintext-ciphertext pairs
and the problem did not get any easier. This can be seen by comparing the row reduction of the
matrix with two sets of plaintext-ciphertext, which is also given in Figure 18, to the row reduction
of the coefficient matrix with only one set of plaintext-ciphertext, which is given in Figure 15, in
Section 5.4.

H.1.2 Smart shifts

Section 8 explains that multiplying the equations with monomials results in new variables, but,
introduces more new equations than variables. However, this leads to a very large matrix and the
larger the matrix, the more complex the computations. Therefore, it is worth trying to find smart
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(a) Coefficient matrix, deg(S-box)=3 (b) Coefficient matrix row-reduced, deg(S-box)=3

(c) Coefficient matrix, deg(S-box)=2 (d) Coefficient matrix row-reduced, deg(S-box)=2

Figure 18: Mini-AES (p1 = [9, 12, 6, 3], p2 = [8, 4, 15, 1], k = [12, 3, 15, 0])
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shifts. The term smart shifts refers to shifts that introduce more new equations than variables,
without having to multiply all equations with all monomials.

An example of a smart shift can be found using the Equation (67). For j = NeNb − 1 this reads
0 = x0(3,m) ⊕ p(3,m) ⊕ w0(3,m). Remember that p(j,m) are known, therefore, multiplying
these with variables does not lead to non-linear terms, i.e. new variables. Besides, the S-box
equations already introduced the non linear terms x0(j,m) · x0(j,m′) and w0(j,m) · w0(j,m′) for
j = NeNb−1 and m,m′ = 0, ..., Se−1. Multiplying 0 = x0(j,m)⊕p(j,m)⊕w0(j,m) with x0(j,m′)
and w0(j,m′) creates 32 new equations and introduces 16 new variables, namely x0(j,m) ·w0(j,m′)
for j = NeNb − 1 and m,m′ = 0, ..., Se − 1.

This smart shift decreases the gap between the number of variables and the number of equations,
note that the size of the gap is not influenced by the representation of the S-box since the S-
box equations play no role in this smart shift. The gap is decreased from 221 − 120 = 101 to
237−152 = 85. However, after adding the new equations, not all equations are linearly independent
anymore. This results in 10 zero rows after row reduction, which means that the gap is actually
only decreased by 6. A visual representation of the shifted matrix before and after row reduction,
for both representations of the S-box, can be found in Figure 19. The matrix after row reduction
shows some zero rows. Furthermore, it is worth noting that the right side of the matrix already
contains fewer non-zero entries compared to the row-reduced coefficient matrix without the shift
(Figure 15). This means that even though the zero rows can be removed and the problem did get
easier by doing this smart shift, the winning is neglectable.

The reason that row reduction results in 10 zero rows, might not be very clear to see. Therefore,
an experiment is conducted with multiple different plaintexts and keys, of which some results are
shown in Table 15. Even though this table does not provide insight in the reason that 10 zero rows
appear, it does show that the number 10 is independent of the plaintext or the key.

This smart shift resulted in a decrease of the gap of only 6. So, more work has to be done and
it is worth investigating whether or not more smart shifts are possible. The previously described
smart shift worked, because the equation had only two variables and these variables were already
an input to the S-box equations. This means that every time that the equation was multiplied by
an x, this created products of the x terms which were introduced before, and a mix term of x and
w. Since the same equation was also multiplied by w, this created products of the w terms which
were already introduced before and the same mix term as with the first multiplication.

Number of rows Number of columns Gap Gap change
Plaintext [9, 12, 6, 3]

142 237 95 6
Key [12, 3, 15, 0]
Plaintext [8, 4, 15, 1]

142 237 95 6
Key [1, 11, 7, 2]
Plaintext [0, 0, 0, 0]

142 237 95 6
Key [12, 3, 15, 0]
Plaintext [15, 15, 15, 15]

142 237 95 6
Key [12, 3, 15, 0]
Plaintext [9, 12, 6, 3]

142 237 95 6
Key [0, 0, 0, 0]
Plaintext [9, 12, 6, 3]

142 237 95 6
Key [15, 15, 15, 15]

Table 15: Mini-AES smart shift change in gap, based on deg(S-box)=3
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(a) Coefficient matrix, deg(S-box)=3 (b) Coefficient matrix row-reduced, deg(S-box)=3

(c) Coefficient matrix, deg(S-box)=2 (d) Coefficient matrix row-reduced, deg(S-box)=2

Figure 19: Mini-AES smart shift (p = [9, 12, 6, 3], k = [12, 3, 15, 0])
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Unfortunately, this is the only equation with this property and, therefore, this is the only possible
smart shift. All other equations also contain variables that are not input of an S-box equation
(note that w0 is, in contradiction to w2, the input of an S-box, which means that whereas the smart
shift works for the equation that contains the plaintext, it does not work for the equation that
contains the ciphertext even though both the plaintext and the ciphertext are known). This means
that every multiplication, not only creates mix terms (for instance an x term and a w term), but
also products of terms (for instance an x term times another x term) that lead to new variables.
Therefore, the smart shift that worked for the first equation will not work for any other equation.
A visualization of this idea can be found in Figure 20.

Figure 20: Mini AES equation visualization

Another option is combining equations to find smart shifts. The idea is that as much new equations
as possible are created; but as little new variables as possible. Therefore, if a new variable is created,
another multiplication is sought that introduces the same variable. This means that, starting with
the smart shift mentioned above, equations are sought that also contain w0(j,m) and/or x0(j,m).
Both variables occur in exactly one other equation, Equation (85) and Equation (80) respectively.
This means that these equations need to be multiplied by w0(j,m) and x0(j,m) as well and that
Equation (67) needs to be multiplied by the variables of Equation (85) and Equation (80). However,
Equation (85) and Equation (80) also contained other terms besides w0(j,m) and x0(j,m) and
for these terms, new variables are created. The next step would than be to find a new equation,
containing the same variables, multiplying this equation with the same variables that are already
used and multiplying the equations that are already used with the new terms in the new equation.
With the way that Mini-AES is structured, one could easily verify that this process has to be
repeated until every equation is multiplied with every variable. This means that this is no longer
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a smart shift, but a Macaulay matrix approach.
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I Example Macaulay matrices

Each (sub)figure contains a matrix on the left hand side and the corresponding row-reduced matrix
on the right hand side.

Figure 21: System 1 - coefficient matrix.

Figure 22: System 1 - max degree and field equations - D = 2 is solvable.

109



Figure 23: System 1 - max degree and remove squares - D = 1 is solvable.

Figure 24: System 1 - total degree and field equations - D = 2 is solvable.
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(a) D = 1 is not solvable (b) D = 2 is solvable

Figure 25: System 1 - total degree and remove squares.

Figure 26: System 2 - coefficient matrix.
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Figure 27: System 2 - max degree and field equations - D = 2 is solvable.

Figure 28: System 2 - max degree and remove squares - D = 1 is solvable.
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(a) D = 2 is not solvable (b) D = 3 is solvable

Figure 29: System 2 - total degree and field equations.
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(a) D = 2 is not solvable (b) D = 3 is solvable

Figure 30: System 2 - total degree and remove squares.
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