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i 

Abstract 
 

The introduction of automated vehicles (AVs) on the road causes a transition period where vehicles with 

different levels of automation operate alongside human road users. Modelling human driving behaviour 

can help to establish AVs drive predictably and according to social expectations. This research modelled 

the deceleration response of a rear-approaching vehicle on the target lane (i.e., the follower vehicle) 

when another vehicle performs a lane change manoeuvre to overtake a slower-driving vehicle on the 

highway. A dataset containing naturalistic vehicle trajectory information is used to model this response 

behaviour. Three linear regression models are developed that describe the follower vehicle’s 

decelerating response by predicting the timing, duration and minimum acceleration based on the 

descriptive variables at the start of the lane change. Similar to car-following models, the follower 

vehicle’s deceleration depends on the velocity difference and distance gap to the vehicle changing 

lanes. In addition, the acceleration values of the other surrounding vehicles are important predictor 

variables. However, much of the variance of the human response behaviour is still unexplained. This 

research suggests recommendations for future studies to improve the decelerating response model to 

lane change manoeuvres on the highway to ensure AVs drive according to human standards.  
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1.   Introduction   
 

There has been a lot of enthusiasm for the introduction of automated vehicles (AVs) on the roads. Over 

the last decade, the field of automated driving has seen rapid technological development. Given the 

achievements in automated driving technology so far, their full use in future transportation systems 

seems inevitable (Singh & Saini, 2021). It is envisioned that AVs will have a positive environmental and 

social impact on urban and transport systems (Future Agenda Limited, 2020; Latham & Nattrass, 2019; 

Smirnov et al., 2021). A benefit of AVs is that their drivers can utilise the time spent in the vehicle by 

working or using the time for entertainment (Brenner & Herrmann, 2017). In addition, AVs have the 

potential to increase road safety, maximise traffic efficiency, reduce fuel consumption and improve 

access to transportation for disadvantaged persons (Domeyer et al., 2022). AVs are claimed to be safer 

than human drivers because AVs will not make human errors caused by distraction or tiredness (Grahn 

et al., 2020). However, most estimated benefits will likely be obtained when traffic consists primarily of 

AVs with a high level of automation or even only after full market penetration (Mahdinia et al., 2021). 

Although AVs can provide many benefits, there are significant challenges in their development and 

commercialisation to be addressed and solved before the large-scale deployment of AVs on the road.  

 

Road traffic is unlikely to become fully automated in the near future (Markkula et al., 2021). Despite 

this, advancements in automation technology are leading to an increasing level of automation in 

vehicles. SAE International (2021) outlines five levels of automation for vehicles based on the human 

activity required, driver support features and automated driving features. The scale ranges from level 0 

“no driving automation” where the human performs all driving tasks, to level 5 “full automation” where 

the vehicle performs all driving tasks under all conditions. Currently, most new vehicles are equipped 

with level 1 or 2 automation technology that partially assists the driver with adaptive cruise control and 

active lane centring. Thus, vehicles with different levels of automation are already on the market, and 

the level of automation in vehicles is expected to increase in the future. As a result, there is a transition 

period where vehicles with different levels of automation operate alongside each other and road users 

such as pedestrians, cyclists and other motorists (Domeyer et al., 2022; Schieben et al., 2019). AVs still 

have challenges to overcome when it comes to coexisting on the roads with human road users. Human 

road users will need to understand AVs and vice versa as they drive in the same environment. As Möller 

et al. (2016) mentioned, an AV “becomes part of a complex socio-technical system and has to interact 

with all these actors in a socially accepted manner” (p. 686). Interacting in a socially-compliant way is 

described as behaving predictably to other road users and according to social expectations (Grahn et 

al., 2020; Schwarting et al., 2019). Accordingly, the interaction between AVs and human road users is 

gaining attention in the literature because it is being acknowledged that driving is not only a mechanical 

performance but also a complex social activity (Grahn et al., 2020).  
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Currently, AVs have been developed by following mainly the architectures of robotics which focuses on 

driving collision-free (Xu et al., 2021). This ignores many factors contributing to human driving 

behaviour, such as communication, informal rules and anticipation (for example, see Brown and Laurier 

(2017)). In addition, AVs lack in their negotiation with human road users to coordinate a joint future 

motion plan (Chater et al., 2018). Ignoring these factors results in the AV driving non-human-like and 

overly cautious (Schieben et al., 2019). This behaviour of the AV can cause situations of uncertainty and 

mistrust, which could frustrate human road users and ultimately threaten road safety (Smirnov et al., 

2021). To prevent this, AVs need to behave predictably and according to social expectations, to at least 

the extent that other road users can intuitively understand the behaviour. In other words, ensuring AVs 

drive according to human standards is of interest.  

 

1. 1.   Lane Change Scenarios   

High to full automation levels will be first introduced for highway driving as it is relatively more tractable 

than urban driving (e.g., a more limited set of road user types) (Future Agenda Limited, 2020). On the 

highway, a lane change manoeuvre is one of the most fundamental driving behaviours (Xia et al., 

2021). Inappropriate lane change manoeuvres by drivers because of miscommunication or human error 

can reduce road safety and increase the risk of collision (Moridpour et al., 2010). In addition, an abrupt 

or forced lane change can result in the rear-approaching vehicle in the target lane (i.e., the lane that the 

vehicle changing lanes intend to move into) needing to brake hard. Excessive decelerations can cause 

traffic oscillations which trigger a drop in road capacity and increase the risk of rear-end crashes 

(Coifman et al., 2005). Further, an AV that drives overly cautiously and does not negotiate with other 

drivers to change lanes can become stuck in a lane, resulting in a longer travel time or even taking the 

wrong route.  

 

A lane change manoeuvre is one of the driving tasks that can comprise multiple vehicle interactions in 

both the longitudinal and lateral directions (Venthuruthiyil & Chunchu, 2022). A situation that 

particularly requires interaction between drivers is a cooperative lane change. A cooperative lane 

change involves interaction between a driver that wants to change lanes (i.e., the ego vehicle) and a 

rear-approaching vehicle on the target lane (i.e., the follower vehicle). A cooperative lane change is 

described as a situation where the ego vehicle requests to change lanes and, subsequently, a follower 

vehicle cooperates by giving way such that the driver can change lanes (Stoll et al., 2019). To 

participate in this kind of lane change, an AV would require to understand the other vehicle’s intention, 

recognise the cooperative lane change situation, and know what behaviour is expected in return. If AVs 

are not aware of drivers requesting a lane change and do not behave cooperatively, the drivers might be 

more inclined to force a lane change. As a result, the AV would need to brake more abruptly, which is 

likely uncomfortable for the passengers (Liu et al., 2022). However, regulations on how AVs should drive 

are currently far from comprehensive (Bin-Nun et al., 2022). These regulations are necessary to ensure 

that the implementation of high automation levels on the highway does not disrupt the current traffic 
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situation, reduce road safety, and increase the risk of collision. Modelling human driving behaviour in a 

lane change scenario can help in formulating these regulations. 

 

The current literature already provides a broad range of different lane change models. The first lane 

change decision models were based on gap acceptance as a function of distance and speed 

differences, in combination with other varying parameters (e.g., Ahmed (1999) and Gipps (1986)). For 

instance, Gipps’ model provides a framework for the driver’s decision to execute a lane change based 

on three factors: whether it is physically safe, necessary, and desirable to change lanes. Gipps based 

whether it is safe to change lanes on his car-following model, which includes the relative speed and 

distance as well as the maximum breaking the driver is prepared to undertake. However, to completely 

characterise the lane change manoeuvre, it might be necessary also to include the dynamic behaviour 

between the lane changing vehicle and its surrounding vehicles. For example, Stoll et al. (2019) showed 

that drivers are willing to cooperate in lane change scenarios on the highway, such that lane change 

models should also account for the possibility of drivers interacting for a gap creation. Furthermore, 

Venthuruthiyil and Chunchu (2021) concluded that for lane change duration modelling, the follower 

vehicle’s kinematics mainly control the lane change duration and hence stressed the importance of 

including the dependency between the two vehicles in lane change models.  

 

Some more recent lane changing models do try to include the interaction between road users in lane 

change scenarios and can be classified into three approaches. First, search algorithms are applied to 

estimate the driver’s lane change decisions by incorporating the limitations that the driver cannot 

directly observe the underlying states of other drivers (Brito et al., 2022; Ulbrich & Maurer, 2015). This 

is inherently part of driving, as another driver’s intentions and willingness to cooperate are not directly 

observable. Second, learning-based models use extensive data collection to build interaction-aware 

prediction models or to directly derive a driving policy from sensor data (Schwarting et al., 2018). Third, 

game-theory models approach traffic interactions as a situation where road users pursue their own 

goals and reciprocally need to adapt their behaviour to the goals and behaviour of other road users 

(Markkula et al., 2020). Game-theory models are argued to model the interaction of drivers the most as 

the model is contingent on the behaviour of the other drivers, resulting in a more realistic image of 

driving behaviours than the other models (Ji & Levinson, 2020).  

 

Despite game-theory models incorporating the behaviour of the follower vehicle in the decision-making 

process of the ego vehicle, there has been limited research that actually models the behaviour of the 

follower vehicle (also noted by Ali et al. (2020) and Ma et al. (2021). When and how the follower vehicle 

responds to the lane change request are questions that remain unanswered and motivates this study. 

Understanding the follower vehicle’s response will improve the AV’s ability to respond like humans 

(including the possibility of cooperation) and enhance predictions of the follower vehicle’s behaviour in 

lane change decision models of the ego vehicle.  
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1. 2.   Research Question 

To fully comprehend the response behaviour of the follower vehicle in a lane change scenario, it is first 

crucial to understand the decision-making processes and interaction patterns between drivers. 

Currently, the literature lacks a complete overview of the interdependence between the follower and 

ego vehicles and how they communicate and interact during lane changes. Therefore, the first objective 

of this research is to develop a comprehensive flowchart that describes the decision-making processes 

and interaction patterns between the two vehicles in a lane change scenario.  

 

This research continues by focussing on the specific part of the flowchart describing the response of the 

follower vehicle. This is particularly important as there is a lack of models characterising this behaviour 

in current literature. The follower vehicle’s behaviour can play a crucial role in the lane change 

manoeuvre, especially in cooperative lane changes where it decelerates to enable the vehicle changing 

lanes to merge. Therefore, this study focuses on characterising the deceleration response of the 

follower vehicle to the lane change manoeuvre of the ego vehicle, leading to the research question:  

 

What is the deceleration response behaviour of a rear-approaching vehicle on the target lane when a 

vehicle performs a lane change manoeuvre on the highway? 

 

The decelerating response behaviour of a follower vehicle can be described by the timing, duration, and 

minimum acceleration (i.e., magnitude of the deceleration). Therefore, the following three sub-questions 

are investigated in this research: 

 

When does a rear-approaching vehicle start decelerating in a lane change scenario? 

How long does a rear-approaching vehicle decelerate in a lane change scenario? 

What is the minimum acceleration of a rear-approaching vehicle in a lane change scenario? 

 

Naturalistic vehicle trajectory data will be analysed to gain insights into human driving response 

behaviour. Lane change manoeuvres should be identified, and the related timing, duration, and 

minimum acceleration of the deceleration response of the following vehicle should be investigated. To 

understand of the follower vehicle’s response, the important predictors of the response should be 

identified by analysing both the driving behaviour of the vehicles and the relationship between them in 

the lane change scenario. How a specific lane change scenario influences the follower vehicle’s 

response behaviour should be modelled such that the decelerating response can be predicted. The 

results of this analysis should provide predictions of the human-like response behaviour of a following 

vehicle during a lane change manoeuvre. 
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1. 3.   Report Outline  

The research continues in Chapter 2.   by providing a literature review about lane change manoeuvres 

with a particular interest in the interdependence and interaction between the vehicles. The Chapter 

ends by combining the knowledge from the literature review into a flowchart describing the decision-

making process and interaction patterns between the ego and follower vehicles. Chapter 3.   continues 

the literature review by focussing on the specific part of the flowchart that describes the response 

behaviour of the follower vehicle. This chapter provides the existing knowledge and models regarding 

the follower vehicle’s response to a lane change manoeuvre. Additionally, the specific lane change 

scenario investigated in this study is described. Chapter 3.   concludes by summarising the key findings 

of previous literature and stating the research hypotheses. Next, Chapter 4.   explains the research 

method, addressing the dataset used, the descriptive parameters of the lane change scenario and the 

classification of the follower vehicle’s behaviour. Following, Chapter 5.   presents the results of the data 

analysis. At the end of Chapter 5.  , the models describing the decelerating response behaviour of the 

follower vehicle are presented. This is followed by Chapter 6.  , which discusses this study’s results and 

limitations and provides recommendations for future research. Finally, Chapter 7.   concludes this 

research by summarising the key findings.    
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2.   Lane Change Manoeuvres 
 

This Chapter presents a flowchart of the decision-making process and interaction patterns between the 

ego and follower vehicles. Literature from different aspects of driving behaviour is discussed and 

combined to have a comprehensive understanding of the lane change manoeuvre. Specifically, 

literature about general and lane change driving behaviour, as well as the formal driving rules are 

reviewed. Additionally, a focus is given to literature discussing traffic communication and interaction.  

 

2. 1.   General Driving Behaviour  

Wilde (1976) presented a flowchart of general driving behaviour. The paper provides a model of a 

driver’s behaviour by incorporating the role of social influences on the driver’s perception, decision-

making, and actions. Here, it is assumed that a driver samples information from the environment, such 

as the physical features of the traffic site and the informal and formal rules. In addition, the driver 

gathers information about the direction and speed of the surrounding vehicles. Based on this 

information, the driver anticipates the future environment and trajectory of the driver’s vehicle and the 

surrounding vehicles. The intake of additional information might verify these anticipations. In turn, 

these anticipations (verified or not) will result in a subjectively estimated danger of the situation. The 

level of perceived risk determines the decision to take certain driving actions. In addition, these 

decisions are influenced by the driver’s cognitive state and motivation, which depend on modulating 

factors such as experience, personality, and age. Further, a distinction has been made between long-

term, short-term, and momentary decisions. Overall, Wilde (1976) provides a strong framework for 

defining the behaviour of drivers.    

 

Later, Michon (1985) conceptualised driving as a hierarchically ordered structure of different behaviour 

levels. This so-called “Hierarchical Control Model” describes driver behaviour as a result of the traffic 

situation but also factors that are not entirely related to the driving process, such as intentions, 

personality, and preferences. The model distinguishes between strategic, tactical, and operational 

levels. The strategic level refers to higher-level reasoning and planning, such as route choices. While 

executing the strategic level decisions, tactical decisions need to be made by drivers. The tactical level 

includes processes that regulate safe interactions with the road environment and surrounding vehicles. 

This level is more concerned with the directly prevailing circumstances of the driver and short-term 

objectives. Examples of manoeuvres at this level are gap acceptance, obstacle avoidance and turning. 

The lowest decision level, the operational level, involves manipulating control outputs for driving. It 

refers to the car controlling processes such as following the road and managing the speed. The task of 

driving involves all three levels working together. For example, the decisions made on a tactical level 

often have to meet the criteria derived from the goals specified at the strategic level. At the same time, 

the outcome of behaviours at the lower level can change the criteria from the upper level. Michon 

(1985) stressed the importance of connecting the levels and defining the connection between them. 
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The Hierarchical Control Model is a well-appreciated model in literature to describe human driver 

behaviour (Lützenberger & Albayrak, 2014; Moridpour et al., 2010; Salvucci, 2006).  

 

2. 2.   Traffic Interaction 

The driving behaviour of vehicles is dependent on other vehicles as they share the road. However, many 

traffic situations involving multiple vehicles can unfold without the necessity of interacting, also referred 

to as traffic encounters (Domeyer et al., 2022; Fabricius et al., 2022). An encounter indicates road 

users have the possibility of colliding where only one or neither driver adjusts their behaviour. Wilde 

(1976) described encounters as a unidirectional influence: “driver A influences B without necessarily 

being influenced by him” (p. 477). For example, when a vehicle approaches a slower-driving lead 

vehicle, there can be a collision if the approaching vehicle does not change its behaviour. In this 

situation, the lead vehicle will likely not change its behaviour; therefore, it is an encounter rather than 

an interaction. The degree of interdependence and uncertainty between drivers will determine the need 

for interaction behaviours (Domeyer et al., 2019).  

 

Traffic interactions are an essential component of driving when two or more road users need to 

coordinate a safe joint future motion plan (Portouli et al., 2014). The drivers need to assess other 

drivers’ intentions based on communication correctly and subsequently interact if necessary. For 

example, even though a driver’s intended manoeuvre seems impossible at a specific time, due to 

interacting with other drivers and communicating one’s intent, the driver might still be able to execute 

the manoeuvre safely. Markkula et al. (2020) concluded that all driver interaction scenarios refer to 

some form of negotiation to determine the order of access to some shared region of space. The authors 

refer to this as a space-sharing conflict: 

 

Space-sharing conflict: “An observable situation from which it can be reasonably inferred 

that two or more road users are intending to occupy the same region of space at the same time 

in the near future.” (Markkula et al., 2020, p. 736)  

 

A space-sharing conflict requires interaction as it is an ambiguous situation where road users need to 

determine a shared future motion plan (Rasouli & Tsotsos, 2020). If the drivers do not interact and 

neither changes their trajectory, the space-sharing conflict will result in a collision. The authors continue 

to use the concept of space-sharing conflict in defining what interactions are: 

 

Interaction: “A situation where the behaviour of at least two road users can be interpreted as 

being influenced by a space-sharing conflict between the road users.” (Markkula et al., 2020, p. 

737)  

 

The definition suggested by the authors is cross-theoretical and brings together the four different 

theoretic perspectives on road traffic interactions, namely: traffic conflict and safety, game theory, 
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sociology and linguistics (Markkula et al., 2020). In addition, several key aspects are incorporated, such 

as collision avoidance, order of access, coordination, and communication. However, this definition of 

interaction has two limitations. First, the definition inherently depends on the interpretation of the road 

users. In other words, the judgment of whether or not there is a space-sharing conflict and whether the 

situation requires negotiation is observer-dependent  (Markkula et al., 2020). Each driver likely has 

limited information about the whole situation, allowing drivers to interpret the situation differently. 

Similarly, whether the space-sharing conflict is resolved depends on the driver’s perspective and 

judgment  (Markkula et al., 2020). Second, a situation is only considered to be an interaction when 

there is an observable difference in behaviour. However, it can occur that a driver is interacting without 

changing their behaviour. Nevertheless, another driver cannot know whether the driver deliberately 

chooses to signal an intent by not changing its behaviour or was unaware of the interaction-demanding 

situation. The distinction between those two driver states is irrelevant to this research as the objective 

behaviour of the driver is the same. Likewise, it is also impossible for road users to know this difference.  

 

The definition of traffic interaction is closely related to Clark and Brennan’s (1991) concept of joint 

actions  (Markkula et al., 2020). Joint activity is a generalisation of joint action, and it describes 

situations where drivers’ actions depend on each other (Domeyer et al., 2019; Fabricius et al., 2022). 

Effective coordination in a joint activity relies on common ground. Common ground refers to mutual 

understanding and anticipation toward traffic that lets drivers resolve a space-sharing conflict (Dietrich 

et al., 2018). Common ground is partly formed by formal regulations. However, since formal rules often 

involve a high degree of interpretation which is also situation-dependent, communication mainly takes 

place along informal rules (Latham & Nattrass, 2019; Wilde, 1976). Informal rules are based on 

previous experiences and social norms (Portouli et al., 2014). Consequently, informal rules are not 

widely shared by all road users and differ among geographical regions (Portouli et al., 2014; Wilde, 

1976). Substantial differences in the common ground among road users will likely result in 

miscommunications. A higher rate of accidents would be expected to occur when the existing norms are 

inadequate, there is a completely unstructured situation, or there are contradictory or unclear informal 

rules (Wilde, 1976). The concept of common ground stresses the importance of shared knowledge 

between road users to communicate and interact successfully (Domeyer et al., 2019).   

 

2. 2. 1.   Communication 

In order to interact, road users need to communicate their intent. Communication in traffic is a broad 

concept. Dietrich et al. (2019) state that “once a driver’s behaviour is perceivable by another one, it 

becomes a form of communication” (p. 22), emphasising the importance of placing traffic behaviour in 

a broader context and associating it with communication. This implies that driving behaviour always 

shows some intent that others can interpret as communication, regardless of the driver’s intention or 

awareness (Dietrich et al., 2019). Therefore, it is argued that one cannot not communicate, meaning 

that road traffic behaviour and communication are equivalent. Describing a driver’s communication 

through its behaviour is also in line with linguistic models that use Austin's (1975) speech act theory 
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(Markkula et al., 2020; Portouli et al., 2014). Austin argues that to say something is to do something; 

verbal communication is an illocutionary act. An illocutionary act conveys a particular force to oneself or 

others, such as commanding, requesting, warning, or informing. Portouli et al. (2014) extend this 

reasoning to (nonverbal) road traffic communication. Here, communicative acts still have varying forces 

and cause some consequences. For example, drivers requesting to merge paths while the target lane is 

occupied or informing someone to pass first.   

 

This definition of driver’s communication makes it impossible to make specific distinctions. First, the 

definition does not allow to determine whether a driver is consciously aware of communicating and 

whether the driver holds a particular intention. However, this difference can also be difficult for drivers 

to distinguish while driving. Second, other definitions make a distinction of whether the other driver 

recognises this communication. Stefanov (2018) states that behaviour becomes communication if 

“another person interprets the behaviour as a message and attributes meaning to it” (p. 3). 

Nevertheless, drivers themselves are not capable of truly determining whether the other driver 

interprets and attributes meaning to the driving behaviour or not. In both cases, the actual driving 

behaviour will not differ. Therefore, behaviour and communication can be seen as equivalent in traffic, 

and further distinction is unnecessary.  

 

A driver has various actions to communicate their intention, also referred to as communication cues 

(Amini et al., 2019). The communication cues can be classified into two main mechanisms, namely 

implicit and explicit communication (Domeyer et al., 2022; Markkula et al., 2020; Portouli et al., 2014; 

Schieben et al., 2019): 

 

Implicit communication: “A road user behaviour which affects own movement or perception, but 

which can at the same time be interpreted as signalling something to or requesting something 

from another road user” (Markkula et al., 2020, p. 741) 

 

Explicit communication: “A road user behaviour which does not affect own movement or 

perception, but which can be interpreted as signalling something to or requesting something 

from another road user” (Markkula et al., 2020, p. 742) 

 

The purpose of the behaviour determines whether it is implicit or explicit. Explicit communication serves 

the exclusive purpose of conveying information with the intention to transfer one’s intention directly 

(e.g., the turn indicator). While implicit communication is a behaviour that affects the road user’s 

movement or perception but which can at the same time be indirectly interpreted as signalling 

information by other road users (e.g., accelerating or breaking lights) (Amini et al., 2019; Fabricius et 

al., 2022). Implicit communication also supports the notion that behaviour is equal to communication. 

That is, implicit communication is merely the driving behaviour without the driver’s intention to 

communicate. Drivers’ communication can also be divided into the categories of vehicle-based and 
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driver-based (Lee et al., 2021). Vehicle-based communication is related to the motion of the vehicle and 

other available means of communicating through the vehicle’s light and sound. Driver-based 

communication is the information the human driver provides, such as gestures and eye contact. Table 1 

provides an overview of a driver’s types of communication cues.  

 

Table 1  

Overview of possible communication cues  

 Implicit Explicit 

Vehicle-based  Kinematics (e.g., position, velocity, 

acceleration, jerk) 

Proxemics (e.g., gap size) 

Chronemics (e.g., vehicle trajectory) 

Braking lights 

Engine noise 

Flashing headlights 

Emergency lights 

Turn indicator 

Horn honking 

 

Driver-based Eye movement  

Body language (e.g., head orientation) 

Gesture (e.g., hand movement) 

Speech 

Eye contact 

Note. This list is not intended to be complete but provides an overview of the literature’s most analysed 

communication cues.  

 

Communication cues are always interpreted in their context (Schieben et al., 2019). Drivers need to 

constantly analyse the communication cues in light of the driving context and past experiences, as the 

cues can be very ambiguous (Färber, 2016; Schieben et al., 2019). For example, headlight flashing can 

have multiple meanings, such as offering to yield right-of-way or indicating vehicle lights are off. The 

context of the situation will help interpret other drivers’ communication correctly and determine their 

future actions.  

 

The road environment and stereotypes can cause drivers to have different expectations that help to 

interpret the communication cues of drivers and interact successfully (Portouli et al., 2014). For 

example, the road environment (e.g., the number of lanes, traffic volume, and merging of lanes) can 

help a driver anticipate other vehicles will change lanes soon when their current lane is ending (Amini et 

al., 2019; Saifuzzaman & Zheng, 2014). Additionally, drivers form stereotypes based on previous 

experiences that will make a driver set specific expectations about their future actions (Dietrich et al., 

2019; Schieben et al., 2019). For instance, a motorcyclist is expected to overtake fast, while a truck is 

likely to have lower accelerations. In addition, drivers’ expectations also differ depending on the 

vehicle’s country number plate or the specific vehicle model (Dietrich et al., 2019). The pure recognition 

of a vehicle will cause drivers to form an expectation about the vehicle’s future motion. This strengthens 

the statement that drivers constantly communicate regardless of the driver’s intention.  
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In general, the driver is inherently a crucial part of driving and consequently plays a role in traffic 

communication. Each diver and driving style is different, and a driver’s needs and motivations will likely 

differ over time (Saifuzzaman & Zheng, 2014; Wilde, 1976). Saifuzzaman and Zheng (2014) presented 

a list of driver properties that have been shown to influence the driving style, such as socio-economic 

characteristics, abilities, personality, and risk threshold. These properties are essential in 

understanding certain behaviour differences of drivers. However, this will not be further investigated as 

it is not the aim of this research. It should be noted that a driver’s driving style will influence the implicit 

vehicle-based communication cues (e.g., aggressively accelerating) and be indirectly relevant in the 

analyses.   

 

2. 3.   Lane Change Driving Behaviour  

Literature provides different lane change models, with or without traffic interactions included. This 

section reviews various lane change models, which help to develop a general flowchart of the decision-

making process and the interaction between the drivers. Information on the traffic rules regarding 

performing a lane change manoeuvre is also discussed.   

 

2. 3. 1.   Decision-making Process  

One of the most popular lane change models is from Gipps (1986). In Gipps’ model, the driver’s 

decision to make a lane change depends on whether it is safe, necessary, or desirable to change lanes. 

In the case of necessary lane changes, Gipps defined three patterns of a driver’s behaviour depending 

on the distance to the mandatory lane change manoeuvre. When the distance is large, it does not affect 

the driver’s lane change decision, and the driver tries to keep their desired speed. When a driver is at a 

middle distance away, the driver wants to change lanes and ignores speed advantage opportunities. By 

the time the driver is close to the mandatory lane change, the driver’s only interest is to reach the 

correct lane, and speed is unimportant. Gipps argues that a driver has multiple objectives (e.g., desired 

speed, correct lane, safety, and comfort) which are not necessarily consistent with each other. A driver 

encounters many conflicts that influence the decision to change lanes. The model of Gipps (1986) 

incorporates these different factors that influence drivers to change lanes.  

 

Lane change decision models can be categorised as tactical, operational or both, but not at the 

strategic level (Salvucci, 2006). Moridpour et al. (2010) state that in traffic situations, “drivers make 

tactical and operational decisions for their lane changing manoeuvres based on the current 

characteristics of the surrounding traffic and their anticipated future characteristics of the surrounding 

traffic” (p. 159). Webster et al. (2007) argued that lane change models could be improved by 

incorporating more of the tactical decisions made by drivers. Similar to what was mentioned by Wilde 

(1976), decisions made by drivers are primarily based on assumptions about the behaviour of 

surrounding vehicles (Webster et al., 2007). Therefore, Webster et al. (2007) extended Gipps’ model 

(1986) by implementing a driver’s anticipation and manoeuvre planning behaviour.  
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2. 3. 2.   Driver Interaction  

The mentioned models are from the perspective of the driver that changes lanes. However, the 

interaction between drivers inherently includes the driving behaviour and decisions of two or more 

drivers. Therefore, Hidas (2005) developed a lane change decision model loosely based on Gipps’ 

model (1986) with also considering the cooperation of the rear-approaching vehicle in the target lane. 

Hidas (2005) argues that a driver that wants to change lanes sends a request to the rear-approaching 

vehicle driver in the target lane. This request is evaluated by the rear-approaching vehicle driver and is 

either refused or accepted. The driver might refuse or accept the request depending on factors such as 

the vehicle’s position and speed and the driver’s personality. A driver who accepts the request to 

change lanes will reduce speed and prepares a sufficient gap for the vehicle changing lanes. Hidas 

(2005) summarised the cooperative lane change interaction process in three components. First, the 

ego vehicle indicates the desire to change lanes. Then, the rear-approaching vehicle recognises the 

situation, decides to cooperate, and slows down. Finally, the ego vehicle realises the rear-approaching 

vehicle gave way and executes the lane change manoeuvre when the distance gap is big enough.   

 

Portouli et al. (2014) also acknowledged that it is essential to incorporate the response to a request of 

drivers when modelling driver interaction. Here, a linguistic model of drivers’ communicative 

interactions is proposed. The interaction process consists of several components. First, the vehicle 

changing lanes communicates its intent and makes a request. Following this, the rear-approaching 

vehicle on the target lane perceives this act and interprets the intention of the other vehicle. This 

vehicle has the choice to either accept or reject this request and reacts accordingly. Next, the vehicle 

changing lanes perceives the act and interprets the intention. Then, the vehicle can choose to start or 

cancel the manoeuvre. This model allows for both successful and unsuccessful interactions, as drivers 

can wrongly perceive or interpret an intention.  

 

2. 3. 3.   Formal Driving Rules  

Driving behaviour is influenced by formal traffic rules and informal social norms (Wilde, 1976). The 

Official Highway Code of the UK provides some general guidelines on how to overtake (Drivingsuccess 

Education, 2022). According to this highway code, a driver should check mirrors and the blind spot area 

to judge the speeds of surrounding vehicles and the space available. Next, when it is safe to do so, the 

driver should signal in plenty of time and then move out to the target lane. In addition, drivers are 

reminded that traffic may come up behind very quickly.  

 

McKnight and Adams (1970) provide an extensive driver education task analysis on how to change 

lanes. Here, the lane change manoeuvre is divided into four steps. First, a driver decides to change 

lanes based on whether it is legally permissible and looks for rear-approaching traffic in the target lane. 

The decision to change lanes depends on the judgment of the available passing distance, the relative 

speed, the available passing time, and the accelerative capabilities of the vehicle. Second, a driver 

prepares to change lanes by signalling the intention by activating the directional signal and adjusting 
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the car speed. Third, a driver first waits a few seconds after signalling before turning the wheels and 

entering the target lane. Fourth, the lane change manoeuvre is completed when the vehicle is 

positioned in the centre of the target lane, the directional signal is cancelled, and the speed is adjusted 

to the traffic flow in the new lane.  

 

2. 4.   Flowchart Lane Change Manoeuvre  

The information on the different aspects of driving, traffic interaction and communication, and the lane 

change manoeuvre provides a complete overview of the lane change process. This research proposes a 

flowchart that follows from this knowledge (see Figure A1 for the complete flowchart). Drivers might not 

always adhere to formal rules, such as using the turn indicator. However, the proposed flowchart 

assumes drivers will drive according to the formal rules. The questions posed in the flowchart are 

primarily subjective, such as “Can I perform the lane change manoeuvre?”. The questions are 

somewhat vague as they allow for differences between drivers and temporal differences within drivers. 

This is in line with the flowchart of Gipps (1986).  

 

An overview of the main steps of the flowchart is shown in Figure 1. The flowchart starts with the ego 

vehicle scanning the surrounding vehicles (e.g., relative position, distance, and speed) and road 

characteristics (e.g., regulatory signs and lane markings). The process starts when the ego vehicle has 

the desire to change lanes. Next, the ego driver checks whether it is legally allowed to change lanes. 

When it is legally permissible to change lanes, the ego driver starts the lane change interaction with the 

follower vehicle. Similar to Hidas (2005) and Portouli et al. (2014), the interaction process is described 

in three phases. After the ego vehicle decides to change lanes, the driver communicates its intent. 

Second, the follower vehicle perceives and interprets this communication, decides to accept or reject 

the request, and changes behaviour accordingly. Third, the ego vehicle perceives and interprets the 

response of the follower vehicle and chooses to perform the lane change manoeuvre or wait.  

 

In essence, this process of changing lanes includes the perception of the environment, its interpretation 

to form a decision, and an action which includes a form of communication. In other words, the flowchart 

follows the cycle of perception-decision-action (comparable to Markkula et al. (2018)). Saifuzzaman and 

Zheng (2014) also described that the process of driving “involves perception, judgment and execution 

of a particular decision strategy” (p. 390). This is also closely related to the classical approach of a 

sense-think-act cycle (Westhead, 1993). However, human behaviour is not constructed as a single large 

loop but rather as a series of small, reactive processes which work together in parallel. For example, a 

driver constantly perceives information, not only at a specific time point. Nevertheless, this is not 

incorporated in the flowchart; only the important steps are explicitly added. In the case of perception, 

instead of many small parallel flows, only the crucial moments in which a driver must gather perceptual 

information are included.  
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Note. The lane change interaction consists of three phases: before the arrow to the right, between the 

arrows, and after the arrow to the left. The arrows represent a transfer of information between the ego 

and follower vehicles. 

 

2. 4. 1.   Phase 1: Ego Vehicle Initiates the Lane Change Manoeuvre 

The specifics of the first phase are shown in Figure 2. The ego driver needs to decide whether the lane 

change manoeuvre can be performed with respect to the follower vehicle. If the follower vehicle is too 

close to the ego vehicle, the lane change manoeuvre cannot be performed and the ego vehicle needs to 

wait. On the other hand, if the follower vehicle is far away, the lane change manoeuvre can be 

Figure 1  

Overview of the decision-making process and vehicle interaction 

of a lane change manoeuvre 
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performed without the follower vehicle needing to change its behaviour. In between, the drivers must 

negotiate about who passes the space-sharing conflict first. The exact boundaries between those 

decisions are likely to differ between drivers, temporal differences within drivers, and the situation 

(Schwarting et al., 2019; Zhao et al., 2021).  

 

Note. This part of the flowchart is carried out by the ego vehicle. The red boxes require the driver to 

perceive specific information, the green boxes represent a decision the driver needs to make, the blue 

boxes are an action the driver performs, and the grey boxes provide extra information. 

 

Before changing lanes, the ego vehicle signals its intent to do so. Following the formal rules 

(Drivingsuccess Education, 2022; McKnight & Adams, 1970), the ego vehicle should wait a few 

seconds after signalling and maintain a safe car-following distance before changing lanes. This signal 

consists of implicit and explicit vehicle-based communication cues (e.g., position, acceleration, and turn 

indicator). The scenario does not consider any driver-based communication cues as the scenario takes 

place on the highway. Driver-based communication can be of great importance to solving ambiguities 

between road users. However, multiple studies have shown that these cues are not used when driving 

Figure 2 

Flowchart of phase 1: ego vehicle initiates the lane change 
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on a highway at high speeds (Domeyer et al., 2019; Fabricius et al., 2022; Färber, 2016; Lee et al., 

2021; Uttley et al., 2020). Lee et al. (2021) found that on roads with a 50 km/h speed limit, drivers 

rarely used explicit body language to communicate and relied instead on kinematic cues. In addition, 

Färber (2016) state that driver-based cues are limited at high speeds as there is not enough time to see 

inside a vehicle and evaluate the driver’s eye movements.  

 

2. 4. 2.   Phase 2: Follower Vehicle Perceives and Responds  

Next, the follower vehicle perceives the communication of the ego vehicle (see Figure 3). The signal of 

the ego vehicle is interpreted as a request to change lanes based on the common ground between the 

drivers (Dietrich et al., 2018). It would also be possible that there is a miscommunication between the 

drivers when the signal is wrongly perceived or interpreted. However, in this scenario, it is assumed that 

the driver correctly interprets the intention of the ego vehicle to change lanes.  

Note. This part of the flowchart is carried out by the follower vehicle. The red boxes require the driver to 

perceive specific information, the green boxes represent a decision the driver needs to make, the blue 

boxes are an action the driver performs, and the grey boxes provide extra information.  

Figure 3 

Flowchart of phase 2: follower vehicle perceives, interprets and responds to the ego vehicle’s request 
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Subsequently, the driver of the follower vehicle can decide how to respond to this request. If the driver 

believes the distance is large enough, the driving behaviour does not have to change. Similarly, the 

driving behaviour does not have to change if the driver thinks the ego vehicle cannot change lanes. If 

there is doubt about whether a lane change manoeuvre of the ego vehicle is possible, the follower 

vehicle can accept or reject the request and change its behaviour accordingly. The follower vehicle uses 

implicit vehicle-based communication cues to signal its response. If the follower vehicle accepts the 

ego’s request, the driver will slow down to create a larger distance gap. If not, the follower vehicle will 

accelerate such that the gap is too small for the ego vehicle to change lanes.  

 

2. 4. 3.   Phase 3: Ego Vehicle Perceives and Responds  

Following, the ego driver perceives and interprets this response of the follower vehicle (see Figure 4). 

Then, based on the response, the ego vehicle decides to perform the lane change manoeuvre or wait 

for the follower vehicle to pass.  

 

Note. This part of the flowchart is carried out by the ego vehicle. The red boxes require the driver to 

perceive specific information, the green boxes represent a decision the driver needs to make, and the 

blue boxes are an action the driver performs. 

 

  

Figure 4 

Flowchart of phase 3: ego vehicle perceives, interprets and responds to the follower vehicle’s response 
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3.   Follower Vehicle’s Behaviour 
 

This Chapter continues by focusing on the response behaviour of the follower vehicle within the 

established flowchart. A specific lane change scenario is chosen to investigate as lane change 

interactions have been shown to be situation dependent. Furthermore, a literature review of existing 

knowledge and models regarding the follower vehicle's response to a lane change manoeuvre is 

provided. The Chapter concludes by summarising the key findings of previous literature and 

establishing the expectations for modelling the response behaviour of the follower vehicle. 

 

3. 1.   Lane Change Scenario  

This research analyses a specific lane change scenario on highways because traffic interactions are 

situation-dependent and need to be understood in relation to their context (Dietrich et al., 2019; Färber, 

2016; Wilde, 1976). Figure 5 illustrates this specific lane change scenario, where an ego vehicle moves 

from its current lane to the target lane on the left (with reference to the direction of motion) because 

the vehicle currently in front of it drives slower than desired (i.e., the slowlead vehicle). The ego would 

merge left into the gap between two vehicles travelling in the target lane: these will eventually become 

the ego vehicle’s leader and follower vehicles at the end of the manoeuvre.  

 

 

A lane change manoeuvre on the highway limits the communication cues the vehicles can use to signal 

one’s intent. That is, only vehicle-based communication cues are used (e.g., position, acceleration, and 

turn indicator). Even though driver-based communication can be of great importance to solving 

ambiguities between road users, multiple studies have shown that these cues are not used when 

driving on a highway at high speeds (Domeyer et al., 2019; Fabricius et al., 2022; Uttley et al., 2020). 

Lee et al. (2021) found that drivers rarely used explicit body language to communicate and relied 

instead on kinematic cues on roads with a 50 km/h speed limit. In addition, Färber (2016) state that 

driver-based cues are limited at high speeds as there is not enough time to see inside a vehicle and 

evaluate the driver’s eye movements.  

Figure 5 

Illustration of the lane change scenario  
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Lane changes to overtake a slower driving vehicle are also referred to as discretionary lane changes 

(Ahmed, 1999). Discretionary lane changes are made when drivers are not satisfied with the driving 

conditions in the current lane and desire to change lanes to gain some speed advantage. In contrast, 

mandatory lane changes are performed when drivers are required to leave the current lane when for 

example, there is an exit lane, merge of lanes or splitting of the road in different directions. The urgency 

(i.e., how close to the end of a lane) of mandatory lane changes influences the behaviour of drivers. 

That is, a higher urgency reflects the diver’s willingness to brake harder and accept smaller gaps when 

the manoeuvre is necessary (Gipps, 1986; Schakel et al., 2012). Therefore, this research specifically 

focuses on discretionary lane changes.  

 

3. 2.   Follower Vehicles’ Response 

Previous literature discussing the behaviour of the follower vehicle in a lane change manoeuvre can be 

grouped into three categories. First, studies have focused on classifying the lane change scenario to 

understand its influence on the behaviour of the follower vehicle. Second, other studies have analysed 

the follower vehicle’s behaviour irrespective of the lane change scenario classification. Third, some 

studies have specifically examined the drivers’ willingness to cooperate and methods to encourage 

cooperation. These three categories will be discussed in further detail in the following sections.  

 

3. 2. 1.   Lane Change Classifications 

Hidas (2005) analysed lane change manoeuvres and concluded that the manoeuvres could be 

classified into free, forced, and cooperative lane changes. Hidas' (2005) classification of the lane 

change manoeuvre is based on the relative gaps between the leader and follower vehicle. A free lane 

change is when there is no noticeable change in the relative gap between the leader and follower. This 

indicates there is no interference or interaction between the ego and follower vehicles. A forced lane 

change is indicated by a distinct change in gap size before and after the ego vehicle merges into the 

target lane. The gap size gets larger after the ego vehicle enters the target lane, indicating that the 

follower vehicle was forced to slow down. A cooperative lane change is characterised by an increasing 

gap before the ego vehicle enters the target lane and a decreasing gap afterwards. Here, the follower 

vehicle allows the ego vehicle to change lanes. In other words, a cooperate lane change manoeuvre is 

referred to as the specific case where the ego vehicle interacts with the follower vehicle and 

consequently, the follower vehicle facilitates a lane change for the ego vehicle. 

 

In cooperative lane change manoeuvres, the interaction process between the ego and follower vehicle 

can be described in three phases (Hidas, 2005; Portouli et al., 2014). First, the ego vehicle 

communicates its intent to change lanes. Second, the follower vehicle perceives and interprets the 

intention of the ego vehicle. Subsequently, the follower vehicle decides to either accept the request by 

decelerating or reject the request by accelerating or keeping a constant velocity. Third, the ego vehicle 

perceives and interprets the response of the follower vehicle and chooses to perform the lane change 



20 

manoeuvre or wait for the follower vehicle to pass. This lane change may take several seconds, during 

which the vehicles must communicate and coordinate their actions.  

 

Hidas (2005) developed a lane change model based on his lane change classifications. The model 

determines the vehicle’s trajectory by incorporating explicit modelling of vehicle interactions. The ego 

vehicle can change lanes if the distance gaps in front and behind the vehicle on the target lane are not 

less than some minimum acceptable distance at the end of the manoeuvre. In a free lane change, the 

distance gaps are at least equal to the desired distance gaps. In cooperative lane change manoeuvres, 

the lane change is feasible if the deceleration required for the follower vehicle to create a safe distance 

gap is acceptable. The maximum deceleration the follower vehicle is willing to use depends on an 

aggressivity parameter, where a more aggressive driver will select a lower speed decrease. In forced 

lane change manoeuvres, the ego vehicle makes assumptions about the maximum deceleration which 

the follower vehicle will use. Then, if the manoeuvre is feasible with the assumed values, the ego 

vehicle will force the follower vehicle to reduce speed and provide a safe distance gap.  

 

Sun and Elefteriadou (2014) extended the model of Hidas by incorporating the probability of occurrence 

of either a free, forced or cooperative lane change manoeuvre. The decision framework of the ego 

vehicle is based on the initial gap on the target lane and the personality of the ego vehicle’s driver. Sun 

and Elefteriadou (2014) also divided cooperative lane changes into cooperative and competitive 

behaviour based on the follower’s decision to accept or reject the request, respectively. This decision 

framework of the follower vehicle is based on (1) the existing distance gap between the vehicles, (2) the 

distance travelled with a specific deceleration (based on the driver’s personality) during the lane change 

of the ego vehicle, (3) the distance travelled by the ego vehicle during the lane change, and (4) the 

minimum safe distance gap. If the follower vehicle accepted the lane change request, the vehicle would 

decelerate. The resulting change in velocity of the follower vehicle is then calculated based on a car-

following model. When rejecting, the follower vehicle would maintain speed or accelerate depending on 

the driver’s aggressiveness. If the follower vehicle maintained its speed, the ego vehicle could choose to 

make a forced lane change.  

 

The proposed classification based on the change in gap size by Hidas (2005) was reviewed by Chauhan 

et al. (2022). Chauhan et al. (2022) investigated the response of the follower vehicle and found that 

Hidas’ classification of free, cooperative, and forced lane changes does not closely replicate real-world 

driving. The study found misclassifications when also considering the velocity change of the follower 

vehicle. For example, the misclassification of a cooperative lane change manoeuvre was when the gap 

increased before the ego vehicle entered the target lane and then decreased, which was not caused by 

the follower vehicle decreasing its speed initially and increasing its speed afterwards. Therefore, 

Chauhan et al. (2022) proposed that the response of the follower vehicle should be classified into free, 

fully-constraint or partially-constraint lane changes based on the impact on the vehicle’s velocity before 

and after the ego vehicle merges into the target lane. The results of Chauhan et al. (2022) imply that it 
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is best to characterise the response behaviour of the follower vehicle based on the follower vehicle’s 

change in acceleration rather than the distance gap between the follower and ego vehicles.  

 

3. 2. 2.   Impact on Follower Vehicle  

Irrespective of the lane change classification and whether the follower vehicle’s behaviour is 

cooperative, a few studies have investigated how the lane change manoeuvre of the ego vehicle 

impacts the follower vehicle’s velocity using naturalistic driving datasets.  

 

Yang et al. (2019) proposed the so-called “speed change rate” to characterise the degree of the 

follower’s response. Here, the velocity of the follower vehicle at the moment when the ego vehicle 

initiates the lane change and stabilises on the target lane are compared. In most cases, the lane 

changes have a limited influence on the follower vehicle such that there would be a constant velocity or 

only a small deceleration. However, this speed change rate differs depending on the road type and 

motivation (i.e., mandatory versus discretionary lane change). Mandatory lane changes trigger larger 

responses from the follower vehicle than discretionary lane changes. Occasionally, follower vehicles 

would accelerate in an attempt to close the gap in order to prevent the lane change but fail. Wang et al. 

(2019) found that in lane change scenarios, the follower vehicle’s deceleration mostly ranged from -2 

m/s2 to 0 m/s2. The maximum deceleration observed was as high as -6 m/s2, which likely has a high 

discomfort for the follower vehicle. 

 

Liu et al. (2022) also analysed the follower vehicle’s behaviour in a lane change scenario. In the study, 

hierarchical multi-level linear models are developed to characterise the follower vehicle’s maximum 

deceleration, time to release the acceleration pedal and time of braking. The linear regression models 

include the follower vehicle’s velocity, velocity difference, and distance gap between the follower and 

ego vehicles. Additionally, the linear regression models are tested to be different depending on the 

direction of the lane change, the traffic density, road type and the use of the turn indicator. Here, one of 

the key findings is that the turn indicator usage significantly affects the timing of the follower vehicle’s 

response but not the minimum acceleration. In addition, Liu et al. (2022) highlighted the importance of 

incorporating a non-linear relationship between the follower’s response and the velocity difference 

between the ego and follower vehicles. Namely, if the ego vehicle merges into the follower’s lane at a 

much lower speed, the increase in velocity difference causes an increase in the breaking intensity of 

the follower vehicle; if the vehicles drive about the same velocity or the ego vehicle drives faster, the 

velocity difference will have little effect, or there will be no response. However, it is noteworthy that the 

model of Liu et al. (2022) only considers the minimum acceleration of the ego vehicle after reaching the 

lane marking, ignoring the possibility of cooperation from the follower vehicle before. 

 

Yang et al.  (2019) and Liu et al. (2022) both use a maximum longitudinal distance between the 

follower vehicle and ego vehicle to determine whether the vehicles influence each other, respectively 75 

and 55 meters. Yang et al. (2019) found that 44.0% brake before and 14.1% after the ego vehicle 
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crosses the line, and in the resulting 41.9%, the follower vehicle did not break at all. Liu et al. (2022) 

found that on the freeway, follower vehicles in 24.8% would not release the acceleration pedal, 43.4% 

would release the acceleration pedal but not use the brake pedal, and 31.8% would use the brake 

pedal after the ego vehicles reached the lane marking. The studies indicate that in many cases, there is 

only a small velocity change and little impact on the follower vehicle.  

 

3. 2. 1.   Driver’s Willingness to Cooperate  

Several studies have specifically investigated the predictors that influence the willingness of the 

follower vehicle to accept the lane change request and drive cooperatively. Individual modulating 

factors such as personality traits (e.g., selfish or altruistic), driving experience or motivational states 

(e.g., short-term time pressure) have been shown to cause different reactions from drivers in the same 

situation (Wilde, 1976). Sun and Elefteriadou (2011) found that there are four driver types, ranging 

from drivers that would not change lanes in most situations to drivers that would always try to get a 

better position or speed advantage without thinking about other drivers. Several lane change models try 

to account for this influence. Some models include the desired speed and headway drivers want to 

return to in the long term (e.g., Schakel et al. (2012)). However, Sultan et al. (2002) concluded that 

these desired predictors do not result in a better fit of the model compared to only using predictors 

about the driving conditions at the time of the lane change manoeuvre. Furthermore, among others, 

Hidas (2005) incorporated the driver’s aggressiveness. However, this is tested in a simulation where a 

different aggressivity parameter is assigned to each vehicle. In real-world driving, a driver’s personality 

is often unknown at a specific time. Additionally, in game-theory-based lane change models, the use of 

a so-called “Social Value Orientation” (SVO) matric is used to categorise the driver’s behaviour as 

altruistic, pro-social, egoistic or competitive (Schwarting et al., 2019). This value is based on the 

comparison between the vehicle’s trajectory and a predicted future motion with a specific SVO value. 

Nevertheless, lane change scenarios are often a single interaction between vehicles where drivers 

cannot base the other driver’s personality on past interactions or long trajectory information. Overall, 

predictors related to the driver’s personality have shown to be challenging to include in lane change 

model.  

 

Zimmermann et al. (2018) showed that time pressure is a reason for the uncooperative behaviour of 

the follower vehicle and concluded that drivers behave rationally and egoistically for their individual 

advances in traffic. To increase the willingness of drivers to cooperate in lane change scenarios, studies 

have proposed interaction concepts using game theory or vehicle-to-vehicle (V2V) communication to 

motivate the driver (Ali et al., 2020; Zheng et al., 2022). For example, Ali et al. (2020) showed that 

drivers more often cooperated when the driver received messages through V2V of the lane change 

request compared to only the indicator light. These motivation concepts demonstrate that the driver is a 

key element in the willingness to cooperate.  
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Furthermore, it has been shown that the driving situation also influences the follower vehicle’s 

willingness to accept the lane change request and drive cooperatively. Stoll et al. (2019) examined 

human driver behaviour and communication cues in potentially cooperative lane change situations to 

understand the behaviour and expectations of drivers. The willingness of the follower vehicle to 

cooperate was dependent on several conditions. First, in cases where the ego vehicle used the indicator 

lights, the follower vehicle was more inclined to cooperate compared to using no indicator lights. 

Similarly, the earlier the ego vehicle would indicate its intention using the indicator light, the more 

cooperative it was perceived by the follower vehicle (Kauffmann et al., 2018). Second, when the time-to-

collision (TTC) (i.e., the time it would take for vehicles to collide if the following vehicle’s behaviour does 

not change) between the follower and ego vehicle was larger, the follower vehicle would more often 

decelerate compared to situations with a smaller TTC. It is reasoned that this is because the cost of 

cooperating for the follower is lower with a higher TTC. Third, the follower vehicle preferred a lane 

change to the left over decelerating when there was a third lane available. Fourth, less cooperative 

behaviour was shown when the TTC between the ego and slowlead vehicle was large. In other words, 

the follower vehicle would cooperate in situations where the criticality to cooperate was higher. Overall, 

Stoll et al. (2019) have shown that the surrounding traffic situation and the use of the ego vehicle’s 

explicit and implicit communication cues are relevant predictors in the follower vehicle’s decision to 

cooperate.  

 

3. 3.   Conclusion  

The literature reviews indicate that only limited research has tried to model the follower vehicle’s 

decelerating response. Further analysis of naturalistic vehicle trajectory data is necessary to understand 

when, for how long and with which deceleration value a follower vehicle responds. Previous studies 

suggest that multiple factors influence the response of the follower vehicle in a lane change scenario. 

But taken together, the response of the follower vehicle is essentially a reaction to the lane change 

manoeuvre of the ego vehicle and traffic conditions. Therefore, the response behaviour of the follower 

vehicle in a lane change scenario can be described using stimulus-response models.  

 

The use of a stimulus-response model is also a common approach in car-following models and can be 

reasoned to be also of relevance for the follower vehicle’s response to a lane change. That is, car-

following models describe how a follower vehicle needs to adjust its behaviour depending on that of its 

leading vehicle. This is related to a follower vehicle changing its behaviour to another vehicle changing 

lanes in front of the follower vehicle. This link to car-following models is also seen in lane change 

models such as Sun & Elefteriadou (2014), which calculate the change in velocity based on car-

following behaviour after classifying the follower vehicle cooperates in that particular situation. Classical 

car-following models are the Gazis-Herman-Rothery (GHR) model (Gazis et al., 1961), Gipps’ model 

(Gipps, 1981), and Intelligent Driver Model (IDM) (Treiber et al., 2000). Although the car-following logic 

is somewhat different between the models and each model includes different predictor variables 

(Zhang et al., 2021), two overarching conclusions can be important when modelling the follower 
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vehicle’s response behaviour. The car-following models include the velocity difference and distance gap 

between the follower and its leading vehicle to describe the change in velocity of the follower vehicle. 

Additionally, Gipps’ model and the IDM include the transition between situations where the follower 

vehicle is car-following and driving freely.  

 

Nevertheless, these models are developed explicitly for car-following scenarios and may not be suitable 

to apply to lane change scenarios directly. The merge of the ego vehicle onto the lane causes the 

follower vehicle in car-following models to break heavily when the gap size is small. However, vehicles 

are often closer to each other in lane change scenarios than based on car-following relationships. There 

will be a so-called “relaxation period”, where the ego and follower vehicles are willing to accept smaller 

gap sizes for a while, and the follower vehicle will only apply small decelerations (Ali et al., 2020; Hidas, 

2005; Schakel et al., 2012). Fu et al. (2019) developed a human-like car-following model specifically for 

cut-in situations and found that the maximum deceleration was smaller compared to the car-following 

models such as IDM. The authors comment that the IDM model would result in a deceleration higher 

than 3 m/s2, which will seriously impair the comfort of the passenger.   

 

Multiple linear regression models are a type stimulus-response model used to describe the relationship 

between the variable of interest and two or more predictors. One of the strengths of a linear regression 

model is to identify the most important predictors based on a set of descriptive variables of the lane 

change scenario that influence the follower vehicle’s response. Several studies have used linear 

regression models to describe the behaviour of the follower and ego vehicles in a lane change scenario. 

For instance, Liu et al. (2022) used a multi-level linear regression model to predict the minimum 

acceleration and timing of the follower vehicle from the moment the ego vehicle reached the lane 

marking. Moreover, Venthuruthiyil and Chunchu (2021) used a log-linear function to model the duration 

of a lane change. In addition, Yang et al. (2019) used a multi-level linear regression model to determine 

the gap size between the ego and follower vehicles. Taken together, a linear regression model seems a 

suitable method to predict the decelerating response of a follower vehicle to the lane change 

manoeuvre of the ego vehicle.  

 

3. 3. 1.   Hypotheses 

The literature review provides some suggestions on how the lane change scenario influences the 

response behaviour of the follower vehicle. First, the timing of the follower vehicle is expected to be 

closely related to whether the vehicle cooperates or not. In a cooperative lane change, a follower vehicle 

will respond before the ego vehicle starts merging into the lane. Previous studies indicate that a 

follower vehicle is more inclined to cooperate when the costs to do so are low (i.e., the TTC between the 

follower and ego vehicles is high) and the urgency of the ego vehicle to change lanes is high (i.e., the 

TTC between the ego and slowlead vehicles is low). Consequently, it is expected that the timing of the 

follower vehicle is related to these variables. Second, car-following models predicting the deceleration 

of a follower vehicle responding to the vehicle in front are often a function of the velocity difference and 
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distance gap, among other parameters. Therefore, it is expected that also the minimum acceleration of 

the follower vehicle’s response is most dependent on the velocity difference and distance gap between 

the follower and ego vehicles. That is, a higher velocity difference and a smaller distance gap will result 

in a lower minimum acceleration. Third, previous literature does not explicitly discuss the duration of a 

follower vehicle’s response. Nevertheless, it can be reasoned that a higher velocity difference between 

the follower and ego vehicles requires a larger change in the follower vehicle’s velocity, and as such, a 

longer response is expected. In addition, when the distance gap between the follower and ego vehicles 

is larger, the follower vehicle has more time to decelerate before reaching a critical distance gap. 

Therefore, it is expected that at higher distance gaps, the duration of the response is longer.  

 

Overall, it is also likely that the timing, duration, and minimum acceleration are related to each other. 

For example, it can be assumed that drivers do not prefer harsh decelerations as they are 

uncomfortable, and such prefer small decelerations for a longer period of time to reach the same 

change in velocity, which also implies an earlier response. That drivers do not abruptly decrease speed 

is also seen in models incorporating a maximum deceleration threshold for vehicles (e.g., Schakel et al. 

(2012)). This is also in line with cooperative lane changes, as a follower vehicle is more inclined to 

cooperate (i.e., respond early) when the minimum acceleration is small. Therefore, it is expected that 

the response variables are correlated, and the models have similar predictor variables.  
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4.   Method  
 

This Chapter outlines the methodology used to characterise the timing, duration, and minimum 

acceleration of the follower vehicle’s deceleration response in a lane change scenario. The dataset and 

the selection procedure to extract the lane changes are discussed. In addition, the (relative) descriptive 

variables used to characterise the response are provided. Following, the method to determine the start 

of the lane change is described. The longitudinal behaviour of the follower vehicle is analysed to identify 

the lane changes in which the follower vehicle started to decelerate. The Chapter concludes by 

describing the statistical analyses used to develop the linear regression models of the follower vehicle’s 

decelerating response.   

 

4. 1.   Dataset  

Real-world traffic data is essential to analyse, describe and model human-like responses to a lane 

change manoeuvre. The highD dataset contains naturalistic vehicle trajectory information and is the 

best available dataset for this research (HighD, n.d.). In the dataset, traffic was recorded at German 

highways using unmanned aerial vehicles that are hardly visible to passing vehicles for the highD 

dataset. This is an unobtrusive data-gathering method which results in uninfluenced human behaviour. 

Siebinga et al. (2022) also stressed the importance of selecting a naturalistic dataset to develop and 

validate driver models. The highD dataset is a diverse and large-scale dataset including 110500 

vehicles with 440 driven hours and 13901 lane changes at six recording locations and is of high quality, 

with a typical precision error smaller than 10 cm (Krajewski et al., 2018). Other available data sources 

at TNO, such as naturalistic driving studies or simulated driving tests, are less satisfactory for this 

research. Aside from those data gathering methods being obtrusive, these methods have limitations on 

the visibility of the behaviour of other road users (e.g., blind spots because of sensor placement).  

 

The trajectories from the vehicles in the highD dataset were extracted using computer vision algorithms 

and detected and localised in every frame using neural networks (Krajewski et al., 2018). 

Subsequently, the vehicles were tracked over time, and their movement was smoothed using Bayesian 

smoothing. This research project used this resulting smoothed trajectory information. In addition, the 

dataset provides pre-extracted information, such as the surrounding vehicles and which vehicles 

performed a lane change.  

 

4. 1. 1.   Lane Change Extraction  

The lane change scenario illustrated in Figure 5 was selected from the highD dataset using specific 

selection criteria. Figure 6 provides an overview of these selection criteria and a reference to the 

corresponding section for their in-depth explanation.  
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Figure 6  

Overview of the selection process of the lane change cases 
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In this research, only desirable lane changes to overtake a slower-driving vehicle made by a passenger 

car under normal highway conditions were considered. The scenario was also filtered based on the 

availability of information on the follower vehicle and whether the follower vehicle did not make a lane 

change. The reasoning behind these criteria was as follows.  

 

The dataset recordings from locations with highway entry lanes were excluded (n = 522). Merging on 

the highway is a mandatory lane change that needs to be performed before the end of the lane, which 

can result in different driving behaviour (Gipps, 1986; Schakel et al., 2012). The filtered dataset 

consisted of over 107600 vehicles recorded with 429 driven hours across two- and three-lane highway 

locations. There was a speed limit the vehicles needed to adhere to of 120 km/h or 130 km/h, or there 

was no speed limit. However, the dataset also includes recordings of traffic jam situations. Therefore, 

the mean velocity of the vehicle that changed lanes should be at least higher than 20 m/s. In addition, 

extremely high velocities above 40 m/s are disregarded (n = 570).  

 

Lane changes made by trucks were excluded as this research only focuses on passenger cars changing 

lanes (n = 1140). Trucks have different motion characteristics due to their size and weight, such as 

lower maximum speed and acceleration (Schieben et al., 2019). Previous studies have taken into 

account these physical differences related to the vehicle type in lane change models (e.g., Hidas (2005) 

and Schakel et al. (2012)). Because of a truck’s speed and acceleration limitations, the impact on the 

follower vehicle is likely higher when a truck changes lanes. To eliminate this bias, this research only 

analysed lane changes made by passenger cars.  

 

This research focuses on investigating the response of the follower vehicle when the ego vehicle made 

a desirable lane change to overtake a slower-driving lead vehicle. Accordingly, lane changes from the 

left to the right lane were excluded (n = 6558). Left and right lane change manoeuvres have also been 

shown to have different durations and driving behaviour, as left lane changes are more likely to be 

influenced by the follower vehicle (Li et al., 2015; Sultan et al., 2002). As Venthuruthiyil and  Chunchu 

(2021) concluded, the duration of a lane change is mainly controlled by the follower vehicle’s 

kinematics.  

 

The lane changes were further filtered on the presence of a follower vehicle as this research analyses 

the behaviour of the follower vehicle. Lane changes were excluded in which the trajectory information of 

a follower vehicle was not available at the moment the centre of the ego vehicle was at the lane 

marking (i.e., the white lines that indicate the centre between two lanes) (n = 1847). Additionally, the 

follower vehicles that made a lane change as well in the recorded time frame were disregarded, as the 

interaction in those cases was likely different (n = 451). For example, the behaviour of the follower 

vehicle was not influenced by the ego vehicle’s lane change when the follower vehicle changed lanes to 

the right before the ego vehicle changed lanes. Furthermore, Stoll et al. (2019) showed that follower 

vehicles prefer a lane change to the left when possible over decelerating when cooperating. In these 
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cases, the response on the follower vehicle is different compared to vehicles that cannot change lanes 

and need to decelerate. Simultaneously, excluding follower vehicles that changed lanes allows for the 

analysis of the follower vehicle’s behaviour on both two- and three-lane highways.  

 

4. 2.   Descriptive Variables  

The behaviour of the vehicles in the lane change scenario was analysed in the time range in which both 

the trajectory information of the follower and ego vehicle were available. That is, the start time is the 

first moment in which both vehicles are tracked until the end time, which is the last moment where both 

vehicles are tracked. Figure 7 shows the basic descriptors of the driving scenario analysed during this 

time range. The highD dataset provides pre-extracted information on the top left position of the vehicle 

and the velocity and acceleration in both the lateral and longitudinal directions (i.e., 𝑣𝑦
𝐸 , 𝑎𝑦

𝐸 , 𝑣𝑥
𝐸 and 𝑎𝑥

𝐸). 

The width of the vehicle is as well provided and used to define the center position of the ego vehicle 

with respect to the lane marking (𝑦𝑐𝑒𝑛𝑡𝑒𝑟
𝐸 ).  

 

Note. The ego vehicle is indicated by “E”, the slowlead vehicle by “S”, the follower vehicle by “F”, and 

the leader vehicle by “L”. 

 

The relation between the ego vehicle and other vehicles in the scenario is described through the 

velocity difference, distance gap, time headway (THW) and Time-To-Collision (TTC), which are calculated 

as follows: 

 

∆𝑣𝑥
𝐹,𝐸(𝑡) = 𝑣𝑥

𝐹(𝑡) − 𝑣𝑥
𝐸(𝑡) (1) 

∆𝑥𝐹,𝐸(𝑡) = 𝑥𝑏𝑎𝑐𝑘
𝐸 (𝑡) −  𝑥𝑓𝑟𝑜𝑛𝑡 

𝐹 (𝑡) (2) 

Figure 7  

Illustration of the driving scenario and its basic nomenclature 
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𝑇𝐻𝑊𝐹,𝐸(𝑡) =
𝑥𝑓𝑟𝑜𝑛𝑡 

𝐸 (𝑡)  − 𝑥𝑓𝑟𝑜𝑛𝑡 
𝐹 (𝑡) 

𝑣𝑥
𝐹(𝑡)

 
(3) 

𝑇𝑇𝐶𝐹,𝐸(𝑡) =
∆𝑥𝐹,𝐸(𝑡) 

∆𝑣𝑥
𝐹,𝐸(𝑡)

 

where  ∆𝑣𝑥
𝐹,𝐸(𝑡) > 0 and ∆𝑥𝐹,𝐸(𝑡) > 0 

(4) 

 

The TTC variable describes the time it would take for the vehicles to collide if their driving behaviour 

remained unchanged. However, if the vehicles are not in the same lane, a collision will not occur. 

Despite this, the relational variables are calculated as if the vehicles were in the same lane (i.e., as if 

ego vehicle maintained the 𝑥𝑏𝑎𝑐𝑘
𝐸  value but the 𝑦𝑡𝑜𝑝

𝐸  position was shifted to the left lane). The TTC 

variable can cause extreme outliers when the velocity difference between the vehicles is close to zero. 

In addition, the requirements of the follower vehicle to drive faster than the ego vehicle results in fewer 

observations. Therefore, the ratio of velocity difference and distance gap (also referred to as velocity-

distance ratio) is calculated without this requirement as follows:  

 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸 (𝑡) =

∆𝑣𝑥
𝐹,𝐸(𝑡)

∆𝑥𝐹,𝐸(𝑡)
 

where ∆𝑥𝐹,𝐸(𝑡) > 0 

(5) 

 

The relational variables, as shown in Equations 1 to 5, are calculated between the follower and ego 

vehicle. Similarly, the relational variables are calculated between the follower and leader vehicles (i.e., 

∆𝑣𝑥
𝐹,𝐿(𝑡), ∆𝑥𝐹,𝐿(𝑡), 𝑇𝐻𝑊𝐹,𝐿(𝑡), 𝑇𝑇𝐶𝐹,𝐿(𝑡), and 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥

𝐹,𝐿 (𝑡)), the ego and slowlead vehicles (i.e., 

∆𝑣𝑥
𝐸,𝑆(𝑡), ∆𝑥𝐸,𝑆(𝑡), 𝑇𝐻𝑊𝐸,𝑆(𝑡), 𝑇𝑇𝐶𝐸,𝑆(𝑡), and 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥

𝐸,𝑆 (𝑡)), and the ego and leader vehicles (i.e., 

∆𝑣𝑥
𝐸,𝐿(𝑡), ∆𝑥𝐸,𝐿(𝑡), 𝑇𝐻𝑊𝐸,𝐿(𝑡), 𝑇𝑇𝐶𝐸,𝐿(𝑡), and 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥

𝐸,𝐿 (𝑡)). In the time range, the leader vehicle can 

pass the ego vehicle before the lane change. Therefore, the relative variables between the ego and 

leader vehicles were only considered after the start of the lane change. Furthermore, the distance gap 

between the ego and follower vehicles should never be negative, as the follower vehicle will always be 

behind the ego vehicle. However, in some cases, the ego vehicle has overtaken the follower vehicle on 

the right before making a left lane change manoeuvre. This is a specific manoeuvre that is excluded 

from the analysis (n = 12).   

 

4. 3.   Start Lane Change Ego Vehicle  

The real beginning of a lane change, being the decision to make the lane change, is difficult to measure 

and impossible with unobtrusive data-gathering methods (Thiemann et al., 2008). Different methods 

exist to determine the beginning of a lane change using the ego vehicle’s lateral position, steering 

angle, or lateral speed. The choice of method can significantly impact the lane change analysis 

(Chauhan et al., 2022). In this research, the start of the lane change (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) was the moment where 
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the lateral speed of the vehicle was zero before reaching a maximum when crossing the lane marking. 

(similar to Venthuruthiyil & Chunchu (2021) and Weber et al. (2021)). Figure 8 illustrates the typical 

behaviour of the ego vehicle changing lanes and the corresponding starting time definition. The start of 

the lane change was automatically defined using the timing of the lane crossing and the lateral velocity 

as follows: 

 

𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 is the 𝑡 𝜖[0,  𝑡𝑒𝑛𝑑] such that 𝑦𝑐𝑒𝑛𝑡𝑒𝑟
𝐸 (𝑡) = 0 (6) 

𝑡max 𝑣 = arg max (| 𝑣𝑦
𝐸  | (𝑡)), where 𝑡 𝜖[0,  𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔] (7) 

𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶 = max(𝑡)  such that | 𝑣𝑦
𝐸  | (𝑡) = 0, where 𝑡 𝜖[0,  𝑡max 𝑣] (8) 

∆𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 = 𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 − 𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶 (9) 

 

Note. ∆𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 is indicated by the light-green highlighted area between 𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶  and 𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔.  

 

4. 3. 1.   Additional Filtering 

The start of the lane change was not found for all vehicles because the start was outside the video 

recording. These cases were excluded from further analysis (n = 1662). In addition, lane changes were 

not considered when the start of the lane change was within the first second (n = 238). In those cases, 

there was not enough vehicle trajectory information of the follower vehicle before the start of the lane 

change. Moreover, the start of the lane change was not correctly defined in some instances because 

the vehicle would change lanes twice shortly after each other (n = 57). For example, a vehicle would 

change lanes to the left lane before completing a lane change to the right lane or perform two left lane 

Figure 8  

Relationship among timing definitions related to the lateral behaviour of the ego 

vehicle 
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changes in one continuous lateral movement. The ego vehicles that changed lanes twice in the time 

frame are specific cases that are disregarded from further analysis.  

 

4. 4.   Response Categories Follower Vehicle  

The longitudinal velocity and longitudinal acceleration of the follower vehicle were investigated to 

characterise the follower vehicle’s response to the ego vehicle changing lanes. The use of velocity and 

acceleration has shown to be a better descriptor of the follower vehicle behaviour than the change in 

gap size (Chauhan et al., 2022). The lateral behaviour of the follower vehicle (e.g., changing lanes to 

allow the ego vehicle to change lanes) is in this research not considered. The longitudinal behaviour of 

the follower vehicle is categorised as a no-deceleration, deceleration, or unclear response.  

 

4. 4. 1.   No-deceleration Response  

The first category included cases where the follower vehicle did not decelerate in the longitudinal 

direction. In other words, response category 1 represents the lane change cases where the minimum 

acceleration was either zero or higher than zero. The minimum acceleration value (𝑎𝑥
𝐹

𝑚𝑖𝑛
) and the 

timing of this minimum acceleration (𝑡min 𝑎 ) of the follower vehicle were calculated as follows: 

 

𝑎𝑥
𝐹

𝑚𝑖𝑛
= min(𝑎𝑥

𝐹(𝑡)), where 𝑡 𝜖 [0, 𝑡𝑒𝑛𝑑] (10) 

𝑡min 𝑎 = min(arg min(𝑎𝑥
𝐹(𝑡))), where 𝑡 𝜖 [0, 𝑡𝑒𝑛𝑑] (11) 

 

4. 4. 2.   Deceleration Response  

In the second category, the follower vehicle has a clear decelerating response. That is, response 

category 2 is characterised by first a constant or increasing velocity, followed by a decrease in velocity 

due to decelerating. A visualisation of such a response of the follower vehicle is shown in Figure 9. The 

timing of the response (𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) of the follower vehicle to the ego vehicle was considered to be the 

moment where the vehicle started to decelerate, and it was calculated as follows: 

 

𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = max(𝑡)  such that  𝑎𝑦
𝐹(𝑡) = 0  and 

𝑑

𝑑𝑡
(𝑎𝑦

𝐹(𝑡)) < 0, where 𝑡 𝜖 [0, 𝑡min 𝑎] (12) 

∆𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑡min 𝑎 − 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (13) 

 

In the specific cases when the follower vehicle fluctuated between positive and negative acceleration, 

the response time was the first time the acceleration value crossed zero before the minimum 

acceleration. The cases where the response time is equal to the end time are excluded from further 

analysis as it is unknown what the actual maximum deceleration was and when it was reached (n = 36). 

In the analysis of the follower’s response, the response time is always relative to the start of the lane 

change, where a negative value indicates a response before the start.  
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Note. ∆𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is indicated by the pink highlighted area between the 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  and 𝑡min 𝑎.  

 

Response category 2 is characterised by a decelerating response of the follower vehicle. Therefore, 

negligible fluctuations in the follower vehicle’s velocity should not be considered in this category. Hence, 

the change in velocity from the start of the lane change to the minimum acceleration should be at least 

0.5 km/h to be considered a response. Assuming the typical response behaviour as illustrated in Figure 

9, the total velocity change should be 1 km/h or more. It can be argued that in the cases with a lower 

velocity change of 0.5 km/h, the follower vehicle did not respond to the ego vehicle and was 

categorised as a response category 1.  

 

4. 4. 3.   Unclear Response  

There are also lane change cases in the dataset in which there is not a clear no-deceleration response 

or deceleration response, respectively response categories 1 and 2. In some cases, the follower vehicle 

only decelerated during the investigated time range (i.e., the maximum acceleration is below zero) (n = 

157). The maximum acceleration value (𝑎𝑥
𝐹

𝑚𝑎𝑥
) was calculated as follows: 

 

𝑎𝑥
𝐹

𝑚𝑎𝑥
= max(𝑎𝑥

𝐹(𝑡)), where 𝑡 𝜖 [0, 𝑡𝑒𝑛𝑑] (14) 

 

The response timing could also not be defined in cases where the follower vehicle was already 

decelerating at the start of the time range followed by an accelerating till the end of the time range (n = 

118). Here, either the response timing was before the recorded trajectory information, or there was not 

a decelerating response as the follower vehicle’s velocity could accelerate. In both cases, the timing of 

the response cannot be determined and were therefore excluded from further analysis. 

Figure 9  

Relationship among timing definitions related to the longitudinal behaviour of the follower vehicle 
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4. 5.   Situations Within the Scenario  

The follower vehicle was expected to be influenced by the ego vehicle’s lane change manoeuvre, as 

depicted in Figure 5. Simultaneously, a leader vehicle that decelerated could also have influenced the 

follower vehicle. However, with large distances between vehicles, the influence would be minimal. 

Therefore, within the scenario, there was made a distinction between whether the follower vehicle could 

be considered driving freely with respect to the ego and leader vehicles. Liu et al. (2022) and Yang et al. 

(2019) classified vehicles as influencing each other’s behaviour if they are within 55 and 75 meters, 

respectively. However, this definition of a boundary is limited as it does not consider the velocity and 

whether the ego vehicle drives faster. Therefore, the classification of freely driving vehicles is based on 

the definition of Weber et al. (2021). That is, driving freely is defined as when the THW between the 

follower and ego vehicles is more than 3.5 seconds, or more than 2 seconds if the ego vehicle is driving 

faster than the follower vehicle.  

 

The lane change of the ego vehicle will likely not influence the behaviour of the follower vehicle if the 

follower vehicle is driving freely with respect to the ego vehicle, and as such are not further analysed (n 

= 98). The resulting lane changes are further categorised based on whether the follower vehicle is 

driving freely or not with respect to the leader vehicle. When the follower vehicle drives freely from the 

leader vehicle, the scenario is classified as situation A; when not, it is classified as situation B. The 

categorisation of vehicles driving freely from each other is limited to the influence on the follower 

vehicle, as the research aims to model the follower vehicle’s response. 

 

4. 6.   Statistical Analysis 

The filtering of the lane changes in the highD dataset resulted in a total of 435 lane change scenarios 

(as shown in Figure 6). Several analyses are conducted to eventually predict the timing, duration, and 

minimum acceleration of the decelerating response behaviour of the follower vehicle using linear 

regression models.  

 

It is tested whether the proportion of no-deceleration or deceleration responses differs depending on 

whether or not the follower vehicle is driving freely from the leader vehicle. Namely, if no difference is 

found, it can be argued that it is irrelevant whether the follower vehicle is driving freely with respect to 

the leader vehicle. A Chi-Square Test of Independence was performed to assess the relationship 

between the response and the scenario. The assumptions of the Chi-Square Test are met as the lane 

change cases are independent, the categories are mutually exclusive, and no category has less than 5 

cases.  

  

Furthermore, it is tested what the differences are between the lane change scenario for cases where 

the follower vehicle did or did not decelerate (without differentiating between situation categories). The 

results can suggest which descriptive variables of the scenario influence the follower vehicle’s need to 
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decelerate. Two-sample t-tests are performed to determine the significant differences between the 

mean values of the descriptive variables at the start of the lane change between response categories 1 

and 2. Table 2 presents an overview of all the analysed descriptive variables of the lane change 

scenario. The t-tests assume that the sampling distribution of means follows a normal distribution. This 

assumption is always met in this research as the central limits theorem applies (i.e., the sample sizes of 

the groups compared are larger than 30). The second assumption of the t-test is that there should be 

homogeneity of variance between the groups. This assumption may not always hold as the sample sizes 

of the groups compared are unequal. A corrected t-test (Welch-Satterthwaite) was used when the 

Levene’s test indicated no homogeneity of variance between the groups.  

 

The decelerating responses are further analysed after determining how these lane change scenarios 

differ from those of no-decelerating responses. Before the analyses, extreme outliers on the timing, 

duration and minimum acceleration of the follower vehicle’s response were identified and removed. An 

extreme outlier is considered a data point that is more than four times the interquartile range (IQR) 

above the 75th percentile of the boxplot or has a standardised score above four. It is first of interest to 

determine if and how the three dependent variables are related to each other. The linear correlation 

between the timing, duration and minimum acceleration of the follower vehicle’s decelerating response 

are calculated using the Pearson correlation coefficient. Additionally, the lane change scenarios with a 

decelerating response were then compared between situation categories A and B to test how the 

scenarios differ besides the follower vehicle driving freely from the leader vehicle. The differences in 

mean values of the descriptive variables at the start of the lane change (see Table 2) between situation 

categories A and B are investigated using two-sample t-tests.  

 

4. 6. 1.   Linear Regression Models  

The linear regression models for the timing, duration and minimum acceleration of the follower vehicle’s 

decelerating response are developed using several steps.  

 

1. The linear regression model’s assumption of linearity was checked, and non-linearity was solved 

by transforming the variables as needed.  

2. The Pearson correlation coefficients between the response variable and descriptive variables 

were analysed to identify which variables are related to the response variable. 

3. A backward stepwise linear regression was used to point out the most significant predictors for 

the linear regression model as an exploratory approach. At each step, variables were removed 

based on the highest p-value, and the procedure stopped when no variables satisfied the 

elimination criteria of a p-value above 0.05.  

4. The significance of the descriptive variables related to the follower and ego vehicle in the linear 

regression model was examined, including the investigation of interaction effects. 
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Table 2  

All analysed descriptive variables at the start of the lane change manoeuvre  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Abbreviation Unit 

Velocity ego vehicle  𝑣𝑥
𝐸  m/s 

Velocity follower vehicle 𝑣𝑥
𝐹  m/s 

Velocity leader vehicle  𝑣𝑥
𝐿  m/s 

Velocity slowlead vehicle  𝑣𝑥
𝑆  m/s 

Acceleration ego vehicle 𝑎𝑥
𝐸  m/s2 

Acceleration follower vehicle 𝑎𝑥
𝐹  m/s2 

Acceleration leader vehicle 𝑎𝑥
𝐿  m/s2 

Acceleration slowlead vehicle 𝑎𝑥
𝑆  m/s2 

Lateral position ego vehicle relative to lane marking  𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   m 

Lateral acceleration ego vehicle  𝑎𝑦
𝐸  m/s2 

Velocity difference follower and ego vehicles ∆𝑣𝑥
𝐹,𝐸

  m/s 

Velocity difference leader and ego vehicles ∆𝑣𝑥
𝐸,𝐿

  m/s 

Velocity difference slowlead and ego vehicles ∆𝑣𝑥
𝐸,𝑆

  m/s 

Velocity difference leader and follower vehicles ∆𝑣𝑥
𝐹,𝐿

  m/s 

Distance gap follower and ego vehicles ∆𝑥𝐹,𝐸 m 

Distance gap leader and ego vehicles ∆𝑥𝐸,𝐿 m 

Distance gap slowlead and ego vehicles ∆𝑥𝐸,𝑆 m 

Distance gap leader and follower vehicles ∆𝑥𝐹,𝐿 m 

THW follower and ego vehicles 𝑇𝐻𝑊𝐹,𝐸  s 

THW leader and ego vehicles 𝑇𝐻𝑊𝐸,𝐿  s 

THW slowlead and ego vehicles 𝑇𝐻𝑊𝐸,𝑆  s 

THW leader and follower vehicles 𝑇𝐻𝑊𝐹,𝐿  s 

TTC follower and ego vehicles 𝑇𝑇𝐶𝐹,𝐸  s 

TTC leader and ego vehicles  𝑇𝑇𝐶𝐸,𝐿  s 

TTC slowlead and ego vehicles  𝑇𝑇𝐶𝐸,𝑆 s 

TTC leader and follower vehicles  𝑇𝑇𝐶𝐹,𝐿 s 

Ratio of velocity difference and distance gap follower and ego vehicle 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

 1/s 

Ratio of velocity difference and distance gap leader and ego vehicle 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

 1/s 

Ratio of velocity difference and distance gap slowlead and ego vehicle 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

 1/s 

Ratio of velocity difference and distance gap leader and follower vehicle 𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

 1/s 

Note. The variables are used in the analysis as possible important predictor variables in the linear 

regression models of the follower vehicle’s response timing, duration, and minimum acceleration.  
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5. The impact of adding variables related to the leader vehicle to the linear regression model was 

analysed, including the use of a multilevel linear regression analysis and dummy variables to 

represent the different scenario categories.  

6. The impact of the descriptive variables related to the slowlead vehicle on the linear regression 

model was investigated.  

7. The possibility of nested groups in the dataset was tested. The number of lanes on the highway 

and whether the ego vehicle changed lanes from the right or middle lane were considered 

possible nested groups.  

 

The assumptions of the linear regression model were tested by checking the estimated errors of the 

predictions of the multiple linear regression model (i.e., the residuals). The residuals should be normally 

distributed, have a constant variance, and be random and independent. The multi-collinearity of the 

explanatory variables was checked using the Variable Inflation Factor (VIF), with the rule of thumb of 

individual VIF values below 10 and average VIF below 2.5 to avoid redundant variables (O’Brien, 2007). 

The linear regression models were validated using cross-correlation between the actual and predicted 

value. The model was trained on 80% of the dataset and validated on the remaining 20%.  
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5.   Results  
 

This Chapter presents the results of the analyses. The differences between the lane change scenarios 

where the follower did or did not decelerate are compared. Subsequently, the focus is analysing the 

lane change cases where the follower vehicle decelerates. The correlations between the timing, 

duration and minimum acceleration of the follower vehicle’s decelerating response are analysed. 

Additionally, it is tested whether the follower vehicle’s response is different depending on whether the 

follower vehicle is driving freely from the leader vehicle. The Chapter concludes by providing the best 

linear regression models of the follower vehicle’s response timing, duration, and minimum acceleration 

using descriptive variables at the start of the lane change. 

 

5. 1.   Response and Situation Categories 

Table 3Table 3 presents an overview of the number of lane change cases where there is a no-

deceleration or deceleration response (i.e., response categories 1 and 2, respectively) and situation 

categories A and B. A chi-square test of independence was conducted to assess whether the proportion 

of no-deceleration or deceleration responses differ depending on whether or not the follower vehicle is 

driving freely from the leader vehicle. There was a significant relationship between the two variables, 

X2(1, 435) = 46.95, p < .001, indicating that situation A is less likely to have a decelerating response 

than situation B. This shows that the presence of a leader vehicle also influences the need for the 

follower vehicle to decelerate and should be considered in the models.  

 

Table 3 

Number of lane change cases categorised over scenario and response  

Situation Response Total 
 

1 

No-decelerating response 

2 

Decelerating response 

 

A 

Influence ego vehicle 90 111 201 

B 

Influence ego and leader vehicles  35 199 234 

Total  125 310 435 

 

5. 1. 1.   Differences in Response Categories 1 and 2  

The follower vehicle’s response is categorised based on whether or not there was a deceleration. To 

understand the differences between the lane change scenarios of the two response categories, the 

descriptive variables of the lane change scenario (as listed in Table 2) are compared. Car-following 

models like Gipps’ model and IDM differentiate between whether or not the follower vehicle is 



39 

influenced by its leading vehicle on mainly the velocity difference and distance gap between the 

vehicles. Similarly, in this research, it is expected that when the velocity difference is small and the 

distance gap is large, the follower vehicle will not be influenced by the ego vehicle and therefore will not 

need to decelerate. That is, the lane change scenario is expected to differ between response categories 

1 and 2 in terms of the velocity difference and distance gap between the follower and ego vehicles.  

 

A complete overview of the t-test results testing the differences in descriptive variables between the two 

response categories can be found in Table B1. These differences help to identify when the follower 

vehicle needs to respond by decelerating. Overall, the significant differences between response 

categories 1 and 2 show that a smaller THW and higher velocity difference between the follower and 

ego vehicles are related to a decelerating response of the follower vehicle. It is noteworthy that the 

distance gap between the vehicles was not significant. The results also show that the presence of a 

leader vehicle that is closer to the follower vehicle and has a lower velocity than the follower vehicle 

influences the need for the follower vehicle to decelerate. Moreover, in lane change scenarios in which 

the follower vehicle did not decelerate, the average acceleration value for the ego and leader vehicles 

was around 0.22 m/s2. This shows that the vehicles could accelerate, including the follower vehicle with 

an average value of 0.21 m/s. 

 

5. 2.   Decelerating Response  

The aim of this research is to characterise the deceleration response behaviour of the follower vehicle 

in a lane change scenario. Therefore, the timing, duration and minimum acceleration of the 

deceleration response (i.e., response category 2) are analysed in detail. Prior to conducting the 

analyses, two extreme outliers were identified on the dependent variables (i.e., timing, duration and 

minimum acceleration of the follower vehicle’s response). The first outlier had a minimum acceleration 

value of -3.61 m/s2. This low minimum acceleration value was caused by a harsh deceleration of all 

vehicles due to the road situation and not specifically due to the lane change manoeuvre of the ego 

vehicle. The second outlier has a response duration of 11.08 seconds, during which the follower vehicle 

only slightly decelerated with a maximum acceleration of 0.01 m/s2. This lane change should be 

classified as an unclear response where the follower vehicle only decelerates. Accordingly, the two 

outliers were removed from the analysis. The descriptive statistics of the timing, duration and maximum 

deceleration of the response are presented in Table 4.  

 

Table 4 

Descriptive statistics of the follower vehicle’s response  

Response Variable Observations Mean Standard Deviation Minimum Maximum  

Timing  308 0.71 3.09 -8.36 9.36 

Duration 308 3.38 1.94 1.16 9.4 

Minimum acceleration  308 -0.59 0.42 -2.32 -0.1 
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It was expected that these response variables are related to each other as they together reflect the 

decelerating behaviour of the follower vehicle. For instance, it can be expected that a lower minimum 

acceleration takes more time to reach. Moreover, in cooperative lane changes where the follower 

vehicle responds early, a higher minimum acceleration is expected as people are more inclined to 

cooperate when the costs to do so are low (Stoll et al., 2019). The results show that there are indeed 

significant correlations between the duration, timing, and minimum acceleration of the follower 

vehicle’s response. The significant correlations are visualised in Figure 10. The response duration is 

negatively correlated with both the minimum acceleration (r(308) = -.26, p < .001) and response timing 

(r(308) = -.46, p < .001). This indicates that the longer the response, the lower the minimum 

acceleration and the earlier the response timing. Additionally, contrary to expected, the minimum 

acceleration was positively correlated with the response timing (r(308) = .12, p = .041), suggesting that 

an early response is related to a lower minimum acceleration. However, the strength of the correlation 

between the minimum acceleration and response timing is only weak.  

 

Note. The blue dots are the lane change observations, and the red line is the linear fitted line illustrating 

the relationship between the variables.  

 

In this research, linear regression models are developed to predict the timing, duration, and minimum 

acceleration of the follower vehicle’s decelerating response. In essence, this deceleration of the 

Figure 10 

Relationships between the timing, duration, and minimum acceleration of the follower vehicle’s response   
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follower vehicle is a response to the lane change manoeuvre of the ego vehicle. Consequently, the 

differences in the lateral behaviour of the ego vehicle should also be considered as potential predictors 

of the response behaviour of the follower vehicle. The descriptive statistics of the lane change 

manoeuvre of the ego vehicle can be seen in Table 5 and highlight the variations in the lateral 

behaviour of the ego vehicle. For example, the time taken to cross the lane marking from the start of 

the lane change ranges from 2.3 to 9.3 seconds.  

 

Table 5 

Descriptive statistics of the ego vehicle’s lane change manoeuvre   

Response Variable Observations Mean Standard Deviation Minimum Maximum  

∆𝑡𝑙𝑖𝑛𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔  308 4.15  1.34 2.32       9.28 

𝑦𝑐𝑒𝑛𝑡𝑒𝑟
𝐸 (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶)  308 -1.86 0.34 -2.83 -1.08 

 𝑎𝑦
𝐸(𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 308 0.15 0.08 0.01 0.43 

 

5. 2. 1.   Differences in Situation Categories A and B 

The findings indicate that a follower vehicle is more likely to decelerate when not driving freely from the 

leader vehicle. In addition, the analysis of lane change scenarios between non-decelerating and 

decelerating responses showed that a leading vehicle that is closer to the follower vehicle with a slower 

velocity influences the need for the follower vehicle to decelerate. This influence of the leader vehicle 

on the decelerating response is further analysed by comparing the timing, duration, and minimum 

acceleration response variables between situations A and B. The results are presented in Table 6, with 

a graphical representation in Figure 11. The results indicate that there is a significant difference in the 

duration and minimum acceleration of the follower vehicle’s response between situations A and B. 

Specifically, in situation B, the response duration is longer and the minimum acceleration is lower 

compared to situation A. However, the timing of the response is not found to be significantly different 

between the two situations.  

 

Table 6 

Differences between situation categories A and B in the response variables  

 

Situation A 

Influence ego vehicle 

 Situation B 

Influence ego and 

leader vehicles 

   

Response Variable N M SD  N M SD  t p 

Timing  111 1.03 3.34  197 0.53 2.94  1.31* .192 

Duration 111 2.98 1.72  197 3.61 2.02  -2.91* .004 

Minimum acceleration 111 -0.46 0.35  197 -0.66 0.44  4.39* < .001 

Note. * indicates the use of the Welch’s t-test because of unequal variances between the categories.  
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Note. The red visualisations on the left represent situation A and the blue visualisations on the right 

represent situation B.   

 

Furthermore, t-tests are performed to compare the mean values of the descriptive variables at the start 

of the lane change between situations A and B. This is to determine if the lane change scenarios 

between situations A and B differ beyond the selection criteria of the follower vehicle driving 

independently from the leading vehicle. An overview of the t-test results can be found in Table B2. The 

results reveal that there are differences in the lane change scenario other than the category selection of 

whether the follower vehicle is driving freely from the leader vehicle. Namely, the vehicles are closer to 

each other and display more interdependent driving behaviours in situation B than in A. Specifically, the 

distance gap is smaller, and the velocity difference is higher between the follower and ego vehicles in 

situation B compared to A.  

 

The findings from comparing non-deceleration and deceleration responses, as well as the situations in 

which the follower vehicle is driving freely from the leader vehicle provide several insights. Overall, the 

key finding is that the follower is more likely to decelerate, with on average a higher minimum 

acceleration and longer duration when the follower vehicle is not driving freely from the leader vehicle. 

This is also related to a smaller distance gap and higher velocity difference between the follower and 

ego vehicles. The findings imply that the distance gap and velocity difference are likely significant 

Figure 11 

Distribution of the response variables values compared between situation categories A and B 
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predictors in the linear regression models. Additionally, the findings show the importance of considering 

the leader vehicle’s influence when developing the linear regression models.   

 

5. 3.   Timing Response Model  

This section outlines the steps taken to develop the best linear regression model for predicting the 

timing of the follower vehicle’s response in a lane change scenario using the descriptive variables at the 

start of the lane change. The process includes examining the relationships between response timing 

and the variables through visualisations and correlation analysis. The findings are used to develop the 

best possible linear regression model. 

 

In the linear regression model of the timing of the response, as well as the duration and minimum 

acceleration, the follower vehicle’s acceleration value at the start of the lane change is not considered a 

possible predictor variable. This is because the research focuses on characterising the decelerating 

response of the follower vehicle, which is directly related to the acceleration value and can be inferred 

from it. For example, suppose the response timing (i.e., the follower vehicle starts to decelerate) is 

before the start of the lane change. In that case, the follower vehicle’s acceleration will be negative at 

the start of the lane change. Therefore, the follower vehicle’s acceleration at the start of the lane 

change will not be included as a predictor in the linear regression models. This research aims to 

understand the influence of the other descriptive variables on the decelerating response of the follower 

vehicle.   

 

5. 3. 1.   Relationships Between Response Timing and Descriptive Variables 

The linearity of the relationships between the response timing of the follower vehicle and descriptive 

variables are investigated using visualisations (see Figures C1 to C6). The results do not indicate clear 

non-linear relationships; therefore, no transformations are required to develop the linear regression 

model. However, the visualisations also reveal a wide distribution of response timing values, suggesting 

that the descriptive variables may not fully explain the response timing.  

 

The visualisations also highlight key observations about the descriptive variables in general. The 

majority (59.7%) of the lane changes start when the distance gap between the ego and leader vehicles 

is negative, meaning that the leader vehicle’s rear bumper is not further than the ego vehicle’s front 

bumper. This results in fewer observations of the TTC between the ego and leader vehicle, as the 

distance gap is negative and the leader vehicle’s velocity is often higher. Similarly, the velocity 

difference between the leader and follower vehicle is often negative, which also results in few TTC 

observations. Besides, the TTC value can have extreme outliers when the velocity difference between 

the vehicles is close to zero. The ratio of the velocity difference and the distance gap includes cases 

with a negative velocity difference and has less extreme outliers. Therefore, the velocity-distance ratio 

between the vehicles is a more informative variable to use in the analyses.  
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In addition, the correlations between the response timing and all descriptive variables at the start of the 

lane change are analysed. A complete overview of the Pearson correlation coefficients can be found in 

Table C1. The results confirm the lack of strong linear correlations, with the highest correlation 

coefficient being 0.25. The key findings are discussed but should be interpreted cautiously as the 

correlations’ strength is only weak. First, the results show that the response timing is negatively 

correlated with the acceleration of the ego (r(308) = .21, p < .001), leader (r(300) = .25, p < .001), and 

slowlead (r(307) = .21, p < .001) vehicles at the start of the lane change. This suggests that the 

acceleration of other vehicles influences the response timing of the follower vehicle, such that the 

follower vehicle will need to respond earlier if the other vehicles are decelerating. Conversely, the 

follower vehicle can respond later when the other vehicles accelerate. Second, the correlation between 

the response timing and the velocity difference between the follower and ego vehicles is negative 

(r(308) = -.15, p = .010), as well as for the follower and leader vehicles (r(300) = -.13, p = .025). The 

results suggest that a larger velocity difference leads to an earlier response. Third, the negative 

correlation between the lateral acceleration of the ego vehicle at the start of the lane change and the 

response timing of the follower vehicle suggests that the response is earlier when the ego vehicle starts 

the lane change with high lateral acceleration (r(308) = -0.19, p < .001).  

 

5. 3. 2.   Linear Regression Model  

The linear regression model was developed through a series of steps applied to the training dataset, 

which comprised 80% of the total number of observations. The expectations from previous literature 

and the significant correlations found provide indications of the descriptive variables that are important 

predictor variables of the follower vehicle’s response timing. The significant predictor variables were 

identified and added to the model, taking into account possible interaction effects. In addition, the 

effect of the situation category was analysed using multilevel analysis. Detailed information about the 

steps and intermediate results can be found in Appendix C. 2 The final best regression model using the 

descriptive variables at the start of the lane change is shown in Table 7. The multiple linear regression 

to predict the timing of the response was as follows (F(4, 233) = 14.01, p < .001, R2 = 0.19): 

 

𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 1.95 + (2.99 − 0.42 ∆𝑣𝑥
𝐹,𝐸) 𝑎𝑥

𝐸 + 2.00 𝑎𝑥
𝐿 − 9.21 𝑎𝑦

𝐸 (15) 
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Table 7 

The linear regression model of the follower vehicle’s response timing  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

𝑎𝑥
𝐸  2.99 0.83 3.61 < .001 1.36, 4.62 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  -0.42 0.16 -2.57 .011 -0.75, -0.10 

𝑎𝑥
𝐿  2.00 0.56 3.57 < .001 0.89, 3.10 

𝑎𝑦
𝐸  -9.21 2.26 -4.08 < .001 -13.66, -4.76 

(constant) 1.95 0.40 4.90 < .001 1.17, 2.74 

 

The final linear regression model has four predictors. A positive coefficient was found for the 

acceleration of both the ego and leader vehicle. This means that when the acceleration of the vehicles 

is higher, the need for the follower vehicle to decelerate occurs later. On the other hand, when the 

vehicles are decelerating, the follower vehicle will respond earlier. Additionally, there is an interaction 

between the ego vehicle’s acceleration and the velocity difference between the follower and ego 

vehicles, such that the effect of the ego vehicle’s acceleration decreases for higher velocities. This 

means that when the ego vehicle accelerates, the effect of a later response is weaker for higher velocity 

differences. Similarly, the effect of an early response is weaker for higher velocity differences when the 

ego vehicle decelerates. Furthermore, the lateral acceleration of the leader vehicle has a positive 

coefficient, resulting in a later response timing for the follower vehicle during acceleration and an earlier 

response during deceleration. Lastly, the model found that as the lateral velocity of the ego vehicle 

increases, the follower vehicle responds earlier. The impact a predictor has on the follower vehicle’s 

response timing can be assessed by considering the size of the coefficient relative to the range of 

values the predictor can take. For instance, although the coefficient for the lateral acceleration of the 

ego vehicle is larger, it has a smaller range of values than the longitudinal acceleration of the ego 

vehicle, which has a smaller coefficient. 

 

The assumptions of a linear regression model of the follower vehicle’s response timing were evaluated 

using the standardised residuals. The Shapiro-Wilk test for normality showed that the residuals were not 

normally distributed (W = 0.98, p = .011). However, a W-value of 0.98 suggests that the distribution is 

not very different from a normal distribution. The Breusch-Pegan test for heteroskedasticity showed 

there was a constant variance in the residuals (X2(1) = 2.19, p = .129). In addition, the correlations 

between the predictor variables of the model were analysed. The VIF values have an average of 1.75 

and no individuals above 10, showing no multicollinearity problem. The linear regression model was 

validated using the cross-correlation value between the predicted and actual response timing on the 

test data. The results show a cross-correlation value of 0.001, which is tremendously lower than the 

original R2-value of 0.19. The results indicate that the model does not cross-correlate well.  
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5. 4.   Response Duration Model  

This section outlines the results of the linear regression model of the follower vehicle’s response 

duration. The relationships between the response duration and the descriptive variables at the start of 

the lane change are investigated visually and through correlation analysis. Following this, the best 

possible linear regression model is developed.  

 

5. 4. 1.   Relationships Between Response Duration and Descriptive Variables 

The relationships between the duration of the response and the descriptive variables at the start of the 

lane change are visualised in Figures D1 to D6. The visualisations do not show any obvious non-linear 

relationships between the variables, and no transformations were necessary for developing the linear 

regression model. However, the relationship between the response duration and the distance-related 

variables for the follower and leader vehicles and the ego and leader vehicles seem less linear. Here, 

the response duration can vary widely within short distances, while there are only brief responses at the 

highest distances (i.e., more than 150 meters). Nevertheless, this effect is only weak as there are 

limited data points in the high distance range and there is a substantial concentration in the low 

distance range. Therefore, transforming these distance-related variables did not enhance the linear 

relationship.  

 

Next, the correlations between the duration of the follower vehicle’s response and the descriptive 

variables are analysed. The key results are discussed, and a complete overview of all the Pearson 

correlation coefficients can be found in Table D1. Similar to the correlation coefficients of the response 

timing, the relationship between the response duration and the descriptive variables are only weak to 

moderate. The strongest correlation is with the leader vehicle's acceleration (r(300) = -.36, p < .001), 

where a shorter response duration is observed when the leader vehicle accelerates at the start of the 

lane change. The correlation between the response duration and the acceleration of the ego (r(308) = -

.26, p < .001) and slowlead (r(307) = -.23, p < .001) vehicles show a similar pattern, but with a lower 

correlation coefficient. Furthermore, the velocity difference between the follower and ego vehicles 

(r(308) = .14, p = .011) and the follower and leader vehicles (r(300) = .16, p = .006) showed a positive 

correlation with the response duration. This indicates that the larger the velocity difference between the 

vehicles, the longer the follower vehicle responded. However, the correlation coefficient shows there is 

only a weak relationship.  

 

5. 4. 2.   Linear Regression Model  

Through several steps, the linear regression model was created on the training dataset (i.e., 80% of the 

total number of observations). Indicators of the key descriptive variables that influence the follower 

vehicle’s response timing were determined based on previous literature and the significant correlations. 

The predictor variables were then incorporated into the model, including any potential interaction 

effects. The impact of the situation category was also analysed through multilevel analysis. Further 
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details on the process and intermediate results are available in Appendix D. 2 The final linear 

regression model to predict the follower vehicle’s response duration using the descriptive variables at 

the start of the lane change is as follows (F(4, 237) = 13.85, p < .001, R2 = 0.19) (see Table 8): 

 

∆𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 3.78 + (−0.02 + 0.002 ∆𝑣𝑥
𝐹,𝐸) ∆𝑥𝐹,𝐸 − 1.95 𝑎𝑥

𝐿 − 0.94 𝑎𝑥
𝑆 (16) 

 

Table 8 

The linear regression model of the follower vehicle’s response duration  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 
Coefficient Standard 

Error 

t p [95% confidence interval] 

∆𝑥𝐹,𝐸  -0.02 0.01 -2.05 .042 -0.03, -0.001 

∆𝑥𝐹,𝐸 ∗ ∆𝑣𝑥
𝐹,𝐸

  0.002 0.001 2.44 .015 0.0003, 0.003 

𝑎𝑥
𝐿  -1.95 0.34 -5.78 < .001 -2.62, -1.29 

𝑎𝑥
𝑆  -0.94 0.42 -2.23 .027 -1.76, -0.11 

(constant) 3.78 0.31 12.27 < .001 3.17, 4.39 

 

The linear regression model that predicts the duration of the follower vehicle’s response in a lane 

change scenario has four predictors. The distance gap between the follower and ego vehicles has a 

negative coefficient, meaning that a larger distance gap results in a shorter response. Additionally, this 

relationship is moderated by the velocity difference between the vehicles. Specifically, higher velocity 

differences lead to longer response durations even with a large distance gap. If the velocity difference is 

negative between the follower and ego vehicles, the effect of a short response duration at large 

distances is even stronger. Moreover, the negative coefficient for the leader and slowlead vehicles’ 

acceleration indicates that a deceleration of the vehicles results in a longer response duration from the 

follower vehicle.  

 

The assumptions and validity of the linear regression model of the response duration of the follower 

vehicle were assessed. The normality of residuals was assessed using the Shapiro-Wilk test, and it was 

found that the residuals were not normally distributed (W = 0.92, p < .001). The Breusch-Pegan test for 

heteroskedasticity showed there is no constant variance in the residuals (X2(1) = 13.05, p < .001). The 

findings suggest that the linear regression model lacks an important predictor that is not included in the 

descriptive variables at the start of the lane change. Additionally, the predictor variables were analysed 

for multicollinearity. The results show there is no problem with multicollinearity, as the average VIF 

value is 1.83 and no individual variable has a value above 10. Finally, the model was validated using 

the cross-correlation value between the predicted and actual response timing values on the test 

dataset. The results show a cross-correlation value of 0.12, which is a decrease of 37% from the 

original fit of the model (i.e., R2-value of 0.19).  
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5. 5.   Response Minimum Acceleration Model 

This section describes the third linear regression model to predict the minimum acceleration of the 

follower vehicle’s response. The initial examination of the relationships between the response duration 

and various descriptive variables at the start of the lane change was conducted through visual analysis 

and correlation analysis. Next, the linear regression model of the follower vehicle’s response minimum 

acceleration is developed.  

 

5. 5. 1.   Relationships Between Response Minimum Acceleration and Descriptive Variables  

The relationships between the minimum acceleration of the follower vehicle’s response and the other 

descriptive variables at the start of the lane change are investigated (see Figures E1 to E6). The 

analysis revealed that the relationships are not overly non-linear, with the exception of the TTC values 

between the follower and ego vehicles. However, as discussed before, the velocity-distance ratio is a 

better predictor variable to consider in general, and this variable was found to be linear.  

 

Furthermore, the correlations between the minimum acceleration of the follower vehicle’s response and 

the descriptive variables at the start of the lane change are analysed. Table E1 provides a complete 

overview of all the Pearson correlation coefficients. The most important findings of the analysis are 

discussed. A positive correlation is found between the minimum acceleration and the acceleration of 

the ego (r(308) = .28, p < .001), leader (r(300) = .37, p < .001), and slowlead (r(307) = .22, p < .001) 

vehicles, with the strongest correlation found for the leader vehicle. Thus, as the acceleration value of 

other vehicles is lower, the minimum acceleration of the follower vehicle is as well lower. Furthermore, a 

negative correlation is found between the velocity difference of the follower and ego vehicles (r(308) = -

.26, p < .001), as well as the follower and leader vehicles (r(300) = -.17, p = .003). As the velocity 

difference increases, the minimum acceleration of the follower vehicle decreases. In addition, the 

follower vehicle’s velocity has a negative correlation with the minimum acceleration (r(308) = -.20, p < 

.001), meaning that as the follower vehicle’s velocity increases, its minimum acceleration decreases. 

Despite no strong correlations overall, the results indicate that the best predictors of the minimum 

acceleration of the follower vehicle are the acceleration values of the other vehicles and the velocity 

difference between the follower and ego vehicles (similar to the response duration). 

 

5. 5. 2.   Linear Regression Model  

The process of creating the linear regression model for predicting the minimum acceleration of the 

follower vehicle’s response involved several steps. The key descriptive variables influencing the 

minimum acceleration of the follower vehicle’s response were identified based on previous research 

and the significant correlations. The significant predictor variables, including possible interaction 

effects, were then incorporated into the model. The influence of the situation category was also 

analysed through multilevel analysis. The full details and intermediate results of this process can be 
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found in Appendix E. 2 The final linear regression model is shown in Table 9 (F(3, 237) = 20.06, p < 

.001, R2 = 0.30) and as follows: 

 

𝑎𝑥
𝐹

𝑚𝑖𝑛
= −0.64 + (−0.07 + 0.04 𝑎𝑥

𝐸) ∆𝑣𝑥
𝐹,𝐸  + 0.01 ∆𝑥𝐹,𝐸 + 0.30 𝑎𝑥

𝐿 + 0.17 𝑎𝑥
𝑆 (17) 

 

Table 9 

The linear regression model of the follower vehicle’s response minimum acceleration  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

∆𝑣𝑥
𝐹,𝐸

  -0.07 0.01 -6.51 < .001 -0.09, -0.05 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  0.04 0.01 2.84 .005 0.01, 0.07 

∆𝑥𝐹,𝐸  0.01 0.001 5.16 < .001 0.003, 0.01 

𝑎𝑥
𝐿  0.30 0.07 4.30 < .001 0.16, 0.43 

𝑎𝑥
𝑆  0.17 0.08 2.00 0.046 0.003, 0.33 

(constant) -0.64 0.05 -11.66 < .001 -0.75, -0.53 

 

The linear regression model to predict the minimum acceleration of the follower vehicle’s response has 

five predictors. The velocity difference between the follower and ego vehicles has a negative coefficient. 

This means that the higher the velocity difference, the lower the minimum acceleration. Additionality, 

there was an interaction effect between this velocity difference and the acceleration of the ego vehicle. 

That is, if the ego vehicle accelerates, the impact of the velocity difference on the follower vehicle’s 

minimum acceleration is reduced, resulting in a smaller minimum acceleration compared to when the 

ego vehicle does not accelerate. Furthermore, a positive coefficient was found for the distance gap, 

meaning that as the distance between the follower and ego vehicles increases, the minimum 

acceleration value will also increase. Besides, a positive coefficient was found for the acceleration of 

the leader and slowlead vehicles, indicating that if the vehicles decelerate, the minimum acceleration of 

the follower vehicle will also decrease.  

 

The assumptions and validity of the linear regression model were tested. The Shapiro-Wilk test 

indicated that the residuals were not normally distributed (W = 0.83, p < .001). In addition, the Breusch-

Pegan test showed there was no constant variance in the residuals (X2(1) = 9.62, p = .002). The results 

imply that the linear regression model misses an important predictor that is not covered by the 

descriptive variables at the start of the lane change. There was no issue with multicollinearity as the VIF 

values had an average of 1.33, with none above 10. The model was validated using the cross-

correlation of the predicted versus the actual minimum acceleration values on the test dataset. The 

cross-correlation value is 0.45, which is an increase of 50% of the original fit of the model.  
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6.   Discussion 
 

This Chapter presents an evaluation of the research results, highlights key findings, and discusses their 

significance and implications. It starts with a summary of the key results, followed by an interpretation 

of the findings in the context of previous literature. The Chapter then discusses the implications of the 

research and acknowledges its limitations before providing recommendations for future studies. 

 

6. 1.   Key Research Findings 

The introduction of AVs on the road causes a transition period where vehicles with different levels of 

automation coexist with human road users. Therefore, it is of interest to ensure that AVs drive according 

to human standards. Modelling human driving behaviour can help to establish AVs drive predictably and 

according to social expectations. This research specifically focuses on modelling the deceleration 

response of a rear-approaching vehicle, known as the follower vehicle, on a target lane during a lane 

change manoeuvre by another vehicle on the highway. The lane change manoeuvres were extracted 

from a dataset containing real-world vehicle trajectory information, selected based on specific criteria. 

The lane change scenarios where the follower vehicle either started to decelerate or did not decelerate 

at all were further analysed.  

 

The comparison between the two categories showed that a higher velocity difference and a smaller THW 

between the follower and ego vehicles led to a decelerating response by the follower vehicle. The 

decelerating response is further characterised by its timing, duration, and minimum acceleration. These 

three variables were also interrelated: a longer response correlated with a lower minimum acceleration 

and an earlier response timing, while an early response was related to a lower minimum acceleration. 

Additionally, the differences between lane changes performed with and without a leader vehicle were 

evaluated. The results show that if there is a leader vehicle, all vehicles have a shorter relative distance 

and seem more influenced by the driving behaviour of the other vehicles. Consequently, the follower 

vehicle had a lower minimum acceleration and a longer response duration when a lead vehicle was 

present. Three linear regression models were created to predict the timing, duration, and minimum 

acceleration of the follower vehicle’s decelerating response and determine the most important predictor 

variables. The analysis of the follower vehicle’s decelerating response resulted in the following linear 

regression models: 

 

𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 1.95 + (2.99 − 0.42 ∆𝑣𝑥
𝐹,𝐸) 𝑎𝑥

𝐸 + 2.00 𝑎𝑥
𝐿 − 9.21 𝑎𝑦

𝐸 (15) 

∆𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 3.78 + (−0.02 + 0.002 ∆𝑣𝑥
𝐹,𝐸) ∆𝑥𝐹,𝐸 − 1.95 𝑎𝑥

𝐿 − 0.94 𝑎𝑥
𝑆 (16) 

𝑎𝑥
𝐹

𝑚𝑖𝑛
= −0.64 + (−0.07 + 0.04 𝑎𝑥

𝐸) ∆𝑣𝑥
𝐹,𝐸  + 0.01 ∆𝑥𝐹,𝐸 + 0.30 𝑎𝑥

𝐿 + 0.17 𝑎𝑥
𝑆 (17) 
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6. 2.   Interpretation Results  

The differences between the response categories (i.e., deceleration or no-deceleration) and the 

situation categories (i.e., presence or absence of a leader vehicle) were analysed before characterising 

the follower vehicle’s decelerating response. Three observations were made from comparing the lane 

changes where the follower vehicle did or did not decelerate. First, the results show that the follower 

vehicle was more likely to decelerate when there was a shorter THW and higher velocity difference 

between the follower and ego vehicles. In car-following models, the distance gap and velocity difference 

are the most used predictors to determine an acceleration value based on the behaviour of a leading 

vehicle (Saifuzzaman & Zheng, 2014; Zhang et al., 2021). However, the results showed that the THW, 

rather than the distance gap, was statistically different between the response categories. This suggests 

that the decelerating response is more influenced by the velocity of the follower vehicle and velocity 

differences between the vehicles.  

 

Second, in lane change scenarios where the follower vehicle did not decelerate, the average 

acceleration value for the ego and leader vehicles was around 0.22 m/s2. This shows that the vehicles 

could accelerate, and as such, the follower vehicle also accelerated with an average value of 0.21 m/s. 

In these cases, using the gap size between the follower and ego vehicles, as proposed by Hidas (2005), 

would result in misclassifications similar to those shown by Chauhan et al. (2022). For example, Hidas 

(2005) classified a cooperative lane change as a situation where the distance gap increases before the 

ego vehicle crosses the lane marking and subsequently decreases. This pattern of change in the 

distance gap can occur due to a change in the ego vehicle’s behaviour while the follower vehicle 

continues to accelerate. 

 

Third, the study found that the leader vehicle plays a significant role in the follower vehicle’s behaviour. 

The results show a smaller distance gap and higher velocity difference between the follower and lead 

vehicles increases the likelihood of a decelerating response from the follower vehicle. Additionally, in 

the situation where the follower vehicle does not decelerate, the leader vehicle on average drives faster 

than the follower vehicle. The opposite holds for the situations of a decelerating response (i.e., the 

leader vehicle drives slower than the follower vehicle).  

 

The impact of the leader vehicle on the decelerating response of the follower vehicle was further 

examined by comparing situations where the follower vehicle is driving freely from the leader vehicle or 

not (i.e., situation A and B, respectively). The velocity difference between the follower and ego vehicles 

is significantly higher in situation B, and the distance gap is smaller. This results in a stronger 

deceleration response of the follower vehicle, as in situation B, the response duration of the follower 

vehicle is longer, and the minimum acceleration is lower. This is in line with car-following models 

predicting a higher deceleration for higher velocity differences and smaller distance gaps (Zhang et al., 

2021).  
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6. 2. 1.   Linear Regression Models  

The decelerating response of the follower vehicle is characterised by linear regression models of the 

timing, duration and minimum acceleration. A correlation analysis showed that these three response 

variables are related to each other. A longer response was related to a lower minimum acceleration and 

an earlier response timing. It is reasonable to expect the follower vehicle to respond with a higher 

deceleration that consequently takes longer to avoid a collision when the ego vehicle cuts in with a 

lower velocity. In addition, an early response correlated with a lower minimum acceleration. This is 

opposite to expected from cooperative lane changes as the follower vehicle is more inclined to 

cooperate when the cost to do so are lower (i.e., small decelerations) (Stoll et al., 2019). In other words, 

it was expected that an early response of the follower vehicle to cooperate was related to a higher 

minimum acceleration. The results show the opposite pattern, which suggests that the follower vehicles 

did not cooperate or only did in the minority of lane change cases. The three response variables of the 

follower vehicle’s response were expected to be described by some of the same descriptive variables as 

the variables correlate and together characterise the decelerating response of the follower vehicle. The 

results show that indeed the linear regression models have overlapping predictor variables.  

 

The linear regression models for the response variables of the follower vehicle’s deceleration all include 

the acceleration of the leader vehicle. This emphasizes the impact of the leader vehicle on the follower 

vehicle’s behaviour. This result also aligns with the observed differences between the response and 

situation categories. Previous research on the follower vehicle’s behaviour often ignores this influence 

and does not include this in the models (e.g., Chauhan et al. (2022) and Liu et al. (2022)). The results 

highlight the importance of including the car-following properties between the follower and leader 

vehicles when modelling the response to the ego vehicle’s lane change manoeuvre. For instance, Fu et 

al. (2019) suggested a car-following model for cut-in scenarios that considers the car-following state 

prior to the cut-in event.  

 

The velocity difference between the follower and ego vehicles is an important predictor in all three 

linear regression models, but its influence on the response variable differs. First, in the response timing 

model, there is an interaction between the velocity difference and the ego vehicle’s acceleration. Here, 

the effect of the ego vehicle’s acceleration is weaker for larger velocity differences. Second, in the 

response duration model, there is an interaction between the velocity difference and the distance gap 

between the follower and ego vehicles. The response duration is generally shorter at large distances, 

but the effect is weaker at higher velocity differences. Third, in the minimum acceleration model, the 

velocity difference interacts with the ego vehicle’s acceleration and is also a predictor on its own. A 

lower minimum acceleration is seen at higher velocity differences, and even a stronger effect is seen 

when the ego vehicle decelerates. These results emphasize the crucial role of the velocity difference in 

the linear regression models and its interaction effects with other variables. 
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The linear regression models of the duration and minimum acceleration of the follower vehicle’s 

response are most similar. Following the pattern of typical car-following models, both values depend on 

the distance gap and velocity difference between the follower and ego vehicles. In addition, in both the 

duration and minimum acceleration models, the acceleration of the slowlead vehicle is a significant 

predictor. This was not expected as the follower vehicle is not in the same lane as the slowlead vehicle. 

This may indicate that the slowlead vehicle’s acceleration is a strong indicator of overall deceleration or 

that there is another correlation between the slowlead vehicle’s acceleration and a different descriptive 

variable that influences the follower vehicle’s response. However, as this research only explored 

correlations, the reason for the slowlead vehicle’s acceleration being a significant predictor cannot be 

determined. 

 

The findings of Liu et al. (2022) regarding the relationship between the follower vehicle’s minimum 

acceleration and the velocity difference between the ego and follower vehicles were different from this 

research. Liu et al. (2022) found a non-linear relationship, while this research found a linear 

relationship and did not transform the variables. This could be due to the different range of minimum 

acceleration values studied and the number of observations studied where the ego vehicle was driving 

faster than the follower vehicle. In this research, only negative minimum acceleration values (i.e., 

representing a decelerating response) were investigated, while Liu et al. (2022) also included positive 

values. This resulted in a non-linear relationship due to the region where the ego vehicle was driving 

faster and the minimum acceleration was small to positive. However, as this range was not studied in 

this research, a linear relationship was found. 

 

The linear regression model of the follower vehicle’s response timing includes the lateral velocity of the 

ego vehicle. The model shows that as the lateral velocity of the ego vehicle increases, the response 

timing of the follower vehicle decreases. This finding is unique, as the lateral acceleration of the ego 

vehicle has not been considered in previous studies and models. It can be reasoned that a higher 

lateral acceleration is a clearer communication to the follower vehicle, and as such, the follower vehicle 

perceives and responds to the lane change earlier. However, it is important to note that this research 

only establishes correlations and not causality. It could also be the case that an earlier response from 

the follower vehicle results in a higher lateral acceleration during the lane change by the ego vehicle. 

The model also reveals that the response timing is influenced by the acceleration of the ego vehicle, 

which is moderated by the velocity difference. As the ego vehicle accelerates, the follower vehicle’s 

response timing is expected to be later, but the effect is weaker when the velocity difference is high. It 

makes sense that the response timing of the follower vehicle is later when the ego vehicle accelerates. 

This is because an accelerating ego vehicle increases the time it takes for the follower vehicle to close 

the gap, providing the follower vehicle to decelerate later. On the other hand, when the ego vehicle 

decelerates, the response timing is not as intuitive as the follower vehicle does not need to respond as 

early with lower velocity differences. The model’s low cross-correlation value (R2 = 0.001) suggests that 
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the linear regression model is not accurate in predicting the response timing. Further investigation is 

needed to identify the true predictor variables that influence the response timing of the follower vehicle. 

 

The response timing of the follower vehicle was expected to depend on whether or not the follower 

vehicle cooperated. Literature indicates that a follower vehicle is more inclined to cooperative when the 

costs of the follower vehicle to do so are low (i.e., low velocity-distance ratio between follower and ego 

vehicles), and the criticality of the ego vehicle to change lanes is high (i.e., high velocity-distance ratio 

between slowlead and ego vehicles) (Stoll et al., 2019). The results show that both variables are not 

significant predictors of the follower vehicle’s response timing linear regression. However, the 

correlation analysis does show that a higher ratio of the velocity difference and distance gap between 

the ego and slowlead vehicles correlated with an earlier response from the follower vehicle. The 

correlation pattern between the velocity-distance ratio between the follower and ego vehicles and the 

follower vehicle’s response did not match the expectations based on previous research. The results 

show that a higher velocity-distance ratio between the follower and ego vehicles is related to an earlier 

response of the follower vehicle. Still, in 41.6% of the analysed lane changes, the follower vehicle 

started to decelerate before the ego vehicle’s lateral movement, suggesting cooperative behaviour. 

However, it is challenging to make claims on whether or not the follower vehicle deliberately cooperated 

based on this research’s analysis of natural vehicle trajectories without information on turn indicator 

usage. It can be possible that the expected relationship does hold specifically for cooperative lane 

change cases, but a different relationship may exist for non-cooperative responses. The lack of 

distinction between these responses can be a reason that the overall prediction of the response timing 

is uncertain.  

 

In this research, the lane changes of both two-lane and three-lane highways are analysed. 

Consequently, there are lane changes where the ego vehicle changed lanes to the left lane from the 

right or middle lane. Therefore, a multilevel linear regression analysis was performed to determine if 

differences in lane changes influenced the response of the follower vehicle (similar to the approach of 

Yang et al. (2019) and Liu et al. (2022)). The results showed that these are no nested groups, 

suggesting that the same linear regression model applies to all lane changes. This implies combining 

data from two-lane and three-lane highways in future studies is possible. 

 

6. 2. 2.   Fit of the Models 

The fit of the linear regression models predicting the timing, duration and minimum acceleration are 

relatively low (i.e., an R2 value of 0.19, 0.19, and 0.30, respectively). The linear regression models 

cannot explain 81, 81, and 70% of the variance in the observed response behaviour. A large proportion 

of the follower vehicle’s deceleration response is not explained by the linear regression models with 

these predictor variables. Three possible reasons are discussed.  
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First, the linear regression model can benefit from considering driver-related predictors. For instance, a 

driver’s abilities, personality and risk threshold are expected to influence the driving style (Saifuzzaman 

& Zheng, 2014). Moreover, temporal differences between drivers can influence the response behaviour, 

such as whether the driver is in a hurry or pays attention to the ego vehicle. However, previous studies 

have already shown that a driver’s personality is difficult to include in lane change models and often 

unknown to other drivers (e.g., Hidas (2005) and Sultan et al. (2002)). In general, predicting human 

behaviour is inherently difficult, and it is expected to have large portions of unexplained variances. 

Research modelling human behaviour often encounters low R2 values as it is difficult for a single model 

to capture all the factors that predict human behaviour at a specific time (Ozili, 2023). Therefore, it is 

also argued that a low R2 is not a particular problem when the predictor variables are significant.  

 

Second, the linear regression models are limited in that they are based on a single moment in time (i.e., 

the start of the lane change). However, the ego vehicle’s lane change manoeuvre, the follower vehicle’s 

response, and the possible interaction between the drivers are not instantaneous events. The 

behaviour of the vehicles after the start of the lane change can influence the follower vehicle’s 

response. For instance, the ego vehicle can slightly decelerate when approaching the slowlead vehicle 

at the start of the lane change and accelerates after initiating the lane change. Then, the ego vehicle 

increases speed, and the velocity difference between the follower vehicles becomes lower, so the 

follower vehicles can decelerate less. However, the values at the start of the lane change suggested 

that the ego vehicle was decelerating, resulting in a prediction of a higher deceleration. Additionally, 

there is a correlation between the timing, duration and minimum acceleration of the follower vehicle. 

That is, the timing of the response of the follower vehicle also influences the duration and minimum 

acceleration of the follower vehicle’s response. Thus, considering only the start of the lane change to 

determine the response might be limited, resulting in more unexplained variance. 

 

Third, linear regression models may not be the best method for predicting the follower vehicle’s 

deceleration response. More complex stimulus-response models might better describe the follower 

vehicle’s response. For example, the popular car-following models are non-linear (e.g., the GHR model 

and Gipps’ model) (Zhang et al., 2021). Moreover, it can be reasoned that a good response model 

should as well include the transition from a response behaviour to car-following behaviour, similar to 

how car-following models incorporate a transition between free-flow and car-following states (e.g., IDM 

model (Treiber et al., 2000)). 

 

6. 3.   Limitations  

This study has several limitations that are acknowledged and reflected in the following sections. The 

generalisability of the results, the restrictions of the dataset used, and the method of characterising the 

response behaviour are discussed.  
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6. 3. 1.   Generalisability  

The results of the study have limited generalisability due to specific methodological choices. The 

scenario analysed includes a desirable lane change on the highway where the ego vehicle has a mean 

velocity ranging between 20 to 40 m/s and may not apply to other traffic scenarios. Previous literature 

has shown that the driving behaviour differs in other lane change scenarios. For example, in urban 

traffic scenarios, drivers have also been shown to rely on driver-based communication cues as the 

vehicles’ velocities are lower (Domeyer et al., 2019; Lee et al., 2021). Moreover, a mandatory lane 

change (e.g., merging on the highway) can influence the behaviour of drivers because there is an 

urgency to change lanes (Gipps, 1986; Schakel et al., 2012). In addition, Dietrich et al. (2019) 

demonstrated that drivers would show more cooperative behaviour in congested traffic.  

 

Moreover, the results of the study only apply to passenger cars changing lanes, as lane changes made 

by trucks were disregarded. This is because the motion characteristics of trucks differ from those of 

passenger cars, such as lower maximum velocity and acceleration capabilities (Schieben et al., 2019). 

It is expected a lane change of a truck has a higher impact on the follower vehicle, and as such, the 

response behaviour is different. However, it was out of the scope of this research to investigate this 

effect. Therefore, the results apply specifically to passenger cars changing lanes and might not be 

generalisable to lane changes made by a truck.  

 

Lastly, this study only analysed decelerating responses and did not account for the possibility of the 

follower vehicle changing lanes in response to the ego vehicle’s lane change. Stoll et al. (2019) showed 

that in cooperative situations, the follower vehicle preferred a lane change to the left instead of 

decelerating when there was a third lane available. Because the situations in which the follower vehicle 

cooperates by changing to the left lane were beyond the scope of this research, the results are less 

generalisable. However, these research findings of a decelerating response of the follower vehicle do 

apply to normal highway conditions without entry, exit or ending lanes. In addition, the findings of the 

study also apply to cut-in or forced lane changes, as the research did not make a distinction between 

these types of lane changes. 

 

6. 3. 2.   HighD Dataset 

The highD dataset (a naturalistic dataset recorded with an unmanned aerial vehicle) constrains the 

analyses in three ways. First, the dataset does not provide turn indicator or brake light information as 

this is not visible from a top view. The use of an indicator light has been shown to be an important 

communication cue when changing lanes. Research showed that in cases where the ego vehicle used 

the indicator lights, the follower vehicle was more inclined to cooperate compared to no indicator lights 

(Stoll et al., 2019). Similarly, the earlier the ego vehicle would indicate its intention using the indicator 

light, the more cooperative it was perceived by the follower vehicle (Kauffmann et al., 2018). The turn 

indicator likely influences the decelerating response of the follower vehicle. Liu et al. (2022) showed 

that the turn indicator influenced the timing of the follower vehicle to release the acceleration pedal. 
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However, the ego vehicle’s use of the turn indicator did not affect the follower vehicle’s minimum 

acceleration (Liu et al., 2022). Here, the turn indicator is a redundant variable when descriptive 

variables are considered. The turn indicator is often used when the ego vehicle drives slower than the 

follower vehicle or when traffic density is high. In this research, the descriptive variables are used to 

characterise the response behaviour of the follower vehicle and might have limited the influence of 

missing the turn indicator information. Nevertheless, this research cannot make any claims about the 

response behaviour relative to the indicator light. 

 

Second, the results may be influenced by the absence of trajectory information for motorcyclists in the 

highD dataset. This absence can lead to biased results, as the presence of motorcyclists in between 

vehicles may be overlooked, giving the appearance of a larger distance gap between vehicles. The 

impact of this constraint on the results is unknown. 

 

Third, the length of the highway section recorded is 420 meters resulting in vehicles being, on average, 

11.3 seconds recorded (ranging between 7.3 and 17.8 seconds). This time range is limited compared 

to other studies using drivers with long-term observations. This research focused on recording the start 

of the lane change until the moment of crossing the lane marking, but not necessarily the end of the 

lane change (i.e., when the ego vehicle stabilises on the new lane). This means that the response of the 

follower vehicle may have occurred outside of the recorded time range or before it became visible on 

the recording. In principle, these cases were classified as unclear responses and were disregarded from 

further analysis. However, this could have led to classifying lane changes as a no-deceleration 

response, while in reality, there was a response outside the recording.   

 

Overall, the highD dataset used in this research has some limitations that might have influenced the 

research findings. Despite this, the highD dataset was an appropriate dataset for developing a human-

like response model of the follower vehicle in a lane change scenario. The dataset was collected using 

an unobtrusive method, has a precision error of less than 10 cm, can locate all surrounding vehicles, 

and contains a total of 13379 lane change manoeuvres. Other available data sources at TNO would not 

have provided this research with this extensive large-scale and precise naturalistic vehicle trajectory 

information.  

 

6. 3. 3.   Characterisation Response Behaviour 

The classification of the follower vehicle’s response behaviour is limited by the time frame within which 

both vehicles are visible in the recording. This can lead to missed responses, as the recorded time 

frame is relatively short. In addition, this causes there to be no consistent time range before and after 

the ego vehicle starts the lane change manoeuvre in which the follower vehicle’s response behaviour is 

investigated. That is, the time before and after the start of the lane change depends on when the ego 

vehicle started the lane change in the time range. Previous literature has used different time ranges to 

analyse the follower vehicle’s response. For example, Yang et al. (2019) analysed the impact on the 



58 

follower vehicle from the start of the lane change until the vehicle stabilises in the new lane. Liu et al. 

(2022) used as starting time the moment the ego vehicle reached the lane marking and measured the 

response after this moment. Both studies do not consider that the follower vehicle could respond before 

the lateral movement of the ego vehicle and overlook the possibility of the follower vehicle anticipating 

the lane change, cooperating, or responding to the turn indicator used before the lateral movement. 

Furthermore, Chauhan et al. (2022) investigated the follower vehicle’s response over two time ranges: 

5 seconds before the start of the lane change and during the lane change. The 5 seconds before the 

start of the lane change is considerably longer compared to the 1 second before the start of the lane 

change used in this study. Nevertheless, there are also many lane changes with more than 5 seconds 

before the start of the lane change due to the inconstant time range before and after the start of the 

lane change. 

 

In the definitions of the time range to determine the response behaviour, the start of the lane change is 

the central element. However, literature presents different approaches to define the start of the lane 

change. The definition is most often related to the follower vehicle’s lateral speed (Chauhan et al., 

2022) or position (Liu et al., 2022). However, these definitions fail to consider that the follower vehicle 

can respond to the use of a turn indicator by the ego vehicle. It can be argued that in cooperative lane 

changes, the lane change interaction starts before the ego vehicle’s lateral movement, as the follower 

vehicle can also respond to the turn indicator. This suggests the need for a consistent definition of the 

start time of the lane change that considers both the physical movement and the communication cues 

of the ego vehicle. However, as information on the turn indicator was not available in the used dataset, 

this was not explored.  

 

In this research, the response behaviour of the follower vehicle was classified based on a velocity 

difference of at least 0.5 km/h between the start of the response and the timing of the minimum 

acceleration. The velocity change value was used as this includes both the minimum acceleration and 

response duration. That is, a vehicle with a small minimum acceleration for a long time can change in 

velocity as much as another vehicle with a lower minimum acceleration for a short time. The threshold 

was chosen after visually inspecting the behaviour of the follower vehicles and determining that 

decelerations below this value were negligible fluctuations and not considered a response to the lane 

change manoeuvre of the ego vehicle. While this classification method may seem reasonable, 

alternative methods could have been used to better differentiate between actual responses and 

random fluctuations in velocity. 

 

Drivers will respond to a lane change manoeuvre by decelerating and subsequently return to a constant 

speed after reaching the desired car-following distance. This research used the maximum deceleration 

to quantify the response intensity (similar to Liu et al. (2022)). This is different from the approach of 

Yang et al. (2019), who only looked at the change in the follower vehicle’s velocity during the lane 

change manoeuvre of the ego vehicle. However, it is important to note that this method may not capture 
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the entire response intensity and duration, as the entire response could start before the lane change 

manoeuvre and last longer than it. In this study, the minimum acceleration and the time it took to reach 

that value were used to characterise the decelerating response. It is assumed that people will 

decelerate and return to a constant speed (or start to accelerate) at a similar rate. However, the 

analysis showed that this does not hold for all decelerating responses of the follower vehicles, as shown 

in Figure 12.  

 

Note. The example on the left illustrates a deceleration response where the follower vehicle returns to a 

constant value is roughly the same time as reaching the minimum acceleration. The right example 

shows where the time to return to a constant velocity is more than twice as long.  

 

The deceleration pattern observed on the right of Figure 12 might be due to the so-called relaxation 

phenomenon. Here, follower vehicles tend to accept smaller gap sizes and largely apply small 

decelerations over time in lane change scenarios (Schakel et al., 2012). It can be reasoned that drivers 

might first apply a strong deceleration to avoid a critical gap size and continue to decelerate with 

smaller values to reach a desired car-following distance eventually. This suggests that the most 

comprehensive method might have been to track the start of deceleration until the returning point to a 

constant speed. However, this was not possible to investigate in this research due to the limited time 

range.  

 

6. 4.   Future Work 

This research aimed to characterise the decelerating response of the follower vehicle in a lane change 

scenario on the highway. The findings provide valuable perspectives that could be explored in potential 

future research. Several future research directions are suggested. 

 

Future research could address the need to clearly define the interested time range and start of the lane 

change to determine the follower vehicle’s response to the lane change manoeuvre of the ego vehicle. 

Figure 12  

Comparison of two decelerating responses of follower vehicle’s  
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Simultaneously, from this time range definition, it should be recognised whether the entire response 

can be captured with a recording of a specific highway section or requires tracking one vehicle. 

Additionally, it should be critically analysed when a follower vehicle responds to the ego vehicle’s lane 

change manoeuvre such that random fluctuations in velocity should not be recognised as a 

decelerating response. Moreover, this research has shown that the acceleration of the leader vehicle 

plays a role in the decelerating behaviour of the follower vehicle. It is suggested to investigate which 

behaviour of the follower vehicle is specifically a response to the ego vehicle’s lane change manoeuvre 

and how this could be incorporated into existing car-following models.  

 

This research did not examine the influence of the ego vehicle using the turn indicator because this 

information could not be extracted from the used dataset. Future research should evaluate the 

influence of the turn signal in the follower vehicle’s decelerating response as it is expected to be an 

important predictor. In addition, it should be analysed whether the use of the turn indicator should be 

incorporated in the definition of the start of the lane change. Investigation of the use of turn indicators 

in lane change scenarios can help to better differentiate cooperative lane change from all the 

decelerating responses, allowing for more accurate conclusions about the timing and manner of 

cooperation by the follower vehicle.  

 

This study could be further extended by incorporating the scenario of the following vehicle changing 

lanes to the left. Stoll et al. (2019) found that drivers are more likely to change lanes when possible 

than to decelerate in cooperative lane changes. The current research only applies to scenarios where 

the following vehicle needs to decelerate. In addition, the linear regression models predicting the 

response timing, duration and minimum acceleration are not applicable when the following vehicle does 

not need to decelerate. Currently, the models will always make predictions, including negative durations 

and positive minimum acceleration values. A more comprehensive characterization of the following 

vehicle’s behaviour would consider situations where there is a no-decelerating response, a decelerating 

response, or a response by changing lanes. Similarly, this research presents three separate linear 

regression models characterising the response behaviour, but future research could focus on 

combining these models into a single model.  
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7.   Conclusion 
 

This Chapter will conclude this research by summarising the key research findings. The research 

findings are discussed in relation to the research questions. In addition, the value of the results is 

discussed with respect to the findings of other studies.  

 

The introduction of AVs on the road caused a transition period where vehicles with different levels of 

automation operate alongside human road users. Therefore, it is of interest to ensure that AVs drive 

according to human standards. Modelling human driving behaviour can help to establish AVs drive 

predictably and according to social expectations. Specifically, this research focuses on examining the 

interdependence and interaction between a vehicle changing lanes and the rear-approaching vehicle on 

the target lane during highway lane changes. While previous literature mainly focused on the behaviour 

of the vehicle changing lanes, limited research has modelled the behaviour of the follower vehicle. 

Nevertheless, the follower vehicle’s behaviour can play a crucial role in the lane change manoeuvre, 

especially in cooperative lane changes where it decelerates to enable the vehicle changing lanes to 

merge. Therefore, this research aimed to model the decelerating response of the follower vehicle.  

 

A naturalistic vehicle trajectory information dataset was analysed to model human-like behaviour. The 

lane changes in which the follower vehicle decelerated in relation to another vehicle’s lane change 

manoeuvre were characterised. The central questions for this research were to predict when, for how 

long, and with which minimum acceleration value the follower vehicle responds. These questions were 

answered by developing three linear regression models that predict the timing, duration and minimum 

acceleration of the follower vehicle’s decelerating response based on the descriptive variables at ego 

vehicle’s start of the lane change.  

 

The three linear regression models are different from each other but have overlapping predictor 

variables. In all models, the leader vehicle’s acceleration is an important variable influencing the 

follower vehicle’s response behaviour. That is, if the leader vehicle decelerates, the follower vehicle 

response is earlier, takes longer and with a lower minimum acceleration than when the leader vehicle 

accelerates. In addition, the duration and minimum acceleration models include the slowlead vehicle’s 

acceleration. This was not expected as the slowlead vehicle is not in the same lane as the follower 

vehicle. Together, the results indicate the importance of including the general driving situations when 

explaining the response behaviour of the follower vehicle. This finding suggests that other models 

describing the follower vehicle’s response are limited as they do not account for the influence of other 

vehicles (e.g., Chauhan et al., 2022; Hidas, 2005; Liu et al., 2022).  

 

The cross-correlation value of the linear regression model predicting the timing of the response is 

extremely low, which questions the prediction of the model. Additionally, the duration and minimum 
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acceleration models are more similar, which was expected because the three models characterise the 

response behaviour together. Therefore, it seems that a linear regression model using descriptive 

variables at the start of the lane change cannot accurately predict the timing of the response. It was 

expected that the timing of the response was related to whether or not the follower vehicle cooperated. 

It is possible that without distinguishing between cooperative and non-cooperative lane changes, the 

overall prediction of the response timing is uncertain.  

 

The linear regression models of the duration and minimum acceleration both include the velocity 

difference and distance gap between the follower and ego vehicles. However, the contribution of the 

variables is slightly different. The follower vehicle’s response duration was shorter if the distance gap 

was smaller, but this effect was weaker when the velocity difference was high. In the linear regression 

model predicting the minimum acceleration, a smaller distance gap results in a lower minimum 

acceleration. Additionally, the minimum acceleration was lower for a higher velocity difference, and this 

effect was more prominent when the ego vehicle decelerated. The significant influence of the velocity 

difference and distance gap was expected because of car-following models and Liu et al. (2022) also 

used these variables to describe the minimum acceleration. The findings suggest that the response 

behaviour is closely related to car-following behaviour.  

 

Overall, this research characterised the follower vehicle’s response timing, duration and minimum 

acceleration to a lane change manoeuvre on the highway by developing three linear regression models. 

However, the three linear regression models do not explain about 75% of the variance in the follower 

vehicle’s response behaviour. This is considerably high and implies that future research is needed to 

predict the response behaviour better. Still, the results provide some interesting insights that guide the 

development of a human-like response model with the goal of ensuring AVs drive according to human 

standards.  
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Appendix A. 

Entire Flowchart 
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Note. The red boxes require the driver to perceive specific information, the green boxes represent a 

decision the driver needs to make, and the blue boxes are an action the driver performs. 

 

Figure A1 

Flowchart of the process of a lane change manoeuvre     
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Appendix B. 

Results t-tests 
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Table B1 

Differences between response categories 1 and 2 in the descriptive variables  

Variable 

(𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 

Response 1 

No-decelerating response 

 Response 2 

Decelerating response 

   

N M SD  N M SD  t p 

𝑣𝑥
𝐸  125 29.55 3.99  310 28.96 3.89  1.42 .157 

𝑣𝑥
𝐹  125 32.07 4.02  310 32.89 4.34  -1.81 .071 

𝑣𝑥
𝐿  119 32.45 3.87  302 32.19 4.04  0.59 .555 

𝑣𝑥
𝑆  123 26.42 3.32  309 25.80 2.97  1.93 .055 

𝑎𝑥
𝐸  125 0.23 0.33  310 0.04 0.35  5.26 < .001 

𝑎𝑥
𝐹  125 0.21 0.17  310 0.04 0.34  6.83* < .001 

𝑎𝑥
𝐿  119 0.22 0.27  302 0.01 0.36  6.55* < .001 

𝑎𝑥
𝑆  123 0.07 0.23  309 -0.04 0.29  3.70 < .001 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   125 -1.84 0.36  310 -187 0.35  0.60 .550 

𝑎𝑦
𝐸  125 0.15 0.08  310 0.15 0.08  -0.14 .887 

∆𝑣𝑥
𝐹,𝐸

  125 2.53 2.30  310 3.93 2.79  -5.41* < .001 

∆𝑣𝑥
𝐸,𝐿

  119 -3.05 3.15  302 -3.31 3.08  0.80 .424 

∆𝑣𝑥
𝐸,𝑆

  123 3.09 2.57  309 3.14 3.08  -0.17 .866 

∆𝑣𝑥
𝐹,𝐿

  119 -0.54 2.80  302 0.62 2.61  -4.03 < .001 

𝑇𝐻𝑊𝐹,𝐸  125 2.05 0.76  310 1.82 0.72  2.88 .004 

𝑇𝐻𝑊𝐸,𝐿  119 1.12 1.31  302 0.88 1.43  1.63 .105 

𝑇𝐻𝑊𝐸,𝑆  123 1.63 0.99  309 1.70 1.05  -0.59 .557 

𝑇𝐻𝑊𝐹,𝐿  119 3.11 1.30  302 2.62 1.48  3.15 .002 

∆𝑥𝐹,𝐸  125 61.15 26.78  310 55.98 27.07  1.81 .071 

∆𝑥𝐸,𝐿  119 30.11 43.05  302 22.41 45.78  1.58 .115 

∆𝑥𝐸,𝑆  132 43.96 32.36  309 43.92 1.87  0.01 .990 

∆𝑥𝐹,𝐿  119 95.79 48.60  302 82.69 54.16  2.30 .022 

𝑇𝑇𝐶𝐹,𝐸  110 112.8 727.97  294 32.08 133.94  1.16* .250 

𝑇𝑇𝐶𝐸,𝐿  17 81.68 100.60  37 137.37 312.62  -0.71 .478 

𝑇𝑇𝐶𝐸,𝑆  115 18.20 12.73  283 28.21 74021  -2.19* .029 

𝑇𝑇𝐶𝐹,𝐿  40 410.33 1716.6  168 95.01 207.10  1.16* .253 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

  125 .04 .05  310 0.07 0.05  -6.66 < .001 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

  83 -0.74 4.34  176 -0.83 2.81  0.21 .832 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

  123 0.07 0.05  309 0.07 0.06  -0.50 .618 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

  119 -0.01 0.03  302 0.00 0.03  -4.76 < .001 

Note. * indicates the use of the Welch’s t-test because of unequal variances between the categories.  
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Table B2 

Differences between situation categories A and B in the descriptive variables  

Variable 

(𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 

Situation A 

Influence ego vehicle 

 Situation B 

Influence ego and leader vehicles 

   

N M SD  N M SD  t p 

𝑣𝑥
𝐸  111 29.70 4.38  197 28.58 3.52  2.30* .023 

𝑣𝑥
𝐹  111 33.10 4.98  197 32.82 3.92  0.54 .592 

𝑣𝑥
𝐿  103 32.59 4.69  197 32.03 3.64  1.14 .255 

𝑣𝑥
𝑆  111 25.85 3.32  196 25.80 2.74  0.16 .872 

𝑎𝑥
𝐸  111 0.06 0.38  197 0.02 0.34  1.06 .291 

𝑎𝑥
𝐹  111 0.02 0.32  197 0.05 0.35  -0.56 .577 

𝑎𝑥
𝐿  103 0.01 0.43  197 0.00 0.32  0.27* .791 

𝑎𝑥
𝑆  111 -0.04 0.32  196 -0.04 0.27  -0.06 .955 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   111 -1.85 0.35  197 -1.87 0.34  0.66 .507 

𝑎𝑦
𝐸  111 0.14 0.08  197 0.16 0.08  -2.65 .009 

∆𝑣𝑥
𝐹,𝐸

  111 3.40 2.78  197 4.24 2.76  -2.56 .011 

∆𝑣𝑥
𝐸,𝐿

  103 -3.07 3.51  197 -3.45 2.84  0.95* .345 

∆𝑣𝑥
𝐸,𝑆

  111 3.84 3.59  196 2.74 2.69  2.82* .005 

∆𝑣𝑥
𝐹,𝐿

  103 0.30 3.43  197 0.80 2.05  -1.37* .174 

𝑇𝐻𝑊𝐹,𝐸  111 2.18 0.76  197 1.63 0.63  6.53* < .001 

𝑇𝐻𝑊𝐸,𝐿  103 1.96 1.89  197 0.32 0.59  8.62* < .001 

𝑇𝐻𝑊𝐸,𝑆  111 1.84 1.09  196 1.60 1.00  2.00 .046 

𝑇𝐻𝑊𝐹,𝐿  103 3.98 1.68  197 1.93 0.66  11.91* < .001 

∆𝑥𝐹,𝐸  111 67.76 28.92  197 49.50 23.71  5.67* < .001 

∆𝑥𝐸,𝐿  103 56.38 61.63  197 4.94 17.87  8.29* < .001 

∆𝑥𝐸,𝑆  111 50.21 36.69  196 40.05 30.10  2.48*  .014 

∆𝑥𝐹,𝐿  103 128.55 64.76  197 59.16 25.28  10.46* < .001 

𝑇𝑇𝐶𝐹,𝐸  102 55.20 209.08  190 19.64 63.25  1.68* .096 

𝑇𝑇𝐶𝐸,𝐿  17 205.52 395.68  20 79.43 213.7  1.23 .226 

𝑇𝑇𝐶𝐸,𝑆  105 27.47 80.69  176 28.36 70.55  -0.10 .923 

𝑇𝑇𝐶𝐹,𝐿  35 97.90 129.29  132 93.04 223.9  0.12 .902 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

  111 0.05 0.05  197 0.08 0.04  -6.95 < .001 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

  85 -0.56 2.37  91 -1.09 3.15  1.24 .217 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

  111 0.08 0.05  196 0.07 0.06  0.86 .391 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

  103 -0.01 0.02  197 0.01 0.04  -3.48* < .001 

 Note. * indicates the use of the Welch’s t-test because of unequal variances between the categories.  
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Appendix C. 

Response Timing 
 

This Appendix provides supplementary information on the analyses of the follower vehicle’s response 

timing. First, the relationships between the descriptive variables and the response timing are examined 

through visualisation (see Figures C1 to C6) and the Pearson correlation coefficient (see Table C1). 

Second, the development and intermediate results of the linear regression model are described. 

 

C. 1. Relationships Between Response Timing and Descriptive Variables 

 

  

 

 

  

Figure C1 

Response timing versus the behaviour of the ego vehicle at the start of the lane change  
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Figure C2 

Response timing versus the longitudinal behaviour of the follower, leader and slowlead vehicles at the 

start of the lane change  
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure C3 

Response timing versus the relational variables between the follower and ego vehicles at the start of 

the lane change 



77 

Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure C4 

Response timing versus the relational variables between the leader and ego vehicles at the start of the 

lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

Figure C5 

Response timing versus the relational variables between the slowlead and ego vehicles at the start of 

the lane change  

 



79 

Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

 

  

Figure C6 

Response timing versus the relational variables between the leader and follower vehicles at the start of 

the lane change 
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Table C1 

Pearson correlation coefficient between the response timing and descriptive variables  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Observations r p 

𝑣𝑥
𝐸  308 .03 .588 

𝑣𝑥
𝐹  308 -.07 .243 

𝑣𝑥
𝐿  300 -.00 .998 

𝑣𝑥
𝑆  307 .02 .383 

𝑎𝑥
𝐸  308 .21 < .001** 

𝑎𝑥
𝐿  300 .25 < .001** 

𝑎𝑥
𝑆  307 .21 < .001** 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   308 .08 .160 

𝑎𝑦
𝐸  308 -.19 < .001** 

∆𝑣𝑥
𝐹,𝐸

  308 -.15 .010* 

∆𝑣𝑥
𝐸,𝐿

  308 .03 .642 

∆𝑣𝑥
𝐸,𝑆

  307 .01 .911 

∆𝑣𝑥
𝐹,𝐿

  300 -.13 .025* 

𝑇𝐻𝑊𝐹,𝐸  308 -.02 .782 

𝑇𝐻𝑊𝐸,𝐿  300 .07 .225 

𝑇𝐻𝑊𝐸,𝑆  307 .12 .011* 

𝑇𝐻𝑊𝐹,𝐿  300 .07 .245 

∆𝑥𝐹,𝐸  308 -.05 .362 

∆𝑥𝐸,𝐿  300 .08 .156 

∆𝑥𝐸,𝑆  307 .13 .019* 

∆𝑥𝐹,𝐿  300 .05 .433 

𝑇𝑇𝐶𝐹,𝐸  292 .16 .007** 

𝑇𝑇𝐶𝐸,𝐿  37 .11 .508 

𝑇𝑇𝐶𝐸,𝑆  281 .05 .382 

𝑇𝑇𝐶𝐹,𝐿  167 .12 .136 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

  308 -.16 .004** 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

  176 .01 .927 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

  307 -.12 .039* 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

  300 -.19 < .001** 

Note. * p < 0.05; ** p < 0.01 

  



81 

C. 2. Development of the Linear Regression Model 

The development of the linear regression model for the follower vehicle’s response timing involves 

multiple steps. These five steps are described, and the intermediate findings are discussed. The first 

step involved identifying the most likely significant predictor variables for the follower vehicle’s 

response timing using a backward stepwise approach. The candidate predictor variables for the 

stepwise analysis were based on variables that previous literature suggested being important and the 

variables that are significantly correlated, being:  

 

• Ego vehicle’s acceleration 

• Ego vehicle’s lateral acceleration 

• Velocity difference between the follower and ego vehicles 

• Ratio of the velocity difference and distance gap between the follower and ego vehicles  

• Leader vehicle’s acceleration 

• Velocity difference between the follower and leader vehicles 

• Ratio of the velocity difference and distance gap between the follower and leader vehicles  

• Slowlead vehicle’s acceleration 

• Distance gap between the slowlead and ego vehicles 

• Ratio of the velocity difference and distance gap between the slowlead and ego vehicles 

  

The backward stepwise approach identified four predictor variables: the acceleration of the ego and 

leader vehicles, the lateral acceleration of the ego vehicle, and the velocity-distance ratio between the 

follower and ego vehicles. These results provide insight into the importance of these variables in further 

analysis. 

 

In the second step, the variables related to the ego and follower vehicles were more thoroughly 

investigated since the response timing of the follower vehicle is essentially a reaction to the ego vehicle. 

The following observations were made. First, the distance-related predictors (i.e., THW and distance 

gap) between the follower and ego vehicles were found not to be significant predictors. Second, the 

velocity of the ego and follower vehicles were also no significant predictors of the follower vehicle’s 

response timing. Third, the velocity difference between the follower and ego vehicles was found to be as 

good a predictor as the velocity-distance ratio. Fourth, the longitudinal and lateral acceleration of the 

ego vehicle were determined to be the best predictors of the follower vehicle’s response timing. Fifth, it 

was investigated whether there was an interaction effect between the ego vehicle’s acceleration and its 

velocity, distance gap, and velocity difference with the follower vehicle. No interaction effect was found 

between the distance gap and velocity difference, but an interaction effect was found between the ego 

vehicle’s acceleration and the velocity difference. The best linear regression model of the follower 

vehicle’s response timing considering the descriptive variables of the follower and ego vehicles is 

presented in Table C2 (F(3, 246) = 13.19, p < .001, R2 = 0.14).  
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Table C2 

The linear regression model of the timing of the response using the descriptive variables of the follower 

and ego vehicles   

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

𝑎𝑥
𝐸  3.68 0.83 4.44 < .001 2.05, 5.31 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  -0.41 0.17 -2.44 .015 -0.74, -0.08 

𝑎𝑦
𝐸  -9.46 2.30 -4.11 < .001 -14.00, -4.92 

(constant) 1.97 0.41 4.87 < .001 1.17, 2.77 

 

The third step extended the linear regression model by considering the influence of the leader vehicle.  

Results from the t-test indicated there was no difference in response timing between situations A and B, 

suggesting that the presence of a leader vehicle did not impact the response timing. A multilevel linear 

regression analysis also showed that the situation is not a nested group that would improve the model’s 

fit. Namely, the likelihood-ratio test comparing the multilevel model based on the situation to the 

ordinary linear regression (as in Table C2) was not significant (X2(1) = 0.00, p = 1.000). Nevertheless, 

the correlation results indicate that the leader’s velocity difference and acceleration are significant 

predictors. The analysis of adding the descriptive variables related to the leader vehicle showed that the 

acceleration of the leader vehicle and the velocity-distance ratio between the leader and follower 

improved the model. However, only the leader vehicle’s acceleration remained significant when added 

together. The interaction effect of the leader vehicle’s acceleration and the velocity difference between 

the leader and follower vehicles was also investigated, but no significant interaction effect was found. 

The improved linear regression model for predicting the response timing of the follower vehicle is shown 

in Table C3 (F(4, 233) = 14.01, p < .001, R2 = 0.19). 

 

Table C3 

The linear regression model of the timing of the response using the descriptive variables of the follower, 

ego, and leader vehicles 

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

𝑎𝑥
𝐸  2.99 0.83 3.61 < .001 1.36, 4.62 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  -0.42 0.16 -2.57 .011 -0.75, -0.10 

𝑎𝑥
𝐿  2.00 0.56 3.57 < .001 0.89, 3.10 

𝑎𝑦
𝐸  -9.21 2.26 -4.08 < .001 -13.66, -4.76 

(constant) 1.95 0.40 4.90 < .001 1.17, 2.74 

 

In the fourth step, the influence of the slowlead vehicle was investigated by considering additional 

descriptive variables related to the slowlead. However, none of the variables (i.e., the acceleration of 

the slowlead and the distance gap, velocity difference, and velocity-distance ratio between the slowlead 

and ego) were found to be significant predictors and improved the model’s fit. In addition, no significant 
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interaction effects were observed. Therefore, the linear regression model presented in Table C3 

remains the best model for predicting the response timing of the follower vehicle. 

 

In the fifth and final step, the presence of nested groups was tested. The groups were created based on 

the number of lanes on the highway or whether the ego vehicle changed lanes from the right or middle 

lane. The results of the multilevel linear regression analysis, using either of the nested groups, did not 

result in an improved model compared to the normal linear regression model in Table C3 (X2(1) = 0.00, 

p = 1.000; X2(1) = 0.00, p = 1.000). Hence, the final best regression model to predict the follower 

vehicle’s response timing using the descriptive variables at the start of the lane change is presented in 

Table C3.  
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Appendix D. 

Response Duration 
 

This Appendix provides supplementary information on the analyses of the follower vehicle’s response 

duration. First, the relationships between the descriptive variables and the response duration are 

examined through visualisation (see Figures D1 to D6) and the Pearson correlation coefficient (see 

Table D1). Second, the development and intermediate results of the linear regression model are 

described. 

 

D. 1. Relationships Between Response Duration and Descriptive Variables 

 

 

 

  

Figure D1 

Response duration versus the behaviour of the ego vehicle at the start of the lane change 
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Figure D2 

Response duration versus the longitudinal behaviour of the follower, leader and slowlead vehicles at 

the start of the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

 

 

  

Figure D3 

Response duration versus the relational variables between the follower and ego vehicles at the start of 

the lane change  
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure D4 

Response duration versus the relational variables between the leader and ego vehicles at the start of 

the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure D5 

Response duration versus the relational variables between the slowlead and ego vehicles at the start of 

the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure D6 

Response duration versus the relational variables between the leader and follower vehicles at the start 

of the lane change 
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Table D1 

Pearson correlation coefficient between the response duration and descriptive variables  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Observations r p 

𝑣𝑥
𝐸  308 -.00 .974 

𝑣𝑥
𝐹  308 .09 .110 

𝑣𝑥
𝐿  300 -.01 .937 

𝑣𝑥
𝑆  307 -.06 .278 

𝑎𝑥
𝐸  308 -.26 < .001** 

𝑎𝑥
𝐿  300 -.36 < .001** 

𝑎𝑥
𝑆  307 -.23 < .001** 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   308 -.10 .094 

𝑎𝑦
𝐸  308 .07 .224 

∆𝑣𝑥
𝐹,𝐸

  308 .14 .011* 

∆𝑣𝑥
𝐸,𝐿

  300 .01 .937 

∆𝑣𝑥
𝐸,𝑆

  307 .06 .281 

∆𝑣𝑥
𝐹,𝐿

  300 .16 .006** 

𝑇𝐻𝑊𝐹,𝐸  308 -.03 .600 

𝑇𝐻𝑊𝐸,𝐿  300 -.08 .195 

𝑇𝐻𝑊𝐸,𝑆  307 -.01 .930 

𝑇𝐻𝑊𝐹,𝐿  300 -.08 .147 

∆𝑥𝐹,𝐸  308 .01 .869 

∆𝑥𝐸,𝐿  300 -.09 .126 

∆𝑥𝐸,𝑆  307 -.02 .723 

∆𝑥𝐹,𝐿  300 -.07 .257 

𝑇𝑇𝐶𝐹,𝐸  292 -.08 .165 

𝑇𝑇𝐶𝐸,𝐿  37 -.01 .939 

𝑇𝑇𝐶𝐸,𝑆  281 -.11 .077 

𝑇𝑇𝐶𝐹,𝐿  167 -.12 .140 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

  308 .13 .023* 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

  176 -.04 .368 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

  307 .10 .096 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

  300 .23 < .001** 

Note. * p < 0.05; ** p < 0.01 
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D. 2. Development of the Linear Regression Model 

The process of creating the best linear regression model to predict the follower vehicle’s response 

duration involved several steps. In the first step, a backward stepwise approach was used to indicate 

the important predictors of the linear regression model. The candidate predictor variables for the 

stepwise analysis were identified based on previous literature and those that significantly correlated 

with the response duration. The list of candidate predictor variables was as follows:  

 

• Ego vehicle’s acceleration 

• Velocity difference between the follower and ego vehicles  

• Distance gap between the follower and ego vehicles  

• Ratio of the velocity difference and distance gap between the follower and ego vehicles 

• Leader vehicle’s acceleration 

• Velocity difference between the follower and leader vehicles 

• Distance gap between the follower and leader vehicles 

• Ratio of the velocity difference and distance gap between the follower and leader vehicles 

• Slowlead vehicle’s acceleration 

• Ratio of the velocity difference and distance gap between the slowlead and ego vehicles 

 

The results showed three predictors to be important: the acceleration of the ego and leader vehicles 

and the ratio of the velocity difference and distance gap between the follower and leader vehicle. These 

results highlight that these variables are likely of importance in further analysis.   

 

The second step of the analysis focused on the relationship between the follower and ego vehicle 

variables and the follower vehicle’s response duration. First, it was found that the velocity of either the 

follower or ego vehicle was not a significant predictor. Second, the velocity difference between the 

follower and ego vehicles seems to be a good prediction of the response duration. The velocity-distance 

ratio was not as good a predictor as the velocity difference in itself. Third, the acceleration of the ego 

vehicle was found to be a good predictor. There are no significant interactions between the acceleration 

of the ego vehicle and the ego vehicle’s velocity, the distance gap, or the velocity difference between 

the follower and ego vehicles. Fourth, the distance gap between the follower and ego vehicles was a 

significant predictor when also combined with the velocity difference. Combining the best predictor 

variables caused the velocity difference between the vehicles to be non-significant. The resulting best 

linear regression model of the follower vehicle’s response duration considering the descriptive variables 

of the follower and ego vehicles is presented in Table D2 (F(3, 242) = 7.72, p < .001, R2 = 0.09).    
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Table D2 

The linear regression model of the duration of the response using the descriptive variables of the 

follower and ego vehicles   

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 
Coefficient Standard 

Error 

t p [95% confidence interval] 

𝑎𝑥
𝐸  -1.35 0.35 -3.85 < .001 -2.04, -0.66 

∆𝑥𝐹,𝐸  -0.02 0.01 -2.19 .029 -0.03, -0.002 

∆𝑥𝐹,𝐸 ∗ ∆𝑣𝑥
𝐹,𝐸

  0.002 0.001 2.79 .006 0.001, 0.003 

(constant) 3.84 0.31 12.19 < .001 3.22, 4.46 

 

The third step involved the analysis of the role of the leader vehicle on the follower vehicle’s response 

duration. Results from a multilevel linear regression showed that the situation category was no nested 

group that could improve the fit of the model (X2(1) = 0.44, p = .254). However, a comparison between 

situations A and B revealed that the response duration was longer when a leader vehicle was present 

(i.e., situation C). The correlation results showed that the acceleration of the leader vehicle and the 

velocity difference between the leader and follower vehicles were significant predictors of the response 

duration. The addition of the descriptive variables related to the leader vehicle to the linear regression 

model showed that the leader vehicle’s acceleration and the velocity-distance ratio between the 

follower and leader vehicles are good predictors. No other significant predictors or interaction effects 

were found in relation to the leader and follower vehicles. However, adding both variables to the model 

resulted in the velocity-distance ratio between the follower and leader vehicles and the ego vehicle’s 

acceleration being non-significant predictors. The model’s fit still improved after removing the non-

significant predictors. The resulting improved linear regression model of the follower vehicle’s response 

duration is presented in Table D3 (F(4, 234) = 16.60, p < .001, R2 = 0.18).  

 

Table D3 

The linear regression model of the duration of the response using the descriptive variables of the 

follower, ego and leader vehicles   

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 
Coefficient Standard 

Error 

t p [95% confidence interval] 

∆𝑥𝐹,𝐸  -0.02 0.01 -2.20 .029 -0.03, -0.002 

∆𝑥𝐹,𝐸 ∗ ∆𝑣𝑥
𝐹,𝐸

  0.002 0.001 2.52 .012 0.0004, 0.003 

𝑎𝑥
𝐿  -2.13 0.33 -6.45 < .001 -2.78, -1.48 

(constant) 3.87 0.31 12.65 < .001 3.26, 4.47 

 

In the fourth step, it was investigated whether there are significant predictors related to the slowlead 

vehicle that would increase the fit of the linear regression model. The results showed that the distance 

gap, velocity difference, and the ratio of the velocity difference and distance gap between the slowlead 
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and ego were no significant predictors of the response duration and did not improve the fit of the linear 

regression model. There were also no significant interaction effects between these variables. However, 

the acceleration of the slowlead was found to be a significant predictor of the response duration of the 

follower vehicle. The resulting linear regression model for the response duration of the follower vehicle 

is shown in Table D4 (F(4, 237) = 13.85, p < .001, R2 = 0.19). 

 

Table D4 

The linear regression model of the duration of the response using the descriptive variables of the 

follower, ego, leader and slowlead vehicles   

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) 
Coefficient Standard 

Error 

t p [95% confidence interval] 

∆𝑥𝐹,𝐸  -0.02 0.01 -2.05 .042 -0.03, -0.00 

∆𝑥𝐹,𝐸 ∗ ∆𝑣𝑥
𝐹,𝐸

  0.002 0.001 2.44 .015 0.0003, 0.003 

𝑎𝑥
𝐿  -1.95 0.34 -5.78 < .001 -2.62, -1.29 

𝑎𝑥
𝑆  -0.94 0.42 -2.23 .027 -1.76, -0.11 

(constant) 3.78 0.31 12.27 < .001 3.17, 4.39 

 

The fifth and final step tested whether the number of lanes on the highway or whether the ego vehicle 

changes lanes from the right or middle lane are nested groups in the dataset. A multilevel linear 

regression analysis revealed that considering these groups would not lead to an improvement in the 

model’s fit, as indicated in Table D4 (X2(1) = 0.00, p = 1.000 and X2(1) = 0.00, p = 1.000). Therefore, 

the final best linear regression model using the descriptive variables at the start of the lane change to 

predict the follower vehicle’s response duration is presented in Table D4.  
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Appendix E. 

Response Minimum Acceleration 
 

This Appendix provides supplementary information on the analyses of the minimum acceleration of the 

follower vehicle response. First, the relationships between the descriptive variables and the minimum 

acceleration of the response are examined through visualisation (see Figures E1 to E6) and the Pearson 

correlation coefficient (see Table E1). Second, the development and intermediate results of the linear 

regression model are described. 

 

E. 1. Relationships Between Response Minimum Acceleration and Descriptive 

Variables 

 

  

 

 

Figure E1 

Response minimum acceleration versus the behaviour of the ego vehicle at the start of the lane change 
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Figure E2 

Response minimum acceleration versus the longitudinal behaviour of the follower, leader and slowlead 

vehicles at the start of the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure E3 

Response minimum acceleration versus the relational variables between the follower and ego vehicles 

at the start of the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

Figure E4 

Response minimum acceleration versus the relational variables between the leader and ego vehicles at 

the start of the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

Figure E5 

Response minimum acceleration versus the relational variables between the slowlead and ego vehicles 

at the start of the lane change 
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Note. The TTC graph is cut-off at 50 seconds to highlight the relevant data and eliminate any extreme 

outliers that distort the visual representation. 

  

Figure E6 

Response minimum acceleration versus the relational variables between the leader and follower 

vehicles at the start of the lane change 
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Table E1 

Pearson correlation coefficient between the response minimum acceleration and descriptive variables  

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Observations r p 

𝑣𝑥
𝐸  308 -.03 .628 

𝑣𝑥
𝐹  308 -.20 < .001** 

𝑣𝑥
𝐿  300 -.10 .097 

𝑣𝑥
𝑆  307 .03 .524 

𝑎𝑥
𝐸  308 .28 < .001** 

𝑎𝑥
𝐿  300 .37 < .001** 

𝑎𝑥
𝑆  307 .22 < .001** 

𝑦𝑐𝑒𝑛𝑡𝑟𝑒
𝐸   308 .08 .142 

𝑎𝑦
𝐸  308 -.07 .217 

∆𝑣𝑥
𝐹,𝐸

  308 -.26 < .001** 

∆𝑣𝑥
𝐸,𝐿

  300 .09 .106 

∆𝑣𝑥
𝐸,𝑆

  307 -.06 .278 

∆𝑣𝑥
𝐹,𝐿

  300 -.17 .003** 

𝑇𝐻𝑊𝐹,𝐸  308 .14 .014* 

𝑇𝐻𝑊𝐸,𝐿  300 .07 .262 

𝑇𝐻𝑊𝐸,𝑆  307 .02 .773 

𝑇𝐻𝑊𝐹,𝐿  300 .13 .024* 

∆𝑥𝐹,𝐸  308 .07 .257 

∆𝑥𝐸,𝐿  300 .06 .320 

∆𝑥𝐸,𝑆  307 .02 .785 

∆𝑥𝐹,𝐿  300 .08 .166 

𝑇𝑇𝐶𝐹,𝐸  292 .08 .167 

𝑇𝑇𝐶𝐸,𝐿  37 .23 .176 

𝑇𝑇𝐶𝐸,𝑆  281 .04 .496 

𝑇𝑇𝐶𝐹,𝐿  167 -.00 .988 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐸

  308 -.31 < .001** 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝐿

  176 .02 .811 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐸,𝑆

  307 -.13 .023* 

𝑟𝑎𝑡𝑖𝑜∆𝑣,∆𝑥
𝐹,𝐿

  300 -.18 .002** 

Note. * p < 0.05; ** p < 0.01 
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E. 2. Development of the Linear Regression Model 

The linear regression model of the minimum acceleration of the follower vehicle’s response is 

developed following several steps. In the first step, a backward stepwise approach is used to identify 

the essential predictor variables of the linear regression model. The list of candidate predictors was 

based on previous literature and correlation analyses, resulting in the following list:  

 

• Ego vehicle’s acceleration 

• Velocity difference between the follower and ego vehicles  

• Distance gap between the follower and ego vehicles 

• Ratio of the velocity difference and distance gap between the follower and ego vehicles 

• Leader vehicle’s acceleration 

• Velocity difference between the follower and leader vehicles  

• Distance gap between the follower and leader vehicles 

• Ratio of the velocity difference and distance gap between the follower and leader vehicles 

• Slowlead vehicle’s acceleration 

• Ratio of the velocity difference and distance gap between the slowlead and ego vehicles 

 

The results of the backward stepwise approach suggest that the four most essential predictors are the 

distance gap and velocity difference between the follower and ego vehicles, and the acceleration of the 

ego and leader vehicles. The use of either the distance gap or THW showed a similar result.  

 

In the second step, the descriptive variables related to the follower and ego vehicles are more closely 

analysed. First, the ego vehicle’s acceleration is a significant predictor. Second, the distance gap is as 

well a significant predictor, and the THW between the follower and ego vehicles is a similar good 

predictor as the distance gap. Third, the velocity difference between the follower and ego vehicles is a 

good predictor. Fourth, there is no significant interaction between the velocity difference and the 

distance gap between the vehicles. Similarly, the velocity-distance ratio between the follower and ego 

vehicles was found to be a weaker predictor than the velocity difference. Fifth, there is a significant 

interaction between the ego vehicle’s acceleration and the velocity difference between the follower and 

ego vehicles. However, the ego vehicle’s acceleration value is no longer significant when added 

together. The highest fit of the model is achieved when including the interaction effect instead of only 

the ego vehicle’s acceleration. Six, the velocity of the follower vehicle is not a significant predictor. The 

resulting linear regression model of the follower vehicle’s minimum acceleration considering the 

descriptive variables of the follower and ego vehicles is shown in Table E2Table E2 (F(3, 246) = 24.22, 

p < .001, R2 = 0.23).  
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Table E2 

The linear regression model of the minimum acceleration of the response using the descriptive 

variables of the follower and ego vehicles   

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

∆𝑣𝑥
𝐹,𝐸

  -0.07 0.01 -6.86 < .001 -0.09, -0.05 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  0.07 0.01 5.22 < .001 0.04, 0.10 

∆𝑥𝐹,𝐸  0.01 0.001 5.10 < .001 0.003, 0.01 

(constant) -0.63 0.06 -11.29 < .001 -0.74, -0.52 

 

The third step investigates the descriptive variables related to the leader vehicle. A multilevel linear 

regression analysis showed that the situation is no nested group that would improve the model’s fit 

(X2(01) = 0.00, p = 1.000). However, the results of the t-tests indicate that in situation B (i.e., the 

follower vehicle is not driving freely from the leader vehicle), the minimum acceleration is lower than in 

situation A. In addition, the correlation results showed that variables related to the leader vehicle 

significantly correlated with the follower vehicle’s minimum acceleration. The linear regression analysis 

showed that only the leader vehicle’s acceleration value is a significant predictor that increases the 

model’s fit. Including the velocity difference, distance gap, THW, or velocity-distance ratio between the 

leader and follower vehicles did not improve the model. Furthermore, there were no significant 

interaction effects. The improved linear regression model by including the acceleration of the leader 

vehicle is presented in Table E3 (F(3, 238) = 23.36, p < .001, R2 = 0.29).  

 

Table E3 

The linear regression model of the minimum acceleration of the response using the descriptive 

variables of the follower, ego, and leader vehicles 

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

∆𝑣𝑥
𝐹,𝐸

  -0.07 0.01 -6.37 < .001 -0.09, -0.05 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  0.05 0.01 3.24 .001 0.02, 0.07 

∆𝑥𝐹,𝐸  0.01 0.001 5.26 < .001 0.004, 0.01 

𝑎𝑥
𝐿  0.32 0.07 4.67 < .001 0.19, 0.46 

(constant) -0.66 0.05 -12.17 < .001 -0.77, -0.56 

 

The fourth step of the analysis extended the linear regression model by considering the influence of the 

slowlead vehicle. Similar to the variables related to the leader vehicle, only the slowlead vehicle’s 

acceleration is a significant predictor. The distance gap, THW, velocity difference, and velocity-distance 

ratio between the slowlead and ego are not significant, and there are no significant interaction effects. 

Table E4 shows the following best linear regression model when considering the descriptive variables 

related to the follower, ego, leader and slowlead vehicles (F(3, 237) = 20.06, p < .001, R2 = 0.30)  
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Table E4 

The linear regression model of the minimum acceleration of the response using the descriptive 

variables of the follower, ego, leader and slowlead vehicles 

Variable (𝑡𝑠𝑡𝑎𝑟𝑡𝐿𝐶) Coefficient Standard Error t p [95% confidence interval] 

∆𝑣𝑥
𝐹,𝐸

  -0.07 0.01 -6.51 < .001 -0.09, -0.05 

𝑎𝑥
𝐸 ∗ ∆𝑣𝑥

𝐹,𝐸
  0.04 0.01 2.84 .005 0.01, 0.07 

∆𝑥𝐹,𝐸  0.01 0.001 5.16 < .001 0.003, 0.01 

𝑎𝑥
𝐿  0.30 0.07 4.30 < .001 0.16, 0.43 

𝑎𝑥
𝑆  0.17 0.08 2.00 0.046 0.003, 0.33 

(constant) -0.64 0.05 -11.66 < .001 -0.75, -0.53 

 

In the fifth step, it is investigated whether there are nested groups in the dataset related to either the 

number of lanes on the highway or whether the ego vehicle changed lanes from the right or middle lane. 

A multilevel linear regression showed there are no nested groups that would improve the model’s fit 

(X2(01) = 0.00, p = 1.000; X2(01) = 0.00, p = 1.000). Thus, the final best regression model predicting 

the minimum acceleration of the follower vehicle’s response using the descriptive variables at the start 

of the lane change is shown in Table E4.  

 


