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Abstract 
The global population is aging rapidly, which means more elderly drivers will be on the road. As we age, 

our visual system changes, and we become less sensitive to contrast and more susceptible to glare. It is of 

importance that road design standards take into account these characteristics of the elderly visual system to 

guarantee safe roads for all its users. One commonly used standard regarding the maximum amount of glare 

a road user can be exposed to is, however, based on the visual system of a 23-year-old. In this work, the 

luminance difference threshold of an elderly sample is investigated under conditions of glare in order to 

guide better future design standards. This is investigated with a psychophysical experiment, in which 

participants are exposed to a night-time driving scene, and have to indicate the direction of an arrow on the 

road that is present in the scene. Besides this, different models that predict the threshold are investigated. 

Results showed that on average, elderly participants have a luminance difference threshold that is 1.3x 

higher under conditions of glare compared to conditions without glare. Furthermore, comparing the data of 

this elderly sample with that of younger participants (under conditions of glare), it was found that the 

luminance difference threshold of the elderly participants is 2.5x higher than that of the younger ones. This 

highlights the need of improving road lighting standards to accommodate the aging population. 

 

Keywords: visibility, road lighting, contrast perception, glare perception, image forming, 

luminance difference threshold  
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Introduction 
 

“We willen leven in een land waar we vlot en veilig van A naar B kunnen.” 

Rijkswaterstaat (2022) 

 
“We want to live in a country where we can travel from A to B quickly and safely” are the words from 

Rijkswaterstaat (2022), the Dutch Ministry of Infrastructure and Water Management. To achieve this goal, 

one has to constantly be aware of technological, societal, and demographical changes in the world. One of 

the most significant, challenging demographic changes right now is aging. This change started in high-

income countries, but it is no longer exclusive to them: the aging of the population happens all over the 

world (WHO, 2021). One of the reasons for this is a decline in the fertility rate, in combination with an 

increase in life expectancy due to advancements in healthcare technology (WHO, 2010, 2022a). 

In the Netherlands, aging is very prevalent. At the time of writing, 28% of the total population is 60 years 

or older, which is expected to rise to 34% in the next thirty years (WHO, 2022c). In the last twenty years, 

life-expectancy for people at the age of 60 has increased by three years (WHO, 2022b). 

 

While an increase in people’s lifespan is generally regarded as positive, it does propose other 

challenges. These challenges can be categorized into the categories of economy, healthcare, and social 

pressures (Sciubba, 2020). The economic challenge includes a continuous increase of the pressure on the 

welfare state, as the workforce is shrinking. There will be fewer ‘young’ people (i.e., working population) 

that have to provide for an increasing number of elderly (i.e. retired population). As a result, businesses 

will find difficulties in filling in their occupations. Shifting to the healthcare perspective, there will be an 

increase in people suffering from age-related diseases like diabetes, dementia, arthrosis, and cataracts 

(RIVM, 2019), which will increase the demand for healthcare and the pressure on the healthcare system. 

Lastly, these challenges might lead to societal tensions. For example, there might be intergenerational 

conflicts on whether or not to allocate government funds toward all these challenges (Hess et al., 2017). 

 

For this study, the health issues, especially the problems related to vision, are most relevant. While 

indeed, healthcare has been improving over the last decades, and the chance of suffering from vision 

impairments has been reduced on an individual level, population growth in combination with aging causes 

our healthcare systems to not be prepared for the increasing amount of people suffering from vision 

impairments on a population level (Bourne et al., 2021). Or, as the WHO (2019) states in their World report 

on vision: “The global need for eye care is projected to increase dramatically in the coming decades, posing 

a considerable challenge to health systems” (p. x). 



As Figure 1 shows, there is an expected increase in the number of people with a variety of vision 

impairments in the coming decades. Among these, the most common are cataracts, uncorrected refractive 

errors, glaucoma, macular degeneration, and corneal opacity, of which the risk of contracting increases with 

age (Ackland et al., 2017; WHO, 2019). 

 

 
Figure 1. Forecast of people suffering from different vision impairments in the United States. Adapted 

from Bourne et al. (2021). 

This increase in visual impairments may be detrimental to safety, especially when driving a 

motorized vehicle. Numbers from CBS (2022) show that in the Netherlands, more elderly are in the 

possession of a valid driver’s license. In fact, compared to five years before, driver’s license possession 

saw the sharpest increase in the age group of 75+, increasing by 38%. In addition to this, most casualties 

on the road fall in the age group of 65+ (Rijkswaterstaat, 2021; SWOV, 2022). Without going into the 

underlying causes of these numbers, but acknowledging the fact that elderly have a higher risk of dying 

anyway (being on the road or not), it is not controversial to conclude that the elderly are proportionally 

more at risk when driving a vehicle.  

Nevertheless, even while aware of the fact that they are at risk and their driving skills (e.g. reaction 

time, quick hand and feet movements) are declining, elderly drivers still overestimated their driving skills, 

which was in turn related to an increase in unsafe driving behavior (Freund et al., 2005). The perception of 



reduced driving skills is not the most important reason for elderly to stop driving, as when asked, the most 

frequently given reason for them to stop driving is on doctor’s advice (Persson, 1993). 

 

Considering an aging population, in which visual impairments are more common, and more elderly 

drivers are on the road (who are not planning on quitting driving any time soon), one might think that in 

road design this rapidly growing group is considered, and necessary safety precautions are taken to make 

the road a safe place for all its users. However, this is not the case. 

A crucial aspect of road safety is lighting, which ensures the road, its markings (i.e., signs and 

stripes), and its users, are all visible during the nighttime. To ensure this, there are European Standards on 

road lighting like the NEN 13201-3 (2016) that guide designers in how to ensure the visibility of objects 

and create safe roads. These standards provide recommendations on, among lots of other things, the 

required luminance at different locations on the road surface, uniformity of the luminance, and the amount 

of acceptable glare as a result of the lighting.  

One of the recommendations in this standard is questionable, given the current demographic 

changes. It concerns the parameters that are used in calculating the maximum amount of glare road users 

are allowed to perceive. As stated in the NEN 13201-3 (2016) under Chapter 8.5, conventionally they based 

their recommendations on the visual system of a 23-year-old person. The problem is that the visual system 

of a 23-year-old is not at all comparable to the visual system of an elderly person. Research has shown that 

the older we get, the worse our vision gets due to changes in different parts of our eyes and subsequent 

neural pathways (CIE, 2017; van Bommel, 2015). Two main effects of age on the visual system, are loss 

of contrast perception and increased susceptibility to glare, which cause the visual scene to be less clear 

(van den Berg et al., 2010). As an illustration, Figure 2 shows how the world is perceived when you 

experience reduced contrast perception, while Figure 3 illustrates the effect of age on the susceptibility to 

glare. As can be seen in these figures, they are not two independent phenomena: the more susceptible you 

are to glare, the lower the overall contrast in your visual field is. This becomes especially clear when 

comparing the visibility of the person in left and right picture of Figure 3. 

 

 
Figure 2. The visual effects of a reduction in contrast perception, from low (left) to high (right) contrast. 

Adapted from Ising (2014). 



 
Figure 3. The visual effects of being more susceptible to glare (on the right), compared to a normal eye 

(left). Adapted from van den Berg et al. (2010). 

 

Considering these age-related effects on vision, an aging society, and road lighting installations 

designed for a 23-year-old, a reevaluation of these recommendations is necessary. Therefore, the main goal 

of this work will be to fill in this gap by investigating the contrast perception of elderly people under 

conditions of glare in a night-driving situation. 

 

In the past, attempts have been made to model the contrast perception thresholds of elderly, for 

example in the work of Adrian (1989), whose model includes parameters like age and glare. However, this 

model is based on the perception of simplified stimuli: small uniformly lit circles on a uniformly lit 

background. In addition, only objects smaller than 1° were investigated (Joulan, Hautière, et al., 2011). We 

can imagine that this model would not be representative of the complex scenes we encounter when driving 

at night. First, the targets are much more complex and have various shapes (pedestrians, road markings, 

signs, etc.). Second, as shown in Figure 3, the object in focus (the pedestrian in the middle of the image) 

does not have a uniform luminance as its legs and face are brighter than its torso. The same holds for the 

background, it is also not uniformly illuminated, leading to different contrasts with the pedestrian at 

different parts of its body. Another limitation of Adrian's (1989) model is that only static parameters are 

allowed. For example, only one ‘background luminance’ can be used as input, which leads to problems in 

complex visual scenes: should this be an average luminance around the target, a minimum or maximum, or 

some kind of weighted average? 

To deal with these limitations, other models of contrast have been proposed that do not depend on 

these assumptions. These are image-based models, for example, those of Joulan et al. (2011) or Tadmor 

and Tolhurst (2000), which are based on computer vision and simulate aspects of our visual system. In 

these models, complex images can be used as input, and using edge-detecting algorithms local contrasts 

across these edges are calculated. To the author's knowledge, none of the current image-based models 

however take into account how contrasts are perceived in situations with glare. 



Combining the previously discussed unsatisfactory standards for contrast perception of elderly 

drivers under conditions of glare with the suboptimal models to predict their perception, we find ourselves 

with the following main research question: 

 

RQ: In a population of elderly drivers, what is the contrast perception of non-uniform objects in a 

complex scene under conditions of glare, and how can we model this? 

 

Besides this main research question, two different sub-questions will be answered. The first sub-

question is answered using the work of Spieringhs and colleagues (2023) [Unpublished manuscript], who 

also investigated contrast perception in night-time driving under conditions of glare. Their target 

demographic, however, was younger, and can thus be used to answer the first sub-research question. 

 

SRQ1: How does the contrast perception under glare conditions differ in a young compared to an old 

population of drivers at night? 

 

The second sub-research question can be answered by using the data collected in this work. 

 

SRQ2: How does the contrast perception of elderly drivers at night differ in situations with glare 

compared to situations without glare? 

 

These questions will be investigated through a psychophysical experiment using a driving 

simulation. In this experiment, participants have to indicate the direction of an arrow on the road that is 

present in the scene under different conditions. The conditions include variations in road luminance, arrow 

luminance, arrow size, and, most importantly, the presence or absence of glare. The participants’ 

performance in this experiment reveals their luminance difference threshold, that is, the amount of 

luminance contrast required for participants to distinguish between arrows pointing left and right. This 

threshold will in turn also be predicted by the models introduced earlier to investigate their usefulness in 

this context. It is expected that the luminance difference threshold of the elderly sample will be higher under 

conditions of glare compared to conditions without glare, and that the threshold of the younger sample is 

lower than that of the elderly sample. By answering all three research questions, a better understanding of 

contrast perception in complex situations is achieved, and more accurate contrast perception models can be 

developed, which in turn can guide the development of new road lighting standards, ultimately leading to 

safer roads for all its users. 

 



This report will start with an elaborate Theoretical Background section, including an explanation 

of the human visual system, and its components that are relevant to the perception of contrast and glare. 

Following, several ways of mathematically modeling contrast and glare perception are described. This 

section ends with a more detailed description of how aging influences visual perception. Next, the Method 

section describes the design of this research, all used materials, and the QUEST+ psychometric paradigm. 

The Results section is structured the following way: after a short description of the effects of road luminance 

and arrow size on the luminance difference threshold, the effects of glare (i.e., SRQ1) and age (i.e, SRQ2) 

on the threshold are presented. Next, the applicability of the Adrian (1989), Tadmor and Tolhurst (2000), 

and Joulan et al. (2011) models are discussed respectively. Finally, the Discussion section follows the same 

structure to discuss the results found in this study and answers the main research question.  

By having answered all three research questions, a better understanding of contrast perception in 

complex situations is achieved, and more accurate contrast perception models can be developed, which in 

turn can guide the development of new road lighting standards, ultimately leading to safer roads for all its 

users. 

 

 
 
  



Theoretical Background 
The human eye 
The human eye is an intricate instrument that enables us to see our surrounding visual environment. In most 

everyday situations vision is our dominant modality, which highlights the importance of this instrument 

(Gazzaniga et al., 2014). Figure 4 shows a schematic anatomy of the human eye, where all its important 

structures are highlighted (Fiedler et al., 2009). In this section, these major structures will shortly be 

explained. Thereafter, more detailed attention will be paid to the structures involved in contrast and glare 

perception. 

 

 
Figure 4. Schematic representation of the human eye, extracted from Fiedler et al. (2009). 

 

When light from the outside world enters the eye, the cornea is the first structure it passes through. 

The cornea is a transparent membrane responsible for the largest refraction of light, focusing it on 

subsequent structures like the lens (Galloway et al., 2016; Mather, 2016). The lens and the ciliary muscles 

that are connected around it form the second major structure responsible for refracting light. The ciliary 

muscles can change the convexity of the lens, which is called accommodation. Accommodation allows us 

to focus on, that is, to see sharp, objects at different distances from our eyes (Mather, 2016). When we want 

to focus on nearby objects, our ciliary muscles contract, which thickens our lens; when we want to focus 

on the far field, the opposite occurs (Galloway et al., 2016). In between the cornea and lens, we find the 

pupil, an aperture whose size is regulated by muscles in the iris. Together, they regulate the amount of light 

that can pass into the subsequent eye-structures (Fairchild, 2013; Galloway et al., 2016). The area between 

the lens and the inner surface of the eye is filed with the clear vitreous gel, which maintains the spherical 

shape of the eye and assures that light can reach the retina (Mather, 2016). The retina is the inner surface 

of our eye, which consists of several neuronal layers, including three different photosensitive cells: rods, 



cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs) (Berson, 2003). These cells 

transduce light signals (photon streams) into electrical signals, which in turn get propagated to the brain via 

the optic nerve. 

 

Contrast perception 
The first aspect of human visual perception that will be discussed in more detail is contrast perception. To 

understand how we perceive contrast, it is important to examine the retina in more detail. Figure 5 presents 

a schematic overview of the retina (Discovery Eye Foundation, 2016). The following section describes the 

cellular organization of the retina, after which different models of contrast perception will be discussed. 

 
Figure 5. A schematic overview of the retina, extracted from Discovery Eye Foundation (2016) and 

slightly modified by the author. 

Layers of the retina 
Starting at the back of the eye, we find the pigment epithelium, an opaque structure consisting of cells that 

reduce light scattering back into the retina by absorbing light that was not absorbed by photoreceptors. 

Besides this function, it also nourishes neighboring cells, stimulating the regeneration of depleted 

photopigments (Fairchild, 2013; Galloway et al., 2016). 

As explained earlier, photoreceptors transduce light signals, that is photons, into electric signals 

that are further processed in the brain. There are three types of photoreceptors: rods, cones, and intrinsically 

photosensitive retinal ganglion cells (ipRGCs). The ipRGCs are mainly important for non-image-forming 



effects of light like regulating our circadian rhythms and alertness, and thus are less relevant for our current 

discussion (Berson, 2003; Lok et al., 2018). Rods and cones, however, do play an important role in image 

forming. They both contain photopigments, photopsin and rhodopsin respectively, which are sensitive to 

light and can absorb photons. Upon absorption, the membrane potential of the photoreceptor is changed, 

triggering a downstream action potential (Gazzaniga et al., 2014). Cones are mainly responsible for color 

vision, and come in three different types: long (L, red), medium (M, green), and short (S, blue), 

corresponding to the wavelength of maximum absorption of its specific photopigment. Photopigments in L 

cones are most sensitive to wavelengths of 558 nm, those in M cones to 531 nm, and those in S cones to 

419 nm. For rhodopsin, the peak absorption is 496 nm (Hildebrand & Fielder, 2011). Figure 6 shows a 

graph of the spectral sensitivities of the different photoreceptors (Betts et al., 2013). 

Besides differences in spectral sensitivity, there are more differences between the photoreceptors. 

Rods require way less stimulation to elicit a response, a single photon is enough. This allows rods to 

communicate information about the visual world at low light levels (scotopic vision). However, rhodopsin 

is depleted quickly, and therefore not useful at high luminance levels (Gazzaniga et al., 2014). Cones, on 

the other hand, require more stimulation and only get activated in environments with sufficient light 

(photopic vision), but have photopigments that quickly replenish. In between scotopic and photopic vision, 

we find mesopic vision. In mesopic vision, both rods and cones contribute to our visual perception.  

Another difference is the amount and distribution of these photoreceptors: there are roughly 7 

million cones which are mainly in the fovea, the center of our field of vision. As a result of this, we are able 

to distinguish the most visual details in the fovea. Our 120 million rods, on the other hand, are spread out 

over the entire retina, with the exception of the fovea (Fairchild, 2013). This distribution is visualized in 

Figure 7 (Lin et al., 2012), which also shows the blind spot: the location where the optic nerve connects to 

the retina and thus contains no photoreceptors of any kind. 

 

 
Figure 6. Spectral sensitivities of different photoreceptors in the retina. Adapted from Betts et al. (2013) 

and slightly modified by the author. 



 

 
Figure 7. The photoreceptor distribution relative to the fovea (0°), adapted from Lin et al. (2012). 

 

Upon absorption of photons by photoreceptors, the downstream signal will travel through the 

interneuron layer. This layer consists of different cells, all with the function of processing the photoreceptor 

signal and feeding it to the ganglion cells. There are three types of interneurons in this layer (Figure 5): 

bipolar cells, horizontal cells, and amacrine cells (Hildebrand & Fielder, 2011). The bipolar cells respond 

to an increase or decrease in photon catch by photoreceptors: ON-bipolars activate by an increase in photon 

catch, while OFF-bipolars activate by a decrease in photon catch (Mather, 2016). There are few cones 

connected to each cone bipolar (as few as a single cone), while for rod bipolars up to 70 rods can be 

connected (Hildebrand & Fielder, 2011). The horizontal cells connect photoreceptors and bipolar cells 

laterally to each other, and regulate their signals. They serve several functions, one of which is lateral 

inhibition: when a photoreceptor gets excited, the activity of neighboring photoreceptors is reduced (Demb 

& Singer, 2015). These cells also serve the ganglion cells (which are discussed in the next section) by 

ensuring their center-surround receptive field formation and responsiveness (Chaya et al., 2017). The last 

interneuron we consider is the amacrine cell, which comes in 30 different types (Hildebrand & Fielder, 

2011). They connect to bipolar, ganglion, and other amacrine cells and have lots of different functions. A 

few of these functions are: support the center-surround responses of ganglion cells, exchange information 

between ON and OFF bipolar information streams, and direction-selective computations in the retina 

(Demb & Singer, 2015; Masland, 2012). 

The next layer in the retina contains mostly ganglion cells, which receive the majority of their input 

from amacrine cells. The axons of these ganglion cells bundle into the optic nerve, which propagates the 

visual information into the brain. There are different types of retinal ganglion cells (RGCs), one of which 

has already been discussed (ipRGCs). The other main types of ganglion cells are midget and parasol 

ganglion cells, which together make up about 80% of all ganglion cells (Hildebrand & Fielder, 2011). Both 



types of RGCs receive signals from cones, which means they are active under mesopic and photopic 

conditions, but only the parasol RGCs receive input from rods and thus are active under scotopic conditions 

(Mather, 2016). The information from the different RGCs is in turn projected onto different parts of the 

lateral geniculate nucleus (LGN), but this is beyond the scope of this thesis (Hildebrand & Fielder, 2011). 

The most relevant property of both midget and parasol RGCs regarding contrast perception is the 

spatial response of the cells, which relates to the cells’ receptive fields. A receptive field is “a graphical 

representation of the area in the visual field to which a given cell responds” (Fairchild, 2013, p. 16). The 

receptive fields of these RGCs are known to have a special property called spatial opponency, which is best 

illustrated in Figure 8 (Mather, 2016). As shown in the figure, there are two types of RCGs: ON- and OFF-

center cells. In ON-center cells, an excitatory response is generated if a stimulus falls in the center of the 

receptive field, and an inhibitory response is generated when a stimulus falls in the surround of the receptive 

field. For OFF-center cells, the response is exactly the opposite. In the case of uniformly stimulated 

receptive fields (the center and surround are both stimulated, or both not stimulated), there is little response 

of the RCGs. 

While both midget and parasol RGCs show spatial opponency, they differ in their receptive field 

sizes (Mather, 2016). This fact is crucial when it comes to understanding contrast perception, as different 

receptive field sizes allow for the processing of information with different spatial frequencies. 

 

 
Figure 8. Spatial responses in retinal ganglion cells show their spatial opponency property. Left: white 
surfaces in the receptive fields indicate that there is a stimulus present in that area, while blue indicates 

the absence of a stimulus. Right: patterns of action potentials within the cell, corresponding to the patterns 
of stimuli in the same row. Image adapted from Mather (2016). 

 

Spatial frequency and contrast sensitivity 

The world as we perceive it consists of scenes that are filled with objects of different sizes, textures, and 

shapes. All these different objects provide our visual system with different types of information. This 

information is present on different spatial scales, which means different levels of detail. At one moment, 



one might be interested in for example the texture of a tree bark, which is detailed information on a small 

spatial scale. At a different moment, one might look at the same tree only focusing on the tree trunk as a 

coherent chunk of information, for which more coarse information processing on a bigger spatial scale is 

required. In the lab, our perception of these different spatial scales is investigated using luminance gratings 

(top part of Figure 9). These luminance gratings have various properties (contrast, spatial frequency, 

orientation, spatial phase), which all can be experimentally manipulated to reveal properties of our visual 

system (Mather, 2016). 

Two of these features are crucial for the understanding of contrast perception: spatial frequency 

and contrast. Spatial frequency can be defined as the number of light and dark cycles over a certain distance, 

and has as unit cycles per degree (cpd) (Campbell & Maffei, 1974). Figure 9 shows luminance gratings of 

different spatial frequencies: the one on the left contains few bars and represents a low spatial frequency, 

while the grating on the right contains way more bars within the same bar size, representing a higher spatial 

frequency.  

 
Figure 9. The contrast sensitivity function is related to the spatial frequency of the visual information, 

adapted from Wandell (1995). 
 

Contrast relates to the difference in luminance between the brightest and the darkest parts of 

adjacent areas (Campbell & Maffei, 1974). In the luminance gratings in Figure 9, there is no difference in 

contrast between the gratings, as all gratings consist of the same black (the darkest) and white (the brightest) 

parts. The lower the difference between the darkest and brightest parts of adjacent areas, the lower the 

contrast, and the harder it is to distinguish these adjacent areas. The most basic quantification of luminance 



contrast (Weber’s contrast) is given in Equation 1, in which 𝐶𝐶0[−] is the luminance contrast between an 

object 𝐿𝐿𝑜𝑜 [𝑐𝑐𝑐𝑐
𝑚𝑚2]and its background 𝐿𝐿𝑏𝑏 [𝑐𝑐𝑐𝑐

𝑚𝑚2] (Davoudian et al., 2014). 

 

𝐶𝐶0 =
|𝐿𝐿𝑜𝑜 − 𝐿𝐿𝑏𝑏|

𝐿𝐿𝑏𝑏
 

(1) 

A final consideration regarding luminance gratings is their waveform. The most commonly 

investigated are sinusoidal wave gratings (also called Gabor patches), and square wave gratings (Figure 

10). In square wave gratings, there are sharp distinctions between high and low luminance patches, while 

in the sine wave gratings, there is a smooth transition between peak luminances. Theoretically, the sine 

wave is the more ‘clean’ stimulus when you want to investigate human perception, as it only consists of a 

single spatial frequency. The square wave on the other hand consists of a sum of sine waves, with a 

fundamental frequency and its odd-numbered multiples (Campbell & Robson, 1968). 

 

 
Figure 10. A square wave grating (left) and a sine wave grating (right) with their corresponding 

luminance patterns. Adapted from Kalloniatis & Luu (2005). 

 

Our visual system is capable of processing information of different spatial frequencies due to the 

previously discussed receptive fields: smaller receptive fields allow us to capture detailed differences 

between visual areas, while bigger receptive fields allow the perception of more coarse structures. This is 

also shown in Figure 9: for the middle receptive field, corresponding to an ON-center cell, the bright area 

falls on the center while the surround area is covered by dark bars. This receptive field thus is perfectly 

tuned for this spatial frequency. Imagine what would happen when the same luminance grating would cover 

a bigger receptive field: a suboptimal center-bright and dark-surround match would make this cell less 

responsive to this specific spatial frequency. For each luminance grating, so each spatial frequency, there 

exist cells with receptive fields sensitive to its specific spatial dimensions. 

 



Figure 9 also indicates that spatial frequency and contrast are not independent. Their relation is 

described with a contrast sensitivity function, and was first investigated by Campbell and Robson (1968). 

They found that the visual system is more sensitive to contrast at specific spatial frequencies than other 

spatial frequencies. As a general rule, one can state that our visual system is less sensitive to contrast at 

higher spatial frequencies, that is, when the spacing of the luminance gratings decreases. Also, below an 

optimal spatial frequency of 3 to 4 cycles per degree, contrast sensitivity tends to decrease (Campbell & 

Maffei, 1974). It can thus be thought of as a bandpass filter, with decreased sensitivity at both extremes. 

Figure 11 shows a similar contrast sensitivity function as in Figure 9, but with the spatial frequency 

visualized in the background (Kerofsky et al., 2015). It is important to note that the contrast sensitivity 

function of each individual is different, and aging, one of the factors that influences it, will be discussed 

later. 

 

 
Figure 11. A contrast sensitivity function on top of luminance gratings with different spatial frequencies, 

adapted from Kerofsky et al. (2015) 

 

Modeling contrast perception 
When it comes to existing methods of modeling contrast, there are two main branches of models. The first 

is based on large-scale psychophysical experiments considering the visibility of targets on backgrounds 

(Adrian, 1989; Blackwell, 1946), while the second is rooted in characteristics of our visual system and 

computer vision (Joulan, Hautière, et al., 2011; Tadmor & Tolhurst, 2000). The first branch tries to predict 

contrast thresholds directly, while the second branch provides a more general indicator of contrast 

perception. Both of these branches will be discussed. 



 
Adrian’s psychometric model. Based on a lot of experimentally collected psychophysical data 

from, among others, Blackwell (1946), Adrian (1989) proposed a model that predicts the required 

luminance difference to detect contrasts with 99.93% certainty. This model is built on data coming from 

experiments in which homogenously illuminated targets and backgrounds were used (Brémond, 2020). The 

model, given by Equation 2 below, will be discussed in further detail. 

 

∆𝐿𝐿𝑡𝑡ℎ = 𝐴𝐴𝐴𝐴 ∙  𝑃𝑃𝐴𝐴 ∙  𝐸𝐸𝐴𝐴 ∙  𝑘𝑘 �√𝐿𝐿 +
�𝜙𝜙
𝛼𝛼
�
2

 

(2) 

∆𝐿𝐿𝑡𝑡ℎ = difference in luminance between target and background at threshold visibility [𝑐𝑐𝑐𝑐
𝑚𝑚2] 

𝐴𝐴𝐴𝐴 = age factor 
𝑃𝑃𝐴𝐴 = contrast polarity factor  
𝐸𝐸𝐴𝐴 = exposure time factor 
𝑘𝑘 = constant dependent on the experimental conditions [−] 
𝐿𝐿 = luminance function [a.u.] 
𝜙𝜙 = luminous flux function [a.u.] 
𝛼𝛼 = size of the object [′] 
 

The rightmost factor in Equation 2 constitutes the main component of the model. In this factor, two 

auxiliary functions based on two laws are introduced. A luminous flux function 𝜙𝜙, following Ricco’s law, 

and a luminance function 𝐿𝐿, following Weber’s law (Adrian, 1989). Depending on the background 

luminance 𝐿𝐿𝑏𝑏, once should choose different variations of these auxiliary functions to make the model 

accurate (see Equations 3 - 5 below). In Figure 12, the luminance threshold required for contrast vision is 

plotted against object size 𝛼𝛼. In this figure, one can see both Ricco’s and Weber’s laws reflected. 

 
For 𝐿𝐿𝑏𝑏  ≤ 0.00418 𝑐𝑐𝑐𝑐

𝑚𝑚2 : 
log√𝐿𝐿 = −0.891 +  0.5275 log(𝐿𝐿𝑏𝑏) +  0.0277 log(𝐿𝐿𝑏𝑏)2 

log�𝜙𝜙 =  0.028 +  0.173 log(𝐿𝐿𝑏𝑏) 
(3) 

For 0.00418 𝑐𝑐𝑐𝑐
𝑚𝑚2 < 𝐿𝐿𝑏𝑏  < 0.6 𝑐𝑐𝑐𝑐

𝑚𝑚2 : 
log√𝐿𝐿 = −1.256 +  0.319 log(𝐿𝐿𝑏𝑏) 

log�𝜙𝜙 =  −0.072 +  0.3372 log(𝐿𝐿𝑏𝑏) + 0.0866 log(𝐿𝐿𝑏𝑏)2 
(4) 

For 𝐿𝐿𝑏𝑏  ≥ 0.6 𝑐𝑐𝑐𝑐
𝑚𝑚2 : 

√𝐿𝐿 = 0.05946 ∙  𝐿𝐿𝑏𝑏0.466 
�𝜙𝜙 = log(4.1925 ∙  𝐿𝐿𝑏𝑏0.1536) + 0.1684 ∙  𝐿𝐿𝑏𝑏0.5867 

(5) 



 
Figure 12. Visibility threshold ∆Lth as a function of object size α, with both Ricco’s and Weber’s law 

represented. Adapted from Adrian (1989). 
 

The part of the model that follows Ricco’s law is applicable to small targets. Originating from 

astrology, Ricco’s law states that there is a linear relationship between object size and the required 

luminance threshold. This is easy to illustrate with an example from astrology: when observing stars, object 

sizes (i.e., the signal, a star) on our retina are small, while the background (i.e., noise, the surrounding sky) 

is respectively large. A small change in object size highly influences the visibility of our object, as the 

signal-to-noise ratio improves significantly. The part of the model covered by Ricco’s law is given by the 

following equation (Adrian, 1989).  
 

𝑙𝑙𝐷𝐷𝑙𝑙(∆𝐿𝐿) =  −2 log(𝛼𝛼) + 𝑘𝑘 |𝛼𝛼→0 
(6) 

For larger object sizes, on the right side of Figure 12, the relationship between the visibility 

threshold and object size follows Weber’s law: the threshold is no longer dependent on object size. Using 

a signal-to-noise perspective, this makes intuitive sense. When the object of interest covers a huge part of 

the retina (i.e., the signal), a small increase or decrease in object size (and the corresponding decrease or 

increase of the background/noise), would not make a difference when it comes to object visibility. The part 

of the model following Weber’s law is given by the following equation (Adrian, 1989). 
 

log (∆𝐿𝐿) =  𝑐𝑐𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐. |𝛼𝛼→∞ 
(7) 



From this, it follows that in the part of the model respecting Weber’s law, the visibility threshold 

is only dependent on the background luminance. This leads to the more general expression of Weber’s law 

in the field of perception, namely that the size of a difference threshold is proportional to the size of the 

initial stimulus.  

From Weber’s law, another common law within psychophysics can be derived: Steven’s power law 

(Stevens, 1960). This law describes that the perceived intensity of a stimulus (𝐶𝐶) can be expressed as a 

power function of the physical intensity of a stimulus (𝐼𝐼). This law can be seen in the equation below, which 

also includes the power law index that indicated the strength of the relationship (𝑐𝑐) and a scaling constant 

(𝑐𝑐). 

 
𝐶𝐶 = 𝑐𝑐 ∙ 𝐼𝐼𝑛𝑛 

(8) 

The final part of the rightmost factor in Equation 2 that needs to be highlighted is 𝑘𝑘, which is a 

constant based on the type of psychometric experiment that is performed. Given the two auxiliary functions, 

it was found that 𝑘𝑘 should be around 2.6 to fit the data on which the model was based. Recently, Spieringhs 

et al. (2021) also assessed this factor, and they found that 2.55 was more optimal for their data. Nevertheless, 

they found a 𝑘𝑘 in accordance with the original value. 

 

The next factor to be considered is the age factor 𝐴𝐴𝐴𝐴. As will be explained later, visual functioning 

declines with age, resulting in higher visibility thresholds for elderly. Adrian's (1989) model accounts for 

this by using the following factors. 

 

𝐴𝐴𝐴𝐴 =  
(age − 56.6)2

116.3
+ 1.43   for 64 years < age < 75 years 

(9) 

𝐴𝐴𝐴𝐴 =  
(age− 19)2

2160
+ 0.99      for 23 years < age ≤ 64 years 

(10) 

𝐴𝐴𝐴𝐴 =  1                  for age ≤ 23 years 
(11) 

 Adrian (1989) also realized that his model was not generalizable for all exposure times (the amount 

of time you can observe the target), as the data used resulted from experiments with 2 seconds or unlimited 

exposure time. It makes intuitive sense that the shorter the exposure time, the higher the contrast has to be 

for people to perceive the target. Therefore, he introduced the exposure time factor 𝐸𝐸𝐴𝐴 in his model, where 

𝑐𝑐 is the observation time in seconds. 

 



𝐸𝐸𝐴𝐴 =
𝑝𝑝(𝛼𝛼, 𝐿𝐿𝑏𝑏) + 𝑐𝑐

𝑐𝑐
 

(12) 

In this factor, 𝑝𝑝 depends on target size 𝛼𝛼 and luminance 𝐿𝐿𝑏𝑏 according to the following equation (for target 

sizes smaller than 60’), 

 

𝑝𝑝(𝛼𝛼, 𝐿𝐿𝑏𝑏) =  
�𝑝𝑝(𝛼𝛼)2 +  𝑝𝑝(𝐿𝐿𝑏𝑏)2

2.1
 

(13) 

in which, 
 

𝑝𝑝(𝛼𝛼) = 0.36 − 0.0972 ∙
(log(𝛼𝛼) + 0.523)2

(log(𝛼𝛼) + 0.523)2 − 2.513(log(𝛼𝛼) + 0.523) + 2.7895
 

(14) 

and, 

𝑝𝑝(𝐿𝐿𝑏𝑏) = 0.355− 0.1217 ∙  
(log(𝐿𝐿𝑏𝑏) + 6)2

(log(𝐿𝐿𝑏𝑏) + 6)2 − 10.4(log(𝐿𝐿𝑏𝑏) + 6) + 52.28
 

(15)  

Finally, Adrian (1989) considers a contrast polarity factor 𝑃𝑃𝐴𝐴. In the data he based his model on, 

experiments considered positive contrasts: the target has a higher luminance than its background. Since for 

our purposes, we also work with positive contrasts, 𝑃𝑃𝐴𝐴 = 1 should be used. Nevertheless, for the sake of 

completeness, the 𝑃𝑃𝐴𝐴 for negative contrasts (the target has a lower luminance than its background) can be 

calculated with the following equations. ∆𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝,𝑡𝑡=2 represents the value for an exposure time of 2 seconds. 

𝑃𝑃𝐴𝐴 = 1 −  
𝑚𝑚 ∙  𝛼𝛼−𝛽𝛽

2.4 ∙  ∆𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝,𝑡𝑡=2
 

(16) 

in which, 

𝑚𝑚 =  10−10−(0.125�log 𝐿𝐿𝑏𝑏+1�
2+0.0245)      for 𝐿𝐿𝑏𝑏  ≥  0.1

𝑐𝑐𝑐𝑐
𝑚𝑚2 

(17) 

𝑚𝑚 =  10−10−(0.075�log𝐿𝐿𝑏𝑏+1�
2+0.0245)          for 𝐿𝐿𝑏𝑏  >  0.004

𝑐𝑐𝑐𝑐
𝑚𝑚2 

(18) 

and, 
𝛽𝛽 = 0.06 ∙  𝐿𝐿𝑏𝑏−0.1488             for 𝑎𝑎𝑙𝑙𝑙𝑙 𝐿𝐿𝑏𝑏 

(19) 

Not part of Adrian's (1989) base model, but nevertheless discussed in his paper, is the effect of 

disability glare on the predicted contrast threshold. To take this into account, one should add veiling 

luminance to the background luminance. Details of this will be covered in the section “Modeling straylight”. 



Image-based models. Since Adrian’s model is based on uniform targets seen against uniform 

backgrounds, its ecological validity in complex visual scenes might be questioned. Therefore, a new branch 

of contrast models emerged from the field of computer vision. These models do not require any assumptions 

about the luminance of the target and background in a scene, but instead, use edge and contour detection 

algorithms to identify objects. In turn, the local contrast along these edges is calculated (Hautière & 

Dumont, 2007). Note that these models do not directly predict a luminance difference threshold, but rather 

use the model value as a generalized measure of contrast. Two image-based models will be discussed: a 

simple difference of Gaussians (𝐷𝐷𝐷𝐷𝐷𝐷) model by Tadmor and Tolhurst (2000), and a more advanced 𝐷𝐷𝐷𝐷𝐷𝐷 

model by Joulan et al. (2011), which includes multiple 𝐷𝐷𝐷𝐷𝐷𝐷 at different spatial scales to simulate a human 

contrast sensitivity function.  

 

The Tadmor and Tolhurst (2000) model defines the response of ganglion cells and LGN neurons 

as a subtraction of the output of the surround receptive field 𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦) from that of the center receptive field 

𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦), as shown in Equations 20 - 22. The spatial sensitivity of both center and surround receptive fields 

are modeled by a 2-dimensional circular-symmetric Gaussian 𝐷𝐷 with a peak amplitude of 1 (Spieringhs et 

al., 2021; Tadmor & Tolhurst, 2000). For the surround Gaussian, there is a scaling factor of 0.85 � 𝑟𝑟𝑐𝑐
𝑟𝑟𝑠𝑠

 �
2
 

compared to the center Gaussian, which represents the lower sensitivity of the surround receptive field that 

has been found in previous research (Tadmor & Tolhurst, 2000). 

 
𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥,𝑦𝑦) =  𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) −  𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦)   

(20) 

𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) =  � � 𝐷𝐷(𝑖𝑖 − 𝑥𝑥, 𝑗𝑗 − 𝑦𝑦, 𝑟𝑟𝑐𝑐) ∙ 𝐿𝐿(𝑖𝑖, 𝑗𝑗)
𝑦𝑦+3𝑟𝑟𝑐𝑐

𝑗𝑗=𝑦𝑦=3𝑟𝑟𝑐𝑐

𝑥𝑥+3𝑟𝑟𝑐𝑐

𝑖𝑖=𝑥𝑥=3𝑟𝑟𝑐𝑐

 

(21) 

𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦) =  � � 0.85 � 
𝑟𝑟𝑐𝑐
𝑟𝑟𝑝𝑝

 �
2
∙ 𝐷𝐷(𝑖𝑖 − 𝑥𝑥, 𝑗𝑗 − 𝑦𝑦, 𝑟𝑟𝑝𝑝) ∙ 𝐿𝐿(𝑖𝑖, 𝑗𝑗)

𝑦𝑦+3𝑟𝑟𝑠𝑠

𝑗𝑗=𝑦𝑦=3𝑟𝑟𝑠𝑠

𝑥𝑥+3𝑟𝑟𝑠𝑠

𝑖𝑖=𝑥𝑥=3𝑝𝑝

 

(22) 

𝑅𝑅𝑐𝑐 = output of the center component of the receptive field 
𝑅𝑅𝑝𝑝 = output of the surround component of the receptive field 
𝑟𝑟𝑐𝑐 = radius of the center Gaussian 
𝑟𝑟𝑝𝑝 = radius of the surround Gaussian 
(𝑥𝑥,𝑦𝑦) = mid-point of a receptive field center 
𝐿𝐿(𝑖𝑖, 𝑗𝑗) = luminance at the pixel location i,j 
𝐷𝐷(𝑖𝑖 − 𝑥𝑥, 𝑗𝑗 − 𝑦𝑦, 𝑟𝑟) = bivariate Gaussian centered at x,y and with radius r 
 



 Tadmor and Tolhurst (2000) then highlight that this simple 𝐷𝐷𝐷𝐷𝐷𝐷 model assumes that the response 

of ganglion cells and neurons only depends on local luminance difference between center and surround. 

However, in reality this is not the case, as the response of these cells is also influenced by light adaptation. 

Since light adaptation is dependent on the mean luminance in a scene (Vissenberg et al., 2021), this model 

must be normalized through division by the local mean luminance (Tadmor & Tolhurst, 2000). Equations 

23 - 25 show three possible normalization divisions to make the 𝐷𝐷𝐷𝐷𝐷𝐷 model dependent on contrast instead 

of absolute luminances. Tadmor and Tolhurst (2000) proposed three of them, as it is not clear what region 

of the receptive field is used to evaluate mean luminance in a scene (i.e., the center, surround, or both). 

 

𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐 𝐷𝐷𝑜𝑜𝑐𝑐𝑝𝑝𝑜𝑜𝑐𝑐(𝑥𝑥,𝑦𝑦) =  
𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) −  𝑅𝑅𝑝𝑝(𝑥𝑥, 𝑦𝑦)

𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) 
     for center-only adaptation 

(23) 

𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐 𝐷𝐷𝑜𝑜𝑐𝑐𝑝𝑝𝑜𝑜𝑐𝑐(𝑥𝑥,𝑦𝑦) =  
𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) −  𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦)

𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦) 
          for surround-only adaptation 

(24) 

𝐶𝐶𝐷𝐷𝑐𝑐𝑐𝑐𝑟𝑟𝑎𝑎𝑐𝑐𝑐𝑐 𝐷𝐷𝑜𝑜𝑐𝑐𝑝𝑝𝑜𝑜𝑐𝑐(𝑥𝑥,𝑦𝑦) =  
𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) −  𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑅𝑅𝑐𝑐(𝑥𝑥,𝑦𝑦) +  𝑅𝑅𝑝𝑝(𝑥𝑥,𝑦𝑦)           for center + surround adaptation 

(25) 

 
Later, Spieringhs et al. (2021) proposed modifications to this model in order to obtain the global 

𝐷𝐷𝐷𝐷𝐷𝐷 value for a visual scene (i.e., an input picture) instead of the local 𝐷𝐷𝐷𝐷𝐷𝐷 values per pixel. In order to 

achieve this, all local 𝐷𝐷𝐷𝐷𝐷𝐷 values over the number of pixels 𝑁𝑁𝑝𝑝 were summed according to Equation 26.  

 

𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 =  �|𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥,𝑦𝑦)|

𝑁𝑁𝑝𝑝

𝑝𝑝=1

 

(26) 

Individual 𝐷𝐷𝐷𝐷𝐷𝐷 values need to be substituted by their absolute values to avoid positive and negative 

𝐷𝐷𝐷𝐷𝐷𝐷 pixel values to cancel each other out, and as such include the effects of both ON-center and OFF-

center receptive fields. Also, the previously introduced weighting factor of 0.85 � 𝑟𝑟𝑐𝑐
𝑟𝑟𝑠𝑠

 �
2
 was replaced by a 

weighting factor of � 𝑟𝑟𝑐𝑐
𝑟𝑟𝑠𝑠

 �
2
, which ensured that uniform luminance regions from the edge of the surround 

receptive field did not influence 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷, rendering the number of background pixels in 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 much lower. As 

the last modification, the radius of the center and surround Gaussians were set to 1 and 2 pixels respectively 

to represent the angular resolution of the fovea (Spieringhs et al., 2021). 

 



When Joulan and colleagues (2011) prosed their model, they emphasized that previous models did 

not consider that our visual system contains ganglion cells and visual neurons with varying receptive field 

sizes, allowing us to perceive information at different spatial scales. Therefore, based on the research by 

Barten (1999), Joulan et al. (2011) included the human contrast sensitivity function in their model. They 

designed a set of spatial filters that represents our visual system (see Table 1). This set of spatial filters is 

based on Barten's contrast sensitivity function. Given any contrast sensitivity function, one can compute a 

fitting set of 𝐷𝐷𝐷𝐷𝐷𝐷 filters which can be used in further analysis of the visual scene (Joulan et al., 2012; 

Joulan, Hautiere, et al., 2011). Additionally, their model also takes into account visual adaptation. 

 
Table 1 
Characteristics of the 𝐷𝐷𝐷𝐷𝐷𝐷 filters, adapted from Joulan et al. (2011). 
 𝐷𝐷𝐷𝐷𝐷𝐷 1 𝐷𝐷𝐷𝐷𝐷𝐷 2 𝐷𝐷𝐷𝐷𝐷𝐷 3 𝐷𝐷𝐷𝐷𝐷𝐷 4 𝐷𝐷𝐷𝐷𝐷𝐷 5 𝐷𝐷𝐷𝐷𝐷𝐷 6 
Spatial frequency (cpd) 2.90 7.70 1.00 0.40 1.50 0.10 
Standard deviation center 𝜎𝜎+ (cpd) 0.25 0.10 0.74 1.85 0.49 7.41 
Weighing factor 𝜔𝜔 393.20 169.26 134.46 45.83 22.98 17.21 

 
 

Their model is based on two algorithms. The first one, presented below, considers the visual adaptation. A 

luminance image 𝐼𝐼0 with normalized a gain factor 1
𝐿𝐿𝑎𝑎

  is used as input (Joulan, Hautière, et al., 2011). 

𝐼𝐼1 =  𝐼𝐼0
1
𝐿𝐿𝑎𝑎

 
(27) 

1
𝐿𝐿𝑎𝑎

 = gain factor (the inverse of the adaptation luminance) 

𝐼𝐼0= input luminance image 
𝐿𝐿𝑎𝑎= adaptation luminance 
 
In the next step, this adaptation-corrected luminance image 𝐼𝐼1 is used as input to mimic a given contrast 

sensitivity function as a weighted sum of 𝐷𝐷𝐷𝐷𝐷𝐷 (𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷). 

 
𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷(𝐼𝐼1) = �𝜔𝜔𝑘𝑘

𝑘𝑘

�𝐷𝐷𝜎𝜎𝑘𝑘+ − 𝐷𝐷𝜎𝜎𝑘𝑘−� (𝐼𝐼1) 

(28) 

𝜔𝜔𝑘𝑘= weight of the 𝐷𝐷𝐷𝐷𝐷𝐷 for filter k 
𝐷𝐷𝜎𝜎= the normalized Gaussian with standard deviation 𝜎𝜎𝑘𝑘+ for the center and 𝜎𝜎𝑘𝑘−for the surround for filter 𝑘𝑘. 
The standard deviation for the center is computed from Barten (1999) and that for the surround is given by 
𝜎𝜎𝑘𝑘− =  𝜆𝜆𝜎𝜎𝑘𝑘+ with 𝜆𝜆 = 3 (Joulan, Hautière, et al., 2011). 
 



Again, like with the Tadmor and Tolhurst (2000) model, Spieringhs et al. (2021) suggest a slight 

modification of the model to account for a global 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 (𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷) over the entire visual scene. Like before, 

this is achieved by summing the individual local 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 of each pixel. 

 

𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 =  �𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥,𝑦𝑦)

𝑁𝑁𝑝𝑝

𝑝𝑝=1

 

(29) 

Glare perception 
The second aspect of visual perception that deserves a more detailed description is the perception of glare, 

and more specifically, the effect of glare on contrast perception. Everyone has experienced glare: it is the 

accumulation of too much light in the eye, rendering you annoyed or unable to perform your visual tasks. 

In the literature, two main types of glare are discussed: disability glare and discomfort glare. As we will 

discover in this section, disability glare is rooted in the physiology of the eye, while discomfort glare is a 

less well-explained psychological phenomenon (Donners et al., 2015). In our context of driving at night, 

disability glare is more important, as we want to investigate the impact of glare on visual performance. 

 

Disability glare 

Starting with the more defined type of glare, disability glare is associated with reduced visual performance 

because of scattered light coming from a bright source (van den Berg et al., 2009). This means, when people 

experience disability glare, they are less able to perform tasks that require vision, for example, driving. 

Disability glare is caused by light scattering at the cornea, the lens, and the fundus, and by the transparency 

properties of the iris (Franssen & Coppens, 2007), which is visualized in Figure 13 by van Bommel (2015). 

 

 
Figure 13. Scattering of light in the eye. Adapted from van Bommel (2015). 

 

As a result of this scattering, extra light enters the retina around the area that is directly illuminated 

according to a point-spread function (Figure 14). This function has a sharp peak at the center of illumination, 



but also has a significant amplitude around this center (Franssen & Coppens, 2007). This scattered light 

around the center of vision (≥ 1.3°) is called straylight, and results in distorted images on the retina (van 

den Berg et al., 2009). Put in other words, a point light-source does not hit the retina as an equally large 

point, but it spreads out across the retina (van den Berg et al., 2010). Due to straylight people experience a 

so-called veiling luminance (a luminance superimposed on the entire retina), which results in loss of retinal 

image contrast (Aslam et al., 2007). A clear example of this is provided in Figure 15 by Löfving et al. 

(2015), in which we see how contrast in the image reduces as a result of straylight. This is especially clear 

when you look at the white road markings. 

 

 
Figure 14. Point-spread function of the human eye according to the CIE in 1999. Adapted from van den 

Berg et al. (2010). 

 

 
Figure 15. An example of lowering of contrast perception due to a veiling luminance caused by 

straylight, adapted from Löfving et al. (2015), and slightly modified by the author. 
 

The amount of straylight a healthy population experiences is dependent on multiple factors. First, 

there is the age of the observer, where older observers experience more straylight. Second, pigmentation of 



the iris, where more pigmentation (darker eyes) leads to less straylight. This is caused by the fact that 

different types of pigmentation cause variations in the transmission of light (van den Berg et al., 1991). 

Third, the angle of the glare source with respect to the eye, where larger angles result in less straylight 

(Franssen & Coppens, 2007). Fourth, the wavelength of the light, the effects of which are highly dependent 

on age, pigmentation, and angle of incidence. For example, van den Berg and colleagues (1991) found that 

for light-pigmented eyes, long-wavelength light (red) resulted in more straylight than medium-wavelength 

light (green). Finally, pupil size is a factor, where smaller pupil sizes in combination with larger light angles 

result in more straylight (Franssen et al., 2007). 

Besides these factors that occur in healthy eyes, there are also other causes of increased straylight 

perception, such as the development of cataracts, corneal disturbances, refractive surgery, and wearing 

contact lenses or dirty glasses (Franssen & Coppens, 2007). 

 
Modeling straylight 

The reduction of contrast as a result of straylight can be modeled by using an equation similar to Equation 

1, in which a veiling luminance 𝐿𝐿𝑣𝑣  [𝑐𝑐𝑐𝑐
𝑚𝑚2] is added to both the object 𝐿𝐿𝑜𝑜 [𝑐𝑐𝑐𝑐

𝑚𝑚2] and background luminance 

𝐿𝐿𝑏𝑏 [𝑐𝑐𝑐𝑐
𝑚𝑚2]. 𝐶𝐶0 represents the contrast of the object in absence of glare. The result is the so-called effective 

luminance contrast in presence of glare 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒  (Davoudian et al., 2014). 

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 =
|(𝐿𝐿𝑜𝑜 + 𝐿𝐿𝑣𝑣)− (𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑣𝑣)|

(𝐿𝐿𝑏𝑏 + 𝐿𝐿𝑣𝑣)
=  𝐶𝐶0  �

𝐿𝐿𝑏𝑏
𝐿𝐿𝑏𝑏 +  𝐿𝐿𝑣𝑣

� 
(30) 

An approximation of the effects of straylight on the retina for an individual, the veiling luminance, 

can be assessed using the previously discussed factors of influence: age of the observer 𝐴𝐴, the illuminance 

on the eye 𝐸𝐸𝑒𝑒𝑦𝑦𝑒𝑒 [𝑙𝑙𝑥𝑥], and the angle between viewing direction and direction of light incidence 𝜃𝜃 [°] 

(Davoudian et al., 2014; NEN 13201-3, 2016): 

𝐿𝐿𝑣𝑣 =  9.86 ∙  � 1 + �
𝐴𝐴

66.4
�
4

 �  ∙  
𝐸𝐸𝑒𝑒𝑦𝑦𝑒𝑒
𝜃𝜃2

                for 1.5° <  𝜃𝜃 ≤ 60° 

(31) 

and 

𝐿𝐿𝑣𝑣 =  𝐸𝐸𝑒𝑒𝑦𝑦𝑒𝑒  � 
10
𝜃𝜃3

 +  �
5
𝜃𝜃2�

∙ �1 + �
𝐴𝐴

62.5
�
4
��      for 0.1° <  𝜃𝜃 ≤ 1.5° 

(32) 

As mentioned earlier, straylight on the retina can not only be characterized by its resulting veiling 

luminance, but also by a point-spread function 𝑃𝑃𝐶𝐶𝐴𝐴 [𝑐𝑐𝑟𝑟−1]. The CIE (Vos & van den Berg, 1999), provides 



the following equation for their Standard Glare Observer that besides age 𝐴𝐴, glare angle 𝜃𝜃 [°], also includes 

a pigmentation factor 𝑝𝑝 in which 𝑝𝑝 = 0 represents very dark eyes, 𝑝𝑝 = 0.5 brown eyes, and 𝑝𝑝 = 1.0 blue-

green eyes (Franssen & Coppens, 2007). 

 
𝑃𝑃𝐶𝐶𝐴𝐴 = �𝐿𝐿𝑣𝑣/𝐸𝐸𝑒𝑒𝑦𝑦𝑒𝑒 �

𝑡𝑡𝑜𝑜𝑡𝑡𝑎𝑎𝑡𝑡

= [1 − 0.08 ∙ (𝐴𝐴/70)4]  ∙  �
9.2 ∙  106

[1 + (𝜃𝜃/0.0046)2]1.5 +  
1.5 ∙  105

[1 + (𝜃𝜃/0.045)2]1.5�

+ [1 + 1.6  ∙ (𝐴𝐴/70)^4]  

∙  ��
400

1 + (𝜃𝜃/0.1)2
+  3 ∙ 10−8 ∙ 𝜃𝜃2�  +  𝑝𝑝 ∙ �

1300
[1 + (𝜃𝜃/0.1)2]1.5 +  

0.8
[1 + (𝜃𝜃/0.1)2]0.5��  

+ 2.5 ∙ 10−3 ∙  𝑝𝑝 
(33) 

Multiplying both sides of Equation 33 by 𝐸𝐸𝑒𝑒𝑦𝑦𝑒𝑒 provides you with a complete equation for 𝐿𝐿𝑣𝑣. More 

simplified and practical variations were presented in Equations 30 and 31. 

 

As highlighted before, glare caused by straylight reduces the visibility of objects. The threshold 

increment is a measure regarding the loss of visual performance due to glare (van Bommel, 2015), and is 

defined by the NEN 13201-2 (2016) as “the percentage increase of contrast of an object that is needed to 

make it stay at threshold visibility in presence of disability glare generated by luminaires of a road lighting 

installation” (p. 6). To get a better feeling for this quantification, imagine driving in the dark. About 80 

meters ahead, you are barely able to perceive a person crossing the road, this person is just on the threshold 

of your visibility. Now imagine yourself in the same situation, but you are experiencing disability glare 

from an inadequately installed traffic light. It is not hard to imagine that in this situation, the person that 

was first on the threshold of your visibility now becomes unperceivable. To make this person perceivable 

again, the contrast between the person and their background would have to increase. This is exactly what 

the threshold increment quantifies. The threshold increment 𝑇𝑇𝐼𝐼 [%] is dependent on the veiling luminance 

𝐿𝐿𝑣𝑣  [𝑐𝑐𝑐𝑐
𝑚𝑚2] and an average background luminance 𝐿𝐿𝑎𝑎𝑣𝑣 [𝑐𝑐𝑐𝑐

𝑚𝑚2], and is approximated by the following equation 

(NEN 13201-3, 2016). 

 

𝑇𝑇𝐼𝐼 =  65 ∙  
𝐿𝐿𝑣𝑣

𝐿𝐿𝑎𝑎𝑣𝑣0.8        for 0.05
𝑐𝑐𝑐𝑐
𝑚𝑚2  <  𝐿𝐿𝑎𝑎𝑣𝑣  ≤ 5 

𝑐𝑐𝑐𝑐
𝑚𝑚2   

(34) 

For our case, that of straylight perception while driving a motorized vehicle, there exists a 

recommended 𝑇𝑇𝐼𝐼 value. According to NEN 13201-1 (2016) and NEN 13201-2 (2016), the maximum 𝑇𝑇𝐼𝐼 

for lighting case M4 (which is commonly used in road light design) is 15%. From this, and given a certain 

background luminance, one can calculate the maximum allowed amount of 𝐿𝐿𝑣𝑣 using Equation 34. 



Disability glare in Adrian’s contrast model. The earlier introduced contrast model by Adrian 

(1989) can be extended by considering disability glare. He highlights the fact that disability glare will 

reduce contrasts, and models this in a similar way as in Equation 30, by adding a veiling luminance 𝐿𝐿𝑣𝑣 to 

the already existing background luminance in all factors in the model.  

 

𝐿𝐿𝑣𝑣 = 𝑘𝑘 �
𝐸𝐸𝐷𝐷𝑡𝑡𝑖𝑖
𝜃𝜃𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

 

(35) 

𝐸𝐸𝐷𝐷𝑡𝑡𝑖𝑖= illumination at the eye from glare source I [𝑙𝑙𝑥𝑥] 
𝜃𝜃𝑖𝑖 = glare angle between the center of the glare source and the fixation line [°] (valid for angles between 
1.5° and 30°) 
𝑘𝑘 = an age-dependent constant according to the following equation 
 

𝑘𝑘 = (0.0752 × age − 1.883)2 + 9.2     for 25 years < age < 80 years 
(36) 

 

Measuring straylight 

When quantifying the amount of straylight in an eye, one uses the straylight parameter 𝑐𝑐. This parameter 

represents the ratio between scattered light (unwanted light that causes contrast reduction) and non-scattered 

light (the light required for accurate vision). It is, however, more convenient to use log (s), in which a 

higher log (s) indicates more straylight (Franssen & Coppens, 2007). 

Recently, tools have become available to accurately measure straylight in the eye for each 

individual, for example, the C-Quant retinal straylight meter, leaving us less dependent on the 

approximations presented earlier (Aslam et al., 2007; van Bommel, 2015). These measurement tools use 

the compensation comparison method, which is a 2 alternative forced choice (2AFC) psychometric 

paradigm. As Franssen and Coppens (2007) explain, in this paradigm participants look with one eye at an 

arrangement of circles that can light up (Figure 16). In the middle, two test fields are located that both 

flicker with different properties. The flicker of one field consists of only straylight, while the flicker of the 

other field consists of straylight and compensation light that flickers in counterphase with the straylight. It 

is randomly chosen which of the two test-field contains only straylight, and which also contains the 

compensation light. The task for the participants is then to determine in which of the two test fields the 

flicker appears stronger. During the trials, the amount of compensation light in the test field varies, and 

based on this a psychometric curve is fit through the participant’s responses. From this curve, one reads the 

straylight parameter 𝑐𝑐. 

 



 
Figure 16. Stimulus layout of the compensation comparison method paradigm. Adapted from Franssen & 

Coppens (2007). 

Discomfort glare 
The other major type of glare, discomfort glare, is less strictly defined. Definitions include aspects like 

experiencing discomfort without impaired vision, experiencing irritating or distracting effects, and 

experiencing the urge to look away (Pierson et al., 2017, 2018). These things might all occur in disability 

glare as well, but there is a crucial difference between the two. Discomfort glare does not necessarily 

negatively interfere with a visual task, and in cases that it does interfere, people may not notice their task 

performance is affected at all (Osterhaus, 2005). 

The specific mechanisms of our visual system that causes discomfort glare are still unknown, but 

research shows that experiencing discomfort glare coincides with uncomfortable contractions of the iris, 

lens, and eye muscles (van Bommel, 2015). This lack of physiological basis did not stop scientists from 

developing discomfort glare prediction models. Four aspects are commonly used as variables in these 

models: the luminance of the glare source, the adaptation level, the solid angle of the glare source, and the 

position index (Pierson et al., 2018). The most commonly used discomfort glare method for the evaluation 

of indoor spaces is the Unified Glare Rating (CIE, 1995).  

Recent work by Vissenberg et al. (2021) provides an alternative model of discomfort glare, one 

that is rooted in the human visual system instead of rooted in practice (like the UGR). In their work, they 

suggest that the main reason we experience certain types of glare as discomfort, is the high metabolic 

demand by overstimulation of the visual neurons. To understand this, we must introduce the concept of 

adaptation, which is defined by Clifford et al. (2007) as “the processes by which the visual system alters its 

operating properties in response to changes in the environment” (p. 1). One can notice adaptation when 

our system shifts from photopic (i.e., light) to scotopic (i.e., dark) vision; it takes a while for our visual 

system to see properly in the dark. The current adaptation level of our visual system is called its adaptation 

state, which is dependent on ambient light conditions, the glare source, and the light history of a person 



(Vissenberg et al., 2021). The overstimulation of visual neurons that causes discomfort glare is mainly 

caused by misadaptation: the difference between our current adaptation state and the local retinal 

illuminance. This model is promising, as it correlates well with various other glare models. 

 

Aging and the visual system 
As we age, our visual system ages with us, negatively impacting our vision in general. Since the target 

group of this work is elderly, it is worthwhile to focus on several changes that happen in their visual systems, 

which affect, among a range of other things, their contrast and glare perception. 

First, elderly experience a loss of flexibility in the lens, leading to a reduced range of accommodation (CIE, 

2017). In younger people, the lens can thicken to change its focal length, allowing us to focus on objects at 

different distances. This capability deteriorates with age, and according to Mather (2016), there is almost 

no accommodation capability left when most people are in their fifties. This makes it difficult for old people 

to focus on nearby objects, rendering them far-sighted. 

Second, besides losing flexibility, the eye lens of elderly also yellows due to the accumulation of 

yellow pigment over our lifespan (CIE, 2017). Yellowing of the lens influences its spectral transmittance, 

resulting in short wavelengths (blue) getting absorbed in the lens, thus not entering the eye. This results in 

changed color vision and lower illuminance on the retina, which is especially detrimental in a world with 

screens and cool white artificial light, which contains a lot of short wavelengths (van Bommel, 2015). 

Third, the older you get, the less mobile your pupil becomes. As a result, the pupils of elderly 

remain relatively small in dim light situations (Mather, 2016). At the age of 65, your maximum pupil 

diameter has reduced to 55% of the maximum diameter of a 25-year-old (van Bommel, 2015). This reduced 

mobility results in decreased retinal illuminance, reducing the clarity of your vision. Combining a reduced 

pupil size and yellowing of the lens, the retinal illumination of a 65-year-old can be less than 30% of the 

available light (van Bommel, 2015). 

Fourth, proteins in the lens degrade with age, leading to clouding of the lens (CIE, 2017). As a 

result of this, intraocular light scattering increases. This increased scattering results in reduced spatial 

contrast sensitivity and increased disability glare (van den Berg et al., 2010). Figure 17 shows the expected 

straylight parameter values log (𝑐𝑐), where higher values indicate more expected straylight at the retina.  

Fifth, the density of photoreceptors and ganglion cells in the retina reduces with age, which reduces 

central vision and spatial contrast sensitivity (CIE, 2017). One of the causes is the degeneration of the 

pigment epithelium, which is responsible for the nourishing and regeneration of photoreceptors (Mather, 

2016). 

Sixth, the combination of reduced pupil diameter and clouding of the lens leads to an increase in 

the scotopic vision threshold (CIE, 2017). At the same time, rhodopsin regeneration is reduced (see previous 



paragraph), resulting in a slower dark adaptation. The older you become, the slower your visual system 

switches to dark-vision. It is therefore crucial to not expose elderly to bright lights in dark environments, 

as this depletes rhodopsin that is needed for dark-vision (CIE, 2017). 

 

 
Figure 17. Expected straylight values as a function of age in a healthy population, adapted from Franssen 

& Coppens (2007). 

 

A healthy population will experience all of the previously mentioned effects of age on their vision. 

In addition to these effects, aging people also run the risk of contracting conditions that can lead to visual 

impairments. The most common conditions are cataracts, refractive errors, glaucoma, and macular 

degeneration (CIE, 2017). Especially cataracts and corrected refractive errors may lead to increased 

intraocular scattering (van den Berg et al., 2010). 

 

A simple solution might be to provide more light to accommodate the characteristic of elderly 

visual systems. However, with the increase of light in an environment also the risk of intraocular light 

scattering and glare increases, which might result in a worse perception of the environment than before this 

extra light was introduced (van Bommel, 2015). Therefore, designing light for an elderly population is a 

tricky balancing act. 

  



Method 
Research design 

This experiment has a 3x3x2 within-subject design. Independent variables are the angular size of the road 

mark arrow (20.3, 9.5, and 5.5 arcmin), the road luminance (0.25, 0.66, and 0.99 cd/m2), and the presence 

or absence of glare (12.6 lx and 0 lx). The levels for the road luminance and arrow sizes are similar to those 

in Spieringhs et al. (2021), with the exclusion of their 3.6 arcmin angular size, since it is likely that the 

visual systems of our elderly sample are not sensitive enough to detect this smallest arrow size. The angular 

sizes of the road mark arrow were chosen to represent different distances from the observer to the arrow: 

40, 60, and 80 meters (Spieringhs et al. (2021).  

The dependent variable consists of judgments that participants had to make regarding the direction 

of the road mark arrow of different luminances (varying between 0.25 and 1.24 cd/m2, depending on the 

specific angular size of the arrow and road luminance). The exact arrow luminances were determined by 

the QUEST+ procedure, which is further described in the section below. The arrow presented during the 

trials was either pointing to the left or pointing to the right, which was randomly varied across all trials. In 

a two-alternative forced choice paradigm, participants had to choose the direction of the arrow within 3 

seconds, and their responses were recorded as being either correct or incorrect. 

 
Psychophysical measurement procedure: QUEST+ 
In this experiment, we want to investigate contrast perception for different conditions and determine the 

just noticeable difference (i.e., the luminance difference threshold) of our sample. This is done by fitting a 

psychometric curve through the data from our 2AFC experiment. This curve will, on one axis run from 

‘50% correct judgments (randomly guessing the direction of the arrow)’ to ‘100% judgments (always 

perceiving the arrow direction)’, making 75% correct judgments our visibility threshold (Figure 18).  

 

 
Figure 18. Example of a psychometric curve in a 2AFC experiment, adapted from RIT (n.d.) 



Traditional psychophysical experiments use the method of limits, adjustment, or constraint stimuli 

to assess this threshold. Here, however, we used the adaptive QUEST+ method (Watson, 2017). In this 

procedure, participants are exposed to trials of increasing difficulty (in our case, lower contrast between the 

road and arrow). As soon as a mistake in judgment is made, following trials will be around this level of 

difficulty, thereby gaining more detailed information on the range of the visibility threshold compared to 

non-adaptive methods.  

In 1983, Watson and Pelli presented their QUEST procedure, which used two types of prior 

knowledge to improve psychometric procedures: data from previous trials and existing knowledge 

regarding the perceptual threshold under the study’s particular conditions (Watson & Pelli, 1983). Using 

Bayesian maximum likelihood estimates after each trial, this procedure is more efficient in finding the 

threshold value. Later, Watson (2017) presented an improved procedure called QUEST+, which improved 

the old procedure, making it more applicable in different contexts. One of the relevant improvements is that 

QUEST+ can estimate more than one of the psychometric function parameters at the same time. 

 

For a 2AFC experiment, the proportion of correct trials 𝜓𝜓(𝐶𝐶), as represented by a psychometric 

function, is described as follows (Jones, 2018): 

 
𝜓𝜓(𝐶𝐶) =  𝛾𝛾 + (1 − 𝜆𝜆 − 𝛾𝛾)𝜙𝜙(𝑥𝑥;𝜇𝜇,𝜎𝜎) 

(37) 

In this equation, 𝜙𝜙 is a cumulative Gaussian function, 𝑥𝑥 represents the stimulus values (arrow 

luminances), and the four earlier discussed parameters of the psychometric function return: threshold 𝜇𝜇, 

slope 𝜎𝜎, lapse rate 𝜆𝜆, and guess rate 𝛾𝛾 (Figure 19). The guess rate 𝛾𝛾 is fixed at 0.5, as this is the probability 

of a participant correctly guessing the direction of the arrow. Lapse rate 𝜆𝜆, that is the rate of incorrect 

responses to correctly perceived stimuli due to a variety of reasons (e.g. inattention, finger error, fatigue), 

is set at 0.02, which is broadly applicable in psychometric research (Jones, 2018). 

 
Figure 19. Parameters that describe a psychometric function. Adapted from ADOpy developers (2020), 

with symbols altered by the author. 



As explained, one of the advantages of using the QUEST+ procedure is that it can very efficiently 

estimate multiple parameters of the psychometric function at once. For this experiment, both the slope 𝜎𝜎 

and threshold 𝜇𝜇 are free parameters. For each of these parameters, a set of hypotheses is used as input in 

the procedure, after which QUEST+ figures out which has the maximum likelihood of being the actual 

value (Watson, 2017). For the slope 𝜎𝜎, there are three possible values in each of the 3 (road luminance) x 3 

(simulated arrow distance) conditions. These possible slopes are based on previous work by Spieringhs et 

al. (2021), making a comparison with this work possible. The slope hypotheses for each condition are 

presented in Table 2.  

 
Table 2 
Possible slope 𝜎𝜎 values for each of the conditions. 
Arrow size (arcmin)  
[simulated distance from observer] 

Road luminance 
(cd/m2) 

Possible slope σ values 

20.3  [40m] 0.25 0.0142 0.0177 0.0212 
9.5    [60m] 0.25 0.0156 0.0195 0.0235 
5.5    [80m] 0.25 0.0321 0.0401 0.0481 
20.3  [40m] 0.66 0.0295 0.0369 0.0442 
9.5    [60m] 0.66 0.0326 0.0407 0.0489 
5.5    [80m] 0.66 0.0654 0.0817 0.0981 
20.3  [40m] 0.99 0.0485 0.0606 0.0727 
9.5    [60m] 0.99 0.0529 0.0662 0.0794 
5.5    [80m] 0.99 0.0566 0.0707 0.0849 

 
For the threshold 𝜇𝜇, there are different hypotheses based only on the specific background luminance 

(3 levels), without distinguishing between arrow sizes. For each background luminance, a lower and an 

upper bound for the possible threshold was set. Within this range, 20 uniformly spaced linearly-distributed 

possible values were extracted and used as hypotheses. These ranges were set similarly to those in Vesters 

(2022), as he investigated the same target demographic. The luminance ranges are presented in Table 3, in 

which the corresponding RGB (R=G=B) values used in the experiment code to achieve the corresponding 

luminances are provided. The RGB-luminance relationship for this specific experimental setup was found 

by Spieringhs et al. (2021) and is presented below. Note that, since R=G=B, only grayscales are involved, 

and a single channel is used as input for this function. 

 
𝐿𝐿 = 0.0006363 ∙ RGB2 − 0.1301 ∙ RGB + 6.782 

(38) 



Table 3 
Arrow luminance ranges for each road luminance level, with corresponding RGB (R=G=B) values. 
Road luminance 
(cd/m2) 

Arrow luminance 
minimum (cd/m2) 

Arrow luminance 
maximum (cd/m2) 

RGB 
minimum 

RGB 
maximum 

0.25 0.252 0.433 116 124 
0.25 0.658 0.992 131 139 
0.25 0.992 1.407 139 147 

 
For each of the 9 conditions, a separate QUEST+ model was initialized, using the corresponding 

fixed and free parameters for each condition. Then, after participants completed a trial within a certain 

condition, the posterior probability of the most likely free parameters was updated. Using Bayes’ theorem, 

the posterior probability can be written as the product of the prior density function and the likelihood of the 

data (Watson, 2017): 

 
𝑃𝑃′𝑘𝑘(𝑐𝑐|𝑋𝑋𝑘𝑘 , 𝑟𝑟𝑘𝑘) =  𝑃𝑃(𝑐𝑐) ∙ 𝑝𝑝(𝑟𝑟𝑘𝑘|𝑋𝑋𝑘𝑘, 𝑐𝑐) = 𝑃𝑃(𝑐𝑐) ∙�𝑝𝑝(𝑟𝑟𝑘𝑘|𝑥𝑥𝑘𝑘, 𝑐𝑐)

𝑘𝑘

  

(39) 

𝑃𝑃′𝑘𝑘(𝑐𝑐|𝑋𝑋𝑘𝑘 , 𝑟𝑟𝑘𝑘) = posterior probability density function of the parameters 𝑐𝑐 after 𝑘𝑘 trials 
𝑐𝑐 = the set of  psychometric function parameters 
𝑃𝑃(𝑐𝑐) = prior probability density function of the parameters 
𝑋𝑋𝑘𝑘 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘   } = the complete set of stimulus values  
𝑟𝑟𝑘𝑘= {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘  } = the sequence of participant responses (the data) 
𝑝𝑝(𝑟𝑟𝑘𝑘|𝑥𝑥𝑘𝑘, 𝑐𝑐) = probability of the data 
 
 

Since this research added a new component, namely the glare source, the work of Vesters (2022) 

was not used to infer priors for the two free parameters, resulting in (default) uniform priors being used in 

all QUEST+ models. 

Two different stopping criteria were included in this procedure. The first one is based on the 

maximum number of trials participants could be exposed to. This was set at 200, which was required to 

keep the experiment within the allocated time limit of one hour. The second criterion is based on the 

principle of entropy. After each trial within a condition, the negative Shannon entropy was calculated for 

all hypotheses regarding the slope and threshold, indicating how well each hypothesis fits the data (Jones, 

2018). After trial and error, an entropy of 3 was used as a cut-off point, as this would provide sufficient 

information about the threshold value.  

The used Matlab code to run this procedure is made by Jones (2018), and has been changed by Vesters 

(2022) and the author to fit the current experimental paradigm; it can be found in Appendix A1. 

 



Participants and sample size justification 

Using an a-priori power analysis, the ideal sample size for this experiment was found to be 26. The expected 

effect size for this analysis was based on a similar study on a younger demographic (Spieringhs et al., 2021) 

and a similar study using the same demographic of elderly (Vesters, 2022). These studies had sample sizes 

of 18 and 24, respectively. The first study found effect sizes of η2 = 0.89 for the road mark arrow size, and 

η2  = 0.7 for surface luminance. The second study found similar effect sizes, namely η2  = 0.75 for arrow 

size and η2  = 0.79 for surface luminance. 

Based on these effect sizes, G*Power 3 (Faul et al., 2007) was used to conduct an a-priori power 

analysis using an X2 Goodness-of-fit test (since a likelihood ratio test will be performed), an effect size of 

0.75 (matching the lowest found effect size in Vesters (2022)), an alpha of 0.05, power of 0.9, and 3 degrees 

of freedom. This results in a required sample size of 26 participants, which is comparable to the previous 

study that investigated a similar demographic of elderly (Vesters, 2022). 

 

Participants were recruited via the author’s and supervisors’ personal networks, or randomly 

selected from the JSF Participant Database, which is part of the Human-Technology Interaction group at 

Eindhoven University of Technology. The inclusion criteria for this experiment were an age between 63 

and 80, and having normal or corrected-to-normal vision. In total, 18 participants (5 female, 13 male) 

completed the experiment, of which detailed demographic information can be found in Table 4. 

Unfortunately, due to time constraints and difficulties in finding people of the right demographic, this was 

lower than the desired number of participants. Nevertheless, the work of Spierhings et al. (2023) 

[Unpublished manuscript], to which the results of this work will be compared, also had a sample size of 18. 

So, even though the desired statistical power cannot be achieved, a fair comparison with this work is still 

possible. 

The experiment took about 60 minutes, and all participants were compensated for their time by 

receiving 10 euros if they completed the complete experiment, or 2 euros if they did not pass the visual 

acuity test. Furthermore, participants from outside the institution (TU/e) were compensated an extra 2 euros 

for their travel time. 

 
Table 4 
Detailed demographic information of the sample of elderly. 
Demographic Mean (SD) Range 
Age (years) 70.2 (4.3) 63 - 79 
Visual acuity 0.94 (0.29) 0.5 - 1.5 
Straylight parameter (log(s)) 1.28 (0.20) 1.0 - 1.9 
Pigmentation factor 0.94 (0.13) 0.5 - 1.0 
Road-usage (hours per week) 2.7 (2.8) 0 - 11 



Materials 
Setup and display characteristics. The experiment took place in the General Purpose Lab 2B of the 

Human-Technology Interaction group at Eindhoven University of Technology. The setup consisted of a 

table, chair, chinrest, keyboard, a glare source, and a big TV display (Figure 20). The display was a 65-inch 

Samsung QE65Q90, with a 4k resolution (3840 x 2160 pixels) and a refresh rate of 120 Hz. The screen was 

centered and perpendicularly aligned to the participant’s eyes, at a distance of 108 cm. In this configuration, 

the participant’s field of view that was covered by the screen was 42° vertically and 68° horizontally. The 

position of the chinrest and the screen assured that the road mark arrows on the screen were perceived at 

the simulated distances explained before. 

In the first experiment from this line of research, Spieringhs et al. (2021) performed a detailed 

calibration of the display screen. They explained that first of all, the maximum luminance value of the 

screen was lowered to 33.19 cd/m2 to ensure sufficiently high resolution at low luminance levels. Second, 

spectral radiance measurements were performed on the stimulus area (the place on the screen on which the 

road arrow was displayed, a square of 150x150 pixels), which resulted in a look-up table that could convert 

RGB-values to luminance values. Third, they checked the stability of the display over time and found this 

to be very high, finding standard deviations of the luminance between 0.0007 and 0.002 cd/m2, which is 

orders of magnitudes away from the mean luminance measured (1.55 cd/m2). For more details regarding 

this calibration and measurement procedure, the reader is referred to Spieringhs et al. (2021). 

 

      
Figure 20. Setup of the experiment. 



Glare source characteristics and calibration. To simulate glare in the driving simulation, a white 

LED was used. This LED was placed on top of the display and aimed at the eyes of the participants. The 

angle between the glare source and the point of focus of the participant was dependent on the arrow size, 

as for each arrow size the location of the arrow on the road was slightly different. For arrow sizes of 20.3, 

9.5, and 5.5 arcmin, the glare angles correspond to 22.39,  21.58, and 21.38 degrees respectively.  

Using a Keithley 2425 100W SourceMeter, the voltage and current were set at 21 V and 32 mA 

respectively. With help of the JETI Spectroradiometer Specbos 1211-2, and the accompanying JETI LiMeS 

4.9.1 software, the glare source was characterized (JETI, 2022). Results showed that at the 21 V / 32 mA 

settings, the CCT was 5009 K and the desired illuminance of 12.6 lux at eye level was achieved. The relation 

between current and illuminance can be found left in Figure 21, which shows that in the 10-60 mA range, 

there is a near-perfect linear relation between illuminance and current. To deal with potential fluctuations 

over time (e.g., due to the warm-up of the LED), the illuminance was also measured over time, as shown 

right in Figure 21. This shows that after two minutes, the output of the LED is stable within a range of 0.2 

lux. 

 

 
Figure 21. Glare source characteristics. Left: relation between current and illuminance of the glare 

source. Right illuminance at eye level caused by the glare source over time. 

 
Testing equipment. Before participants started the experimental procedure, their visual acuity, 

color vision, and levels of retinal straylight were measured. Visual acuity was measured using a Landolt C 

chart from TNO (n.d.), as presented in Figure 22. The used version of the chart required participants to 

stand five meters away from the chart. For participants to perceive the smallest arrow size in the experiment 

(5.5 arcminutes), their visual acuity should be at least 1/5.5. However, participants with worse visual acuity 

were not excluded, as their data for the bigger arrows was still useful. Color vision was measured with the 

Ishihara test. Potential abnormalities were noted, but there were no requirements regarding color vision for 

participation in the experiment. Retinal straylight was measured using the Oculus C-Quant, on E-moderate 



settings, as the stimuli in these settings are centered around the most likely range of values of the straylight 

parameter the target demographic would achieve (Franssen & Coppens, 2007). 

 

    
Figure 22. Left: the Landolt C visual acuity chart (TNO, n.d.). Right: the Oculus C-Quant. 

 

Questionnaire. A questionnaire was administered, consisting of several items that will serve as 

control variables. These questions regarded their eye-health (e.g., “Have you undergone any eye surgery?”), 

alertness (e.g., “How alert do you feel at this moment”), and traffic participation (e.g., “Do you have a 

driver’s license”). For the questions regarding alertness, validated measures like the Karolinska Sleepiness 

Scale (Shahid et al., 2011) and the Consensus Sleep Diary (Carney et al., 2012) were used. The complete 

questionnaire can be found in Appendix B. 

 

Road scenes. This experiment used the same road renderings as in Spieringhs et al. (2021). As they 

have explained, multiple layers of the scene (sky, grass, road surfaces, middle road markings, a road 

marking arrow, etc.) were all individually rendered in Mitsuba. These individual layers were needed to be 

able to adjust the RGB values of all elements in Matlab. Then, using Blender, the camera option was used 

to capture a specific road scene. This scene captured the point of view of a person driving on the road: 1.5 

m above the road, 1.3 m to the right of the middle road markings, and 1 degree below the horizontal (NEN 

13201-2, 2016; Spieringhs et al., 2021). Besides this, the characteristics of the human eye were 

approximated by using a focal length of 16.7 mm and a sensor size of 22.3 mm (Spieringhs et al., 2021). 

Using guidelines from the Dutch Ministry of Infrastructure (Ministerie van Infrastructuur en 

Waterstaat, 2019; Ministerie van Verkeer en Waterstaat, 1991), Spieringhs et al. (2021) created highway 

scenes that represent a 7 m wide road split into two lanes of 3.5 m wide. The scenes include an arrow that 

is 7.5 m wide and 1.05 m long, left and right continuous road markings of 15 cm wide, and middle road 



markings that are 10 cm wide and 3 m long spaced out every 9 m. The final elements of the scene are lamp 

poles of 18 m high, spaced out every 90 m, and trees placed every 25 m. An example rendering can be 

found in Figure 23. 

 

 
Figure 23. A rendering of a highway scene in Mitsuba. Adapted from Spieringhs et al. (2021). 

  
Procedure 
Upon entering the lab, participants were invited to read and sign the informed consent form (Appendix C). 

After that, a short questionnaire was administered, consisting of questions regarding their eye-health, traffic 

participation, and alertness. Furthermore, three visual tests were conducted: an Ishihara colorblindness test, 

a visual acuity test, and the straylight measurement using the Oculus C-Quant. For the straylight 

measurement, there was a practice round, as participants were most likely unfamiliar with this test. After 

this, straylight was measured at both eyes separately. 

Next, the experiment started. Participants were seated in front of the screen, resting their chin on 

the chinrest. They were explained the procedure, including the instruction to not directly look into the glare 

source, and a couple of test trials were done to ensure they understood the task. Participants were explicitly 

instructed to answer as quickly and accurately as possible, even in cases they were not 100% sure of the 

arrows’ direction. Some control trials were added, in which a road scene without any arrow was displayed. 

During the task, a road scene was presented for three seconds, and the participants had to indicate 

whether the arrow on the road pointed to the left or the right. Then, a three-second gray screen was 

displayed, after which the next scene was presented. The participant’s response was compared to the actual 

direction of the arrow and a correct (i.e., 1) or incorrect (i.e., 0) was recorded. When the participant took 



too long to respond, a randomly correct of incorrect was registered, mimicking a random guess. This 

repeated until the QUEST+ stopping criteria were met. This experimental phase took between 20 and 25 

minutes, depending on how quickly the algorithm could conclude the participant’s visibility threshold. 

Then, the experiment was repeated for the second glare condition (with or without glare, depending on 

which was the first one). The order of the glare conditions was reversed after every participant. 

After this procedure, participants were debriefed, and there was an opportunity to ask any questions 

regarding the experiment. To conclude, participants were thanked and compensated for their participation. 

 
Data Analysis 
General Analysis. As a first step, the data from the QUEST+ procedure was used as an input to fit 

psychometric curves. In total, 18 curves were fit for each participant, corresponding to the 3 (road 

luminance) by 3 (arrow size) by 2 (glare) conditions. While the QUEST+ also fitted psychometric curves, 

these were not used to determine the luminance difference threshold because the values for the slope are 

restricted (see Table 2). Instead, psychometric curves were fitted through the data using the psignifit (v.4) 

Matlab package. This package was developed by Schütt et al., (2016), and its specific implementation as 

made by the author and project supervisor can be found in Appendix A2. From these psychometric curves, 

the luminance difference value at the 75% correct-response point was used as the threshold value. 

Then, using code from Spieringhs et al. (2021), the Adrian model was used to predict luminance 

difference threshold values. The original model (without a factor for glare) was used to predict the threshold 

for our conditions without glare, while a model that was adapted by the author to include Adrian’s glare 

factor (Equation 35) was used on our data with glare. The Matlab code for this can be found in Appendix 

A3. 

To conclude, using code from Spieringhs et al. (2021), the image-based models were given an input 

image of the arrow and the road surface directly surrounding it (150x150 pixels). The output was, for each 

of the 18 conditions, a sum of the 𝐷𝐷𝐷𝐷𝐷𝐷 values for each pixel. Just like with the Adrian model, the author 

made adjustments to the original code to include a factor of glare. In both image-based models, this was 

done by superimposing a veiling luminance as calculated with the CIE point-spread function (Equation 33) 

on the full input image. For the simple 𝐷𝐷𝐷𝐷𝐷𝐷 model of Tadmor & Tolhurst (2000), this meant adding this 

veiling luminance to the luminance presented in Equations 20 - 22, while for the complex 𝐷𝐷𝐷𝐷𝐷𝐷 model of 

Joulan, Hautiere, et al. (2011) this meant adding this same luminance to the luminance in Equation 27. The 

corresponding Matlab codes can be found in Appendix A4 and Appendix A5, respectively. 

 

Outlier detection & assumption checking. Before analysis, the measured luminance 

difference thresholds were checked for outliers using absolute z-scores > 3 as a cut-off point. This check 



resulted in three outliers, all from the same participant (id 31). This participant showed an average 

luminance difference threshold across all conditions (0.34 cd/m2) that was more than twice as large 

compared to the rest of the sample (0.16 cd/m2). There are two possible explanations for this deviation. 

First, the participant had a lazy eye, resulting in exotropia and difficulties focusing on the screen. Second, 

during the visual acuity test, this participant indicated having trouble with differentiating left vs. right, 

which was a crucial aspect of the experiment. Unless indicated otherwise, this participant’s data is included 

in the analysis. 

To conduct a proper repeated measures ANOVA, assumptions of normality, homogeneity of 

variance, and sphericity were checked. By conducting Shapiro-Wilk tests and Skewness & Kurtosis tests 

on both the measured thresholds within each condition and the residuals, normality was rejected. Since, in 

most conditions, data was skewed, homogeneity of variances was tested using a Levene’s test centered at 

the median (Brown & Forsythe, 1974), which showed that this assumption was met (F(17, 306) = 1.23, p 

= 0.24). Sphericity was rejected using Mauchly’s test. Because of this, and unless stated otherwise, 

comparisons of mean thresholds between conditions will be made on the observed means instead of the 

predicted ones. Additionally, Greenhouse-Geisser corrected p-values will be reported for main or 

interaction effects in repeated measures ANOVAs. 

 

Control variables and order effects. Several control variables that could potentially influence 

the participants’ performance were measured. In a mixed ANOVA (within factors were road luminance, 

arow size, and glare; between factors were the control variables), their effects on the threshold were 

investigated. Of the three control variables sleep quality (F(1, 323) = 0.01, p = 0.92), alertness (F(1, 323) 

= 0.18, p = 0.67), and average weekly time spent driving (F(1, 323) = 0.01, p = 0.93)), none had a significant 

effect on the measured thresholds in both the with and without glare conditions. 

The order of the with- or without-glare condition was alternated between each participant to prevent 

learning or fatigue effects. The effect of condition order was tested in a similar way as the effect of control 

variables, and no statistically significant differences were found (F(1, 323) = 2.17, p = 0.15). 

  



Results 
In this section, the results of the experiment are described. The section “Effects of glare in an elderly 

population” presents findings related to the first sub-research question about the influence of glare on the 

luminance difference threshold in an elderly sample, while the section “Effects of age under glare 

conditions” focusses on the second sub-question about the effects of age on the luminance difference 

threshold. In addition to the remaining sections, which focus on the Adrian and 𝐷𝐷𝐷𝐷𝐷𝐷 models, these will 

answer our main question regarding the influence of glare on luminance threshold and how to model this.  
 

Experiment descriptives 
On average participants received 192.5 trials for both the conditions with and without being exposed to 

glare, which is close to the maximum amount of 200 trials that was set as a stopping condition. This 

corresponds to 21.4 trials for each of the nine conditions. Across all conditions, 49% of the presented arrows 

pointed to the left, and 51% to the right. The average participant gave a left-response 45% of the time, and 

a right-response 46%. This means that in 9% of the trials, participants responded too late (i.e., reaction 

times larger than 3 s), and the QUEST+ procedure randomly selected a response to mimic guessing 

behavior. Participants responded correctly to the direction of the arrow in 78% of the trials. 

Based on the proportion of correct responses in each condition, psychometric curves were fit 

through the QUEST+ data using the psignifit (v.4) Matlab package. There were a total of 18 curves for each 

participant, one for each of the conditions (i.e., 3 road luminance X 3 arrow size X glare/no glare). Since 

this experiment was 2AFC, and a guessing behavior was mimicked for nonresponses, the luminance 

difference threshold was set at the 75%-correct point within each condition. Examples of this can be found 

in Figure 24, in which the size of the blue dots indicates the number of trials the QUEST+ procedure 

provided to the participant at that specific stimulus level. It is fair to highlight that using this fully automated 

and adaptive psychometric method, not all data was perfectly fit to be described by a psychometric curve 

(Figure 24 on the right). Psychometric curves could describe most of the data acceptably (average R2 = 

0.67). 

 
Figure 24. Two examples of psychometric curves fit through the data. Left: participant 19 with glare, 

road luminance of 0.66 cd/m2, arrow size of 9.5 arcmin. Right: participant 29 with glare, road luminance 
of 0.66 cm/m2, arrow size of 5.5 arcmin. 



Effects of road luminance and arrow size 
Two trends can be observed in both the with and without glare conditions, as seen in Figure 25. The higher 

the road luminance, the higher the luminance difference threshold. Furthermore, the larger the arrow size, 

the lower the road luminance difference threshold. These effects were statistically investigated using 

factorial repeated measures ANOVAs. They revealed that in the conditions with glare, there was a main 

effect of road luminance (F(2,15)= 54.37, p < .001, η2
partial = .76), a main effect of arrow size (F(2,15)= 

84.42, p < .001, η2
partial = .83), and an interaction effect of road luminance and arrow size (F(4,9)= 11.43, p 

< .001, η2
partial = .40). In the conditions without glare, there was also a main effect of road luminance 

(F(2,15)= 54.42, p < .001, η2
partial = .76), arrow size (F(2,15)= 85.21, p < .001, η2

partial = .83), and an 

interaction effect of the two (F(4,9)= 5.86, p <.001, η2
partial = .26). The main effects are of similar size in 

the conditions with and without glare, while the interaction effect is weaker in the condition without glare. 

 

   
Figure 25. The effects of road luminance and arrow size on the observed mean luminance difference 

thresholds in conditions with (left) and without (right) glare. 

 
Comparing the mean thresholds across road luminance and arrow size separately, significant 

differences are found between each comparison. Contrasts are found in Table 5 below, including 

Bonferroni-corrected p-values. 

  



Table 5 
Differences between observed means across road luminance and arrow size, for with and without glare 
conditions. 
Contrast Threshold difference with glare Threshold difference without glare 
Road luminance   
   0.66 – 0.25 cd/m2 0.182 – 0.131 = 0.051, p = .015 0.153 – 0.093 = 0.060, p = .002 
   0.99 – 0.25 cd/m2 0.237 – 0.131 = 0.106, p < .001 0.201 – 0.093 = 0.108, p < .001 
   0.99 – 0.66 cd/m2 0.237 – 0.182 = 0.055, p = .008 0.201 – 0.153 = 0.047, p = .020 
   
Arrow size   
   9.5 – 20.3 arcmin 0.182 – 0.117 = 0.065, p < .001 0.154 – 0.084 = 0.070, p < .001 
   5.5 – 20.3 arcmin 0.251 – 0.117 = 0.134, p < .001 0.209 – 0.084 = 0.125, p < .001 
     5.5 – 9.5 arcmin 0.251 – 0.182 = 0.069, p < .001 0.209 – 0.154 = 0.055, p = .003 

 

Effects of glare in an elderly population 
Focusing on the first sub-research question, a comparison of the paired thresholds for each participant in 

their conditions with and without glare is presented in Figure 26. It was found that in 77% of the cases, the 

luminance difference threshold under conditions of glare is higher than the threshold without glare. The 

green dots indicate the data from participant 31, which has been described earlier to be an outlier in several 

conditions. 

 
Figure 26. Paired luminance threshold difference data for each participant with and without being 

exposed to glare, each dot indicating one of the nine conditions. 

 

A repeated measures ANOVA showed a main effect of glare (F(1,16)= 34.12, p < .001, η2
partial = 

.66), while the interaction effects of glare, road luminance, and arrow size were not significant. Also, the 

three-way interaction between these factors was not significant. Figure 27 shows the mean differences in 

thresholds between conditions with and without glare for each road luminance and arrow size condition. 

While there was a significant main effect of glare, and the mean thresholds with glare are higher, pairwise 



comparisons using Bonferroni-corrected p-values show that only two means are statistically different 

(Table 6). Only for the lowest background luminance, glare has a statistically significant influence on the 

luminance threshold.  

     

 
Figure 27. Comparisons of luminance difference thresholds in conditions with and without glare. 

 
Table 6 
Observed mean threshold differences with minus without glare, across all conditions. 
 0.25 0.66 0.99 
20.3 0.087 – 0.053 = 0.034,  

p = .096 
0.103 – 0.079 = 0.024,  
p = .999 

0.159 – 0.119 = 0.040,  
p = .531 

9.5 0.134 – 0.091 = 0.043,  
p = .021 

0.180 – 0.163 = 0.017,  
p = .999 

0.231 – 0.207 = 0.024,  
p = .999 

5.5 0.170 – 0.135 = 0.035,  
p = .024 

0.262 – 0.218 = 0.044,  
p = .237 

0.320 – 0.276 = 0.044,  
p = .429 

 
 

Given the found main effect of glare, this factor is worthy of further investigation. Each 

participant’s sensitivity to glare was measured separately in both eyes. For this analysis, the average of 

these two straylight parameters (log(s)) will be used and referred to simply as log(s). The relation between 

age and log(s) is shown in Figure 28, and indicates that sensitivity for glare increases with age. Participants 

with visual impairments are highlighted in blue, with a label for their corresponding impairment.  



 
Figure 28. Relation between age and the average straylight parameter of both eyes. 

 
A logarithmic function in the form of 𝛽𝛽 + log (1 + (age

65
)4) was fitted through the data (excluding 

the participant with cataract) where 𝛽𝛽 was a fitting parameter. This form was chosen after work by van den 

Berg et al. (2007), who stated that this function accurately describes the relationship between age and the 

straylight parameter (log(s)). The resulting model with an R2 of .34 is presented below. 

 
log(s) = 0.95 + log (1 + (

age
65

)4)   
(40) 

Lastly, there is a statistically significant positive correlation between the straylight parameter and 

the measured thresholds (r = 0.21, p < .001), indicating that the more sensitive a person is to straylight, 

the higher the luminance difference thresholds are. 

 

Effects of age under glare conditions 
Next, the focus will be on the second sub-research question, comparing the effect of glare on an old and 

young sample. For this comparison, data from Spieringhs et al. (2023) [Unpublished manuscript] was used. 

This study investigated, using a similar experimental paradigm, the luminance contrast difference 

thresholds in a younger population. One difference between the methods used is the exposure time of the 

road scenes, which was 2 seconds in the younger sample compared to 3 seconds in the old same. Another 

difference is that Spieringhs et al. (2023) [Unpublished manuscript] used a predetermined set of arrow 

luminances, while the adaptive QUEST+ method was used in this study. 

The average age of the participants in the Spieringhs et al. (2023) [Unpublished manuscript] study 

was 28.4 years (SD = 3.7), compared to the average of 70.2 years in this study (SD = 4.3). Figure 29 shows 



the mean differences in thresholds across all conditions, comparing the young and old samples. In every 

condition, mean thresholds are higher for the older population. Table 7 shows the pairwise comparisons 

with Bonferroni-corrected p-values. This indicates that the difference in means is statistically significant in 

seven of nine conditions. Pooling data from both studies, a significant positive correlation between age and 

luminance difference threshold under glare conditions was also found (r = .45, p < .001). 

 

     

 
Figure 29. Comparisons of luminance difference thresholds in an old and young sample. 

 
 
 
Table 7 
Observed mean threshold differences with old minus young, across all conditions. 
 0.25 0.66 0.99 
20.3 0.087 – 0.027 = 0.060,  

p = .018 
0.103 – 0.054 = 0.049,  
p = .417  

0.159 – 0.067 = 0.092,  
p = .045 

9.5 0.134 – 0.040 = 0.094,  
p < .001 

0.180 – 0.085 = 0.095,  
p = .069 

0.231 – 0.095 = 0.136,  
p = .015 

5.5 0.170 – 0.068 = 0.102,  
p < .001 

0.262 – 0.121 = 0.141,  
p < .001 

0.320 – 0.133 = 0.187,  
p < .001 



Applicability of Adrian’s models 
The luminance difference threshold predictions made by two variations of Adrian’s 1989 model were 

investigated. Both the predictions made by the classic model without glare, and the classic model with 

Adrian’s glare correction (Equation 35), were compared to the measured thresholds. 

To assess the fit of Adrian’s models, the data of some participants were left out from the analyses 

in this section. Since the original model did not include a factor for visual disabilities like cataracts, lazy 

eyes, and exotropia, three participants (id: 18, 27, 31) with these visual impairments were excluded.  

 

Figure 30 presents the fit between the predicted thresholds by Adrian’s models and the measured 

thresholds. Blue dots indicate the data of the excluded participants. A linear prediction is fitted through the 

included data, indicated with red dots. The predicted thresholds by both Adrian’s model without the glare 

factor (R2 = 0.51) and Adrian’s model with the glare factor (R2 = 0.49) had moderate, but comparable linear 

fits with the measured threshold. 

 

 
Figure 30. Left: prediction Adrianwithout glare thresholds vs. measured thresholds. Right: prediction 

Adrianwith glare thresholds vs. measured thresholds 
 
 

To assess the performance of Adrian models within each condition, means and 95% confidence 

intervals of the Adrian predictions were calculated across the nine road luminance and arrow size 

conditions. These were compared with the measured thresholds and can be found in Figure 31. In this figure, 

we find that across road luminances, the same trend appears: the Adrian models make better predictions 

when the arrow size is 20.3 or 9.5 arcmin, and overestimate the threshold for the smallest arrow size of 5.5 

arcmin.  



 

 
Figure 31. Pairwise comparisons of measured vs. Adrian-predicted luminance difference thresholds. 

 
Table 8 presents the differences between measured thresholds and the ones predicted by Adrian’s 

model without glare factor, as well as the results of one-sample t-tests using Bonferroni-corrected p-values. 

These numbers do partly confirm the earlier observed trend. Indeed, for the smallest arrow size the model 

is overestimating the threshold significantly, but there is also significant underestimation for two of three 

conditions with the largest arrow size. Similarly, Table 9 presents the differences between the measured 

threshold and the prediction threshold by Adrian’s model with the glare factor. For this model, there again 

is a significant overestimation of the threshold for the smallest arrow size, but for all the other conditions 

there is no statistically significant difference between the predicted and measured threshold. 
 

Table 8 
Differences observed vs. Adrianwithout glare predicted thresholds, presented as ‘observed minus predicted’. 
 0.25 0.66 0.99 
20.3 0.061 – 0.037 = 0.024,  

p = .016 
0.073 – 0.065 = 0.008  
p = .999 

0.121 – 0.087 = 0.034,  
p = .002 

9.5 0.108 – 0.083 = 0.025,  
p = .160 

0.155 – 0.144 = 0.011,  
p = .999 

0.194 – 0.185 = 0.009,  
p = .999 

5.5 0.150 – 0.176 = -0.026,  
p = .025 

0.234 – 0.303 = -0.069,  
p < .001 

0.286 – 0.378 = -0.092,  
p < .001 



Table 9 
Differences observed vs. Adrianwith glare predicted thresholds, presented as ‘observed minus predicted’. 
 0.25 0.66 0.99 
20.3 0.061 – 0.056 = 0.005,  

p = .999 
0.073 – 0.083 = -0.010  
p = .999 

0.121 – 0.104 = 0.017,  
p = .529 

9.5 0.108 – 0.125 = -0.017,  
p = .999 

0.155 – 0.179 = -0.024,  
p = .999 

0.194 – 0.217 = -0.023,  
p = .999 

5.5 0.150 – 0.261 = -0.111,  
p < .001 

0.234 – 0.367 = -0.133,  
p < .001 

0.286 – 0.427 = -0.141,  
p < .001 

 
 
Applicability of the simple 𝑫𝑫𝑫𝑫𝑫𝑫 model 
Initially, two models were under investigation: the original Tadmor and Tolhurst (2000) model, and a 

modified model with the inclusion of a veiling luminance, calculated with the CIE Point-Spread Function 

(Equation 33), superimposed on the entire image (Equations 20 - 22). This process is visualized in Figure 

32. As can be seen in this figure, both models produced the same 𝐷𝐷𝐷𝐷𝐷𝐷-filtered image, and as such had the 

same 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold. Therefore, the models perform similar for our purposes, and for the remainder of the 

analyses in this chapter the original Tadmor and Tolhurst (2000) model will be used.   

 

 
Figure 32. Visualization of the simple DoG model, showing the input without a veiling luminance across 
the entire image (top left), the input including a veiling luminance across the image (bottom left), and the 
resulting DoG -filtered image (right) which turned out to be the same for both models. Data of participant 

32 is visualized, who experienced a veiling luminance of 0.40 cd/m2. 

 

Effects of road luminance and arrow size on 𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫 thresholds. Similar patterns emerge in 

both conditions with and without glare (Figure 33). While the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds seems to clearly vary 



between different road luminance conditions (a higher road luminance results in a higher 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold), 

there seems almost no variance between different arrow size conditions. A repeated measured ANOVA 

confirmed this finding, showing a main effect of road luminance (F(2,15) = 50.22, p < .001, η2
partial = .88) 

and not of arrow size (F(2,15) = 0.33, p = .722, η2
partial = .02) in the condition with glare. The findings in 

the conditions without glare are similar: a main effect of road luminance (F(2,15) = 47.73, p < .001, η2
partial 

= .74), and no main effect of arrow size (F(2,15) = 0.83, p = .445, η2
partial = .05). There is, however, a 

difference found in the interaction effects: in the conditions with glare, there is a small but significant 

interaction effect of road luminance and arrow size (F(4,9) = 3.89, p = .006, η2
partial = .19), while this was 

not found in the conditions without glare (F(4,9) = 1.27, p = .290, η2
partial = .07). 

 

      
Figure 33. The effects of road luminance and arrow size on the mean CDoG thresholds in conditions with 

(left) and without (right) glare. 
 
 

 
Figure 34. Relation between CDoG thresholds and measured thresholds for different arrow sizes in 

conditions with (left) and without (right) glare. 
 
 

Relationship 𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫 and measured threshold. Since there is no effect of arrow size on the 

𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold between glare conditions, their relationship might be generalized. This is done in an attempt 



to construct a simple formula to predict the luminance difference threshold from the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold. Figure 

34 shows the relation between the measured and 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds, as a function of arrow size, in both the 

conditions with and without glare. Within the separate arrow size conditions, there are perfect linear 

relationships between the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold and the measured thresholds. Moreover, the slopes of the lines 

are similar for each arrow size, independent of glare. Finally, all lines have their intercept in origin. This 

gives us the following three linear relationships: 

 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = 0.00286 ∙  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐        for arrow size = 20.3 arcmin 

 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = 0.00456 ∙  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐     for arrow size = 9.5 arcmin 

 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = 0.00659 ∙  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐     for arrow size = 5.5 arcmin 

(41) 

To further generalize this relationship, the three different slopes were plotted in Figure 35. Then, a 

power law function in the form of  𝛼𝛼 ∙ arrow size𝛽𝛽 was fitted, with the Greek letters indicating two fitting 

parameters. This power law form was chosen after Steven’s power law (R2 > 0.99), which is relevant here 

as there is a comparison between an absolute (arrow size) and a perceived (luminance difference threshold) 

change of stimuli.  

 
Figure 35. The relationship between slopes (

Observed ∆Lthreshold  

CDoG threshold 
) and arrow sizes. 

 
Using this relationship between the slope and arrow size, a generalized model for predicting the 

luminance difference threshold based on arrow size (in arcmin) and the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold was made, which is 

valid for conditions with and without glare: 

∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (0.020 ∙  arrow size−0.0646) ∙  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
(42) 



Relationship 𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫 in conditions with and without glare. Because there was no difference 

between the 𝐷𝐷𝐷𝐷𝐷𝐷-filtered images in conditions with and without a veiling luminance, the veiling luminance 

will be accounted for by a different approach. In this section, the focus will be on the paired data of each 

participant from the two glare conditions. As each participant was exposed to the same 3 x 3 x 2 (i.e., road 

luminance x arrow size x glare) conditions, a comparison of the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds across glare conditions is 

possible. The analyses in this section also exclude the data of participants with visual impairments. The 

reason for this can be observed in Figure 36: when including this population, prediction models would be 

strongly overfitted, falsely making them seem more accurate than they are. This would, in the end, not 

allow for generalization to the average elderly population. 

 

 
Figure 36. The relationship between the CDoG thresholds with and without glare for each participant, 

across all conditions. 
 

The best description of the relationship between the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds with and without glare seems 

to be linear. Therefore, a  linear model in which the slope is made dependent on the veiling luminance is fit 

on the data: 𝛼𝛼 + (veiling luminance +  𝛽𝛽) ∙  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐, where Greek letters represent fitting 

parameters. The best fit (R2 = 0.58) is presented by the equation below, in which all fitting parameters have 

a significant influence on the outcome (all p-values < .05). 

 
𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐  =  4.690 +  (veiling luminance +  0.195) ∙ 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐   

(43) 

 



Similarly, the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐  can be expressed as a function of the and the 

𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 (R2 = 0.56). The veiling luminance is excluded here, as this is not present in the 

conditions without glare. 

 
𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐  =  13.384 +  0.802 ∙ 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐   

(44) 

 

Combining these two equations with Equation 42, a relation between the luminance difference threshold 

and the 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds can be modeled according to the equations below: 

 
For conditions without glare (R2 = 0.96): 
 

∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = �0.020 ∙  arrow size−0.0646�  ∙  (13.384 + 0.802 ∙ 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐) 
(45) 

For conditions with glare (R2 = 0.94): 
 

∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = �0.020 ∙  arrow size−0.0646�  ∙ (4.690 +  (veiling luminance +  0.195) 
∙ 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑔𝑔𝑡𝑡𝑎𝑎𝑟𝑟𝑒𝑒 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐) 

(46) 

 

Applicability of the complex 𝑫𝑫𝑫𝑫𝑫𝑫 model 
Similar to the analysis of simple 𝐷𝐷𝐷𝐷𝐷𝐷 models, two complex 𝐷𝐷𝐷𝐷𝐷𝐷 models were used: the original Joulan et 

al. (2011) model, and a modified model with the inclusion of a veiling luminance, calculated with the CIE 

Point-Spread Function (Equation 33), superimposed on the entire image (Equation 27). Contrary to the 

simple 𝐷𝐷𝐷𝐷𝐷𝐷 models presented earlier; these two variants of the model yielded different predictions (Figure 

37). As such, the full attention in this section will be directed toward this modified Joulan model to 

investigate its usefulness for predicting the luminance contrast threshold. 

 
Effects of road luminance and arrow size on 𝑪𝑪𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 thresholds. In the conditions with 

glare, there is a clear effect of arrow size: for larger arrows, the  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 threshold increases (left in Figure 

38). Within each arrow size condition, there does not seem to be an effect of road luminance, except for the 

largest arrow size of 20.3 arcmin. A repeated measured ANOVA found a main effect of road luminance 

(F(2,15) = 11.32, p < .001, η2
partial = .40) and of arrow size (F(2,15) = 14.78, p = < .001, η2

partial = .47) in the 

condition with glare. There also was an interaction effect between road luminance and arrow size (F(4,9) = 

5.82, p = < .001, η2
partial = .25). For the conditions without glare (right in Figure 38), something different 

occurs. While there is also an increase in the  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 threshold as arrow sizes get larger, there seems to be a 



more pronounced effect of road luminance: the larger the road luminance, the smaller the threshold. A 

repeated measured ANOVA found a main effect of road luminance (F(2,15) = 35.72, p < .001, η2
partial = .67) 

and of arrow size (F(2,15) = 3.84, p = .031, η2
partial = .18). In this case, there was no interaction effect 

between road luminance and arrow size (F(4,9) = 1.60, p = .184, η2
partial = .09). 

 

 
Figure 37. Visualization of the Joulan 𝐷𝐷𝐷𝐷𝐷𝐷 model, showing the input without a veiling luminance across 
the entire image (top left), the input including a veiling luminance across the image (bottom left), and the 

resulting DoG-filtered image (right). Data of participant 32 is visualized, who experienced a veiling 
luminance of 0.40 cd/m2.       

 
Figure 38. The effects of road luminance and arrow size on the mean CSDoG thresholds in conditions with 

(left) and without (right) glare. 
 

Relationship between measured and 𝑪𝑪𝑺𝑺𝑫𝑫𝑫𝑫𝑫𝑫 thresholds. Focusing on the modified 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 

model, we find interesting patterns when differentiating between all conditions. Looking at the data without 

glare (right in Figure 39), a similar pattern emerges like in the simple 𝐷𝐷𝐷𝐷𝐷𝐷 model: perfect linear 

Luminance image
without veiling luminance

Background: 0.25 cd/m 2

Arrow: 0.43 cd/m 2

Luminance image
with veiling luminance

Background: 0.65 cd/m 2

Arrow: 0.83 cd/m 2

Result: two different
DoG-filtered images

Joulan DoG model

Joulan DoG model



relationships between predicted 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 thresholds and measured luminance difference thresholds (average 

R2 = 1.0). However, where in the simple 𝐷𝐷𝐷𝐷𝐷𝐷 model there was only differentiation between the different 

arrow sizes, in this complex 𝐷𝐷𝐷𝐷𝐷𝐷 model there is also a differentiation between different road luminances. 

The left side of Figure 39 shows the same relation, but now relates to the conditions with glare. Under 

conditions of glare, the linear relations between the measured luminance difference threshold and the 

𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷  threshold within each condition weaken (average R2 = 0.94).  

 

 
Figure 39. The relationship between the CSDoG thresholds and measured luminance difference thresholds, 

for the data with (left) and without (right) a veiling luminance incorporated. 

 
Using the same method as described in the paragraph on the simple 𝐷𝐷𝐷𝐷𝐷𝐷 models, the relationship 

between the slopes of the lines in Figure 39 and their respective conditions were generalized in order to 

obtain simple formulas to calculate the luminance difference threshold from the 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 threshold. Since the 

slope depends on both arrow size and road luminance, three different curves are fitted to account for all the 

conditions (Figure 40). These resulted in the equations presented in Equation Set 47 below. 
 

 
Figure 40. The relationship between slopes (Observed ∆Lthreshold  

CDoG threshold 
), arrow size, and road luminance, with 

the best power-relation fit on conditions with glare (left) and without glare (right). 



 
 Conditions with glare:                                                 Conditions without glare:              
                                                                                                                                                                 
for 0.25 𝑐𝑐𝑚𝑚

𝑚𝑚2 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (7.04 ∙ 10−9  ∙  arrow size−.699)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (6.97 ∙ 10−9  ∙  arrow size−1.080)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
 
                                                                                                                                                                 
for 0.66 𝑐𝑐𝑚𝑚

𝑚𝑚2 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (3.28 ∙ 10−8  ∙  arrow size−1.108)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (1.84 ∙ 10−8  ∙  arrow size−1.082)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
 
                                                                                                                                                                 
for 0.99 𝑐𝑐𝑚𝑚

𝑚𝑚2 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (3.60 ∙ 10−8  ∙  arrow size−1.046)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (2.77 ∙ 10−8  ∙  arrow size−1.087)

∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
(47) 

 

For each road luminance and arrow size condition, a more or less similar exponent of -1.08 is 

found. The only exception is the 0.25 cd/m2 with glare condition, which has an exponent of -0.699. 

Nevertheless, the relation between ∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 and the conditions is further generalized by fixing the 

exponent at -1.08 and fitting a model that now includes the road luminance as a factor. Models in the 

form of (𝛼𝛼 ∙ road luminance)  ∙  arrow size−1.08 are fit, again representing a power law form, with alpha as 

a fitting parameter. This results in the equation set below, with an R2 of 0.98 and > 0.99, respectively. 

For conditions with glare (R2 = 0.98): 
 

∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (4.20 ∙ 10−8  ∙  road luminance ∙  arrow size−1.08) ∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
(48) 

 
For conditions without glare (R2 > 0.99): 
 

∆𝐿𝐿𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 = (2.76 ∙ 10−8  ∙  road luminance ∙  arrow size−1.08) ∙  𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 𝑡𝑡ℎ𝑟𝑟𝑒𝑒𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑐𝑐 
(49) 

 
                                                                                                                                                                  

  



Discussion 
In this final chapter, the methods, results, and limitations of this experiment are discussed in detail, 

following the same order as in the ‘Results’ chapter. For a short overview of the most important findings, 

the reader is referred to the ‘Conclusion’ section. 
 

Effects of road luminance and arrow size 
In both the conditions with and without glare, significant differences in the luminance difference thresholds 

were found between all road luminance pairs and all arrow size pairs. The main effects of road luminance 

(η2
partial = .76) and arrow size (η2

partial = .83) were similar across glare conditions. These findings were not 

surprising, as similar effect sizes were found by Spieringhs et al. (2021). It turns out that for old and young 

populations, both factors have a comparable impact on the luminance difference threshold.  

There was, however, a difference found in the size of the interaction effect of road luminance and 

arrow size. The interaction effect entails that for smaller arrow sizes, an increase in road luminance causes 

a larger increase in the threshold than for bigger arrow sizes. In the conditions with glare (η2
partial = .40), this 

effect size was larger than in the conditions without glare (η2
partial = .26). More research is required to explain 

this finding.  
 

Effects of glare in an elderly population 
To answer the first sub-research question, Figure 27 has revealed that for all conditions our elderly sample 

was exposed to, mean luminance difference thresholds are higher in the conditions with glare compared to 

conditions without glare, with a main effect of  η2
partial = .66. This was to be expected given the 

characteristics of the aging visual system (e.g., degradation of the lens and the resulting increasing 

intraocular scattering). However, pair-wise comparisons have shown these differences are, with the 

exception of two out of nine conditions, never statistically significant. Glare only had a significant effect in 

two of the conditions with the lowest road luminance (0.25 cd/m2). A possible explanation is the relative 

effect of glare in different road luminance conditions. The average veiling luminance participants 

experienced was 0.45 cd/m2, which is almost twice as high as the lowest road luminance. In the conditions 

with a higher road luminance (0.66 and 0.99 cd/m2), the relative size of the veiling luminance is smaller 

and thus might not significantly influence the threshold. The larger the background luminance, the smaller 

the effect of glare. Another explanation can be found in the sample size; as the desired sample size of 26 

participants was not reached, the statistical power might not have been high enough (i.e., post hoc calculated 

to be .75) to find a significant effect of glare in the conditions with a higher road luminance. 

There was, however, a significant positive correlation (r = .21, p < .001) between the measured 

straylight parameter and the luminance difference thresholds. This means that visual performance decreased 



under conditions of glare for people who are more susceptible to straylight and thus experience a larger 

veiling luminance. The found relationship between age and straylight factor was not surprising and 

resembled earlier findings by Rozema et al. (2010) and van den Berg et al. (2007). 

Control variables like alertness, sleep quality, and time spent driving a car have all been found not 

to impact the thresholds. Altogether, this highlights that while there is no average effect of glare across all 

participants, for those with high sensitivity to straylight, which increases strongly with age, glare is a 

relevant factor in their decreased task performance.  

A final interesting finding is the significant positive correlation between the straylight parameter 

and the measured thresholds (r = 0.21). While it intuitively makes sense that for participants with a higher 

measured sensitivity to glare, the contrast thresholds were higher, this finding is still noteworthy. It shows 

that the Oculus C-Quant, using a compensation comparison method to determine a straylight threshold, also 

can provide useful information on contrast thresholds in a completely different psychometric measurement 

paradigm (QUEST+).  

 
Effects of age under conditions of glare 
Focusing on the second sub-research question, we compared the luminance difference thresholds of an old 

(M = 70.2 years) and young (M = 28.4 years) sample using data from Spieringhs et al. (2023) [Unpublished 

manuscript]. Clear differences between the two age groups can be found. Except for two conditions, all 

found differences are statistically different, indicating that for the older sample, the luminance difference 

threshold is roughly 2.5x higher. This is not surprising, given the characteristics of the aging visual system. 

When pooling the data of both studies a significant positive correlation (r = .45, p < .001) between age and 

threshold was found, showing that the thresholds increase with age. However, due to the nature of both 

studies, this correlation analysis includes no data in the age group from 40 to 60 years old. 

As mentioned, in two of the nine conditions (i.e., 0.66 cd/m2 and 20.3 arcmin, and 0.66 cd/m2 and 

9.5 arcmin) mean thresholds do not differ statistically between the young and old samples. An explanation 

for this might be the lack of statistical power due to the set-up of the experiment by Spieringhs et al. (2023) 

[Unpublished manuscript]. In their experiment, each participant was exposed to only three of nine 

conditions, while in this experiment, each participant was exposed to all conditions. Another difference 

between the two studies that might explain this unexpected finding is the exposure time of the targets: 2 

seconds in the young sample vs. 3 seconds in the old sample. The reason for the longer exposure time in 

the old sample is to assure that the older participants, given their reduced reaction times, still had the 

opportunity to find, identify, and respond to the stimuli. Even with this longer reaction time, older 

participants still showed an average higher threshold. This threshold might have increased when the 2-

second reaction time was used, as participants would be under more time pressure and identify fewer arrows 



correctly. In the current study, the average reaction time of the elderly sample was 1.4 s, with 31% of 

reaction times being larger than 2 s. 

 
Adrian’s models 
Comparing our measured luminance difference thresholds to those predicted by Adrian's (1989) models, 

there are moderate linear fits for both the model without (R2 = 0.51) and with (R2 = 0.49) a glare factor. For 

the model without glare factor, the threshold predictions are accurate only for an arrow size of 9.5 arcmin, 

independent of background luminance. Across all background luminances, it is also overestimating the 

measured threshold for the smallest arrow size (5.5 arcmin), and underestimating the threshold for the 

biggest arrow size (20.3 arcmin). For the model with a glare factor, predictions are better. In conditions 

with the larger two arrow sizes, the prediction is accurate, while for the smallest arrow size, there again is 

a significant overestimation of the threshold.  

Similar trends can be found when comparing these results to the study of Spieringhs et al. (2021). 

In both studies, the Adrian model provides better predictions for larger arrow sizes than for smaller arrow 

sizes. The main difference between the two works is the overall correspondence between the Adrian model 

and the predicted threshold; in the work of Spieringhs et al. (2021), the fit between measured and predicted 

thresholds is significantly higher (R2 = 0.75).  

Multiple factors might explain this difference in overall fit. One of them considers the fact that 

Spieringhs et al. (2021) included a 4th arrow size (3.6 arcmin) in their study. However, this is not a very 

likely explanation, as in both studies the Adrian model seems to predict less accurately when arrow size 

decreases. If anything, including this 4th smaller arrow size would have decreased the overall 

correspondence between predicted and measured thresholds. Another possible explanation for these 

differences is that Spieringhs et al. (2021) only investigated a part of Adrian’s model, as their average age 

factor was about 1. In this study, using an older sample, this factor was further away from 1: the average 

age factor was 3.02. As such, this factor has influenced the predicted luminance difference thresholds. The 

final explanation is that the sample in Spieringhs et al. (2021) was way younger (M = 28.4 years) compared 

to ours (M = 70.2 years). The importance of age will be explained in more detail in the upcoming paragraph. 

 

To explain the moderate performance of Adrian’s models in this study (R2 = 0.51, and R2 = 0.49), 

differences between the experiments Adrian based his model on and the current experiment can be 

highlighted. First of all, Adrian’s model is based on data from detection experiments: participants had to 

indicate whether or not they could detect any stimuli, while this work considered an experiment on 

discrimination. Discrimination can be seen as an extra step of complexity beyond mere detection; besides 

detecting the presence of an arrow, participants also had to discriminate between two slightly different 



variations. Second, Adrian’s model is based on experiments using simple stimuli, namely uniformly lit 

circles on uniformly lit backgrounds. In this experiment, the focus was on more complex shapes in a more 

complex visual environment. Third, it is important to highlight that the age factor in Adrian’s model is 

based on data from an experiment (Blackwell & Blackwell, 1980) in which the majority of participants 

(51%) was in the age group of 20 – 30 years. The 70 – 80 age group made up only 11% of their sample. 

This likely is one of the most important explanations for the overall moderate model fit, as more than 1/3rd 

of our sample consisted of participants 75+ years old. Since this was such a big part of our sample (and the 

most interesting part when it comes to investigating the effects of glare), these were included in the analysis, 

which might not have been entirely fair when purely interested in the performance of Adrian’s models.  

Concluding, Spieringhs et al. (2021) stated “it shows that the [Adrian] model is more broadly 

applicable than where it originally was intended for” (p. 18), the results from this study confirm this 

statement, with the sidenotes that this a) only holds for larger target sizes, and b) only holds for Adrian’s 

model that takes into account a glare factor. 

 
Image-based 𝑫𝑫𝑫𝑫𝑫𝑫 models 
Two variations of the simple 𝐷𝐷𝐷𝐷𝐷𝐷 model by Tadmor & Tolhurst (2000) were tested: their original 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 

model, and an adjusted 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 model with a veiling luminance that was superimposed on the entire input 

image. As it turned out, superimposing the veiling luminance on the entire image did not result in different 

𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds. The reason is that by superimposing a veiling luminance over the entire image you add a 

constant luminance for the center and surround Gaussians (Equations 20 - 22), with a similar 𝐷𝐷𝐷𝐷𝐷𝐷-filtered 

image as a result.  

In contrast, the two complex 𝐷𝐷𝐷𝐷𝐷𝐷 models based on the work of Joulan et al. (2011), did provide 

two different 𝐷𝐷𝐷𝐷𝐷𝐷-filtered images, and as such different 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 thresholds. This can be explained by the 

inclusion of a different adaptation luminance (i.e., background + veiling luminance) in the model, in which 

the veiling luminance is different for each participant. 

 

When investigating the relationship between 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds and luminance thresholds, it was 

found that irrespective of glare, this relationship was linear and only based on arrow size. The slopes being 

similar (within arrow size groups) in conditions with and without glare hints towards something interesting: 

this model adheres to the earlier described finding of there being no interaction effect between glare and 

arrow size. As such, a power law function model was created to predict the luminance difference threshold 

based on arrow size and 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold (R2 = 1.0).  

For the Joulan model, a similar approach was taken, as similar linear relationships were found 

between 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 thresholds and luminance thresholds, although they were weaker in the conditions with glare 



(R2 = 0.94) compared to conditions without glare (R2 = 1.0). Here we found the slopes to be dependent on 

both arrow size and road luminance, compared to only arrow size in the simple 𝐷𝐷𝐷𝐷𝐷𝐷 model. Another 

difference was that the slopes within each of the nine road luminance and arrow size conditions differed, 

depending on whether or not glare was present. A power law function was fitted for each set of slopes, 

which revealed that exponents were more or less constant across all conditions. The only condition that did 

not have a similar exponent was that of a road luminance of 0.25 cd/m2 and glare. As stated earlier, glare 

has a relatively large impact on the visual scene when the background luminance is only 0.25 cd/m2, which 

could therefore have impacted the relationship. 

It is important to highlight that for both the simple and complex 𝐷𝐷𝐷𝐷𝐷𝐷 models, Steven’s power law 

was used as a starting point to model the relation between the measured threshold and arrow size. Using 

the power law in the context of luminance difference thresholds is not novel, and different combinations of 

constructs have been investigated. For example, the relation between luminance difference thresholds and 

background contrast (Legge, 1981) and between perceived contrast and stimulus contrast (Gottesman et al., 

1981). Research has also been done on the relation between luminance difference threshold and sizes of 

disks, but this work did not model it with a power relation (Du Buf, 1987). The building of our prediction 

model was highly explorative, and as such future research is needed to back it up theoretically and make it 

more generalizable to other research areas.  

 

Since incorporating glare as a constant veiling luminance over the entire image did not provide a 

different model compared to the original Tadmor & Tolhurst (2000) model, another approach was taken to 

incorporate a factor of glare. A prediction model, based on the veiling luminance, was made to predict  𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 

thresholds for conditions with glare from 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds for conditions without glare, and vice versa (R2’s 

= 0.58 and 0.56, Equations 43 and 44). Thereafter, these models were combined with the model that 

predicted luminance thresholds from arrow sizes and 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 thresholds. This resulted in two final prediction 

models, one for conditions with glare and one for conditions without glare, that predict with high accuracy 

(R2’s = 0.98 and 0.96, Equations 45 and 46) the measured luminance difference thresholds from the arrow 

size, veiling luminance, and 𝐶𝐶𝐷𝐷𝑜𝑜𝐷𝐷 threshold. 

For the Joulan model, this extra step was not required, as the model differentiated between 

conditions with and without glare. In the end, this also resulted in two prediction models, one for conditions 

with glare and one for conditions without, that predict the luminance difference threshold based on road 

luminance, arrow size, and 𝐶𝐶𝑆𝑆𝐷𝐷𝑜𝑜𝐷𝐷 threshold. 

A few final notes regarding the applicability of these 𝐷𝐷𝐷𝐷𝐷𝐷 models have to be made. First, it is 

important to highlight that both the Tadmor & Tolhurst (2000) and the Joulan (2011) models are not models 

that directly predict a luminance difference threshold. Instead, they provide 𝐷𝐷𝐷𝐷𝐷𝐷-filtered images, and the 



sum of all 𝐷𝐷𝐷𝐷𝐷𝐷 values in the entire image was used as a proxy for how well contrast would be perceived in 

different scenarios. Second, the two 𝐷𝐷𝐷𝐷𝐷𝐷 models are image-forming models, which are most commonly 

applied in suprathreshold visibility conditions, while in this work they were used in conditions around 

threshold visibility. Third, the 𝐷𝐷𝐷𝐷𝐷𝐷 models only simulate visual processing in the lower-order regions of 

our visual system and therefore do not tell the entire story. Fourth, the set of spatial filters (i.e., the different 

𝐷𝐷𝐷𝐷𝐷𝐷’s) used in the Joulan (2011) models might not be suitable for this context, as Joulan and colleagues’ 

proposed set was built to represent a contrast sensitivity function for situations with an average luminance 

of 100 cd/m2 in the image. Our average luminance in the image was way lower. This might be one of the 

explanations for why the Joulan model (see Figure 37) did not detect the sharp edges of the arrow. Lastly, 

earlier presented results showed no interaction effect between glare and both road luminance and arrow 

size. One could therefore question the validity of modeling in the glare as a luminance superimposed on the 

entire input image. While this makes sense intuitively and corresponds with how people reportedly 

experience glare, another way of implementing glare on an image might be more suitable. 

  

Limitations 
In the previous section, some issues with comparing these results to the results of other studies, and some 

limitations of the used models have been already described. Therefore, this section will highlight this work’s 

additional, more general, limitation. 

The QUEST+ model performed a bit below expectation, as the average fit of the psychometric 

curves was not ideal. However, other psychometric experiment paradigms also have their disadvantages, 

and the QUEST+ was chosen as it was the most time-efficient method. This was important, as the older 

population would not have the cognitive and attentional resources for pro-longed participation in a 

demanding experiment like this one. Several participants indicated that even in this time-efficient paradigm, 

they experienced (visual) fatigue. If another psychometric paradigm was chosen, data collection would have 

been slower, allowing for fatigue to start playing a larger role, thereby reducing the quality of the collected 

data. 

 

Future research 
A first suggestion for future research is to dive deeper into the workings of the Joulan et al. (2011) 𝐷𝐷𝐷𝐷𝐷𝐷 

model. Their proposed set of spatial filters might be finetuned to be more accurate in the context of driving 

at night. Second, this research can be repeated with varying amounts or locations of glare, as only a single 

one was used in this work. One can imagine that a stronger or weaker glare would impact the luminance 

difference threshold. Regarding the location of glare, this study used a glare source coming from above. In 



reality, however, there is also glare coming from the headlights of cars ahead. Third, more realistic scenes 

can be used. For example, the effects of non-uniform backgrounds on the performance of models in this 

work can be further investigated. Finally, there is one big factor missing in the set-up of this experiment 

that reduces its ecological validity: a windshield. When on the road, there is this extra medium through 

which light has to travel, which can induce more scattering of light and potentially more glare. As part of 

this research, a pilot study was done regarding the effects of a windshield on the luminance difference 

threshold. The rationale behind, method of, and results of this pilot study are presented in Appendix D. 

 
Conclusion 
In this work, the luminance difference thresholds of an elderly population in a night-time driving scenario 

were investigated. A within-subject two-alternative forced-choice experiment, consisting of three road 

luminances (0.25, 0.66, and 0.99 cd/m2), three arrow sizes (5.5, 9.5, 20.3 arcmin), and the absence or 

presence of glare, was conducted to assess this threshold. In these 18 conditions, participants had to indicate 

the direction of an arrow that was presented in a scene of a road (the dependent variable). Psychometric 

curves were fit to proportion-correct data, and the 75%-correct point was used as the luminance difference 

threshold. This threshold was then a) compared across glare conditions (sub-research question 1), b) 

compared to data of a younger sample (sub-research question 2), and c) predicted using a psychophysical 

model and image-based models. 

It was found that in the elderly sample, the mean luminance difference threshold under conditions 

of glare was higher across all background luminance and arrow size conditions. On average, the threshold 

was 1.3x higher under conditions with glare compared to conditions without glare. However, these 

differences were only statistically significant in the conditions with a background luminance of 0.25 cd/m2. 

Glare thus has the most (negative) impact on visibility levels in situations with a low average luminance in 

the visual field. The second main finding was that the luminance difference threshold for older people was 

higher across all conditions compared to the younger sample. This was found by comparing the results of 

this work with those of Spieringhs and colleagues (2023) [Unpublished manuscript]. There were significant 

differences in all road luminance and arrow size conditions, with the exception of two 0.66 cd/m2 

conditions. On average, the luminance difference thresholds of the older sample were roughly 2.5x higher 

than those of the younger sample.  

Regarding the investigated models, it was found that the classic model by Adrian (1989) which 

included a factor for glare, predicted the luminance difference thresholds accurately for the larger two 

arrows (i.e., 9.5 and 20.3 arcmin). However, the model consistently overestimated the measured thresholds 

for the smallest arrow size (i.e., 5.5 arcmin). The image-based 𝐷𝐷𝐷𝐷𝐷𝐷 models by Tadmor & Tolhurst (2000) 

and Joulan, Hautiere, et al. (2011) were found to be providing metrics that could predict the luminance 



difference thresholds with relatively high accuracy based on an input image. However, the resulting 

prediction models were dependent on the arrow size, road luminance, and veiling luminance, and these 

variables were required as input to achieve accurate prediction. It turns out that, for all models investigated, 

many input variables are needed to make accurate predictions of the thresholds. This limits their practical 

applicability. 

Concluding, this work has highlighted the importance of considering the elderly population when 

designing road lighting. They constitute an ever-growing group of the world population that should not be 

ignored. The found luminance difference thresholds, under a variety of conditions, can be used to guide 

road design standards that are appropriate for this demographic. Ultimately, this will result in safer roads 

for all its users. 
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Appendices 

Appendix A: Matlab code 

A1: Running the experiment 
clear 
addpath('C:\Users\X'); 
callstr = ['set(gcbf,''Userdata'',double(get(gcbf,''Currentcharacter''))) ; uiresume '] ; 
ud.Hf = figure('keypressfcn',callstr,'Name','test','Menu','none','Toolbar','none','Position',[1981 1 3840 2160]);%0 0 
1900 1080,'Position',[1537 1 1536 864] 1981 1 3840 2160 
ud.HaL = axes('Units','pixels',... 
    'Position',[1 1 3840 2160],'XTick',[],'YTick',[]);%0 0 1900 1080 %1 1 3840 2160 
 
WindowAPI(ud.Hf, 'Button', 'off'); 
WindowAPI(ud.Hf, 'position', 'full') 
WindowAPI(ud.Hf, 'Clip', true); 
box off 
 
%% Read in images and determine pixel areas 
%central 
ud.myim_R = imread('Project4_Scene_12.png'); 
ud.myim_R_B = ud.myim_R; 
ud.myim = ud.myim_R; 
 
%background 
ud.backgroundpix_R(:,:,1) = ud.myim_R(:,:,1) == 167 & ud.myim_R(:,:,2) == 167 & ud.myim_R(:,:,3) == 167; 
ud.backgroundpix_R(:,:,2) = ud.myim_R(:,:,1) == 167 & ud.myim_R(:,:,2) == 167 & ud.myim_R(:,:,3) == 167; 
ud.backgroundpix_R(:,:,3) = ud.myim_R(:,:,1) == 167 & ud.myim_R(:,:,2) == 167 & ud.myim_R(:,:,3) == 167; 
 
%long curb left 
ud.myim_R_LL = imread('Project4_R_LL_2.png'); 
ud.curbpix_R_LL = ud.myim_R_LL <=138; 
 
%long curb right 
ud.myim_R_LR = imread('Project4_R_LR_2.png'); 
ud.curbpix_R_LR = ud.myim_R_LR <=138; 
 
%middle curb 
ud.myim_R_M = imread('Project4_R_M_2.png'); 
ud.curbpix_R_M = ud.myim_R_M <=138; 
 
%road 
ud.myim_R_R = imread('Project4_R_R_2.png'); 
ud.roadpix_R = ud.myim_R_R <=138; 
ud.roadpix_R_1 = ud.roadpix_R - ud.curbpix_R_LL; 
ud.roadpix_R_2 = ud.roadpix_R_1 - ud.curbpix_R_LR; 
ud.roadpix_R_3 = ud.roadpix_R_2 - ud.curbpix_R_M; 
ud.roadpix_R_4 = logical(ud.roadpix_R_3); 
 
ud_all = ud.backgroundpix_R + ud.curbpix_R_LL + ud.curbpix_R_LR + ud.curbpix_R_M + ud.roadpix_R_4; 
ud_missing = ud_all == 0; 
 
%all curb 
ud.curbpix_R_all = ud.curbpix_R_M + ud.curbpix_R_LL + ud.curbpix_R_LR; 



ud.curbpix_R_all_1 = logical(ud.curbpix_R_all); 
 
%road markings pointing left or right at different distances 
ud.curbpix6_1 =  imread('Project4_R_La_40m_2.png'); 
ud.curbpix6 =  ud.curbpix6_1<=138; 
 
ud.curbpix7_1 =  imread('Project4_R_La_60m_2.png'); 
ud.curbpix7 =  ud.curbpix7_1<=138; 
 
ud.curbpix8_1 =  imread('Project4_R_La_80m_2.png'); 
ud.curbpix8 =  ud.curbpix8_1<=138; 
 
ud.curbpix9_1 =  imread('Project4_R_La_100m_2.png'); 
ud.curbpix9 =  ud.curbpix9_1<=138; 
 
ud.curbpix10_1 =  imread('Project4_R_Ra_40m_2.png'); 
ud.curbpix10 =  ud.curbpix10_1<=138; 
 
ud.curbpix11_1 =  imread('Project4_R_Ra_60m_2.png'); 
ud.curbpix11 =  ud.curbpix11_1<=138; 
 
ud.curbpix12_1 =  imread('Project4_R_Ra_80m_2.png'); 
ud.curbpix12 =  ud.curbpix12_1<=138; 
 
ud.curbpix13_1 =  imread('Project4_R_Ra_100m_2.png'); 
ud.curbpix13 =  ud.curbpix13_1<=138; 
 
% ud.theend_1 = imread('theend.png'); 
% ud.theend = ud.theend_1 <=138; 
%% set start parameters for road markings (not road arrow) 
ud.myim(ud.roadpix_R_4) = 131; 
ud.myim(ud.backgroundpix_R) = 0; 
brightpix = ud.myim > 150; 
ud.myim(brightpix) = 0; 
ud.curbpix6_1(ud.curbpix6) = 162; 
ud.curbpix6_1(ud.curbpix7) = 162; 
ud.curbpix6_1(ud.curbpix8) = 162; 
ud.curbpix6_1(ud.curbpix9) = 162; 
ud.curbpix6_1(ud.curbpix10) = 162; 
ud.curbpix6_1(ud.curbpix11) = 162; 
ud.curbpix6_1(ud.curbpix12) = 162; 
ud.curbpix6_1(ud.curbpix13) = 162; 
ud.myim(ud.curbpix_R_all_1) = 162; 
ud.myim_b = ud.myim; 
 
% set gray image to equal RGB = 119 
ud.myimgray = uint8(ones(2160, 3840, 3)*119); 
 
% show gray image 
imshow(ud.myimgray); 
 
% input data before start experiment 
ud.number= 'Participant number,'; 
ud.age= 'Age,'; 
ud.date= 'Date MMDDYY,'; 
ud.image= 'Image, '; 



ud.PN=input(ud.number); 
ud.Age=input(ud.age); 
ud.Date=input(ud.date); 
 
% determine conditions 
road = [1 2 3]; %0.25 0.66 0.99 cd/m2 
distance = [1 2 3]; %40 60 80 m 
arrowD = [1 2]; %left / right 
observTim = 3; %3 s 
 
 
%% initialise quest (for each condition 3 road marking distances x 3 road surface luminance = 9) 
 
F1 = @(x,mu1_1,sigma_1_1,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu1_1,sigma_1_1); 
F2 = @(x,mu1_2,sigma_1_2,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu1_2,sigma_1_2); 
F3 = @(x,mu1_3,sigma_1_3,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu1_3,sigma_1_3); 
F4 = @(x,mu2_1,sigma_2_1,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu2_1,sigma_2_1); 
F5 = @(x,mu2_2,sigma_2_2,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu2_2,sigma_2_2); 
F6 = @(x,mu2_3,sigma_2_3,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu2_3,sigma_2_3); 
F7 = @(x,mu3_1,sigma_3_1,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu3_1,sigma_3_1); 
F8 = @(x,mu3_2,sigma_3_2,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu3_2,sigma_3_2); 
F9 = @(x,mu3_3,sigma_3_3,gamma,lambda)gamma+(1 - gamma - lambda).*normcdf(x,mu3_3,sigma_3_3); 
 
%determine stimulus and parameter domain for each road surface luminance 
%mu1 = linspace(116, 130, 20);%0.0228 (0.2728; age:65 20.3)   0.3313 (0.5813; age: 80 5.5) range of possible 
values for threshold 
mu1_1 = linspace(116, 124, 20); %for every distance a new mu 
mu1_2 = linspace(116, 124, 20); 
mu1_3 = linspace(116, 124, 20); 
 
%mu2 = linspace(131, 145, 20);%0.0407 (0.7007; age:65 20.3)   0.5679 (1.2279; age: 80 5.5) 
mu2_1 = linspace(131, 139, 20); %for every distance a new mu 
mu2_2 = linspace(131, 139, 20); 
mu2_3 = linspace(131, 139, 20); 
 
%mu3 = linspace(139, 152, 20);%0.0542 (1.0442; age:65 20.3)   0.7095 (1.6995; age: 80 5.5)  
mu3_1 = linspace(139, 147, 20); 
mu3_2 = linspace(139, 147, 20); 
mu3_3 = linspace(139, 147, 20); 
 
%sigma_1 = linspace(0.0770, (0.0770*1.5), 3); %sensitivity of the observer . Slope of curve  
sigma_1_1 = 1 ./ (sqrt(2*pi)) * linspace(0.0355, (0.0355*1.5), 3); 
sigma_1_2 = 1 ./ (sqrt(2*pi)) * linspace(0.0392, (0.0392*1.5), 3); 
sigma_1_3 = 1 ./ (sqrt(2*pi)) * linspace(0.0804, (0.0804*1.5), 3); 
 
%sigma_2 = linspace(0.0845, (0.0845*1.5), 3); 
sigma_2_1 = 1 ./ (sqrt(2*pi)) * linspace(0.0739, (0.0739*1.5), 3); 
sigma_2_2 = 1 ./ (sqrt(2*pi)) * linspace(0.0817, (0.0817*1.5), 3); 
sigma_2_3 = 1 ./ (sqrt(2*pi)) * linspace(0.1639, (0.1639*1.5), 3); 
 
%sigma_3 = linspace(0.1287, (0.1287*1.5), 3); 
sigma_3_1 = 1 ./ (sqrt(2*pi)) * linspace(0.1215, (0.1215*1.5), 3); 
sigma_3_2 = 1 ./ (sqrt(2*pi)) * linspace(0.1327, (0.1327*1.5), 3); 
sigma_3_3 = 1 ./ (sqrt(2*pi)) * linspace(0.1418, (0.1418*1.5), 3); 
 
 



gamma = 0.5; % 2 choices so fixed at 0.5 
lambda = 0.02; %incorrect responses to seen stimuli, due to inattention or response errors.  
 
paramDomain1_1 = {mu1_1, sigma_1_1, gamma, lambda}; 
paramDomain1_2 = {mu1_2, sigma_1_2, gamma, lambda}; 
paramDomain1_3 = {mu1_3, sigma_1_3, gamma, lambda}; 
paramDomain2_1 = {mu2_1, sigma_2_1, gamma, lambda}; 
paramDomain2_2 = {mu2_2, sigma_2_2, gamma, lambda}; 
paramDomain2_3 = {mu2_3, sigma_2_3, gamma, lambda}; 
paramDomain3_1 = {mu3_1, sigma_3_1, gamma, lambda}; 
paramDomain3_2 = {mu3_2, sigma_3_2, gamma, lambda}; 
paramDomain3_3 = {mu3_3, sigma_3_3, gamma, lambda}; 
 
stimDomain1 = 115:1:255; 
stimDomain2 = 130:1:255; 
stimDomain3 = 138:1:255; 
 
respDomain =[0 1]; 
 
stopRule = 'entropy'; 
stopCriterion = 3; %2 
% QP1, background luminance 0.25 cd/m2 and distance 40 m 
QP1 = QuestPlus(F1, stimDomain1, paramDomain1_1, respDomain, stopRule, stopCriterion,0,200);%510 
QP1.initialise(); 
% QP2, background luminance 0.25 cd/m2 and distance 60 m 
QP2 = QuestPlus(F2, stimDomain1, paramDomain1_2, respDomain, stopRule, stopCriterion,0,200); 
QP2.initialise(); 
% QP3, background luminance 0.25 cd/m2 and distance 80 m 
QP3 = QuestPlus(F3, stimDomain1, paramDomain1_3, respDomain, stopRule, stopCriterion,0,200); 
QP3.initialise(); 
% QP4, background luminance 0.66 cd/m2 and distance 40 m 
QP4 = QuestPlus(F4, stimDomain2, paramDomain2_1, respDomain, stopRule, stopCriterion,0,200); 
QP4.initialise(); 
% QP5, background luminance 0.66 cd/m2 and distance 60 m 
QP5 = QuestPlus(F5, stimDomain2, paramDomain2_2, respDomain, stopRule, stopCriterion,0,200); 
QP5.initialise(); 
% QP6, background luminance 0.66 cd/m2 and distance 80 m 
QP6 = QuestPlus(F6, stimDomain2, paramDomain2_3, respDomain, stopRule, stopCriterion,0,200); 
QP6.initialise(); 
% QP7, background luminance 0.99 cd/m2 and distance 40 m 
QP7 = QuestPlus(F7, stimDomain3, paramDomain3_1, respDomain, stopRule, stopCriterion,0,200); 
QP7.initialise(); 
% QP8, background luminance 0.99 cd/m2 and distance 60 m 
QP8 = QuestPlus(F8, stimDomain3, paramDomain3_2, respDomain, stopRule, stopCriterion,0,200); 
QP8.initialise(); 
% QP9, background luminance 0.99 cd/m2 and distance 80 m 
QP9 = QuestPlus(F9, stimDomain3, paramDomain3_3, respDomain, stopRule, stopCriterion,0,200); 
QP9.initialise(); 
 
stoppingCrit = 1; 
 
%% run experiment 
pause(10) 
while ~QP1.isFinished() ||  ~QP2.isFinished() || ~QP3.isFinished() || ~QP4.isFinished() || ~QP5.isFinished() || 
~QP6.isFinished() || ~QP7.isFinished() || ~QP8.isFinished() || ~QP9.isFinished() 
     



    RandBack = [1 2 3]; 
    RandDist = [1 2 3]; 
     
    if QP1.isFinished() && QP2.isFinished() && QP3.isFinished() 
        RandBack = RandBack(RandBack ~= 1); 
    end 
     
    if QP4.isFinished() && QP5.isFinished() && QP6.isFinished() 
         RandBack = RandBack(RandBack ~= 2);        
    end 
     
    if QP7.isFinished() && QP8.isFinished() && QP9.isFinished() 
         RandBack = RandBack(RandBack ~= 3);        
    end 
 
    if QP1.isFinished() && QP4.isFinished() && QP7.isFinished() 
        RandDist = RandDist(RandDist ~= 1); 
    end 
     
    if QP2.isFinished() && QP5.isFinished() && QP8.isFinished() 
         RandDist = RandDist(RandDist ~= 2);        
    end 
     
    if QP3.isFinished() && QP6.isFinished() && QP9.isFinished() 
         RandDist = RandDist(RandDist ~= 3);        
    end    
     
    Lback = RandBack(randperm(length(RandBack),1)); 
    randDist = RandDist(randperm(length(RandDist),1)); 
     
    %Lback = randi(3); % get random value between 1 and 3 
    % set background luminance 
    switch Lback 
        case 1 
            ud.myim(ud.roadpix_R_4) = 116; 
        case 2 
            ud.myim(ud.roadpix_R_4) = 131; 
        case 3 
            ud.myim(ud.roadpix_R_4) = 139; 
    end 
     
   % randDist = randi(3); % get random value between 1 and 3 
    randDir = randi(2); % get random value between 1 and 2 
    % get value from the quest method and then set stimulus value (set luminance of the arrow) 
    switch Lback 
        case 1 %0.25 cd/m2 
            switch randDist 
                case 1 %40 m 
                    targ = QP1.getTargetStim(); 
                    if targ < 116 
                        targ = 116; 
                    end 
                    switch randDir 
                        case 1 %links 
                            ud.myim(ud.curbpix6) = targ; 
                        case 2 %rechts 



                            ud.myim(ud.curbpix10) = targ; 
                    end 
                case 2 %60 m 
                    targ = QP2.getTargetStim(); 
                    if targ < 116 
                        targ = 116; 
                    end 
                    switch randDir 
                        case 1 
                            ud.myim(ud.curbpix7) = targ; 
                        case 2 
                            ud.myim(ud.curbpix11) = targ; 
                    end 
                case 3 %80 m 
                    targ = QP3.getTargetStim(); 
                    if targ < 116 
                        targ = 116; 
                    end 
                    switch randDir 
                        case 1 
                            ud.myim(ud.curbpix8) = targ; 
                        case 2 
                            ud.myim(ud.curbpix12) = targ; 
                    end 
            end 
        case 2 %0.66 cd/m2 
            switch randDist 
                case 1 %40 m 
                    targ = QP4.getTargetStim(); 
                    if targ < 131 
                        targ = 131; 
                    end 
                    switch randDir 
                        case 1 %links 
                            ud.myim(ud.curbpix6) = targ; 
                        case 2 %rechts 
                            ud.myim(ud.curbpix10) = targ; 
                    end 
                case 2 %60 m 
                    targ = QP5.getTargetStim(); 
                    if targ < 131 
                        targ = 131; 
                    end 
                    switch randDir 
                        case 1 
                            ud.myim(ud.curbpix7) = targ; 
                        case 2 
                            ud.myim(ud.curbpix11) = targ; 
                    end 
                case 3 %80 m 
                    targ = QP6.getTargetStim(); 
                    if targ < 131 
                        targ = 131; 
                    end 
                    switch randDir 
                        case 1 



                            ud.myim(ud.curbpix8) = targ; 
                        case 2 
                            ud.myim(ud.curbpix12) = targ; 
                    end 
            end 
        case 3 %0.99 cd/m2 
            switch randDist 
                case 1 %40 m 
                    targ = QP7.getTargetStim(); 
                    if targ < 139 
                        targ = 139; 
                    end                    
                    switch randDir 
                        case 1 %links 
                            ud.myim(ud.curbpix6) = targ; 
                        case 2 %rechts 
                            ud.myim(ud.curbpix10) = targ; 
                    end 
                case 2 %60 m 
                    targ = QP8.getTargetStim(); 
                    if targ < 139 
                        targ = 139; 
                    end   
                    switch randDir 
                        case 1 
                            ud.myim(ud.curbpix7) = targ; 
                        case 2 
                            ud.myim(ud.curbpix11) = targ; 
                    end 
                case 3 %80 m 
                    targ = QP9.getTargetStim(); 
                    if targ < 139 
                        targ = 139; 
                    end   
                    switch randDir 
                        case 1 
                            ud.myim(ud.curbpix8) = targ; 
                        case 2 
                            ud.myim(ud.curbpix12) = targ; 
                    end 
            end 
    end 
     
    % update image 
    imshow(ud.myim); 
    ch = 0; 
    elapsedTime = 0; 
    set(ud.Hf,'Userdata',[]) 
    % get response 
    try 
        tNow = clock; 
        beep 
        % wait until left/right key is pressed or until 2 seconds passed 
        while ch ~= 28 && ch ~= 29 && elapsedTime <= observTim 
            pause(0.001) 
            ch = get(ud.Hf,'Userdata') ; 



            elapsedTime = etime(clock,tNow); 
            if isempty(ch) 
                ch = 200 ; % in case of no answer we give them ch = 200 
            end 
        end 
    catch 
        % Something went wrong, return and empty matrix. 
        ch = NaN; 
    end 
     
    % set answer correct (arrow left + answer left = 1; arrow right + 
    % answer right = 1; else 0);. 
    if randDir == 1 && ch == 28 || randDir == 2 && ch == 29 
        anscorrect =1; 
    else 
        if ch == 200 
        guess = randi(2); 
        switch guess  
            case 1  
                anscorrect =0; 
            case 2 
                anscorrect = 1; 
        end 
        else 
                anscorrect =0;             
        end 
    end 
     
    % update the quest function for corresponding initialisation with 
    % whether the answer to the stimulus value was correct 
    switch Lback 
        case 1 %0.25 cd/m2 
            switch randDist 
                case 1 %40 m 
                    QP1.update(targ, anscorrect); 
                case 2 %60 m 
                    QP2.update(targ, anscorrect); 
                case 3 %80 m 
                    QP3.update(targ, anscorrect); 
            end 
        case 2 %0.66 cd/m2 
            switch randDist 
                case 1 %40 m 
                    QP4.update(targ, anscorrect); 
                case 2 %60 m 
                    QP5.update(targ, anscorrect); 
                case 3 %80 m 
                    QP6.update(targ, anscorrect); 
            end 
        case 3 %0.99 cd/m2 
            switch randDist 
                case 1 %40 m 
                    QP7.update(targ, anscorrect); 
                case 2 %60 m 
                    QP8.update(targ, anscorrect); 
                case 3 %80 m 



                    QP9.update(targ, anscorrect); 
            end 
    end 
   
% store data | participant number, age, date of experiment, luminance 
    % background, distance arrow, direction arrow, luminance target, choice 
    % participant, correct (yes/no) 
    stoppingCrit = stoppingCrit+1; 
    data = [ud.PN, ud.Age, ud.Date,Lback,randDist,randDir,targ, ch,anscorrect,elapsedTime ]; 
    dlmwrite('ExperimentDataRAW.csv',data,'-append'); 
    ch 
    ud.myim = ud.myim_b; 
    % set back to gray image 
    imshow(ud.myimgray); 
    pause(2.5) 
    if stoppingCrit > 150 
        disp("end of experiment max trials") 
        break 
    end 
     
end 
%% analyse data and plot thresholds 
% QP1, background luminance 0.25 cd/m2 and distance 40 m 
endGuess_mean1 = QP1.getParamEsts('mean'); 
est_mu1_1 = endGuess_mean1(1); %free parameter % was estimated at 168. Could be done for other arrows by 
changing QP... 
est_signma = endGuess_mean1(2); %fixed at : 1 
est_gamma = endGuess_mean1(3); %fixed at: 0.5 
est_lambda = endGuess_mean1(4); %fixed at : 0.02 
% QP2, background luminance 0.25 cd/m2 and distance 60 m 
endGuess_mean2 = QP2.getParamEsts('mean'); 
est_mu1_2 = endGuess_mean2(1); 
% QP3, background luminance 0.25 cd/m2 and distance 80 m 
endGuess_mean3 = QP3.getParamEsts('mean'); 
est_mu1_3 = endGuess_mean3(1); 
% QP4, background luminance 0.66 cd/m2 and distance 40 m 
endGuess_mean4 = QP4.getParamEsts('mean'); 
est_mu2_1 = endGuess_mean4(1); 
% QP5, background luminance 0.66 cd/m2 and distance 60 m 
endGuess_mean5 = QP5.getParamEsts('mean'); 
est_mu2_2 = endGuess_mean5(1); 
% QP6, background luminance 0.66 cd/m2 and distance 80 m 
endGuess_mean6 = QP6.getParamEsts('mean'); 
est_mu2_3 = endGuess_mean6(1); 
% QP7, background luminance 0.99 cd/m2 and distance 40 m 
endGuess_mean7 = QP7.getParamEsts('mean'); 
est_mu3_1 = endGuess_mean7(1); 
% QP8, background luminance 0.99 cd/m2 and distance 60 m 
endGuess_mean8 = QP8.getParamEsts('mean'); 
est_mu3_2 = endGuess_mean8(1); 
% QP9, background luminance 0.99 cd/m2 and distance 80 m 
endGuess_mean9 = QP9.getParamEsts('mean'); 
est_mu3_3 = endGuess_mean9(1); 
 
%endscreen 



data2 = [ud.PN, ud.Age, 
ud.Date,est_mu1_1,est_mu1_2,est_mu1_3,est_mu2_1,est_mu2_2,est_mu2_3,est_mu3_1,est_mu3_2,est_mu3_3, ]; 
dlmwrite('ExperimentDataThresholds.csv',data2,'-append'); 
disp("end of experiment") 
%imshow(ud.theend); 
 
 
 

  



A2: Calculating the luminance difference thresholds 
 
clear 
close all 
addpath('C:\Users\XXX\'); 
addpath('C:\Users\XXX\'); 
 
filename = 'C:\Users\XXX'; 
M = readmatrix(filename); 
 
%Replace the condition indicators for actual values to allow intuitive use 
%of the code later on. 
M(M(:,4)==1, 4) = 0.25; 
M(M(:,4)==2, 4) = 0.66; 
M(M(:,4)==3, 4) = 0.99; 
M(M(:,5)==1, 5) = 40; 
M(M(:,5)==2, 5) = 60; 
M(M(:,5)==3, 5) = 80; 
 
%Fix for some incorrectly coded responses. 
M(isnan(M(:,1)),:) = []; 
M(:,11)= zeros(length(M),1); 
M(M(:,8)==28 & M(:,6)==1 | M(:,8)==29 & M(:,6)==2,11) = 1; 
 
%Correction for participant 18, who sometimes used 31 where 29 was intended. 
M(M(:,8)==28 & M(:,6)==1 | M(:,8)==31 & M(:,6)==2,11) = 1; 
 
%Nonresponse trials: set value to 0.5 
M(M(:,8) == 200, 11) = 0.5;      
 
 
 
%%%%%%%%%%%%% OWN INPUT HERE %%%%%%%%%%%%% 
 
lumLB = [0.25 0.66 0.99]; 
dist = [40 60 80]; 
participant = [18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 36 181 191 201 211 221 231 241 251 261 271 
281 291 301 311 321 341 351 361]; 
 
%%%%%%%%%%%%% OWN INPUT HERE %%%%%%%%%%%%% 
 
 
%% Individual observers 
if 1 
    for l = 1:length(participant) 
        for k = 1:3 
            for j = 1:3 
 
                %Conditions 
                con1 = M(:,1) == participant(l);       %particpant number 
                con2 = M(:,4) == lumLB(k);             %road luminance (0.25, 0.66, 0.99) 
                con3 = M(:,5) == dist(j);              %arrow distance (40, 60, 80) 
 
 
                %Save only the required rows as new dataet. 
                all_con = con1 & con2 & con3; 



                D = M(all_con,:); 
 
                %Delete the unnessecary columns: we only need the luminance value, amount 
                %correct at this value, total trials at this value 
                D = D(:,[7 11]); 
                D; 
                %Now we only have the luminance value (in RGB), and the correct/incorrect 
 
 
                %Make the dataset ready for psignifit: level, #correct, #total 
                levels = unique(D(:,1)); 
                counts = histc(D(:,1), levels); 
 
                nr_correct = []; 
 
                for i = 1:length(levels) 
                    corr_sum = sum(D(D(:,1)==levels(i),2)); 
                    nr_correct = [nr_correct; corr_sum]; 
                end 
 
                input_data = [levels, nr_correct, counts]; 
 
 
                %Now the input_data can be used to create the psychometric 
                %curve. 
                %First: Convert RGB to luminance values 
                lum = f(double(input_data(:,1))); 
                input_data(:,1) = lum; 
                input_data                 
 
 
                %Now we can use psignfit. 
                options = struct; 
                options.sigmoidName = 'norm'; 
                options.expType     = '2AFC'; 
 
                result = psignifit(input_data,options); 
                %plotPsych(result); 
                %print(['Result_29_' num2str(k) '_' num2str(j) '_' num2str(l)],'-dpng','-r600'); 
           
                Threshold(k,j,l) = getThreshold(result,0.75)-lumLB(k); 
                ThresholdDwn(k,j,l) = result.conf_Intervals(1,1,1)-lumLB(k); 
                ThresholdUp(k,j,l) = result.conf_Intervals(1,2,1)-lumLB(k); 
 
                B1 = nr_correct./counts; 
                A1 = lum; 
                F1 = result.psiHandle(A1); 
                [R2 Rsq] = rsquared(repelem(A1, counts),repelem(B1,counts),repelem(F1,counts)); 
                R2psychcurves(k,j,l) = R2; 
                R2psychcurves2(k,j,l) = Rsq; 
                 
                %Add some more data from the raw dataset to the processed 
                %threshold data. 
                age(l) = unique(M(M(:,1)==participant(l),2)); 
 



                data = [participant(l), age(l), lumLB(k), dist(j), Threshold(k,j,l), ThresholdDwn(k,j,l), ThresholdUp(k,j,l), 
R2psychcurves(k,j,l), R2psychcurves2(k,j,l)]; 
                dlmwrite('final_thresholds.csv',data,'-append'); 
            end 
        end 
    end 
end 
%% Average observer 
if 0 
    for k = 1:3 
        for j = 1:3 
            %Conditions 
            con4 = M(:,4) == lumLB(k);    %road luminance (0.25, 0.66, 0.99) 
            con5 = M(:,5) == dist(j);      %arrow distance (40, 60, 80) 
 
            %Save only the required rows as new dataet. 
            all_con = con4 & con5; 
            D = M(all_con,:); 
 
            %Delete the unnessecary columns: we only need the luminance value, amount 
            %correct at this value, total trials at this value 
            D = D(:,[7 11]); 
            D; 
 
            %Make the dataset ready for psignifit: level, #correct, #total 
            levels = unique(D(:,1)); 
            counts = histc(D(:,1), levels); 
 
            nr_correct = []; 
 
            for i = 1:length(levels) 
                corr_sum = sum(D(D(:,1)==levels(i),2)); 
                nr_correct = [nr_correct; corr_sum]; 
            end 
 
            input_data = [levels, nr_correct, counts]; 
 
            %Now the input_data can be used to create the psychometric 
            %curve. 
            %First: Convert RGB to luminance values 
            lum = f(double(input_data(:,1))); 
            input_data(:,1) = lum; 
            input_data 
 
            %Now we can use psignfit. 
            options = struct; 
            options.fixedPars = NaN(5,1); 
            options.fixedPars(3) = .01; 
            options.sigmoidName = 'norm'; 
            options.expType     = '2AFC'; 
 
            result = psignifit(input_data,options); 
            plotPsych(result); 
            Threshold(k,j) = getThreshold(result,0.75)-lumLB(k); 
            ThresholdDwn(k,j) = result.conf_Intervals(1,1,1)-lumLB(k); 
            ThresholdUp(k,j) = result.conf_Intervals(1,2,1)-lumLB(k); 



 
            data = [lumLB(k), dist(j), Threshold(k,j), ThresholdDwn(k,j), ThresholdUp(k,j)]; 
            dlmwrite('avg_observer.csv',data,'-append'); 
        end 
    end 
end 
 
 
%% 
 
 
function [R2 Rsq] = rsquared(A,B,f) 
Bbar = mean(B); 
SStot = sum((B - Bbar).^2); 
SSreg = sum((f - Bbar).^2); 
SSres = sum((B - f).^2); 
R2 = 1 - SSres/SStot; 
R = corrcoef(A,B); 
Rsq = R(1,2).^2; 
end 
 
function y = f(x)   %RGB values to luminance values 
 
%  Reference paper: 
%  Spieringhs, R.M., Smet, K., Heynderickx, I., Hanselaer, P. 2021. 
%  Road Marking Contrast Threshold Revisited. LEUKOS. 
% 
%   f(x) = p1*x^2 + p2*x + p3 
%   Coefficients (with 95% confidence bounds): 
%     p1 =   0.0006363  (0.0005671, 0.0007055) 
%     p2 =     -0.1301  (-0.1484, -0.1119) 
%     p3 =       6.782  (5.58, 7.983) 
 
p1 =   0.0006363; 
p2 =     -0.1301; 
p3 =       6.782; 
y = p1*x.^2 + p2.*x + p3; 
end 
 

  



A3: Applying Adrian’s model 
 
%Calculate threshold according to the Adrian (1989) model. 
filename = 'C:\Users\XXX'; 
M = readmatrix(filename); 
 
%Add row for arrow size (in arcminutes) 
M(:, size(M,2)+1)= zeros(length(M),1);  
M(M(:,4)==40, size(M,2)) = 20.3; 
M(M(:,4)==60, size(M,2)) = 9.5; 
M(M(:,4)==80, size(M,2)) = 5.5; 
 
%Add row for glare angle (in degrees) 
M(:, size(M,2)+1)= zeros(length(M),1);  
M(M(:,4)==40, size(M,2)) = 22.39; 
M(M(:,4)==60, size(M,2)) = 21.58; 
M(M(:,4)==80, size(M,2)) = 21.48; 
 
%Calculate different Adrian thresholds for each row: 
 
for i = 1:length(M) 
   threshAdNoGlare(i) = rms_contrastAdNoGlare(M(i,3), M(i,9), M(i,2), 3, 1); 
       threshAdGlare(i) = rms_contrastAdGlare(M(i,3), M(i,9), M(i,2), 3, 1, 12.6, M(i,10)); 
           threshAdPSF(i) = rms_contrastAdPSF(M(i,3), M(i,9), M(i,2), 3, 1, 12.6, M(i,10), M(i,8)); 
end 
 
%Export dataset to .csv 
M(:, size(M,2)+1) = threshAdNoGlare; 
M(:, size(M,2)+1) = threshAdGlare; 
M(:, size(M,2)+1) = threshAdPSF; 
writematrix(M,'data_with_adrian.csv') 
 
 
%Original Adrian (1989) model WITHOUT glare 
function [Lt, Cth] = rms_contrastAdNoGlare(Lb, Angle, Age, tobs, pos) 
%Created by RMSpieringhs 18/12/19 based on the Adrian contrast model. 
%Modified by TRC van Hoesel 7/11/22 to include presence of a glare 
%source. 
%Last updated 28/11/22. 
%% Output (Cth, Lt): 
%Cth contrast threshold 
%Lt target luminance in cd/m2 
%% Input (Lb, Angle, Age, tobs, pos): 
%Lb in cd/m2 (Lb must be higher than 0.0042) Background luminance 
%Angle of object in min 
%Age in years (must be between 22 and 76) 
%t in sec 
%if pos = 1 positive contrast 
%if pos = 0 negative contrast 
 
 
try 
%% check input 
if Lb < 0.0042 
    disp('Lb should not be negative and be higher than 0.0042') 
else 



end 
 
if Age < 23 || Age > 75 
    disp('age must be between 22 and 76') 
else 
end 
 
%% calc AF 
if Age <= 23 
    AF = 1; 
else 
    if Age <= 64 
        AF = (((Age-19)^2)/2160)+0.99; 
    else 
        AF = (((Age-56.6)^2)/116.3)+1.43; 
    end 
end 
 
%% calc Tobs 
 
g1 = log10(Angle)+0.523; 
g = 0.36-(0.0972*((g1^2)/((g1^2)-2.513*g1+2.7895))); 
 
h1 = log10(Lb)+6; 
h = 0.355-(0.1217*((h1.^2)/((h1.^2)-10.4*h1+52.28)));   
 
f = (((g^2)+(h^2))^0.5)/2.1; 
 
Tobs = (f+tobs)/tobs; 
 
 
%% calc Cth 
 
if pos == 1 
     
    Fcp = 1; 
    if Lb < 0.6 
        b = 10^(-0.072+0.3372*log10(Lb)+(0.0866*(log10(Lb)^2))); 
        c = 10^(-1.256+0.319*log10(Lb)); 
    else 
        b = log10(4.2841*(Lb^0.1556))+(0.1684*(Lb^0.5867)); 
        %4.2841 in this formula instead of the original 4.1925 from Adrian (1989).  
        % See "van Bommel (2015). Road Lighting, Appendix B". 
        
        c = 0.05946*(Lb^0.466); 
    end 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs;  
     
    Lt = Cth*Lb ;%+ Lb; 
     
else 
     
    Fcp = 1; 
    if Lb < 0.6 
        b = 10^(-0.072+0.3372*log10(Lb)+(0.0866*(log10(Lb)^2))); 



        c = 10^(-1.256+0.319*log10(Lb)); 
    else 
        b = log10(4.2841*(Lb^0.1556))+(0.1684*(Lb^0.5867));  
        %4.2841 in this formula instead of the original 4.1925 from Adrian (1989).  
        % See "van Bommel (2015). Road Lighting, Appendix B". 
 
        c = 0.05946*(Lb^0.466); 
    end 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs; 
     
    if Lb < 0.1 
    d = 10^(-10^(-1*(0.075*((log10(Lb)+1)^2)+0.0245)));         
    else 
    d = 10^(-10^(-1*(0.125*((log10(Lb)+1)^2)+0.0245))); 
    end 
    e = 0.6*(Lb^-0.1488); 
    Fcp = 1 - ((d*(Angle^(-1*e)))/(2.4*Cth*Lb)); 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs; 
     
    Lt = Cth*Lb ;%+ Lb; 
     
end 
catch 
   help rms_contrastAd 
   return  
end 
end 
 
%Original Adrian (1989) model WITH glare 
function [Lt, Cth] = rms_contrastAdGlare(Lb, Angle, Age, tobs, pos, eyeillu, glareangle) 
%Created by RMSpieringhs 18/12/19 based on the Adrian contrast model. 
%Modified by TRC van Hoesel 7/11/22 to include presence of a glare 
%source. 
%Last updated 28/11/22. 
%% Output (Cth, Lt): 
%Cth contrast threshold 
%Lt target luminance in cd/m2 
%% Input (Lb, Angle, Age, tobs, pos): 
%Lb in cd/m2 (Lb must be higher than 0.0042) Background luminance 
%Angle of object in min 
%Age in years (must be between 22 and 76) 
%t in sec 
%if pos = 1 positive contrast 
%if pos = 0 negative contrast 
 
%In presence of a glare source: use the following arguments 
%eyeillu: illumination at the eye from the glare source (lx) 
%glareangle: angle between center of the glare source and the fixation line, 20 degrees als ze naar oneindig kijken.  
        %precies midden scherm: 20 degrees. 
        %80m: 21.48, 60m: 21.85, 40m: 22.39 
%If no glare source present, set both values to 0. 
% [Lt, Cth] = rms_contrastAd(0.99, 20.3, 70, 3, 1, 12.6, 15) 
 
try 



%% check input 
if Lb < 0.0042 
    disp('Lb should not be negative and be higher than 0.0042') 
else 
end 
 
if Age < 23 || Age > 75 
    disp('age must be between 22 and 76') 
else 
end 
 
%% add veiling luminance for disability glare 
if eyeillu ~= 0 && glareangle ~= 0 
    k = (0.0752 * Age - 1.883)^2 + 9.2;    %age-dependent constant 
    Lseq = k * (eyeillu/(glareangle^2));   %veiling luminance 
    Lb = Lb+Lseq; 
 
    %eerst checken hoe deze het doet, hoe is de fit. 
    %daarna kunnen we nog andere manieren van veiling luminances bekijken 
    %en toeveogen. 
end 
 
 
%% calc AF 
if Age <= 23 
    AF = 1; 
else 
    if Age <= 64 
        AF = (((Age-19)^2)/2160)+0.99; 
    else 
        AF = (((Age-56.6)^2)/116.3)+1.43; 
    end 
end 
 
%% calc Tobs 
 
g1 = log10(Angle)+0.523; 
g = 0.36-(0.0972*((g1^2)/((g1^2)-2.513*g1+2.7895))); 
 
h1 = log10(Lb)+6; 
h = 0.355-(0.1217*((h1.^2)/((h1.^2)-10.4*h1+52.28)));   
 
f = (((g^2)+(h^2))^0.5)/2.1; 
 
Tobs = (f+tobs)/tobs; 
 
 
%% calc Cth 
 
if pos == 1 
     
    Fcp = 1; 
    if Lb < 0.6 
        b = 10^(-0.072+0.3372*log10(Lb)+(0.0866*(log10(Lb)^2))); 
        c = 10^(-1.256+0.319*log10(Lb)); 
    else 



        b = log10(4.2841*(Lb^0.1556))+(0.1684*(Lb^0.5867)); 
        %4.2841 in this formula instead of the original 4.1925 from Adrian (1989).  
        % See "van Bommel (2015). Road Lighting, Appendix B". 
        
        c = 0.05946*(Lb^0.466); 
    end 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs;  
     
    Lt = Cth*Lb ;%+ Lb; 
     
else 
     
    Fcp = 1; 
    if Lb < 0.6 
        b = 10^(-0.072+0.3372*log10(Lb)+(0.0866*(log10(Lb)^2))); 
        c = 10^(-1.256+0.319*log10(Lb)); 
    else 
        b = log10(4.2841*(Lb^0.1556))+(0.1684*(Lb^0.5867));  
        %4.2841 in this formula instead of the original 4.1925 from Adrian (1989).  
        % See "van Bommel (2015). Road Lighting, Appendix B". 
 
        c = 0.05946*(Lb^0.466); 
    end 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs; 
     
    if Lb < 0.1 
    d = 10^(-10^(-1*(0.075*((log10(Lb)+1)^2)+0.0245)));         
    else 
    d = 10^(-10^(-1*(0.125*((log10(Lb)+1)^2)+0.0245))); 
    end 
    e = 0.6*(Lb^-0.1488); 
    Fcp = 1 - ((d*(Angle^(-1*e)))/(2.4*Cth*Lb)); 
     
    Cth = (2.6/Lb)*(((b/Angle)+c)^2)*Fcp*AF*Tobs; 
     
    Lt = Cth*Lb ;%+ Lb; 
     
end 
catch 
   help rms_contrastAd 
   return  
end 
end 
  



A4: Applying the simple 𝑫𝑫𝑫𝑫𝑫𝑫 model 
 
clear; 
%load('imageArrow.mat') 
addpath('C:\Users\XXX');   
filename = 'C:\Users\XXX.csv'; 
M = readmatrix(filename); 
%L = a;   %loads arrow image, represented as 150x150 matrix 
 
%% Reading in arrow images 
% Read in images of arrows at different distances, resize it to 150x150 
% reading in the RGB images of the arrows at three different distances (40, 60, 80 m)  
 
sizePX = 186:335; 
sizePX2 = 291:440; 
    curbpix6_0 =  imread('Project4_R_La_40m_2.png'); 
    curbpix6_3 = curbpix6_0(850:1250,1590:2350,:); 
    curbpix6_1 = curbpix6_3(sizePX,sizePX2,:); 
    curbpix6 =  curbpix6_1<=138; 
    curbpix6_2 = curbpix6_1>138; 
     
    curbpix7_0 =  imread('Project4_R_La_60m_2.png'); 
    curbpix7_3 = curbpix7_0(850:1250,1590:2350,:); 
    curbpix7_1 = curbpix7_3(sizePX,sizePX2,:); 
    curbpix7 =  curbpix7_1<=138; 
    curbpix7_2 = curbpix7_1>138; 
     
    curbpix8_0 =  imread('Project4_R_La_80m_2.png'); 
    curbpix8_3 = curbpix8_0(850:1250,1590:2350,:); 
    curbpix8_1 = curbpix8_3(sizePX,sizePX2,:); 
    curbpix8 =  curbpix8_1<=138; 
    curbpix8_2 = curbpix8_1>138; 
 
    roadBack1 = 116; 
    roadBack2 = 131; 
    roadBack3 = 139; 
 
    pixelscurb1 = curbpix6_1; 
    idpixelscurb1 = curbpix6;   %Pixels corresponding to arrow 
    idpixelback1 = curbpix6_2;  %Pixels corresponding to background 
 
    pixelscurb2 = curbpix7_1; 
    idpixelscurb2 = curbpix7; 
    idpixelback2 = curbpix7_2; 
 
    pixelscurb3 = curbpix8_1; 
    idpixelscurb3 = curbpix8; 
    idpixelback3 = curbpix8_2; 
 
 
    o=5;   %Indicating column of measured thresholds 
    p=1; 
    data_final = []; 
    Lv_data_final = []; 
 
while p < length(M) 



    LT1 = M(p,o); % 0.25 cd/m2 20.3 arcmin 
    Lv1 = PSF(M(p,2), M(p,10), M(p,8), 12.6);  %Calculating the veiling luminance for this participant and condition 
    p=p+1; 
 
    LT2 = M(p,o); % 0.25 cd/m2 9.5 arcmin 
    Lv2 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT3 = M(p,o); % 0.25 cd/m2 5.5 arcmin 
    Lv3 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT4 = M(p,o); % 0.66 cd/m2 20.3 arcmin 
    Lv4 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT5 = M(p,o); % 0.66 cd/m2 9.5 arcmin 
    Lv5 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT6 = M(p,o); % 0.66 cd/m2 5.5 arcmin 
    Lv6 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
     
    LT7 = M(p,o); % 0.99 cd/m2 20.3 arcmin 
    Lv7 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT8 = M(p,o); % 0.99 cd/m2 9.5 arcmin 
    Lv8 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT9 = M(p,o); % 0.99 cd/m2 5.5 arcmin 
    Lv9 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
     
    %LT1 - LT9: the measured luminance thresholds of the participants 
    % + the corresponding Lv for each participant! 
    lummap1 = f(double(pixelscurb1)); 
    lummap1(idpixelscurb1)= ( LT1) + f(116) + Lv1;  % + Lv1 adds the veiling luminance on the image 
    lummap1(idpixelback1)= f(116) + Lv1;            % + Lv1 adds the veiling luminance on the image 
    lummap1 = lummap1(:,:,1); 
 
    lummap2 = f(double(pixelscurb2)); 
    lummap2(idpixelscurb2) = ( LT2) + f(116) + Lv2; 
    lummap2(idpixelback2)= f(116) + Lv2;   
    lummap2 = lummap2(:,:,1); 
 
    lummap3 = f(double(pixelscurb3)); 
    lummap3(idpixelscurb3)= ( LT3) + f(116) + Lv3; 
    lummap3(idpixelback3)= f(116) + Lv3; 
    lummap3 = lummap3(:,:,1); 
 
    lummap4 = f(double(pixelscurb1)); 
    lummap4(idpixelscurb1)= ( LT4) + f(131) + Lv4; 



    lummap4(idpixelback1)= f(131) + Lv4; 
    lummap4 = lummap4(:,:,1); 
 
    lummap5 = f(double(pixelscurb2)); 
    lummap5(idpixelscurb2)= ( LT5) + f(131) + Lv5; 
    lummap5(idpixelback2)= f(131) + Lv5; 
    lummap5 = lummap5(:,:,1); 
 
    lummap6 = f(double(pixelscurb3)); 
    lummap6(idpixelscurb3)= ( LT6) + f(131) + Lv6; 
    lummap6(idpixelback3)= f(131) + Lv6; 
    lummap6 = lummap6(:,:,1); 
 
    lummap7 = f(double(pixelscurb1)); 
    lummap7(idpixelscurb1)= ( LT7) + f(139) + Lv7; 
    lummap7(idpixelback1)= f(139) + Lv7; 
    lummap7 = lummap7(:,:,1); 
 
    lummap8 = f(double(pixelscurb2)); 
    lummap8(idpixelscurb2)= ( LT8) + f(139) + Lv8; 
    lummap8(idpixelback2)= f(139) + Lv8; 
    lummap8 = lummap8(:,:,1); 
 
    lummap9 = f(double(pixelscurb3)); 
    lummap9(idpixelscurb3)= ( LT9) + f(139) + Lv9; 
    lummap9(idpixelback3)= f(139) + Lv9; 
    lummap9 = lummap9(:,:,1); 
%%  
 
 
rc = 1;   %Set radius of center and surround receptive fields.  
rs = 2; 
n = round(length(ceil(3*-rs):1:ceil(3*rs))/2);     %Define matrix size of receptive fields (13 by 13 in this case) 
for i = ceil(3*-rs):1:ceil(3*rs)                   %Indicators that run from -6 to 6, in order to fill all cells of the matrix 
    for j = ceil(3*-rs):1:ceil(3*rs) 
        RFc2(n+i,n+j) = exp(-((i./abs(rc)).^2)-((j./abs(rc)).^2));   
         %center is at n+i,n+i = 7+0,7+0 = 7,7. Then the indices are used 
         %to nagivate around the matrix. 
        RFc = round(RFc2,5);      
         
        RFs2(n+i,n+j) = ((abs(rc)./abs(rs)).^2).*exp(-((i./abs(rs)).^2)-((j./abs(rs)).^2));   %the rc/rs factor at the start, 
then similar to center field 
        RFs = round(RFs2,5); 
    end 
end 
  
RFs3 = RFs; 
round(sum(RFc-RFs,'all'),5)    %Substract surround from center field, round to 5 decimals 
if sum(RFc-RFs,'all') ~= 0     %Check if sum of all elements in the subtraction-matrix is 0 
    RFs3(n-1,n) = RFs(n-1,n) +round(sum(RFc-RFs,'all')/4,5);    %Changes the four values around the central cell 
(7,7), +0.0002 each. 
    RFs3(n,n-1) = RFs(n,n-1) +round(sum(RFc-RFs,'all')/4,5); 
    RFs3(n+1,n) = RFs(n+1,n) +round(sum(RFc-RFs,'all')/4,5);    %Now, the sum of all elements in the surround RF 
matrix are 0 
    RFs3(n,n+1) = RFs(n,n+1) +round(sum(RFc-RFs,'all')/4,5);    
    RFs = round(RFs3,5); 



    sum(RFc-RFs,'all') 
end 
 
kernel = round(RFc-RFs,5);      
 
%[DoG, C1, C2, C3, RFcS, RFsS] = DoG_TT_opt(L,1,2); 
DoG1=abs(convolve2(lummap1,kernel,'replicate'));%'same'));    
 
 
%Plot with original image and DoG filtered image 
%figure; 
%subplot(1,2,1)  %Original image 
%imagesc(lummap1) 
%caxis manual 
%caxis([0 1]); 
 
%subplot(1,2,2)    %%DOG image 
%imagesc(DoG1) 
%caxis manual 
%caxis([0 0.7]); 
%colorbar; 
 
DoGT1(1) = sum(DoG1,'all');      %Sum of all DoG values per pixel (150x150). 
 
DoG2 = abs(convolve2(lummap2,kernel,'replicate')); 
DoGT2 = sum(DoG2,'all'); 
 
DoG3 = abs(convolve2(lummap3,kernel,'replicate')); 
DoGT3 = sum(DoG3,'all'); 
 
DoG4 = abs(convolve2(lummap4,kernel,'replicate')); 
DoGT4 = sum(DoG4,'all'); 
 
DoG5 = abs(convolve2(lummap5,kernel,'replicate')); 
DoGT5 = sum(DoG5,'all'); 
 
DoG6 = abs(convolve2(lummap6,kernel,'replicate')); 
DoGT6 = sum(DoG6,'all'); 
 
DoG7 = abs(convolve2(lummap7,kernel,'replicate')); 
DoGT7 = sum(DoG7,'all'); 
 
DoG8 = abs(convolve2(lummap8,kernel,'replicate')); 
DoGT8 = sum(DoG8,'all'); 
 
DoG9 = abs(convolve2(lummap9,kernel,'replicate')); 
DoGT9 = sum(DoG9,'all'); 
 
data = [DoGT1,DoGT2,DoGT3,DoGT4,DoGT5,DoGT6,DoGT7,DoGT8,DoGT9]; 
data_final = [data_final data]; 
 
Lv_data = [Lv1, Lv2, Lv3, Lv4, Lv5, Lv6, Lv7, Lv8, Lv9]; 
Lv_data_final = [Lv_data_final Lv_data]; 
%dlmwrite('TDoGModelNewTrial.csv',data,'-append','precision','%.3f'); 
 
end 



 
M(:, size(M,2)+1) = data_final; 
M(:, size(M,2)+1) = Lv_data_final; 
writematrix(M,'data_with_simpleDoG.csv') 
 
 
function Lv = PSF(Age, glareangle, pigfac, eyeillu) 
    Lv = eyeillu * ((1-
(0.08*((Age/70)^4)))*(((9.2*(10^6))/((1+((glareangle/0.0046)^2))^1.5))+((1.5*(10^5))/((1+((glareangle/0.045)^2))^
1.5))) + (1+(1.6*((Age/70)^4)))*(((400)/((1+((glareangle/0.1)^2))) + (3*(10^-8)*(glareangle^2))) + 
pigfac*((((1300)/((1+((glareangle/0.1)^2))^1.5))+((0.8)/((1+((glareangle/0.1)^2))^0.5))))) + 2.5*(10^-3)*pigfac); 
end 
 
function y = f(x)   %RGB values to luminance values 
%  Reference paper: 
%  Spieringhs, R.M., Smet, K., Heynderickx, I., Hanselaer, P. 2021. 
%  Road Marking Contrast Threshold Revisited. LEUKOS. 
% 
%   f(x) = p1*x^2 + p2*x + p3 
%   Coefficients (with 95% confidence bounds): 
%     p1 =   0.0006363  (0.0005671, 0.0007055) 
%     p2 =     -0.1301  (-0.1484, -0.1119) 
%     p3 =       6.782  (5.58, 7.983) 
 
p1 =   0.0006363; 
p2 =     -0.1301; 
p3 =       6.782; 
y = p1*x.^2 + p2.*x + p3; 
end 
 
%----------------------------------------------------------------------- 
 
function y = convolve2(x, m, shape, tol) 
%CONVOLVE2 Two dimensional convolution. 
%   Y = CONVOLVE2(X, M) performs the 2-D convolution of matrices X and 
%   M. If [mx,nx] = size(X) and [mm,nm] = size(M), then size(Y) = 
%   [mx+mm-1,nx+nm-1]. Values near the boundaries of the output array are 
%   calculated as if X was surrounded by a border of zero values. 
% 
%   Y = CONVOLVE2(X, M, SHAPE) where SHAPE is a string returns a 
%   subsection of the 2-D convolution with size specified by SHAPE: 
% 
%       'full'      - (default) returns the full 2-D convolution 
%  
%       'valid'     - returns only those parts of the convolution 
%                     that can be computed without padding; size(Y) = 
%                     [mx-mm+1,nx-nm+1] when size(X) > size(M) 
%  
%       'same'      - returns the central part of the convolution 
%                     that is the same size as X using zero padding 
%  
%       'wrap' or 
%       'circular'  - as for 'same' except that instead of using 
%                     zero-padding the input X is taken to wrap round as 
%                     on a toroid 
%  



%       'reflect' or 
%       'symmetric' - as for 'same' except that instead of using 
%                     zero-padding the input X is taken to be reflected at 
%                     its boundaries 
%  
%       'replicate' - as for 'same' except that instead of using 
%                     zero-padding the rows at the array boundary are 
%                     replicated 
% 
%   CONVOLVE2 is fastest when mx > mm and nx > nm - i.e. the first 
%   argument is the input and the second is the mask. 
% 
%   If the rank of the mask M is low, CONVOLVE2 will decompose it into a 
%   sum of outer product masks, each of which is applied efficiently as 
%   convolution with a row vector and a column vector, by calling CONV2. 
%   The function will often be faster than CONV2 or FILTER2 (in some 
%   cases much faster) and will produce the same results as CONV2 to 
%   within a small tolerance. 
% 
%   Y = CONVOLVE2(... , TOL) where TOL is a number in the range 0.0 to 
%   1.0 computes the convolution using a reduced-rank approximation to 
%   M, provided this will speed up the computation. TOL limits the 
%   relative sum-squared error in the effective mask; that is, if the 
%   effective mask is E, the error is controlled such that 
% 
%       sum(sum( (M-E) .* (M-E) )) 
%       --------------------------    <=  TOL 
%            sum(sum( M .* M )) 
% 
%   See also CONV2, FILTER2, EXINDEX 
 
% Copyright David Young, Feb 2002, revised Jan 2005, Jan 2009, Apr 2011, 
% Feb 2014 
 
% Deal with optional arguments 
narginchk(2,4); 
if nargin < 3 
    shape = 'full';    % shape default as for CONV2 
    tol = 0; 
elseif nargin < 4 
    if isnumeric(shape) 
        tol = shape; 
        shape = 'full'; 
    else 
        tol = 0; 
    end 
end; 
 
% Set up to do the wrap & reflect operations, not handled by conv2 
if ismember(shape, {'wrap' 'circular' 'reflect' 'symmetric' 'replicate'}) 
    x = extendarr(x, m, shape); 
    shape = 'valid'; 
end 
 
% do the convolution itself 
y = doconv(x, m, shape, tol); 



end 
 
%----------------------------------------------------------------------- 
 
function y = doconv(x, m, shape, tol) 
% Carry out convolution 
[mx, nx] = size(x); 
[mm, nm] = size(m); 
 
% If the mask is bigger than the input, or it is 1-D already, 
% just let CONV2 handle it. 
if mm > mx || nm > nx || mm == 1 || nm == 1 
    y = conv2(x, m, shape); 
else 
    % Get svd of mask 
    if mm < nm; m = m'; end        % svd(..,0) wants m > n 
    [u,s,v] = svd(m, 0); 
    s = diag(s); 
    rank = trank(m, s, tol); 
    if rank*(mm+nm) < mm*nm         % take advantage of low rank 
        if mm < nm;  t = u; u = v; v = t; end  % reverse earlier transpose 
        vp = v'; 
        % For some reason, CONV2(H,C,X) is very slow, so use the normal call 
        y = conv2(conv2(x, u(:,1)*s(1), shape), vp(1,:), shape); 
        for r = 2:rank 
            y = y + conv2(conv2(x, u(:,r)*s(r), shape), vp(r,:), shape); 
        end 
    else 
        if mm < nm; m = m'; end     % reverse earlier transpose 
        y = conv2(x, m, shape); 
    end 
end 
end 
 
%----------------------------------------------------------------------- 
 
function r = trank(m, s, tol) 
% Approximate rank function - returns rank of matrix that fits given 
% matrix to within given relative rms error. Expects original matrix 
% and vector of singular values. 
if tol < 0 || tol > 1 
    error('Tolerance must be in range 0 to 1'); 
end 
if tol == 0             % return estimate of actual rank 
    tol = length(m) * max(s) * eps; 
    r = sum(s > tol); 
else 
    ss = s .* s; 
    t = (1 - tol) * sum(ss); 
    r = 0; 
    sm = 0; 
    while sm < t 
        r = r + 1; 
        sm = sm + ss(r); 
    end 
end 



end 
 
%----------------------------------------------------------------------- 
 
function y = extendarr(x, m, shape) 
% Extend x so as to wrap around on both axes, sufficient to allow a 
% "valid" convolution with m to return a result the same size as x. 
% We assume mask origin near centre of mask for compatibility with 
% "same" option. 
 
[mx, nx] = size(x); 
[mm, nm] = size(m); 
 
mo = floor((1+mm)/2); no = floor((1+nm)/2);  % reflected mask origin 
ml = mo-1;            nl = no-1;             % mask left/above origin 
mr = mm-mo;           nr = nm-no;            % mask right/below origin 
 
% deal with shape option terminology - was inconsistent with exindex 
switch shape 
    case 'wrap' 
        shape = 'circular'; 
    case 'reflect' 
        shape = 'symmetric'; 
end 
y = exindex(x, 1-ml:mx+mr, 1-nl:nx+nr, shape); 
 
end 
 
function arr = exindex(arr, varargin) 
%EXINDEX extended array indexing 
%   ARROUT = EXINDEX(ARRIN, S1, S2, ...) indexes a virtual array made by 
%   extending ARRIN with zeros in all directions, using subscripts S1, S2 
%   etc. 
% 
%   ARROUT = EXINDEX(ARRIN, S1, R1, S2, R2, ...) extends ARRIN using rule 
%   R1 on the first dimension, R2 on the second dimension etc. 
% 
%   ARROUT = EXINDEX(ARRIN, S1, S2, ..., R) extends ARRIN using rule R on 
%   every dimension. 
% 
%   Subscripts 
%   ---------- 
% 
%   Broadly, if V is the virtual extended array, ARROUT = V(S1, S2, ...) 
% 
%   The elements of the subscript arguments S1, S2 etc must be integers. 
%   They need not be positive and are not restricted in any way by the size 
%   of ARRIN. Logical indexing and linear indexing are not supported. 
% 
%   There must be at least one subscript argument for each dimension of 
%   ARRIN as reported by NDIMS, except that row and column vectors may have 
%   1 or 2 subscripts. A single subscript is taken to refer to the 
%   dimension along which the vector lies, as in normal vector indexing. 
%   Scalars require 2 subscripts. If there are more subscripts than 
%   dimensions, ARRIN is taken to have trailing singleton dimensions, as in 
%   normal array indexing. 



% 
%   The number of dimensions of ARROUT will be the number of subscript 
%   arguments, though trailing singleton dimensions will, as usual, be 
%   suppressed. The size of ARROUT is given by the normal Matlab rules for 
%   the result of indexing into ARRIN: that is 
% 
%       size(ARROUT) = size( ARRIN(ones(size(S1)), ones(size(S2)), ...) ) 
% 
%   A subscript argument may be the string ':'. This behaves like a colon 
%   in ordinary subscripting: a colon for the K'th subscript stands for 
%   1:size(ARRIN, K). The 'end' keyword is not supported. 
% 
%   Rules 
%   ----- 
% 
%   Each rule may be one of the following: 
% 
%   A scalar cell: ARRIN is padded with elements equal to the contents of 
%   the cell. The class of the cell contents must be compatible with the 
%   class of ARRIN. 
% 
%       If different constants are used on different dimensions, padding is 
%       done in the order of the subscripts. For example, a 2D array is 
%       extended first in the row index direction and then in the column 
%       index direction. For all other cases, the order in which dimensions 
%       are extended has no effect. 
% 
%   'circular': ARRIN is extended with copies of itself; i.e. V is tiled 
%   with ARRIN. 
% 
%   'symmetric': ARRIN is extended with copies of itself with reflection at 
%   its boundaries; i.e. V is tiled with [ARRIN fliplr(ARRIN); 
%   flipud(ARRIN) fliplr(flipud(ARRIN))]. 
% 
%   'replicate': ARRIN is extended by copying its border elements; i.e. an 
%   element of V is equal to the nearest element of ARRIN. 
% 
%   If no rule is given, padding is with zeros. 
% 
%   Examples 
%   -------- 
% 
%   Pad a 2D matrix with K extra rows and columns with reflection on both 
%   axes: 
% 
%       b = exindex(a, 1-k:size(a,1)+k, 1-k:size(a,2)+k, 'symmetric'); 
% 
%   Circularly shift a 2D matrix by R rows downwards and C columns 
%   rightwards: 
% 
%       b = exindex(a, 1-r:size(a,1)-r, 1-c:size(a,2)-c, 'circular'); 
% 
%   Force a row or column vector to be 1024 elements long, trimming or 
%   padding with zeros as necessary: 
% 
%       u = exindex(v, 1:1024); 



% 
%   The same, with a non-zero padding value: 
% 
%       u = exindex(v, 1:1024, {-1});   % note constant in cell 
% 
%   Truncate or extend all the rows of a matrix to 1024 columns: 
% 
%       b = exindex(a, ':', 1:1024); 
% 
%   Extend a 2-D array into the third dimension by copying it: 
% 
%       b = exindex(a, ':', ':', 1:3, 'replicate'); 
% 
%   Pad a 1-D cell array with cells containing the empty matrix: 
% 
%       cellout = exindex(cellin, 0:10, {{[]}});  
% 
%   See also: padarray, circshift, repmat 
 
% Copyright David Young 2010 
 
% Sort out arguments 
[exindices, rules, nd, sz] = getinputs(arr, varargin{:}); 
consts = cellfun(@iscell, rules);  % Check for constants, as can be 
constused = any(consts);           % more efficient if there are none 
 
% Setup for constant padding 
if constused 
    tofill = cell(1, nd); 
end 
 
% Main loop over subscript arguments, transforming them into valid 
% subscripts into arr using the rule for each dimension 
if constused 
    for i = 1:nd 
        [exindices{i}, tofill{i}] = extend(exindices{i}, rules{i}, sz(i)); 
    end 
else % no need for information for doing constants 
    for i = 1:nd 
        exindices{i} = extend(exindices{i}, rules{i}, sz(i)); 
    end 
end 
 
% Create the new array by indexing into arr. If there are no constants, 
% this does the whole job 
arr = arr(exindices{:}); 
 
% Fill areas that need constants 
if constused 
    % Get full range of output array indices 
    ranges = arrayfun(@(x) {1:x}, size(arr)); 
    for i = nd:-1:1    % order matters 
        if consts(i) 
            ranges{i} = tofill{i};      % don't overwrite original 
            c = rules{i};               % get constant and fill ... 
            arr(ranges{:}) = c{1};      % we've checked c is scalar 



            ranges{i} = ~tofill{i};     % don't overwrite 
        end 
    end 
end 
 
end 
 
% ------------------------------------------------------------------------- 
 
function [exindices, rules, nd, sz] = getinputs(arr, varargin) 
% Sort out and check arguments. Inputs are as given in the help comments 
% for exindex. Outputs are cell arrays; each element of exindices is a 
% set of integer extended indices which has been checked for validity; each 
% element of rules is a rule which has not been checked for validity. 
 
% Use index/rules arguments only to establish no. dimensions - ndims(arr) 
% is no use, as trailing singleton dimensions truncated and vectors can be 
% 2D or 1D 
nd = length(varargin); 
if nd == 0 
    error('exindex:missingargs', 'Not enough arguments'); 
elseif nd == 1 
    exindices = varargin; 
    rules = {{0}}; 
elseif ~(isnumeric(varargin{2}) || strcmp(varargin{2}, ':')) 
    % have alternating indices and rule 
    nd = nd/2; 
    if round(nd) ~= nd 
        error('exindex:badnumargs', ... 
            'Odd number of arguments after initial index/rule pair'); 
    end 
    exindices = varargin(1:2:end); 
    rules = varargin(2:2:end); 
elseif nd > 2 && ~(isnumeric(varargin{end}) || strcmp(varargin{end}, ':')) 
    % have a general rule at end 
    nd = nd - 1; 
    exindices = varargin(1:nd); 
    [rules{1:nd}] = deal(varargin{end}); 
else 
    % no rule is specified 
    exindices = varargin; 
    [rules{1:nd}] = deal({0}); 
end 
 
% Sort out mismatch of apparent array size and number of dimensions 
% indexed 
sz = size(arr); 
ndarr = ndims(arr); 
if nd < ndarr 
    if nd == 1 && ndarr == 2 
        % Matlab allows vectors to be indexed with a single subscript and 
        % to retain their shape. In all other cases (including scalars) a 
        % single subscript causes the output to take the same shape as the 
        % subscript array - we can't deal with this. 
        if sz(1) == 1 && sz(2) > 1 
            % have a row vector 



            exindices = [{1} exindices {1}]; 
            rules = [rules rules];  % 1st rule doesn't matter 
        elseif sz(2) == 1 && sz(1) > 1 
            % have a column vector 
            exindices = [exindices {1}]; 
            rules = [rules rules];  % 2nd rule doesn't matter 
        else 
            error('exindex:wantvector', ... 
                'Only one index but array is not a vector'); 
        end 
    else 
        error('exindex:toofewindices', ... 
            'Array has more dimensions than there are index arguments'); 
    end 
    nd = 2; 
elseif nd > ndarr 
    % Effective array size 
    sz = [sz ones(1, nd-ndarr)]; 
end 
 
% Expand any colons now to simplify checking. 
% It's tempting to allow the 'end' keyword here: easy to substitute the 
% size of the dimension. However, to be worthwhile it would be necessary to 
% use evalin('caller',...) so that expressions using end could be given as 
% in normal indexing. This would mean moving the code up to exindex itself, 
% and evalin makes for inefficiency and fragility, so this hasn't been 
% done. 
colons = strcmp(exindices, ':'); 
if any(colons)  % saves a little time 
    exindices(colons) = arrayfun(@(x) {1:x}, sz(colons)); 
end 
 
% Check the indices (rules are checked as required in extend) 
checkindex = @(ind) validateattributes(ind, {'numeric'}, ... 
    {'integer'}, 'exindex', 'index'); 
cellfun(checkindex, exindices); 
 
end 
 
% ------------------------------------------------------------------------- 
 
function [ind, tofill] = extend(ind, rule, s) 
% The core function: maps extended array subscripts into valid input array 
% subscripts. 
 
if ischar(rule)    % pad with rule 
     
    tofill = [];  % never used 
    switch rule 
        case 'replicate' 
            ind = min( max(1,ind), s ); 
        case 'circular' 
            ind = mod(ind-1, s) + 1; 
        case 'symmetric' 
            ind = mod(ind-1, 2*s) + 1; 
            ott = ind > s; 



            ind(ott) = 2*s + 1 - ind(ott); 
        otherwise 
            error('exindex:badopt', 'Unknown option'); 
    end 
     
elseif iscell(rule) && isscalar(rule)     % pad with constant 
     
    % The main messiness is due to constant padding. This can't be done 
    % with indexing into the original array, but we want the indexing 
    % structure to be preserved, so for now we index to element 1 on each 
    % dimension, and record the indices of the regions that need to be 
    % fixed. 
     
    tofill = ind < 1 | ind > s; 
    ind(tofill) = 1; 
     
else 
     
    error('exindex:badconst', 'Expecting string or scalar cell'); 
     
end 
 
end 
 

  



A5: Applying the complex 𝑫𝑫𝑫𝑫𝑫𝑫 model 
 
clear; 
addpath('C:\Users\XXX');   
filename = 'C:\XXX.csv'; 
M = readmatrix(filename); 
 
% reading in the RGB images of the arrows at three different distances (40, 60, 80 m)  
sizePX = 186:335;%161:360;%186:335; 
sizePX2 = 291:440;%266:465;%291:440; 
    curbpix6_0 =  imread('Project4_R_La_40m_2.png'); 
    curbpix6_3 = curbpix6_0(850:1250,1590:2350,:); 
    curbpix6_1 = curbpix6_3(sizePX,sizePX2,:); 
    curbpix6 =  curbpix6_1<=138; 
    curbpix6_2 = curbpix6_1>138; 
     
    curbpix7_0 =  imread('Project4_R_La_60m_2.png'); 
    curbpix7_3 = curbpix7_0(850:1250,1590:2350,:); 
    curbpix7_1 = curbpix7_3(sizePX,sizePX2,:); 
    curbpix7 =  curbpix7_1<=138; 
    curbpix7_2 = curbpix7_1>138; 
     
    curbpix8_0 =  imread('Project4_R_La_80m_2.png'); 
    curbpix8_3 = curbpix8_0(850:1250,1590:2350,:); 
    curbpix8_1 = curbpix8_3(sizePX,sizePX2,:); 
    curbpix8 =  curbpix8_1<=138; 
    curbpix8_2 = curbpix8_1>138; 
 
    roadBack1 = 116; 
    roadBack2 = 131; 
    roadBack3 = 139; 
 
    pixelscurb1 = curbpix6_1; 
    idpixelscurb1 = curbpix6; 
    idpixelback1 = curbpix6_2; 
 
    pixelscurb2 = curbpix7_1; 
    idpixelscurb2 = curbpix7; 
    idpixelback2 = curbpix7_2; 
 
    pixelscurb3 = curbpix8_1; 
    idpixelscurb3 = curbpix8; 
    idpixelback3 = curbpix8_2; 
 
 
    %LT = luminance thresholds 
    o=5;   %Indicating column of measured thresholds 
    p=1; 
    data_final = []; 
           
while p < length(M) 
    LT1 = M(p,o); % 0.25 cd/m2 20.3 arcmin 
    Lv1 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 



    LT2 = M(p,o); % 0.25 cd/m2 9.5 arcmin 
    Lv2 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT3 = M(p,o); % 0.25 cd/m2 5.5 arcmin 
    Lv3 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT4 = M(p,o); % 0.66 cd/m2 20.3 arcmin 
    Lv4 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT5 = M(p,o); % 0.66 cd/m2 9.5 arcmin 
    Lv5 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT6 = M(p,o); % 0.66 cd/m2 5.5 arcmin 
    Lv6 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
     
    LT7 = M(p,o); % 0.99 cd/m2 20.3 arcmin 
    Lv7 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT8 = M(p,o); % 0.99 cd/m2 9.5 arcmin 
    Lv8 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
 
    LT9 = M(p,o); % 0.99 cd/m2 5.5 arcmin 
    Lv9 = PSF(M(p,2), M(p,10), M(p,8), 12.6); 
    p=p+1; 
                        
    % Create luminance maps, with the RGP map as input. 
    lummap1 = f(double(pixelscurb1)); 
    lummap1(idpixelscurb1)= ( LT1) + f(116) + Lv1;   % + Lv1 adds the veiling luminance on the image 
    lummap1(idpixelback1)= f(116) + Lv1;             % + Lv1 adds the veiling luminance on the image 
    lummap1 = lummap1(:,:,1); 
 
    lummap2 = f(double(pixelscurb2)); 
    lummap2(idpixelscurb2) = ( LT2) + f(116) + Lv2; 
    lummap2(idpixelback2)= f(116) + Lv2;   
    lummap2 = lummap2(:,:,1); 
 
    lummap3 = f(double(pixelscurb3)); 
    lummap3(idpixelscurb3)= ( LT3) + f(116) + Lv3; 
    lummap3(idpixelback3)= f(116) + Lv3; 
    lummap3 = lummap3(:,:,1); 
 
    lummap4 = f(double(pixelscurb1)); 
    lummap4(idpixelscurb1)= ( LT4) + f(131) + Lv4; 
    lummap4(idpixelback1)= f(131) + Lv4; 
    lummap4 = lummap4(:,:,1); 
 
    lummap5 = f(double(pixelscurb2)); 
    lummap5(idpixelscurb2)= ( LT5) + f(131) + Lv5; 
    lummap5(idpixelback2)= f(131) + Lv5; 



    lummap5 = lummap5(:,:,1); 
 
    lummap6 = f(double(pixelscurb3)); 
    lummap6(idpixelscurb3)= ( LT6) + f(131) + Lv6; 
    lummap6(idpixelback3)= f(131) + Lv6; 
    lummap6 = lummap6(:,:,1); 
 
    lummap7 = f(double(pixelscurb1)); 
    lummap7(idpixelscurb1)= ( LT7) + f(139) + Lv7; 
    lummap7(idpixelback1)= f(139) + Lv7; 
    lummap7 = lummap7(:,:,1); 
 
    lummap8 = f(double(pixelscurb2)); 
    lummap8(idpixelscurb2)= ( LT8) + f(139) + Lv8; 
    lummap8(idpixelback2)= f(139) + Lv8; 
    lummap8 = lummap8(:,:,1); 
 
    lummap9 = f(double(pixelscurb3)); 
    lummap9(idpixelscurb3)= ( LT9) + f(139) + Lv9; 
    lummap9(idpixelback3)= f(139) + Lv9; 
    lummap9 = lummap9(:,:,1); 
     
     
    I1 = RMS_Joulan(lummap1,3.8e-04,1.0776); 
    Jt1 = sum(I1,'all'); 
    fprintf('Calculated 1/9 for case %d.\n',p); 
    
    I2 = RMS_Joulan(lummap2,3.8e-04,1.0776); 
    Jt2 = sum(I2,'all'); 
    fprintf('Calculated 2/9 for case %d.\n',p); 
   
    I3 = RMS_Joulan(lummap3,3.8e-04,1.0776); 
    Jt3 = sum(I3,'all'); 
    fprintf('Calculated 3/9 for case %d.\n',p); 
     
    I4 = RMS_Joulan(lummap4,3.8e-04,1.0776); 
    Jt4 = sum(I4,'all'); 
    fprintf('Calculated 4/9 for case %d.\n',p); 
     
    I5 = RMS_Joulan(lummap5,3.8e-04,1.0776); 
    Jt5 = sum(I5,'all'); 
    fprintf('Calculated 5/9 for case %d.\n',p); 
     
    I6 = RMS_Joulan(lummap6,3.8e-04,1.0776); 
    Jt6 = sum(I6,'all'); 
    fprintf('Calculated 6/9 for case %d.\n',p); 
     
    I7 = RMS_Joulan(lummap7,3.8e-04,1.0776); 
    Jt7 = sum(I7,'all'); 
    fprintf('Calculated 7/9 for case %d.\n',p); 
     
    I8 = RMS_Joulan(lummap8,3.8e-04,1.0776); 
    Jt8 = sum(I8,'all'); 
    fprintf('Calculated 8/9 for case %d.\n',p); 
     
    I9 = RMS_Joulan(lummap9,3.8e-04,1.0776); 



    Jt9 = sum(I9,'all'); 
    fprintf('Calculated 9/9 for case %d.\n',p); 
 
 
    data = [Jt1, Jt2, Jt3, Jt4, Jt5, Jt6, Jt7, Jt8, Jt9]; 
    data_final = [data_final data]; 
 
end 
 
M(:, size(M,2)+1) = data_final; 
writematrix(M,'data_with_Joulan_with_veiling.csv') 
 
 
function Lv = PSF(Age, glareangle, pigfac, eyeillu) 
    Lv = eyeillu * ((1-
(0.08*((Age/70)^4)))*(((9.2*(10^6))/((1+((glareangle/0.0046)^2))^1.5))+((1.5*(10^5))/((1+((glareangle/0.045)^2))^
1.5))) + (1+(1.6*((Age/70)^4)))*(((400)/((1+((glareangle/0.1)^2))) + (3*(10^-8)*(glareangle^2))) + 
pigfac*((((1300)/((1+((glareangle/0.1)^2))^1.5))+((0.8)/((1+((glareangle/0.1)^2))^0.5))))) + 2.5*(10^-3)*pigfac); 
end 
 
function y = f(x)   %RGB values to luminance values 
%  Reference paper: 
%  Spieringhs, R.M., Smet, K., Heynderickx, I., Hanselaer, P. 2021. 
%  Road Marking Contrast Threshold Revisited. LEUKOS. 
% 
%   f(x) = p1*x^2 + p2*x + p3 
%   Coefficients (with 95% confidence bounds): 
%     p1 =   0.0006363  (0.0005671, 0.0007055) 
%     p2 =     -0.1301  (-0.1484, -0.1119) 
%     p3 =       6.782  (5.58, 7.983) 
 
p1 =   0.0006363; 
p2 =     -0.1301; 
p3 =       6.782; 
y = p1*x.^2 + p2.*x + p3; 
end 
 
function I2 = RMS_Joulan(L,px,Dist) %input: luminance map, pixel size, radius of center receptive field 
% Reference papers and pattent: 
% 1) Joulan K., Hautiere N., Bremond R. 2011. 
%   Contrast sensitivity functions for road visibility estimation in digital images. 
%   Proceedings of 27th CIE Session; 2011 July 10-15; 
% 
% 2) Joulan K., Hautiere N., Bremond R. 2011. 
%    A unified CSF-based framework for edge detection and edge visibility. 
%    Proceedings of the CVPR 2011 Workshops; 2011 June 
% 
% 3) Joulan K., Bremond R., Robert-Landry, C. 2012. 
%    Method for determining the visibility of objects in a field of view of a  
%    driver of a vehicle, taking into account a contrast sensitivity  
%    function, driver assistance system, and motor vehicle. 
%    (European Pattent 2 747 026). 
 
%characteristics of the DoG Filters representing the human visual system 
f = [2.9 7.7 1 0.4 1.5 0.1];   %spatial frequency (cpd) 
 



sC = (1./f).*sqrt(log(3)/2);   %standard deviation of Gaussian center-field 
sS = 3.*sC;                    %standard deviation of Gaussian surround-field 
 
rc = Dist;                     %radius center receptive field 
Lav=mean(mean(L));             %mean luminance on the map  
 
WF = [392.20 169.26 134.46 45.83 22.98 17.21];  %weightings for the different DOGs 
 
I1 = (1/Lav).*L;               %adaptation luminance = inverse of the mean luminance 
 
%sigma (standard deviation of Gaussians) converted to pixels 
sigmaS=sS.*pi./180.*rc./px;   
sigmaC=sC.*pi./180.*rc./px; 
 
for i = 1:6 
SDOG(i,:,:)=KernelS(I1,sigmaS(i),sigmaC(i),WF(i)); 
end 
I2 = sum(SDOG); 
end 
 
function [signalmap2,kernel] = KernelS(map,sigmaS,sigmaC,WF) 
rs=2*(ceil((sigmaS*4+1)/2)-1)+1; 
c=(rs+1)/2; 
%Set limits (for the radius) of the Gaussian for the surround receptive 
%field. The Gaussian has long tails, at which the value =~ 0. We dont want 
%to have an influence of these almost-0 tails.  
 
[x,y]=meshgrid(1:1:rs); 
 
%normalized Gaussian for center receptive field 
exponentS = ((c-x).^2)./(2*sigmaS^2) + ((c-y).^2)./(2*sigmaS^2); 
gaussS =exp(-exponentS); 
normS=sum(sum(gaussS)); 
gaussS=gaussS/normS; 
 
%normalized Gaussian for surround receptive field 
exponentC = ((c-x).^2)./(2*sigmaC^2) + ((c-y).^2)./(2*sigmaC^2); 
gaussC =exp(-exponentC); 
normC=sum(sum(gaussC)); 
gaussC=gaussC/normC; 
 
kernel=WF.*(gaussC-gaussS)./max(max((gaussC-gaussS))); 
 
map2=zeros(size(map)+2)+min(min(map)); 
map2(2:end-1,2:end-1)=map; 
signalmap=single(convolve2(map2,kernel,'replicate')); 
signalmap2=signalmap(2:end-1,2:end-1); 
end 
 
function y = convolve2(x, m, shape, tol) 
%CONVOLVE2 Two dimensional convolution. 
%   Y = CONVOLVE2(X, M) performs the 2-D convolution of matrices X and 
%   M. If [mx,nx] = size(X) and [mm,nm] = size(M), then size(Y) = 
%   [mx+mm-1,nx+nm-1]. Values near the boundaries of the output array are 
%   calculated as if X was surrounded by a border of zero values. 
% 



%   Y = CONVOLVE2(X, M, SHAPE) where SHAPE is a string returns a 
%   subsection of the 2-D convolution with size specified by SHAPE: 
% 
%       'full'      - (default) returns the full 2-D convolution 
%  
%       'valid'     - returns only those parts of the convolution 
%                     that can be computed without padding; size(Y) = 
%                     [mx-mm+1,nx-nm+1] when size(X) > size(M) 
%  
%       'same'      - returns the central part of the convolution 
%                     that is the same size as X using zero padding 
%  
%       'wrap' or 
%       'circular'  - as for 'same' except that instead of using 
%                     zero-padding the input X is taken to wrap round as 
%                     on a toroid 
%  
%       'reflect' or 
%       'symmetric' - as for 'same' except that instead of using 
%                     zero-padding the input X is taken to be reflected at 
%                     its boundaries 
%  
%       'replicate' - as for 'same' except that instead of using 
%                     zero-padding the rows at the array boundary are 
%                     replicated 
% 
%   CONVOLVE2 is fastest when mx > mm and nx > nm - i.e. the first 
%   argument is the input and the second is the mask. 
% 
%   If the rank of the mask M is low, CONVOLVE2 will decompose it into a 
%   sum of outer product masks, each of which is applied efficiently as 
%   convolution with a row vector and a column vector, by calling CONV2. 
%   The function will often be faster than CONV2 or FILTER2 (in some 
%   cases much faster) and will produce the same results as CONV2 to 
%   within a small tolerance. 
% 
%   Y = CONVOLVE2(... , TOL) where TOL is a number in the range 0.0 to 
%   1.0 computes the convolution using a reduced-rank approximation to 
%   M, provided this will speed up the computation. TOL limits the 
%   relative sum-squared error in the effective mask; that is, if the 
%   effective mask is E, the error is controlled such that 
% 
%       sum(sum( (M-E) .* (M-E) )) 
%       --------------------------    <=  TOL 
%            sum(sum( M .* M )) 
% 
%   See also CONV2, FILTER2, EXINDEX 
 
% Copyright David Young, Feb 2002, revised Jan 2005, Jan 2009, Apr 2011, 
% Feb 2014 
 
% Deal with optional arguments 
narginchk(2,4); 
if nargin < 3 
    shape = 'full';    % shape default as for CONV2 
    tol = 0; 



elseif nargin < 4 
    if isnumeric(shape) 
        tol = shape; 
        shape = 'full'; 
    else 
        tol = 0; 
    end 
end 
 
% Set up to do the wrap & reflect operations, not handled by conv2 
if ismember(shape, {'wrap' 'circular' 'reflect' 'symmetric' 'replicate'}) 
    x = extendarr(x, m, shape); 
    shape = 'valid'; 
end 
 
% do the convolution itself 
y = doconv(x, m, shape, tol); 
end 
 
%----------------------------------------------------------------------- 
 
function y = doconv(x, m, shape, tol) 
% Carry out convolution 
[mx, nx] = size(x); 
[mm, nm] = size(m); 
 
% If the mask is bigger than the input, or it is 1-D already, 
% just let CONV2 handle it. 
if mm > mx || nm > nx || mm == 1 || nm == 1 
    y = conv2(x, m, shape); 
else 
    % Get svd of mask 
    if mm < nm; m = m'; end        % svd(..,0) wants m > n 
    [u,s,v] = svd(m, 0); 
    s = diag(s); 
    rank = trank(m, s, tol); 
    if rank*(mm+nm) < mm*nm         % take advantage of low rank 
        if mm < nm;  t = u; u = v; v = t; end  % reverse earlier transpose 
        vp = v'; 
        % For some reason, CONV2(H,C,X) is very slow, so use the normal call 
        y = conv2(conv2(x, u(:,1)*s(1), shape), vp(1,:), shape); 
        for r = 2:rank 
            y = y + conv2(conv2(x, u(:,r)*s(r), shape), vp(r,:), shape); 
        end 
    else 
        if mm < nm; m = m'; end     % reverse earlier transpose 
        y = conv2(x, m, shape); 
    end 
end 
end 
 
%----------------------------------------------------------------------- 
 
function r = trank(m, s, tol) 
% Approximate rank function - returns rank of matrix that fits given 
% matrix to within given relative rms error. Expects original matrix 



% and vector of singular values. 
if tol < 0 || tol > 1 
    error('Tolerance must be in range 0 to 1'); 
end 
if tol == 0             % return estimate of actual rank 
    tol = length(m) * max(s) * eps; 
    r = sum(s > tol); 
else 
    ss = s .* s; 
    t = (1 - tol) * sum(ss); 
    r = 0; 
    sm = 0; 
    while sm < t 
        r = r + 1; 
        sm = sm + ss(r); 
    end 
end 
end 
 
%----------------------------------------------------------------------- 
 
function y = extendarr(x, m, shape) 
% Extend x so as to wrap around on both axes, sufficient to allow a 
% "valid" convolution with m to return a result the same size as x. 
% We assume mask origin near centre of mask for compatibility with 
% "same" option. 
 
[mx, nx] = size(x); 
[mm, nm] = size(m); 
 
mo = floor((1+mm)/2); no = floor((1+nm)/2);  % reflected mask origin 
ml = mo-1;            nl = no-1;             % mask left/above origin 
mr = mm-mo;           nr = nm-no;            % mask right/below origin 
 
% deal with shape option terminology - was inconsistent with exindex 
switch shape 
    case 'wrap' 
        shape = 'circular'; 
    case 'reflect' 
        shape = 'symmetric'; 
end 
y = exindex(x, 1-ml:mx+mr, 1-nl:nx+nr, shape); 
 
end 
 
function arr = exindex(arr, varargin) 
%EXINDEX extended array indexing 
%   ARROUT = EXINDEX(ARRIN, S1, S2, ...) indexes a virtual array made by 
%   extending ARRIN with zeros in all directions, using subscripts S1, S2 
%   etc. 
% 
%   ARROUT = EXINDEX(ARRIN, S1, R1, S2, R2, ...) extends ARRIN using rule 
%   R1 on the first dimension, R2 on the second dimension etc. 
% 
%   ARROUT = EXINDEX(ARRIN, S1, S2, ..., R) extends ARRIN using rule R on 
%   every dimension. 



% 
%   Subscripts 
%   ---------- 
% 
%   Broadly, if V is the virtual extended array, ARROUT = V(S1, S2, ...) 
% 
%   The elements of the subscript arguments S1, S2 etc must be integers. 
%   They need not be positive and are not restricted in any way by the size 
%   of ARRIN. Logical indexing and linear indexing are not supported. 
% 
%   There must be at least one subscript argument for each dimension of 
%   ARRIN as reported by NDIMS, except that row and column vectors may have 
%   1 or 2 subscripts. A single subscript is taken to refer to the 
%   dimension along which the vector lies, as in normal vector indexing. 
%   Scalars require 2 subscripts. If there are more subscripts than 
%   dimensions, ARRIN is taken to have trailing singleton dimensions, as in 
%   normal array indexing. 
% 
%   The number of dimensions of ARROUT will be the number of subscript 
%   arguments, though trailing singleton dimensions will, as usual, be 
%   suppressed. The size of ARROUT is given by the normal Matlab rules for 
%   the result of indexing into ARRIN: that is 
% 
%       size(ARROUT) = size( ARRIN(ones(size(S1)), ones(size(S2)), ...) ) 
% 
%   A subscript argument may be the string ':'. This behaves like a colon 
%   in ordinary subscripting: a colon for the K'th subscript stands for 
%   1:size(ARRIN, K). The 'end' keyword is not supported. 
% 
%   Rules 
%   ----- 
% 
%   Each rule may be one of the following: 
% 
%   A scalar cell: ARRIN is padded with elements equal to the contents of 
%   the cell. The class of the cell contents must be compatible with the 
%   class of ARRIN. 
% 
%       If different constants are used on different dimensions, padding is 
%       done in the order of the subscripts. For example, a 2D array is 
%       extended first in the row index direction and then in the column 
%       index direction. For all other cases, the order in which dimensions 
%       are extended has no effect. 
% 
%   'circular': ARRIN is extended with copies of itself; i.e. V is tiled 
%   with ARRIN. 
% 
%   'symmetric': ARRIN is extended with copies of itself with reflection at 
%   its boundaries; i.e. V is tiled with [ARRIN fliplr(ARRIN); 
%   flipud(ARRIN) fliplr(flipud(ARRIN))]. 
% 
%   'replicate': ARRIN is extended by copying its border elements; i.e. an 
%   element of V is equal to the nearest element of ARRIN. 
% 
%   If no rule is given, padding is with zeros. 
% 



%   Examples 
%   -------- 
% 
%   Pad a 2D matrix with K extra rows and columns with reflection on both 
%   axes: 
% 
%       b = exindex(a, 1-k:size(a,1)+k, 1-k:size(a,2)+k, 'symmetric'); 
% 
%   Circularly shift a 2D matrix by R rows downwards and C columns 
%   rightwards: 
% 
%       b = exindex(a, 1-r:size(a,1)-r, 1-c:size(a,2)-c, 'circular'); 
% 
%   Force a row or column vector to be 1024 elements long, trimming or 
%   padding with zeros as necessary: 
% 
%       u = exindex(v, 1:1024); 
% 
%   The same, with a non-zero padding value: 
% 
%       u = exindex(v, 1:1024, {-1});   % note constant in cell 
% 
%   Truncate or extend all the rows of a matrix to 1024 columns: 
% 
%       b = exindex(a, ':', 1:1024); 
% 
%   Extend a 2-D array into the third dimension by copying it: 
% 
%       b = exindex(a, ':', ':', 1:3, 'replicate'); 
% 
%   Pad a 1-D cell array with cells containing the empty matrix: 
% 
%       cellout = exindex(cellin, 0:10, {{[]}});  
% 
%   See also: padarray, circshift, repmat 
 
% Copyright David Young 2010 
 
% Sort out arguments 
[exindices, rules, nd, sz] = getinputs(arr, varargin{:}); 
consts = cellfun(@iscell, rules);  % Check for constants, as can be 
constused = any(consts);           % more efficient if there are none 
 
% Setup for constant padding 
if constused 
    tofill = cell(1, nd); 
end 
 
% Main loop over subscript arguments, transforming them into valid 
% subscripts into arr using the rule for each dimension 
if constused 
    for i = 1:nd 
        [exindices{i}, tofill{i}] = extend(exindices{i}, rules{i}, sz(i)); 
    end 
else % no need for information for doing constants 
    for i = 1:nd 



        exindices{i} = extend(exindices{i}, rules{i}, sz(i)); 
    end 
end 
 
% Create the new array by indexing into arr. If there are no constants, 
% this does the whole job 
arr = arr(exindices{:}); 
 
% Fill areas that need constants 
if constused 
    % Get full range of output array indices 
    ranges = arrayfun(@(x) {1:x}, size(arr)); 
    for i = nd:-1:1    % order matters 
        if consts(i) 
            ranges{i} = tofill{i};      % don't overwrite original 
            c = rules{i};               % get constant and fill ... 
            arr(ranges{:}) = c{1};      % we've checked c is scalar 
            ranges{i} = ~tofill{i};     % don't overwrite 
        end 
    end 
end 
 
end 
 
% ------------------------------------------------------------------------- 
 
function [exindices, rules, nd, sz] = getinputs(arr, varargin) 
% Sort out and check arguments. Inputs are as given in the help comments 
% for exindex. Outputs are cell arrays; each element of exindices is a 
% set of integer extended indices which has been checked for validity; each 
% element of rules is a rule which has not been checked for validity. 
 
% Use index/rules arguments only to establish no. dimensions - ndims(arr) 
% is no use, as trailing singleton dimensions truncated and vectors can be 
% 2D or 1D 
nd = length(varargin); 
if nd == 0 
    error('exindex:missingargs', 'Not enough arguments'); 
elseif nd == 1 
    exindices = varargin; 
    rules = {{0}}; 
elseif ~(isnumeric(varargin{2}) || strcmp(varargin{2}, ':')) 
    % have alternating indices and rule 
    nd = nd/2; 
    if round(nd) ~= nd 
        error('exindex:badnumargs', ... 
            'Odd number of arguments after initial index/rule pair'); 
    end 
    exindices = varargin(1:2:end); 
    rules = varargin(2:2:end); 
elseif nd > 2 && ~(isnumeric(varargin{end}) || strcmp(varargin{end}, ':')) 
    % have a general rule at end 
    nd = nd - 1; 
    exindices = varargin(1:nd); 
    [rules{1:nd}] = deal(varargin{end}); 
else 



    % no rule is specified 
    exindices = varargin; 
    [rules{1:nd}] = deal({0}); 
end 
 
% Sort out mismatch of apparent array size and number of dimensions 
% indexed 
sz = size(arr); 
ndarr = ndims(arr); 
if nd < ndarr 
    if nd == 1 && ndarr == 2 
        % Matlab allows vectors to be indexed with a single subscript and 
        % to retain their shape. In all other cases (including scalars) a 
        % single subscript causes the output to take the same shape as the 
        % subscript array - we can't deal with this. 
        if sz(1) == 1 && sz(2) > 1 
            % have a row vector 
            exindices = [{1} exindices {1}]; 
            rules = [rules rules];  % 1st rule doesn't matter 
        elseif sz(2) == 1 && sz(1) > 1 
            % have a column vector 
            exindices = [exindices {1}]; 
            rules = [rules rules];  % 2nd rule doesn't matter 
        else 
            error('exindex:wantvector', ... 
                'Only one index but array is not a vector'); 
        end 
    else 
        error('exindex:toofewindices', ... 
            'Array has more dimensions than there are index arguments'); 
    end 
    nd = 2; 
elseif nd > ndarr 
    % Effective array size 
    sz = [sz ones(1, nd-ndarr)]; 
end 
 
% Expand any colons now to simplify checking. 
% It's tempting to allow the 'end' keyword here: easy to substitute the 
% size of the dimension. However, to be worthwhile it would be necessary to 
% use evalin('caller',...) so that expressions using end could be given as 
% in normal indexing. This would mean moving the code up to exindex itself, 
% and evalin makes for inefficiency and fragility, so this hasn't been 
% done. 
colons = strcmp(exindices, ':'); 
if any(colons)  % saves a little time 
    exindices(colons) = arrayfun(@(x) {1:x}, sz(colons)); 
end 
 
% Check the indices (rules are checked as required in extend) 
checkindex = @(ind) validateattributes(ind, {'numeric'}, ... 
    {'integer'}, 'exindex', 'index'); 
cellfun(checkindex, exindices); 
 
end 
 



% ------------------------------------------------------------------------- 
 
function [ind, tofill] = extend(ind, rule, s) 
 
% The core function: maps extended array subscripts into valid input array 
% subscripts. 
 
if ischar(rule)    % pad with rule 
    tofill = [];  % never used 
    switch rule 
        case 'replicate' 
            ind = min( max(1,ind), s ); 
        case 'circular' 
            ind = mod(ind-1, s) + 1; 
        case 'symmetric' 
            ind = mod(ind-1, 2*s) + 1; 
            ott = ind > s; 
            ind(ott) = 2*s + 1 - ind(ott); 
        otherwise 
            error('exindex:badopt', 'Unknown option'); 
    end 
     
elseif iscell(rule) && isscalar(rule)     % pad with constant 
     
    % The main messiness is due to constant padding. This can't be done 
    % with indexing into the original array, but we want the indexing 
    % structure to be preserved, so for now we index to element 1 on each 
    % dimension, and record the indices of the regions that need to be 
    % fixed. 
     
    tofill = ind < 1 | ind > s; 
    ind(tofill) = 1;     
else   
    error('exindex:badconst', 'Expecting string or scalar cell'); 
     
end 
end 
  



Appendix B: Questionnaire 
 

Vragenlijst Experiment “Contrast Perceptie Op De Weg” 
 

1. Hoe oud bent u? 
  

………………………………………………....  jaar 
 
 
2. Wat is de kleur van uw ogen? 
 
 ……………………………………………….... 
 
 
3. Draagt u een bril of contactlenzen? 
 

Ja, namelijk : 
 
………………………………………………........................................................................
......   
(wat is de sterkte, heeft u een cilindrische afwijking?) 
 
Nee 

 
 
4. Heeft u operaties aan uw oog ondergaan (bijvoorbeeld een staaroperatie of laserbehandeling)? 
 

Ja, namelijk: 
 
 
………………………………………………........................................................................
......   
 
Nee 

 
 
5. Heeft u andere afwijkingen aan uw ogen? 
 

Ja, namelijk: 
 
 
………………………………………………........................................................................
......   
 
Nee 

 



6. Hoe alert voelt u zich op dit moment? 

1. Extreem alert 
2. Heel alert  
3. Alert 
4. Ietwat alert 
5. Niet alert, maar ook niet slaperig 
6. Enkele tekenen van slaperigheid 
7. Slaperig, maar het kost geen moeite om wakker te blijven 
8. Slaperig, en het kost wat moeite om wakker te blijven 
9. Erg slaperig, vecht tegen de slaap 

 
7. Hoe zou u uw slaapkwaliteit van afgelopen nacht beoordelen? 

1. Heel slecht 
2. Slecht 
3. Oké 
4. Goed 
5. Heel goed 

 
 
8. Heeft u vandaag cafeïnehoudende producten genuttigd, zoals koffie of thee? 
 

Ja, namelijk: 
 
 
………………………………………………........................................................................
...... 
(wat, en hoeveel?) 
 
Nee 

 
 
9. Heeft u een rijbewijs? 
 
 Ja, voor …………………………. jaar. 
 
 Nee (dit is het einde van de vragenlijst voor u) 
 
 
10. Hoeveel dagen in de week rijdt u gemiddeld auto? 
 
 …………………………………………………… (1 tot 7) 
 
 
11. Op een gemiddelde dag waarop u autorijdt, voor hoe lang rijdt u dan? 
 
 ……………………………………………………  (uren/minuten) 



Questionnaire Experiment “Contrast Perception On The Road” 
 
 
1. What is your age? 
 
 
 ……………………………………………….... years 
 
 
2. What is your eye color? 
 
 ……………………………………………….... 
 
 
3. Do you wear glasses or contact lenses to correct your vision? 
 
 Yes, namely: 
 
 ………………………………………………........................................................................
......    

(prescription: minus or plus how much, cylinder, etc.) 
 
No 

 
 
 
4. Have you undergone any eye surgery (for example cataract surgery or laser vision correction)? 
 
 Yes, namely: 
 
 ………………………………………………........................................................................
......    

 
No 

 
 
 
5. Do you have any other known visual deficiencies? 
 
 Yes, namely: 
 
 ………………………………………………........................................................................
......    

 
No 

 



6. How alert do you feel at this moment? 
1. Extremely alert  
2. Very alert  
3. Alert 
4. Rather alert 
5. Neither alert nor sleepy 
6. Some signs of sleepiness 
7. Sleepy, but no effort to keep awake 
8. Sleepy, but some effort to keep awake 
9. Very sleepy, fighting sleep 

 
7. How would you rate the quality of your sleep? 

1. Very poor 
2. Poor 
3. Fair 
4. Good 
5. Very good 

 
 
8. Have you consumed any caffeine containing products, like coffee or tea, today? 
 
 Yes, namely: 
 
 ………………………………………………........................................................................
......    

(what, how much?) 
 
No 

 
 
9. Do you have a driver’s license? 
 

Yes, for …………………………. years. 
 
No (you have finished the questionnaire) 
 
 

10. On average, how many days of the week do you drive a car? 
 
 …………………………………………………… (1 to 7) 
 
 
11. On an average day of driving a car, how long do you drive it? 
 
 …………………………………………………… (minutes/hours)  



Appendix C: Informed consent forms 

 



 

 

 



 

 

 

 



 

 

 



 



 

  



Appendix D: Pilot study on the influence of a windshield on luminance difference 
thresholds 
 
Introduction. When it comes to driving a car, there is another factor influencing the amount of glare that 

influences your contrast perception: the windshield. This layer of glass between you and the road acts as an 

extra medium through which glare can occur. The perception of a veiling luminance on the windshield can 

occur as a result of two processes: the windshield can reflect sunlight from the dashboard cover, and dirt 

on or damage in the windshield can scatter sunlight (Boulos et al., 1997). Research shows that light 

scattering due to dirt is especially negatively impacting nighttime visibility, effects of which are stronger 

in conditions of glare (Owens et al., 1992). Because of this, using a mock-up windshield provided by 

Rijkswaterstaat, a small pilot study was done to investigate the effects of a dirty windshield on the 

luminance difference threshold. 

 

Method. The method was exactly the same as used in the rest of this work, except for the presence or 

absence of a windshield as an additional factor. The sample size for this pilot was small (n = 2, male, aged 

24 and 28), and therefore no statistical inferences will be drawn. The used windshield was that of a Nissan 

Note (Pilkington M1250), and was placed at an angle of 30 degrees in front of the participant. Figure 41 

shows this setup-up, together with the point-of-view from the perspective of the participant, showing the 

extra veiling luminance caused by the glare source interacting with the windshield. 

 

   
Figure 41. Set-up of the pilot experiment (left) and a point-of-view from the perspective of the participant 

(right). 
 
Results. Figure 42 shows the mean luminance difference thresholds for the different conditions. It becomes 

evident that in the condition with both glare and a windshield, the thresholds are consistently higher across 

all arrow sizes and road luminances. The luminance difference threshold for conditions without a 

windshield also seems to be lower than those conditions with a windshield.  

 



 
Figure 42. Mean luminance difference thresholds in the pilot, across all glare, windshield, road 

luminance, and arrow size conditions. 
 
Discussion. As expected, the presence of a windshield increases the luminance difference threshold. 

However, comparing the conditions “no glare, windshield” with “glare, no windshield” the results hint at 

an interesting phenomenon: as separate factors, the presence of a dirty windshield might be more 

detrimental to contrast perception than the presence of glare. It will be very interesting to see how these 

numbers would change with age, given the characteristics of aging visual systems.  

As a final note, it goes without saying that these results and conclusions are highly preliminary, and should 

only be used to inspire future investigation. 
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