
 Eindhoven University of Technology

MASTER

Learning a Fair Policy for the Influence Maximization Problem

Rutten, Bart J.G.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d46aabc3-20ce-49bc-9e39-ce97e06e10aa

Learning a Fair Policy for the Influence
Maximization Problem

MSc Thesis

Bart Rutten, MSc

Eindhoven University of Technology

Department of Mathematics and Computer Science

Supervisors:

prof. dr. Mykola Pechenizkiy, TU/e

dr. Akrati Saxena, TU/e

dr. Alexander Boer, KPMG Nederland

version 1.0

Eindhoven, 2022

Abstract

The Influence Maximization (IM) problem aims to find a subset of nodes in a social network repres-

ented by a graph, such that the influence propagating from that subset reaches the largest number of

nodes in the network. Algorithms for the IM problem have been extensively studied, but only little

work focuses on developing a fair solution. Fairness issues arise, for example, when certain minority

communities are excluded from the set of influenced nodes. In this work, we will consider a com-

munity as a set of nodes (people) that share the same characteristic for some sensitive attributes like

race, sex and religion. We propose a novel Reinforcement Learning (RL) method, called DQ4FairIM

(Deep 𝑄-learning for Fair Influence Maximization), that aims to maximize the expected number of

influenced nodes, while taking into account that minority groups are not disproportionately ex-

cluded. We provide a formulation of the problem as a Markov Decision Process (MDP) and use deep

Q-learning together with Structure2Vec node-embeddings to solve the MDP. The main benefit of

using RL for this problem is its ability to learn a policy based on fixed problem instances and give

the solution for a new problem instance without the need to re-train the model from start. By means

of experimental results on synthetically generated networks, we show that our proposed method

achieves a higher level of fairness, while keeping a high influence spread. Moreover, it outperforms

state-of-the-art methods in terms of fairness.

Learning a Fair Policy for the Influence Maximization Problem iii

Preface

First and foremost, my gratitude goes out to dr. Akrati Saxena, my daily supervisor, who introduced

me to the topic of Influence Maximization and let me write my thesis about this topic. She guided me

in the right direction by providing me with relevant literature and useful suggestions. The time she

invested, her quick responses to my messages and useful intermediate feedback really encouraged

me along the way. Her guidance and support have proven invaluable to me, and I am sure that

without her, my thesis would have been on a lower level.

Of course, I would also like to thankmy other supervisors: prof.dr. Mykola Pechenizkiy for givingme

the freedom in doing this research and dr. Alexander Boer from KPMG for his sharp eye. He really

let me think about the subject from a different perspective and encouraged me to think critically

about the purpose of my research. His expertise in AI and law and his enthusiasm about this topic

has taught me a lot, not only for my specific research, but also in a much broader sense.

Finally, I would like to thank my other colleagues from KPMG’s department of Trusted Analytics for

the welcoming atmosphere and making my internship an unforgettable experience—and my partner

Quỳnh for giving me the mental support to push through at times I needed it. Without her, this

project would not have been possible. Thank you.

iv Learning a Fair Policy for the Influence Maximization Problem

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . 2

1.2 Related Work . 4

1.3 Research problem and questions . 5

1.3.1 Research Questions . 5

1.3.2 Motivation . 6

1.4 Potential use cases . 7

1.5 Contributions . 8

1.6 Outline . 8

2 Influence Maximization 9
2.1 Definitions and properties . 9

2.2 Diffusion models . 10

2.2.1 Independent Cascade Model . 10

2.2.2 Linear Threshold Model . 12

3 Reinforcement Learning 15
3.1 Introduction and background . 15

3.2 Markov Decision Process . 16

3.3 Policy . 17

3.4 Reward and value function . 17

3.5 𝑄-learning . 19

3.6 Deep 𝑄-learning . 20

3.6.1 Neural networks . 20

3.6.2 Training a Neural Network . 23

3.6.3 Estimating 𝑄-function with a neural network 25

3.6.4 Deep 𝑄-learning with Experience Replay 26

3.7 Example . 27

4 Proposed Method: DQ4FairIM 30
4.1 MDP formulation . 30

4.2 Accounting for fairness . 32

Learning a Fair Policy for the Influence Maximization Problem v

CONTENTS CONTENTS

4.3 Node and graph embeddings . 33

4.4 Deep Q-learning: DQ4FairIM . 35

4.5 Training time complexity . 39

5 Experiments & Results 41
5.1 Datasets . 41

5.1.1 Synthetic network generation . 41

5.1.2 Existing Datasets . 43

5.1.3 Experiment setup . 43

5.2 Baseline Methods . 44

5.3 Training for different levels of fairness . 46

5.3.1 Performance during training . 46

5.3.2 Performance on unseen graphs . 49

5.4 Increasing Graph Size . 50

5.5 Extending to larger graphs . 51

5.6 Evaluating 𝑄-values . 52

5.7 Training on other graph types . 53

6 Conclusions 55
6.1 Main Contributions . 55

6.2 Potential use cases . 57

6.3 Future work . 59

Bibliography 60

Appendix 64

A Convergence of 𝑄-values 65

B Detailed results 67

vi Learning a Fair Policy for the Influence Maximization Problem

List of Figures

1.1 The goal of Influence Maximization is to pick an initial set of nodes in the graph

(orange) such that the number of influenced nodes is maximized (green). 2

2.1 A possible simulation of the Independent Cascade model. 11

2.2 Expected number of influenced after running simulations for the graph with seed set

as indicated in Figure 2.1(a) . 13

2.3 An example of the linear threshold model. 14

3.1 Basic concepts of reinforcement learning illustrated. 15

3.2 Single artificial neuron. 21

3.3 The graphs of two commonly used activation functions. 22

3.4 A Multi Later Perceptron with a single hidden layer. 22

3.5 A Multilayer Perceptron with two hidden layers and two output values. 22

3.6 Illustration of the carptole game, where 𝑥 is the position of the cart, 𝑉 the cart velo-

city, 𝜃 the pole angle and 𝜔 the pole velocity. 28

3.7 Moving average of the episode length (total reward) for the Cartpole game explained

in Section 3.7 during training of the agent. 29

3.8 Episode length (total reward) for the Cartpole game explained in Section 3.7. 29

4.1 An example graph of the obesity prevention dataset. 34

4.2 The node embeddings generated by node2vec of the graph in Figure 4.1 projected to

a two dimensional space using PCA. 35

4.3 Graphical overview of the DQ4FairIM algorithm described in Algorithm 7. The pro-

cess starts by selecting a graph randomly from the pool of graphs. This selected

graph creates a new environment. The agent then interacts with the environment

and solves the MDP defined in Section 4.1 for this specific graph. It chooses a new

node (action) based on the 𝜖-greedy policy: it either selects a random node or a node

with the highest 𝑄-value. The reward it receives is both based on the expected num-

ber of influenced nodes and the fairness measure. It picks a new graph at random

once the terminal state is reached (𝑘 nodes are selected) and a new episode begins.

Along the way, the parameters of the neural network are updated with the samples

stored in the Experience Replay Memory according to the mean squared error loss.

First, the current state will be parameterized to an embedding space using the Struc-

ture2Vec mechanism. These parameterized state representations will serve as input

for the neural network (MLP) that estimates the 𝑄-values. 37

Learning a Fair Policy for the Influence Maximization Problem vii

https://github.com/bwilder0/fair_influmax_code_release/tree/master/networks

LIST OF FIGURES LIST OF FIGURES

5.1 Graph generated by Homophily BA mechanism, red nodes are the majority group

(75 %) and blue nodes are the minority group (25 %). 44

5.1 Training progress DQ4FairIM for different levels of 𝜙. 48

5.2 DQ4FairIM results for different levels of 𝜙 averaged over 10 test graphs. 49

5.3 Results of DQ4FairIM for different graph sizes. 50

5.4 Results of CELF, diversity seeding and the DQ4FairIM model trained on graphs of

100 nodes for different graph-sizes, 𝑘 = 7. 51

5.5 Node degree and 𝑄-value at the start for different graphs and models. 52

5.6 Results of different algorithms for LFR250, 𝑘 = 8, 𝑝 = 0.1. 53

5.7 Results of DQ4FairIM and other methods on diversified homophily BA and obesity

prevention graphs. 54

viii Learning a Fair Policy for the Influence Maximization Problem

List of Tables

4.1 Overview of parameters/notation used in DQ4FairIM. 38

5.1 Model set up for experiment in Section 5.3. 46

B.1 Detailed results in tabular form for BA100 of Figure 5.2. For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fair-

ness. 67

B.2 Detailed results in tabular form for BA200 of Figure 5.3 (a). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 68

B.3 Detailed results in tabular form for BA300 of Figure 5.3 (b). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 68

B.4 Detailed results in tabular form for BA400 of Figure 5.3 (c). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 68

B.5 Detailed results in tabular form for BA500 of Figure 5.3 (d). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 69

B.6 Detailed results in tabular form for dBA200 of Figure 5.7 (a). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 69

B.7 Detailed results in tabular form for obesity of Figure 5.7 (b). For every model/al-

gorithm, the first column contains the total outreach and the second column the

maxmin fairness. 69

B.8 Detailed results in tabular form for LFR250 of Figure 5.6. For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fair-

ness. 70

Learning a Fair Policy for the Influence Maximization Problem ix

Chapter 1

Introduction

Algorithms are increasingly being used in all aspects of life and replacing human-decision making

on a large scale. With this increased dependence on algorithms, there has also been a boom of related

ethical dilemmas, which gave rise to a new research field: algorithmic fairness. Fairness is a very

open area in the field of data mining and although the topic has got more attention in recent years,

there are still a lot of unexplored directions. The difficulty of fairness-aware data mining, and with

it the diversity, lies in defining what fairness is. In general, fairness can be quite subjective and its

definition is problem-specific, there is no one-size-fits-all notion of fairness that can be used for any

kind of problem [15].

Generally speaking, the goal of fairness-aware data mining is to analyse data while taking into ac-

count potential issues of fairness, discrimination, neutrality, and/or independence, where a distinc-

tion is made between detection and prevention of such issues [24]. In previous research fairness is,

for example, seen as non-discriminatory for people based on their protected class status such as race,

sex, religion, etc., also known as a sensitive attribute [15]. One notable example of why fairness in

data mining is important, is the well-known Dutch childcare benefits scandal (Dutch: toeslagenaf-

faire) where around 26,000 parents – mainly those with an immigration background - were wrongly

accused of making fraudulent benefit claims based on algorithmic decision-making [19]. Usually

there exists a trade-off between fairness and model accuracy, and hence fairness-aware data min-

ing can be seen as a kind of cost-sensitive learning where the cost is the enhancement of fairness

[14]. In this research, we will focus on enhancing fairness in a specific social problem: the Influence

Maximization (IM) problem.

Briefly stated, the problem of IM is to find a set of nodes to activate in a directed or undirected

graph, so that the expected number of nodes that will eventually get activated in the network is

maximized [31]. To put it more concrete, the IM problem is about answering the question: If we

can try to convince a subset of individuals to adopt a new product or innovation, and the goal is

to trigger a large cascade of further adoptions, which set of individuals should we target? Some

example applications of IM are advertisement campaigns, viral online content, news propagation

and social intervention [48]. Unfairness can arise when certain groups within a social network

are disproportionately excluded from the information. Closely related to influence maximization is

influence minimization where the goal is to minimize the nodes that will eventually get activated,

a well-known example of this problem is fake-news mitigation [45]. Some research has been done

on fairness in social influence maximization by, for example, Stoica et al. [48], Becker et al. [4]

Learning a Fair Policy for the Influence Maximization Problem 1

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

and Tsang et al. [51]. Stoica et al. showed the interplay between being fair and strategic with a

basic greedy heuristic and in later work proposed a seeding strategy to prevent unfairness in IM

[49]. Becker et al. proposed to use randomization as a mean for achieving fairness and Tsang et al.

defined an algorithmic framework to find a fair solution by means of a multi-objective submodular

maximization problem. We will elaborate more on these methods in Section 1.2. Nevertheless, there

are still a lot of unexplored directions, such as scalable fairness-aware approaches or enhancing

fairness in more complicated solution methods like reinforcement learning.

1.1 Background

Influence maximization is a famous and well-studied problem in social networks, of which a known

application is fake-news mitigation [45]. Other famous applications are advertisement campaigns,

viral online content, news propagation and many others [48]. Given an undirected 𝐺 = (𝑉 , 𝐸), the
goal is to identify a starting set 𝑆 ⊂ 𝑉 of 𝑘 nodes to activate that maximizes the expected number of

nodes 𝜎(𝑆) that will eventually get activated in the network. In the context of fake news, the goal is to
find a set 𝑆 of 𝑘 nodes to block/immunize so that 𝜎(𝑆) is minimized. In addition to the graph, a model

of diffusion in the network is given. Two of the most popular models are the Independent Cascade

(IC) and Linear Threshold models. In the IC model, the graph 𝐺 is weighted: for each edge (𝑢, 𝑣)
there is a weight 𝑝𝑢,𝑣 ∈ [0, 1] to be interpreted as the probability that this edge will propagate the

information. In the LT model, for any node, all its neighbours that are activated just at the previous

time-stamp, together make a try to activate that node. This activation process will be successful, if

the sum of the incoming active neighbour’s probability becomes either greater than or equal to the

node’s threshold.

Several solution methodologies have been proposed over the years, and they can be classified in

roughly four categories: approximation algorithms, heuristic solutions, metaheuristic solutions and

community-based solutions [2]. One of the most famous approximation algorithms is the greedy

algorithm proposed by Kampe et al. [26]. Starting with the empty set, this algorithm (see Algorithm

1) iteratively selects a node that is not in 𝑆, so that the social influence function 𝜎 for the union of

𝑆 with this node is maximized. A major drawback of this method is its unscalability. For example,

applying this algorithm to a medium-sized network of only 15,000 nodes is already unrealistic [8],

whilst real-life social networks could contain millions of different nodes. Nevertheless, Kempe et al.’s

algorithm is considered as the foundation for solving the IM problem. Many other approximation

algorithms are based on the greedy heuristic, of which examples are the static greedy algorithm

proposed by Cheng et al. [9] and the Cost Effective Lazy Forward (CELF) scheme introduced by

Figure 1.1: The goal of Influence Maximization is to pick an initial set of nodes in the graph (orange)

such that the number of influenced nodes is maximized (green).

2 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 1. INTRODUCTION 1.1. BACKGROUND

Leskovec et al. [28]. Algorithms belonging to the set of approximation algorithms give a worst-case

bound on the influence spread.

Algorithms belonging to the set of heuristic solutions do not give any approximation bound on the

worst-case influence spread, but have generally a better running time and scalability. Over the years,

many different heuristics have been proposed. An example is the method proposed by Cordasco et

al. [10], their heuristic gives an optimal solution for trees, cycles and complete graphs and performs

significantly better than state-of-the-art methods for real-life social networks. Another example

is the method of Wu et al. [57], they developed a two-stage stochastic programming approach. As

regardsmetaheuristics, all famous algorithms like genetic algorithms, simulated annealing, and Tabu

search have been applied to the IM problem. Lastly, community-based solutions basically involve

detecting communities first and influential nodes second. Communities can be seen as clusters in

the graph which are densely connected among themselves and sparsely connected with other nodes

in the graph. They can be based on co-interest, co-activities, or co-work, but a community could

also be considered as a set of nodes (people) that share the same value for some sensitive attributes

like race, sex and/or religion.

Most of the discussed algorithms are designed for networks where the whole structure is known

beforehand. However, in many real world applications of influence maximization, practitioners in-

tervene in a population whose social structure is initially unknown [56]. A recent, novel approach to

this problem was introduced by Kamarthi et al. [23]. They proposed a deep Reinforcement Learning

(RL) approach for effective graph sampling. RL is a type of machine learning technique that enables

an agent to learn in an interactive environment by trial and error using feedback from its own ac-

tions and experiences. Important for RL is to formulate the problem as a Markov Decision Process

(MDP). Kamarthi et al. formalized their network discovery problem as an MDP as follows: The cur-

rent state is the graph discovered so far, the actions that the agent could take are querying any of the

nodes in the graph that are not yet queried, and the rewards the agent receives is the total number

of influenced nodes in the entire graph. To solve this MDP, they proposed a neural network archi-

tecture called Geometric-DQN and a training algorithm that uses Deep Q-learning to learn policies

for network discovery by extracting relevant graph properties from the training dataset.

Another reinforcement learning approach was proposed by Chen et al. [7]. They used RL to solve

the Contingency-Aware Influence Maximization problem. This is a special type of the IM problem

where the willingness of the nodes to be selected is uncertain. For example, in an HIV-prevention

campaign, when a person (node) is invited to become a campaigner (seed node), there is uncertainty

in whether it is willing to accept the invitation. Wang et al. [53] proposed another RL model for IM.

They formulated it as a classification problem where the goal is to identify influenced nodes based

on historical observations, which is different from common approaches where a diffusion process is

used to measure influence.

Learning a Fair Policy for the Influence Maximization Problem 3

1.2. RELATED WORK CHAPTER 1. INTRODUCTION

Algorithm 1 Kempe et al.’s greedy algorithm [26]

Input: Graph 𝐺 = (𝑉 , 𝐸) and 𝑘
Output: Maximum influence set 𝑆 ⊆ 𝑉
1: 𝑆 ← ∅
2: for 𝑖 = 1 to 𝑘 do
3: 𝑢 = argmax𝑢∈𝑉 ⧵𝑆 𝜎(𝑆 ∪ 𝑢) − 𝜎(𝑆)
4: 𝑆 ← 𝑆 ∪ 𝑢
5: end for
6: return 𝑆

1.2 Related Work

Fairness is a quite new topic in IM and other related graph-mining problems [42]. Link prediction,

for example, is a well-studied problem for many social, biological, and information networks [32].

Given is an undirected graph 𝐺 = (𝑉 , 𝐸) with a set of nodes 𝑉 and a set of edges 𝐸. In the most

general setting, multiple links and self-connections are not allowed. This means that the universal

set of all possible links 𝑈 has
|𝑉 |⋅(|𝑉 |−1)

2 elements. We assume that there are some missing links or

links that will pop up in the future in the set 𝑈 ⧵𝐸. The goal of link prediction is to find these links. In
the context of social networks, fairness-aware link prediction has been studied [43, 41, 33]. Masrour

et al. [33]. They presented a novel Fairness-Aware LInk Prediction (FLIP) framework to mitigate the

filter bubble problem, which is the reinforced segregation and narrowing the diversity of informa-

tion exposed to users. They consider a link prediction algorithm to be unfair if it is biased towards

promoting certain types of links (e.g., those between users with similar gender or other protected

attributes) For example, Hofstra et al. [20] examined the ethnic and gender diversity of social rela-

tionships on Facebook and found high levels of ethnic segregation. Averaged over all respondents,

they found that approximately three-quarters of respondents’ Facebook friends were of a similar

ethnic background. Saxena et al. [43] proposed a link prediction method, called NodeSim, that con-

siders both the similarity of nodes and their community information to predict intra-community

links as well as inter-community links, with higher accuracy.

Another problem related to graph mining where fairness has been studied is centrality-ranking [44].

The goal is to assign numbers, or rankings to nodes within a graph corresponding to their network

position. As a matter of fact, the IM can be seen as a type of centrality ranking, where we try to

identify or rank the most influential people in the network. One of the most famous and well-studied

algorithms related to centrality ranking is the Pagerank Algorithm, introduced by Brin et al. [5].

PageRank was originally designed to rank academic webpages (nodes) according to their citations

(links). It is, among other algorithms, used by Google Search to rank websites in their search engine

results. Fairness aware pagerank has been studied by Tsioutsiouliklis et al. [52]. They defined a

protected group based on the value of some sensitive attribute such as gender or race, and say that

a link analysis algorithm is 𝜙-fair, if the fraction of total weight allocated to the members of the

protected group is 𝜙.

Stoica et al. [48] studied the IM problem for the purpose of designing fair algorithms for diffusion,

aiming to understand the effect of communities in the creation of unequal impact among network

participants based on attributes like gender and race. They defined two notions of fairness: Fairness

for early-adopters and Fairness in outreach. In the case of early-adopters, they consider a social

influence maximization algorithm to be fair if the proportion of all communities 𝐶1, 𝐶2, … , 𝐶𝑐 in the

4 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 1. INTRODUCTION 1.3. RESEARCH PROBLEM AND QUESTIONS

starting set 𝑆 is equal. That is:

𝔼{|𝑢 ∈ 𝑆|𝑢 ∈ 𝐶𝑖 |}
|𝐶𝑖 |

=
𝔼{|𝑢 ∈ 𝑆|𝑢 ∈ 𝐶𝑗 |}

|𝐶𝑗 |
∀𝑖, 𝑗. (1.1)

In the case of outreach, they consider an algorithm to be fair if in the outreach it achieves, the cascade

(information flow) reaches all communities in a calibrated way. In other words, if the information

being spread in the network reaches the same percentage of each community. Denote the set of

nodes that are influenced by 𝐼 , then we get:

𝔼{|𝑢 ∈ 𝐼 |𝑢 ∈ 𝐶𝑖 |}
|𝐶𝑖 |

=
𝔼{|𝑢 ∈ 𝐼 |𝑢 ∈ 𝐶𝑗 |}

|𝐶𝑗 |
∀𝑖, 𝑗. (1.2)

Becker et al. [4] proposed to use randomization in order to achieve a higher level of fairness. They

considered group fairness, which is similar to Stoica et al., where they consider group fairness for

different communities that are induced by some sensitivity attributes like religion, ethnicity, and

gender. By making use of randomized strategies, they achieved a higher level of fairness compared

to previous studies, indicating that randomness as source of fairness in influence maximization could

be promising to be further explored. Stoica et al. [49] showed in later work that promoting better

parity in the seed selection process leads to better parity in the outreach as well. Another recent

work by Tsang et al. [51] studied group-fairness in IM, and they provided an algorithmic framework

to find solutions which satisfy fairness constraints, making sure that influence is fairly distributed

across different groups in the population.

1.3 Research problem and questions

The main goal of this project is to explore the possibility of using RL to find a fair solution to the IM

problem, while keeping a high influence spread. We think this direction is particularly interesting

since RL is a quite novel approach to solve the IM problem and other graph combinatorial optimiza-

tion problems in general. Previous work on related topics showed that RL can be a good approach for

optimization problems over graphs and, under certain circumstances, gives good results compared to

other methods. Moreover, to the best of our knowledge, there is no solution that uses RL to achieve

fairness in IM. Therefore, we think that a fairness-aware RL approach for IM could be an inspiration

for future work on combining some optimization objective with fairness in a reinforcement learning

setting.

As regards fairness, existing notions of fairness in IM are mostly applied for different communities

such as Stoica et al. [48] and Becker et al. [4]. We will continue in this direction and argue which

notion fits best in our research. As stated in the introduction, fairness can be quite subjective and

its definition is problem-specific, there is no one-size-fits-all notion of fairness that can be used for

any problem. Hence, we are interested in evaluating different notions of fairness in order to find out

which one fits best in the context of our problem. To be more concrete, this project will focus on

answering the following research questions:

1.3.1 Research Questions

• RQ1: Can we train an RL agent to solve the IM problem?

It is not trivial to use RL for the influence maximization problem. The first research question

Learning a Fair Policy for the Influence Maximization Problem 5

1.3. RESEARCH PROBLEM AND QUESTIONS CHAPTER 1. INTRODUCTION

focuses on how we can actually make RL work in order to solve the IM. In particular, we aim

to answer the following sub questions:

1) What are the pros and cons of using RL compared to other algorithms?

2) How can we formulate the classical IM problem as an MDP?

3) How scalable is the RL approach?

• RQ2: How can RL be used to find a fairer solution to the IM problem?

The first research question focuses on how we can design a RL framework in the context of

the IM problem. The second research question builds upon on this question and asks how we

can use this framework to find a fairer solution to the IM problem. In particular, we aim to

answer the following subquestions:

1) How do we define fairness in the context of IM? More specifically, are there any other

fairness criteria that are suitable for the IM problem besides the community-based fairness

notions (Equations 1.1 and 1.2)?

2) How can we enhance this fairness notion in the RL framework?

3)What is the loss incurred by enhancing fairness compared to a RLmodel that is not restricted

to fairness? In other words, what is the price of fairness?

4) How does the method compare to other baseline methods?

5) If the algorithm that accounts for fairness gives different solutions, can we explain, for

example by evaluating the choices of the agent, why this is the case?

The main goal of the research will be to to answer these (sub)questions in as much detail as possible.

In the next section, we will give a little bit more motivation on whywe think fairness plays a relevant

role in social networks and why we think reinforcement learning could be a promising solution to

tackle the problem.

1.3.2 Motivation

Why fairness in IM?
One can argue if and how fairness should play a role in the IM problem. In the example of fake news

mitigation, you could argue that the main goal is to reduce the spread of harmful content as much

as possible, regardless of any sensitive attributes of the nodes in the network. This is in principle a

valid argument. However, fake news is a political sensitive topic and as a social media company you

should prevent the situation that only nodes from a specific side of the political spectrum are affected.

For example, a social media company might run into trouble when it only eliminates right wing

people from its platform. Our research could give a solution for this issue where both the influence

is maximized/minimized and fairness is maximized. Note that in this example, we are interested in

fairness of the seed nodes rather than fairness in outreach. Considering fairness in outreach, one

could think of any application where it is desirable that the information spread within the network

is proportionally divided among the communities. An appealing example is the HIV prevention

program, where the goal is to spread awareness among the homeless youth. As discussed by Tsang

et al. [51], here we wish to ensure that members of racial minorities or the LGBTQ community are

not disproportionately excluded. Another recent example in a similar domain is a COVID-prevention

program. In these kinds of programs it is not only important to reach as many people as possible,

but also to make sure that certain communities (especially minority groups) are not excluded from

access to the information.

Yet another recent example shows the importance of fairness in social networks from a legal per-

6 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 1. INTRODUCTION 1.4. POTENTIAL USE CASES

spective. Facebook’s parent companyMeta Platforms Inc settled a lawsuit over a housing advertising

system that illegally discriminated against users based on race and other characteristics in June 2022

[21]. The US Department of Housing complained that housing ads on Facebook had been discrim-

inatory. For example, they may or may not be shown to people with a certain skin colour, origin,

religion, gender or disability. Facebook’s artificial intelligence must ensure that certain population

groups are not excluded. The changes should also ensure that job and loan advertisements are non-

discriminatory. Facebook earns billions from advertisements and can determine very precisely who

sees which advertisements based on user data. At the same time, this leads to concerns about privacy

and discrimination.

Why reinforcement learning?
Reinforcement learning for graph problems and Combinatorial Optimization (CO) problems in gen-

eral, has gotten more attention in recent years [17]. The key for any problem when applying RL to

solve it, is to translate it to a Markov decision process first. RL has been applied to several famous

CO problems like the Traveling Salesman Problem, The Maximum Cut Problem and The Minimum

Vertex Cover Problem [34]. These problems have been studied extensively in the past decades and a

tremendous amount of different heuristics have been designed to solve these problems, which one

wonder why RL should be used for CO problems in the first place. The main advantage of RL is that

it can learn a policy based on previously seen problem instances and give the solution for a new

problem instance without re-training the model. As discussed by Zheng et al. [58], the rationale

behind using RL for graphs is that graphs from the same application domain or similar types are not

totally different from each other; they may have similar structures and are often solved repeatedly.

An agent can learn a policy based on previously seen graphs and can give a solution for a new graph

immediately. This is also the main motivation for the work by Chen [7] et al.: non-profits usually do

not have the high performance computing resources available to recalculate the solutions for time-

consuming heuristics. By using RL, there is no need to recompute the solution whenever the social

network changes and high performance computing resources are not necessary.

1.4 Potential use cases

As discussed in Section 1.3.2, our work focuses on applications of social influence maximization

where the aim is to find a fair solution while keeping a high influence spread and RL can potentially

be a good approach to tackle the problem. As mentioned, RL is mainly applicable for combinatorial

optimization problems where there is a pool of problem instances that are closely related, and it

might be computationally more efficient to train onemodel that can solve all these problem instances

at once. This pre-trained model can be used to find solutions for new graphs in a short amount

of time. An appealing domain where RL might be useful in particular, is networks of social media

websites. Consider a social network like Facebook, new users enter the network, existing users leave

the network and users connect with other users every minute. Such a network is very dynamic and

changes over time very fast, but probably the core structure or underlying distribution remains the

same over time. A domain where fairness specifically plays a more important and where our method

could be useful are social intervention campaigns. We will discuss these potential use cases in more

detail in Chapter 6.

Learning a Fair Policy for the Influence Maximization Problem 7

1.5. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

1.5 Contributions

This work studies the problem of finding a fair solution for the social influence maximization prob-

lem. It builds upon previous research on RL for IM and fairness for IM, and combines the two topics.

Our main contribution is a novel deep 𝑄-learning approach to solve the influence maximization

problem in a fair way. Here, with fair we mean that certain communities sharing some sensitive at-

tribute are not disproportionately excluded in the final outreach. We motivate why fairness should

get more attention in data science in general and why it is important specifically in the context

of social influence maximization. We reach a higher level of fairness by not only letting the re-

ward function depend on the expected number of influenced nodes, but also on a fairness measure.

We show that our algorithm performs well by performing an empirical study on different kind of

synthetically generated social networks. We hope that our work could be an inspiration for more

research about reinforcement learning for social networks, fairness in influence maximization and

fairness in data science in general.

1.6 Outline

Chapter 2 gives more detail about the Influence Maximization problem. It provides a mathematical

formulation along with some properties that are relevant to our work. Moreover, it discusses dif-

fusion models to measure influence in a network in extensive detail. Chapter 3 provides the basic

theory about reinforcement learning. The goal of this chapter is to provide an understanding about

the concepts of RL. It first gives a short introduction and explains the concepts of an MDP. All rel-

evant building blocks that we will use in our proposed method are explained: including standard

𝑄-learning, deep 𝑄-learning and neural networks. In Chapter 4 we propose our RL framework to

solve the IM problem fairly: DQ4FairIM. Here, we formulate the IM problem as an MDP and explain

howwe guide the agent to find a fair solution. Chapter 5 is all about experiments and gives empirical

evidence that DQ4FairIM is a suitable method to find a fair solution. Finally, in Chapter 6 we draw

conclusions and focus attention on promising research directions.

8 Learning a Fair Policy for the Influence Maximization Problem

Chapter 2

Influence Maximization

As mentioned in the introduction, the problem of influence maximization is to find a set of nodes

to activate in an undirected graph, such that the expected number of nodes that will eventually

get activated in the network is maximized. This chapter will dive a bit deeper into the problem

by formalizing the concept and providing some mathematical properties that are useful for under-

standing the topic more thoroughly. Moreover, the two most famous diffusion models, Independent

Cascade and Linear Threshold are discussed in more detail and explained by means of some small

examples.

2.1 Definitions and properties

The previous chapter focused on introducing the influence maximization problem and giving some

background. Here, we will introduce some common terminology and properties of the influence

maximization problem as also discussed by Shakarian et al. [47]. Note that some of these terms have

been introduced in the previous sections already, but we will formalize them here so that we can

refer to them later on.

Definition 2.1 (Influence Spread). Given a graph 𝐺 = (𝑉 , 𝐸) and an initial seed set 𝑆 of nodes, the

influence spread is the expected number of active nodes at the end of the diffusion process, denoted by

𝜎(𝐺, 𝑆).

Asmentioned previously, the goal of influencemaximization is tomaximize the influence spread:

Definition 2.2 (Influence Maximization Problem). Given a natural number 𝑘, called the budget,
and a graph 𝐺 = (𝑉 , 𝐸) find an initial seed set 𝑆, where |𝑆| ≤ 𝑘, such that 𝜎(𝐺, 𝑆) is maximized.

In general, the influence spread function 𝜎()̇ satisfies the properties normality, monotonicity and

submodularity, which are defined below. Normalization is a straightforward property, it just states

that if no seed nodes are selected, there is also no influence spread in the model.

Definition 2.3 (Normality). If there are no initial seed nodes, there is no influence spread, i.e. 𝜎(𝐺, ∅) =
0.

Monotonicity states that the influence spread of a set of nodes 𝑆 is always greater than or equal to

the influence spread of a subset of 𝑆:

Learning a Fair Policy for the Influence Maximization Problem 9

2.2. DIFFUSION MODELS CHAPTER 2. INFLUENCE MAXIMIZATION

Definition 2.4 (Monotonicity). For 𝑆′ ⊆ 𝑆, 𝜎(𝐺, 𝑆′) ≤ 𝜎(𝐺, 𝑆)

The intuition behind submodalarity is as follows. Consider a group of people 𝑆1, which is a subset

of nodes of 𝑆2. If you add a person 𝑠 to group 𝑆1, then its added value is always at least as much as

if you would add this person to group 𝑆2:

Definition 2.5 (Submodularity). The influence spread function 𝜎 ∶ 𝑆 →  is submodular if and

only if for all 𝑆′, 𝑆′′ ⊆ 𝑆, it holds that if 𝑆′ ⊆ 𝑆′′, then 𝜎(𝐺, 𝑆′∪{𝑠})−𝜎(𝐺, 𝑆′) ≥ 𝜎(𝐺, 𝑆′′∪{𝑠})−𝜎(𝐺, 𝑆′).
Intuitively, a submodular function has a diminishing returns property.

2.2 Diffusion models

Wewill shortly discuss the twomost popular diffusion models used in Influence Maximization. First,

we will discuss the Independent Cascade (IC) model that we will use for our work as well. Secondly,

we will explain an other famous diffusion model, the Linear Threshold (LT) model.

2.2.1 Independent Cascade Model

In the IC model, the graph 𝐺 is weighted: for each edge (𝑢, 𝑣) there is a weight 𝑝𝑢,𝑣 ∈ [0, 1] to be

interpreted as the probability that this edge will propagate the information. As discussed in the

book by Shakarian et al. [46], 𝑝𝑢,𝑣 can be assigned based on frequency of interactions, geographic

proximity, or historical infection traces. This model is the most common in the existing literature to

measure influence. Given a graph 𝐺 = (𝑉 , 𝐸), the probabilities 𝑝𝑢,𝑣 for all edges (𝑢, 𝑣) ∈ 𝐸 and the

set of outgoing edges for a node 𝑣 ∈ 𝑉 defined as 𝛿+(𝑣), we will follow the definition by Shakarian

et al. [47]:

Definition 2.6 (Independent Cascade). Under the independent cascade model, at each time step 𝑡
where𝐴new

𝑡−1 is the set of newly activated nodes at time 𝑡 −1, each 𝑣 ∈ 𝐴new

𝑡−1 infects the inactive neighbours

𝑢 ∈ 𝛿+(𝑣) with a probability 𝑝𝑢,𝑣 . The process terminates at time step 𝑇 if no new nodes are activated.

An example of one simulation of the IC model is given in Figure 2.1. The graph consists of 9 nodes,

labelled A to I. The numbers on the edges indicate the probabilities, note that here the probabilities

are just fixed arbitrary numbers from the set {0.1, 0.2, 0.3, 0.4}. The initial seed set consisting of

{𝐴, 𝐻} at 𝑡 = 0 is indicated by yellow. Then at time step 𝑡 = 1, nodes 𝐴 and 𝐻 have a single chance

to influence their neighbouring nodes according to the edge probabilities. That is, node 𝐴 could

influence 𝐵 with probability 0.1, 𝐶 with probability 0.3 and 𝐸 with probability 0.2. Node 𝐻 could

influence 𝐹 with probability 0.2, 𝐺 with probability 0.1 and 𝐼 with probability 0.1. In this simulation,

node 𝐴 influences nodes 𝐶 and 𝐸 and node 𝐻 influences node 𝐼 . The newly influenced nodes at

𝑡 = 1 are indicated by yellow and have a single chance to influence their neighbouring nodes at the

next time step 𝑡 = 2. Node 𝐶 will influence node 𝐵 and either node 𝐸 or 𝐼 will influence node 𝐹 .
Then at the last time step 𝑡 = 3, nodes 𝐸 and 𝐼 do not influence any neighbouring nodes anymore

and the model terminates. The final set of influenced nodes is indicated by blue and consists of

{𝐴, 𝐵, 𝐶, 𝐸, 𝐹 , 𝐻 , 𝐼 }.

Note that the sequence illustrated in this figure is only one simulation of the model and that the

actual probability of this sequence is very low. What we are mainly interested in, is the expected

number of influenced nodes under the IC-model. We can calculate the expected number of influ-

enced nodes by running (Monte-Carlo) simulations𝑚 times. The results are illustrated in Figure 2.2.

The fractions at the nodes represent the percentage of times this node was influenced. We can just

10 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 2. INFLUENCE MAXIMIZATION 2.2. DIFFUSION MODELS

A

B

C

D

E F

G IH

0.1

0.3

0.3

0.2

0.2 0.1

0.40.2

0.10.1

0.3

(a) 𝑡 = 0

A

B

C

D

E F

G IH

0.1

0.3

0.3

0.2

0.2 0.1

0.40.2

0.10.1

0.3

(b) 𝑡 = 1

A

B

C

D

E F

G IH

0.1

0.3

0.3

0.2

0.2 0.1

0.40.2

0.10.1

0.3

(c) 𝑡 = 2

A

B

C

D

E F

G IH

0.1

0.3

0.3

0.2

0.2 0.1

0.40.2

0.10.1

0.3

(d) 𝑡 = 3

Figure 2.1: A possible simulation of the Independent Cascade model.

Learning a Fair Policy for the Influence Maximization Problem 11

2.2. DIFFUSION MODELS CHAPTER 2. INFLUENCE MAXIMIZATION

sum over all the numbers and end up with an expected number of 3.41 influenced nodes (including

the nodes of the seed set). Now for the running time complexity of calculating the influence spread

under the IC model we get:

Algorithm 2 Independent Cascade

Input: Graph 𝐺 = (𝑉 , 𝐸), seed set 𝑆0 and probability 𝑝
Output: Set of influenced nodes 𝑆 ⊆ 𝑉
1: 𝑡 ← 0
2: 𝐴0 ← 𝑆0
3: while 𝑆𝑡 ⧵ 𝑆𝑡−1 ≠ ∅ do
4: 𝑡 ← 𝑡 + 1
5: 𝐴𝑡 ← {}
6: for each 𝑣 ∈ 𝐴𝑡−1 do
7: for each 𝑢 ∈  (𝑣) do
8: 𝐴𝑡 ← 𝐴𝑡 ∪ 𝑣 with probability 𝑝
9: end for
10: end for
11: 𝑆𝑡 ← 𝑆𝑡 ∪ 𝐴𝑡
12: end while
13: return 𝑆

Theorem 2.7 (Time complexity of IC). The time complexity of evaluating the influence spread

under the Independent Cascade model (of a single run) is 𝑂(|𝐸|).

Proof. To see this, we refer to Algorithm 2 and Definition 2.6. Note that each infected node has

a single change of activating all of its neighbours. This means that in the worst case, we have to

evaluate all neighbours for all nodes, which is at most |𝐸|. Adding a node to the seed set is just

constant time, hence we have 𝑂(|𝐸|).

Theorem 2.8 (Time complexity of simulating IC). The time complexity of retrieving the expected

number of influenced nodes under the Independent Cascade by running 𝑚 Monte-Carlo simulations is

𝑂(𝑚|𝐸|).

Proof. The time complexity of evaluating a single run of the ICmodel is𝑂(|𝐸|) (see Theorem 2.7). We

just have to evaluate the influence spread under the IC model𝑚 times, hence we get 𝑂(𝑚|𝐸|).

As stated by Shakarian et al. [46], influence maximization in the independent cascade model is NP-

hard. Moreover, the influence function is normalized, monotone and submodular.

2.2.2 Linear Threshold Model

In the Linear Threshold (LT) model, the graph 𝐺 = (𝑉 , 𝐸) is also weighted with weights 𝑏(𝑢, 𝑣)
for each edge (𝑢, 𝑣) ∈ 𝐸, but the weights do not indicate probabilities. In this model, a node gets

activated if the sum of the activated incoming nodes exceeds a certain threshold. Moreover, for each

node 𝑣 ∈ 𝑉 the total incoming edge weights cannot exceed 1. We will again follow the definition by

Shakarian et al. [46]:

Definition 2.9 (Linear Threshold). Under the linear threshold model dynamics, each node 𝑣 selects

12 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 2. INFLUENCE MAXIMIZATION 2.2. DIFFUSION MODELS

A

B

C

D

E F

G IH

1.00

1.00

0.18

0.32

0.08

0.26 0.28

0.10 0.19

Figure 2.2: Expected number of influenced after running simulations for the graph with seed set as

indicated in Figure 2.1(a)

.

a threshold 𝜃𝑣 in the interval [0, 1] uniformly at random. Then at each time step 𝑡 where 𝐻𝑡−1 is the set

of nodes activated at time 𝑡 −1 or earlier, each inactive node becomes active if∑𝑢∈𝜂in(𝑣)∩𝐻𝑡−1
𝑏(𝑢, 𝑣) ≥ 𝜃𝑣 .

Note that the thresholds 𝜃𝑣 do not necessarily have to be random, but can be chosen based on specific

node attributes as well, and this usually depend on the problem at hand. However, these thresholds

are usually selected randomly due to lack of knowledge of the tendencies of nodes, and express the

different levels of tendency of nodes to adopt or believe a message. At each step, an inactive node

becomes active if the total weight of its incoming neighbours is at least 𝜃𝑣 .

An example of this model is shown in Figure 2.3. This is the same graph as in Figure 2.1, but with

different weights on the edges, and each node is assigned a random threshold in [0, 1]. The initial
seed set is again picked as {𝐴, 𝐻}. Node 𝐴 cannot activate nodes 𝐵 and 𝐶 since the influence weight

is not larger or equal to the thresholds of these nodes (𝑏(𝐴, 𝐵) < 𝜃𝐵 and 𝑏(𝐴, 𝐶) < 𝜃𝐶). It will

activate node 𝐸 since the influence weight (𝑏(𝐴, 𝐸) = 0.2) is larger than the threshold of node 𝐸
(𝜃𝐸 = 0.1). Node 𝐻 cannot activate nodes 𝐺 and 𝐼 since the influence weight is not larger or equal
to the thresholds of these nodes (𝑏(𝐻 , 𝐺) < 𝜃𝐺 and 𝑏(𝐻 , 𝐼) < 𝜃𝐼). It will activate node 𝐹 since the

influence weight (𝑏(𝐴, 𝐸) = 0.7) is larger than the threshold of node 𝐹 (𝜃𝐹 = 0.3). Hence, at time

step 𝑡 = 1 the set of activated nodes is denoted by {𝐴, 𝐸, 𝐹 , 𝐻}. Then, at the next time step, node

𝐷 gets activated since 𝑏(𝐸, 𝐷) + 𝑏(𝐹 , 𝐷) = 0.2 + 0.3 ≥ 𝜃𝐷 = 0.3 and node 𝐼 gets activated since

𝑏(𝐹 , 𝐼) + 𝑏(𝐻 , 𝐼) = 0.4 + 0.1 ≥ 𝜃𝐼 = 0.4. In the next time step, no new node gets activated and the

diffusion process stops. The final set of influenced nodes consists of {𝐴, 𝐷, 𝐸, 𝐹 , 𝐻 , 𝐼 }.

Learning a Fair Policy for the Influence Maximization Problem 13

2.2. DIFFUSION MODELS CHAPTER 2. INFLUENCE MAXIMIZATION

A

0.1

0.1

0.3

0.2

0.2 0.1

0.40.7

0.10.2

0.3

0.7

B
0.2

C
0.3

D
0.3

E
0.1

F
0.3

G
0.3

H
0.5

I
0.4

(a) 𝑡 = 0

A

0.1

0.1

0.3

0.2

0.2 0.1

0.40.7

0.10.2

0.3

0.7

B
0.2

C
0.3

D
0.3

E
0.1

F
0.3

G
0.3

H
0.5

I
0.4

(b) 𝑡 = 1

A

0.1

0.1

0.3

0.2

0.2 0.1

0.40.7

0.10.2

0.3

0.7

B
0.2

C
0.3

D
0.3

E
0.1

F
0.3

G
0.3

H
0.5

I
0.4

(c) 𝑡 = 2

Figure 2.3: An example of the linear threshold model.

14 Learning a Fair Policy for the Influence Maximization Problem

Chapter 3

Reinforcement Learning

In this chapter we will give an introduction to the core concepts of Reinforcement Learning (RL).

They form the base for our solution method proposed in Chapter 4. The concept of RL explained in

this chapter comes from multiple valuable sources, in particular from the book by Sutton & Barto

[50] and a lecture about Deep Reinforcement Learning by Li et al. (Stanford University) [29]. First

we will give a short introduction to RL without going into theoretical detail along with some famous

examples in Section 3.1. Then we will explain the theory in more detail in Sections 3.2-3.6. Finally,

we will end this chapter with an example application in Section 3.7.

3.1 Introduction and background

As stated by Sutton & Barto: "Reinforcement learning is learning what to - do how to map situations

to actions - so as to maximize a numerical reward signal." Here the learning refers to an agent that

interacts with an environment. The agent observes a certain state of the environment and performs

an action. After performing the action, the agent receives a reward from the environment. These

concepts are illustrated in figure 3.1 where 𝑡 indicates the time step. At every discrete time step

𝑡 , the agent interacts with the environment by observing the current state 𝑠𝑡 and performing an

action 𝑎𝑡 from the set of available actions. After performing an action 𝑎𝑡 the environment moves

to a new state 𝑠𝑡+1 and the agent observes a reward 𝑟𝑡+1 associated with the transition (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1).
The ultimate goal of the agent is to maximize the future reward by learning from the impact of its

actions on the environment. The agent is not told which actions to take, but must discover itself

which actions yield the most reward by trying them. Ultimately, by trial-and-error, the agent knows

Environment

Agent

Action �
�

Reward �
�

State �
�

��+1

��+1

Figure 3.1: Basic concepts of reinforcement learning illustrated.

Learning a Fair Policy for the Influence Maximization Problem 15

3.2. MARKOV DECISION PROCESS CHAPTER 3. REINFORCEMENT LEARNING

the best action to take, given the current state of the environment. It is crucial for an agent to trade-

off between exploration and exploitation. To receive a high reward, the agent has to exploit what it

already knows to maximize reward, but also has to explore the environment by trying actions that

it has not selected before.

In contrast to general machine learning algorithms, "RL is defined not by characterizing learning

methods, but by characterizing a learning problem. Any method that is well suited to solving that

problem, we consider to be a reinforcement learning method." Generally, such a problem is defined

as a Markov decision process, which we will explain in the next section (Section 3.2). RL is usually

considered as one of the three basic machine learning paradigms, alongside supervised learning and

unsupervised learning. It differs obviously from supervised learning since it does not need labeled

input data. It differs from unsupervised learning, since the aim is not to explore underlying data

patterns. As a matter of fact, it is generally assumed that in RL there is no predefined data at all.

This is basically the case with online learning, where the the agent is trained as the data comes in. In

offline learning, there is a static datasets or pool of datasets and the agent is trained in one go.

As with machine learning in general, RL is a hot topic in the field of Data Science and has been

applied widely in real-life. In fact, a major part of the world population has to do with RL daily one

way or another. One of the most appealing examples is self-driving cars. Other famous applications

of RL are playing games like Go or chess, different kinds of recommender systems and customized

action in video games.

3.2 Markov Decision Process

As discussed in Section 3.1, RL is characterized by defining a learning problem. Typically, such a

problem is defined as a Markov decision process (MDP). This is a discrete-time stochastic control

process, that satisfies theMarkov property. That is, given the current state and action, the probability

of the next state only depends on the current state and is conditionally independent of all previous

states and actions:

𝑃[𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡] = 𝑃[𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡−1, 𝑎𝑡−1, … , 𝑠0, 𝑎0]. (3.1)

In the context of the agent and its environment, this means that the current state provides the agent

with all the information needed in order to make a decision about which action to take next. The

representation of the state basically summarizes past experiences, such that all information of the

past remains. Or to put it differently, the current state completely characterizes the state of the

environment. An MDP can be denoted by a tuple ( ,, , 𝑅, 𝛾), where:

•  is the state-space;

•  is the action-space, or(𝑠) if the possible actions depend on the current state;

•  is the set of state-action-transition probabilities, i.e. the probabilities of transitioning to

state 𝑠′, given current state 𝑠 and action 𝑎;

•  is the reward function or distribution of reward, given some state and action;

• 𝛾 ∈ [0, 1] is the discount parameter (more on this in the next sections).

16 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.3. POLICY

The state and action spaces may be finite or infinite, depending on the problem at hand. At time

step 𝑡 = 0, the environment samples initial states (usually the environment has a predefined starting

state). Then at every time step until the end of the process, the agent selects an action 𝑎𝑡 from action-

space 𝐴, the environment samples a reward 𝑟𝑡 from 𝑅 and a next state 𝑠𝑡+1 according to 𝑃 . A policy

𝜋 is a mapping from 𝑆 to 𝐴 that specifies which action to take in each state. The goal of the agent is

to find the optimal policy 𝜋 ∗
that maximizes cumulative discounted reward.

3.3 Policy

Recall that a policy 𝜋 is a mapping from each state 𝑠 ∈  to each action 𝑎 ∈ (𝑠), denoting the

probability 𝜋(𝑎|𝑠) of taking action 𝑎 while being in state 𝑠. The policy can either be deterministic,

where it returns a single action,

𝜋(𝑎|𝑠) =

{
1 for some 𝑎∗ ∈ ,
0 for all 𝑎 ∈  ⧵ {𝑎∗}

∀𝑠 ∈ 𝑆, (3.2)

or it can be stochastic, where it assigns a probability to each action,

𝜋(𝑎|𝑠) = 𝑃𝜋 [𝑎|𝑠], ∀𝑠 ∈  , 𝑎 ∈ . (3.3)

In the first case, the agent will learn a policy where it selects one action with probability 1, in the

latter case, the agent will learn probabilities where the action with a higher probability is preferred

over an action with a lower probability.

3.4 Reward and value function

The goal of the agent is to find an optimal policy 𝜋 ∗
that maximizes the expected total cumulative

reward. In the simplest case, where there is a finite time horizon from 0 to 𝑇 and no discount

parameter, the cumulative future reward 𝑅𝑡 at time step 𝑡 is just the sum of future rewards:

𝑅𝑡 = 𝑟𝑡+1 + 𝑟𝑡+2 + 𝑟𝑡+3 + ⋯ + 𝑟𝑇 . (3.4)

This approach is suitable for applications where there is a natural end point and the problem breaks

down in episodes, such as plays of a game or trips through a maze. There are many applications,

however, where there is not such a natural end point and the time horizon could be infinite. If this is

the case, the above approach is not suitable, since the cumulative reward can become infinite. This is

where the discount factor from Section 3.2 comes in. Instead of maximizing the expected cumulative

reward, we maximize the expected discounted cumulative reward:

𝑅𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾 2𝑟𝑡+3 + ⋯ =
∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1. (3.5)

The discount value essentially determines how much the agent cares about rewards in the distant

future relative to those in the immediate future. A reward received 𝑘 steps from now, is only worth

𝛾 𝑘−1 times what it would be if it were received now. In general, 𝛾 is chosen close to 1, since the

access to future rewards is important for obtaining a high reward. Moreover, by introducing the

Learning a Fair Policy for the Influence Maximization Problem 17

3.4. REWARD AND VALUE FUNCTION CHAPTER 3. REINFORCEMENT LEARNING

discount factor, we can prove convergence of certain algorithms (we elaborate more on this in the

next sections).

By defining the cumulative reward, we can also define the value function. The value function is

defined under a policy 𝜋 and is defined as the expected cumulative reward at state 𝑠 and following

policy 𝜋 thereafter:

𝑉𝜋 (𝑠) = 𝔼𝜋 [𝑅𝑡 |𝑠𝑡 = 𝑠] = 𝔼𝜋 [

∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1
|||||
𝑠𝑡 = 𝑠

]
, ∀𝑠 ∈  . (3.6)

The value function basically assigns a value to every state 𝑠 ∈  and tells loosely speaking how good

it is to be in state 𝑠. We can rewrite Equation 3.6 to the well-known Bellman equation:

𝑉𝜋 (𝑠) = 𝔼𝜋 [

∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+1
|||||
𝑠𝑡 = 𝑠

]
(3.7)

= 𝔼𝜋 [
𝑟𝑡+1 + 𝛾

∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+2
|||||
𝑠𝑡 = 𝑠

]

= ∑
𝑎
𝜋(𝑎|𝑠)∑

𝑠′
∑
𝑟
𝑝(𝑠′, 𝑟 |𝑠, 𝑎)

[
𝑟 + 𝛾𝔼𝜋 [

∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+𝑘+2
|||||
𝑠𝑡+1 = 𝑠′

]]

= ∑
𝑎
𝜋(𝑎|𝑠)∑

𝑠′,𝑟
𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾𝑉𝜋 (𝑠′)] .

Similarly, we can also define the state-action value function. This is the value of taking action 𝑎 in

state 𝑠 under policy 𝜋 and denoted by 𝑄𝜋 (𝑎, 𝑠):

𝑄𝜋 (𝑎, 𝑠) = 𝔼𝜋 [𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] = 𝔼𝜋 [

∞
∑
𝑘=0

𝛾 𝑘𝑟𝑡+1+𝑘
|||||
𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
. (3.8)

Now for finite MDPs, i.e. MDPs with a terminating state and finite state, action and reward sets, we

can define the optimal state-value function. A policy 𝜋 is considered to be optimal if for all other

policies 𝜋 ′
, it holds that 𝑣𝜋 (𝑠) ≥ 𝑣𝜋 ′(𝑠) for all 𝑠 ∈  . There might be more than one optimal policy

and we define the set of all optimal policies by 𝜋∗. These policies have the same state-value function,

namely the optimal state-value function, denoted by 𝑉∗:

𝑉∗(𝑠) = max
𝜋

𝑉𝜋 (𝑠), ∀𝑠 ∈  . (3.9)

Similarly, we can define the optimal state-action-value function, denoted by 𝑄∗:

𝑄∗(𝑠, 𝑎) = max
𝜋

𝑄𝜋 (𝑠, 𝑎). (3.10)

The Bellman optimality equation for the optimal state-value function is given by:

𝑉∗(𝑠) = max
𝑎∈(𝑠)

∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎)[𝑟 + 𝛾𝑉∗(𝑠′)]. (3.11)

And the Bellman equation for the optimal state-action-value function is given by

𝑄∗(𝑠, 𝑎) = ∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟 |𝑠, 𝑎) [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)] (3.12)

18 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.5. 𝑄-LEARNING

3.5 𝑄-learning

The most famous algorithm to solve the problem is 𝑄-learning, introduced by Chris Watkins in 1989

[55]. The algorithm has a function that calculates a quality measure for every possible state action

combination: 𝑄 ∶ 𝑆 × 𝐴 → . 𝑄-learning is a model-free RL algorithm that learns the value of an

action in a particular state. The value 𝑄(𝑠𝑡 , 𝑎𝑡) tells, loosely speaking, how good it is to take action 𝑎𝑡
while being in state 𝑠𝑡 . In the simplest setting, 𝑄-learning iteratively updates the 𝑄-values to obtain
the final 𝑄-table with 𝑄-values. From this 𝑄-table, one can read the policy of the agent by taking

action 𝑎𝑡 in every state 𝑠𝑡 that yields the highest values. Updating is done according to the following
rule:

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄𝑡 (𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾 ⋅ max
𝑎𝑡∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡)) . (3.13)

The learned state-action function 𝑄 directly approximates the optimal function 𝑞∗. The algorithm
uses several parameters/variables. Usually, the initial 𝑄-values are set to 0. However, if we want to

stimulate exploration we should pick relatively high initial 𝑄-values. Exploration means to select a

move that does not necessarily lead to the best known reward, but which gives more information

about the environment. This could be a random action or an action according to some probability.

The learning rate 𝛼 determines how much the agent learns. A learning factor of 0 means that the

agent learns nothing and 𝑄-values are not updated at all. A value of 1 means that the agent only

looks at the most recent information and forgets the old information. The discount factor 𝛾 indicates

how much the agent looks at the future reward. If 𝛾 = 0, the agent only looks at the current reward.
Algorithm 3 shows the pseudocode of the algorithm.

First we initialize all the relevant parameters and initial values in lines 1-2. Lines 3-11 actually show

how the algorithm works. Usually, the algorithm runs for a fixed number of episodes 𝐸 or until

convergence of 𝑄-values. At the start of an episode, we initialize the starting state (line 4). Then,

for each time step 𝑡 of the process until the terminal step 𝑇 , the agent selects an action. This action

is either a random action with probability 𝜖 or the action with the highest 𝑄-value with probability

1 − 𝜖 (line 6). The agent performs the chosen action, observes the reward and next state (line 7) and

updates the 𝑄-value according to the update rule (3.13) (line 8). Finally, the environment moves to

the next state and a new time step starts (line 9).

The 𝑄-learning algorithm possesses some nice property: it converges to the optimal 𝑄-function,
given that all state-action pairs are visited infinitely often:

Theorem 3.1 (Convergence of 𝑄-values). Given a finite MDP ( ,, , 𝑅, 𝛾), the 𝑄-learning al-

gorithm, given by the update rule

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄𝑡 (𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾 ⋅ max
𝑎𝑡∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡)) .

converges with probability 1 to the optimal 𝑄-function, given that:

1. The state and action spaces are finite.

2. ∑𝑡 𝛼 = ∞ and ∑𝑡 𝛼2 < ∞.

Proof. The proof given by Melo [35] can be found in Appendix A.

In case of a relatively small problem with a finite state and action space, one can maintain a 𝑄-table
that stores the current estimate of the values. For many problems however, it becomes impossible

Learning a Fair Policy for the Influence Maximization Problem 19

3.6. DEEP 𝑄-LEARNING CHAPTER 3. REINFORCEMENT LEARNING

to maintain such a table. In this case you need to use a function approximate. This is where neural

networks come in handy due to their expressive power, also referred to as Deep Q learning. In the

context of influence maximization, Chen et al. [7] use a multi-layer perceptron and Kamarthi et al.

[23] use a Geometric-DQN.

Algorithm 3 Standard 𝑄-learning
1: Set parameters 𝛼 ∈ (0, 1], small 𝜖 > 0.
2: Initialize 𝑄(𝑠, 𝑎) ∀𝑠 ∈  , 𝑎 ∈ (𝑠).
3: for episode 1 till 𝐸 do
4: Initialize 𝑠;
5: for step 𝑡 = 0, … , 𝑇 do

6: 𝑎 =

{
random action 𝑎 ∈ (𝑠𝑡) w.p. 𝜖
argmax𝑎∈(𝑠𝑡) 𝑄(𝑠𝑡 , 𝑎; Θ) w.p. 1 − 𝜖

7: Take action 𝑎 and observe reward 𝑟 and next state 𝑠′

8: 𝑄(𝑠, 𝑎) ← (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼 (𝑟 + 𝛾 ⋅ max𝑎∈𝐴 𝑄(𝑠′, 𝑎))
9: 𝑠 ← 𝑠′

10: end for
11: end for

3.6 Deep 𝑄-learning

𝑄-learning is a suitable method to solve small problems. Small in the sense of problems with rel-

atively few different distinct states and a small action space. It does not work for problems where

the state space can be very large, since maintaining a 𝑄-table is just computationally infeasible. For

example, suppose we are finding a solution for a problem on a graph with 𝑛 nodes where we have to

select a subset of 𝑘 nodes. If we are trying to find a solution by iteratively adding a node to the set, a

state is represented by the nodes selected so far. However, this means that there are a total of∑𝑘
𝑖=0 (

𝑛
𝑖)

distinct states and for a graph of 500 nodes and 𝑘 = 15 this means we have ∑15
𝑖=0 (

500
𝑖) ≈ 1.95e+28

distinct states. Memory wise, it is of course impossible to maintain a 𝑄-table of such a size. This is

where we can use a 𝑄-function approximator.

The function approximator, with 𝜃 denoting the function parameters, estimates the state-action-

value:

𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎). (3.14)

Usually this function approximator is a neural network, and when it is a deep neural network, i.e.

a neural network with more than one layer, the algorithm is called deep 𝑄-learning. We will first

shortly explain the concepts of a neural network before specifying the deep 𝑄-learning algorithm.

Our explanation is mainly based on the book about neural networks and deep learning by Nielsen

[38] and the lecture notes for the course Deep Learning (Eindhoven University) by Menkovksi et al.

[36]

3.6.1 Neural networks

In general, a neural network takes as input training data pairs (𝑥𝑖 , 𝑦𝑖), where 𝑖 + 1, … , 𝑁 and tries

to estimate a function 𝑦 = 𝑓 (𝑥). A neural network in its most simple form consists of one artificial

20 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.6. DEEP 𝑄-LEARNING

neuron. A graphical representation of such a neuron can be found in Figure 3.2. This neuron consists

of the following components:

• The input data is represented by 𝑥0, 𝑥1 and 𝑥2, also denoted as the input vector 𝐱. These are
the independent features, i.e. the features with which we want to predict the outcome 𝑦.

• Every feature is assigned aweight, represented by the edges in the figure. Theweights together

form the weight vector 𝐰. The bias term is indicated by 𝑏 and can be thought of as analogous

to the role of a constant in a linear function. The bias and the weights together form the

parameters of the neuron, denoted by 𝜃 .

• The neuron itself applies some activation function to the weighted sum plus the bias term. We

denote this activation function by 𝜎 and consequently the output 𝑜𝜃 (𝐱) will be as follows:

𝑜𝜃 (𝐱) = 𝜎
(
∑
𝑖
𝑤𝑖𝑥𝑖 + 𝑏

)
= 𝜎(𝐰⊤𝐱 + 𝑏). (3.15)

Figure 3.2: Single artificial neuron.

Initially sigmoidal functions such as the logistic sigmoid function (see Figure 3.3) were the most

commonly used. However, they suffer from the well-known vanishing gradient problem, making it

hard to train a deep model. An activation function that overcomes this problem partly and which

we also use in our approach is the Rectified Linear Unit (see Figure 3.3):

ReLU ∶ 𝑥 → max (0, 𝑥). (3.16)

In general, ReLU’s allow faster and more effective training of deep neural networks on large and

complex datasets than sigmoidal functions.

A single neuron is rather restricted in its ability to capture complex maps between the input and

the output of the model. For example, a neural network consisting of a single neuron with a logistic

sigmoid activation function, is nothing more than a logistic regression model. To address this lim-

itation and enable the network to represent more complex mappings, we can stack neurons. Such

a stacking of neurons is called a hidden layer. Typically, these neurons have the same activation

function. A structure like this is called a Multilayer Perceptron (MLP), a graphical representation of

an MLP with one hidden layer is given in Figure 3.4.

To allow for even more complex mappings on non-linear data, we can stack multiple layers of neur-

ons on top of each other. The output of one hidden layer then becomes the input to the next. A

graphical representation of such an MLP with two hidden layers is given in Figure 3.5.

Learning a Fair Policy for the Influence Maximization Problem 21

3.6. DEEP 𝑄-LEARNING CHAPTER 3. REINFORCEMENT LEARNING

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0Sigmoid

(a) The graph of the logistic sigmoid function.

4 2 0 2 4

0

1

2

3

4

5ReLu

(b) The graph of a Rectified Linear Unit.

Figure 3.3: The graphs of two commonly used activation functions.

Figure 3.4: A Multi Later Perceptron with a single hidden layer.

Figure 3.5: A Multilayer Perceptron with two hidden layers and two output values.

In this way, we can make the neural network as complex as possible. The number of hidden layers

is called the depth of the network and a network with multiple layers is called a deep neural network.

The benefit of having multiple layers is that a complex boundary between two decisions about the

input data can be decomposed as a set of simpler boundaries that are then combined in the next

layer. Such a highly complex network can also be achieved by a network with only one layer with a

significant amount of neurons. For example, a neural network with two hidden layers of five nodes

has in principle the same complexity of a network with one hidden layer consisting of ten nodes.

However, this is significantly less efficient in terms of the number of parameters.

22 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.6. DEEP 𝑄-LEARNING

3.6.2 Training a Neural Network

In order to train the parameters of a neural network, we first need to define a loss function. Remem-

ber that we have data pairs (𝑥𝑖 , 𝑦𝑖) that serve as training data. Now the goal is to train the neural

network, so that the predicted value 𝑦̂𝑖 is as "close" to the real value 𝑦𝑖 . The loss function 𝐿(𝑦𝑖 , 𝑦̂𝑖)will
tell you how "close" these values are. To determine how good our parameters are, we are interested

in the average loss, also called empirical risk:

1
𝑁

𝑁
∑
𝑖=1

𝐿(𝑦𝑖 , 𝑦̂𝑖). (3.17)

We want to find the parameters 𝜃 that minimize this loss. The objective of training the model then

becomes to minimize the empirical risk:

𝜃 ∗ = argmin
𝜃

1
𝑁

𝑁
∑
𝑖=1

𝐿(𝑦𝑖 , 𝑦̂𝑖). (3.18)

One of the most famous loss functions, the one that we will also use in our proposed method is called

Mean Squared Error (MSE):

MSE(𝑦, 𝑦̂) = (𝑦 − 𝑦̂)2. (3.19)

Gradient Descent
In order to minimize the loss function in Equation 3.17, we actually need to use an algorithm. Al-

though there are many more effective ways to optimize a simple linear regression model, we will

focus on gradient descent because it enables us to scale this to far more complex and non-linear mod-

els, like deep neural networks, that we aim for. Gradient descent is a simple optimization process in

principle. Assume we have a continuously differentiable function 𝑓 ∶ ℝ2 → ℝ of two variables with

a hilly-looking graph. We begin on some slope and want to find a local minimum. We could take a

step in that direction by observing which way the hill descends most sharply. This is gradient des-

cent: the gradient of 𝑓 , ∇𝑓 (𝑢, 𝑣) = (𝜕
𝜕𝑢 𝑓 (𝑢, 𝑣),

𝜕
𝜕𝑣 𝑓 (𝑢, 𝑣) at a point (𝑢, 𝑣) ∈ ℝ2

, points in the direction

in which 𝑓 has the steepest increase, and the negative of the gradient of 𝑓 points in the direction of

the steepest descent.

We consider the empirical risk, or average loss function, as a function of the model parameters in

order to apply gradient descent to our machine learning model. We let the model make predictions

for the dataset, calculate the loss and calculate the derivatives of that loss with respect to the model

parameters. The parameters are then updated.

Gradient descent (GD) optimization is an iterative optimization algorithm for finding minima of

differentiable functions. The algorithm iterativelymodifies themodels parameters until it converges,

or until the loss value stops decreasing. Algorithm 4 provides the update rule for the parameters in

an arbitrary model.

Intuitively, the gradient of the loss with respect to the model parameters indicates how the loss value

changes as the parameter values change. If the loss increases as a parameter is increased, the gradient

will be positive. As we want to reduce the loss, we should reduce the value of that parameter, hence

the minus sign in the expression and the word ’descent’ in the name of the algorithm.

A variant of GD is Stochastic Gradient Descent (SGD). While in GD, you have to run through all

the samples in your training set to do a single update for a parameter in a particular iteration, in

Learning a Fair Policy for the Influence Maximization Problem 23

3.6. DEEP 𝑄-LEARNING CHAPTER 3. REINFORCEMENT LEARNING

SGD, on the other hand, you use only a subset of training samples from your training set to do the

update for the parameters in a single iteration. Usually, if the number of training samples is very

large, using GD may take too long because in every iteration of updating the parameters, you are

running through the complete training set. Using SGD will be faster because we are only using a

subset of the training samples.

Algorithm 4 Gradient Descent update rule

1: Given a set of training examples 𝐷 ∶ {(x, 𝑦)} and learning rate 𝛼
2: repeat
3: w ← w − 𝛼∇𝑤𝐿(x, 𝑦;w, 𝑏)
4: 𝑏 ← 𝑏 − 𝛼 𝜕

𝜕𝑏𝐿(x, 𝑦;w, 𝑏)
5: until convergence

Backpropagation
Calculating the gradients for a complex function like a multi-layered neural network is not straight-

forward. In fact, we also need an algorithm for calculating the gradients as well: backpropagation.

Backpropagation computes the gradient of the loss function with respect to the weights of the net-

work for a single input–output example, and does so efficiently, unlike a naive direct computation

of the gradient with respect to each weight individually. This efficiency makes the algorithm very

scalable and hence very useful to apply it to large-scale neural networks. In order to explain how

backpropagation works, we will first introduce some notation. We will use 𝑤 𝑙
𝑗𝑘 to denote the weight

for the connection from the 𝑘th neuron in the (𝑙 − 1)th layer to the 𝑗th neuron in the 𝑙th layer. The

activation 𝑎𝑙𝑗 of the 𝑗th neuron in the 𝑙th layer is then denoted as:

𝑎𝑙𝑗 = 𝜎
(
∑
𝑘
𝑤 𝑙
𝑗𝑘𝑎

𝑙−1
𝑘 + 𝑏𝑙𝑗)

, (3.20)

where the sum goes over all neurons 𝑘 in the (𝑙 − 1)th layer. In matrix notation, where 𝑎𝑙 contains
the activations 𝑎𝑙𝑗 , 𝑤 𝑙

the weights 𝑤 𝑙
𝑗𝑘 on row 𝑗 and column 𝑘, and 𝑏𝑙 the biases 𝑏𝑙𝑗 , we can rewrite

Equation 3.20 as:

𝑎𝑙 = 𝜎 (𝑤 𝑙𝑎𝑙−1 + 𝑏𝑙) . (3.21)

Moreover, to make notation less cumbersome, we will introduce a variable for the weighted input

to the neurons in layer 𝑙: 𝑧𝑙 ≡ 𝑤 𝑙𝑎𝑙−1 + 𝑏𝑙 . As explained by Nielsen [38], backpropagation relies on

4 equations. The first equation is an equation for the error in the output layer 𝐿, denoted by 𝛿𝐿. We

will denote the loss (cost) function we want to minimize as 𝐶 in order to prevent confusing notation.

By the chain rule we have:

𝛿𝐿 = ∇𝑎𝐶 ⊙ 𝜎 ′(𝑧𝐿). (3.22)

Where ∇𝑎𝐶 is a vector whose components consist of the partial derivatives
𝜕𝐶
𝜕𝑎𝐿𝑗

. The equation for

the error 𝛿 𝑙 in an intermediate layer 𝑙 in terms of the error in the next layer 𝛿 𝑙+1 is given by:

𝛿 𝑙 = ((𝑤
𝑙+1)

⊤ 𝛿 𝑙+1) ⊙ 𝑠′ (𝑧𝑙) (3.23)

Note that here we can already see why the algorithm is called backpropagation. Intuitively, we are

moving the error backwards through the network, giving us some measure of the error at the 𝑙th

24 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.6. DEEP 𝑄-LEARNING

layer. The equation for the rate of change of the cost function with respect to the bias term denoted

as:

𝜕𝐶
𝜕𝑏𝑙𝑗

= 𝛿 𝑙𝑗 . (3.24)

And lastly, the equation for the rate of change of the cost with respect to any weight in the net-

work:

𝜕𝐶
𝜕𝑤 𝑙

𝑗𝑘
= 𝑎𝑙−1𝑘 𝛿 𝑙𝑗 (3.25)

Algorithm 5 shows how the backpropagation equations are used to compute the gradient of the cost

function.

training examples 𝐷 ∶ {(x, 𝑦)}

Algorithm 5 Backpropagation Algoritm [38]

Input: Training examples 𝐷 ∶ {(x, 𝑦)}
1: Set the corresponding activation 𝑎1 for the input layer

Feedforward:
2: for each 𝑙 = 2, 3… , 𝐿 do
3: Compute 𝑧𝑙 = 𝑤 𝑙𝑎𝑙−1 + 𝑏𝑙 and 𝑎𝑙 = 𝜎(𝑧𝑙)
4: end for
5: Output error 𝛿𝐿: Compute the vector 𝛿𝐿 = ∇𝑎𝐶 ⊙ 𝜎 ′(𝑧𝐿)

Backpropagate the error:
6: for each 𝑙 = 𝐿 − 1, 𝐿 − 2, … , 2 do
7: Compute 𝛿 𝑙 = ((𝑤

𝑙+1)
⊤ 𝛿 𝑙+1) ⊙ 𝑠′ (𝑧𝑙)

8: end for
Output: The gradient of the cost function is given by

𝜕𝐶
𝜕𝑤 𝑙

𝑗𝑘
= 𝑎𝑙−1𝑘 𝛿 𝑙𝑗 and 𝜕𝐶

𝜕𝑏𝑙𝑗
= 𝛿 𝑙𝑗 .

3.6.3 Estimating 𝑄-function with a neural network

Remember that we are trying to estimate the 𝑄-function by means of a neural network (Equation

3.14). Moreover, recall that the optimal𝑄-function satisfies the Bellman equation (Equation 3.12) and

hence we want to find a 𝑄-function that satisfies the Bellman equation. For the sake of convenience,

we will rewrite the Bellman equation slightly in terms of expected values to follow the definitions

by Mnih et al. [37]. For this, we will denote the (possibly stochastic) environment in which the agent

operates by  . Now we can define the Bellman equation as:

𝑄∗(𝑠, 𝑎) = 𝔼𝑠′,𝑟∼ [𝑟 + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′)|𝑠, 𝑎] (3.26)

We can iteratively train a neural network where the loss function is trying to minimize the error of

our Bellman equation. Consequently, we can define the target value for iteration 𝑖 for our neural
network as follows:

𝑦𝑖 = 𝔼𝑠′∼ [𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖−1)|𝑠, 𝑎] . (3.27)

The loss function is then defined as:

Learning a Fair Policy for the Influence Maximization Problem 25

3.6. DEEP 𝑄-LEARNING CHAPTER 3. REINFORCEMENT LEARNING

𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎∼𝜌(⋅) [(𝑦𝑖 − 𝑄(𝑠, 𝑎; 𝜃𝑖))2] . (3.28)

Here Mnih et al. [37] call 𝜌(𝑠, 𝑎) the bahaviour distribution, which is a probability distribution over

sequences 𝑠 and actions 𝑎. Note that we are iteratively trying to make the 𝑄-value close to the target
value it should have, if 𝑄-function corresponds to the optimal 𝑄∗

. Then the gradient update with

respect to the neural network’s parameters 𝜃 is given by:

∇𝜃𝑖𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎∼𝜌(⋅);𝑠′∼ [(𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖−1) − 𝑄(𝑠, 𝑎; 𝜃𝑖)) ∇𝜃𝑖𝑄(𝑠, 𝑎
′𝜃𝑖)] . (3.29)

3.6.4 Deep 𝑄-learning with Experience Replay

Since we have explained the core concepts of deep 𝑄-learning now, we can explain how the basic

algorithm works. It is similar to the standard 𝑄-learning algorithm (Algorithm 3) introduced in

Section 3.5, but instead of calculating the 𝑄-values directly, we use a neural network to approximate

the values. Consequently, we also have to train the network somewhere within the algorithm. The

pseudocode is shown in Algorithm 6. In line 1 we initialize the experience replay memory and the

initial weights for the neural network. The replay memory  is used to store transitions (state,

action, reward, next state) that are used for calculating state-action value calculations and updating

the weights. We will train the algorithm for a total of 𝐸 episodes (lines 2-11). Similar to standard

𝑄-learning, we will choose an action based on the 𝜖-greedy policy and observe the reward and next

state for 𝑇 time steps (lines 4-6). We will add the observation to the replay memory (line 7). Then we

sample a random minibatch of transitions of predetermined size 𝑏 from the replay memory (line 8),

calculate for all the transitions in this batch the corresponding target value 𝑦𝑗 according to Equation
3.27 (line 9) and update the weights by performing a gradient descent step on the mean squared error

(line 10).

The reason why experience replay is often used is that learning from batches of consecutive samples

could be problematic. These samples are heavily correlated which could cause inefficient learning.

For example, if the goal is to teach the agent some arbitrary game where it either moves right or left

and the current best action is to move right, this will bias the upcoming examples to be dominated

by samples from the right-hand side of the environment. This can lead to bad feedback loops which

is not desired. Experience replay overcomes this issue by sampling across all the transitions that

are stored in the memory. Moreover, each transition can also contribute to multiple weight updates

which leads to greater data efficiency.

Conjecture 3.2 (Convergence of Deep 𝑄-learning). There is no guarantee that the function ap-

proximator 𝑄(𝑠, 𝑎; 𝜃) converges to the optimal function 𝑄∗(𝑠, 𝑎).

Intuition. As argued by Fu et al. [16], there are no known convergence guarantees for deep 𝑄-
learning. The standard 𝑄-learning algorithm however, converges under some assumptions to the

optimal 𝑄-function with probability 1. The main difference with deep 𝑄-learning is that in deep

𝑄-learning we use a function approximator since we cannot maintain a table with all the 𝑄-values.
This function approximation can be done with any parametrizable function. For example, the func-

tion approximator could just be a very simple linear function which can never accurately represent

the true 𝑄-function. Moreover, neural networks are universal function approximators. This means

that if you have a function, you can also build a neural network that is deep or wide enough to ar-

bitrarily accurately simulate the function. Any particular network architecture you choose, unless

26 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.7. EXAMPLE

it is infinitely broad or indefinitely deep, won’t be able to learn all functions, though.

Algorithm 6 Deep 𝑄-learning with Experience Replay

1: Initialize replay memory  and initial 𝑄-function with random weights

2: for episode 𝑒 = 1 till 𝐸 do
3: Initialize state 𝑠1
4: for step 𝑡 = 1 till 𝑇 do

5: 𝑎𝑡 =

{
random action 𝑎 ∈ (𝑠𝑡) w.p. 𝜖
argmax𝑎∈(𝑠𝑡) 𝑄(𝑠𝑡 , 𝑎; Θ) w.p. 1 − 𝜖

6: Take action 𝑎𝑡 and observe reward 𝑟𝑡 and next state 𝑠𝑡+1
7: Add tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) to
8: Sample random batch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from

9: Set 𝑦𝑗 =

{
𝑟𝑗 for terminal 𝑠𝑗+1
𝑟𝑗 + 𝛾 max𝑎 𝑄(𝑠𝑗+1, 𝑎 Θ) otherwise

10: Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 Θ))2

11: end for
12: end for
13: return Θ

3.7 Example

To conclude this chapter, we will illustrate the concepts of RL by means of a famous example: the

cart-pole game. The cart-pole and its core concepts are illustrated in Figure 3.6. The goal of the game

is to balance the pole of the cart as long as possible by moving the cart to left or right. A cart-pole,

also known as an inverted pendulum, is a pendulum that has its centre of mass above its pivot point.

It is unstable and without additional help will fall over. There are several factors that play a role

in deciding how to balance the cart: the position of the cart, the velocity of the cart, the angle of

the pole and the velocity of the pole. The game terminates if one of the following two conditions

holds: the pole angle is more than 12 degrees or the car hits the wall, i.e. if for the position of the

cart 𝑥 it holds that 𝑥 ≥ 2.4 or 𝑥 ≤ 2.4. According to Section 3.2, the first step of solving a problem by

means of RL, is to translate the problem as an MDP. We need to define the state space, action space,

state-action-transition probabilities and the reward function. We can do this as follows:

•  is the state-space and is denoted by a tuple (𝑥, 𝑉 , 𝜃, 𝜔) where 𝑥 is the position of the cart, 𝑉
the cart velocity, 𝜃 the pole angle and 𝜔 the pole velocity;

•  is the action-space. There are two possible actions: either move right or left (one distance

unit);

•  is the set of state-action-transition probabilities, i.e. the probabilities of transitioning to state

𝑠′, given current state 𝑠 and action 𝑎. These probabilities just follow from the environment,

i.e. the rules of nature;

•  is the reward function. The agent will receive a reward value of 1.0 for every time step it

Learning a Fair Policy for the Influence Maximization Problem 27

3.7. EXAMPLE CHAPTER 3. REINFORCEMENT LEARNING

Figure 3.6: Illustration of the carptole game, where 𝑥 is the position of the cart, 𝑉 the cart velocity,

𝜃 the pole angle and 𝜔 the pole velocity.

manages to balance the pole and -10 if the pole falls or the cart hits the wall:

𝑟(𝑠, 𝑎, 𝑠′) =

{
1 if 𝜃 ′ ∈ (−12, 12) and 𝑥 ′ ∈ (−2.4, 2.4).
−10 otherwise

∀𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ . (3.30)

The environment of the cart-pole game and the corresponding markov decision process is imple-

mented by OpenAI [6] and freely available online. Now since we have defined our markov decision

process, we can directly train an agent to balance the pole by applying the deep𝑄-learning algorithm
discussed in Section 3.6 to the MDP above. We will set the number of episodes to 1000, the mini-

batch size to 32, the discount factor 𝛾 to 0.96, the initial 𝜖 to 1 with a minimum value of 0.01 and

an 𝜖-decay parameter of 0.001 and the learning rate for stochastic gradient descent 𝜂 to 0.001. The

neural network consists of an input layer of size 4, since a state is represented by 4 values. Then

there are two hidden layers of size 24 with a ReLU activation function. Finally, the output layer is of

size two with a linear activation function since the are two possible actions.

The training results can be found in Figures 3.7 and 3.8. Note that the this specific environment of

the Cartpole game stops after 200 timesteps, so the maximum time to balance the cartpole without

hitting the wall is 200. We see that the deep 𝑄-learning algorithm with this relatively simple neural

network is able to learn to balance the cartpole pretty well. At the beginning, the agent does not

know anything about the environment and we can see that it is only able to balance the pole for

around 20 timesteps. But the agent learns quickly and at the end of learning the agent is able to

balance the pole for 200 timesteps.

28 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 3. REINFORCEMENT LEARNING 3.7. EXAMPLE

200 400 600 800 1000
Episode

0

50

100

150

200

Ep
iso

de
 L

en
gt

h

Episode Length Moving Average (50-episode window)

Figure 3.7: Moving average of the episode length (total reward) for the Cartpole game explained in

Section 3.7 during training of the agent.

0 200 400 600 800 1000
Episode

0

25

50

75

100

125

150

175

200

Ep
iso

de
 L

en
gt

h

Episode Length

Figure 3.8: Episode length (total reward) for the Cartpole game explained in Section 3.7.

Learning a Fair Policy for the Influence Maximization Problem 29

Chapter 4

Proposed Method: DQ4FairIM

In this chapter we will propose and discuss our model to find a fair solution to the Influence Maxim-

ization (IM) problem by using Reinforcement Learning (RL): DQ4FairIM. As discussed in the intro-

duction, this algorithm trains an agent to find a general solution for a pool of graphs . In order to

use RL for IM, we first need to formulate the IM problem as a Markov Decision Process (MDP). As

mentioned before, there exists some work on RL and IM like the studies by Ali et al. [1], Kamarthi

et al. [23] and Chen et al [7]. However, these do all consider a different variant of the IM problem,

which makes their formulation not totally suitable for our approach. The formulation of Chen et al.

[7] is closest to our formulation since its problem is closest to our problem, except that they have

uncertainty about a node’s willingness to be a seed node, and they do not include community in-

formation. We are looking for a fair solution to the IM problem using RL rather than finding the best

greedy algorithm (Ali et al.) or exploring an unknown graph (Kamarthi et al.). We will present our

MDP formulation in Section 4.1. In Section 4.2 we elaborate on how we incorporate fairness in our

model. In Section 4.3 we discuss different potential node embeddings as well as the one applicable

for our method. In Section 4.4 we propose our deep 𝑄-learning algorithm and finally in Section 4.5

we discuss the training time complexity of DQ4FairIM.

4.1 MDP formulation

As discussed in Section 3.2, an MDP can be denoted by a tuple ( ,, ,, 𝛾) where  is the state-

space,  the action space,  the state-action-transition probabilities,  the reward function and

𝛾 the discount parameter. Naturally, an MDP consists of time steps. An MDP is a discrete-time

stochastic control process where at each time step, the process is in some state, an action is performed

and the process goes to a next state in the next time step. Our formulation of IM as an MDP is as

follows:

• Time step: Note that there are no natural time steps in the IM problem since there are origin-

ally no time steps involved in the problem. However, we can consider a single round setting

where in each round we select a single node to be activated, a round can be seen as a time step

𝑡 . Chen et al. [8] also consider a multi-round setting, where in each round 𝐵 nodes are selected.

The time horizon is indicated by 𝑡 = 1, … , 𝑇 where 𝑇 = 𝑘, the number of seed nodes in the

starting seed set 𝑆. This means that at each time step, the agent can add a node to the seed set,

which automatically ends with a seed set of 𝑘 nodes. Note that this formulation means that

30 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM 4.1. MDP FORMULATION

we are dealing with an ending time-horizon and discrete time steps.

• State: The current state 𝑆𝑡 is represented by the tuple 𝑆𝑡 = (𝐺,, 𝑋𝑡) where 𝐺 = (𝑉 , 𝐸) is
a graph randomly sampled from the pool of graphs  at time step 𝑡 = 0 and  the set of

communities present in the network, which are fixed over time. We assume that 𝐺 contains

all the information about the structure of the graph which includes the nodes and the edges.

In practice, this could mean that the edges are either represented by an edge list, an adjacency

list or an adjacency matrix. 𝑋𝑡 ∈ {0, 1}|𝑉 | denotes the status of the nodes, i.e. which nodes

are selected as seed nodes at time step 𝑡 . For example, 𝑋 𝑣
𝑡 = 1 means that node 𝑣 is selected

as a seed node at time step 𝑡 . Initially, none of the nodes are selected and hence the start

value 𝑋 𝑣
1 = 0 for all nodes 𝑣 ∈ 𝑉 . For implementation purposes, we could also include the

community information (or any other node attributes) in the matrix 𝑋𝑡 . In this case we could

denote 𝑋𝑡 ∈ {0, 1}|𝑉 |+| | where 𝑋 𝑣,𝑖+1
𝑡 = 1 if node 𝑣 belongs to community 𝑖.

• Action: At every time step, the agent adds a node to the seed set. Hence, the action the agent

can take at time step 𝑡 is denoted by the one-hot vector 𝑎𝑡 ∈ {0, 1}|𝑉 | where only one element

of 𝑎𝑡 corresponds to the selected node (∑|𝑉 |
𝑣=1 𝑎𝑣𝑡 = 1). Moreover, the action depends on the

current state since a agent can only choose from nodes that have not been selected so far.

Specifically this means that at time step 𝑡 the agent can only choose a node 𝑣 ∈ 𝑉 for which

it holds that 𝑋 𝑣
𝑡 = 0.

• State-action-transition probability: The state transition is deterministic and when a new

node is selected at time step 𝑡 , the state of the next time step is known with probability 1:

𝑋𝑡+1 = 𝑋𝑡 + 𝑎𝑡 , 𝑡 = 1., … 𝑇 .

• Reward: The total reward at the end of an episode is defined as the total influence that is

achieved within the social network 𝐺, given the nodes that are selected as seed nodes (rep-

resented by 𝑆). However, this would mean that the agent does not receive any reward during

the intermediate time steps, but only at the terminal time step 𝑇 . This makes it harder for the

agent to learn efficiently, since there is the so-called issue of reward sparseness. To overcome

this issue we can use the marginal influence of a node Δ𝜎(𝐺, 𝑆, 𝑣) = 𝜎(𝐺, 𝑆 ∪ {𝑣}) − 𝜎(𝐺, 𝑆)
as the immediate reward at a given time step, denoted by 𝑟(𝐺, 𝑋𝑡 , 𝑎𝑡). Recall that 𝜎(.) denotes
the influence spread, i.e. the number of expected influenced nodes. So (without accounting

for fairness), the reward at time step 𝑡 is denoted by

𝑟(𝐺, 𝑋𝑡 , 𝑎𝑡) = 𝜎(𝐺, 𝑆 ∪ 𝑣) − 𝜎(𝐺, 𝑆),where (4.1)

𝑣 = {𝑢 ∈ 𝑉 ∣ 𝑎𝑢𝑡 = 1} and 𝑆 = {𝑢 ∈ 𝑉 ∣ 𝑋 𝑢
𝑡 = 1}.

There is one issue here however, as discussed in Section 2.2.1: we will calculate 𝜎() by running
𝑚Monte-Carlo simulations. If we have to do this for every step of every episode with a certain

accuracy, for example with 𝑚 = 1, 000 simulations, this will be very time costly. However, as

noted earlier, an MDP is a stochastic-process and the reward can be stochastic as well. So

we can reasonably estimate the reward based on a lower number of simulations, resulting in

a stochastic reward. The idea is that as the agent learns over time by interacting with the

environment, it can also learn the reward function.

• Enhancing fairness: To this end, the above formulation is suitable to model the IM problem

without accounting for fairness. A straightforwardway to enhance fairness in this formulation

Learning a Fair Policy for the Influence Maximization Problem 31

4.2. ACCOUNTING FOR FAIRNESS CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM

is to not only give the agent a reward based on the influence of the selected nodes, but also

on how fair the selection of the nodes is. If we want to take fairness for early-adopters into

account (Equation 1.1), we can, for example, take the difference of the highest ratio and the

lowest ratio among all communities and add this as negative reward. This forces the agent to

seek for a fair solution, since in the fairest solution this difference would be equal to 0. Suppose

we have 𝑐 communities, 𝐶1, 𝐶2, … , 𝐶𝑐 , then this difference can be formulated as:

𝑓 ea(𝐺,, 𝑋𝑡 , 𝑎𝑡) = min
𝑖=1,…,𝑐

∑𝑣∈𝐶𝑖
𝑋 𝑣
𝑡 + 𝑎𝑣𝑡

|𝐶𝑖 |
− max

𝑖=1,…,𝑐

∑𝑣∈𝐶𝑖
𝑋 𝑣
𝑡 + 𝑎𝑣𝑡

|𝐶𝑖 |
. (4.2)

In case of fairness in outreach (Equation 1.2), we should have information about the set of

(expected) influenced nodes at time-step 𝑡 . Denote this set by 𝐼𝑡 , then the fairness notion we

want to maximize becomes:

𝑓 outreach(𝐺,, 𝑋𝑡 , 𝑎𝑡) = min
𝑖=1,…,𝑐

∑𝑣∈𝐶𝑖
1{𝑣 ∈ 𝐼𝑡}
|𝐶𝑖 |

− max
𝑖=1,…,𝑐

∑𝑣∈𝐶𝑖
1{𝑣 ∈ 𝐼𝑡}
|𝐶𝑖 |

. (4.3)

Our final method will include a different notion of fairness, which we will discuss in more

detail in the next section. Regardless of how we define the fairness measure denoted by 𝑓 (⋅),
we propose the reward function to be a weighted sum of the level of influence and the level

of fairness. Let 𝜙 ≥ 0, 𝜙 ∈ ℝ be the fairness weight, then the total reward function at the end

of an episode for a given seed set 𝑆 is given by:

𝑅(𝐺,, 𝑆) = 𝜎(𝐺, 𝑆) + 𝜙 ⋅ 𝑓 (𝐺,, 𝑆). (4.4)

This means that a higher 𝜙 means that we assign more importance to the fairness-measure.

Again, we define the reward at time step 𝑡 as the marginal gain of adding node 𝑎𝑡 to the seed

set:

𝑟(𝐺, 𝑋𝑡 , 𝑎𝑡) = 𝜎(𝐺, 𝑆 ∪ 𝑣) − 𝜎(𝐺, 𝑆) + 𝜙 ⋅ (𝑓 (𝐺,, 𝑆 ∪ 𝑣) − 𝑓 (𝐺,, 𝑆)) ,where (4.5)

𝑣 = {𝑢 ∈ 𝑉 ∣ 𝑎𝑢𝑡 = 1} and 𝑆 = {𝑢 ∈ 𝑉 ∣ 𝑋 𝑢
𝑡 = 1}.

4.2 Accounting for fairness

We are interested in finding a solution that does not disproportionately exclude certain communities

from the outreach. Which nodes are selected as seed nodes is not important for this work. In IM, it

is about which nodes finally get activated in the network, i.e. which nodes receive the influence or

information. We are looking for a fair solution in the sense that we do not want certain communities

to be excluded from the information. For example, if we are able to reach 50 % of all nodes in

the network, but this means that we reach 100 % of men in the network and 0 % of women, we

consider this solution to be extremely unfair. A fair solution would, optimally, achieve the same

influence spread of 50 % and reach both men and women equally for 50 %. Note that in the fairness of

outreach formulation in Section 4.1, Equation 4.3. we are aiming to reduce the difference between the

most influenced community and the least influenced community. In other words, with this fairness

measure, the agent will try to find a solution where all communities are proportionally equally

influenced. However, suppose that for some reason there is a community in our network of interest

where the nodes belonging to this community are very badly connected. Suppose these nodes are

that badly connected that given our budget 𝑘 in the IM problem, in the most optimal solution we

cannot reach more than 10 % of these people. Then the agent is trying to reach all communities

32 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM 4.3. NODE AND GRAPH EMBEDDINGS

for only 10%, while there could be a solution where the other communities are reached for 50 %

while this badly connected community is still reached for 10%. This is of course not what we want.

Instead, we should use the maxmin fairness criterion. This criterion is also used Tsang et al. [51] to

measure Group-Fairness in IM. It captures the goal of improving the outcome for the least well-off

groups. It aims to maximize the minimum influence received by any of the groups, as proportional

to their population. For the sake of convenience, we introduce 𝜎𝐶𝑖 (𝐺, 𝑆) to be the expected number

of influenced nodes for community 𝐶𝑖 . The maxmin fairness is then denoted as:

𝑓maxmin(𝐺,, 𝑆) = min
𝑖=1,…,𝑐

𝜎𝐶𝑖 (𝐺, 𝑆)
|𝐶𝑖 |

. (4.6)

It is called maxmin, since we are trying to maximize the minimal influence received by any group.

This maximizing is achieved by adding the fairness measure to the reward function. The reward at

time step 𝑡 for the MDP defined in the previous section is denoted as:

𝑟(𝐺, 𝑋𝑡 , 𝑎𝑡) =
𝜎(𝐺, 𝑆 ∪ 𝑣) − 𝜎(𝐺, 𝑆)

|𝑉 |
+ 𝜙 (min

𝑖=1,…,𝑐

𝜎𝐶𝑖 (𝐺, 𝑆 ∪ 𝑣)
|𝐶𝑖 |

− min
𝑖=1,…,𝑐

𝜎𝐶𝑖 (𝐺, 𝑆)
|𝐶𝑖 |) ,where (4.7)

𝑣 = {𝑢 ∈ 𝑉 ∣ 𝑎𝑢𝑡 = 1} and 𝑆 = {𝑢 ∈ 𝑉 ∣ 𝑋 𝑢
𝑡 = 1}.

Equation 4.7 is the reward function we will use in our proposed method DQ4FairIM. It is a weighted

sum of the expected percentage of influenced nodes in the whole network and the percentage of

influenced nodes of the minimally influenced group.

Definition 4.1 (SimFairIC(𝐺, 𝑆,, 𝜙, 𝑓 , 𝑚)). Given a graph 𝐺 = (𝑉 , 𝐸), seed set 𝑆, set of communities

, fairness weight 𝜙 ≥ 0, 𝜙 ∈ ℝ, fairness function 𝑓 and number of simulations 𝑚, the procedure

SimFairIC(𝐺, 𝑆,, 𝜙, 𝑓) calculates the weighted sum of the expected percentage of influenced nodes in

network 𝐺 and a fairness measure 𝑓 (⋅) as

𝜎(𝐺, 𝑆)
|𝑉 |

+ 𝜙 ⋅ 𝑓 (𝐺, 𝑆,) (4.8)

by running 𝑚 simulations of the IC-model.

4.3 Node and graph embeddings

In order to use the graph data in our RL framework, it is essential that we can represent the nodes

as embeddings so that we can feed them to our 𝑄-function. A node embedding is a relatively low-

dimensional vector representation of a node, where similar nodes have similar representations. Two

of the most famous and widely used algorithms to calculate node embeddings are DeepWalk and

Node2Vec. Deepwalk was introduced by Perozzi et al. [40] in 2014, and they introduced the concept

of random walks to generate embeddings. Basically, the algorithm uses random walks to generate

sequences of nodes and then feeds them to a skip-gram model (Word2Vec) to generate the embed-

dings. In 2016, Grover et al. [18] introduced Node2Vec, which uses some of the ideas presented by

DeepWalk but goes a step further. The main improvement is that Node2Vec has the ability to learn

representations that embed nodes from the same network community closely together, as well as to

learn representations where nodes that share similar roles have similar embeddings. It can achieve

Learning a Fair Policy for the Influence Maximization Problem 33

4.3. NODE AND GRAPH EMBEDDINGS CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM

black

asian

white

other

latino

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-
-

- -

-

-
-

-

-

-
-

-

-

-
-

-

-

- -

- -

-
-

-

-
-

- -

-

-

-

-

-

-
-

- -
-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

- -

-

-
-

-
-

-

-

-

-

-

-

-

-

- -

-

-

-
-

--

-

-

-

-

- -

-
-

-

-

-

-

-
-

-

-

-
-

-

-

-

-

-

-
-

-

-

-
-

-

-

-

-

-

-

-

-

-

-
-

-

-

- -

-

-

-

- -
-- -

-

-
-

-
-

-

- -

-

-

-

-

-
-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

- -

--

-
-

- -

- -
-

-

--

--

-

-
-

-

-

-

- -

-

-

--

-

-
-

-
-

-
-

-
-

-

-
-
-

-

-

-

-

-

-
-

-
-

-
-

-
-

-
-

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-
-

-

-

-

-
-

-

--

-
-

-

-
-

-
-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-
-

-

-
-

-

-
-

-

-

-

- -

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

- -

-
-

-
-

-

-

-
-

-

-

-

-

-

-

-
-

-
- -

-
-

--

-

-
-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-
-

- -

-

-

-

-

-

-

-

-

-
-

- -- -

-

-

-

-

-

-

- -

-
-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-
-

-

-

-

-

-
-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

--

-

-

-

- -

-

--

-
-

-

-

-

-

-

-
-

-

-

-
-

-

-

-

-

-

-

-

-

-

- -
-

-

-

-

-

--

-

-

-

-

-

-
-
-

-

-

-
-

-

-
-

--

-

-

-

-

-

-

-
-

- -

-

-

-

-

-

-

-

-

-

-

- -

-
-

-

-

-

-

-

-
-

--

-
-

-
-

-
-

-

-
-

- -

-
-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

--

-
-

-

-

--
- -

-
-

-

-

-

-

--

-

-

-
-

-

-
-

-

-

-
-

-

-

-

-

-

-

-
- -

-

-

-
-

-

-

-

-
-

-

-
-

-
-

-

-

-

- -

-

-

-

-

-

--
-

-

-

--

-

-

-

-

-
-

-

-
-

- -

-

-

-

-

-

-

-

-

-
-

-

-
-

-

--

-
-

-

--

-

-

-

-

-
-

-
-

-

-

-

-
-

-

-

-

- -

-

-
-

-

-

-

-
-

-

--

-

-

-

-

-

--

-

-

--
--

- -

-

-

-

-

-

-

-

-

-
-

-

-

-

-

--
-

-
- -

- -
-

-

-

-

-

-

-

-

--

-

-

-

-

-
-

--

-

-

-
-

-

-
-

-
-

-
-

-

-

-

- -

-

-

-

-

-

-

-

-

--

-

-
-

- -
-

-
-

--
-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-
-

--

-
-

-

-
-

-

-

-

-

-

-

-

-
-

-

-
-

-

-

-

--

--

-
-

-

-
-

-

-
-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-- -

-

-

-
-

-

-

-

-

-

-

-

-
-

-
-

-

-
-

-

-

-

-

-
-

-
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -
-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-
--

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-
-

--

-

-

-
-

-

-

-

-
-

-

-

- -

-
-

-

-
-

-
-

-
-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-
-

-
-

-
-

-

-

-

-
-

-

-

-

-

-

-

-

-

-
-

-
-

-
-

-

-
-

-

--
-

-
-

-

-
-

- -

-
-

-

-

-
-

-

-
-

-

-
-

-

-
-

-
--

--

-
-

-

-

-
-

-

-

-

-

-

-

-
-

- -

-

-

- -

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-
-

-

- -

- -

-

-

-

-

-

-

-

-

-

-

-
-

-

-
-

-

-

--

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

- -

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-
-

-
-

-

-

-

-

-
-

-

-

--

-

-

-

-
-

-
-

-

-

-

-

-

- -
-

-

- -

- -

-

-
-

-
-

-
-

-
-

-
-

--

-

-
- -

-
-

-

-

-

-

-

--

- -
-

- -

-
-

-

-

-

-

-

-

-

-

-

-
-

-

- -

-
-

-
-

-

-
-

-
-

-

-

-

-
-

-
-

- -

-

-

-

-

-

-

-

-

-

-

-
-

-
-

-
-

-

- -

-

-

- -

-

-

- -

-
-

-

-

-

- -
-

-

-

-

-

-

-

-

-

-

-

--

- -

-

-

--

- -

-
-

--

-

-

-

-

- -

-

-

-

- -

-

-
-

-
-

-
-

-

-

-

-

-

-

-

-

-

--

- -

-

-

-

-

-

-

-

--

- -

- -

-
-

- -

-

-
-

--

-
-

-
-

-

-
-

-

-
-

-

-

-

-

-

-

--

-

-

-
-

-

-

-
-

-

-

-

-

-
-

-

-
-

-
-

-
-

-
- -

-

-

--

-
-

-

-

-

-
-

-

-

-

-

-
-

--

-

-

-

-
-

-

-
-

-

--

-

-

-

-

-

-

-

-
-

- -

-

-

-

-
-

-- -

-
-

-

-

-

-

-

-

-

-

-
-

- -- -

-

-

-

-

-

-

-

-

-

-

- -

- -

- -

-
-

-

-
-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

-
-

-

-

-

-

-

-

-

-

-

-

- -

-

-
-

-

-

-

--

-
-

-
-

-

-

-

-

-

-
-

-

-

-

-

-
-

-

- -

-

-

-
-

-
-

-

-

-

-

-

-

-

-

-

--

-

-
-

-

-
-

--

-

-

-

-

-

-

-

--

-
-

-
-

--

-
-

-

--

-
-

-

- -

-
-

-

- -
-

-
-

-
-

-
-

-
-

--

-
-

-
-

-

-

-

-

-

- -

-
-

- -

-
-

-
-

-
-

--

- -

-

-

-
-

-
-

--

-
-

-

-

- -

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-

-
-

68

36

4

484

452

420

388

356

324

292

260

228

196

164

132

100

67

35

3

483

451

419

387

355
323

291

259

227

195

163

131

99

66

34

2

482

450

418

386

354

322

290

258

226

194

162

130

98

65

33

1

481

449

417

385

353

321

289

257

225

193

161

129

97

64

32

0

480

448

416

384

352

320

288

256

224

192

160

128

96

63

31

479

447

415

383

351

319

287

255

223

191

159

127

95

62

30

478

446

414

382

350

318 286

254

222

190

158

126

94

61

29

477

445

413

381

349

317

285

253

221

189

157

125
93

60

28

476

444

412

380

348

316

284

252

220

188

156

124

92

59

27

475

443

411

379

347

315

283

251

219

187

155

123

91

58

26

474

442

410

378

346

314

282

250

218

186

154

122

90

57

25

473

441

409

377

345

313

281

249

217

185

153

121

89

56

24

472

440

408

376

344

312

280

248

216

184

152

120

88

55

23

471

439

407

375

343

311

279247

215

183

151

119

87

54

22

470

438

406

374

342

310

278

246

214

182

150

118
86

53

21

469

437

405

373

341

309

277

245

213

181

149

117

85

52

20

468

436

404

372

340

308

276

244

212

180

148

116

84

51

19

499

467

435

403

371

339

307

275

243

211

179

147

115

83
50

18
498

466

434

402

370

338

306

274242

210

178

146

114

82

49

17

497

465

433

401

369

337

305

273

241

209

177

145

113

81

48

16

496

464

432

400

368

336

304

272

240

208

176

144

112

80

47

15

495

463

431

399

367

335

303

271

239

207

175

143

111

79

46

14

494

462

430

398

366

334
302

270

238

206

174

142

110

78

45

13

493

461

429

397

365

333

301

269

237

205

173

141

109

77
44

12

492

460

428

396

364

332

300

268

236

204

172

140

108

76

43

11

491

459

427

395

363

331

299

267

235

203

171

139

107

75

42

10

490

458

426

394

362

330

298

266

234

202

170

138

106

74

41

9

489

457

425

393

361

329

297

265

233

201

169

137

105

73

40

8

488

456

424

392

360

328

296

264

232

200

168

136

104

72

39

7

487

455

423

391

359

327

295

263

231

199

167

135

103

71

38

6
486

454

422

390

358

326

294

262

230

198

166

134

102

70

37

5

485

453

421

389

357

325

293

261

229

197

165

133

101

69

Figure 4.1: An example graph of the obesity prevention dataset.

this by using a combination of depth-first search and breadth-first search for generating the ran-

dom walks. A two-dimensional projection of the 32-dimensional node embeddings generated using

Node2Vec (by using this package) of the graph is shown in Figure 4.2.

However, these algorithms lack one thing for our method, which is also discussed by Li et al. [30].

Both algorithms are namely transductive. That is, we cannot use them to get embeddings for nodes

that the algorithm has not seen before. This means that wewould still need to execute the algorithms

for every new network separately, which contradicts our main argumentation for using RL. Namely,

we want to train an agent that can generalize the node embeddings for a pool of graphs. To over-

come this issue, we can use another embedding method proposed by Dai et al.: Structure2vec [11].

As stated by the authors, Structure2vec is an effective and scalable approach for structured data rep-

resentation based on the idea of embedding latent variable models into feature spaces, and learning

such feature spaces using discriminative information. Structure2vec has two different variants de-

noted as DE-MF and DE-LBP, which stands for discriminative embedding using mean field or loopy

belief propagation, respectively. We will use DE-MF, which was also used by Dai et al. [12] in their

work about RL for combinatorial optimization problems over graphs. We will not discuss the general

working of this embedding method here, but we will explain how this embedding method will be

incorporated in defining the 𝑄-function in the next section.

34 Learning a Fair Policy for the Influence Maximization Problem

https://github.com/bwilder0/fair_influmax_code_release/tree/master/networks

CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM 4.4. DEEP Q-LEARNING: DQ4FAIRIM

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0
1

2
3

4

56

7

8
9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108
109

110

111

112

113

114

115

116

117

118

119120
121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140
141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172 173

174

175

176 177

178

179

180

181

182

183

184

185

186

187

188

189190

191

192

193

194

195

196197

198

199

200

201

202

203

204

205 206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224225

226

227

228 229

230

231 232

233

234

235

236

237

238

239

240 241

242

243

244

245246247
248

249
250

251
252253

254

255

256
257

258

259

260

261262

263

264 265

266

267

268

269

270

271

272

273

274
275

276

277

278

279

280

281

282

283

284285 286

287

288

289

290

291

292

293

294

295

296
297
298

299

300

301

302

303

304

305

306

307

308
309

310

311

312

313

314

315

316 317

318

319

320

321

322
323

324

325

326

327

328

329
330

331

332

333

334

335

336

337 338

339
340

341

342

343

344

345

346

347

348

349

350

351

352

353354

355

356

357

358

359

360 361

362

363

364

365

366

367

368

369

370

371
372

373
374

375376

377

378

379

380

381

382

383

384

385

386

387

388

389

390 391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406407 408

409

410411

412
413

414

415

416

417

418
419

420

421
422

423

424

425426

427

428

429

430

431

432

433

434

435

436

437
438439

440

441

442
443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462
463

464

465

466

467

468

469

470

471

472473

474
475

476

477 478

479 480

481
482

483
484485

486

487

488
489

490

491

492

493494495
496

497 498

499

Figure 4.2: The node embeddings generated by node2vec of the graph in Figure 4.1 projected to a

two dimensional space using PCA.

4.4 Deep Q-learning: DQ4FairIM

We will use a deep 𝑄-learning algorithm to find a fair solution for the IM problem. The base of

the algorithm, namely the 𝑄-network in combination with structure2vec node embeddings, was

introduced by Dai et al. [12]. This algorithm also forms the base for the RL methods proposed

by Li et al. [30] and Chen et al. [23] for IM. Dai et al. introduced this method for combinatorial

optimization problems over graphs in general. They showed that their framework can be applied

to a diverse range of optimization problems over graphs, and learns effective algorithms for well-

known problems like the Minimum Vertex Cover, Maximum Cut and Traveling Salesman problems.

It uses a unique combination of the structure2vec graph embedding and rl. We will discuss how

we will apply this framework to our problem and in particular to the MDP formulated in section

4.1.

Our algorithm is closely related to the standard deep 𝑄-learning algorithm discussed in section 3.6,

as it uses a deep neural network to estimate the𝑄-values in combination with experience replay. The

main difference and complexity is in the structure of the neural network. The neural net is not just

a simple feedforward neural network, but it will compute both the node embeddings and the state-

action values. The embeddings are a 𝑝-dimensional vector 𝜇𝑣 for each node 𝑣 ∈ 𝑉 . These embeddings

are calculated recursively according to the structure of the input graph 𝐺. Node-specific features 𝑥𝑣
are aggregated recursively according to 𝐺’s graph topology. Here 𝑥𝑣 consists of the status of the

node 𝑋𝑡 as defined in section 4.1, and a dummy variable for the 𝑑 values of the sensitive attribute.

We will use the variant of structure2vec that will initialize the embedding 𝜇(0)𝑣 at each node as 0, and

for all 𝑣 ∈ 𝑉 update the embeddings synchronously at each iteration as:

𝜇(𝑡+1)𝑣 ← 𝐹 (𝑥𝑣 , {𝜇(𝑡)𝑢 }𝑢∈ (𝑣); Θ) , (4.9)

where  (𝑣) is the set of neighbour nodes of node 𝑣 and 𝐹 a nonlinear mapping such as a kernel

function or a neural network. The node embeddings are updated for 𝑇 iterations, which results in

𝜇(𝑇)𝑣 containing information about the 𝑇 -hop neighbourhood of node 𝑣. Let 𝑝 be the embedding size,

then we design 𝐹 as follows:

Learning a Fair Policy for the Influence Maximization Problem 35

4.4. DEEP Q-LEARNING: DQ4FAIRIM CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM

𝜇(𝑡+1)𝑣 ← relu

(
𝜃1𝑥𝑣 + 𝜃2 ∑

𝑢∈ (𝑣)
𝜇(𝑡)𝑢)

, (4.10)

where 𝜃1 ∈ ℝ(1+𝑑)×𝑝
and 𝜃2 ∈ ℝ𝑝×𝑝

are the model parameters. To calculate the 𝑄-values for state 𝑆
and action 𝑎, we take the pooled embedding over the entire graph∑𝑢∈𝑉 𝜇(𝑇)𝑢 as state representation

and 𝜇(𝑇)𝑎 as representation for the action (node):

𝑄̂(𝑆, 𝑎; Θ) = 𝜃⊤3 relu([
𝜃4 ∑

𝑢∈𝑉
𝜇(𝑇)𝑢 , 𝜃5𝜇(𝑇)𝑎])

, (4.11)

where 𝜃3 ∈ ℝ2𝑝
and 𝜃4, 𝜃5 ∈ ℝ𝑝×𝑝

.

The deep 𝑄-learning algorithm, called DQ4FairIM, can be found in Algorithm 7. For notational

purposes, we represent 𝑋𝑡 here is a set containing the nodes selected in the seed set at time 𝑡 , rather
than a vector of zeros and ones. Note that the algorithm is quite similar to the deep 𝑄-learning
algorithm discussed in Section 3.6, but it incorporates some additional features. First of all, we

make use of the so-called Epsilon Decay method in line 16. Recall that 𝜖 marks the trade-off between

exploration and exploitation. Especially at the beginning of learning, we want to stimulate the agent

to explore more, since it does not know anything of the environment yet. In other words, we want

to have a high 𝜖 at the start of the algorithm. However, as the agent learns about future rewards, we

Algorithm 7 DQ4FairIM: Deep 𝑄-learning for fair SIM
1: Initialize , Θ, 𝐸, 𝜖
2: for episode 𝑒 = 1 till 𝐸 do
3: Draw a random graph 𝐺 from pool of graphs , set 𝑅0 = 0
4: Initialize state 𝑆0 = (𝐺,, 𝑋0), with seed set 𝑋0 = {}
5: for step 𝑡 = 1 till budget 𝑘 do

6: 𝑎𝑡 =

{
random node 𝑣 ∈ 𝑉 ⧵ 𝑆𝑡 w.p. 𝜖
argmax𝑣∈𝑉 ⧵𝑆𝑡 𝑄(𝑆𝑡 , 𝑎; Θ) w.p. 1 − 𝜖

7: Add node 𝑎𝑡 to solution: 𝑋𝑡+1 ∶= 𝑋𝑡 ∪ {𝑎𝑡}, 𝑆𝑡+1 = (𝐺,, 𝑋𝑡+1)
8: Calculate 𝑅𝑡 = SimFairIC(𝐺, 𝑋𝑡+1,, 𝜙, 𝑓maxmin, 𝑚)
9: Reward is marginal gain: 𝑟𝑡 = 𝑅𝑡 − 𝑅𝑡−1
10: Add tuple (𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1) to 
11: if (𝑒 ⋅ 𝑘 + 𝑡) mod 𝐾 = 0 then
12: Sample random batch of transitions 𝐵 of size 𝑏 from

13: Set 𝑦𝑗 =

{
𝑟𝑗 for terminal 𝑆𝑗+1
𝑟𝑗 + 𝛾 max𝑎 𝑄(𝑆𝑗+1, 𝑎; Θ) otherwise

, ∀𝑗 ∈ 𝐵

14: Update Θ by SGD over (𝑦𝑗 − 𝑄̂(𝑆𝑗 , 𝑎𝑗 ; Θ))2 for 𝐵
15: end if
16: Update exploration parameter: 𝜖 ← max (𝜂 ⋅ 𝜖, 𝜖min)
17: end for
18: end for
19: return Θ

36 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM 4.4. DEEP Q-LEARNING: DQ4FAIRIM

want the agent to exploit the higher𝑄-values it has found. So we want 𝜖 to be lower at the end of the
algorithm. This is what epsilon decay does, it decays the value of 𝜖 with a factor 𝜂 in every episode,

till some minimum value 𝜖min. Another difference can be found at line 11. This line indicates that

we only update the weights of the neural network every 𝐾 steps. This is commonly used in deep

reinforcement and is just a method to speed up training, since updating the parameters in every

single step of the algorithm could be quite time-consuming. An overview of all the parameters

used in the algorithm can be found in Table 4.1. A graphical overview of DQ4FairIM, including

description, can be found in Figure 4.3.

Solve MDPSample a graph

Agent

Action
-greedyReward :

+fair

State

Terminal
state?

Update

Structure2Vec

Experience

MLP

Q-values

MSE-loss

Figure 4.3: Graphical overview of the DQ4FairIM algorithm described in Algorithm 7. The process

starts by selecting a graph randomly from the pool of graphs. This selected graph creates a new

environment. The agent then interacts with the environment and solves the MDP defined in Section

4.1 for this specific graph. It chooses a new node (action) based on the 𝜖-greedy policy: it either

selects a random node or a node with the highest 𝑄-value. The reward it receives is both based on

the expected number of influenced nodes and the fairness measure. It picks a new graph at random

once the terminal state is reached (𝑘 nodes are selected) and a new episode begins. Along the way,

the parameters of the neural network are updated with the samples stored in the Experience Replay

Memory according to the mean squared error loss. First, the current state will be parameterized to

an embedding space using the Structure2Vec mechanism. These parameterized state representations

will serve as input for the neural network (MLP) that estimates the 𝑄-values.

Learning a Fair Policy for the Influence Maximization Problem 37

4.4. DEEP Q-LEARNING: DQ4FAIRIM CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM

Parameter Description
 Pool of graphs to train the network on. Graphs within this pool are represen-

ted by 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) where 𝑖 = 1, … ||. Assumption is that these graphs come

from the same distribution or at least have a similar structure.

𝑘 Budget size, i.e. the number of nodes to select in the IM problem.

𝑝𝑢𝑣 Propagation probability of node 𝑢 to node 𝑣.
𝜙 The fairness weight. The higher 𝜙 the higher the reward for the agent when

it finds a fair solution (also see Equation 4.4).

𝐸 The number of episodes for training the RL agent.

𝛾 Discount parameter in the RL framework. See Section 3.2.

𝜖 The probability of selecting a random node as the next action according to

the 𝜖-greedy policy.

𝜂𝜖 Cooling down parameter of 𝜖.
𝜖min The lowest value for 𝜖. While cooling down, the value of 𝜖 can never get

below this value.

𝑝 Size of the node/graph embeddings (see the beginning of this section).

Θ The set of parameters to estimate the 𝑄-function. These include the paramet-

ers to estimate the values for each node given the state representation, as well

as the parameters for calculating the node embeddings.

 Replay memory. This is where the historical transitions are stored that are

used to train the neural network on.

𝑏 Size of the batch on which the parameters are updated in every episode.

𝛼 Learning rate for stochastic gradient descent, see Section 3.6.

𝑚 The number of (Monte-Carlo) simulations for the independent cascademodel.

𝐾 Every 𝐾 steps the parameters of the function approximator are updated.

Table 4.1: Overview of parameters/notation used in DQ4FairIM.

38 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM 4.5. TRAINING TIME COMPLEXITY

4.5 Training time complexity

In order to get a better understanding of our algorithm and be able to evaluate the bottlenecks,

we think it is convenient to do an extensive analysis of DQ4FairIM’s running time complexity and

propose the following theorem:

Theorem 4.2 (Time complexity DQ4FairIM). Given that the parameters Θ are updated in every

step (𝐾 = 1), the (training) time complexity of DQ4FairIM for a pool of graphs is𝑂(𝑘𝐸(𝑏⋅|𝑉 |⋅|Θ|+𝑚⋅|𝐸|))
where 𝑘 is the budget, 𝐸 the number of episodes, 𝑏 the batch size, |𝑉 | the number of nodes in a graph,

|𝐸| the number of edges in a graph, |Θ| the number of weights for 𝑄̂() and𝑚 the number of Monte-Carlo

simulations for the IC model.

Proof. First of all, notice the time complexity of DQ4FairIM per line (written between curly brackets)

in Algorithm 8. We will skip the lines that take constant running time 𝑂(1), since these are trivial,
and explain the other lines one-by-one:

• Line 6: Picking a random node is just constant time. However, with probability 1 − 𝜖, we have
to calculate the 𝑄-value for all nodes (except the ones that are in the seed set). The number of

nodes is denoted by 𝑉 . The time complexity for a forward pass of the neural network depends

on the complexity of the neural network, i.e. the number of weights of the neural network

|Θ|. Hence, for calculating the 𝑄-value for all nodes, we get time complexity 𝑂(|𝑉 | ⋅ |Θ|). From
these 𝑄-values, we have to calculate the maximum value, which is done in 𝑂(|𝑉 |) time. Hence,

the time complexity for this line is 𝑂(|𝑉 |) + 𝑂(|𝑉 | ⋅ |Θ|).

• Line 8: since we use Monte-Carlo simulations to calculate the influence, this takes 𝑂(𝑚 ⋅ |𝐸|)
time (see 2.7).

• Line 13: This explanation is similar to the explanation of line 6. For every transition in 𝐵, we
have to set the target value 𝑟𝑗 , where we again have to the take the maximum value over |𝑉 |
𝑄-values. Calculating the 𝑄-values has time complexity 𝑂(|𝑉 | × |Θ|), selecting the max 𝑂(|𝑉 |)
and we have to do this 𝑏 times which comes down to a time complexity of 𝑏(𝑂(|𝑉 |)+ (|𝑉 | ⋅ |Θ|)).

• Line 14: first of all, we have to calculate 𝑄̂ for every transition in 𝐵. For every transition, this

is just a single forward pass of time complexity 𝑂(|Θ|). We have 𝑏 transitions, so the time

complexity for this operation is 𝑏(𝑂(|Θ|)). Then we have to do a step of gradient descent on

these batches. Processing a single transition through backpropagation has time complexity

𝑂(|Θ|) and updating the weights also has time complexity 𝑂(|Θ|). Hence, for this line we get
𝑏(𝑂(Θ|)).

Summing everything up, we get:

Time complexity = 𝑂(1) + 𝐸(𝑂(1) + 𝑂(1) + 𝑘(𝑂(|𝑉 |) + 𝑂(|𝑉 | ⋅ Θ) + 𝑂(𝑚 ⋅ |𝐸|) + 𝑂(1) + 𝑂(1) + 𝑂(1)
+ 𝑏(𝑂(|𝑉 |) + 𝑂(|𝑉 | ⋅ Θ)) + 𝑏𝑂(Θ) + 𝑏𝑂(Θ) + 𝑂(1)

= 𝐸(𝑘(𝑂(|𝑉 |) + 𝑂(|𝑉 | ⋅ Θ) + 𝑂(𝑚 ⋅ |𝐸|) + 𝑏𝑂(|𝑉 |) + 𝑏𝑂(|𝑉 | ⋅ Θ) + 𝑏𝑂(Θ) + 𝑏𝑂(Θ)))
= 𝑘𝐸(𝑂(|𝑉 |(1 + 𝑏 + Θ + 𝑏Θ)) + 𝑂(𝑚 ⋅ |𝐸|) + 𝑂(𝑏 ⋅ Θ))
= 𝑘𝐸(𝑂(|𝑉 | ⋅ 𝑏 ⋅ Θ) + 𝑂(𝑚 ⋅ |𝐸|) + 𝑂(𝑏Θ))
= 𝑂(𝑘𝑒(𝑏 ⋅ |𝑉 | ⋅ Θ + 𝑚 ⋅ |𝐸|))

Learning a Fair Policy for the Influence Maximization Problem 39

4.5. TRAINING TIME COMPLEXITY CHAPTER 4. PROPOSED METHOD: DQ4FAIRIM

Algorithm 8 DQ4FairIM: Time complexity per line

1: Initialize , Θ, 𝐸, 𝜖 // 𝑂(1)
2: for episode 𝑒 = 1 till 𝐸 do
3: Draw a random graph 𝐺 from pool of graphs , set 𝑅0 = 0 // 𝑂(1)
4: Initialize state 𝑆0 = (𝐺,, 𝑋0), with seed set 𝑋0 = {} // 𝑂(1)
5: for step 𝑡 = 1 till budget 𝑘 do

6: 𝑎𝑡 =

{
random node 𝑣 ∈ 𝑉 ⧵ 𝑆𝑡 w.p. 𝜖
argmax𝑣∈𝑉 ⧵𝑆𝑡 𝑄(𝑆𝑡 , 𝑎; Θ) w.p. 1 − 𝜖

// 𝑂(|𝑉 |) + 𝑂(|𝑉 | × |Θ|)

7: Add node 𝑎𝑡 to solution: 𝑋𝑡+1 ∶= 𝑋𝑡 ∪ {𝑎𝑡}, 𝑆𝑡+1 = (𝐺,, 𝑋𝑡+1) // 𝑂(1)
8: Calculate 𝑅𝑡 = SimFairIC(𝐺, 𝑋𝑡+1,, 𝜙, 𝑓maxmin, 𝑚) // 𝑂(𝑚 ⋅ |𝐸|)
9: Reward is marginal gain: 𝑟𝑡 = 𝑅𝑡 − 𝑅𝑡−1 // 𝑂(1)
10: Add tuple (𝑆𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑡+1) to  // 𝑂(1)
11: if (𝑒 ⋅ 𝑘 + 𝑡) mod 𝐾 = 0 then
12: Sample random batch of transitions 𝐵 of size 𝑏 from // 𝑂(1)

13: Set 𝑦𝑗 =

{
𝑟𝑗 for terminal 𝑆𝑗+1
𝑟𝑗 + 𝛾 max𝑎 𝑄(𝑆𝑗+1, 𝑎; Θ) otherwise

, ∀𝑗 ∈ 𝐵 // 𝑏(𝑂(|𝑉 |) + 𝑂(|𝑉 | × |Θ|))

14: Update Θ by SGD over (𝑦𝑗 − 𝑄̂(𝑆𝑗 , 𝑎𝑗 ; Θ))2 for 𝐵 // 𝑏(𝑂(|Θ|)) + 𝑏(𝑂(|Θ|))
15: end if
16: Update exploration parameter: 𝜖 ← max (𝜂 ⋅ 𝜖, 𝜖min) // 𝑂(1)
17: end for
18: end for
19: return Θ

40 Learning a Fair Policy for the Influence Maximization Problem

Chapter 5

Experiments & Results

In this chapter we will evaluate the performance of DQ4FairIM and compare the results with other

methods. In Section 5.1 we explain which existing data we use and how we generate synthetic

graphs. In Section 5.2we discuss some baselinemethods thatwill be used as comparison toDQ4FairIM.

The rest of the sections, Section 5.3 till Section 5.7 contain the actual experiments. They include train-

ing performance for different levels of 𝜙, results on unseen graphs, results on different graph sizes,

results of the model on larger graphs that is trained on small graphs, an evaluation of the 𝑄-values
and results on different types of graphs.

5.1 Datasets

5.1.1 Synthetic network generation

We will mainly use synthetically generated networks to test our algorithm on. This allows us to

generate as much data as needed and give us certainty about the structure of the graphs. Two core

concepts of social network generation are preferential attachment and homophily. In the context of

networks, preferential attachment means that the more connected a node is, the more likely it is to

receive new links. Or, to put it differently, a new node entering the network is more likely to connect

with nodes having a high degree than with nodes having a lower degree. Homophily is something

that individuals in social networks tend to exhibit in their social ties, namely, they prefer bonding

with others of the same social group. For example, a person that identifies as woman is more likely

to connect with other women than with men. These concepts are key-factors to mimic real networks

and also play an important role in the study of Wang et al. [54] about information access equality on

network generative models. They performed a study on the equality of information access in net-

work models with different growth mechanisms and spreading processes. The generative network

models that they used in their study will be used in our study as well. They are called Homophily

BA and Diversified Homophily BA.

Homophily BA
Preferential attachment and homophily are two core concepts for the Homophily BA model. The

Barabási-Albert (BA) model [3] is a well-known algorithm for generating random scale-free net-

works using the preferential attachment mechanism. Karimi et al. [25] combined this model with

the homophily mechanism, which resulted in the Homophily BA model. As with all generative net-

work models, nodes are added iteratively (one-by-one) to the graph until the desired number of 𝑛

Learning a Fair Policy for the Influence Maximization Problem 41

5.1. DATASETS CHAPTER 5. EXPERIMENTS & RESULTS

nodes is reached. How new nodes connect to already existing nodes, depends on several parameters.

Wewill assume that there are two groups in our network: theminority group and themajority group.

The proportion of minority nodes is indicated by 𝑚 and the proportion of majority nodes by 1 − 𝑚,

for which it holds that 𝑚 < 1 −𝑚. The group of node 𝑖 is indicated by 𝑔𝑖 . Each new node that enters

the network, connects to a number of 𝑙 nodes. The homophily parameter ℎ denotes the probability

of connecting to a node of your own group. When ℎ = 1, the network is perfectly homophilic, i.e.

the network consists of two distinct groups. When ℎ = 0 the network is perfectly heterophilic and

when ℎ = 0.5 there is no homophily/heterophily. The preferential attachment strength is indicated

by 𝛼 , the higher 𝛼 the more likely a node is to connect with nodes with a high degree. The network

starts with a majority node and a minority node with one edge between them. Then, at each time

step, the network grows as follows:

• A new node 𝑗 enters the network. Node 𝑗 is assigned to the minority group with probability

𝑚 and to the majority group with probability 1 − 𝑚.

• Node 𝑗 connects with 𝑙 nodes in the network according to the probability distribution Πwhere

the probability of connecting to node 𝑖 is indicated by 𝜋𝑖 :

𝜋𝑖 =
ℎ𝑔𝑗𝑔𝑖𝑑𝛼𝑖

∑𝑖 ℎ𝑔𝑗𝑔𝑖𝑑𝛼𝑖
, (5.1)

where 𝑑𝑖 is the degree of node 𝑖 and

ℎ𝑔𝑗𝑔𝑖 =

{
ℎ if 𝑔𝑗 = 𝑔𝑖
1 − ℎ if 𝑔𝑗 ≠ 𝑔𝑖

. (5.2)

Diversified Homophily BA
Wang et al. [54] proposed a variant of Homophily BA: Diversified Homophily BA. Their motivation

for this model is to encourage inter-group connections while maintaining some degree of homophily.

It uses, apart from the Homophily BA model, two extra parameters: 𝑙𝑑 is the number of diversified

edges for each node and 𝑝𝑑 is the diversification probability. The network grows as follows at each

time step:

• A new node 𝑗 enters the network. Node 𝑗 is assigned to the minority group with probability

𝑚 and to the majority group with probability 1 − 𝑚.

• Node 𝑗 forms 𝑙 − 𝑙𝑑 connections according to the Homophily BAmechanism, Equation 5.1. The

nodes to which node 𝑗 connects at this step are denoted by 𝑆𝑗 .

• Node 𝑗 forms 𝑙𝑑 diversified links. The connecting probability of two nodes 𝑗 and 𝑘 is defined

as:

𝑝𝑗𝑘 =

{
𝑝𝑑 , if 𝑔𝑗 ≠ 𝑔𝑘
1 − 𝑝𝑑 if 𝑔𝑗 = 𝑔𝑘

. (5.3)

Now, for each node 𝑖 ∈ 𝑆𝑗 , we obtain their neighbours denoted as 𝑁𝑆𝑗 . Node 𝑗 connects to 𝑙𝑑
nodes from𝑁𝑆𝑗 with the probability of connecting to node 𝑘 ∈ 𝑁𝑆𝑗 denoted byΠ𝑗𝑘 ∝ 𝑝𝑗𝑘 × 1

|𝑑𝑘−𝑑𝑖 |
,

where 𝑑𝑖 is the degree of node 𝑖 ∈ 𝑆𝑗 and is node 𝑘’s neighbour.

Lancichinetti–Fortunato–Radicchi benchmark
The Lancichinetti–Fortunato–Radicchi (LFR) benchmark is an algorithm, introduced by Lancichinetti

42 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.1. DATASETS

et al. [27], to generate benchmark networks for community detection. These networks are designed

to have a structure that does reflect the real properties of nodes and communities found in real

networks. The algorithm proceeds as follows:

• Step 1: Generate a graph of size 𝑛 and find a degree sequence for the nodes with a power law

distribution with exponent 𝛾 , minimum value 𝑘min and maximum value 𝑘max to have approx-

imate average degree 𝑘. Each node 𝑢 will have 𝜇deg(𝑢) edges joining it to nodes in communit-

ies other than its own and (1 − 𝜇)deg(𝑢) edges joining it to nodes in its own community.

• Step 2: Generate communities with sizes according to a power law distribution with exponent

𝜏 . The sum of all sizes must be equal to 𝑛. The minimal and maximal community sizes are

denoted by 𝑠min and 𝑠max respectively.

• Step 3: Each node 𝑢 will be assigned to a community at random, given that the community

is large enough for the node’s intra-community degree (1𝜇)deg(𝑢). If a community grows too

large, a random node will be selected for reassignment to a new community, until all nodes

have been assigned a community.

• Step 4: Finally, each node 𝑢 creates (1 − 𝜇)deg(𝑢) intra-community edges and 𝜇deg(𝑢) inter-
community edges.

5.1.2 Existing Datasets

Obesity Prevention dataset
This dataset was introduced by Wilder et al. [56] to model an obesity prevention intervention in

the Antelope Valley region of California. The data was used by Tsang et al. [51] who studied group

fairness in influence maximization and also by Becket et al. to study fairness through randomization

[4]. The dataset consists of 24 graphs and each graph has 500 nodes. Each node has several sens-

itive attributes like a geographic region, ethnicity, and gender, which makes it suitable for fairness

evaluation. Moreover, the data is publicly available [here].

5.1.3 Experiment setup

We will generate graphs using the Homophily BA method discussed in Section 5.7. These graphs

with two communitieswill be themain graphs thatwe use in our experiments to evaluateDQ4FairIM.

We will set 𝑚 = 0.25, 𝑙 = 4, ℎ = 0.8, 𝛼 = 0.2 and vary 𝑛 (the number of nodes that enter the net-

work). We will generate datasets consisting of 60 graphs: 50 training graphs and 10 test graphs.

Note that these graphs contain the same number of nodes. They do differ in the number of edges,

since the implementation of the network generation method by Wang et al. [54] uses sampling with

replacement for the distribution of Equation 5.1. This means that a new node connects to at most 𝑙
nodes instead of exactly 𝑙 nodes. Note that we initially start with two nodes, one belonging to the

minority group and one belonging to the majority group, so we end up with graphs of 𝑛 + 2 nodes.
We will refer to these datasets with BA[number_of_nodes]. So for example, BA100 refers to the pool

of graphs generated according to the Homophily BA principle with the settings above, and consists

of 102 nodes. An example of such a graph can be found in Figure 5.1.

Learning a Fair Policy for the Influence Maximization Problem 43

https://github.com/bwilder0/fair_influmax_code_release/tree/master/networks

5.2. BASELINE METHODS CHAPTER 5. EXPERIMENTS & RESULTS

Figure 5.1: Graph generated by Homophily BA mechanism, red nodes are the majority group (75 %)

and blue nodes are the minority group (25 %).

Similarly, we generate datasets consisting of 60 graphs using the diversified homophily BA principle,

with the same settings as for the homophily BA datasets, and with diversification probability 𝑝𝑑 =
0.6. We refer to these datasets as dBA[number_of_nodes].

To generate the LFR benchmark networks, we use the following settings: network size 𝑛 = 250,
𝛾 = 5, 𝜏 = 1.1, 𝜇 = 0.1, 𝑘 = 10 (𝑘min = 0 and 𝑘max = 𝑛), 𝑠min = 75 and 𝑠max = 220. Again, we generate
50 train graphs and 10 test graphs. We will refer to these as LFR250.

We will refer to the obesity prevention dataset as obesity. We split the 24 graphs up in 20 training

graphs and 4 test graphs and train our algorithm on the attribute gender.

5.2 Baseline Methods

To be able to evaluate the performance of DQ4FairIM, we will compare the results with other al-

gorithms, referred to as baseline methods. We will implement a variant of the greedy algorithm

called CELF, which was discussed in Section 1.1 and the diversity seeding method from Stoica et al.

[49].

Cost Effective Lazy Forward (CELF)
The CELF algorithm was shortly mentioned in the introduction and works, in principle, the same

as the greedy algorithm. However, it exploits the submodularity property of the influence func-

tion, making it much faster than the greedy algorithm. The resulting seed set is the same for both

algorithms. Recall that for the greedy algorithm (Algorithm 1) we have to calculate the expected

spread for all nodes in every iteration, forcing us to run a lot of simulations, which costs a signific-

ant amount of computing time. CELF only calculates the spread for all nodes in the first round and

then stores them in a list/heap, which is then sorted. Logically, the top node is added to the seed

set in the first iteration, and then removed from the list/heap. In the next iteration, only the spread

for the top node is calculated. If, after resorting, that node remains at the top of the list/heap, then

it must have the highest marginal gain of all nodes and is added to the seed set. If not, then the

marginal spread of the new top node is evaluated and so on, until all 𝑘 nodes have been selected.

The pseudocode of the algorithm can be found is shown in Algorithm 9.

44 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.2. BASELINE METHODS

Diversity seeding from Stoica et al.
We will compare our method with the different seeding strategies provided by Stoica et al. [49]. The

purpose of these different strategies was to find a fairer solution in biased networks, which makes it

a suitable method to compare with. We assume that there is a bi-populated network, i.e. a network

with two communities: a majority and minority community. Stoica et al. make a distinction between

blue and red nodes, but we will refer to nodes belonging to group 0 (𝑉 0
) or belonging to group 1

(𝑉 1
). The seeding methods are based on degree centrality, where the degree of a node is the number

of connections it has with other nodes (neighbours). The baseline agnostic strategy is similar to

a greedy method, and selects the top-𝑘 nodes with the highest degree. For notation purposes, we

denote 𝑡(𝑘) as the degree threshold for which we select 𝑘 nodes:

Definition 5.1 (Agnostic seeding). The baseline agnostic seeding defines the seed set of a bi-populated
network 𝐺 = (𝑉 , 𝐸) of majority (0) and minority (1) nodes as 𝑆𝑡(𝑘) = {𝑣 ∈ 𝑉 |deg(𝑣) ≥ 𝑡(𝑘)}.

Parity seeding is defined by increasing the threshold for the majority nodes and decreasing it for

the minority nodes in order to achieve the same ratio of majority and minority nodes in the seed

set as it is in the general population, while preserving the seed set budget. In other words, this

method focuses on fairness in the seed set (fairness of early adopters) in order to find a fairer solution

regarding total outreach:

Definition 5.2 (Parity seeding). Parity seeding defines the seed set of a bi-populated network 𝐺 =
(𝑉 , 𝐸) of majority (0) and minority (1) nodes based on two differentiated thresholds 𝑡0(𝑘) and 𝑡1(𝑘) as
𝑆0𝑡0(𝑘) ∪ 𝑆

1
𝑡1(𝑘) = {𝑣 ∈ 𝑉 0|deg(𝑣) ≥ 𝑡0(𝑘)} ∪ {𝑣 ∈ 𝑉 1|deg(𝑣) ≥ 𝑡1(𝑘)} such that |𝑆𝑡(𝑘)| = |𝑆0𝑡0(𝑘) ∪ 𝑆

1
𝑡1(𝑘)| and

|𝑆0𝑡0(𝑘) |
|𝑆𝑡(𝑘) |

= |𝑉 0 |
|𝑉 | .

Algorithm 9 CELF [28]

Input: Graph 𝐺 = (𝑉 , 𝐸), budget 𝑘, number of simulations 𝑀
Output: Maximum influence set 𝑆 ⊆ 𝑉 , |𝑆| = 𝑘
1: for all 𝑣 ∈ 𝑉 do 𝑎𝑣 ← SimulateIC({𝑣}, 𝐺,𝑀)
2: select 𝑢 = argmax𝑢∈𝑉 𝑎𝑣
3: 𝑆 ← 𝑆 ∪ 𝑢, 𝐼 = 𝑎𝑣
4: for all 𝑣 ∈ 𝑉 ⧵ 𝑆 do Insert (𝑎𝑣 , 𝑣) into max-heap 𝐻
5: for 𝑖 = 2, … , 𝑘 do
6: 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = False

7: while not 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 do
8: 𝑣 = top item in 𝐻
9: 𝑎𝑣 ← SimulateIC(𝑆 ∪ {𝑣}, 𝐺,𝑀) − 𝐼
10: Update the value of 𝑣 in 𝐻 to 𝑎𝑣
11: if 𝑣 = still top item in 𝐻 then
12: 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 = True

13: end if
14: end while
15: 𝑆 ← 𝑆 ∪ 𝑣, 𝐼 ← 𝐼 + 𝑎𝑣
16: end for
17: return 𝑆

Learning a Fair Policy for the Influence Maximization Problem 45

5.3. TRAINING FOR DIFFERENT LEVELS OF FAIRNESS CHAPTER 5. EXPERIMENTS & RESULTS

5.3 Training for different levels of fairness

The first thing we are actually interested in, is to see how DQ4FairIM performs for different levels of

𝜙. By starting with 𝜙 = 0 and gradually increasing it, we can see how the agent changes its behaviour

based on the fairness measure and if it actually finds a fairer solution for larger 𝜙. We will start with

small graphs and run this experiment on the BA100 instances. Recall that we train the model first

on the 50 test graphs and then test the performance of the agent on the 10 unseen test graphs.

We proceed as follows. We will train five different models for five different levels of fairness: 𝜙 ∈
[0, 0.25, 0.5, 0.75, 1] using the maxmin fairness defined in Equation 4.6. Except for the value of 𝜙 we

use the same parameters for all models. First of all, the propagation probability for the IC-model

is set to 𝑝 = 0.1 and the budget 𝑘 = 7. We train the model for 700 episodes, with a batch size of

32, discount parameter 𝛾 = 1 (since we are dealing with a terminating task), initial 𝜖 = 1, epsilon
decay 𝜂𝜖 = 0.995, minimum value 𝜖min = 0.05, learning rate for stochastic gradient descent 𝜂 = 0.001,
embedding size is 64 and number of iterations for the node embeddings is 𝑇 = 5. An overview of all

the parameter settings and a motivation of our choice can be found in Table 5.1.

Parameter Value Explanation
𝑘 7 The number of seed nodes is usually a very small percentage of the whole

population. 7 % of the nodes as seed node is relatively large, but for the pur-

pose of the experiment it does not really matter.

𝑝𝑢𝑣 0.1 Based on literature, this is a common probability to pick for graphs of this

size. Usually, when networks are much larger, the probability is smaller.

𝐸 700 The agent did not seem to learn any big things anymore after a while. So

training it longer than 700 episodes would only lead to potential overfitting.

𝛾 1 We are dealing with an episodic task, so 𝛾 = 1 is suitable here.
𝜖 1 At the start, the agent does not know anything and needs to explore the en-

vironment. By setting 𝜖 we stimulate exploration at the beginning of training.

𝜂𝜖 0.9975 We are doing a lot of steps (4900), so this is a normal cooling down parameter.

𝜖min 0.05 In later stages of training we want the agent to exploit the environment, but

still want to do some exploration.

𝑝 64 Size of the node/graph embeddings (see the beginning of this section).

𝛼 0.001 Learning rate for stochastic gradient descent, see Section 3.6.

𝑚 100 For intermediate rewards we do only 10 simulations, but at the end of the

episode we run 100 simulations. The number of simulations are quite small,

but by keeping it small the training will go faster. Moreover, the idea is that

the agent will see a lot of steps and learns over time.

𝐾 1 We update the parameters Θ in every time step.

Table 5.1: Model set up for experiment in Section 5.3.

5.3.1 Performance during training

In order to compare the effect of different levels of 𝜙 on the unseen graphs, we have plotted the

outcomes for the different levels in Figure 5.2. With outcome, we refer to the total reward the agent

receives at the end of an episode, i.e. when it has selected 𝑘 nodes for the seed set. Each row

contains two figures, on the left side we make a clear distinction between the total spread (expected

percentage of influenced nodes) in blue, and themaxmin fairness in orange. In order tomake the lines

46 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.3. TRAINING FOR DIFFERENT LEVELS OF FAIRNESS

more smooth and readable, we have plotted the rolling mean of a 50-episode window along with the

standard deviation, depicted by the shaded area. On the right side, we have plotted the total reward

per episode as the sum of the total spread plus 𝜙 times the maxmin fairness, without averaging

over a number of episodes. Note that these graphs are very volatile, since we are dealing with a

probabilistic environment where the agent samples a random graph at the beginning of the episode.

Basically, it solves the influence maximization problem for a different graph in every episode. Hence,

the reward the agent is able to receive heavily depends on the instance of the graph at hand.

100 200 300 400 500 600 700
Episode

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Pe
rc

en
ta

ge

Moving average of outreach + maxmin fairness , = 0 (50-episode window)

outreach
fairness

(a) 𝜙 = 0

0 100 200 300 400 500 600 700
Episode

12

14

16

18

20

22

24

26
Re

wa
rd

Total reward per episode

(b) 𝜙 = 0

100 200 300 400 500 600 700
Episode

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Pe
rc

en
ta

ge

Moving average of outreach + maxmin fairness , = 0.25 (50-episode window)

outreach
fairness

(c) 𝜙 = 0.25

0 100 200 300 400 500 600 700
Episode

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

Re
wa

rd

Total reward per episode

(d) 𝜙 = 0.25

100 200 300 400 500 600 700
Episode

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Ep
iso

de
 L

en
gt

h

Moving average of outreach + maxmin fairness , = 0.5 (50-episode window)

outreach
fairness

(e) 𝜙 = 0.5

0 100 200 300 400 500 600 700
Episode

15

20

25

30

35

40

Re
wa

rd

Total reward per episode

(f) 𝜙 = 0.5

Learning a Fair Policy for the Influence Maximization Problem 47

5.3. TRAINING FOR DIFFERENT LEVELS OF FAIRNESS CHAPTER 5. EXPERIMENTS & RESULTS

100 200 300 400 500 600 700
Episode

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Pe
rc

en
ta

ge

Moving average of outreach + maxmin fairness , = 0.75 (50-episode window)

outreach
fairness

(g) 𝜙 = 0.75

0 100 200 300 400 500 600 700
Episode

20

25

30

35

40

45

Re
wa

rd

Total reward per episode

(h) 𝜙 = 0.75

100 200 300 400 500 600 700
Episode

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

Pe
rc

en
ta

ge

Moving average of outreach + maxmin fairness , = 1 (50-episode window)

outreach
fairness

(i) 𝜙 = 1

0 100 200 300 400 500 600 700
Episode

15

20

25

30

35

40

45

50

55

Re
wa

rd

Total reward per episode

(j) 𝜙 = 1

Figure 5.1: Training progress DQ4FairIM for different levels of 𝜙.

All the graphs for the different levels of 𝜙 share a common pattern: in the early episodes the agent

does not know anything about the environment and selects nodes mostly random, which to an

arbitrary bad reward, but after some time, around episode 150, we see that the reward goes up

significantly and after a while it seems to converge to an average reward. This is not surprising, as a

matter of fact, this is what we expect from a RL algorithm. If we had observed a different pattern, it

would have been an indication that our model was doing something wrong. Moreover, we can also

see a clear difference between the training patterns of the different models.

For example, if we look at the averaged reward for 𝜙 = 0, we notice that the maxmin fairness

increases naturally when the total outreach increases, but it does not seem to get any ’closer’ to

the total outreach over time and moreover, it stays very volatile over time, i.e. the shaded area is

quite big. This is in clear contrast with training progress of the agent in the model where 𝜙 = 1
(Figure (i)). Here, the minimum fraction keeps increasing over time, while the total spread keeps

stable. Also, the average maxmin fairness and average total outreach are pretty close together at

the end of training, and we can clearly see that the minimum fraction is less volatile as well. This

indicates that the agent is actually able to learn a fairer solution for the IM problem by adding a

fairness objective in its reward function. If we look at the graphs for the other levels of 𝜙, we do not
observe a remarkable difference between 𝜙 ∈ [0.5, 0.75, 1], indicating that it does not matter whether

we set 𝜙 to 0.5, 0.75 or 1. There seems to be a slight difference between 𝜙 = 0 and 𝜙 = 0.25: when
𝜙 = 0 the agent does not care about fairness at all, whereas with 𝜙 = 0.25, the minimum fraction

seems to increase slightly halfway during training (around episode 400). Based on training, we can

48 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.3. TRAINING FOR DIFFERENT LEVELS OF FAIRNESS

clearly see that DQ4FairIM gives better solutions in terms of fairness. In the next subsection, we

look at how the model performs on unseen graphs.

5.3.2 Performance on unseen graphs

We trained the model for different levels of 𝜙 for a pool of 50 graphs. What we are mainly interested

in, is to see how the agent performs on the 10 test graphs that it has not seen before. It constructs

a solution by just iteratively selecting the node with the highest 𝑄-value based on the function ap-

proximator 𝑄̂(𝑠, 𝑎, Θ), where the function parameters Θ have been learned during training. The

results for the different models, the greedy algorithm CELF, agnostic seeding and the parity seeding

by Stoica et al., averaged over the 10 test graphs together with the standard deviation, can be found

in Figure 5.2. What we notice firstly, is that the total influence spread is quite similar for all the al-

gorithms, although CELF and 𝜙 = 0 are slightly performing better compared to the other algorithms

on these graphs. A reason for this could be that under the IC model, with a relatively high propaga-

tion probability of 𝑝 = 0.1, it might be relatively easy to achieve high outreach. This suggestion

is strengthened by the fact at the start of training (see Figures 5.2), when the agent selects nodes

purely at random, it already is able to get an influence spread close to 0.19, while ending up with

an average spread of 0.24. The maxmin fairness, i.e. the fraction of the minimally influenced group,

however, differs more for the different algorithms. We observe that 𝜙 = 1 performs best in terms of

fairness, outperforming 𝜙 = 0.75 and parity only slightly. Another remarkable thing to notice is that

the volatility for the minimum fraction is very low for parity seeding, 𝜙 = 0.75 and 𝜙 = 1, while it is
quite high for the other algorithms.

CELF parity = 0 = 0.25 = 0.5 = 0.75 = 1
0.00

0.05

0.10

0.15

0.20

0.25

Pe
rc

en
ta

ge

Outreach and fairness for different algorithms

Influence spread
Min fraction influenced

Figure 5.2: DQ4FairIM results for different levels of 𝜙 averaged over 10 test graphs.

Learning a Fair Policy for the Influence Maximization Problem 49

5.4. INCREASING GRAPH SIZE CHAPTER 5. EXPERIMENTS & RESULTS

5.4 Increasing Graph Size

We evaluated the performance of DQ4FairIM for different levels of 𝜙 on graphs of 100 nodes and

obtained pretty good results. But what if we increase the size of the graphs? Does our method

still perform well? To find out, we perform the same experiment as in the previous section. We

have trained models with 𝜙 = 0 and 𝜙 = 1 on pools of 50 graphs with 200, 300, 400 and 500 nodes

respectively, and tested them on test sets of 10 graphs. The results for the different graph pools

can be found in Figure 5.3. Note that compared with the parameter settings in Table 5.1, the only

difference is the value for 𝑘. We observe similar results as for the graphs of 100 nodes, this means

that 𝜙 = 1 is clearly performing better in terms of fairness than 𝜙 = 0, and the influence spread is

relatively similar for all methods. If we compare DQ4FairIMwith parity seeding, we see that in terms

of fairness DQ4FairIM is doing better on all datasets, except for BA200, where Stoica’s parity seeding

is slightly doing better. Overall, we observe that there is no big difference between the results on the

different datasets with different graph sizes.

0.12 0.14 0.16 0.18 0.20
Fairness

0.12

0.14

0.16

0.18

0.20

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(a) BA200, 𝑘 = 7.

0.12 0.14 0.16 0.18 0.20
Fairness

0.12

0.14

0.16

0.18

0.20
To

ta
l O

ut
re

ac
h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(b) BA300, 𝑘 = 9.

0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
Fairness

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(c) BA400, 𝑘 = 12.

0.12 0.14 0.16 0.18 0.20
Fairness

0.12

0.14

0.16

0.18

0.20

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(d) BA500, 𝑘 = 15.

Figure 5.3: Results of DQ4FairIM for different graph sizes.

Hence, we can conclude that regardless of the graph size, our algorithm gives good results. Of course,

as stated by Theorem 4.2, the training time for DQ4FairIM will increase significantly with a larger

50 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.5. EXTENDING TO LARGER GRAPHS

graph size. For example, we can compare the running time complexity of the dataset with graphs

of 100 nodes and budget 𝑘 = 7, with graphs of 500 nodes and budget 𝑘 = 15. The graphs with 500

nodes have 5 times more nodes and around 5 times more edges as well. This means that the total

training time is around 5 ⋅ 15
7 = 10.7 times higher.

5.5 Extending to larger graphs

We can possibly reduce training time for DQ4FairIM significantly. Namely, a great advantage of

DQ4FairIM is that the trained 𝑄-function approximator does not depend on graph sizes. As dis-

cussed, the training speed depends heavily on the graph size as shown by Theorem 4.2, but the

learned 𝑄-function approximation can take any graph size as input. This means that in principle,

we could train an agent on small graphs of 100 nodes and use the trained 𝑄-network to obtain a

solution for graphs with more nodes. In this section, we will investigate whether an agent that is

trained on small graphs is able to give good solutions for larger graphs too. We proceed as follows,

we use the DQ4FairIM models with 𝜙 = 0 and 𝜙 = 1 from Section 5.3 that are trained on a pool

of graphs of 100 nodes with 𝑘 = 7 to generate a solution for increasing graph sizes with the same

budget. We have plotted the results for both influence spread and maxmin fairness in Figure 5.4.

Remarkably, all methods considered are performing equally well in terms of influence spread. In

terms of fairness, CELF and DQ4FairIM with 𝜙 = 0 are performing equally bad, while DQ4FairIM

with 𝜙 = 1 and Stoica’s method are getting similar good results.

We think these results are very promising. It shows that the agent is able to generalize well to larger

graphs by interacting with an environment of small graphs. Of course, we have assumed that the

graphs are coming from the same distribution and are similar in number of communities, balance

of communities and structure. But nevertheless, the results show that if we want to train an agent

in finding a fair solution for a large network, we can train it on small representations of this large

network, for example subsets, with the same budget constraint, and are able to obtain good results

for these large networks. The biggest advantage of this, is that we can obtain good results in terms

of fairness and total outreach, while keeping the training time low.

100 200 300 400 500
Graph size

0.14

0.16

0.18

0.20

0.22

0.24

To
ta

l O
ut

re
ac

h

DQ4FairIM, = 0
DQ4FairIM, = 1
CELF
parity

(a) Influence spread.

100 200 300 400 500
Graph size

0.12

0.14

0.16

0.18

0.20

0.22

Fa
irn

es
s

DQ4FairIM, = 0
DQ4FairIM, = 1
CELF
parity

(b) Fairness.

Figure 5.4: Results of CELF, diversity seeding and the DQ4FairIM model trained on graphs of 100

nodes for different graph-sizes, 𝑘 = 7.

Learning a Fair Policy for the Influence Maximization Problem 51

5.6. EVALUATING 𝑄-VALUES CHAPTER 5. EXPERIMENTS & RESULTS

5.6 Evaluating 𝑄-values

So far, we have looked at our model in terms of performance on both training data and test data. In

order to do a better examination of what the agent actually learns, we should examine the models

in more detail. We can do this, for example, by looking at the 𝑄-values for each node. Note that a

higher 𝑄-value for a node, means that the agent ’ranks’ this node higher. We proceed as follows,

we calculate the 𝑄-values for a given test graph based on the trained models for 𝜙 = 0 and 𝜙 = 1
at the start state (so when the seed set is empty) and plot these 𝑄-values together with the degree

of the node in Figure 5.5. To keep things organized, we have only plotted the results for two graph

instances: one for BA100 and one for BA300. What we notice immediately is that there is a clear

62 63 64 65 66
Q-values

4

6

8

10

12

14

16

No
de

 d
eg

re
e

Majority
Minority

(a) BA100, test instance 4, 𝜙 = 0.

110 112 114 116 118
Q-values

4

6

8

10

12

14

16

No
de

 d
eg

re
e

Majority
Minority

(b) BA100, test instance 4, 𝜙 = 1.

57 58 59 60 61 62 63 64 65
Q-values

5

10

15

20

25

No
de

 d
eg

re
e

Majority
Minority

(c) BA300, test instance 1, 𝜙 = 0.

112 114 116 118 120 122
Q-values

5

10

15

20

25

No
de

 d
eg

re
e

Majority
Minority

(d) BA300, test instance 1, 𝜙 = 1.

Figure 5.5: Node degree and 𝑄-value at the start for different graphs and models.

correlation between 𝑄-value and node degree. The agent seems to be able to learn the structure

of the graph and ranks nodes with many neighbours higher than nodes with less neighbours. This

52 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 5. EXPERIMENTS & RESULTS 5.7. TRAINING ON OTHER GRAPH TYPES

seems reasonable: in general, nodes with a lot of connections are good nodes to add to the seed set.

Another interesting thing we observe is that when 𝜙 = 0 the agent does not really seem to make a

distinction between majority (red) and minority (blue) nodes. However, when 𝜙 = 1, there is still
a strong correlation between node degree and 𝑄-value, but the agent rates minority nodes higher

than majority nodes with a similar node degree. This is very interesting to notice. We already saw

that by adding fairness in the reward function, the agent is able to learn a fairer solution and now

we can see why. It is able to identify the minority nodes and assign them a higher 𝑄-value in order

to come to a fairer solution.

5.7 Training on other graph types

All the results we have reported so far are based on one type of graph, namely graphs that were

generated according to the Homophily BA principle. These graphs all have two communities that

are somewhat isolated in the network. This means that the nodes in the network have more intra-

community links than inter-community links, whichmakes them very interesting to test our method

on. Similar to these graphs are the LFR graphs, where the degree distribution and community sizes

are generated according to a power law distribution. We have plotted the results for these graphs

in Figure 5.6. We actually observe the same results as for the homophily BA graphs: all methods

perform similar in terms of outreach, but DQ4FairIM and parity seeding are much better in terms of

fairness.

0.030 0.035 0.040 0.045 0.050 0.055 0.060
Fairness

0.030

0.035

0.040

0.045

0.050

0.055

0.060

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

Figure 5.6: Results of different algorithms for LFR250, 𝑘 = 8, 𝑝 = 0.1.

But what about other graph types? For example, graphs where fairness could be less of an issue

because of the structure of the graph. If communities are not isolated in a network, meaning that

people are as connected with other people in their community as with people outside their com-

munity, the choice of seed nodes has probably less effect on the level of fairness. In these networks,

we call communities a community because they belong to the same group based on some attribute,

but they are not necessary a community because they form a cluster within the graph. Recall that

the Diversified Homophily BA mechanism stimulates inter-group communities and hence generates

these kinds of graphs. We will test and compare the same methods as before on the diversified BA

graphs. DQ4FairIM is again trained on 50 test graphs and tested on 10 test graphs. Next to that,

we will also run the same experiment on the obesity prevention graphs with the sensitive attrib-

ute gender. More or less half of the people in these graphs are men and the other half are women,

Learning a Fair Policy for the Influence Maximization Problem 53

5.7. TRAINING ON OTHER GRAPH TYPES CHAPTER 5. EXPERIMENTS & RESULTS

where there is no clear cluster of women and men in the network. DQ4FairIM is trained on 20 train-

ing graphs and tested on the other 4 graphs. The results for both datasets can be found in Figure

5.7.

0.16 0.17 0.18 0.19 0.20 0.21 0.22
Fairness

0.16

0.17

0.18

0.19

0.20

0.21

0.22

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(a) dBA200, 𝑘 = 7, 𝜙 = 0.

0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075 0.080
Fairness

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

To
ta

l O
ut

re
ac

h

CELF
agnostic
parity
DQ4FairIM, = 0
DQ4FairIM, = 1

(b) Obesity prevention, attribute gender, 𝑘 = 15. 𝜙 = 1.

Figure 5.7: Results of DQ4FairIM and other methods on diversified homophily BA and obesity pre-

vention graphs.

We indeed observe that there is less difference in results between the considered methods, as in-

dicated by the arguing above. For the diversified BA graphs, all results are very similar in terms of

total outreach and fairness, although DQ4FairIM with 𝜙 = 1 is (very) slightly doing better than other

methods in terms of fairness. For the obesity dataset, the results are again very similar, although

remarkably CELF is slightly better than the other methods in terms of outreach and fairness. But,

for example, DQ4FairIM with 𝜙 = 0 and 𝜙 = 1 almost obtain the same results which, is very different

compared to the homophily BA graphs discussed in the previous sections.

54 Learning a Fair Policy for the Influence Maximization Problem

Chapter 6

Conclusions

In the final chapter of this work we will discuss our main contributions, conclusions and answers

to the research questions in Section 6.1. In Section 6.2 we discuss some potential practical problems

where we think our method could be beneficial. And finally, in Section 6.3 we discuss the future

directions of reasearch.

6.1 Main Contributions

The goal of this research was to investigate if reinforcement learning can be used to find a fair

solution for the influence maximization problem, while keeping a high influence spread under the

independent cascade model. We formulated the problem of influence maximization as a Markov de-

cision process and proposed a novel method, called DQ4FairIM, that incorporates a fairness object-

ive in the reward function, and uses the deep 𝑄-learning structure together with node embeddings

proposed by Dai et al. [12] for other graph optimization problems, to train an agent on a pool of

similar graphs. The benefit of such a model is that the reinforcement learning agent can be trained

on historical graphs and find a solution for a new graph in short time. We examined the training

time complexity of DQ4FairIM and performed several experiments to demonstrate the strength and

benefits of our method.

As argued in the introduction, fairness can be quite subjective and there is no one-size-fits-all notion

of fairness that can be used for any kind of problem. In our work, we decided to focus on fairness

in outreach. That is, we consider a solution to be fair if in the total outreach there are no groups

(e.g. people sharing the same characteristic for some sensitive attribute) that are disproportionately

excluded. In practice, this means that our model is not only maximizing total spread, but its object-

ive is the sum of the total spread and the minimum influence received by any of the groups in the

network, as proportional to their population. We showed our results on different graph types. The

majority of those were synthetic graphs that have been generated according to the homophily BA-

principle and LFR benchmark networks, where there is a clear distinction between a majority group

and a minority group within the graph. These network generation mechanisms have been designed

to mimic real world networks as much as possible. The results of our model were quite promising.

Firstly, DQ4FairIM was indeed able to find a fairer solution in comparison with greedy approaches

and our method without a fairness objective, and a similar solution compared with Stoica’s parity

seeding. Secondly, in terms of total outreach our model performed similar compared with the other

Learning a Fair Policy for the Influence Maximization Problem 55

6.1. MAIN CONTRIBUTIONS CHAPTER 6. CONCLUSIONS

methods. This means that our method was able to find a fairer solution while keeping a high influ-

ence spread under the independent cascade model. To be more concrete, this implies that DQ4FairIM

does not disproportionately exclude groups while having no loss in influence spread. Moreover, we

showed that we can train DQ4FairIM on small graphs and use the trained model to find good solu-

tions for larger graphs, indicating that we can reduce training time for large graphs significantly.

More concretely, we are now able to answer the research questions stated at the beginning of our

work (Section 1.3).

RQ1: Can we train an RL agent to solve the IM problem?

1) What are the pros and cons of using RL compared to other algorithms?

The main benefit of approaching the problem in this way, i.e. by using a RL approach, is that we can

learn a policy based on previously seen problem instances and give the solution for a new problem

instance without the need of retraining the model. This is particularly useful when graphs from

the same application domain or similar types are not totally different from each other and it is too

expensive to solve each of them individually. We do not necessarily recommend our approach if

there is not enough training data available or if one wants to solve the problem for only one graph,

since in that case the costs of training an RL agent might not outweigh the results. Of course, our

method could still be used to find a solution, but there could be other suitable methods that are less

computationally expensive and perform equally well.

2) How can we formulate the classical IM problem as an MDP?

Wehave formulated the classical influencemaximization problem as aMarkov decision process. This

is not a straightforward thing to do, since IM is in general formulated as an optimization problem. We

can summarize our formulation as follows: the time steps are indicated by 1 till 𝑘 (budget, i.e. size of

the seed set), where at every time step the agent adds a node to the seed set. A state is represented by

the graph, the communities and the nodes that have been added to the seed set so far. The reward is

the marginal gain in influence of adding a node, and the transition-state probabilities follow trivially

from the states and actions. By formulating the problem in this way, we were able to apply deep

𝑄-learning with experience replay in order to solve the IM problem.

3) How scalable is the RL approach?

We have shown that the training time complexity of DQ4FairIM is given by 𝑂(𝑘𝐸(𝑏 ⋅ |𝑉 | ⋅ |Θ|+𝑚⋅ |𝐸|)),
this means that training our model strongly depends on the sizes of graphs in terms of number

of nodes |𝑉 | and number of edges |𝐸|. For example, training our model on large sized graphs of

thousands of nodes could take several days. However, as we have shown, we can train our model

on smaller graphs and obtain good solutions with this model for larger graphs as well, making our

model very scalable. This also means that pre-trained models can be used to find solutions for new

graph instances, which reduces training time significantly. In that case, the model does not have

to be retrained from start and can be updated according to the new data. Since the models do not

depend on the size of the graphs, we think it might be possible and useful to make pre-trainedmodels

widely available so that they can be used as a starting point to solve new problems.

RQ2: How can RL be used to find a fairer solution to the IM Problem?

1) How do we define fairness in the context of IM? More specifically, are there any other fairness criteria

that are suitable for the IM problem besides the community-based fairness notions (Equations 1.1 and

1.2)?

As mentioned already, we have decided to focus on fairness in outreach where the goal is that no

groups are disproportionally excluded. In IM, it is about which nodes finally get activated in the

56 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 6. CONCLUSIONS 6.2. POTENTIAL USE CASES

network, i.e. which nodes receive the influence or information. We were looking for a fair solution

in the sense that we do not want certain communities to be excluded from the information. However,

the fairness measure of Equation 1.2 did not seem suitable for our approach, since the agent will try

to find a solution where all communities are proportionally equally influenced. Instead, we used

the maxmin fairness where we maximize the minimum influence received by any of the groups, as

proportional to their population.

2) How can we enhance this fairness notion in the RL framework?

We enhanced this fairness notion in our method by not only letting the reward depend on total

outreach, but also on the maxmin fairness, i.e. minimum influence received by any of the groups in

the network. The reward the agent receives is the expected percentage of influenced nodes plus 𝜙
(the fairness weight) times the maxmin fairness.

3) What is the loss incurred by enhancing fairness compared to a RL model that is not restricted to

fairness? In other words, what is the price of fairness?

We obtained good results with DQ4FairIM and the price of fairness was zero. With our method,

we were able to obtain fairer solutions while not losing any of the total outreach. The RL method

without a fairness objective (DQ4FairIM with 𝜙 = 0), obtained similar results in terms of outreach

but performed significantly worse in terms of fairness. Important to remark here is that under the

independent cascade model with a high propagation probability, it is relatively easy to obtain a high

influence spread, as discussed in Section 5.3.2.

4) How does the method compare to other baseline methods?

In terms of influence spread, our method was comparable to baseline methods such as CELF, Stoica’s

seeding and RL without a fairness objective. In terms of fairness it is outperforming baseline meth-

ods that are ‘blind’ for fairness and gave slightly better results than Stoica’s parity seeding in most

cases.

5) If the algorithm that accounts for fairness gives different solutions, can we explain, for example by

evaluating the choices of the agent, why this is the case?

We found another interesting element about DQ4FairIM. We compared our model that was trained

in only maximizing influence spread (DQ4FairIM with 𝜙 = 0) with the model that is trained to find

a fair solution (DQ4FairIM with 𝜙 = 1) in terms of 𝑄-values at the start of seed node selection. Both
models were able to identify nodes with many connections and give them a higher 𝑄-value, but
the latter was clearly ranking nodes from the minority group higher than similar nodes from the

majority group. This indicates that our model is able to identify the minority nodes and give them

a higher 𝑄-value in order to find a fairer solution.

6.2 Potential use cases

We have shown and argued that DQ4FairIM outperforms other methods in terms of fairness. As

discussed in the introduction, our work focuses on applications of social influence maximization

where the aim is to find a fair solution while keeping a high influence spread and RL can potentially

be a good approach to tackle the problem. As mentioned, RL is mainly applicable for optimization

problems where there is a pool of problem instances that are closely related, and it might be com-

putationally more efficient to train one model that can solve all these problem instances at once.

This pre-trained model can be used to find solutions for new graphs in a short amount of time. An

appealing domain where RL might be useful in particular, are social networks. In these networks,

Learning a Fair Policy for the Influence Maximization Problem 57

6.2. POTENTIAL USE CASES CHAPTER 6. CONCLUSIONS

new users enter the network, existing users leave the network and users connect with other users

frequently. Such a network is very dynamic and changes over time very fast, but probably the core

structure or underlying distribution remains the same over time. Instead of solving the IM problem

every time over and over again from start, DQ4FairIM will produce a solution for a changed network

very fast. Practical IM applications, where fairness in particular is important, and hence DQ4FairIM

can be useful, are social intervention campaigns.

One could think of any practical problem where the goal is to spread awareness among people by

means of social intervention. An appealing example that we discussed earlier, is the HIV preven-

tion program, where the goal is to spread awareness about HIV among the homeless youth [51]. In

practical, there might be several areas where one wants to run this program and our method could

be used to train a model that can give a solution for future campaigns as well. Another, more recent

example about social intervention in practice involves the Dutch government. They hired so-called

influencers to spread awareness about COVID-preventionmeasures among their (mainly young) fol-

lowers on social media platforms [13]. DQ4FairIM can address this problem by not only identifying

the most influential people in the network, but also making sure that no groups are disproportion-

ately excluded from the information. Especially in these kind of problems, we think that DQ4FairIM

can really contribute something, because they serve a common good. In these problems, that have a

social character, we think it is especially crucial that certain minority groups are not disproportion-

ately excluded from the information. This is different from classic viral marketing campaigns, where

a company may wish to spread the adoption of a new product from some initially selected adopters

through the social connections between users. We can imagine that for such a company it does not

matter what kind of people it reaches, as long as it reaches a lot of them. However, DQ4FairIM could

still be applied to these kinds of problem as well, where the fairness weight 𝜙 is set to zero.

Another, more specific example of a social intervention campaign wherein our work could be rel-

evant was studied by Oostenbroek et al. [39]. They studied the influence maximization problem

applied to a Dutch health promotion program called Jongeren Op Gezond Gewicht (JOGG), trans-

lated as Children At HealthyWeight. This program collaborates with municipalities to influence the

environment of children aiming at a healthy lifestyle. To achieve behavioural change, JOGG reaches

out to organizations in the proximity of children, such as schools and sport clubs, that can participate

in the program. There is a limited budget available to hire local JOGG directors who are responsible

for introducing the program. The goal is to appoint these directors in such a way that the number of

participating organizations is maximized, and consequently the number of children changing their

lifestyle is maximized. The directors are the seed of the diffusion process. There certainly is a fair-

ness goal in this setting, since it is undesirable that children from a specific (ethnic) minority are

disproportionately excluded from the program. Moreover, RL might be useful since the structure of

the social network changes over time because people are joining and leaving, and JOGG wants to

make sure that its model works for future campaigns as well. Or, for example, consider that someone

wants to run the campaign in different areas or municipalities and the structure of these networks

are similar. DQ4FairIM can be used to address this problem: it can be trained to solve the problem

for all these different networks at once and used to get a solution for future campaigns.

58 Learning a Fair Policy for the Influence Maximization Problem

CHAPTER 6. CONCLUSIONS 6.3. FUTURE WORK

6.3 Future work

We have presented a novel reinforcement learning framework to find a fair solution to the IM prob-

lem, however there are also some limitations to our research. We will discuss these limitations and

subsequent directions for further research in this section. Firstly, we evaluated our model on small-

sized graphs of 100-500 nodes. This enabled us to run many different experiments and tweak the

models where necessary. The majority of these graphs were generated according to the homophily-

BA principle that incorporates preferential attachment and homophily of nodes in order to mimic

real-world networks as close as possible. However, real-world networks are usually not this small

and have manymore nodes, like thousands or even millions. Moreover, the distribution of nodes and

communities could be different from the graphs we have used. Although we have shown that we can

train our model on graphs of 100 nodes and use it for up to 500 nodes, we have not run experiments

for graphs of thousands of nodes. We believe that our model will also work for larger sized graphs,

but training time will increase significantly. Hence, our first recommendation for future research

would be to scale up experiments for large sized (and potentially differently distributed) graphs and

explore techniques to make it even more scalable.

Our second recommendation for future research is about exploring and tweaking the technicalities of

our algorithm. Interesting to look at, for example, is how different kinds of node embedding methods

affect the behaviour of the agent. For now, we have only used the structure2vec node embeddings

and did not incorporate any other methods in our approach. Another possible direction is to look

at different structures of the 𝑄-network. It now combines the node embeddings with some simple

ReLU-layers, but a more complex 𝑄-network might potentially catch more patterns of the problem

and consequently give better solutions for more complex graphs. Regarding the method, one could

also look at redefining theMarkov decision process and see how it affects performance. For example,

we now let the agent construct a solution node by node, but it could also select the top 𝑘 nodes with

the highest value in every iteration.

Our third recommendation is to look at the performance of DQ4FairIM for different information

propagation models. This work focused on the independent cascade model with a fixed probability

only. In practice, it is hard to find a propagationmodel that mimics reality. Although the independent

cascade model is one of the most used in existing literature about IM, it is often argued whether it is a

suitable model for practice. We could think of, for example, to use edge-based probabilities that take

node characteristics into account or a totally different propagation model like the linear threshold

model that we have discussed in Section 2.2.2.

Our final recommendation for future research is to look at how DQ4FairIM can be extended to other

graph problems. Note that the 𝑄-network, in principle, can be used for any graph problem. The

MDP however, has been specifically designed for IM. We think there is potential to modify the MDP

for other graph problems and use DQ4FairIM as inspiration for finding fairer solutions for these

problems. In particular, we think that our method could be extended to the Influence blocking max-

imization problem, which is related to the IM problem. Here the goal is to select seed nodes that

block the information spread, instead of selecting nodes that accelerate it.

Learning a Fair Policy for the Influence Maximization Problem 59

Bibliography

[1] Khurshed Ali, Chih-Yu Wang, and Yi-Shin Chen. Boosting reinforcement learning in com-

petitive influence maximization with transfer learning. In 2018 IEEE/WIC/ACM International

Conference on Web Intelligence (WI), pages 395–400, 2018. 30

[2] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. A survey on influence maxim-

ization in a social network. Knowledge and Information Systems, 62:3417–3455, 2020. 2

[3] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999. 41

[4] Ruben Becker, Gianlorenzo D’Angelo, Sajjad Ghobadi, and Hugo Gilbert. Fairness in influ-

ence maximization through randomization. Proceedings of the AAAI Conference on Artificial

Intelligence, 35(17):14684–14692, May 2021. 1, 5, 43

[5] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search en-

gine. Computer Networks and ISDN Systems, 30(1):107–117, 1998. Proceedings of the Seventh

International World Wide Web Conference. 4

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 28

[7] Haipeng Chen, Wei Qiu, Han-Ching Ou, Bo An, and Milind Tambe. Contingency-aware in-

fluence maximization: A reinforcement learning approach. In Conference on Uncertainty in

Artificial Intelligence, 2021. 3, 7, 20, 30

[8] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks.

In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’09, page 199–208, New York, NY, USA, 2009. Association for Computing

Machinery. 2, 30

[9] Suqi Cheng, Huawei Shen, Junming Huang, Guoqing Zhang, and Xueqi Cheng. Staticgreedy:

Solving the scalability-accuracy dilemma in influence maximization. CIKM ’13, New York, NY,

USA, 2013. Association for Computing Machinery. 2

[10] Gennaro Cordasco, Luisa Gargano, Marco Mecchia, Adele Rescigno, and Ugo Vaccaro. A Fast

and Effective Heuristic for Discovering Small Target Sets in Social Networks, pages 193–208. 01

2015. 3

[11] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for

structured data, 2016. 34

60 Learning a Fair Policy for the Influence Maximization Problem

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning

combinatorial optimization algorithms over graphs. arXiv preprint arXiv:1704.01665 ht-

tps://arxiv.org/abs/1704.01665, 2017. 34, 35, 55

[13] Agnes de Goede. Kabinet huurt influencers in voor coronacampagne: ’hou je aan de regels’.

RTL Nieuws. 58

[14] Charles Elkan. The foundations of cost-sensitive learning. Proceedings of the Seventeenth Inter-

national Conference on Artificial Intelligence: 4-10 August 2001; Seattle, 1, 05 2001. 1

[15] Sorelle A Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary, Evan P

Hamilton, and Derek Roth. A comparative study of fairness-enhancing interventions in ma-

chine learning. In Proceedings of the conference on fairness, accountability, and transparency,

pages 329–338, 2019. 1

[16] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-

learning algorithms. In International Conference on Machine Learning, pages 2021–2030. PMLR,

2019. 26

[17] Pratik Gajane, Akrati Saxena, Maryam Tavakol, George Fletcher, andMykola Pechenizkiy. Sur-

vey on fair reinforcement learning: Theory and practice. arXiv preprint arXiv:2205.10032, 2022.

7

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceed-

ings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 855–864, 2016. 33

[19] Jon Henley. Dutch government faces collapse over child benefits scandal. The Guardian. 1

[20] Bas Hofstra, Rense Corten, Frank van Tubergen, and Nicole B. Ellison. Sources of segregation

in social networks: A novel approach using facebook. American Sociological Review, 82(3):625–

656, 2017. 4

[21] Mike Isaac. Meta agrees to alter ad technology in settlement with u.s. The New York Times. 7

[22] Tommi Jaakkola, Michael Jordan, and Satinder Singh. On the convergence of stochastic iterative

dynamic programming algorithms. Neural Computation, 6:1185–1201, 11 1994. 65, 66

[23] Harshavardhan Kamarthi, Priyesh Vijayan, Bryan Wilder, Balaraman Ravindran, and Milind

Tambe. Influence maximization in unknown social networks: Learning policies for effective

graph sampling. AAMAS ’20, page 575–583, Richland, SC, 2020. International Foundation for

Autonomous Agents and Multiagent Systems. 3, 20, 30, 35

[24] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Considerations on

fairness-aware data mining. In 2012 IEEE 12th International Conference on Data Mining Work-

shops, pages 378–385, 2012. 1

[25] Fariba Karimi, Mathieu Génois, Claudia Wagner, Philipp Singer, and Markus Strohmaier. Ho-

mophily influences ranking of minorities in social networks. Scientific Reports, 8, 07 2018. 41

[26] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a

social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’03, page 137–146, New York, NY, USA, 2003. Association for

Computing Machinery. 2, 4

Learning a Fair Policy for the Influence Maximization Problem 61

BIBLIOGRAPHY BIBLIOGRAPHY

[27] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing

community detection algorithms. Physical review E, 78(4):046110, 2008. 43

[28] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and

Natalie Glance. Cost-effective outbreak detection in networks. KDD ’07, page 420–429, New

York, NY, USA, 2007. Association for Computing Machinery. 3, 45

[29] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 14: Reinforcement Learning. Stanford

University School of Engineering, May 2017. 15

[30] Hui Li, Mengting Xu, Sourav S Bhowmick, Changsheng Sun, Zhongyuan Jiang, and Jiangtao

Cui. Disco: Influence maximization meets network embedding and deep learning, 2019. 34, 35

[31] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maximization on social graphs:

A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10):1852–1872, 2018. 1

[32] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: Statistical

Mechanics and its Applications, 390(6):1150–1170, Mar 2011. 4

[33] Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, and Abdol Esfahanian. Bursting the

filter bubble: Fairness-aware network link prediction. Proceedings of the AAAI Conference on

Artificial Intelligence, 34(01):841–848, Apr. 2020. 4

[34] NinaMazyavkina, Sergei Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning

for combinatorial optimization: A survey. CoRR, abs/2003.03600, 2020. 7

[35] Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics,

Tech. Rep, pages 1–4, 2001. 19, 65

[36] Vlado Menkovski and Simon Koop. Deep Learning Lecture Notes. Eindhoven University of

Technology, May 2021. 20

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. 25, 26

[38] Michael A Nielsen. Neural Networks and Deep Learning. Determination Press, 2015. 20, 24, 25

[39] Maurits H. W. Oostenbroek, Marco J. van der Leij, Quinten A. Meertens, Cees G. H. Diks, and

Heleen M. Wortelboer. Link-based influence maximization in networks of health promotion

professionals. PLOS ONE, 16:1–21, 08 2021. 58

[40] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM, aug 2014. 33

[41] Akrati Saxena, George Fletcher, and Mykola Pechenizkiy. Hm-eiict: Fairness-aware link pre-

diction in complex networks using community information. Journal of Combinatorial Optim-

ization, pages 1–18, 2021. 4

[42] Akrati Saxena, George Fletcher, and Mykola Pechenizkiy. Fairsna: Algorithmic fairness in

social network analysis. arXiv preprint arXiv:2209.01678, 2022. 4

[43] Akrati Saxena, George Fletcher, and Mykola Pechenizkiy. Nodesim: node similarity based

network embedding for diverse link prediction. EPJ Data Science, 11(1):24, 2022. 4

62 Learning a Fair Policy for the Influence Maximization Problem

BIBLIOGRAPHY BIBLIOGRAPHY

[44] Akrati Saxena and Sudarshan Iyengar. Centrality measures in complex networks: A survey.

arXiv preprint arXiv:2011.07190, 2020. 4

[45] Akrati Saxena, Pratishtha Saxena, and Harita Reddy. Fake news propagation and mitigation

techniques: A survey. In Principles of Social Networking, pages 355–386. Springer, 2022. 1, 2

[46] Paulo Shakarian, Abhinav Bhatnagar, Ashkan Aleali, Elham Shaabani, and Ruocheng Guo. Dif-

fusion in Social Networks. 06 2015. 10, 12

[47] Paulo Shakarian, Abhinav Bhatnagar, Ashkan Aleali, Elham Shaabani, and Ruocheng Guo. The

independent cascade and linear threshold models. In Diffusion in Social Networks, pages 35–48.

Springer, 2015. 9, 10

[48] Ana-Andreea Stoica and Augustin Chaintreau. Fairness in social influence maximization.

WWW ’19: Companion Proceedings of The 2019 World Wide Web Conference, pages 569–574,

05 2019. 1, 2, 4, 5

[49] Ana-Andreea Stoica, Jessy Xinyi Han, and Augustin Chaintreau. Seeding network influence in

biased networks and the benefits of diversity. In Proceedings of The Web Conference 2020, pages

2089–2098, 2020. 2, 5, 44, 45

[50] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018. 15

[51] Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence

maximization. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-

telligence, IJCAI-19, pages 5997–6005. International Joint Conferences on Artificial Intelligence

Organization, 7 2019. 2, 5, 6, 33, 43, 58

[52] Sotiris Tsioutsiouliklis, Evaggelia Pitoura, Panayiotis Tsaparas, Ilias Kleftakis, and Nikos

Mamoulis. Fairness-aware pagerank. In Proceedings of the Web Conference 2021, WWW ’21,

page 3815–3826, New York, NY, USA, 2021. Association for Computing Machinery. 4

[53] Chao Wang, Yiming Liu, Xiaofeng Gao, and Guihai Chen. A reinforcement learning model for

influence maximization in social networks. In International Conference on Database Systems for

Advanced Applications, pages 701–709. Springer, 2021. 3

[54] Xindi Wang, Onur Varol, and Tina Eliassi-Rad. Information access equality on network gener-

ative models. ArXiv, abs/2107.02263, 2021. 41, 42, 43

[55] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford, 1989.

19

[56] Bryan Wilder, Nicole Immorlica, Eric Rice, and Milind Tambe. Maximizing influence in an

unknown social network. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1),

Apr. 2018. 3, 43

[57] H.-H. Wu and S. Küçükyavuz. A two-stage stochastic programming approach for influence

maximization in social networks. Computational Optimization and Applications, 69(3):563–595,

2018. 3

[58] Weijian Zheng, Dali Wang, and Fengguang Song. Opengraphgym: A parallel reinforcement

learning framework for graph optimization problems. In Valeria V. Krzhizhanovskaya, Gábor

Závodszky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Brissos, and João

Learning a Fair Policy for the Influence Maximization Problem 63

BIBLIOGRAPHY BIBLIOGRAPHY

Teixeira, editors, Computational Science – ICCS 2020, pages 439–452, Cham, 2020. Springer In-

ternational Publishing. 7

64 Learning a Fair Policy for the Influence Maximization Problem

Appendix A

Convergence of 𝑄-values

Melo [35] proved Theorem 3.1 in the following way. He first writes the optimal 𝑄-function as a fixed
point of a contraction operator B for a generic function 𝑞 ∶  × → ℝ as:

(B𝑞)(𝑠, 𝑎) = ∑
𝑠′∈

ℙ𝑎(𝑠, 𝑠′)[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′∈

𝑞(𝑠′, 𝑎′)]. (A.1)

Lemma A.1. This operator is a contraction in the sup-norm, i.e.,

||B𝑞1 − B𝑞2||∞ ≤ 𝛾 ||𝑞1 − 𝑞2||∞. (A.2)

Proof.

||B𝑞1 − B𝑞2|| = max
𝑠,𝑎

|||||
∑
𝑠′∈

ℙ𝑎𝑠, 𝑠′[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾 max
𝑎′∈

𝑞1(𝑠, 𝑎′) − 𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑞2(𝑠, 𝑎′)]
|||||

= max
𝑠,𝑎

𝛾
|||||
∑
𝑠′∈

ℙ𝑎(𝑠, 𝑠′)[max
𝑎′∈

𝑞1(𝑠, 𝑎′) − max
𝑎′∈

𝑞2(𝑠, 𝑎′)]
|||||

≤ max
𝑠,𝑎

𝛾 ∑
𝑠′∈

ℙ(𝑠, 𝑠′)
||||
max
𝑎′∈

𝑞1(𝑠, 𝑎′) − max
𝑎′∈

𝑞2(𝑠, 𝑎′)
||||

≤ max
𝑠,𝑎

𝛾 ∑
𝑠′∈

ℙ𝑎(𝑠, 𝑠′) max
𝑧,𝑎′

|𝑞1(𝑧, 𝑎′) − 𝑞2(𝑧, 𝑎′)|

= max
𝑠,𝑎

𝛾 ∑
𝑠′∈

ℙ𝑎(𝑠, 𝑠′)||𝑞1 − 𝑞2||∞

= 𝛾 ||𝑞1 − 𝑞2||∞.

He also introduces a theorem, that was proven by Jaakola et al. [22].

Theorem A.2 (Convergence of random iterative process.). The random iterative process {Δ𝑡}
defined as:

Δ𝑡+1(𝑥) = (1 − 𝛼𝑡 (𝑥))Δ𝑡 (𝑥) + 𝛼𝑡 (𝑥)𝐹𝑡 (𝑥)

converges to zero with probability 1, under the following assumptions:

Learning a Fair Policy for the Influence Maximization Problem 65

APPENDIX A. CONVERGENCE OF 𝑄-VALUES

1. The state space is finite;

2. 0 ≤ 𝛼𝑡 ≤ 1,∑𝑡 𝛼𝑡 (𝑥) = ∞ and∑𝑡 𝛼2
𝑡 (𝑥) < ∞;

3. ||𝔼[𝐹𝑡 (𝑥)|𝑡]||𝑊 ≤ 𝛾 ||Δ𝑡 ||𝑊 , with 𝛾 < 1;

4. var[𝐹𝑡 (𝑥)|𝑡] ≤ 𝐶(1 + ||Δ𝑡 ||2𝑊), for 𝐶 > 0.

Where  = {Δ𝑡 , Δ𝑡−1, … , 𝐹𝑡−1, … , 𝛼𝑡−1, … , 𝛽𝑡−1, … } stands for the past at step 𝑡 . The notation || ⋅ ||𝑊 refers

to some weighted maximum norm.

Proof. See Jaakola et al. [22].

Now, we can proof Theorem 3.1 as follows. The update-rule is given by:

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) ← (1 − 𝛼)𝑄𝑡 (𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾 ⋅ max
𝑎𝑡∈𝐴

𝑄(𝑠𝑡+1, 𝑎𝑡)) .

If we substract 𝑄∗(𝑠𝑡 , 𝑎𝑡) from both sides and let Δ𝑡 (𝑠, 𝑎) = 𝑄𝑡 (𝑠, 𝑎) − 𝑄∗
𝑡 (𝑠, 𝑎), we get:

Δ𝑡 (𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼)Δ𝑡 (𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾 max
𝑎′∈

𝑄𝑡 (𝑠𝑡+1, 𝑎′) − 𝑄∗(𝑠𝑡 , 𝑎𝑡)].

We can write:

𝐹𝑡 (𝑠, 𝑎) = 𝑟(𝑠, 𝑎, 𝑋 (𝑠, 𝑎)) + 𝛾 max
𝑎′∈

𝑄𝑡 (𝑋 (𝑠, 𝑎), 𝑏) − 𝑄∗(𝑠, 𝑎), (A.3)

where 𝑋(𝑠, 𝑎) is a random sample obtained from the Markov chain ( , ℙ𝑎), we have

𝔼[𝐹𝑡 (𝑠, 𝑎)|𝑡] = ∑
𝑠′∈

ℙ𝑎(𝑠, 𝑠′)[𝑟(𝑠, 𝑎, 𝑠′) + 𝛾𝑎′∈𝑄𝑡 (𝑠′, 𝑎′) − 𝑄∗(𝑠, 𝑎)]

= (B𝑄𝑡)(𝑠, 𝑎) − 𝑄∗(𝑠, 𝑎).

Note that 𝑄∗ = B𝑄∗
, so we get:

𝔼[𝐹𝑡 (𝑠, 𝑎)|𝑡] = (B𝑄𝑡)(𝑠, 𝑎) − (B𝑄∗)(𝑠, 𝑎)

From Equation A.2 it directly follows that:

||𝔼[𝐹𝑡 (𝑠, 𝑎)|𝑡]||∞ ≤ 𝛾 ||𝑄𝑡 − 𝑄∗||∞ = 𝛾 ||Δ𝑡 ||∞.

Lastly, we have

var[𝐹𝑡 (𝑥)|𝑡] = 𝔼
[(

𝑟(𝑠, 𝑎, 𝑋 (𝑠, 𝑎)) + 𝛾 max
𝑎′∈

𝑄𝑡 (𝑋 (𝑠, 𝑎), 𝑎′) − 𝑄∗(𝑠, 𝑎) − (𝐁𝑄𝑡)(𝑠, 𝑎) + 𝑄∗(𝑠, 𝑎))

2

]

= 𝔼
[(

𝑟(𝑠, 𝑎, 𝑋 (𝑠, 𝑎)) + 𝛾 max
𝑎′∈

𝑄𝑡 (𝑋 (𝑠, 𝑎), 𝑎′) − (𝐁𝑄𝑡)(𝑠, 𝑎))

2

]

= var [𝑟(𝑠, 𝑎, 𝑋 (𝑠, 𝑎)) + 𝛾 max
𝑎′∈

𝑄𝑡 (𝑋 (𝑠, 𝑎), 𝑎′)|𝑡]

which, due to the fact that the reward 𝑟 is bounded, clearly satisfies

var[𝐹𝑡 (𝑥)|𝑡] ≤ 𝐶(1 + ||Δ𝑡 ||2𝑊) (A.4)

for some constant 𝐶 . Then, by Theorem A.2, Δ𝑡 converges to 0 with probability 1, i.e., 𝑄𝑡 converges

to the optimal 𝑄∗
with probability 1.

66 Learning a Fair Policy for the Influence Maximization Problem

Appendix B

Detailed results

This appendix contains the detailed results for the experiments in Chapter 5. In Chapter 5, we

average over a number of test graphs, here we present the results for each graph individually in

tabular form.

I CELF Parity 𝜙 = 0 𝜙 = 0.25 𝜙 = 0.5 𝜙 = 0.75 𝜙 = 1
0 0.26 0.25 0.26 0.22 0.27 0.24 0.26 0.25 0.26 0.21 0.24 0.24 0.24 0.21

1 0.25 0.15 0.23 0.19 0.25 0.14 0.22 0.21 0.25 0.24 0.24 0.22 0.26 0.22

2 0.26 0.18 0.26 0.25 0.26 0.15 0.25 0.20 0.25 0.25 0.26 0.25 0.27 0.25

3 0.23 0.17 0.23 0.22 0.23 0.17 0.23 0.19 0.24 0.20 0.23 0.22 0.24 0.22

4 0.25 0.24 0.24 0.22 0.26 0.26 0.26 0.25 0.25 0.23 0.25 0.24 0.24 0.23

5 0.25 0.21 0.24 0.22 0.25 0.25 0.25 0.23 0.25 0.21 0.23 0.21 0.25 0.25

6 0.25 0.24 0.24 0.23 0.24 0.23 0.25 0.24 0.24 0.21 0.24 0.21 0.23 0.21

7 0.26 0.22 0.24 0.21 0.25 0.15 0.25 0.21 0.25 0.15 0.25 0.25 0.25 0.24

8 0.25 0.24 0.25 0.24 0.25 0.20 0.24 0.19 0.25 0.16 0.25 0.24 0.26 0.25

9 0.25 0.20 0.23 0.21 0.25 0.25 0.25 0.22 0.24 0.19 0.24 0.22 0.25 0.25

Table B.1: Detailed results in tabular form for BA100 of Figure 5.2. For every model/algorithm, the

first column contains the total outreach and the second column the maxmin fairness.

Learning a Fair Policy for the Influence Maximization Problem 67

APPENDIX B. DETAILED RESULTS

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.18 0.16 0.18 0.14 0.18 0.18 0.19 0.16 0.18 0.18

1 0.20 0.16 0.19 0.14 0.19 0.18 0.19 0.13 0.19 0.18

2 0.19 0.14 0.19 0.14 0.19 0.18 0.19 0.16 0.20 0.19

3 0.19 0.13 0.19 0.14 0.18 0.18 0.18 0.16 0.19 0.19

4 0.19 0.14 0.19 0.11 0.20 0.16 0.19 0.14 0.19 0.15

5 0.20 0.17 0.19 0.14 0.19 0.19 0.19 0.17 0.19 0.19

6 0.19 0.16 0.18 0.12 0.18 0.17 0.19 0.17 0.19 0.15

7 0.19 0.17 0.18 0.16 0.18 0.18 0.19 0.17 0.19 0.18

8 0.19 0.14 0.19 0.14 0.19 0.19 0.20 0.15 0.19 0.17

9 0.19 0.15 0.18 0.12 0.18 0.16 0.19 0.15 0.19 0.18

Table B.2: Detailed results in tabular form for BA200 of Figure 5.3 (a). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.18 0.11 0.17 0.11 0.18 0.14 0.17 0.11 0.17 0.17

1 0.19 0.15 0.18 0.16 0.18 0.18 0.18 0.13 0.19 0.18

2 0.18 0.13 0.17 0.11 0.17 0.16 0.18 0.11 0.17 0.17

3 0.18 0.15 0.17 0.14 0.17 0.17 0.16 0.14 0.18 0.18

4 0.18 0.12 0.18 0.14 0.18 0.17 0.17 0.12 0.19 0.18

5 0.19 0.15 0.18 0.14 0.19 0.17 0.18 0.15 0.18 0.17

6 0.19 0.13 0.19 0.13 0.18 0.15 0.17 0.12 0.18 0.18

7 0.18 0.16 0.18 0.14 0.18 0.15 0.16 0.11 0.18 0.17

8 0.19 0.14 0.19 0.14 0.19 0.15 0.19 0.13 0.19 0.18

9 0.19 0.16 0.19 0.16 0.18 0.18 0.18 0.12 0.17 0.17

Table B.3: Detailed results in tabular form for BA300 of Figure 5.3 (b). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.19 0.15 0.18 0.13 0.19 0.19 0.19 0.19 0.19 0.17

1 0.19 0.17 0.18 0.17 0.18 0.18 0.18 0.18 0.18 0.16

2 0.18 0.16 0.18 0.16 0.18 0.18 0.19 0.16 0.18 0.17

3 0.19 0.16 0.19 0.16 0.19 0.18 0.20 0.16 0.19 0.19

4 0.18 0.13 0.18 0.13 0.18 0.17 0.18 0.14 0.19 0.16

5 0.18 0.17 0.18 0.18 0.18 0.17 0.18 0.15 0.18 0.17

6 0.18 0.15 0.19 0.14 0.19 0.17 0.20 0.16 0.19 0.19

7 0.19 0.18 0.18 0.16 0.18 0.18 0.19 0.18 0.19 0.19

8 0.18 0.15 0.18 0.14 0.17 0.17 0.18 0.15 0.19 0.18

9 0.19 0.18 0.18 0.16 0.18 0.18 0.18 0.17 0.17 0.15

Table B.4: Detailed results in tabular form for BA400 of Figure 5.3 (c). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

68 Learning a Fair Policy for the Influence Maximization Problem

APPENDIX B. DETAILED RESULTS

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.19 0.16 0.18 0.14 0.18 0.17 0.19 0.16 0.20 0.17

1 0.19 0.17 0.19 0.16 0.19 0.19 0.19 0.16 0.20 0.20

2 0.19 0.16 0.18 0.15 0.19 0.17 0.18 0.17 0.19 0.19

3 0.19 0.19 0.18 0.16 0.19 0.19 0.18 0.18 0.19 0.18

4 0.19 0.15 0.19 0.15 0.18 0.17 0.19 0.16 0.19 0.18

5 0.19 0.13 0.19 0.13 0.19 0.17 0.19 0.17 0.20 0.18

6 0.20 0.16 0.20 0.16 0.19 0.17 0.19 0.16 0.20 0.20

7 0.19 0.16 0.19 0.14 0.19 0.18 0.19 0.16 0.19 0.19

8 0.19 0.17 0.18 0.15 0.18 0.18 0.18 0.16 0.20 0.19

9 0.19 0.16 0.19 0.15 0.18 0.18 0.19 0.15 0.19 0.17

Table B.5: Detailed results in tabular form for BA500 of Figure 5.3 (d). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.21 0.19 0.21 0.17 0.21 0.18 0.21 0.19 0.19 0.18

1 0.22 0.21 0.21 0.20 0.22 0.21 0.21 0.20 0.22 0.20

2 0.21 0.18 0.21 0.18 0.20 0.19 0.21 0.19 0.22 0.21

3 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.19 0.19 0.18

4 0.20 0.19 0.20 0.18 0.19 0.19 0.21 0.21 0.20 0.20

5 0.21 0.19 0.19 0.19 0.19 0.19 0.20 0.19 0.20 0.20

6 0.21 0.19 0.21 0.19 0.21 0.19 0.21 0.18 0.20 0.20

7 0.21 0.20 0.21 0.19 0.20 0.19 0.20 0.15 0.19 0.19

8 0.21 0.21 0.20 0.20 0.20 0.19 0.22 0.22 0.22 0.20

9 0.21 0.16 0.20 0.16 0.20 0.18 0.21 0.17 0.20 0.18

Table B.6: Detailed results in tabular form for dBA200 of Figure 5.7 (a). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.07 0.06 0.07 0.05 0.07 0.06 0.07 0.06 0.07 0.06

1 0.07 0.07 0.06 0.05 0.06 0.06 0.07 0.06 0.07 0.07

2 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06

3 0.07 0.06 0.07 0.05 0.07 0.06 0.07 0.06 0.07 0.06

Table B.7: Detailed results in tabular form for obesity of Figure 5.7 (b). For every model/algorithm,

the first column contains the total outreach and the second column the maxmin fairness.

Learning a Fair Policy for the Influence Maximization Problem 69

APPENDIX B. DETAILED RESULTS

I CELF Agnostic Parity 𝜙 = 0 𝜙 = 1
0 0.06 0.05 0.05 0.03 0.06 0.06 0.06 0.04 0.06 0.06

1 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.02 0.05 0.05

2 0.06 0.04 0.06 0.04 0.06 0.05 0.06 0.04 0.06 0.06

3 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

4 0.05 0.03 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.04

5 0.06 0.03 0.06 0.04 0.06 0.05 0.06 0.05 0.06 0.06

6 0.06 0.05 0.05 0.03 0.05 0.05 0.06 0.03 0.06 0.05

7 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05

8 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

9 0.06 0.05 0.06 0.04 0.06 0.05 0.06 0.05 0.06 0.05

Table B.8: Detailed results in tabular form for LFR250 of Figure 5.6. For every model/algorithm, the

first column contains the total outreach and the second column the maxmin fairness.

70 Learning a Fair Policy for the Influence Maximization Problem

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	Research problem and questions
	Research Questions
	Motivation

	Potential use cases
	Contributions
	Outline

	Influence Maximization
	Definitions and properties
	Diffusion models
	Independent Cascade Model
	Linear Threshold Model

	Reinforcement Learning
	Introduction and background
	Markov Decision Process
	Policy
	Reward and value function
	Q-learning
	Deep Q-learning
	Neural networks
	Training a Neural Network
	Estimating Q-function with a neural network
	Deep Q-learning with Experience Replay

	Example

	Proposed Method: DQ4FairIM
	MDP formulation
	Accounting for fairness
	Node and graph embeddings
	Deep Q-learning: DQ4FairIM
	Training time complexity

	Experiments & Results
	Datasets
	Synthetic network generation
	Existing Datasets
	Experiment setup

	Baseline Methods
	Training for different levels of fairness
	Performance during training
	Performance on unseen graphs

	Increasing Graph Size
	Extending to larger graphs
	Evaluating Q-values
	Training on other graph types

	Conclusions
	Main Contributions
	Potential use cases
	Future work

	Bibliography
	Appendix
	Convergence of Q-values
	Detailed results

