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Abstract

Living in the age of big data, we have an abundance of data available to help us perform complex
tasks such as image recognition, object detection, and autonomous driving. Furthermore, correl-
ations and dependencies between different variables in the data allow us to, for example, make
predictions such as weather forecasts. However, in many applications, it is of greater interest to
investigate how the variables in our data influence each other, for examples, how a prescription
drug influences the well-being of a patient.

This master’s thesis explores this interesting domain of structure learning. Most notably,
we are interested in a time series setting, where measurements across successive time steps are
heavily dependent. In today’s world with an increasing abundance of available data, we want to
understand how the values of one variable influence the future values of another variable, thus
learning the relations between the variables and the structure of our data. For this, we assume that
the structure can be characterized by a graphical model, where we additionally assume acyclicity
of the graphical model to reduce the search space. We are predominantly interested in the high-
dimensional setting, where our time series data consist of multiple dozens of variables.

We propose several methods to learn the structure of time series data, which can be categorized
into three types of approaches: permutation-based, continuous, and iterative. For each type of
approach, we propose several algorithms and provide numerous examples to explain their inner
workings. Furthermore, we will carefully investigate these approaches to highlight and explain their
strengths and weaknesses. We conduct several experiments based on simulations and real-life data
to assess the performance of our methods against the state-of-the-art. Our results indicate that our
methods achieve similar, if not better, performance. Permutation-based approaches seem preferred
for low-dimensional time series, and iterative approaches seem preferred for high-dimensional time
series.
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Chapter 1

Introduction

Living in the age of big data, we have an abundance of data available to help us perform complex
tasks such as image recognition, object detection, and autonomous driving. These enormous
amounts of data are also connected. Correlations and dependencies between different variables in
the data allow us, for example, to make predictions such as weather forecasts. However, in many
applications, it is of greater interest to investigate how the variables in our data influence each
other. This is exactly what this master’s thesis aims to investigate. In this master’s thesis, we
will be exploring the interesting domain of structure learning. In today’s world with an increasing
abundance of available data, we wish to understand how the variables in our data influence each
other, thereby learning the relations between the variables and the structure in our data.

Furthermore, the learned structure of our collected data must be simple to visualize. The goal
of structure learning is to gain a deeper understanding, which is only possible when the structure
of the data can be easily visualized. These structures must be easy to interpret, for else they have
no added value. For this reason, we will focus on graphical models. A graphical model represents
structure by means of a graph encoding relations between variables. It is a statistical model that
explains how the data is generated, thereby also taking into account the relations and structure of
the data. Such a graphical model can easily be parameterized by a graph or network of the data.
In such a way, the relations between variables in the data are clearly visualized.

Running Example. Let us consider the classical “sprinkler” example from Pearl [55] to explain
the notion of structure learning and how we can represent the learned structure as a network.
We will use this running example to explain numerous concepts regarding structure learning
throughout this thesis. In this sprinkler example, we have collected data regarding the slipperiness
of our pavement. We have simultaneously measured the following five variables:

• X1: The seasonality at the moment.

• X2: Whether the sprinkler installation is turned on.

• X3: Whether it rains.

• X4: How wet the pavement is.

• X5: How slippery the pavement is.

The objective is to learn the structure between these five variables. We want to gain a deeper
understanding of how the variables influence each other. This allows us to answer questions such
as “How will the seasonality affect the slipperiness of my pavement?” and “Does the seasonality
influence the rainfall?”

In this scenario, we can use our domain knowledge to derive the relationships between these
variables. In general, we know that the season influences whether the sprinkler installation is
turned on; the sprinklers tend to be used more often in the summer than in the winter. We can
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capture this directed relationship by using the notation X1 → X2. Furthermore, we know that it
rains more often in the autumn than in the summer, and therefore we expect the seasonality to
also influence the rainfall (X1 → X3). Note that both these relationships are directed; turning on
the sprinklers or having a rainy day will not influence which season we are currently in. In turn,
we know that when the sprinklers are on or when it rains, then the pavement will become wet
(X2 → X4 and X3 → X4), which in turn makes the pavement slippery (X4 → X5).

We have learned the structure of these five variables Xi using domain knowledge. We can
visualize these relations using nodes for the variables and arcs between these nodes to represent
the directed relationships. This results in a graphical network, which has been visualized in Figure
1.1.

Figure 1.1: The graphical model corresponding to the sprinkler example, taken from [55].

Note that this graphical network only visualizes the direct relationships between variables. We
know that the seasonality will affect the wetness of the pavement. However, this relationship is
indirect through the sprinkler and the rainfall.

Unlike the example sketched above, we will not assume any domain knowledge throughout this
thesis. Instead of domain knowledge, we only have observational data at our disposal to infer such
a structure. For the sprinkler example, observational data could be collected twice a day for a
full year, yielding 730 measurement tuples (X1, X2, X3, X4, X5)k, k = 1, . . . , 730. The objective
would then be to recover the structure of the graphical model shown in Figure 1.1 using these
measurements.

Note that using only observational data creates numerous difficulties, such as not having the
right amount of data or not having access to the desired variables. Recalling the sprinkler example,
if we had only collected data during the winter, we probably would not have seen the relationships
regarding the sprinkler variable X3. Furthermore, if we had forgotten to measure a variable such as
the rain variable X2, we would have failed to capture the full structure regarding the slipperiness
of our pavement.

Having sketched the main objective using the sprinkler example, let us consider some applica-
tions where structure learning is important.

Applications. Structure learning is an important concept with many applications, predomin-
antly with regard to complex systems. In a world where systems are becoming ever more complex,
it is important to have a suitable graphical model that captures its behavior. Although domain
knowledge is generally available for man made machines, they can still be so complex that they
defy human intuition. This increased level of complexity arises from having machines with an
almost uncountable number of different components. Furthermore, all these components interact
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with many other components, and each component will respond differently to such an interaction.
Therefore, it is difficult to determine the relationships between all these components using only
domain knowledge. If we were able to infer the structure of all these components using observa-
tional data, we would gain a deeper understanding of how the machine works, how it interacts,
and most importantly how to keep it operational.

A group of systems so complex they defy our intuition are gene regulatory systems. Modeling
such systems allows us to understand which genes are expressed in which part of the organism
and to which extent. Most of these gene regulatory systems involve many interlocking positive
and negative feedback loops, making these systems so complex that they defy human intuition.
Furthermore, domain knowledge in such gene regulatory systems is generally not available, yet
observational data is quite easily obtainable. More information on such complex networks in gene
regulatory systems can be found in [37]. Having a graphical model that represents the structure
of such a complex regulatory system can provide crucial information to biologists or pharmacists.
Biologists can better understand what, for example, causes an illness and consequently improve
the medical care a patient receives. Pharmacists in turn can create more appropriate drugs that
improve the medical treatment a patient receives.

In addition to complex biological systems, even man-made systems can become so complex
that they will defy human intuition. Based solely on human knowledge, it is not guaranteed that
a man-made complex system will perfectly adhere to this intended structure. Furthermore, these
man-made systems have become so complex that a single person cannot comprehend their complete
behavior. Examples of such complex machines are abundant throughout the tech industry, such as
the EUV lithography systems manufactured by ASML [32] and modern cars such as Tesla models.
With an abundance of sensors and components in such a Tesla car, learning how components of
the autopilot interact in dangerous scenarios is of vital importance for a company such as Tesla.
This structure also provides insight into how the Tesla autopilot makes decisions based on the
information it receives.

Therefore, we see that there is an opportunity for data-driven approaches to construct models
for these systems. The approaches will be particularly effective in the era of big data, where data
through measurements in genetic regulatory systems or through sensors in man-made machines
are widely available.

Motivation. Having seen some interesting applications for structure learning, let us now con-
sider the benefits of having learned the structure of such a complex system. Consider a large and
complex machine with many interacting components. When the machine breaks down, it might be
so complex that finding the problem requires disassembling the machine completely, which is an
expensive and time-consuming process. The placement of sensors in machines can help diagnose
which components of the machine exhibit anomalous behavior. However, the fact that a sensor
records unexpected values does not imply that the root cause is anywhere near this sensor. This
is where structure learning comes into play. Suppose that we have analyzed the sensors of the
working machine for a long enough period. Learning the structure of the interacting components
can then provide crucial information. First, whenever the machine breaks, we can look at which
sensors produce anomalous data. Indeed, the most logical approach is still to first inspect the
components around these sensors. However, if the problem is not located there, we can use our
learned structure to propose other components that are likely to be the root cause of the problem.
Therefore, structure learning can be useful for automated root cause analysis in complex systems.

As an example, suppose that we have a machine consisting of seven components, each ac-
companied by a sensor labeled a through g. Furthermore, suppose we have learned the structure
shown in Figure 1.2. The machine malfunctions and needs to be shut down and based on sensor
data we have seen that variables c, g, and j produce anomalous data, indicating that something
might have gone wrong there.

We could completely break down the machine and investigate all the components where the
sensors have recorded unusual data. But what if no problem is found near any of these sensors,
what should be the next step? Should we check all seven components and in what order? Here
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Figure 1.2: Toy example of seven variables a through g with their corresponding structure. The
nodes representing the variables c, f , and g are colored red, indicating that their sensors record
abnormal behavior.

we can take advantage of the learned structure shown in Figure 1.2. Based on the dependencies
between the components, it is reasonable to assume that the malfunction occurred in component
c and that this caused the anomalous data in the subsequent components. The learned structure
allows for a concrete pinpoint of the likely root cause of the malfunction.

Furthermore, should there still be a malfunction, we can easily find the next likely component
by following the structure of the machine. We can go “up” the chain of dependencies by verifying
components a and d, or we can go down “down” the chain of dependencies by verifying the
components f and g. Based on the structure, we can also deduce that it is unlikely that component
e was the actual root cause; something we could not deduce without a learned structure. Therefore,
we see that this structure allows us to perform a simple yet sensible root cause analysis of our
broken machine. More complex methods exist to locate root causes, but many rely on learning
the network or structure of the complex system beforehand [15, 41, 54].

A second advantage of using structure learning for complex machines is that we can verify
whether in theory non-interacting components indeed have no interaction in practice. If we can
physically decompose the machine into multiple sections, each with its own purpose, the learned
structure should adhere to this physical structure as well. If this is not the case, then we know
that something went wrong in either the design or the manufacturing process. Hence, structure
learning can be a useful tool for system validation as well.

True causality versus predictive causality. Throughout this thesis, we will make a clear
distinction between predictive causal relations and regular causal relations. True causality, as for
example introduced by the framework of Pearl [55], is impossible to detect from observational
data alone. According to the framework of Pearl, causality can be discovered using interventions.
Suppose that X causes Y . This means that if we intervene on Y , for example by fixing its value,
then the value of X does not change. However, if we intervene on X, then the value of Y will
change. Using interventions, we can discover that changing the value of X will change the value
of Y , but changing the value of Y will not change the value of X. Under this interventionist
position of Pearl, we say that X has a causal influence on Y . However, not all agree on this notion
of causality [10]. In fact, these disagreements remain to this day, and the accompanying theory
remains fiercely debated, as mentioned in [55].

Therefore, we have decided to steer away from the notion of true causality, and primarily focus
on predictive causality. Instead of looking for relations where X causes Y , we are satisfied when
we have found relations where X is useful in predicting the future of Y . This notion is similar to
Granger causality, where we test whether one time series X is useful in forecasting another time
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series Y [29]. More formally, Granger causality means that the past of a time series X provides a
significant amount of additional information to predict the time series Y . The notion of Granger
causality was introduced in 1969 and continued on the work of Wiener [84] and remains a common
notion of causality to this day. Using the notion of usefulness in prediction allows us to safely
steer away from the philosophical questions and complex notation that accompany the field of
causality.

To illustrate this example, consider a simple graphical model based on two variables, the
temperature T and the altitude Y . Based on our understanding of geography and physics, we know
that the direction of true causation should be Y → T . If we ascend a mountain, the temperature
T will decrease as the atmosphere becomes thinner and thinner. On the other hand, if the
temperature T increases in the summer, the altitude will not increase, so T 6→ Y . Even in this two-
dimensional example, we see the problems that arise from the notion of “true causation”. In fact, it
is not altitude that causes the temperature to decrease; it is a more complex scientific phenomenon
regarding atmospheric pressure. Therefore, reasoning about true causation is difficult, especially
when not all the important variables are available. Furthermore, purely based on observational
data, how can we learn the true causal direction of the relation between the temperature T and the
altitude Y ? To safely steer away from these questions, we are satisfied when we have discovered
the relation that the altitude Y is useful in predicting the temperature T .

Influence of Time The notion of time is crucial in this thesis. As the title suggests, we are
primarily investigating time series. Sensor data from complex systems, for example, are time
series, as we are recording several measurements over time. Furthermore, the sprinkler example
was also time series data, as we said we would measure the five variables twice a day for a full
year. In these time series data, past values of a variable can provide useful information for the
future. As in the sprinkler example, if it was raining today, we can expect that the sprinklers will
not be turned on soon, as the grass has already been watered. We can also deduce that if the
sprinkler is on today it most likely will not be on tomorrow, as the grass has already been watered.
Therefore, the present value of one node can be useful in predicting the future value of itself or
another node. This notion of time is also helpful in determining the direction of the relationships.
We mentioned that it is difficult to determine the direction of influence between variables purely
based on observational data. However, if there is a time delay between the action and the result,
the direction of the arc is easier to determine. As in the sprinkler example, we know that there is
an arc from the sprinkler to wetness because if we first turn on the sprinkler, then the pavement
will get wet. In this time series setting, all directions of the arcs will go from the past to the
present; as we know, the present cannot influence the past.

Cycles Furthermore, we exclude the existence of cycles or feedback loops in the graphical model
for several reasons. Firstly, we hope to recover a structure that is simple to understand. Cycles in a
structure make them more difficult to understand as it becomes more difficult to see which variables
influence which variables. Furthermore, acyclic structures are less cluttered with overlapping arcs,
making the visualization easier to interpret. Additionally, by enforcing the graph to be acyclic, the
total number of possible structures shrinks dramatically. For instance, if we require acyclicity and
discover the arc from seasonality (X1) to rainfall (X2), we can immediately disregard all structures
that contain an arc from X2 to X1, thereby greatly reducing the search space. Especially when
there are tens or hundreds of variables, it is crucial to have a structure that is simple to interpret,
and acyclicity enhances the interpretability of such a structure.

Second, even when such a cycle would occur in the predictive causal network, we can still be
interested in the most suitable direction. For example, the value of gold might influence the value
of silver and the other way around, so such cycles may appear in reality. Nevertheless, when we
exclude the existence of a cycle between two variables, we can detect the direction corresponding
to the strongest relationship, which will also yield interesting insights.

Lastly, the existence of cycles means that there are infinitely long paths in the structure, which
greatly complicate inference problems in these networks. For example, the joint distribution that
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adheres to this cyclic structure may not exist. This is a known technical issue with such graphical
models, which will be discussed in further detail in Chapter 2. Having no joint distribution
adhering to such a cyclic structure is just one of the several problems, which are mentioned in
more detail in [78].

Research Objective The research objective throughout this thesis is to develop data-driven
approaches that learn the structure of complex systems given some set of observational data. Such
a structure is often displayed as a predictive causal network consisting of nodes and arcs, as in
Figure 1.1. These arcs represent predictive causal relations rather than true causal relations. We
are satisfied when we have found relations that imply “usefulness in prediction”, rather than true
causality. Our approaches are mainly focused on time series, as the direction of the arcs is more
intuitive to determine. Furthermore, the inferred structure should be free of cycles or feedback
loops, such that if there is a path X → ...→ Y then there is no path Y → ...→ X.

Outline. This thesis is structured as follows. In Chapter 2, we will continue with formalizing
the notion of structure learning with a mathematical framework. Furthermore, we will define
more concretely the exact objective we are trying to achieve. In Chapter 3, we will discuss several
existing methods for structure learning. The chosen methods use varying interesting techniques
to discover the structure of the data and contain state-of-the-art methods that have recently been
developed, as well as more classical approaches. These existing methods range from a variety of
different techniques, and hence all have their niche in the current state-of-the-art literature. In the
subsequent three chapters, we will introduce methods that we have developed and were inspired
by the methods discussed in Chapter 3. Chapter 4 will introduce methods based on explicitly
searching for a suitable structure of the variables. Chapter 5 will developed methods that rely
on continuous optimization approaches under acyclicity constraints. In Chapter 6, we will discuss
methods that iteratively construct the structure, arc by arc. The methods covered in these three
chapters will be evaluated and compared on both simulated and real-life data in Chapter 7. Lastly,
we conclude the thesis by summarizing our contributions, discussing the limitations of our work,
and providing directions for future work in Chapter 8. A schematic overview of the upcoming
chapters is given in Figure 1.3.

Chapter 3:
Related Work

Chapter 5:
Continuous
approaches

Chapter 2: 
Problem Setting

Chapter 6:
Iterative

approaches

Chapter 4:
Permutation

based 
approaches

Chapter 7:
Evaluation

Chapter 8:
Conclusion

Figure 1.3: Schematic overview of the upcoming chapters in this thesis.
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Chapter 2

Problem Setting

In Chapter 1, we have introduced the concepts and intuition behind structure learning. Having
provided some motivating examples and applications, let us now formalize our research objective
in greater detail. To recap where we left off, the goal is to learn the structure of an observational
dataset and recover directed relationships between the variables in our dataset. Throughout this
thesis, we will define our given dataset as a data matrix of the form

X ∈ RT×p. (2.1)

This dataset contains T measurements of our p variables X1, . . . , Xp. Let X·,j , j = 1, . . . , p repres-
ent the jth column of X, corresponding to the T measurements of the jth variable. Analogously,
Xt,· represents the tth row of X, corresponding to the p measurements of the variables at time
step t, where t = 1, . . . , T .

Given this data matrix X, we now want to learn the structure, which can be captured by the
relationships between the p different variables. From a probabilistic perspective, we model X as
a realization of a random matrix with joint distribution

P(X) = P (X1,1 = x1,1, . . . , X1,p = x1,p, . . . XT,1 = xT,1, . . . , XT,p = xT,p) , (2.2)

where xij represents the ith measurement of the jth variable. Learning the structure then corres-
ponds to recovering the joint distribution P(X) using solely the observed data matrix X.

However, this joint probability does not directly translate to a structure or network regarding
our p variables. For this, we require some modeling assumptions, for example, that our data has
been generated by a graphical model. Let us first consider a graphical model that does not take
influences between different time steps into account.

Time-independent graphical models. Disregarding the notion of time first, a common as-
sumption is to factorize the probability distribution. If we assume that the T measurements of the
p variables are independent, then the joint probability function in Equation 2.2 factorizes nicely
to

P (X) =

T∏
t=1

P (Xt,1, Xt,2, . . . , Xt,p) . (2.3)

As we assume the measurements are independent over time, another conventional assumption is
that the measurements Xt are also identically distributed for all t = 1, . . . T . Therefore, let us
consider P (X1, . . . , Xp), where (X1, . . . , Xp) corresponds to a p-dimensional vector with the time
index t omitted. It is reasonable to assume that the value of any variable Xi does not depend
on all other variables, but merely on a subset of the other variables. For example, the rainfall is
only influenced by the season, not by the sprinkler installation or the wetness of the pavement.
Therefore, let us define the parent set of Xj , abbreviated as Pa (Xj) ⊆ {X1, . . . , Xp} \Xj , as the
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set of variables that influence the value for Xj . The probability distribution as written in Equation
2.3 then factorizes even further to

P (X1, X2, . . . , Xp) =

p∏
j=1

P (Xj |Pa (Xj)) . (2.4)

Such a factorization of time-independent probability distribution P (X1, . . . , Xp) is further clarified
using the sprinkler example in Example 2.1.

Example 2.1 Factorization of the time-independent sprinkler example.

To see a concrete example, let us consider the sprinkler example visualized in Figure 1.1. We
see that the parent set of a node Xj corresponds to all the variables Xi such that there is
an arc from Xi to Xj We have that the probability distribution P (X1, X2, X3, X4, X5) can
be factorized as

P(X1, X2, X3, X4, X5) = P(X1)P(X2|X1)P(X3|X1)P(X4|X2, X3)P(X5|X4). (2.5)

Intuitively, this means that for example, variable X5, representing the slipperiness of the
pavement is independent of all other variables, given X4, representing the wetness of the
pavement.

We see that this assumption of factorizing the joint probability distribution allows for a clear
graphical representation. We can draw a graph G = (V,A), where the p variables are represented
by the nodes V . Furthermore, the dependence relations are given by the set of arcs A = (V × V ),
where there is an arc from node Xi to Xj if and only if Xi is a parent of Xj . This type of graphical
model is called a Bayesian network. Note that the network drawn in Figure 1.1 exactly corresponds
to the graphical model associated with the factorization of Equation 2.5. This factorization also
shows why the exclusion of cycles is natural in these Bayesian networks. If the graphical model
contained cycles, then there would not be such a closed-form solution to the factorized joint
probability distribution as in Equation 2.5. Another important modeling assumption to keep in
mind is that these Bayesian networks do not take into account the notion of time. They represent
instantaneous relationships.

Now that we have explained how a factorization in the general form of Equation 2.4 can be
visualized in a graphical model, we need some more modeling assumptions. One assumption is
that we only need the value of the parents of Xi to model Xi. In addition to the structure, we
need to characterize the conditional distribution of Xi given its parent set Pa (Xi). As the set
of all possible conditional distributions is too broad, a simple yet common model is to assume a
linear relation between Xi and its parent set, yielding a linear graphical model. We will introduce
such a linear graphical model in the next paragraph.

A linear graphical model for Bayesian networks. A common method to model such a
Bayesian network is to assume that the relationship between variables is linear. In other words,
the variable Xj is modeled as a linear combination of its parent set Pa (Xj),

Xj =
∑

Xi∈Pa(Xj)

Xiwij + εj , j = 1, . . . , p. (2.6)

where εj are independent random variables. Here, wij ∈ R represents the weight associated with
the arc Xi → Xj . A notationally more convenient way is to say that wij = 0 if Xi 6∈ Pa (Xj), and
non-zero otherwise. Then, we can also write Equation 2.6 as

Xj =

p∑
i=1

Xiwij + εj = XwTj + εj , j = 1, . . . , p. (2.7)
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where wj = (w1j , w2j , . . . , wpj) represents the row-vector containing these weights. Furthermore,
wTj corresponds to the transpose of wj so that wTj corresponds to a column-vector. As Xj cannot
be a parent of itself, we can already deduce that wjj = 0.

More concisely, we can write Equation 2.7, consisting of p equations, into one vector X as

X = XW + ε, (2.8)

where W =
(
wT1 , w

T
2 , . . . , w

T
p

)
and ε = (ε1, ε2, . . . , εp). Here, wTi again represents the transpose of

the row-vector wi. Note that the diagonal of W contains only zeros, as Xi 6∈ Pa (Xi).
A crucial remark for Equation 2.8 to correctly specify a generative model is to assume that there

are no cyclic dependencies induced by W . For example, if X1 = 0.5X2 + ε1 and X2 = 0.8X1 + ε2,
we cannot generate data according to this model. Therefore, let us briefly deviate to explain the
notion of acyclicity.

Acyclicity. As mentioned in the introduction, we will explicitly enforce our recovered structure
to be acyclic. Enforcing acyclicity greatly reduces the search space of possible structures; if we
know that X1 → X2, we can immediately disregard all structures that also have the relation
X1 ← X2. Furthermore, as we have seen, the generative model for Equation 2.7 does not exist if
the structure is cyclic. Therefore, we see that this notion of acyclicity is crucial.

Luckily, the notion of acyclicity extends quite easily to graphical models. Suppose we have a
graphical model, which is either a time-independent graphical model as given in Equation 2.8 or a
time-dependent graphical model, which will be discussed later on in this chapter. The correspond-
ing coefficient matrix W parameterized this graphical model. The support of our inferred matrix
W , supp(W ) = {(i, j) | wij 6= 0}, corresponds to the adjacency matrix of the graph summarizing
the learned structure. Therefore, requiring the structure to be acyclic is equivalent to enforcing
acyclicity of G(W ), the graph induced by the support of W .

In our setting, a graph is defined to be acyclic if there are no paths Xi → . . . → Xi for any
i = 1, . . . , p, corresponding to a sequence of at least two unique transitions such that we start at
a node Xi and return to the same node Xi. Since this definition for time-series graphical models
is central to our thesis, we have made this statement more explicit in Definition 2.1.

Definition 2.1 Acyclicity, Directed Acyclic Graph with Time-Dependency.

Let W ∈ Rp×p be a real-valued matrix. Furthermore, let G(W ) be the graph induces by
the matrix W , where we draw an arc from variable Xi to variable Xj if and only if wij 6= 0.
We define a cycle of length k to be a sequence of k unique arc transitions such that we both
start and end at the same variable: Xi → . . .→ Xi for some i = 1, . . . , p.

Then, we say that G(W ) is acyclic if and only if there do not exist any cycles of length
greater than one. Therefore, so-called self-loops Xi → Xi are allowed for time-dependent
graphical models. We call such a graph G(W ) a directed acyclic graph or DAG for short.
We will use the name DAGs to refer to the set of all directed acyclic graphs.

Three graphs that further clarify our notion of acyclicity have been given in Example 2.2.

Example 2.2 Two directed acyclic graphs and one directed cyclic graph.

Let us further clarify the notion of acyclicity by looking at the graphical models correspond-
ing to the three adjacency matrices

Wa =

0 1 1
0 0 1
0 0 0

 , Wb =

1 1 1
0 0 1
0 0 0

 , Wc =

0 1 0
0 0 1
1 0 0

 .

We now have chosen weights with a value of 1 for simplicity, but note that we could
have chosen any non-zero value instead of the value 1. The corresponding summary
graphs Ga = G(Wa), Gb = G(Wb), and Gc = G(Wc) have been visualized in Figure 2.1.
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Figure 2.1: Three different graphs Ga, Gb, and Gc on p = 3 vertices.

Let us inspect the graphs and see which ones are acyclic according to Definition 2.1. Ga
consists of three edges X1 → X2, X1 → X3, and X2 → X3. As it does not contain any
cycles, Ga is a DAG. Gb consists of the same edges, but now a self-loop X1 → X1 is added.
Gb is not a DAG in the standard graph theory literature, as it contains a cycle of length 1.
As mentioned before, we allow for cycles of length 1 and therefore, we consider Gb to be a
DAG throughout this thesis. Gc consists of the same edges as Gb, but the edge X1 → X3 is
flipped, resulting in the edge X1 ← X3. Consequently, Gc contains a cycle of length 3 now,
which we do not consider to be a DAG. In conclusion, Ga, Gb ∈ DAGs, and Gc 6∈ DAGs.

Having defined the notion of acyclicity that will be used throughout this thesis, let us return to
defining the linear graphical model for Bayesian networks. Note that if W is acyclic, Equation
2.8, reiterated here as

X = XW + ε, (2.9)

now correctly specifies a generative model. We can first generate the variable without any parents,
after which we can generate the next variable whose parents have already been generated, etc.
Such a generative model is called a linear Structural Equation Model, often shortened as linear
SEM. As this model is mentioned often throughout this thesis, the definition has been further
clarified in Definition 2.2.

Definition 2.2 Linear Structural Equation Model (linear SEM).

Let X ∈ Rp be a real-valued vector containing the values of p variables X1, X2, . . . , Xp. If we
assume that X has been generated according to a linear Structural Equation Model (linear
SEM), then we assume the following generative distribution:

X = XW + ε, (2.10)

where W ∈ Rp×p is the coefficient matrix that represents the linear relationships between
the p variables. Its coefficients wij denote the linear contribution of variable Xi to variable
Xj . Furthermore, the p-dimensional vector ε denotes the error or noise component, which
we assume is a Gaussian random variable with zero mean and covariance matrix Σ,

ε ∼ N (0,Σ) , (2.11)

which is independent of X, that is, ε ⊥⊥ X. As the noise is a Gaussian random variable,
this model is often called a linear Gaussian SEM in the literature. Throughout this thesis,
we will stick to the more concise notation of a linear SEM. For simplicity, we often assume
that Σ = Ip. Note that this linear SEM models instantaneous relationships, so there is no
notion of time. Furthermore, as we cannot have any contribution of a variable Xi to itself,
we fix the diagonal of W to equal zero.

Equations 2.10 and 2.11 together define the linear SEM.
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In literature, this linear SEM is often used to model a Bayesian network. However, as mentioned
before, these linear SEMs are only capable to model instantaneous relationships, meaning they
fail to capture any notion of time. Therefore, let us now change our focus to graphical models to
capture temporal relationships.

Time-dependent graphical models. Taking into account the notion of time, we know that
there will be dependency between the variables across time. Therefore, the joint distribution does
not factorize as nicely as in Equation 2.3. However, we can use the general product rule of joint
distributions to conclude that

P(X) = P (X1,·= x1,·, X2,·= x2,·, . . . XT,·= xT,·)

= P (X1,·= x1,·)P (X2,·= x2,·, . . . , XT,·= xT,·|X1,·= x1,·)

= P (X1,·= x1,·)P (X2,·= x2,·|X1,·= x1,·)P (X3,·= x3,·, . . . , XT,·= xT,·|X2,·= x2,·, X1,·= x1,·)

= P (X1,·= x1,·)

T∏
t=2

P (Xt,·= xt,·|X1,·= x1,·, . . . , Xt−1,·= xt−1,·), (2.12)

where Xt,· represents the p measurements of our p variables at time step t. As stated in Equation
2.12, Xt,· depends on all t− 1 previous time steps. This structure is quite difficult to model, and
therefore we assume all variables Xt,· only depend on the previous time step t − 1. Under this
strict assumption, Equation 2.12 factorizes as

P(X) = P (X1,·= x1,·)

T∏
t=2

P (Xt,·= xt,·|Xt−1,·= xt−1,·). (2.13)

Let us now consider the conditional probability P (Xt,·|Xt−1,·), or equivalently when we again
include subscripts for the p variables, P (Xt,1, . . . , Xt,p|Xt−1,1Xt−1,p). A further assumption is
that the value of Xt,1 does not depend on the previous values of all p variables, but merely a
subset of these p variables. Referring back to the sprinkler example, the amount of rainfall did
not depend on the sprinkler installation or the wetness of the pavement; it was only influenced
by the seasonality. Therefore, we assume that there is only a subset of the p variables Xt−1,·
that influence the value of the variable Xt,i. We again denote this set by the parent set of Xt,i,
or Pa (Xt,i). Then, Equation 2.13 is further simplified by removing the dependency of Xt,i on
variables not in the parent set Pa (Xt,i),

P(Xt,1, Xt,2, . . . Xt,p) =
∏

P(Xt,i|Pa(Xt,i)). (2.14)

As can be seen from Equation 2.13, we assume the parent set only consists of variables from the
previous time step, that is, Pa(Xt,i) ⊆ {Xt−1,1, Xt−1,2, . . . , Xt−1,p}. Note that Xt,i can depend on
its previous measurement Xt−1,i. In fact, the most recent past Xt−1,i can often be very helpful in
predicting Xt,i. We can again visualize this probability distribution by drawing arcs from Xt−1,i
to Xt−1,j if and only if Xt−1,j ∈ Pa (Xt,i). Therefore, the parent sets Pa (Xt,i) for i = 1, . . . p
define the arc set corresponding to the graphical model. Such a factorization has been further
explained with the time-dependent sprinkler example in Example 2.3.

Example 2.3 Factorization of the time-dependent sprinkler example.

To see an example, let us again consider the sprinkler example where the five variables have
been measured over a time. It is reasonable to assume that the previous value Xt,i will
influence the present value Xt,i, for example, if the season variable at Xt−1,1 corresponds
to summer, then that will be very useful in predicting Xt,1, which will most likely also
correspond to summer. Therefore, we know that all five variables will be influenced by their
past, Xt−1 ⊆ Pa(Xt,i) for i = 1, 2, . . . , 5. Furthermore, we will assume that the deduced
relations from Figure 1.1 still apply. Therefore, the factorization for the time series setting
will be similar to Equation 2.5, but now we include the time index and assume the past values
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Xt−1,· = (Xt−1,1, . . . , Xt−1,p) influence the present values Xt,· = (Xt,1, . . . Xt,p). Therefore,
the joint probability can be factorized as

P(Xt,1, Xt,2, Xt,3, Xt,4, Xt,5) =

5∏
i=1

P(Xt,i|Pa(Xt,i))

= P(Xt,1|Xt−1,1)P(Xt,2|Xt−1,1, Xt−1,2)P(Xt,3|Xt−1,1, Xt−1,3)

P(Xt,4|Xt−1,2, Xt−1,3, Xt−1,4)P(Xt,5|Xt−1,4Xt−1,5). (2.15)

Just as with the Bayesian network, an advantage of these model assumptions is that this factoriz-
ation again allows for an intuitive graphical display. Once again, we can visualize the p variables
over time as nodes, and draw arcs Xt−1,i → Xt,j to denote that Xt,j ∈ Pa (Xt−1,i). As these
relations hold for any time index t, we only need to draw the graph corresponding to the time
steps t− 1 and t. The time-dependent window graph for the sprinkler example is shown in Figure
2.2. Alternatively, we can only show the p nodes once and an arc from node Xi to node Xj implies
an arc from Xt−1,i to Xt,j . This summary graph is shown in Figure 2.3.

Xt−1,1 Xt,1

Xt−1,2

Xt−1,3

Xt−1,4

Xt−1,5

Xt,2

Xt,3

Xt,4

Xt,5

Figure 2.2: Time-Dependent graph depicting the
factorized probability distribution in Equation 2.15
from the sprinkler example.

X1

X2 X3

X4

X5

Figure 2.3: Time-Dependent sum-
mary graph depicting the factorized
probability distribution in Equation
2.15 from the sprinkler example.

To fully specify the model requirements, in addition to the structure given by the factorization
from Equation 2.14, we need a characterization of the conditional distribution of Xi given its
parent set Pa (Xi). As the set of all possible conditional distributions is too broad, a simple yet
common model is to assume a linear relation between Xi and its time-lagged parent set, yielding
a linear graphical model. We will introduce such a linear graphical model in the next paragraph.

A linear generative model with time dependencies. We have now translated the goal of
structure learning into learning the unknown joint distribution P (X). To allow a clear graphical
representation of the joint distribution, we assume that this joint distribution can be factorized,
such that each variable Xt,i only depended on its parent set Pa (Xt,i). This allows a clear graphical
model, where there is an arc from node Xi to Xj in the summary graph if and only if Xi ∈ Pa (Xj).
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Now, let us assume the conditional distribution of Xi given its parent set Pa (Xi) is linear with
respect to the parent set. This simple yet common model can be written as

Xt,j =
∑

Xt−1,i∈Pa(Xt,j)

Xt−1,iwij + εj , (2.16)

where εj represent independent random variables. Furthermore, wij ∈ R represents the linear
weight associated with the arc Xt−1,i → Xt,j .

A more convenient notation is to say that wij = 0 if Xt−1,i 6∈ Pa (Xt,j). Then, we can also
write

Xt,j =

p∑
i=1

Xt−1,iwij + εt,j = Xt−1,·w
T
j + εt,j , (2.17)

where wj represents the row vector containing the weights (w1j , w2j , . . . , wpj). Again, we assume
that εt,j are all independent random variables. Instead of looking at just one variable Xt,j , we can
also combine all p variables into one vector Xt and the corresponding generative model will be

Xt,· = Xt−1,·W + εt, (2.18)

where W =
(
wT1 , w

T
2 , . . . , w

T
p

)
and εt = (εt,1, εt,2, . . . , εt,p).

We have decomposed the learning of the structure of the joint distribution into the learning
of the weights in this coefficient matrix W . By construction, these coefficients wij correspond to
the weight associated with the relationship Xt−1,i → Xt,j . If wij = 0, then we say that there is
no such arc, or equivalently, Xt−1,i 6∈ Pa (Xt,j).

The generative model described in Equation 2.18 corresponds to a so-called Vector AutoRe-
gression model with a lag of order one, short-hand a VAR(1) model. As this type of model is
central to our thesis, we will further clarify this model in Definition 2.3.

Definition 2.3 Vector AutoRegression Model of order 1 (VAR(1)).

Let p be the number of variables, and T be the number of time steps. If we assume that
X ∈ RT×p has been generated according to a VAR (1) model, then this means that we
assume the following generative distribution:

Xt,· = Xt−1,·W + εt, (2.19)

for t = 2, . . . , T . Furthermore, W ∈ Rp×p is the coefficient matrix that represents the linear
relationships between the p variables. In fact, wij denotes the linear contribution of variable
Xt−1,i to variable Xt,j .

Furthermore, we assume that the initial value for X1 is either given or follows the sta-
tionary distribution of Xt, such that E [X1] = E [Xt] and V (X1) = V (Xt). Additionally,
we assume that the noise or error component εt is normally distributed with mean zero and
some covariance matrix Σ ∈ Rp×p,

εt ∼ N (0,Σ) , (2.20)

for t = 2, . . . , T . Furthermore, we assume that the noise components are independent of
each other, εt ⊥⊥ εt′ for t 6= t′. Note that εt and X are dependent, as εt is a component of
Xt′,· for t′ ≥ t. Generally, we assume that Σ = Ip.

Equations 2.19 and 2.20, together with an initial value X1 and the assumptions on εt,
define the VAR(1) model.

An important note is that for the VAR(1) model as defined in Definition 2.3, acyclicity of the
structure induced by W is not required for the generative model to be well-defined. Nevertheless,
we do require the structure induced by W to be acyclic for several reasons. Arguably, the most
important reason is that enforcing acyclicity greatly reduces the set of possible structures, thus
reducing the search space.
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Summarizing remarks. To summarize, so far we have recast the structure learning problem to
a density estimation problem, where we wish to recover the joint probability distribution P (X). By
making certain assumptions about the factorization of the data, we have either a time-independent
graphical model or a time-dependent graphical model. Additionally, by assuming a linear model
with Gaussian noise, we derive the time-independent linear SEM from Definition 2.2 and the time-
dependent VAR(1) model from Definition 2.3, respectively. Both linear generative models can be
parameterized by a single coefficient matrix W . We require the structure to be acyclic, meaning
that the graph induced by W must be acyclic as per Definition 2.1.

A logical next step would be to estimate a suitable matrix W for either one of the graphical
models, while ensuring the structure induced by W is acyclic as per Definition 2.1. For this,
there are several interesting approaches, each having a different perspective. In Chapter 3, we will
explain the concepts with accompanying examples, as well as several algorithms to learn acyclic
structures from either time-independent data or time-dependent data.
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Chapter 3

Related Work

In Chapter 1, we have introduced the notion of structure learning on a conceptual level. We have
discussed several applications and motivating examples to underline the usefulness of learning a
structure associated with the model to have given rise to the data matrix X. In Chapter 2, the
objective of this thesis has been made more explicit with corresponding mathematical notation.
We are interested in learning the joint probability of the data matrix X, casting the problem to a
density estimation task. We have made several assumptions on the factorization of the joint prob-
ability of X, most notably that each variable Xi only depends on its parent set Pa (Xi). Methods
to learn such a suitable factorization can be decomposed into three main categories.

The first main category was also the first method used for structure learning. This type of
approach was first proposed by Verma and Pearl in [56] where edge constraints were derived using
conditional independence tests on multiple subsets of variables, together with their developed
framework of causal inference. These edge constraints together formed a skeleton of undirected
edges, from which directed relationships could be deduced. We categorize these approaches as
constraint-based approaches, which will be discussed in greater detail in Section 3.1.

The second approach to learning a directed acyclic structure is by exploiting asymmetries in the
noise. Without any additional assumptions on the data, determining the direction of instantaneous
relations between variables is impossible [80]. In other words, we can detect that an arc exists
in either direction, yet it is impossible to determine whether Xi → Xj or Xi ← Xj . When we
make some assumptions about the stochastic relation between Xi and Xj , we can determine the
directionality of the arc. As these methods rely on assumptions about the distribution of the
noise attributed to the variables, this approach is called noise-based. A deeper explanation of the
principles behind noise-based approaches will be discussed in Section 3.2.

The third category is named score-based approaches, which has seen the most developments
in the past years. Score-based approaches assess the validity of a given structure G by assigning,
as the name suggests, a score to each structure based on how well G fits the data X. A scoring
function S(X,G) determines this score. Consequently, the optimal structure is the structure G∗
that maximizes the scoring function S(X,G) while remaining acyclic,

G∗ = arg max
structures G

S(X,G) such that G ∈ DAGs. (3.1)

Unfortunately, maximizing such a score function over the set of directed acyclic graphs is NP-hard
for most interesting scoring functions [13]. Therefore, we cannot expect to find G∗ in polyno-
mial time. Nevertheless, researchers have developed several interesting approaches that efficiently
search for a suboptimal yet satisfactory structure. Furthermore, useful techniques have been de-
veloped to find an optimal structure G∗ as efficient as possible, albeit still exponential in running
time. We will cover several of these score-based approaches in Section 3.3.
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3.1 Constraint-Based Approaches

Constraint-based approaches were among the first types of approaches to identify causal relation-
ships in the causal framework introduced by Pearl [54]. Constraint-based approaches consist of,
as the name suggests, identifying edge constraints using conditional independence tests.

Identifying the skeleton. First, we identify the skeleton of the structure using conditional
independence tests. These conditional independence tests can only detect undirected relations, so
the skeleton contains only undirected edges. Let V = {X1, . . . , Xp} be the set of all p variables.
Furthermore, we denote by Xi ⊥⊥ Xj | S that variable Xi and Xj are conditionally independent
given a set of variables S. We denote conditional dependence by Xi 6⊥⊥ Xj | S. An undirected
edge between two variables Xi and Xj exists if and only if they are conditionally dependent for
all subsets S not containing Xi and Xj ,

edge (Xi, Xj) in the skeleton of G ⇐⇒ Xi 6⊥⊥ Xj | S ∀ S ⊆ V \ {Xi, Xj}. (3.2)

In other words, there does not exist any set S without Xi and Xj such that Xi and Xj are
conditionally independent; the conditional dependence cannot be removed.

A more intuitive perspective is the converse of Equation 3.2. If we can find a set S such that
Xi and Xj are conditionally independent, then the undirected edge (Xi, Xj) is not included in the
skeleton,

∃ S ⊆ V \ {Xi, Xj} : Xi ⊥⊥ Xj | S ⇒ edge (Xi, Xj) not in the skeleton of G. (3.3)

We can derive the skeleton of direct dependencies by starting with a fully connected undirected
graph and removing edges using the rule in Equation 3.3. In real-life data, we can use any
conditional independence test such as the Fisher-z’s test [24] to determine whether the conditional
dependence is significant. However, this requires a large amount of conditional independence tests,
which causes issues as the accuracy of skeleton recovery decreases [44]. Furthermore, conditional
independence tests require many samples which may not always be available [65]. These are the
two main drawbacks of constraint-based approaches.

Identifying immoralities. Having identified the skeleton of our causal network, we still need
to orient the edges. Constrained-based approaches use the fact we can deduce the orientation of
edges from already derived conditional (in)dependencies and orientations. Firstly, we can orient
edges by identifying immoralities. Suppose that we have discovered using independence tests that
X − Y − Z, meaning that there is a direct dependency between X and Y and between Y and Z.
Furthermore, assume that X and Z are independent conditioned on some subset that does not
include Y . We then call the triple (X,Y, Z) an immorality, v-structure, or collider [49].

Now, X and Z are independent given some set of variables not including Y , yet there is a
direct dependency between both X and Y and Z and Y . Therefore, Y cannot cause X and Z and
thus we can deduce that X and Z both cause Y . Therefore, we can orient such an immorality as
X → Y ← Z.

Further orientation of edges. Once redundant edges have been removed from the complete
graph and all immoralities have been oriented using conditional independence tests, we can use a
set of rules based on the skeleton and the conditioning sets S to learn the correct orientation of
the other edges. A simple set of just four rules that are proven to be both sound and complete
is called the “Meek rules” [47]. The Meek rules orient edges so that we do not introduce any
additional immoralities or any directed cycles in the structure.

Sometimes, deducing the correct orientation of the edge is not possible. Therefore, constraint-
based approaches often output a maximally oriented graph where some edges remain undirected.
Such a graph is called a Completed Partially Directed Acyclic Graph (CPDAG). It represents the
Markov Equivalence Class (MEC) containing all possible directed acyclic graphs with the same
joint probability distribution, in the sense that they are statistically indistinguishable.
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Pseudocode. The pseudocode for the constraint-based approach has been given in Algorithm
3.1. The two initial constraint-based approaches are SGS, proposed by Spirtes, Glymour, and
Scheines [68], and Inductive Causation (IC), proposed by Verma and Pearl [55]. Although SGS
technically outputs the set of possible directed acyclic graphs and IC would return the CPDAG,
both outputs boil down to the same Markov Equivalence Class.

Improvements over these two algorithms have been proposed in the subsequent years. The
PC-algorithm [69], named after Peter Spirtes and Clarke Glymour, two of the three authors of the
SGS algorithm, returns the exact same output as the SGS or IC algorithm, but is significantly
faster. The PC-algorithm differs in how it approaches step 2. Instead of trying all possible sets
S ⊆ V \ {Xi, Xj}, it employs a more efficient approach by first trying smaller sets of variables
adjacent to Xi and Xj , such that the skeleton can be discovered using fewer independence tests.

Algorithm 3.1: Pseudocode of the constraint-based approach.

Input: A data matrix X = [X1, X2, . . . , Xp].
Output: A maximally oriented CPDAG G, corresponding to a set of statistically
indistinguishable causal models of X.

1: let G be a complete undirected graph
2: remove all undirected edges (i, j) in G if there exists a set S ⊆ V \ {Xi, Xj} such

that Xi and Xj are conditionally independent given S, Xi ⊥⊥ Xj | S
3: orient all immoralities in the remaining graph structure G
4: while we can orient edges in G do
5: orient all edges if the reverse direction would introduce an immorality
6: orient all edges if the reverse direction would introduce a directed cycle
7: end while
8: return the maximally oriented CPDAG G

Example. To see how constraint-based approaches work, let us consider the following example
on five variables, inspired by [49]. The ground truth has been visualized in Figure 3.3.

A B

C

D E

Figure 3.1: Complete undir-
ected graph.

A B

C

D E

Figure 3.2: Skeleton inferred
by conditional independence
tests.

A B

C

D E

Figure 3.3: Ground truth,
also recovered using a
constraint-based approach.

To obtain the correct graph using a constraint-based approach, we will first learn the skeleton of
the structure. The skeleton consists of all edges that are dependent even after we condition on all
other subsets of variables. To identify such a skeleton, we will start with a fully connected graph
in Figure 3.1 and remove edges Xi −Xj if we can find a set S such that Xi ⊥⊥ Xj | S. That is,
we are looking for a set such that Xi and Xj are independent when we condition on the variables
in the set S.
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Assuming our conditional independence tests agree with the ground truth, we will remove the
edge A − B, as A and B are conditionally independent, even given the empty set. Additionally,
we will remove all edges from either A or B to either D or E, as all four pairs of variables are
conditionally independent given C. Lastly, we know that D and E are independent given C as
well. Therefore, we can successfully recover the skeleton, assuming our conditional independence
tests are correct.

Now, to orient the edges, we will first see if we can detect any immoralities. Consider the triple
A − C − B. We have verified that there is no edge between A and B. Furthermore, we did not
require conditioning on C to ensure that A and B were conditionally independent. Therefore, the
triplet A − C − B is considered an immorality, and we can orient these edges as A → C ← B.
Note that any other triple . . .− C − . . . in the skeleton would not have been such an immorality,
as we required conditioning on C to achieve conditional independence.

Subsequently, we can orient the other two edges as well. If we assumed orientation C → D,
then we would have introduced an additional immorality A → C ← D, which would have been
incorrect, as mentioned before. Therefore, according to the Meek rules, the proper orientations
are C → D and C → E, which corresponds to the ground truth.

PCMCI: Extending to time series data. The SGS/IC and PC algorithm were all developed
for time-independent data and were therefore only able to model instantaneous relations. The
PC-algorithm can also be extended to time series data. However, we cannot use the PC-algorithm
directly, as the autocorrelations in time series data lead to high false positive rates for the condi-
tional independence tests [63].

The PCMCI algorithm was introduced for time series data to overcome this issue. First, the
PC-algorithm is used to remove edges by checking for conditional independence between time-
lagged variables, even though this may lead to a many false positives due to autocorrelation.
The remaining edges are assessed using Momentary Conditional Independence (MCI) tests to
(hopefully) address these false positives. These MCI tests are used to verify whether a time
lagged-variable Xi

t−τ and a non time-lagged variable Xj
t are independent when we condition on

both parent sets identified by the PC-algorithm without the time-lagged variable Xj
t−τ ,

MCI : Xi
t−τ ⊥⊥ X

j
t | Pa

(
Xi
t−τ
)
,Pa

(
Xj
t

)
\Xj

t−τ . (3.4)

Note that here, the subscript represents the time index, and the superscript represents the variable
index. The orientation of edges is done using the same rule set as the PC-algorithm, but as the
future cannot cause the past, we know that all edges should be oriented from past to future, so
Xi
t → Xj

t′ if t < t′. The initial PCMCI algorithm could not detect instantaneous causal relations,
but this has been made possible by extending the algorithm in [62].

Several other constraint-based algorithms exist, mostly focused on improving the computa-
tional performance of the PC-algorithm. The Fast Causal Inference (FCI) algorithm was proposed
in 1993 [68] and the Really Fast Causal Inference (RFCI) algorithm was proposed in 2012 [14].
The FCI algorithm enjoys several time series extensions in the form of the SVAR-FCI algorithm
[45] and the tsFCI algorithm [22]. However, these methods also suffer from the aforementioned
drawbacks of constraint-based approaches, namely that a large number of conditional independ-
ence tests limits their ability to consider a large number of variables, especially when a limited
number of samples is available.

3.2 Noise-Based Approaches

As mentioned before, it is impossible to determine the directionality of the effect without certain
noise assumptions. In other words, the corresponding structure is then unidentifiable. Let us
explain this phenomenon in the following example.
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Example of unidentifiability of a linear bivariate Gaussian model. Consider a linear
Gaussian SEM on two variables which is defined as follows:

X = εX , εX ∼ N (0, 1) . (3.5)

Y = 0.8X + εY , εY ∼ N (0, 0.36) . (3.6)

Note that the second argument of the normal distribution corresponds to the variance, not the
standard deviation. These values have been chosen such that both X and Y have a mean equal
to zero and unit variance.

Equation 3.5 and Equation 3.6 define a generative model capturing the relation X → Y .
However, when we look purely at observational data, we cannot distinguish between the model
from defined by Equation 3.5 and Equation 3.6 and the model given by

X = 0.8Y + ε̃X , ε̃X ∼ N (0, 0.36) (3.7)

Y = ε̃Y , ε̃Y ∼ N (0, 1) (3.8)

In both scenarios, X,Y are both standard normal random variables, where their joint distribution
is a bivariate normal distribution,(

X
Y

)
∼ N

([
0
0

]
,

[
1.0 0.8
0.8 1.0

])
. (3.9)

Therefore, both models result in the same joint distribution of X and Y . This has also been shown
in Figure 3.4 and Figure 3.5, where we have visualized the joint distributions of both models.
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Model with Gaussian noise where Y = 0.8X

Figure 3.4: Scatter plot of the linear Gaus-
sian model defined by Equations 3.5 and 3.6.
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Model with Gaussian noise where X = 0.8Y

Figure 3.5: Scatter plot of the linear Gaus-
sian model defined by Equations 3.7 and 3.8.

As both linear Gaussian models have the same joint distribution, the “correct” model is unidenti-
fiable. The general statement that such a linear Gaussian model is unidentifiable has been shown
in [66].

Example of identifiability of a linear model with uniform noise. However, the direction-
ality is detectable as soon as we make some assumptions about the noise variables ε, ε̃. Let us see
how we can discover the correct direction in the following example.

Let us consider the scenario where our noise components follow a non-Gaussian distribution,
such as the uniform distribution. The noise residuals are now uniformly distributed in such a way
that the mean and variance of X and Y do not change,
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X = εX , εX ∼ U
(
−
√

3,
√

3
)
. (3.10)

Y = 0.8X + εY , εY ∼ U
(
−0.6

√
3, 0.6

√
3
)
. (3.11)

Furthermore, the covariance matrix of the joint probability does not change compared to Equation
3.9, but now the joint probability does not follow a Gaussian distribution anymore. Nevertheless,
the regression coefficient obtained using a least-squares estimation procedure will still equal 0.8
(in the population setting) for both orientations. The scatter plots have been provided in Figure
3.6 and Figure 3.7.
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Figure 3.6: Scatter plot of the linear
model Y = 0.8X with uniform noise.
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Figure 3.7: Scatter plot of the linear model
X = 0.8Y with uniform noise.

Both scatter plots show the linear relationship between X and Y . Nevertheless, we see a clear
difference. Figure 3.7 shows a steeper linear relationship between X and Y . Therefore, the two
models now seem to exhibit a different joint distribution of X and Y .

Now that we have shown there is a difference in joint distribution between these two models,
let us consider how we can recover the correct direction of influence. For this, we will assume
that the correct direction is X → Y , and the additive noises εX and εY are independent uniform
random variables, as defined by Equations 3.10 and 3.11. To verify the correct direction, we can
regress Y on X, yielding approximately the regression line Y = 0.8X. Furthermore, we can also
regress X on Y , yielding the regression line X = 0.8Y . Note that both regression coefficients
are the same because the variance parameters were carefully selected. These regression lines have
been visualized in Figure 3.8. Note that the black regression line in the correct direction sits nicely
in the middle of the points in the scatter plot, indicating no correlation between the residual and
the explanatory variable X. However, the red regression line for Y → X seems too low for small
values of X and too high for large values of X, indicating that the residuals are correlated with
the explanatory variable Y . This can be further visualized by looking at the residuals of the
corresponding regressions, which have been plotted in Figure 3.9 and Figure 3.10.

We see that the residuals in the correct direction X → Y are independent of X and Y , whereas
the residuals in the incorrect direction Y → X are dependent on X and Y . As we assumed the
residuals to be independent of X and Y , the only plausible direction is indeed X → Y . Note,
however, that when the relations between variables are non-linear, we can identify the correct
direction even with Gaussian noise, as the joint probability distributions of the two generative
models are not identical such as in Equation 3.9.
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Figure 3.8.

LiNGAM. Assuming that our residuals follow some non-Gaussian distribution, we can determ-
ine whether X → Y or X ← Y by verifying whether the residuals are independent. The Linear
Non-Gaussian Acyclic Model (LiNGAM) [66] utilizes this phenomenon to infer the directed struc-
ture between variables.

LiNGAM assumes a linear non-Gaussian model with instantaneous interactions,

x = Bx + e, (3.12)

where x is their notation for a data matrix X ∈ RT×p, and e ∈ RT×p is the random variable that
captures the random noise. We can also rewrite Equation 3.12 as

x = Ae, (3.13)

where A = (I−B)−1. The first step in LiNGAM is to perform an independent component analysis
(ICA) to obtain an estimate W̃ of W = A−1. This W needs to be permuted and normalized

to obtain an estimate B̂ of B. Lastly, we can derive a causal ordering from this matrix B̃ which
yields a suitable estimate for B.

VARLiNGAM: Extending to time series data. We can extend the LiNGAM setting to a
time series setting using the VARLiNGAM approach [35]. Instead of only instantaneous relations,
we also model time-lagged relationships through a VAR(τmax) model,

xt =

τmax∑
i=0

Aixt−i + e. (3.14)

We can rewrite this model without an instantaneous effect as

xt =

τmax∑
i=1

Mixt−i + e, (3.15)

where Ai = (I −A0) Mi.
We can fit such a VAR(τmax) model on our data x, which yields residuals e. On these residuals,

we can do a LiNGAM analysis as mentioned in the paragraph above, which yields an instantaneous
coefficient matrix for the instantaneous relations Â0. From Â0 and M̂i, in turn, we can compute

Âi =
(
I − Â0

)
M̂i. Using this VARLiNGAM approach, we can estimate the instantaneous effects

while considering information from past values.
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3.3 Score-Based Structure Learning

Score-based approaches assess the validity of a given structure by assigning a score to each struc-
ture. This score is determined by a scoring function S(X,G). Consequently, the optimal structure
is the structure G∗ that maximizes the scoring function S(X,G), while remaining acyclic,

G∗ = arg max
structures G

S(X,G) such that G ∈ DAGs. (3.16)

Scoring functions that are often used in the literature are the Bayesian Information Criterion (BIC)
and the Akaike Information Criterion (AIC), which are both based on the likelihood function of
the data.

Globally Optimal Bayesian Network learning using Integer Linear Programming

Finding the structure G∗ that maximizes the scoring function S(X,G) has been shown to be NP-
hard for most interesting scoring functions and therefore, we cannot expect to solve this efficiently
for more than a couple of dozens of nodes. Nevertheless, several approaches exist that can quite
efficiently find the optimal structure given a scoring function S(X,G). One of the most well-known
exact solvers is known as GOBNILP [16], which is short for Globally Optimal Bayesian Network
learning using Integer Linear Programming.

Its key to success relies on rewriting the score-based approach. Instead of directly maximizing
a scoring function S(X,G) such that G is acyclic, they rewrite the problem in Equation 3.16 to a
binary Integer Linear Program (ILP). A binary ILP consists of an objective function to maximize
subject to a set of constraints, where the assignment variables can only attain the value zero or
one, hence the name Integer. By cleverly defining the assignment variables and constraints, we
can create an ILP such that the optimal value of the ILP corresponds to the optimal value of the
problem in Equation 3.16.

The Integer Linear Program. The Integer Linear Program has been given below. An ex-
planation of the objective function in Equation 3.17 and the sets of constraints in Equations 3.18
- 3.20 follow afterwards.

maximize
∑

i∈V,J∈P(i)

ci←Jxi←J (3.17)

∑
J∈P(i)

xi←J = 1 ∀ i ∈ V (3.18)

∑
i∈C

∑
J∈P(i):J∩C=∅

xi←J ≥ 1 ∀ C ⊆ V, (3.19)

xi←J ∈ {0, 1} ∀ i ∈ V, J ∈ P(i) (3.20)

The authors first define binary variables xi←J for each variable i ∈ V , where V corresponds to
the set of variables, and each possible parent set J ∈ P (i). Here, P(j) corresponds to all possible
parent sets of j, which is equal to the power set of V \ {i}. As each variable has 2|V |−1 different
parent sets, we have an exponential number of binary variables xi←J . Note that these variables
can only attain a value of either zero or one, as is shown in Equation 3.20. If xi←J = 0, then J is
not the exact parent set of variable i. If xi←J = 1, J corresponds to the parent set of variable i.
Now, ci←J corresponds to the scoring function when we use the variables in the parent set J to
predict the values of variable i.

Continuing with the constraints, we know that each variable i must have precisely one parent
set. This set of constraints corresponds to Equation 3.18. Summing over all 0 − 1 variables
representing all possible parent sets of variable i should yield exactly the value 1, indicating that
exactly one parent set has been assigned to each variable.

The second set of constraints in Equation 3.19 ensures that there are no cycles in the structure.
For example, variable 1 cannot be in the parent set of variable 2 when variable 2 is already in the
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parent set of variable 1. This constraint has been cleverly written in Equation 3.19. Every subset
C ⊆ V of the variables must contain at least one vertex that has no parent in that subset. To
see why this is true, if we would find a subset C ⊆ V such that all vertices have a parent in the
subset, then a cycle must exist.

Solving the Integer Linear Program. An advantage of casting this score-based learning
problem to an ILP is that there is no need to reinvent any new solver for the problem. Nowadays,
highly optimized off-the-shelf ILP solvers exist thanks to decades of research into ILP solvers [4].
However, as the number of assignment variables xi←J and constraints are exponential. An optimal
solution may take a long time to acquire.

Note that GOBNILP employs many additional tricks to speed up the computations which
are not covered here. Furthermore, many improvements have been proposed to increase the
computational performance of GOBNILP. The GOBNILP algorithm is actively maintained, and
new versions are continuously developed to include the newest performance enhancements, such as
different formulations of the constraints [72] and a branch-and-cut approach to reduce the search
space [3]. Furthermore, a Python version pygobnilp has been introduced as well.

NOTEARS

NOTEARS (Non-combinatorial Optimization via Trace Exponential and Augmented lagRangian
for Structure learning) is a method developed by Zheng et al. [87]. Rather than trying to find
an optimal acyclic structure, they settle for a suboptimal structure with the benefit that their
method can scale up to approximately one hundred nodes.

The authors assume a linear structural equation model of the form

X = WTX + z, (3.21)

where X = (X1, . . . Xp) ∈ Rp is defined a random vector and z = (z1, . . . , zp) defines a random
noise vector. Their goal is to infer the matrix W ∈ Rp×p from n independent samples of X,
forming a data matrix X ∈ Rn×p. The most difficult hurdle to overcome is the combinatorial
constraint that the inferred structure G(W ) must be a directed acyclic graph. In their paper, they
present a novel strategy to enforce acyclicity of the structure. Rather than solving the (partly)
combinatorial optimization problem on the left-hand side of Equation 3.30, they translate it to
an equivalent continuous optimization problem on the right-hand side of Equation 3.30. For any
continuous scoring function F (W ), they show the equivalence

min
W∈Rp×p

F (W )

subject to G(W ) ∈ DAGs
⇐⇒

min
W∈Rp×p

F (W )

subject to h(W ) = 0,
(3.22)

for some function h(·) that enforces acyclicity such that h(W ) = 0 if and only if G(W ) is a directed
acyclic graph. Now, the function F (·) that the authors attempt to optimize is the least-squares loss
plus an `1 regularization on the weighted adjacency matrix to encourage sparsity. In mathematical
notation, their scoring functions equals

F (W ) =
1

2n
‖X−XW‖2F + λ‖W‖1, (3.23)

where X ∈ Rn×p represents a data matrix of n samples that are p-dimensional. The continuous
function h(W ) that enforces acyclicity corresponds to

h(W ) = Tr
(
e(W◦W )

)
− p = Tr

( ∞∑
k=1

(W ◦W )
k

k!

)
. (3.24)

Here, Tr(·) represents the trace operator which sums all diagonal entries of its argument, and
W ◦W represents the Hadamard product of two matrices. In other words, it is the element-wise
square of the matrix W .
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To explain the function h in greater detail, let us first remark that the trace of (W ◦W )
k

corresponds to a weighted sum of all cycles of length k in the matrix W ◦W . Therefore, the matrix

W ◦W does not contain any cycles of length k if and only if Tr
(

(W ◦W )
k
)

= 0. Therefore, W ◦W
does not contain any cycles if and only if h(W ) = 0.

Optimization. The authors propose the augmented Lagrangian method to solve the right-hand
side of Equation 3.30, which now contains an augmented quadratic penalty,

min
W∈Rp×p

F (W ) +
ρ

2
|h(W )|2 subject to h(W ) = 0, (3.25)

where ρ represents the penalty parameter initially equal to one that is iteratively increased.
A Lagrange multiplier α is included to adhere to the constraint h(W ) = 0, yielding the aug-

mented Lagrangian

Lρ(W,α) = F (W ) +
ρ

2
|h(W )|2 + αh(W ). (3.26)

An iterative dual ascent procedure is proposed to find a stationary point of the augmented Lag-
rangian. Initially, the penalty parameter ρ is equal to one, and the Lagrange multiplier α is equal
to zero. For these values, a local optimum W1 is found using the L-BFGS-B optimization method
[90]. If this optimization has provided enough progress with respect to the acyclicity constraint,
that is, h(W1) < ch(W0) for some hyperparameter c ∈ (0, 1), then the Lagrange multiplier α is
increased and again the L-BFGS-B algorithm is used to find a local optimum W2. If not, then ρ is
iteratively increased until h(W1) < ch(W0). When a suitable local optimum W1 has been found,
the Lagrange multiplier α0 is increased by ρh(W1).

Continuing this process, the penalty parameter ρ and Lagrange multiplier αt keep increasing
and local optima are recovered such that h(Wt) is closer and closer to zero. After several iterations,
we have found a local optimum to Equation 3.25 such that h(W ) is sufficiently close to zero, say
no more than some value ε.

The solution to the equality constrained program (ECP), WECP will be thresholded as a final
procedure. All entries of WECP that are smaller in absolute value than some threshold ω will be set
to zero to reduce the number of false positives [89]. Experiments done by the authors demonstrate
that thresholding increases the accuracy in structure learning, and in their experiments, a threshold
value of ω = 0.30 has been proposed. The pseudocode for the NOTEARS procedure has been
given in Algorithm 3.2.

Algorithm 3.2: NOTEARS

Input: initial guess W0, progress rate c ∈ (0, 1), tolerance ε > 0, threshold ω > 0.

Output: an acyclic coefficient matrix Ŵ ∈ Rp×p.

1: for t = 0, 1, 2, . . . do:
2: solve primal Wt+1 ← arg minW Lρ(W,αt) with ρ such that h(Wt+1) < ch(Wt)
3: dual ascent αt+1 ← αt + ρh(Wt+1)
4: if h(Wt+1) < ε, set WECP = Wt+1 and break
5: end for
6: return the thresholded matrix Ŵ := WECP ◦ 1(|WECP| > ω)

Note that only a local minimum is guaranteed and not a global minimum, as the search space is
non-convex. Given that the problem at hand is NP-hard, this is no surprise. However, the fact
that only a local minimum is guaranteed does not seem to be a detrimental problem. The authors
have compared the local optimum found using Algorithm 3.2 to the global optimum found using
an exact solver. In this scenario, the authors have used the GOBNILP [16] program to find the
global minimum. Quite often, the local optimum was close to the global optimum, demonstrating
that the non-convexity is not a large issue in practice.
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DYNOTEARS: Extending to time series data. We have seen that NOTEARS only allows
for instantaneous relationships. However, this can easily be extended to also allow for time-lagged
relationships. DYNOTEARS [52] assumes that, apart from instantaneous relations, there are also
linear time-lagged relations.

The extension of DYNOTEARS to NOTEARS is similar to the extension of VARLiNAM to
LiNGAM, which we discussed in Section 3.2. Instead of assuming the instantaneous linear model

X = WTX + z, (3.27)

we now also model time-lagged linear relations, up to a time lag of τmax,

Xt,· = Xt,·W +

τmax∑
i=1

AiXt−i,· + z, (3.28)

where z again represents zero-mean random noise.
Instead of minimizing the cost function F (W ) of Equation 3.23 subject to h(W ) = 0, we now

minimize the cost function

F ′(W ) =
1

2n

T∑
t=τmax+1

∥∥∥∥∥Xt,· −Xt,·W −
τmax∑
i=1

AiXt−i,·

∥∥∥∥∥
2

2

+ λ1 ‖W‖1 + λ2

τmax∑
i=1

‖Ai‖1 , (3.29)

where W captures the instantaneous relations, and Ai captures the relations that are time-lagged
by i time steps. Additionally, We see that we have added the time-lagged linear relations to the
model and an extra sparsity penalty to the autoregressive coefficient matrices Ai. Furthermore, n
here corresponds to the effective sample size, for which we have n = p(T − τmax). In their paper,
they have n = p(T + 1 − τmax), but their time series also start at time index t = 0 rather than
our convention of t = 1, which explains this small difference in notation.

Just as in NOTEARS, we can enforce acyclicity using a continuous optimization approach by
using the translated problem,

min
W∈Rp×p

F ′(W )

subject to G(W ) ∈ DAGs
⇐⇒

min
W∈Rp×p

F ′(W )

subject to h(W ) = 0,
(3.30)

Note that DYNOTEARS does not enforce acyclicity on the autoregressive coefficient matrices Ai.
However, this would be possible if we modify the acyclicity constraint function h(·).

Other TEARS. The approach first introduced in NOTEARS has sparked a great interest
in such methods, and dozens of papers that mimic or improve on the continuous optimiza-
tion constraint of NOTEARS have been published. As mentioned, DYNOTEARS extends upon
NOTEARS by allowing for linear time-lagged relationships. In addition, there are several other
algorithms that improve upon NOTEARS.

Firstly, researchers have sought better functions h(·) that enforce acyclicity. The authors of
NO FEARS [83] analyze the acyclicity constraint function h(·) used in NOTEARS and conclude
that their method of solving Equation 3.30 using the augmented Lagrangian method does not
always converge to a feasible solution. In other words, the solution may not satisfy the constraint
h(W ) = 0. They propose another similar function that enforces acyclicity, and they show that
their newly proposed method achieves the accuracy of NOTEARS in the sense that NOTEARS
recovers a structure closer to the ground truth.

Second, the authors of NO-BEARS [42] also employ a different approach to verify acyclicity.
Instead of investigating the trace exponential of W ◦ W , the authors of NO BEARS use the
spectral radius of W ◦W to enforce acyclicity. Furthermore, they allow for more complex models
by modeling polynomial relations between variables instead of linear relationships.

Lastly, the authors of NOTEARS propose an extension of their own approach. Instead of
modeling linear relationships, they propose a neural network such that non-linear relationships
can be modeled [88]. A similar approach is also employed in [85], but they use a variational
autoencoder to model nonlinear relations and their acyclicity constraint is formulated slightly
different.
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Chapter 4

Permutation-Based Approaches

Although enforcing acyclicity in our model enhances interpretability and reduces the search space
of possible graphical models significantly, it is nevertheless quite difficult to enforce. To recall our
setting, we are interested in recovering the joint probability distribution of our data X ∈ RT×p,
which we can represent as a graphical model that denotes the structure G of the collected data X.

Let us now assume that our data matrix X has been generated according to a VAR(1) model
as defined in Definition 2.3, which allows us to model linear time-lagged relations between the
variables. Given such a data matrix X, we are interested in learning a suitable coefficient matrix
W that characterizes this VAR(1) model. However, a crucial remark is that the structure induced
by W must be acyclic as defined in Definition 2.1. Nevertheless, let us first drop this requirement
and see how we would estimate W if we need not enforce acyclicity.

Learning a cyclic matrix W using maximum likelihood estimation. Maximum likelihood
estimation is a well-known estimation technique, where we estimate the parameters of a statistical
model given a data matrix X such that the model characterizes by these parameters model was
the most probable model to have generated X. In our setting, the statistical model corresponds
to a VAR(1) model.

In more mathematical terms, we first need to derive the likelihood function which corresponds
to the joint density of X assuming X has been generated by a VAR(1) model. As the parameters
of the VAR(1) model are fully specified by the coefficient matrix W , we can write this joint density
as PW (X). Under the assumptions of the VAR(1) model, we can write this likelihood function as

PW (X) = P (X1,·)

T∏
t=2

P (Xt,· | Xt−1,·) . (4.1)

Now, assuming that all noise components εt are independent and follow a Gaussian distribution,
and that the initial value X1 is known, the likelihood function is a product of Gaussian distribu-
tions. In particular, let us consider the distribution of the conditional random variable

Xt,· | Xt−1,·. (4.2)

Since we have assumed that Xt,· = Xt−1,·W + εt, where εt ∼ N (0, Ip), we can deduce that

E [Xt,· | Xt−1,·, ] = Xt−1,·W, V (Xt,· | Xt−1,·, ) = Ip. (4.3)

As εt is a Gaussian random variable, we know that the the conditional random variable in Equation
4.2 follows a Gaussian distribution with aforementioned mean and covariance,

Xt,· | Xt−1,· ∼ N (Xt−1,·W, Ip) . (4.4)
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Knowing these conditional distributions P (Xt,·|Xt−1,·,W ), the likelihood function PW (X) is equal
to

PW (X) =

T∏
t=2

P (Xt|Xt−1,·)

=

T∏
t=2

1√
2π

exp

(
−1

2
· (Xt,· −Xt−1,·W )

T
(Xt,· −Xt−1,·W )

)
. (4.5)

Now, we are interested in finding the matrix W corresponding to the VAR(1) model that is most
probable to have generated X, without requiring any acyclicity of the structure for now. Therefore,
we are looking for the coefficient matrix Ŵ that maximizes the likelihood function, or equivalently,
the coefficient matrix Ŵ that maximizes Equation 4.5. This matrix is also known as the maximum
likelihood estimator,

Ŵ = arg max
W∈Rp×p

PW (X) . (4.6)

Finding this maximum likelihood estimator Ŵ can also be achieved by minimizing the negative
log-likelihood,

Ŵ = arg max
W∈Rp×p

PW (X) = arg min
W∈Rp×p

− log (PW (X)) . (4.7)

To see this, let us take the logarithm of Equation 4.5 yields and multiply by minus one to obtain

− log (PW (X)) = − log

(
T∏
t=2

1√
2π

exp

(
−1

2
· (Xt,· −Xt−1,·W )

T
(Xt,· −Xt−1,·W )

))

= −
T∑
t=2

log

(
1√
2π

exp

(
−1

2
· (Xt,· −Xt−1,·W )

T
(Xt,· −Xt−1,·W )

))

= −
T∑
t=2

log

(
1√
2π

)
−

T∑
t=2

(
−1

2
· (Xt,· −Xt−1,·W )

T
(Xt,· −Xt−1,·W )

)

=
1

2

T∑
t=2

log (2π) +
1

2

T∑
t=2

‖Xt,· −Xt−1,·W‖22 . (4.8)

Now, as the negative log-likelihood is equal to the squared 2-norm of the difference between Xt,·
and Xt−1,·W for t = 2, . . . , T , multiplied by 0.5 plus some constant shift, the maximum likelihood
estimator corresponds to

Ŵ = arg max
W∈Rp×p

PW (X) = arg min
W∈Rp×p

T∑
t=2

‖Xt,· −Xt−1,·W‖22 . (4.9)

Therefore, we see that maximizing the likelihood of PW (X) is equivalent to minimizing the sum
of the squared 2-norm of the difference between Xt,· and Xt−1,·W for t = 2, . . . , T .

To find the matrix Ŵ that minimizes this sum in Equation 4.9, let us first define X ∈ RT−1×p
as the first T − 1 time steps of X, and Y ∈ RT−1×p as the last T − 1 time steps of X. Then, we
have that

arg min
W∈Rp×p

T∑
t=2

‖Xt,· −Xt−1,·W‖22 = arg min
W∈Rp×p

‖Y −XW‖2F , (4.10)

where ‖·|F denotes the Frobenius norm. We can compute the matrix derivative of Equation 4.10

with respect to W and set it to zero. As ∇‖X‖2F = 2X, we have that

∇W ‖Y −XW‖2F = −2XT (Y −XW ) = 2XTXW − 2XTY, (4.11)
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where XT denotes the transpose of X. Now, the matrix derivative in Equation 4.11 is equal to
the zero matrix if and only if

XTXW = XTY ⇒W =
(
XTX

)−1
XTY. (4.12)

Therefore, we know that the maximum likelihood estimator Ŵ coincides with the so-called ordinary
least squares estimator, which is given by

Ŵ =
(
XTX

)−1
XTY. (4.13)

Such a maximum likelihood estimation technique would be a sensible approach to find the most
suitable coefficient matrix W for our VAR(1) model X. Such a maximum likelihood estimation
technique or equivalently, an ordinary least squares estimation technique, is one of the most
common techniques for estimating the coefficient matrix of a VAR(1) model [34].

However, such a maximum likelihood estimate does not take acyclicity into account. However,
we shall see that there is an interesting decomposition that allows us to employ maximum likelihood
estimation, while ensuring that the inferred structure is acyclic. As the chapter suggests, this
decomposition is based on the ordering or permutation of the p variables. This notion will be
introduced in the next paragraph.

Permutations in a structure. Searching over this space of directed acyclic graphs is quite
difficult. An interesting approach to enforce this acyclicity is by using a permutation π. A
permutation π of the p variables is represented by a function that assigns each variable Xi a unique
index π(i) in the ordering. We say that a variable Xi precedes a variable Xj in the permutation
π if and only if π(i) < π(j). Enforcing such an ordering can help in enforcing acyclicity, as we see
in Proposition 4.1.

Proposition 4.1 (Squires et al., 2019)

A structure G of the variables is acyclic if and only if there exists a permutation π of the
variables such that an arc (Xi, Xj) exists in G only if Xi precedes Xj in the permutation,
that is, π(i) < π(j).

G is acyclic ⇐⇒ Xi precedes Xj in π for all arcs (i, j) in G. (4.14)

Given a directed acyclic graph G, we can find at least one but possibly several permutations
that are compatible with G. Conversely, if we can find a permutation π such that, for all
arcs (i, j) in G, we have that π(i) < π(j), then we know that G is a directed acyclic graph.
Additionally, if we know that π is compatible with some acyclic graph G, then we still have
to decide which of the possible arcs do actually exist

We see that we can enforce acyclicity by enforcing a permutation of the variables. Consequently,
when we only allow directed relationships that are compatible with the permutation π, the struc-
ture G will be acyclic. In other words, we only allow edges from a variable Xi to a variable Xj

only if the variable Xi precedes the variable Xj in the permutation π.
We can also write the permutation π as a permutation matrix P , where pij = 1 if j = π(i) and

pij = 0 otherwise. In other words, the entry in the ith row and the jth column is equal to one if
and only if the ith variable comes in place j in the ordering. For example, the permutation where
we place the third variable first in the ordering, π = (3, 1, 2), can be written as

π = (3, 1, 2) ⇐⇒ P =

0 0 1
1 0 0
0 1 0.

 . (4.15)

As such approaches require an explicit permutation of the variables, we denote these types of
approaches as permutation-based approaches.
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Permutations in a linear model. To cast these permutation-based approaches in our linear
setting, we again consider the VAR(1) model as per Definition 2.3. To reiterate, we assume that
our data matrix X ∈ RT×p has been generated as

Xt,· = Xt−1,·W + εt, εt ∼ N (0, Ip) . (4.16)

The model defined by Equation 4.16 is parametrized by a coefficient matrix W . We require the
graph induced by W , which we denote by G(W ), to be acyclic. Enforcing acyclicity of the graph
induced by W can be done quite easily using permutation matrices. The permutation matrix P
enforces an ordering or permutation π of the variables. We can use such a permutation matrix P to
characterize acyclicity of G(W ) similar to Proposition 4.1. This statement is given in Proposition
4.2.

Proposition 4.2 (Bühlmann, 2013)

A matrix W is compatible with a direct acyclic graph G(W ) if and only if there exists a
permutation matrix P and an upper triangular matrix U such that

W = PTUP. (4.17)

Here the permutation matrix P corresponds to a permutation π such that for all arcs (Xi, Xj)
in G(W ), Xi precedes Xj in π.

From Proposition 4.2, we see that we can decompose our coefficient matrix W into two parts,
a permutation matrix P and an upper triangular matrix U . This ordering π implies that if Xi

precedes Xj , then we can only have the arc Xi → Xj and not the arc Xi ← Xj .
The upper triangular matrix U represents the arcs in our graphical model. The upper triangular

part of the matrix can be non-zero, the diagonal included. However, all entries in the lower
triangular part must be equal to zero. Therefore, we see that the entry u12 corresponds to the
weight of the arc from Xπ(1) to Xπ(2), where Xπ(i) represents the ith variable in the ordering.
As uij > 0 only if i ≥ j, we have that uij > 0 only if variable Xj does not precede variable
Xi. Therefore, the corresponding upper triangular matrix U is consistent with the permutation
defined by the permutation matrix P .

Outline of this chapter. So far in this chapter, we have explained how we can derive the
maximum likelihood estimator of W given our data matrix X. However, acyclicity of the structure
is not enforced. Therefore, we have introduced the notion of a permutation π of our p variables
or equivalently, a permutation matrix P that specifies an ordering of our p variables. Given such
a permutation matrix P , we can easily enforce acyclicity by only allowing arcs from Xi to Xj if
Xi precedes Xj in the ordering. For this, Proposition 4.2 provides a useful decomposition of the
coefficient matrix W that enforces acyclicity.

The next part of this chapter will be devoted to maximum likelihood estimation methods that
utilize the decomposition of the coefficient matrix W into a permutation matrix P and an upper
triangular matrix U . Using this decomposition, we implicitly enforce acyclicity of G(W ), the
structure induced by W . We call these types of approaches permutation-based approaches, as
their success is based on the use of permutation matrices. In Section 4.1, we will first describe a
naive approach that iterates over all possible permutation matrices and learns a suitable upper
triangular matrix U for each permutation using maximum likelihood estimation. However, this
exhaustive approach is infeasible for more than a dozen variables.

Therefore, we need a way to trade off the running time of our algorithm against the performance
of our algorithm. Therefore, we will discuss a method to find a suboptimal yet suitable ordering
by using a random walk on the space of permutation matrices in Section 4.2. We improve on the
random walk by creating a more guided search method using the Metropolis-Hastings algorithm
in Section 4.3.
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4.1 Exhaustive permutation search

Instead of searching for a suitable acyclic structure induced by W , we can now iterate over all
sensible decompositions (P,U) of W . Luckily, finding a suitable matrix U for a given P is relatively
simple. We will first discuss how to find such a suitable matrix U given a permutation matrix P .
For a suitable matrix U , we will consider the maximum likelihood estimator of U . We have named
the algorithm that finds the maximum likelihood estimator of U given a permutation matrix P as
Order-OLS, since it finds the most likely matrix U given a permutation or ordering of the variables.
Let us first discuss how to compute this maximum likelihood estimator.

Order-OLS. Once we are given a permutation matrix P , there is a closed-form solution of the
maximum likelihood estimate of the upper triangular matrix U that adheres to this permutation
P . Again, let X represent the first T − 1 times steps of X, and Y the last T − 1 time steps of X.
Then, recall that the negative log-likelihood was equal to

− log (PW (X)) =
1

2

T∑
t=2

log (2π) +
1

2

T∑
t=2

‖Y −XW‖2F . (4.18)

Given a permutation matrix P , the log-likelihood corresponding to U is given by

− log (PU (X;P )) =
1

2

T∑
t=2

log (2π) +
1

2

T∑
t=2

∥∥Y −XPTUP∥∥2
F
, (4.19)

which is the same as stating that

− log (PU (X;P )) =
1

2

T∑
t=2

log (2π) +
1

2

T∑
t=2

∥∥Y PT −XPTU∥∥2
F
, (4.20)

where we have reordered the p variables rather than the rows and columns U . If we were allowed
to estimate all coefficients of U , the maximum likelihood estimate would be

Û =
(
XT
PXP

)−1
XT
P YP , (4.21)

where XP = XPT and YP = Y PT represent the permuted data matrices.
However, we we are only allowed to estimate the upper triangular part of the matrix U when

maximizing the likelihood. When estimating the first column of U , we are only allowed to estimate
the first coefficient u11, corresponding to regressing the first variable in XP on the first variable
in YP . For the ith column of U , we can only estimate the first i coefficients, corresponding to the
influence of the first i variables in XP , denoted by XP,·,1:i ∈ RT−1×i on the ith variable in YP ,
denoted by YP,·,i ∈ RT−1. Then, the maximum likelihood estimates of the first i coefficients in

the ith column of Û correspond to

Û1:i,i =
(
XT
P,·,1:iXP,·,1:i

)−1
XT
P,·,1:iYP,·,i. (4.22)

This maximum likelihood estimate coincides with the ordinary least squares solution that adheres
to the permutation or order of the variables, hence the name Order-OLS. Note that as we estimate
i coefficients for the ith column, the coefficient matrix Û will have

∑p
i=1 i = p(p + 1)/2 nonzero

coefficients.
In less mathematical terms, we regress the first i time-lagged variables in the permutation

on the ith variable in the permutation. The corresponding estimates form the first i coefficients
in the ith column of the upper triangular matrix U . Doing this for all p columns of U yields
the maximum likelihood estimator of U while adhering to the permutation induced by P . The
pseudocode for Order-OLS has been given in Algorithm 4.1.
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Algorithm 4.1: Order-OLS(X, P )

Input: Data matrix X ∈ RT×p, Permutation matrix P .
Output: Coefficient matrix W that maximizes the likelihood of X,

while respecting the permutation induced by P .

1: XP ← XPT . permute columns of X
2: U ← Op×p . initialize U as p× p zero matrix
3:

4: X ← XP [1 : T − 1, ·] . first T − 1 time steps of XP

5: Y ← XP [2 : T, ·] . last T − 1 time steps of XP

6:

7: for i = 1 until p do
8: Xi ← X[·, 1 : i] . first i variables in P
9: Yi ← Y [·, i] . ith variable in P

10: U [1 : i, i]←
(
XT
i Xi

)−1
XT
i Yi . OLS estimate for column i of U

11: end for
12:

13: W ← PTUP . transpose rows and columns of U
14: return W

Example 4.1 Order-OLS with three variables.

Let us give an example of how Order-OLS works. Suppose we have three variables, and we
want to find the coefficient matrix that maximizes the likelihood given our data matrix X,
while respecting the ordering π = (3, 1, 2), corresponding to the permutation matrix

P =

e3e1
e2

 =

0 0 1
1 0 0
0 1 0

 . (4.23)

To estimate the first column of U , XP,·,1 corresponding to the first T − 1 values of the first
variable in the permutation, so X1:T−1,3. Furthermore, YP,·,1 corresponds to the last T − 1
values in the first variable of the permutation, so X2:T,3. Therefore, the first column of U
contains only one estimated parameter, u11, for which the maximum likelihood estimator is

u11 =
(
XT
P,·,1XP,·,1

)−1
XT
P,·,1YP,·,1. (4.24)

For the second column of U , we can do the same. We will use the time-lagged values of X3

and X1 to predict the values of X1, yielding the two parameters(
u12
u22

)
=
(
XT
P,·,1:2XP,·,1:2

)−1
XT
P,·,1:2YP,·,2, (4.25)

where XP,·,1:2 = (X1:T−1,3,X1:T−1,1), and YP,·,2 = X2:T,1.
For the third and final column of U , we can estimate all three parameters. The three

parameters that maximize the likelihood given X areu13u23
u33

 =
(
XT
P,·,1:3XP,·,1:3

)−1
XT
P,·,1:3YP,·,3, (4.26)

where XP,·,1:3 = (X1:T−1,3,X1:T−1,1,X1:T−1,2), and YP,·,3 = X2:T,3. This yields the matrix
U that maximizes the likelihood given X while adhering to the permutation induced by P .
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As a final procedure, we permute the rows and columns of U ,

W = PTUP. (4.27)

This acyclic matrix W maximizes the likelihood given X while respecting the ordering in-
duced by P . Equivalently, this matrix W minimizes the sum of the squared 2-norm of the
differences between Xt,· and Xt−1,·, as we have shown in Equation 4.18.

Exhaustive Search. We have a method to find the optimal U given a permutation matrix P .
We now perform an exhaustive search over all possible permutation matrices P ∈ Pperm, where
Pperm is the space of all permutation matrices. Trying all permutation matrices, we can simply
select the permutation matrix P that yields the acyclic coefficient matrix W that maximizes the
likelihood. In Equation 4.9, we have seen that this is equal to minimizing the sum of the squared
two norms of the errors. Equivalently, we can minimize the mean squared error, which is simply
the average of the squared two norms,

MSE(W ) =
1

T − 1

T∑
t=2

‖Xt,· −Xt−1,·W‖22 . (4.28)

To find the most suitable matrix W that respects a permutation matrix P , we use the Order-OLS

algorithm as described in Algorithm 4.1. The exhaustive procedure is given in Algorithm 4.2.

Algorithm 4.2: Exhaustive-Search(X)

Input: Data matrix X ∈ RT×p.
Output: Coefficient matrix W that maximizes the likelihood of the X while remain-
ing acyclic, W ∗ = arg max

W∈Rp×p

PW (X) such that G(W ) ∈ DAGs.

1: W best← I
2: MSE best←∞
3:

4: for every permutation matrix P do
5: W ← Order-OLS(X, P )
6: if MSE(W ) < MSE best then
7: MSE best← MSE(W )
8: W best←W
9: end if

10: end for
11:

12: return W best

Search space of permutation matrices. An issue of the exhaustive search described in Al-
gorithm 4.2 can be seen in line 4, where we iterate over the complete search space of permutation
matrices. When we have p variables, a total of p! possible permutations exists, which is not tract-
able when p is large. Even for p = 10, a total of 10! ≈ 3.6 million upper triangular matrices
U need to be estimated, which implies that a total of 36 million columns need to be estimated,
corresponding to 36 million regressions.

Nevertheless, the search space has been greatly reduced. Let G(p) be the number of possible
directed acyclic graphs with p nodes. The value of G(p) is given by the recurrence

G(p) =

n∑
k=1

(−1)k+1

(
p

k

)
2k(p−k)G(p− k), (4.29)
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which was first given by Robinson in [61]. Note that our definition of a directed acyclic graph
allows for self-loops, so we expect the number of graphs that we consider to be directed acyclic
graphs to be slightly larger. Even for just ten nodes, the number of possible directed acyclic graphs
is equal to G(10) ≈ 4.2 · 1018. However, there are “only” 10! ≈ 3.6 · 106 different permutations.
Hence, the combinatorial search space of permutation matrices is far smaller than the search space
of directed acyclic graphs, albeit still exponential in size with respect to the number of variables.
Therefore, the search space has been reduces dramatically, approximately by a factor 1012.

The exhaustive algorithm has been implemented in Python and unfortunately does not support
more than ten variables. Nevertheless, investigating this problem in relatively small dimensions
provides an interesting starting point which can lead to insightful discoveries. When applying
the algorithm to eight variables and one thousand samples per variable, the algorithm takes
approximately one minute to return a matrix W .

As we try all permutation matrices P , the exhaustive approach is guaranteed to return the
coefficient matrix W that maximizes the likelihood PW (X), while ensuring G(W ) is acyclic. This
showcases the trade-off between the running time of our algorithm and the quality of its output.
The algorithm outputs the acyclic coefficient matrix W that maximizes the likelihood at the cost
of having an exponential running time.

Number of compatible permutations. When the true coefficient matrix is sparse, we often
do not need to do an exhaustive search over all permutation matrices to find the optimal solution.
We only need to find a permutation compatible with the graph G(W ) to estimate all non-zero
coefficients in W . For example, if two subsequent variables do not depend on each other, that
is, wij = wji = 0 for j 6= i, then it does not matter which variable precedes the other in the
permutation. Hence, there could be multiple permutations matrices P such that PTUP = W . An
example where we count the number of suitable permutations is discussed in Example 4.2.

Example 4.2 Counting the total number of suitable orderings.

Let us give an example of what we mean when we say that multiple permutation matrices
will yield the optimal solution. Suppose that our data is generated according to a VAR(1)
model with five variables and coefficient matrix

W =


0.5 0.5 0.0 0.0 0.5
0.0 0.5 0.0 0.5 0.0
0.0 0.0 0.5 0.0 0.0
0.0 0.0 0.0 0.5 0.0
0.0 0.0 0.0 0.0 0.5

 .

For ease of notation, our matrix W is already an upper triangular matrix. As the value of
the coefficients is not important here, all coefficients simply have a value of 0.5.

Now, the ordering π = (1, 2, 3, 4, 5) is a permutation such that we can estimate all non-
zero coefficients of W , as W = ITUI for some upper triangular matrix U . Hence, using
Order-OLS on X with permutation I allows us to estimate all true coefficients in W .

However, this is not the only possible permutation. Our third variable only depends on itself,
X3 can be at any index in the permutation π and our matrix W remains upper triangular.
This increases the number of compatible orderings to 5. Furthermore, since the fourth and
fifth variable do not depend on each other, we can interchange them in any ordering. Lastly,
since the fifth variable only depends on the first variable, we only need to ensure that the
first variable precedes the fifth variable in the ordering.

Out of the 5! = 120 permutations, there are a total of 20 permutation matrices P such
that W = PTUP for some upper triangular matrix U . Therefore, we often need not check
all possible permutations, especially when the coefficient matrix W is sparse.
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The question that arises now is the following: “Given a matrix W , how many different permuta-
tions of its rows and columns are there that yield an upper triangular matrix?” In other words,
how many permutations are there such that Order-OLS can estimate all non-zero coefficients of
W? Unfortunately, this is a difficult question to answer. In fact, this problem is #P-Complete
[7], meaning that this problem is even harder than an NP-Complete problem. Therefore, the only
statement we can make that for a sparse W , there are most likely quite some valid orderings of
the variables. How many there are is, unfortunately, often too difficult to say.

As a sidenote, a sparse matrix does not always imply that there exist many possible permuta-
tions. Consider the matrix with non-zero coefficients on the diagonal above the main diagonal,
which is also called the superdiagonal:

W =



0.0 0.5 0.0 · · · 0.0 0.0 0.0
0.0 0.0 0.5 · · · 0.0 0.0 0.0
0.0 0.0 0.0 · · · 0.0 0.0 0.0
...

...
...

. . .
...

...
...

0.0 0.0 0.0 · · · 0.0 0.5 0.0
0.0 0.0 0.0 · · · 0.0 0.0 0.5
0.0 0.0 0.0 · · · 0.0 0.0 0.0


.

As each variable depends on the preceding variable, we cannot have any compatible ordering other
than P = I. Therefore, the number of suitable permutations is equal to 1, although we have a
sparse matrix with only p− 1 non-zero coefficients.

Let us now discuss the exhaustive algorithm step-by-step. For this, we will be considering a
simple three-dimensional time series in Example 4.3.

Example 4.3 Applying the exhaustive method on a three-dimensional data matrix.

Consider the three-dimensional data shown in Figure 4.1. This data has been generated
using the formula

Xt,· = Xt,·W + εt, (4.30)

where

W =

0.8 0.0 0.0
0.5 0.8 −0.5
0.0 0.0 0.8

 , εt ∼ N (0, I3) .

We define X1,· = ε1 so that Xt,·, t ≥ 2 follows from Equation 4.30. We simulate for a total
of T = 100 time steps. The corresponding time series has been visualized in Figure 4.1.
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Figure 4.1: Visualization of the three variables X1, X2, X3 of Example 4.3.
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Our exhaustive search as described in Algorithm 4.2 will simply iterate over all possible
permutation matrices P , of which there are a total of 3! = 6. For each permutation matrix,
we calculate the upper triangular matrix U that maximizes the likelihood PU (X;P ) while
respecting the permutation matrix P using Order-OLS(X, P ) described in Algorithm 4.1.

Let us first consider where we use the identity matrix as our permutation P1 = I,
and hence, we can only estimate coefficients from the upper triangular part of W . Using
Order-OLS, we get that

W1 =

0.96 0.01 −0.08
0.0 0.80 −0.42
0.0 0.0 0.77

 ,

with an accompanying mean squared error of 3.421. We see that the relation X2 → X1

cannot be captured appropriately using this ordering, as X2 → X1 does not respect the
ordering given by P1.

Now, let us consider a permutation P such that Order-OLS can estimate all true coefficients
of W . Two permutations satisfy this condition, which are

P2 =

0 1 0
1 0 0
0 0 1

 , P3 =

0 1 0
0 0 1
1 0 0

 .

Applying Order-OLS on these two permutation matrices P2 and P3 yield the respective
coefficient matrices

W2 =

0.79 0.00 −0.08
0.55 0.81 −0.42
0.00 0.00 0.77

 , W3 =

 0.77 0.00 0.00
0.55 0.81 −0.48
−0.02 0.00 0.83

 ,

with accompanying mean squared errors of 2.906 and 2.930 respectively. As we can see,
both W2 and W3 estimate all non-zero coefficients in W and both achieve a lower mean
squared error than W1, where we could not estimate w12. However, one achieves a slightly
lower mean squared error. As our data is corrupted with noise, non-true coefficients are
also estimated with small coefficients that correlate with the noise in the data. Apparently,
the spurious correlation X3 → X1, corresponding to coefficient w31 yields slightly better
predictive performance than the spurious correlation X1 → X3. This is not very problematic,
but we would like our method to generalize well to similar data matrices X. Therefore, we
would like to regularize our solution matrix W2 or W3 such that only the true coefficients
are estimated. We will discuss a naive yet effective approach at the end of this chapter in
Section 4.4.

For the time being, we do not take this regularization into account, and are only interested
in the matrix Wi that achieves the largest likelihood, or equivalently, minimizes the mean
squared error. Table 4.1 shows the resulting mean squared errors of all 3! = 6 permutation
matrices.

Table 4.1: Table showing the mean squared errors of all six possible permutations for
Example 4.3. A lower mean squared error implies a larger likelihood, indicating a better
model fit.

Permutation (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
Mean Squared Error 3.421 3.724 2.906 2.930 3.927 3.413

Looking at Table 4.1, we indeed see that the lowest mean squared error is achieved by
respecting the ordering P2. Using this exhaustive search, we have found the matrix W2 that
maximizes the likelihood of the data while remaining acyclic.
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There are some techniques to improve the computational efficiency of the exhaustive search. We
can cache certain computations such that these need not be redone. For example, suppose we
first compute the upper triangular matrix U respecting the permutation π1 = (1, 2, 3,. . . , p−1, p),
resulting in coefficient matrix Wπ1

. Now, suppose we want to compute the upper triangular
matrix U respecting the slightly different permutation matrix π2 = (1, 2, 3, . . . , p, p − 1). Instead
of completely recomputing the upper triangular matrix U , we only need to re-estimate the final
two columns, as the ordering did not change for the first p − 2 variables. If we iterated over
all permutation matrices in a smart way, we can re-use a large portion of the upper triangular
matrices U , thereby greatly reducing the computation time.

Nevertheless, the exponential nature of the exhaustive search makes this technique unsuitable
for more than a dozen variables. Therefore, let us now consider combinatorial approaches that do
not require an exponential amount of running time, thereby sacrificing the quality of the returned
matrix W .

4.2 Random Walk

In Section 4.1, we have seen that we can find our optimal matrix W by trying all possible orderings
of our p variables. We refer to the optimal matrix W as the matrix W that maximizes the likelihood
of our data matrix X such that G(W ) is acyclic. Unfortunately, there are p! of those permutations,
where p is the number of variables or equivalently, the number of rows or columns in W . Therefore,
we cannot expect to find the optimal permutation within a reasonable amount of time.

Nevertheless, we can try to find a reasonably good permutation without checking all the possible
permutation matrices. For this, we can do a random walk through the space of permutation
matrices Pperm. For each permutation matrix P we visit, we apply Order-OLS(X, P ) to see whether
this permutation matrix P is a good fit for our data X. We remember the best permutation
matrix P , accompanied by the most fitting upper triangular matrix U . After having tried enough
permutation matrices P , we terminate the random walk. For this, we can either fix the number
of permutations we visit to a certain number N or alternatively, we set the maximum time that
can elapse during our random walk to a fixed time of tmax.

For such a random walk, we require two components. First of all, we require a method to
determine to which state we will transition next. Secondly, we require an initial state from where
we start the random walk. These two components will be discussed in the following two paragraphs.

Transitions probabilities. A random walk is a naive method to traverse any discrete search
space. From a given state, we transition to another state according to some transition probability.
In the setting of permutation matrices, we transition from our current permutation matrix Pi
to the next matrix Pi+1 according to some transition probability. In a random walk, the next
step, or in our setting the next permutation matrix, is often chosen uniformly at random from a
set of candidates. That is, the next permutation matrix Pi+1 is chosen from some distribution,
conditioned on Pi,

P (Pi+1 = P ′ | Pi = P ) . (4.31)

We will propose two different approaches to define the set of candidates.

First of all, we can just simply pick a permutation matrix at random from the p! possible can-
didates. Note that this also includes our current state, from which we do not gain any information
by revisiting this permutation. Therefore, it may be wise to exclude already visited permutation
matrices from our set of matrices. However, when p is large, the probability of visiting the exact
same permutation matrix is quite small, and remembering all visited permutation matrices may
take quite some storage without improving the algorithm significantly. So, a suitable transition
probability would be

P (Pi+1 = P ′ | Pi = P ) =
1

p!
for all permutation matrices P ′ ∈ Pperm. (4.32)

Structure Learning in High-Dimensional Time Series Data 36



where Pperm is the set of all possible permutation matrices on p variables. Note that the con-
ditioning in Equation 4.32 is unnecessary, as the transition probability does not depend on the
current state.

As a second selection method, we can define the set of candidates as the set of permutation
matrices that are “adjacent” to our current permutation matrix P . We define the set of per-
mutation matrix that are “adjacent” to P as Padj(P ), the set of permutation matrices that can be
reached by swapping just two variables. In mathematical notation, we have that

Padj(P ) = {P ′ | swap row i and j of P , i = 1, . . . p− 1, j = i+ 1, . . . , p.}. (4.33)

In total, there are
(
p
2

)
= p(p+1)/2 of such permutation matrices P ′ for any permutation matrix P .

We pick one permutation matrix P ′ uniformly at random from this set, that is, with probability
2/(p(p+ 1)). Our transition probabilities would then be

P (Pi+1 = P ′ | Pi = P ) =

{
2

p(p+1) for all permutation matrices P ′ ∈ Padj(P ),

0 otherwise.
. (4.34)

where Padj(P ) is the set of all permutation matrices on p variables that are one swap of two
variables away from P . Note that there are more choices for the transition probabilities. For
example, we can consider only swapping variables adjacent in the ordering, resulting in p − 1
permutation matrices to choose from. Nevertheless, we will only stick to these two for now.

Initial state P0. Another important choice is the starting permutation of the random walk.
The random walk must start at some permutation matrix P0, from which we will sample new
permutation matrices from our conditional distribution P (Pi+1 | Pi). Note that for our first choice
in Equation 4.32, the initial permutation matrix, or in fact the current state Pi, does not matter
at all, as all p! permutation matrices are equally likely to be the next permutation matrix.

For the second case, given in Equation 4.34, where we only consider transitioning to “adja-
cent” permutation matrices P ′, the initial starting point P0 greatly determines which permutation
matrices we will visit. For example, suppose that we start at P0 = Ip. A large number of trans-
itions is required to reach the opposite permutation, so the backwards identity matrix

Jp =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 .

In fact, we require approximately p! transitions to reach Jp if our initial state is Ip. Therefore,
starting with a permutation “far” from a suitable permutation could result in a poorly performing
random walk.

Having explained the two key components of the random walk, let us consider the pseudocode
for such a method in the next paragraph.

The Random Walk Algorithm. Both versions of the random walk are given in Algorithm
4.3. Note that they differ in their sampling distribution P (Pi+1 | Pi). For the first version, the
completely random walk, we use Equation 4.32 to determine the next permutation Pi+1. For the
second version, where we only consider permutation matrices P ′ adjacent to P , we use Equations
4.33 and 4.34.

Apart from the data matrix X, we also require an initial permutation P0 and a termination
condition, for example the maximum number of steps N . As an initial condition, we can simply
pick the identity matrix Ip, and for the N any integer value we prefer. Picking N large will on
average result in a more suitable matrix W , but the algorithm also requires more time.
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Algorithm 4.3: Random walk

Input: Data matrix X, Initial permutation P0, maximum number of steps N .
Output: The acyclic coefficient matrix W ∈ Rp×p that achieves the highest likelihood
found using the random walk.

1: W best← P0

2: MSE best← MSE(P0)

3: for n = 1 until N do
4: Pn ← P next(Pn−1)
5: W ← Order-OLS(Pn)
6: if MSE(W ) < MSE best then
7: MSE best← MSE(W )
8: W best←W
9: end if

10: end for

11: return W best

Example on ten variables. Let us consider an example on ten variables, resulting in 10! ≈ 3.6
million permutation matrices. Such a large search space cannot quickly be exhausted, so let us
see whether the random walk can find a suitable acyclic matrix W .

Example 4.4 Random Walk on a 10-dimensional example.

We consider the data matrix X ∈ R100×10 visualized in Figure 4.2, generated by a VAR(1)
model as defined in Definition 2.3 on ten variables and one hundred samples. We have con-
structed a sparse acyclic coefficient matrix W , which has 25 off-diagonal non-zero coefficients
with value 0.5. All p variables have an autoregressive coefficient uniformly from the range
[0.6, 0.8].
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Figure 4.2: Visualization of the data matrix X of Example 4.4.

We will explore just 1% of the search space with no information on the correct permutation
matrix. Therefore, we will use Algorithm 4.3 with P0 = I10 and N = p!/100 ≈ 3.6 · 104,
yielding a running time of approximately one minute rather than two hours for the exhaustive
approach. We will also run the exhaustive algorithm to obtain the acyclic matrix W ∗ that
maximizes the likelihood. We will use both methods of sampling the next permutation
matrix, and the returned matrices W1 and W2 achieve a mean squared error of

MSE(W ∗) = 9.426, MSE(W1) = 10.567, MSE(W2) = 10.245. (4.35)

Both random walks achieve a performance quite close to the exhaustive search, despite
having only explored roughly 1% of the search space.
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4.3 Using the Metropolis-Hastings Algorithm

The performance of the random walk discussed in Section 4.2 is rather encouraging, especially
since the random walk blindly transitions from one permutation matrix to another, regardless of
its suitability. We can improve on the random walk by devising a more guided search, where we
will not transition to a poorly fitting permutation matrix in an uninformative manner.

In this section, we will apply the Metropolis-Hastings approach. The approach was named
after N. Metropolis, one of the authors that introduced this method in 1953 [48]. The method was
further investigated by W. K. Hastings in 1970 [31], from which the conjunction originates. It is
a Markov-Chain Monte Carlo method, where we sample the next permutation matrix based on
the transition probabilities of the corresponding Markov Chain. Such methods have shown to be
successful in efficiently traversing a complex search space. For example, in [11], the objective was
to find a suitable hierarchical clustering of variables. The authors reformulated such a hierarchical
clustering to a binary tree, and subsequently employed a Metropolis-Hastings approach to search
for the tree T that maximizes the likelihood profile L (x | T ).

Relation to the random walk. The random walk can also be seen as a Markov Chain Monte
Carlo method, albeit quite a simple one. The probability of transitioning from a permutation
matrix P to a permutation matrix P ′ solely depends on P , and not on how well P ′ fits the data
X. The Metropolis-Hastings algorithm is a more sophisticated Markov Chain Monte Carlo method
that takes into account how well P ′ fits the data. Recall, the transition probabilities of the second
version of the random walk we proposed,

qP,P ′ = P (Pi+1 = P ′ | Pi = P ) =

{
2

p(p+1) for all permutation matrices P ′ ∈ Padj(P ),

0 otherwise.
. (4.36)

where Padj(P ) is the set of all permutation matrices on p variables that are one swap of two
variables away from P . For ease of notation, we have defined qP,P ′ = P (Pi+1 = P ′ | Pi = P ). Let
us now devise a random walk that also takes into account how well P ′ fits X.

Probability of acceptance. A large disadvantage of the random walk is that there is no guid-
ance towards a suitable permutation matrix. There is no guarantee you will get closer to a well-
fitting permutation matrix. Even worse, for the regular random walk, transitioning to a much
worse state just as likely as transitioning to a better state. This is where the Metropolis-Hastings
approach improves over the random walk. Instead of blindly agreeing with the proposed next
permutation matrix P ′, we will first evaluate the suitability of P ′ before transitioning to it.

Nevertheless, we still want to be able to visit permutation matrices that are slightly worse to
avoid being stuck with a locally optimal permutation matrix P . Therefore, we need to have an
appropriate trade-off between exploitation, greedily picking permutation matrices that are more
suitable, and exploration, trying some permutation matrices that are less suitable to explore the
search space of permutation matrices Pperm.

To allow for both exploitation and exploration, the Metropolis-Hastings method uses a probab-
ility of acceptance αP,P ′ , which we use to decide whether to accept the transition of P to P ′. This
probability of acceptance is based on some metric that assesses the suitability of a permutation
matrix P . We can use the likelihood of the data given our permutation matrix P as such a suitab-
ility metric. Given this permutation matrix P , we find the acyclic matrix WP that maximizes the
likelihood of X, while respecting the permutation matrix P using the Order-OLS algorithm with
X and P as input. Consequently, we know from Equation 4.5 that the corresponding likelihood
of X given P equal to

L (X | P ) =

T∏
t=2

1√
2π

exp

(
−1

2
· (Xt,· −Xt−1,·WP )

T
(Xt,· −Xt−1,·WP )

)
, (4.37)

where WP is the acyclic matrix that maximizes the likelihood given X, while respecting the
permutation matrix P . WP can be retrieved using Order-OLS(X, P ), described in Algorithm 4.1.
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We can use L (X | P ) to quantify the suitability of P . If we have a new candidate matrix P ′,
we can compare how well both permutation matrices fit the data. Now, if L(X | P ′) > L(X | P ),
then P ′ fits the data better than P . It would then be wise to indeed accept P ′ as our next state.
On the other hand, if L(X | P ′) is smaller than L(X | P ), then P ′ fits the data worse than P .
Then, we should be somewhat hesitant to transition to P ′. Nevertheless, to explore the search
space, sometimes we still want to be able to transition to a slightly worse fitting P ′. Therefore,
let us define αP,P ′ , the probability of accepting P ′ over P , as

αP,P ′ =

min

{
L(X|P ′)
L(X|P ) , 1

}
if L(X | P ) > 0

1 otherwise.
(4.38)

We see that αP,P ′ represents the fraction of likelihoods of permutation matrices P ′ and P . If P ′

fits X better than P fits X, the fraction will be larger than one, and therefore the probability
needs to be thresholded to one. If P ′ fits X worse than P fits X, the fraction will be between zero
and one. It is then still possible to transition to P ′, but this transition will not always happen.

However, as the likelihood is a value extremely close to zero and is often unpractical to work
with, we will use the mean squared error, as defined in Equation 4.28 as a surrogate for the
likelihood. As a lower mean squared error implies a larger likelihood, we interchange the nominator
and the denominator such that our proposed probability of acceptance is

αP,P ′ =

{
min

{
MSE(WP )
MSE(WP ′ )

, 1
}

if MSE(WP ′) > 0

1 otherwise.
(4.39)

Just as in Equation 4.38, we always transition to a permutation matrix P that yields a higher
likelihood, or equivalently, a smaller mean squared error. If the permutation matrix P ′ achieves
a lower likelihood, or equivalently a larger mean squared error, then we base our acceptance
probability on the ratio of the mean squared errors.

Metropolis-Hasting transition probabilities. Given the probability of selecting P ′ as the
next possible permutation matrix and the probability of then accepting P ′ over the current matrix
P , we can define the transition probabilities for our Metropolis-Hastings algorithm.

Firstly, the permutation matrix P ′ has been selected uniformly at random from the set of
potential candidates according to the conditional sampling distribution given in Equation 4.36.
Secondly, we evaluate how well P ′ fits X compared to P by computing the mean squared error of
X when using the coefficient matrices WP and WP ′ . Based on the fraction, we compute the prob-
ability of acceptance according to Equation 4.45. Then, the probability of actually transitioning
to P ′ is given by

P (Pi+1 = P ′ | Pi = P ) = qP,P ′ · αP,P ′ for P 6= P ′. (4.40)

Consequently, the probability of not transitioning to a new permutation matrix corresponds to

P (Pi+1 = P | Pi = P ) = 1−
∑

P∈Padj(P )

qP,P ′ · αP,P ′ . (4.41)

The Metropolis-Hastings algorithm is a random walk using the sampling distribution given in
Equations 4.40 and 4.41. This random walk can remain in the same state P for multiple time
steps if the considered matrices P ′ poorly fit X.

We can again use an iteration limit N as a stopping criterion. A similar stopping criterion
is to define a time limit tmax. That is, we keep sampling permutation matrices for at most tmax

seconds. A disadvantage of using a time limit tmax over an iteration limit N is that the time limit
depends on the device used to evaluate the algorithm. A more powerful computer can perform
more iterations of the while loop than a less powerful computer per second. Therefore, an iteration
limit N is fairer when the performance is evaluated over different devices.

The pseudocode has been given in Algorithm 4.4.
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Algorithm 4.4: Metropolis-Hastings.

Input: A data matrix X ∈ RT×p, An initial P0 ∈ Pperm, a stopping criterion.
Output: A matrix W ∈ Rp×p such that G(W ) is acyclic.

1: P ← P0 . Initialize P and W
2: W ← Order-OLS(X, P )
3: W best←W
4: MSE best← MSE(W best)

5: while the stopping criterion is not met do
6: P ′ ← P next(P ) . sample next P ′

7: W ′ ← Order-OLS(X, P )
8: α← min {MSE(W ) / MSE(W ′), 1} . evaluate transition rule
9: P ← P ′ with probability α

10: W ← Order-OLS(X, P ) . evaluate next permutation P
11: if MSE(W ) < MSE best then
12: MSE best← MSE(W )
13: W best←W
14: end if
15: end while

16: return W best . return best solution found so far

Examples. To see whether the Metropolis-Hastings is indeed an improvement over the regular
random walk discussed in Section 4.2, we will consider two examples here. We will apply the
Metropolis-Hastings algorithm on the same ten-dimensional data matrix as in Example 4.4, as
well as a sparser setting.

Example 4.5 Metropolis-Hastings on ten variables with a dense coefficient matrix W .

Let us consider the data matrix X of Example 4.4. We could try all 10! ≈ 3.6 million
permutation matrices, but just as in Example 4.4, we will only explore a subset of the search
space, now even as few as 0.01% = 360 permutations.

As W is quite dense, there are most likely few permutation matrices P that such that
Order-OLS can estimate all non-zero coefficients. We can count the number of permutation
matrices P compatible with W by counting the number of permutation matrices P such that

PTWP is upper triangular. (4.42)

Computing this number reveals that only 153 permutation allow us to estimate all coefficients
in W . Therefore, we cannot expect to find a permutation matrix such that all 35 non-zero
coefficients can be estimated, but perhaps a permutation matrix that estimates only say 30
non-zero coefficients may be satisfactory.

Let us first consider the how the mean squared error of the best matrix found so far
changes over the 360 iterations. These trajectories have been plotted as a function of the
iteration number i in Figure 4.3.

The initial choice P0 = I was not a sensible choice, as the mean squared error was quite
high. Therefore, we improve quickly and often in the first fifty iterations. Then, the number
of iterations between improvements increases, and also the difference in mean squared error
between improvements decreases. This is as expected, as you can improve more easily at
the start, where the current best solution is farther from optimal. We also see that the
Metropolis-Hastings approach seems to have the upper hand in this example, as it finds a
more suitable permutation matrix than the random walk, and also more quickly.
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Figure 4.3: Trajectory of the smallest mean squared error found so far.

Let us now consider the mean squared error corresponding to each of the visited permutation
matrices, rather than the best permutation matrix found so far. This allows us to compare
how well both the random walk and the Metropolis-Hastings algorithm choose their next
permutation matrix P ′. The mean squared errors corresponding to all visited permutation
matrices by both algorithms have been plotted in Figure 4.4.
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Figure 4.4: The mean squared error of to the permutation matrix at iteration number i.

The Metropolis-Hastings algorithm has far fewer spikes, indicating that it selects permuta-
tion matrices that achieve higher likelihoods. Nevertheless, the Metropolis-Hastings al-
gorithm occasionally chooses a poor fitting permutation matrix, showcasing that it sometimes
will explore in seemingly less favorable directions to escape local optima.

The random walk selects much poorer fitting permutation matrices. On average, the
permutation matrix picked by the Metropolis Hastings algorithm achieves a mean squared
error of approximately 94, whereas the mean for the random walk is approximately 330.
Comparing medians, the median for the Metropolis-Hastings algorithm is approximately 64,
whereas the median for the random walk is approximately 260. In conclusion, the Metropolis-
Hastings algorithm chooses candidates with a better likelihood, which makes sense as the
Metropolis-Hastings algorithm bases its probability of acceptance on the likelihood.

Density of the coefficient matrix W . In Example 4.5, the Metropolis-Hastings seems more
sensible than the random walk. Some less suitable permutation matrices are explored, but most of
the time, suitable permutation matrices are chosen to evaluate. The Metropolis-Hastings algorithm
works well here is because W has quite a large number of arcs, so the signal-to-noise ratio in X
is high. This in turns means that trying a less suitable permutation matrix will result in a much
poorer likelihood. The Metropolis-Hastings algorithm can utilize this and therefore will often not
transition to such a matrix. This guided search allows the Metropolis-Hastings algorithm to find
suitable permutation matrices faster than the random walk.
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Now suppose W is sparser, meaning it contains fewer arcs. Then, the signal-to-noise ratio will
be much smaller, so the difference between the best and worst permutation matrix will also be
smaller. Therefore, the acceptance probability of a relatively less suitable matrix will be larger.
For this, we can compare Figure 4.4 and Figure 4.6. For the denser coefficient matrix W , the ratio
between a suitable and an unsuitable permutation permutation matrix is large. However, for a
sparse coefficient matrix W , this ratio is much smaller, so the Metropolis-Hastings algorithm will
have less of an advantage over the random walk, as its guidance is less strong.

Example 4.6 The original Metropolis-Hastings algorithm on a sparse coefficient matrix.

Secondly, let us consider a sparser example, where the signal-to-noise ratio is much smaller.
Instead of 25 off-diagonal elements, the matrix W now has 10 off-diagonal elements. There-
fore, we also expect more permutation matrices to be suitable. Therefore, the number of
iterations required in this example will most likely be less.

Indeed, there are a total of 2940 suitable permutation matrices, which is much more
as in Example 4.5. Therefore we expect a random walk to find such a suitable permutation
matrix after fewer iterations. Let us again consider the trajectory of the mean squared error
corresponding to the most suitable permutation matrix found so far for the random walk
and the Metropolis-Hastings approach. These trajectories have been plotted in Figure 4.5.
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Figure 4.5: Trajectory of the smallest mean squared error found so far.

The performance of the Metropolis-Hastings algorithm is not much better than the random
walk anymore. Due to the sparser coefficient matrix W , a poorly chosen permutation matrix
does not result in a poor likelihood due to a lower signal-to-noise ratio. To inspect this
hypothesis further, let us consider the mean squared errors of the permutation matrices of
the Metropolis-Hastings and the random walk algorithm at each iteration in Figure 4.6.
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Figure 4.6: Mean squared errors of to the permutation matrix visited at iteration i.
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The worst mean squared error is about 40, which is only four times as large as the best mean
squared error. In the previous example, the largest mean squared error was one hundred
times larger than the smallest mean squared error. Here, this small difference means that the
probability of accepting a poor permutation matrix is larger, about one in four, compared to
one in one hundred in the previous example. As the mean squared errors are closer together,
the Metropolis-Hastings algorithm has difficulties navigating through the search space.

Nevertheless, the Metropolis-Hastings algorithm does pick slightly more suitable per-
mutation matrices on average. The mean and median of the mean squared error for the
Metropolis-Hastings are 22 and 20 respectively, compared to 25 and 26 respectively for the
random walk. Therefore, the Metropolis-Hastings algorithm is slightly better, but the im-
provement over the random walk is less significant for this sparser coefficient matrix W .

Fine tuning the probability of acceptance. As defined in Equation 4.45, αP,P ′ represents
the probability of accepting the new permutation matrix P ′ over the current permutation matrix
P . This probability of acceptance does not seem to perform much better than the random walk
when the coefficient matrix W is sparse, as we have seen in Example 4.6. This probability of ac-
ceptance is not set in stone, and many approaches exist to define such a probability of acceptance.
The probability of acceptance should be fine-tuned such that we can capitalize on well-fitting per-
mutation matrices. On the other hand, we should also be able to explore less suitable permutation
matrices to make sure we sufficiently explore the search space of permutation matrices.

Translating the mean squared errors. A simple improvement is a translation of the mean squared
errors. In Example 4.5, suitable permutation matrices achieve a mean squared error of around
ten, whereas poorly suitable permutation matrices achieve a mean squared error of the order of
several hundreds. Therefore, the probability of accepting such a poor permutation matrix P ′ over
a well suitable permutation matrix P is then of the order of one hundredths. Nevertheless, in
Example 4.6, we see that this bandwidth is much smaller due to a sparser matrix W . Now, the
likelihoods range from ten to forty, meaning that we will now often pick one of the lesser suitable
permutation matrices. A method to circumvent this is to translate the mean squared errors.

Although we do not know the smallest mean squared error a priori, we know that the mean
squared error of the (cyclic) ordinary least squares solution is a suitable lower bound. Let WOLS

be the ordinary least squares solution, which corresponds to

WOLS =
(
XXT

)−1
XTY, (4.43)

where X and Y again correspond to the first and last T − 1 time steps of X, respectively. The
corresponding translated mean squared error then is

MSE′(WP ) = MSE(WP )− MSE(WOLS). (4.44)

The translated probability of acceptance α′P,P ′ then becomes

α′P,P ′ =

{
min

{
MSE′(WP )
MSE′(WP ′ )

, 1
}

if MSE′(WP ′) > 0

1 otherwise.
(4.45)

In Example 4.6, the translated mean squared errors now range from slightly above zero to thirty.
Therefore, the fractional differences are higher, decreasing the probability of accepting a poor
permutation matrix P ′.

Raising the probability of acceptance to the power k. Another method is to raise the probability of
acceptance αP,P ′ to some power k ≥ 0. Therefore, the probability of acceptance is then equal to

α′P,P ′ = αkP,P ′ , k ≥ 0. (4.46)

For k > 1, raising αP,P ′ to the kth power will decrease all probabilities of acceptance, but will be
harsher on smaller probabilities. Such a transformation will result in a more strict permutation
matrix acceptance, resulting in a more exploitative search, where the algorithm is inclined to
capitalize on suitable permutation matrices. For 0 < k < 1, small probabilities will be increased
relatively more than larger probabilities. Therefore, using such a tuning parameter 0 < k < 1 will
result in a less strict permutation matrix acceptance, allowing for a more exploratory search.
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Greedy acceptance probability. Lastly, we can opt for a greedy search. That is, we accept the
transition if and only if the permutation matrix P ′ is strictly better than the permutation matrix
P . That is, the greedy probability of acceptance is given by

α′P,P ′ =

{
1 if MSE(P ′) < MSE(P )

0 otherwise.
. (4.47)

We only transition to more suitable permutation matrices, and worse permutation matrices are
never explored. This also means that it is impossible to escape local optima. Nevertheless, let us
return to the setting of Example 4.6 with our approaches to fine-tune the probability of acceptance.

Example 4.7 Fine-tuning the probability of acceptance of Example 4.6.

Let us consider these different acceptance probabilities in the setting of Example 4.6. First,
we will investigate translating the mean squared errors by subtracting the mean squared
error of the ordinary least squares solution. Second, we will investigate raising the acceptance
probability to the power of two. Third, we will also raise the translated acceptance probability
to the power of two. Lastly, we will consider the greedy acceptance probability, where we
only transition when the likelihood of the new permutation matrix is strictly better. We
have plotted the trajectories of the smallest mean squared error so far in Figure 4.7.
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Figure 4.7: Trajectory of the smallest mean squared error found so far for the Metropolis-
Hastings algorithm with five different probabilities of acceptance.

First, let us remark that randomness plays a large role, so the comparison should be taken
with a grain of salt. Nevertheless, we see that the squared translated and greedy probability
of acceptance seem to work the best in the beginning. Nevertheless, after approximately 25
iterations, there is no improvement. The other probabilities of acceptance achieve a larger
mean squared error, although the squared probability of acceptance also finds a well-fitting
permutation matrix around iteration number 300. The tendency is that the greedier the
method, the faster we find a relatively suitable permutation matrix. However, we need to
be careful that such a greedy method will not get stuck in a local optimum.

To investigate the exploratory nature of the four new acceptance probabilities, we have
plotted the mean squared errors at each iteration in Figure 4.8. The squared and trans-
lated probabilities of acceptance remain quite explorative, as many unsuitable permutation
matrices are transitioned to. On the other hand, the greedy probability of acceptance is not
explorative at all, as less suitable permutation matrices are never transitioned to. Somewhere
in between lies the squared translated probability of acceptance, which tries both suitable
and unsuitable permutation matrices.
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Figure 4.8: Mean squared errors of the permutation matrix at each iteration number i for
the Metropolis-Hastings algorithm for different probabilities of acceptance.

Table 4.2: Mean and median mean squared errors corresponding to the 360 permutation
matrices visited by the six methods we considered. We have considered the random walk that
only considered adjacent permutation matrices (RW) and the regular Metropolis-Hastings
algorithm (MH) from Example. Additionally, we have investigated the Metropolis-Hastings
algorithm with a translated (MH-Tr), squared (MH-Sq), squared-translated (MH-Sq-Tr),
and a greedy (MH-G) transition probability.

RW MH MH-Sq MH-Tr MH-Sq-Tr MH-G
Mean 24.5 21.7 19.2 19.7 9.4 8.8
Median 26.4 20.2 17.5 15.4 9.2 8.7

We see in Table 4.2 that the random walk explores the most of all six methods. Squaring the
probability of acceptance seems to decrease the explorativeness a little, and translating the
probability of acceptance decreases the level of exploration slightly more. The combination
of the two results in even less exploration, whereas the greedy probability of acceptance does
not explore less suitable permutation matrices at all.

4.4 Selecting a suitable model complexity

This chapter has so far been devoted to finding a suitable ordering of the p variables in the form of
a permutation matrix P . Given this permutation matrix, we use a maximum likelihood approach
to find the most probable matrix W that is compatible with this ordering.
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As we have seen, maximizing the likelihood yields a complete directed acyclic graph consisting
of p(p+ 1)/2 arcs. However, a large portion of these arcs originate from spurious correlations with
noise, yielding only a tiny increase in the likelihood. Therefore, we can remove quite some arcs
without a significant decrease in performance. Such a “pruned” structure is less complex, which
is crucial for making the structure easier to interpret.

Thresholding. The aforementioned spurious correlations that create an overly complex struc-
ture are often represented by small weights wij , which we can omit without a significant decrease
in likelihood. A naive yet effective method is to set all coefficients whose absolute values are less
than some threshold ε to zero. So, the coefficients of W will be thresholded as

w̃ij = 1 {|wij | ≥ ε} , (4.48)

yielding the thresholded matrix W̃ .
However, we still need to pick such a threshold value ε. We could, for example, choose ε = 0.50,

but this might remove important coefficients whose absolute values are smaller than 0.50. If we
set a lower threshold of ε = 0.10, then we might fail to remove unimportant coefficients whose
absolute value is larger than 0.10 due to spurious correlations.

Example 4.8 Selection a suitable number of arcs using thresholding.

Consider the same dataset X ∈ R100×10 as in Example 4.6, consisting of ten variables and 25
arcs. We expect our permutation-based methods to find a suitable coefficient matrix W that
respects some permutation matrix P . However, without any thresholding, W will consist of(
10
2

)
= 55 arcs, where we expect 30 arcs to be there just because of spurious correlations.

Using the exhaustive search algorithm, we see that the most probable acyclic matrix W
achieves a mean squared error of 9.28.

Now, let us see what happens to the number of arcs, or equivalently, the number of
non-zero coefficients as we increase the threshold ε. Furthermore, we will also consider how
the mean squared error increases as we increase ε. Both plots are shown in Figure 4.9.
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Figure 4.9: Number of arcs and mean squared error as a function of the threshold ε.

Initially increasing the threshold ε greatly reduces the number of non-zero coefficients, at the
cost of only a minor increase in likelihood. We have found a sweet spot at around ε = 0.4,
where the number of arcs is greatly reduced from 55 to 25 without a significantly loss in
predictive performance. If we increase the threshold further, we see that the number of
arcs decreases. However, the mean squared error increases significantly, indicating that we
pruned too many arcs. Therefore, we see that using such a threshold can greatly reduce
the complexity of the structure while only losing a small portion of predictive performance.
However, it is difficult to select a suitable threshold ε beforehand, and the size of a coefficient
may not be indicative of its predictive performance.
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Chapter 5

Continuous Approaches

In Chapter 4, we have considered permutation-based approaches, where we have decomposed
the problem of finding an acyclic matrix W into finding a suitable ordering π of the variables
or, equivalently, a permutation matrix P . Subsequently, we find an upper triangular matrix U
compatible with this permutation matrix P using the decomposition

W = PTUP. (5.1)

Although the results of the three methods discussed in Chapter 4 seem promising, these permutation-
based approaches have several drawbacks. First, searching over the space of permutation matrices
P is difficult. The space is combinatorial, making it hard to navigate. Secondly, the search space
of permutation matrices is exponential with respect to the number of variables. There exist p!
different permutations on p variables. Therefore, the search space grows exponentially fast when
the number of variables p increases. We saw that exhaustively searching all permutations was in-
feasible for more than ten variables. To circumvent this, we settled for a suboptimal solution that
we could find much faster. Nevertheless, we expect the performance of these permutation-based
approaches to decrease when p gets large.

Outline of this chapter. This chapter focuses on continuous approaches that do not iterate
over all possible permutations. Rather than optimizing over a search space that is combinator-
ial, such as the set of permutation matrices, we are now interested in solutions that optimize
over a continuous search space. Instead of enforcing acyclicity using combinatorial constraints,
we are now investigating whether we can enforce acyclicity using continuous constraints. These
approaches will hopefully be more suitable for high-dimensional settings. As we are now trying to
learn the structure of our data matrix X using continuous optimization methods, we have named
this chapter “continuous approaches”.

We will discuss three approaches in this chapter. First of all, we will discuss a method close
to permutation-based approaches in Section 5.1, where we relax the combinatorial search space
of permutations matrices to a continuous search space. Secondly, in Section 5.2 we will explore
an approach similar to the authors of NOTEARS [87] who discovered a novel approach to enforce
acyclicity using a continuous function. Lastly, we propose a new method in Section 5.3 that
enforces acyclicity using LASSO and systematically increasing the penalty parameter until the
inferred structure is acyclic.
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5.1 Relaxing the space of permutation matrices.

Recall that the permutation-based approaches in Chapter 4 utilize the matrix decomposition
given in Equation 5.1. Although this nicely enforces an acyclic structure, its scalability poses
some drawbacks. The method discussed in this section hopes to resolve the issue that the space
of permutation matrices is both combinatorial and exponential with respect to the number of
variables p.

The Birkhoff polytope. One approach is to extend or relax the space of permutation matrices
to some continuous search space, thereby removing the combinatorial constraint that P is a per-
mutation matrix. A natural extension of the discrete set of permutation matrices Pperm is the
continuous set of doubly stochastic matrices, which we denote by PDS. A matrix P is said to be
doubly stochastic if and only if all its elements are non-negative and all of its rows and columns
sum to one. In mathematical notation,

P is doubly stochastic ⇐⇒ pij ≥ 0 and

p∑
j=1

pij =

p∑
i=1

pij = 1 ∀ i, j = 1, . . . , p. (5.2)

Clearly, Pperm ⊆ PDS, as each permutation matrix is doubly stochastic.
Interestingly, PDS is the convex hull of Pperm. This implies that every doubly stochastic matrix

can be written as a convex combination of permutation matrices, as the Birkhoff-von Neuman
Theorem states [6, 79]. PDS is therefore also known as the Birkhoff polytope. The vertices of the
Birkhoff polytope correspond to permutation matrices, and all the interior points and points on a
line segment are doubly stochastic matrices, but not permutation matrices. A 2D-visualization of
the Birkhoff polytope in three dimensions is given in Figure 5.1

(1, 2, 3)

(2, 1, 3) (2, 3, 1)

(3, 2, 1)

(3, 1, 2)(1, 3, 2)

Figure 5.1: A two-dimensional representation of the Birkhoff polytope for three variables. Each
of the 3! = 6 vertices represent a permutation matrix, and all points on the edges or in the gray
interior of the Birkhoff polytope represent doubly stochastic matrices.

Model Reformulation. Having proposed this relaxation, let us see how this changes the de-
composition of our coefficient matrix W . Recall from Chapter 2 that we have defined our time-
dependent graphical model as a VAR(1) model, which we have defined in Definition 2.3. We have
a data matrix X ∈ RT×p, and assume the generative model

Xt,· = Xt−1,·W + εt, t = 2, . . . , T (5.3)

where we assume X1,· is known, and W ∈ Rp×p is a coefficient matrix characterizing the acyclic
structure of the joint distribution P (X). Furthermore, εt represents the random Gaussian noise,
which we assume is independent of the other noise variables, εt ⊥⊥ εt′ for t 6= t′.

When we constrained ourselves to the space of permutation matrices Pperm, we could enforce
acyclicity by rewriting W as W = PTUP , where P is a permutation matrix and U is an upper
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triangular matrix. However, now that we have relaxed to the space of doubly stochastic matrices,
this decomposition is not accurate anymore. Rather than requiring the transpose of P , we now
require its inverse. Therefore, we require

W = P−1UP where P ∈ PDS, rather than W = PTUP where P ∈ Pperm,

for an upper triangular matrix U .
We could have also used the left-hand notation for permutation matrices, as PT = P−1 for

P ∈ Pperm. However, for doubly stochastic matrices, often PT 6= P−1. So, the decomposition
under our relaxation corresponds to

Xt,· = Xt−1,·P
−1UP + εt, (5.4)

where P ∈ PDS and U is an upper triangular matrix.

Issues arising with the matrix inverse. Unfortunately, relaxing our problem to the set of
doubly stochastic matrices has introduced new problems related to calculating the inverse of P .

First of all, the inverse of P does not exist for all doubly stochastic matrices P . For example,
consider the doubly stochastic matrix

P =

0.333 . . . 0.333 . . . 0.333 . . .
0.333 . . . 0.333 . . . 0.333 . . .
0.333 . . . 0.333 . . . 0.333 . . .

 . (5.5)

We see that all three rows are exactly equal, and therefore all three are linearly dependent. This
in turn implies that the matrix only has rank 1 and therefore its inverse is undefined. We see that
not all doubly stochastic matrices have a defined inverse. Therefore, the model reformulation as
in Equation 5.4 is not always well-specified.

Secondly, even when the matrix is theoretically invertible, we can still encounter numerical
issues in practice. Let ε be an arbitrarily small number. Consider now the slightly different
matrix

P =

0.333− ε 0.333 + ε 0.333
0.333 + ε 0.333− ε 0.333
0.333 0.333 0.333

 . (5.6)

Theoretically, for any ε 6= 0, this matrix is non-singular, as all the rows are linearly independent.
However, from a numerical perspective, its inverse is quite unstable. Even for a moderately large
ε = 0.05, the inverse of P is equal to

P−1 =

 4.5e15 4.5e15 −9.0e15
4.5e15 4.5e15 −9.0e15
−9.0e15 −9.0e15 1.8e16

 . (5.7)

Equation 5.5 and Equation 5.7 illustrate the problems that arise from our decomposition. For
permutation matrices, computing the inverse of P was as easy as computing its transpose. For
doubly stochastic matrices, this is not as simple anymore. Although we have resolved the issues
caused by the combinatorial search space of permutation matrices, we are now left with invertibility
issues. Nevertheless, let us investigate how serious these issues are in practice.

Cost function for finite samples. To find a suitable doubly stochastic matrix P and an upper
triangular matrix U , let us again consider minimizing the mean squared error. For ease of notation,
let us define the mean squared error as the cost function C(P,U) that we want to minimize with
respect to P and U ,

C(P,U) =
1

T − 1

T∑
t=2

∥∥Xt,· −Xt−1,·P
−1UP

∥∥2
2
. (5.8)

.
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Cost function for infinite samples. Let us first investigate the performance of this relaxation
approach in an easier setting, the infinite-sample setting. Rather than having a finite sample of T
time steps, we assume we have infinite data. In mathematical notation, this means that we can
take the expectation of one arbitrary time step t,

E [C(P,U)] = lim
T→∞

C(P,U)

= lim
T→∞

1

T − 1

T∑
t=2

∥∥Xt,· −Xt−1,·P
−1UP

∥∥2
2

= E
[∥∥Xt,· −Xt−1,·P

−1UP
∥∥2
2

]
= Tr

(
E
[(
Xt,· −Xt−1,·P

−1UP
) (
Xt,· −Xt−1,·P

−1UP
)T ])

= Tr
(
E
[
ε̂tε̂

T
t

])
, (5.9)

where we have defined ε̂t = Xt,· − Xt−1,·P
−1UP . Furthermore Tr (·) denotes the trace, corres-

ponding to the sum of all diagonal entries of its argument.
We can further decompose Equation 5.9 to gain more insights into the construction of our cost

function. Using the definition of the covariance, we have that

Tr
(
E
[
ε̂tε̂

T
t

])
= Tr

(
V (ε̂t)− E [ε̂t]E [ε̂t]

T
)

= Tr (V (ε̂t))− Tr
(
00T

)
(5.10)

= Tr
(
V
(
Xt,· −Xt−1,·P

−1UP
))

= Tr (V (Xt,· −Xt−1,·W )) , (5.11)

where we used the linearity of the trace operator and the fact that E [Xt,·] = 0 in Equation 5.10.
Now, assuming that the data has been generated by a VAR(1) model with data generating

matrix W ∗,
Xt,· = Xt−1,·W

∗ + εt, where εt ∼ Np (0, Ip) , (5.12)

we can derive Equation 5.11 further into

V (Xt,· −Xt−1,·W ) = V (Xt−1,·W
∗ + εt −Xt−1,·W )

= V (Xt−1,·(W
∗ −W ) + εt)

= V (Xt−1,·(W
∗ −W )) + V (εt)

= (W ∗ −W )TV(Xt−1,·)(W
∗ −W ) + Ip. (5.13)

What remains now is to derive the covariance of Xt−1,·, or equivalently, the covariance of Xt,·. As
we assume that all εt are independent Gaussian random variables, we know that Xt,· will follow a
Gaussian distribution as well. From existing literature on Vector AutoRegressive models [92], we
know that that we can derive the covariance matrix as

vec (V (Xt,·)) =
(
Ip2 − (WT ⊗WT )

)−1
vec (Ip) , (5.14)

where vec(·) represents the vectorization operation, which stacks all columns into large one column,
and ⊗ represents the Kronecker product.

We conclude that the expected value of the mean squared error for our VAR(1) model equals

E [C(P,U)] = Tr (V (Xt,· −Xt−1,·W )) by Equation 5.11

= Tr
(
(W ∗ −W )TV(Xt,·)(W

∗ −W ) + V (Ip)
)

by Equation 5.13

= Tr
(
(W ∗ −W )TV(Xt,·)(W

∗ −W )+
)

+ p, (5.15)

where Equation 5.15 follows from the linearity of the trace operator.
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Global minimum of E [C(P,U)] Let us take a closer look at the global minimum of E [C(P,U)].
We first remark that V(Xt,·) is positive semi-definite, as is any covariance matrix. Furthermore,
V(Xt,·) is positive definite if it has full rank. Assuming the covariance matrix is indeed full rank,
then by the definition of positive definiteness we have that for any W , W ′ s.t. W 6= W ′,

(W −W ′)TV(Xt,·)(W −W ′) > 0. (5.16)

Hence, we can remark that the global optimum of E [C(P,U)] is attained only when W = W ′.
Therefore, we can only attain the global minimum when we have that our estimated matrix W is
exactly equal to the data generating matrix W ∗.

In conclusion, E[C(P,U)] is minimized if and only if

P ∈ PDS, U upper triangular such that P−1UP = W ∗. (5.17)

The corresponding global minimum then is equal to

Tr (V (εt)) = Tr (Ip) = p. (5.18)

This is a promising result for relaxation of the search space. Although we have extended the
search space to the space of doubly stochastic matrices, we have not introduced doubly stochastic
matrices that can achieve a lower mean squared error than permutation matrices. Therefore, this
relaxation seems sensible.

Example 5.1 Two (P,U) pairs that can compose W .

Nevertheless, although there is only one global minimum with respect to W , there can still
be multiple pairs of (P,U) that attain this global minimum. Let us consider the scenario
where

W =

0.5 0.3 0.2
0.0 0.4 0.0
0.0 0.0 0.6

 .

We can decompose this W into two (P,U) pairs,

P1 =

1 0 0
0 1 0
0 0 1

, U1 =

0.5 0.3 0.2
0.0 0.4 0.0
0.0 0.0 0.6

, P2 =

1 0 0
0 0 1
0 1 0

, U2 =

0.5 0.2 0.3
0.0 0.6 0.0
0.0 0.0 0.4

 .

The reason for this is that there are multiple permutations compatible with W , namely
(1, 2, 3) and (1, 3, 2), as there is no relation between our second and third variable. The fact
that there are two ways to attain the global minimum is not a problem, however, as these
are both compatible with the underlying graph and thus equally valid permutations.

Finding a local optimum of E [C(P,U)] using gradient descent. Now that the E [C(P,U)]
has been derived and analyzed, the next topic of interest is inferring the true matrix W by finding
a suitable doubly stochastic matrix P and an upper triangular matrix U . A simple yet efficient
approach to infer these parameters is by performing a gradient descent with respect to the matrices
P and U . Using gradient descent, we can find a stationary point where all partial derivatives with
respect to the coefficients in P and U are equal to zero. Hopefully, such a stationary point
corresponds to a suitable coefficient matrix W . For ease of notation, we will drop the expectation
for now, and simply refer to E [C(P,U)] as C ′(P,U),

C ′(P,U) = E [C(P,U)] . (5.19)

The procedure for gradient descent is as follows. We iteratively update the entries of the matrices
P and U by changing the corresponding values in the direction of the steepest descent. One by
one, step by step, we update the entries such that the corresponding partial derivatives decrease
towards zero. If we keep updating these entries, we will eventually end up in a stationary point
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where all partial derivatives of the parameters are equal to zero. Instead of searching for a point
where ∇PC ′(P,U) and ∇UC ′(P,U) are exactly equal to the zero matrix, we are satisfied when
the gradient is sufficiently small, say when the squared 2-norm of all coefficients in P and U is
below some threshold ε. The pseudocode of this procedure is provided in Algorithm 5.1.

Algorithm 5.1: Coordinate gradient descent without Lagrange multipliers.

Input: Data matrix X ∈ RT×p, a step size η > 0, a gradient threshold ε > 0.
Output: A coefficient matrix W ∈ Rp×p.

1: initialize doubly stochastic Matrix P .
2: initialize upper triangular Matrix U .
3: while ‖∇PC ′(P,U)‖2F + ‖∇UC ′(P,U)‖2F ≥ ε do
4: P ← P − η∇PC ′(P,U)
5: U ← U − η∇UC ′(P,U)
6: end while
7: return P−1UP

To perform this gradient descent, the gradients of C ′(P,U) with respect to our input matrices P
and U need to be derived. We will only state the gradients here, and refer the interested reader
to Appendix A.2. For the doubly stochastic matrix P , the coefficients of the gradient ∇PC ′(P,U)
are equal to

(∇PC ′(P,U))ij = −2Tr
(
V (Xt,·) (W ∗ −W )T

(
−P−1J ijP−1UP + P−1UJ ij

))
, (5.20)

where J ij represents the matrix containing only zeros, apart from the value at the ith row and jth
column, which has value one. Furthermore, we use the composition W = P−1UP for more concise
notation. For the upper triangular matrix U , we will fix the gradient of U to zero for all lower
triangular entries. Then, the partial derivatives in our gradient ∇UC ′(P,U) can be computed as

(
∇UC ′(P,U)

)
ij

=


(
− 2(W −W ∗)V (Xt,·)

)
ij

if i ≤ j,

0 otherwise.
(5.21)

Adhering to the constraints of P . Recall that P needs to be doubly stochastic, meaning that
all entries must be nonnegative and all its rows and columns must sum to one. When performing
this gradient descent, these constraints need to be taken into consideration. A standard way for
this is by introducing Lagrange multipliers. We introduce p2 inequality constraints

0 ≤ pij , i, j = 1, . . . p, (5.22)

corresponding to p2 nonnegative Lagrange multipliers

λineq,i,j = pij , i, j = 1, . . . , p. (5.23)

Furthermore, we introduce 2p equality constraints to ensure all rows and columns sum to one,

p∑
k=1

pik =

p∑
k=1

pkj = 1, i, j = 1, . . . , p, (5.24)

corresponding to 2p Lagrange multipliers

λeq,1,i =

p∑
k=1

pik − 1, λeq,2,j =

p∑
k=1

pkj − 1, i, j = 1, . . . , p. (5.25)
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The Lagrangian function now becomes

L(P,U, λ) = C ′(P,U)

−
p∑
i=1

p∑
j=1

λineq,i,jpij −
p∑
i=1

λeq,1,i

(
p∑
k=1

pik − 1

)
−

p∑
j=1

λeq,2,j

(
p∑
i=1

pkj − 1

)
. (5.26)

We see that L(P,U, λ) is equal to C ′(P,U) if and only if for each constraint, we have that either
the constraint is satisfied or its corresponding Lagrange multiplier is equal to zero. Consequently,
minimizing the Lagrangian using gradient descent with respect to P and U will yield a local
optimum of C ′(P,U), where P indeed corresponding to a doubly stochastic matrix.

We do need to recompute the gradients, however, as we add Lagrange multipliers who are also
multiplied by P . The gradient of the Lagrangian dual with respect to U remain the same, so

∇UL(P,U, λ) = ∇UC ′(P,U). (5.27)

The gradient of the Lagrangian with respect to P will now be

(∇PL(P,U, λ))ij = (∇PC ′(P,U))ij − λineq,i,j − λeq,1,i − λeq,2,j . (5.28)

We have now derived all necessary components to perform gradient descent with the accompanying
constraints on P . The pseudocode is depicted in Algorithm 5.2.

Algorithm 5.2: Coordinate Gradient Descent With Lagrange Multiplies

Input: Data matrix X ∈ RT×p, a step size η > 0, a gradient threshold ε > 0.
Output: A coefficient matrix W ∈ Rp×p.

1: initialize doubly stochastic Matrix P
2: initialize upper triangular Matrix U
3: initialize Lagrange multipliers λ using Equation 5.23 and Equation 5.25
4: while ‖∇PL(P,U, λ)‖2F + ‖∇UL(P,U, λ)‖2F ≥ ε do
5: compute ∇PL(P,U, λ) using Equation 5.20 and Equation 5.28
6: compute ∇UL(P,U, λ) using Equation 5.21 and Equation 5.27
7: P ← P − η∇PL(P,U, λ)
8: U ← U − η∇UL(P,U, λ)
9: update Lagrange multipliers λ using Equation 5.23 and Equation 5.25

10: end while
11: return P−1UP

Gradient descent with acyclic W ∗. Let us first apply this algorithm on a relatively simple
example to see whether this approach is sensible. If the data generating matrix W ∗ is indeed
acyclic, Algorithm 5.2 should output a suitable acyclic matrix W , decomposed into a doubly
stochastic matrix P and an upper triangular matrix U . At the very least, we hope to find a
stationary point of Equation 5.26 corresponding to an acyclic structure. Additionally, we hope
that the doubly stochastic matrix P will closely resemble a permutation matrix.

Example 5.2 Gradient descent with acyclic W
Let us consider the three dimensional data generating matrix

W ∗ =

0.85 0.55 0.50
0.00 0.75 0.20
0.00 0.00 0.42

 .

We perform the gradient descent method in Algorithm 5.2 until the squared 2-norm of all
partial derivatives is smaller than ε = 10−3, after which retrieve our estimated matrices P
and U , and therefore also W ,
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P =

0.55 0.15 0.29
0.19 0.42 0.38
0.20 0.45 0.39

 , U =

0.63 0.15 0.29
0.00 0.51 0.37
0.00 0.00 0.90

 , W =

0.83 0.54 0.50
0.00 0.77 0.19
0.03 −0.03 0.43

 .

The matrix W is close to the true matrix, but not quite. The reason for this is that we are
not exactly in a local optimum, as the gradient is slightly off from zero. If we iterated further
until the gradient was smaller, we expect to reach this global optimum exactly. However,
this convergence was rather slow, and seemed to stagnate after a couple of minutes.

A closer inspection into the partial derivatives of P provide the explanation why gradient
descent has difficulties converging closer to a stationary point. In Figure 5.2, the partial
derivative of L(P,U, λ) with respect to p31 has been shown.

0.17 0.18 0.19 0.20 0.21 0.22 0.23

value of p31

−2500

0

2500

5000

7500

10000

Numerical Instability of P−1 for small changes in p31.

y = 0

L(P,U, λ)

(∇PL(P,U, λ))31

x = arg minp31
L(P,U, λ)

Figure 5.2: Value of the Lagrangian function and its partial derivative with respect to
p31, where the minimum of the Lagrangian coincides with the root of the partial derivative.

Figure 5.2 reveals the singularity issues of P . As the two bottom rows of P are similar,
slightly tweaking p31 results in two linearly dependent rows of P so that the entries of the
inverse matrix attain extremely large values, just as in Equation 5.7. When p31 ≈ 0.198,
the partial derivative of the Lagrangian with respect to p31 is equal to 0.015. However, if
we increase the value of p31 by 0.002, the partial derivative has become larger than 10,000,
which indicates that minor changes to p31 result in a substantial change in the corresponding
partial derivative. This makes it difficult to exactly find a stationary point of L(P,U, λ).
Nevertheless, the coefficient matrix W is reasonably close to the true coefficient matrix W ∗.

Example 5.2 showcases two problems of with the gradient descent algorithm. First of all, we
see that, although W ∗ is indeed acyclic, the corresponding doubly stochastic matrix P does not
resemble a permutation matrix. We had hoped that a local optimum for W would result in a
doubly stochastic matrix similar to a permutation matrix. Unfortunately, this is not the case.

Secondly, the singularity issues that arise with the inverse of P show that finding a local
optimum is quite difficult, even in just three dimensions. Small changes to a coefficient of P
may result in substantial differences in the partial derivative of the Lagrangian. These two issues
raise the question whether this method will be suitable for higher dimensions, as we are already
encountering quite some difficulties in just three dimensions.

Coordinate Gradient Descent with cyclic W ∗. As in real life, we should also investigate
what happens when the data generating matrix W ∗ does not correspond to an acyclic structure.
Then, although we are unable to find a perfect fit, we should strive to find a suitable acyclic
matrix W . Therefore, let us see what happens when we apply gradient descent in a cyclic setting.
Hopefully, the returned permutation matrix P and upper triangular matrix U compose into an
acyclic structure.
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Example 5.3 Gradient descent with cyclic W .

Consider a simple three dimensional settings where

W ∗ =

0.0 0.0 0.0
0.0 0.0 0.5
0.0 0.5 0.0

 .

Although this is not a very meaningful VAR(1) model, it showcases a simple three-dimensional
setting where we have a cyclic matrix W ∗. We perform gradient descent on the coefficients
of P and U as described in Algorithm 5.2 with an appropriately small step size η until the
squared 2-norm of all partial derivatives is smaller than ε = 10−3.

In the end, we see our estimated matrices are

P =

0.04 0.48 0.48
0.03 0.49 0.48
0.93 0.03 0.04

 , U =

0.50 0.99 0.00
0.00 −0.50 0.04
0.00 0.00 0.00

 , W =

0.00 0.00 0.00
0.01 0.00 0.50
0.01 0.50 0.00

 .

Clearly, P is not similar to a permutation matrix. Furthermore, the matrix W is not acyclic.
The decomposition does not provide the intended behavior. We had hoped for an acyclic

W , but this is not the case. The matrices P and U together allow for enough freedom such
that W = P−1UP is cyclic, even when U is strictly upper triangular.

Unfortunately, as we see in Example 5.3, although U is indeed upper triangular by construction,
the additional parameters in P allow for a doubly stochastic matrix P such that we can compose a
matrixW that does not correspond to an acyclic structure. As we can still construct cyclic matrices
W under this decomposition, this relaxation method seems unsuitable to enforce acyclicity of W .

Potential improvements. Although this decomposition did not provide the intended behavior,
we have tried some potential improvements. As these ideas did not significantly improve the
approach, we will only describe them briefly without additional derivations.

First of all, we can circumvent the inequality constraints imposing that

pij ≥ 0, i, j = 1, . . . , p, (5.29)

by transforming the matrix P by using the element-wise sigmoid function,

σ(pij) =
1

1 + exp(−pij)
. (5.30)

As 0 ≤ σ(pij) ≤ 1 for all real values of pij , we can use this transformation to alleviate ourselves
of all the inequality constraints.

Secondly, we have also investigated using surrogates for the inverse that do not have the same
singularity issues as the inverse. We can, for example, use the the transpose over the determinant
as a surrogate,

P−1 ≈ PT

det(P )
. (5.31)

Lastly, we can also consider adding a penalty that forces P closer to a permutation matrix. We
can, for example, use the Frobenius norm to achieve this, as ‖P‖F =

√
p if P ∈ Pperm, and

‖P‖F ≤
√
p if P ∈ PDS. Therefore, adding a penalty of the form

λ (
√
p− ‖P‖) , λ ≥ 0, (5.32)

forces the doubly stochastic matrix closer to a permutation matrix P . Adding such a penalty
seemed to work well for a similar relaxation method discussed in [17].

Unfortunately, all three proposals did not solve the problems that we have encountered using
this approach, and therefore were not further pursued.
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5.2 Applying NOTEARS to VAR(1) models.

In this section, we will take a closer look at the NOTEARS [87] approach introduced in Chapter
3. Originally, NOTEARS managed to approximately solve the left-hand side of Equation 5.33 by
finding a local minimum of the continuous reformulation, which corresponds to the right-hand side
of Equation 5.33,

min
W∈Rp×p

F (W )

subject to G(W ) ∈ DAGs
⇐⇒

min
W∈Rp×p

F (W )

subject to h(W ) = 0,
(5.33)

where F : Rp×p → R is a scoring function that quantifies the suitability of the matrix W given
our data matrix X ∈ RT×p. The novelty of this approach is the introduction of a function h(W )
that is zero if and only if W is acyclic.

The authors of NOTEARS published their code on GitHub: https://github.com/xunzh

eng/notears. We can reuse most components of their code to apply the NOTEARS method
for VAR(1) models. We only need to modify the scoring function F , as well as the function
h : Rp×p → R that captures the acyclicity of the coefficient matrix.

Changes to the scoring function F . The original scoring function F of NOTEARS is

F (W ) = `(W ; X) + λ‖W‖1 =
1

2T
‖X−XW‖2F + λ‖W‖1, (5.34)

where ‖W‖1 corresponds to the sum of the absolute values of W . As we prefer sparse solutions for
W as well, we can keep the sparsity penalty λ ‖W‖1. However, their defined Least Squares (LS)
loss `(W ; X) is different for our model. As we are looking for a matrix W such that Xt−1,·W is
close to Xt,·, the LS loss in our setting is

`′(W ; X) =
1

2(T − 1)

∥∥X[2:T ] −X[1:T−1]W
∥∥2
F
, (5.35)

where X[i:j] means that we include all p variables of the first i to j time steps, with both endpoints
included. Consequently, the gradient of the least squares loss with respect to W is equal to

∇W `′(W ; X) = − 1

T − 1
XT

[1:T−1]
∥∥X[2:T ] −X[1:T−1]W

∥∥
F
, (5.36)

where the T in subscript denotes the number of time steps, and the T in super script denotes the
transpose. This yields the scoring function F ′(W ) for our VAR(1) setting,

F ′(W ) = `′(W ; X) + λ ‖W‖1 =
1

2(T − 1)

∥∥X[2:T ] −X[1:T−1]W
∥∥2
F

+ λ‖W‖1. (5.37)

Changes to the DAG-ness function h(W ). The function h(W ) from NOTEARS was designed
such that a root of h corresponds to a directed acyclic graph,

h(W ) = 0 ⇐⇒ G(W ) is a DAG. (5.38)

Originally, the function they proposed was defined as

h(W ) = Tr
(
eW◦W

)
− p =

∞∑
k=1

1

k!
Tr
(

(W ◦W )
k
)
, (5.39)

where ◦ represents the Hadamard-product, or the element-wise multiplication of two matrices of
equal dimension. Furthermore, Tr(·) represents the trace operator, which sums all elements on
the diagonal.
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We can interpret the function h(W ) as a weighted sum of all cycles in W ◦W of length two
or greater. Under this intuition, we see that Tr

(
eW◦W

)
= 0 if and only if there are no cycles in

the matrix W ◦W . If there are no cycles in W ◦W , then there are also no cycles in W . Such
a function h(·) is also called a Trace Exponential function, corresponding to the third and fourth
letters of the NOTEARS acronym.

Casting such a function h(·) into our setting, recall that we do allow for self-loops in our VAR(1)
model. Therefore, we need to adjust the function h(W ) accordingly. The required modification is
quite simple. We simply set all diagonal entries of W to zero before evaluating h(W ). In other
words, we propose the following function to enforce acyclicity for VAR(1) models:

h′(W ) = Tr
(
eW̃◦W̃

)
− p, (5.40)

where the entries of W̃ are

w̃ij =

{
wij if i 6= j

0, if i = j.
(5.41)

Changes to the set-up. Apart from these two fundamental changes, some other minor changes
to the set-up were required for the NOTEARS method to be suitable for VAR(1) models. First of
all, NOTEARS was designed for a linear SEM, similar to Definition 2.2. Therefore, the diagonal
entries of W were constrained to zero by the optimization procedure. However, as we want the
method to be able to estimate diagonal entries of W as well, we have removed these constraints
from the optimization procedure. Lastly, we have added a method that simulates data according
to our VAR(1) model.

Let us now consider two examples to showcase the performance of NOTEARS on VAR(1)
models and how the regularization parameter λ can be used.

NOTEARS with acyclic W ∗. Let us first consider a simple three-dimensional model where
the coefficient matrix W ∗ that generates the data is acyclic.

Example 5.4 NOTEARS on a three-dimensional VAR(1) model with acyclic W ∗.

Let us consider the data matrix X ∈ R100×3 visualized in Figure 5.3, consisting of three time
series of one hundred time steps each. The data has been generated according to a VAR(1)
model with data generating matrix

W ∗ =

0.50 −0.65 0.00
0.00 0.50 −0.25
0.00 0.00 0.40

 .
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Figure 5.3: Visualization of the three variables X1, X2, X2 of Example 5.4.
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Applying the modified NOTEARS method using no regularization, we obtain the matrix

WNOTEARS,λ=0 =

0.53 −0.64 0.03
0.00 0.57 −0.20
0.00 0.00 0.40

 ,

which indeed corresponds to a DAG under our definitions. Furthermore, we see that the
coefficients of W are indeed quite close to the true coefficients of W ∗.

If we increase the regularization parameter to λ = 0.05, we see that NOTEARS outputs

WNOTEARS,λ=0.05 =

0.50 −0.61 0.00
0.00 0.56 −0.19
0.00 0.00 0.37

 .

Therefore, NOTEARS recovers the true support of W ∗ for λ = 0.05.
Note that due to the regularization penalty, all coefficients in WNOTEARS,λ=0.05 are biased

slightly towards zero.

NOTEARS with cyclic W ∗. Another interesting property of NOTEARS is that it is robust
against model mismatches, that is, it is able to output a sensible acyclic matrix W , even when
the data generating matrix W ∗ is cyclic. The reason for this is that the constraint h′(W ) = 0
simultaneously enforces acyclicity, while we are also trying to minimize the loss function F ′(W ).
An example that showcases this robustness is discussed in Example 5.5.

Example 5.5 NOTEARS on three-dimensional VAR(1) data with cyclic W ∗.

Consider a data matrix X ∈ R3×100, consisting of three time series of one hundred time
steps. The data has been generated according to a VAR(1) model with coefficient matrix

W ∗ =

 0.35 0.40 0.00
−0.50 0.30 0.00

0.00 0.00 0.50

 .

We see that W ∗ does not correspond to a cyclic structure, as both w∗12 and w∗21 are non-zero.
The data matrix X has been visualized in Figure 5.4.
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Figure 5.4: Visualization of the three variables X1, X2, X2 of Example 5.5.
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Applying NOTEARS without any regularization, so λ = 0, yields the matrix

WNOTEARS,λ=0 =

 0.28 0.00 −0.17
−0.49 0.32 0.00

0.00 0.00 0.32

 .

We see that we indeed already have a directed acyclic graph, so the acyclicity constraint
forces NOTEARS to decide between setting either w21 or w12 to zero. We see that w13 is
non-zero, whereas w∗13 was equal to zero.

If we increase the regularization parameter to λ = 0.25, then NOTEARS algorithm
outputs the matrix

WNOTEARS,λ=0.25 =

 0.09 0.00 0.00
−0.34 0.17 0.00

0.00 0.00 0.07

 .

We see that NOTEARS with λ = 0.25 manages to recover the true coefficients of W ∗,
except for the coefficient that violates the DAG-ness constraint. Therefore, it seems that
NOTEARS also performs well on VAR(1) models, even with slight model mismatches.

5.3 Using a LASSO approach.

Another continuous approach to find a hopefully suitable directed acyclic graph G(W ) is by using
a LASSO (Least Absolute Shrinkage and Selection Operator) approach, first introduced in 1996
[73]. Let us first describe the original regression setting.

Suppose we have a set of N paired p-dimensional features X and 1-dimensional labels Y in the
form of {(xi, yi)}Ni=1. Normally, LASSO is a regression technique that aims to solve, for a given
k ∈ R,

βk = arg min
β∈Rp

{
1

N

N∑
i=1

(
yi − xiβT

)2}
subject to

p∑
i=1

|βi| ≤ k. (5.42)

Another way to look at Equation 5.42, is by consider its Lagrangian formulation. Now, for a given
λ ∈ R, rather than a given k, we are trying to find

βλ = arg min
β∈Rp

{
1

N

N∑
i=1

(
yi − xiβT

)2
+ λ‖β‖1

}
. (5.43)

A great advantage of LASSO is that it has been studied extensively and has nice geometrical
properties. Most importantly, the penalization of the ‖β‖1 provides a sparse solution for β, which
is crucial to us as well as we are interested in recovering sparse structures.

LASSO in our setting. Our setting requires a coefficient matrix W rather than a coefficient
vector β. Therefore, we should aim to solve

Wλ = arg min
W∈Rp×p

{
1

T − 1

T∑
t=2

‖Xt −Xt−1W‖22 + λ‖W‖1

}
. (5.44)

where ‖W‖|1 represents the sum of the absolute value of the entries in W .
We enforce acyclicity by increasing the penalty parameter λ until the structure is acyclic. For

small values for, we expect a dense cyclic matrix W . However, for large values for λ, we expect
a sparse matrix W . Somewhere between these extremes exists a suitable value for λ, such that
G(W ) is a directed acyclic graph and W fits X well.

To formalize, let Wλ be the solution to Equation 5.44 for a given data matrix X and a penalty
parameter λ. We are looking for the smallest penalty parameter λ∗ such that Wλ∗ is acyclic,

λ∗ = min
λ≥0

λ such that Wλ from Equation 5.44 corresponds to a DAG.
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Finding λ∗ using binary search. Assume we have an efficient algorithm to compute the
solution of Equation 5.44. To find λ∗, We first solve Equation 5.44 for λ = 1. If G(Wλ) is not
acyclic, we know that λ∗ is larger than 1. To find an upper bound for λ∗, we simply double λ at
every iteration until G(Wλ) is a DAG, indicating that λ∗ is contained in the interval (l, r] = (λ2 , λ].

To get arbitrarily close to λ∗, we iteratively half the interval and continue with the interval
in which λ∗ is contained. If G(Wλ) is a DAG for λ = (l + r)/2, we know that λ∗ is contained
in the lower half of the interval, and hence, we continue with (l, λ]. If G(Wλ) is not a DAG, we
know that λ∗ resides in the upper half of the interval and we continue with (λ, r]. We continue
this process until the interval is of arbitrarily small length, say of a width smaller than ε. We then
return Wr. The pseudocode for this binary search approach, which we call DAG-LASSO, is given in
Algorithm 5.3.

Algorithm 5.3: DAG-LASSO(X, ε)

Input: A data matrix X ∈ RT×p, maximum distance of ε to the true λ∗.
Output: A penalty value λ such that G(Wλ) is a DAG and λ is at less than ε away
from the smallest λ∗ such that G(W ∗λ ) is a DAG.

1: l← 0
2: r ← 1
3: Compute Wr using Equation 5.44
4: while G(Wr) is not a DAG do . Find an upperbound for λ∗

5: l← r
6: r ← 2r
7: Compute Wr using Equation 5.44
8: end while
9: λ← r

10: while r − l ≥ ε and Wλ is not a DAG do . Iteratively half the interval (l, r]
11: λ← r+l

2
12: Compute Wλ using Equation 5.44
13: if G(Wλ) is a DAG then
14: r ← λ
15: else
16: l← λ
17: end if
18: end while
19: return Wr using Equation 5.44.

Number of required iterations. The first while loop will run max {dlog2(λ∗)e, 0} times. In the
second while loop, we half the width of the interval at each iteration, which is initially of size r−l =
r
2 , where r = max{2dlog2(λ

∗)e, 1}. Therefore, the width of the interval is w = max{2dlog2(λ
∗)e−1, 1}

If we require an interval width of size ε, then the second while loop will be executed a total of
dlog2(w/ε)e times. Therefore, after approximately O (log2(λ∗/ε)) iterations, we will have a value
for λ that is less than ε away from the true value of λ∗.

Solution Path of LASSO-DAG. A common visualization of the LASSO algorithm is the so-called
solution path [74]. We can plot each of the values of the coefficients in Wλ for each value for λ.

For λ = 0, we expect all coefficients to be quite large, and for a large enough value for λ, all
coefficients in the matrix Wλ will be equal to zero, as the penalization is so severe. For all values
for λ inbetween, we can plot all the values of all coefficients of Wλ. We expect each coefficient
in Wλ to converge to zero as a function of λ. Two examples of such solution paths are given in
Example 5.6 and Example 5.7.
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Interestingly, the lasso-path of a coefficient wij is continuous and piecewise linear. A more
formal description of the solution path for the LASSO is given in [74]. In our scenario, changing a
value in one column of Wλ only affects the other values in the same column. Therefore, we expect
kinks in the solution path of wij only when another arc wkj has been shrunk to zero.

Furthermore, the rate at which the coefficients converge to zero is indicative of the importance
of the corresponding arc. If a coefficient is small, yet converges to zero slowly, then this arc is
quite important.

DAG-LASSO with acyclic coefficient matrix W ∗. Let us assess the performance of DAG-LASSO
in Example 5.6, where the data has been generated using an acyclic coefficient matrix W .

Example 5.6 DAG-LASSO on three-dimensional data with acyclic W ∗.

To showcase how DAG-LASSO works, let us consider an example based on a data matrix
X ∈ R100×3 consisting of three time series of one hundred time steps. The data X is exactly
the same as in Example 5.4, which has been generated according to a VAR(1) model using
the data generating matrix W ∗ given in the left-hand side of Equation 5.45.

Now, for λ = 0, we simply get the maximum likelihood estimator which coincides with
the ordinary least squares estimator WOLS in the right-hand side of Equation 5.45.

W ∗ =

0.50 −0.65 0.00
0.00 0.50 −0.25
0.00 0.00 0.40

 , WOLS =

 0.50 −0.62 0.01
−0.02 0.54 −0.16
−0.14 −0.11 0.32

 . (5.45)

We see that WOLS does not correspond to an acyclic structure.
Increase the regularization penalty to λ = 0.1 yields Wλ=0.1, which has been given on the

left-hand side of Equation 5.46. Although many coefficients in Wλ=0.1 are close to zero, its
structure is still not acyclic, indicating that λ = 0.1 is not large enough to enforce acyclicity.

Applying DAG-LASSO with ε = 0.01 suggests that λ∗ = 0.14, resulting in the coefficient
matrix Wλ∗ on the right-hand side of Equation 5.46.

Wλ=0.1 =

 0.50 −0.62 0.00
−0.02 0.52 −0.13
−0.03 −0.03 0.24

 , Wλ∗=0.14 =

0.39 −0.54 0.00
0.00 0.51 −0.11
0.00 0.00 0.21

 . (5.46)

DAG-LASSO recovers the true support of W ∗, although the values are slightly biased towards
zero. Let us also investigate the solution path of the coefficients of Wλ, which has been given
in Figure 5.5.
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Figure 5.5: Visualization of the solution path for the coefficients of Wλ of Example 5.6.
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The blue vertical line in Figure 5.5 indicates that acyclicity is first established for λ∗ = 0.14.
The four unimportant arcs w13, w21, w31, and w32 have been shrunk to zero, yielding an
acyclic coefficient matrix W .

The solution path of a coefficient is also a suitable indicator of its importance. The
coefficient w23 has the same order of magnitude as the four unimportant arcs in WOLS.
Nevertheless, the solution path of w23 is less steep than the other arcs and has been shrunk
to zero only for λ ≈ 0.68. Even more, w23 has been shrunk to zero later than w33, indicating
that w23 is more important than w33, despite being twice as small in magnitude.

LASSO-DAG with a cyclic coefficient matrix W ∗. Let us now assess DAG-LASSO when we
violate the acyclicity assumption by introducing an additional arc.

Example 5.7 DAG-LASSO on three-dimensional data with model mismatch.

Consider the same three-dimensional time series with one hundred time steps as in Example
5.5. The coefficient matrix W ∗ is provided on the left-hand side of Equation 5.47.

W ∗ =

 0.35 0.40 0.00
−0.50 0.30 0.00

0.00 0.00 0.50

 , Wλ=0 =

 0.28 0.42 −0.18
−0.51 0.32 0.00
−0.08 0.00 0.31

 . (5.47)

Let us first remark that W ∗ does not correspond to an acyclic structure as w12 and w21 are
non-zero, in fact even quite large. For λ = 0, we get the matrix Wλ=0 in the right-hand side
of Equation that resembles W ∗ but is also cyclic.

Therefore, let us consider what happens for an already quite large penalty parameter
λ = 0.25, and for the smallest penalty parameter such that Wλ corresponds to an acyclic
structure, λ∗ = 0.51. Both are given in Equation 5.48.

Wλ=0.25 =

 0.09 0.21 0.00
−0.36 0.16 0.00

0.00 0.00 0.05

 , Wλ∗=0.51 =

 0.00 0.00 0.00
−0.19 0.00 0.00

0.00 0.00 0.00

 . (5.48)

The matrix Wλ∗ does not resemble W ∗ anymore, except that its non-zero coefficient corres-
ponds to the seemingly most important coefficient w∗21.

Let us investigate the solution path of DAG-LASSO applied on our data matrix X, which
has been plotted in Figure 6.3.
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Figure 5.6: Visualization of the solution path for the coefficients of Wλ of Example 5.7.
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The three unimportant edges w23, w31, and w32 converge to zero quite fast, and for λ ≈ 0.25
we recover the true structure. To retrieve an acyclic structure, we first shrink w33, w11, and
w22 to zero, such that only the cycle (w12, w21) remains. Now, a “death-match” between
the two remaining arcs commences, after which we are left with an acyclic matrix Wλ∗ at
λ∗ ≈ 0.51 only containing one non-zero coefficient.

Disadvantages We see that DAG-LASSO indeed finds an acyclic structure by using a progressively
increasing LASSO penalty. However, there are two disadvantages of using this approach.

One small disadvantage is that the coefficients in Wλ∗ are biased towards zero, as we have seen
in both Example 5.6 and Example 5.7. We can overcome this bias by re-estimating the non-zero
coefficients of Wλ∗ , as also highlighted in [30].

So, define the support of Wλ∗ as

supp(W ) = {(i, j) | wij 6= 0}. (5.49)

We are interested in the matrix Ŵ that maximizes the likelihood given X, where we can only
estimate the coefficients in the support of Wλ∗ . This constrained maximum likelihood estimator
Ŵ corresponds to the constrained least square solution, where we can only regress the time-lagged
variables corresponding to the non-zero coefficients in supp(Wλ∗). We can do this in a similar
approach as the Order-OLS algorithm described in Section 4.1.

To estimate the coefficients to predict the jth variable, we can only use the variables X·,i
such that (i, j) ∈ supp(Wλ∗). Let X′j ∈ RT−1×p be the constrained feature matrix where the ith
column of X′j consists of the first T − 1 time steps of variable X·,i if (i, j) ∈ supp(Wλ∗), and all

zeros otherwise. Furthermore, let Y·,j ∈ RT−1 be a column vector corresponding to the last T − 1

time steps of variable j. Then, the columns of the constrained ordinary least squares estimate Ŵ
are equal to

Ŵ·,j =
(
X′jX

′
j
T
)−1

X′j
TY·,j , j = 1, . . . , p. (5.50)

This coefficient matrix maximizes the likelihood, or equivalently minimizes the mean squared error,
where only the support of Wλ∗ could be re-estimated.

A second and more serious disadvantage is that DAG-LASSO does not provide a sensible solution
when the data-generating matrix W ∗ is cyclic, as we have seen in Example 5.7. The value for λ
will be increased until the structure is acyclic, but one cycle of length two can cause the inferred
structure to consist of only a single arc.
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Chapter 6

Iterative Approaches

This is the third and last methodological chapter where we introduce approaches that learn an
acyclic structure of a data matrix X. In Chapter 4 we have seen that we can decompose our coeffi-
cient matrix W into a permutation matrix P and an upper triangular matrix U , and consequently
optimize over the discrete space of permutation matrices. In Chapter 5, we have discussed ap-
proaches that enforce acyclicity through continuous constraints.

The methods discussed in the previous two chapters estimate all desired parameters in the
coefficient matrix W simultaneously. In Chapter 4, we simultaneously estimated all p(p + 1)/2
coefficients in the upper triangular matrix U . In Chapter 5, we also estimated all parameters
at the same time subject to some continuous constraints. The aforementioned methods were
global in the sense that they estimated the graphical model as a whole, without considering any
arcs individually. An alternative perspective is that the aforementioned methods were single-step
methods, as the estimation procedure only consisted of one single step.

In this chapter, we will discuss methods that employ a local approach, where we iteratively
construct an acyclic coefficient matrix by updating one arc at the time, hence the name “iterat-
ive approaches”. Another name would be multi-step approaches, as one arc is updated at each step.

Several iterative procedures exist. The first choice is the direction of the iterative approach.
We can start with an empty graph and iteratively add arcs that maximize some selection criterion.
These are called forward iterative approaches. Secondly, we can iteratively update the coefficient
matrix in the opposite direction, yielding a backward approach. We can start with a fully connected
graph and iteratively remove the arc that maximizes some deletion criterion. These two directions
can be combined in a forward-backward approach, where we first construct some coefficient matrix
after which we remove some arcs that were redundant in hindsight.

An advantage of these iterative approaches is that we can enforce acyclicity step-by-step.
Instead of discovering that the fully estimated matrix does not correspond to an acyclic structure,
the step-by-step approach allows us to pinpoint exactly when and where acyclicity was violated.

For the single direction approaches, another advantage is that they are quite efficient. As soon
as an arc has been added, this arc will remain in the structure. In the opposite direction, when
an arc has been removed, this arc will never reappear in the structure. Now, if we can evaluate
our selection or deletion criterion efficiently, such an iterative approach might be more tractable
for a large number of variables. Lastly, we can interpret the order in which arcs are selected as
an ordering of the importance of the arcs. The sooner an arc is added, the more important we
consider it to be. As we will see later, such an ordering helps in fine-tuning the graphical model
such that we only keep arcs that are considered important.

However, there are several drawbacks to iterative approaches that should also be addressed. First
of all, such iterative approaches are unable to recover from an arc addition or deletion that was a
bad choice in hindsight. Furthermore, the fact that one solitary arc may seem important at one
iteration does not imply that the arc is important in the global sense. When we jointly search for
two arcs, the notion of “important” can radically change. Therefore, this notion of importance is
at most a heuristic and should be taken with a grain of salt.
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Outline of this chapter. In this chapter, we will be discussing various iterative procedures,
both in the forward and backward direction. Furthermore, we will be investigating different
selection and deletion criteria.

In Section 6.1, we will be discussing a forward iterative procedure that uses the correlation with
the current residual as the selection criterion. The linear regression variant is called Orthogonal
Matching Pursuit. In Section 6.2, we will be investigating a backward iterative procedure that uses
the coefficient size as the removal criterion. In Section 6.3, we will be discussing other iterative
procedures, as well as a trick to improve the performance of backward iterative approaches.

We will be investigating how we should decide on a suitable complexity of the structure in
Section 6.4. A model with too few arcs does not capture all the useful relations, but too much arcs
results in an unnecessarily complex model. We will be investigating bootstrapping approaches in
Subsection 6.4.1 and a leave-one-out cross-validation approach in Subsection 6.4.2.

Several cross-validation techniques exists for time series, such as block cross-validation. How-
ever, such a technique is rather clunky as it relies on certain assumptions such as stationarity
and parameter choices such as the block size. Therefore, we will be investigating a leave-one-out
cross-validation approach although it seems inadequate for time series. We demonstrate in Section
6.5 using a small simulation study and a theoretical analysis that this approach seems appropriate
for deciding on a sensible complexity of the structure.

Determining whether the structure of W is acyclic. All iterative approaches require an
efficient method to determine whether the structure characterized by W is acyclic. The first
method that is most readily available is to use a suitable trace exponential function, as discussed
in Section 5.2. A suitable trace exponential function would be

h(W ) = Tr
(
eW̃
)
− p =

∞∑
k=1

1

k!
W̃ k, (6.1)

where W̃ corresponds to the matrix W with the diagonal entries set to zero, and p corresponds to
the number of variables. The structure is acyclic if and only if h(W ) = 0. Computing the trace
exponential can be done in O(p3) running time [1], so it is not the most efficient approach, but
suitable implementations are readily available in standard code libraries.

Secondly, we can detect cycles by verifying the existence of a topological ordering π compatible
with the induced graph G(W ). We say an ordering π is compatible if, for any pair of variables
Xi, Xj , there there does not exist an arc from node Xj to node Xi if Xi precedes the Xj in the
topological ordering. This notion of a compatible ordering is in fact equivalent to the permutation
π or permutation matrix P discussed in Chapter 4. Therefore, we can find such a topological
ordering if and only if the structure is acyclic.

There exists efficient implementations to compute a topological ordering in O(p2). We can
first remove all self-loops from the graph, as they do not violate the acyclicity assumption in our
setting. We then look for a node with no incoming arcs. If no such node exists, then there must
be a cycle in our graph. If there exists a node with no incoming arcs, then we can remove this
node and all its outgoing arcs, and this node will be the first node in our topological ordering. We
continue this process and if at some stage we are unable to find a node without any incoming arcs,
then there exists a cycle in the graph. If we can continue this process until there are no nodes
left, then we know there exists a topological ordering and hence, the structure is acyclic.

If we consider the corresponding coefficient matrix W , then a node j having no incoming arcs
is equivalent to finding a column j of W which contains all zeros. Additionally, removing this
node j from the graph is equivalent to deleting the jth row and column of W .

Pseudocode to verify the existence of a topological ordering of the variables given a coeffi-
cient matrix W is provided in Algorithm 6.1. Such an algorithm is more frequently known as a
topological sort, and this approach is quite similar to Kahn’s algorithm [38].
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Algorithm 6.1: Topological sort.

Input: A coefficient matrix W ∈ Rp×p corresponding to a directed graph G(W ).
Output: A topological ordering π = (π1, ..., πp) of the nodes i = 1, . . . , p if W
corresponds to an acyclic structure, or False if W corresponds to a cyclic structure.

1: remove self-loops of W
2: initialize π as an empty list
3:

4: for i = 1 until p do
5: find a node j with no incoming arcs. . jth column of W contains all zeros
6: if no such node is found then
7: return False . G(W ) is not a DAG
8: else
9: append such a node j to topological ordering π.

10: remove node j and its outgoing arcs . delete jth row and column of W
11: end if
12: end for
13:

14: return the topological ordering π . G(W ) is a DAG

Example 6.1 Topological sort on two adjacency matrices W1 and W2.

To see how this algorithm works, let us consider two 4-dimensional adjacency matrices

W1 =


1 0 0 0
1 1 0 0
0 1 1 1
1 0 0 1

 , W2 =


1 1 0 0
1 1 0 0
0 1 1 0
1 0 1 1

 .

The corresponding graphs are visualized in Figure 6.1, where we have already removed all
self-loops, according to line 1 of Algorithm 6.1, for convenience and conciseness of the graphs.

1 2

34

1 2

34

Figure 6.1: Visualization of the graphs induces by the coefficient matrices W1 (left) and
W2 (right) from Example 6.1. Self-loops of both graphs have been removed.

After removing the self-loops of W1, we can remove node 3 and add it to our topological
ordering. Then, we can remove either node 2 or node 4. For consistency, let us select the node
that comes first lexicographically. Next, we can remove node 4, and then node 1, yielding
a topological ordering π = (3, 2, 4, 1), so that W1 corresponds to an acyclic structure. A
topological ordering need not be unique, as π = (3, 4, 2, 1) would also be valid.

For W2, we see that after removing self-loops, we can first remove the fourth node, and
then the third node. However, both node 1 and node 2 have an incoming arc from each other.
Hence, we cannot find a topological ordering so we conclude that W2 does not correspond
to an acyclic structure.

Now that we have an efficient method to determine whether a coefficient matrix W characterizes
the structure of a directed acyclic graph, let us discuss several iterative methods.
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6.1 Using Orthogonal Matching Pursuit

Orthogonal Matching Pursuit (OMP) is an algorithm nowadays commonly known as a sparse
regression technique, but was popularized in [46] as a sparse signal recovery algorithm to recover
an encoded signal x ∈ Rn from a noisy compressed vector y ∈ Rm, where m � n. A large signal
x has been compressed using a compression matrix A ∈ Rm×n as

y = Ax. (6.2)

The goal now is to recover x given A and y. To recover x, we this we need to solve a system of
m linear equations with n unknowns. When m < n, the system of linear equations is underde-
termined, meaning there are infinitely many solutions for x. Therefore, recovering the true x is
impossible.

Although there are infinitely many solutions x′, we can try to find a solution x̂ that is maximally
sparse, meaning that of all x′ such that Ax′ = y, the solution x̂ contains the fewest non-zero
coefficients. To find x̂, we need to solve the problem

x̂ = arg min
x

||x||0 such that Ax = y. (6.3)

Where ||x||0 represents the number of non-zero coefficients in x.
However, with real life data, it is often not realistic to assume that Ax is exactly equal to

y. Therefore, we allow for a small tolerance ε to cope with the noise in the measurements. The
problem then becomes, for a given tolerance ε,

x̂ = arg min
x

||x||0 such that ||Ax− y||2 ≤ ε. (6.4)

Both problems in Equation 6.3 and Equation 6.4 are in fact NP-hard, see [25] Problem MP-5,
page 246.

Therefore, instead of trying to find the x̂, researchers have developed algorithms that approx-
imately solve the problem in Equation 6.4. An effective method to approximately solve this sparse
signal recovery problem is the aforementioned OMP approach.

OMP in the linear regression setting. Apart from the signal processing community, OMP
is now also widely used in machine learning, even in for example text classification [67] and image
reconstruction [28]. Suppose that we have a data matrix X ∈ RT×p of explanatory variables and
a response variable y ∈ RT . Suppose we want to perform a linear regression in the form of

y = Xw + ε, (6.5)

where ε represents a zero-mean random noise variable independent of X.
Now, to obtain a sparse coefficient vector w, then OMP is an effective approach, although it

is now used in a different setting. We do not necessarily have that y is a compressed version of w,
and the size of w is generally smaller than the size of y, which was the other way around in the
signal recovery setting.

Tropp [75] has shown in the noiseless setting that OMP will exactly recover the true coefficients
in w, assuming the following condition holds. Let XOPT represent the columns of X that are
included in the optimal representation of the signal, andXN-OPT the columns that are not included.
Then, OMP will recover the correct coefficients in w if

max
columns Xi of XN-OPT

‖
(
XT

OPTXOPT

)−1
XT

OPTXi‖1 < 1. (6.6)

Additionally, Zhang has shown in [86] for the setting with noise that OMP recovers all true
coefficients under some more involved assumptions, such as sufficiently large coefficient sizes and
a suitable stopping criterion.
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The OMP algorithm. To recover a sparse coefficient vector w, the Orthogonal Matching
Pursuit algorithm starts with an empty coefficient vector w(0), where the number in the superscript
denotes the current iteration of the algorithm. Furthermore, we denote Λ(0) as the support of
w(0), containing all indices that correspond to non-zero entries in w(0). We then calculate which
explanatory variable Xi ∈ RT , or equivalently which column i of X is most correlated with the
current residual r(0) = y−Xw(0) = y. Most correlated implies that the angle between the vectors
Xi and r(0) is closest to either 0 degrees or 180 degrees. The index of the corresponding column
vector can be calculated as

i(1) = arg max
i

∣∣∣〈X̃i, r
(0)
〉∣∣∣ , where X̃i =

Xi

‖Xi‖2
. (6.7)

As
∥∥r(0)∥∥

2
is the same for all i variables, we need not include this quantity in Equation 6.7.

We add the index i(1) to the support set Λ(1) and update the coefficient vector w(1) by com-
puting the ordinary least squares solution with indices restricted to Λ(1). This estimate can be
calculated by first defining X(1) as our matrix of explanatory variables X, but with all columns
Xj of X(1) set to zero if j 6∈ Λ(1). Then, the ordinary least squares estimate corresponds to

w(1) =
(
X(1)TX(1)

)−1
X(1)T y. (6.8)

We update the residual as r(1) = y−Xw(1) and again find the column of X most correlated with
the current residual, add its index to the support set, and re-estimate the coefficient vector. We
repeat this process for multiple iterations k = 2, . . ., until all correlations are smaller than some
threshold ε. We then return the coefficient vector w(k−1), consisting of k− 1 non-zero coefficients.

The pseudocode of orthogonal matching pursuit is described in Algorithm 6.2.

Algorithm 6.2: Original Orthogonal Matching Pursuit algorithm

Input: Explanatory variables X = [X1, . . . , Xp] ∈ RT×p, response variable y ∈ RT ,
a threshold ε.

Output: A coefficient vector w ∈ Rp.

1: X̃j ← Xj/||Xj ||2, the normalized basis for j = 1, ..., p.
2: Λ(0) ← ∅
3: w(0) ← 0 ∈ Rp
4: r(0) ← y −Xw(0)

5:

6: for k = 1, 2, . . . do
7: i(k) ← arg maxi

∣∣〈X̃i, r
(k−1)〉

∣∣ . find column Xi most correlated with r(k−1)

8: if maxi
∣∣〈X̃i, r

(k−1)〉
∣∣ > ε then . update Λ(k−1), w(k−1), r(k−1)

9: Λ(k) ← Λ(k−1) ∪ {i(k)}
10: X(k) ← X, with column X

(k)
j all zeros if j 6∈ Λ(k).

11: w(k) ←
(
X(k)X(k)T

)−1
X(k)T y . OLS solution restricted to Λ(k)

12: r(k) ← y −Xw(k)

13: else
14: return w(k−1)

15: end if
16: end for

Casting orthogonal matching pursuit to our setting. Algorithm 6.2 is suitable for a coef-
ficient vector w ∈ Rp and a response vector y ∈ RT . However, we consider a coefficient matrix
W ∈ Rp×p and a response matrix X2:T,· ∈ RT−1×p consisting of p response variables,

X2:T,· = X1:T−1,·W + ε2:T . (6.9)

We will propose three possible modifications to the OMP algorithm.
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Approach 1: p independent OMP methods One approach is to separately apply the OMP
algorithm p times, once for each response variable, thereby obtaining the p columns w·,j of W . In
our setting, we have for one of the j time series that

yj = X2:T,j ∈ RT−1, X = X1:T−1,· ∈ RT−1×p, wj = w·,j ∈ Rp. (6.10)

However, we lose the dependency between the p columns. This becomes impractical later as we
require the coefficient matrix W to be acyclic. For this, we need to consider the coefficients of all
columns simultaneously.

Approach 2: cast our matrix notation to vector notation. A more suitable approach
is to cast our matrix notation to vector notation. That is, we construct a response vector y′,
explanatory variables X ′, and a coefficient vector w′ such that

X2:T,· −X1:T−1,·W = ε2:T ∈ RT−1×p ⇐⇒ y′ −X ′w′ = vec(ε2:T ), (6.11)

where the the vectorized dimensions will be

y′ ∈ R(T−1)·p, X ′ ∈ R(T−1)·p×p2 , w′ ∈ Rp
2

. (6.12)

The complete derivation to vectorize the the matrix notation has been given in Appendix A.1.
A small example how on rewriting this matrix notation to a vectorized setting is given in

Example 6.2

Example 6.2 Rewrite our matrix formulation to a vectorized setting.

To explain the rewriting of our matrix notation to vector notation more clearly, we will
consider the following example. Suppose that we have four samples of two variables in our
data matrix X. Hence, T = 4 and p = 2, and X ∈ R4×2.

As our response variables, we will use the first T − 1 time steps of X, which we define
as X′ ∈ RT−1×p. Furthermore, we use the last T − 1 time steps as explanatory variables,
which we define as Y ∈ RT−1×p.

The data matrix X that we will be using in this example, as well as the corresponding
covariate matrix X′ and response matrix Y have been given in Equation 6.13

X =


1 2
3 4
5 6
7 8

 , X′ =

1 2
3 4
5 6

 , Y =

3 4
5 6
7 8

 . (6.13)

Let us now cast this matrix setting to a vectorized setting.
First, we get y′ by vectorizing Y, yielding

y′ = (3, 5, 7, 4, 6, 8)T ∈ RT−1·p.

To get X ′, we repeat the block X′ a total of p times along the diagonal, yielding

X ′ =

(
X′ O
O X′

)
=


1 2 0 0
3 4 0 0
4 5 0 0
0 0 1 2
0 0 3 4
0 0 5 6

 ∈ R(T−1)·p×p2 .

The corresponding coefficient vector w′ now exactly corresponds to the vectorized coefficient
matrix vec(W ).
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Approach 3: Extending the OMP algorithm itself. Approach 2 suffers from the drawback
that X ′ is redundantly copied a total of p times. Furthermore, the memory required to allocate
X ′ is cubic with respect to the number of variables, which is rather wasteful.

Therefore, it is more practical to extend the OMP algorithm such that we can estimate a
coefficient matrix W , rather than a coefficient vector w. Instead of one index i, we now have two
indices i and j, corresponding to the ith row of the jth column of W . This extension yields p

support sets Λ
(k)
j , coefficient vectors w

(k)
j , and residuals r

(k)
j . Here, the subscript j denotes to

which response variable they belong.

Additionally, as we now have p residuals r
(k)
i , we cannot exclude ‖r(k)i ‖2 as in Equation 6.7

to find the explanatory variable Xi most correlated with the residual r
(k)
j . The new selection

criterion is (
i(k−1), j(k)

)
= arg max

i,j

∣∣∣〈X1:T−1,i, r
(k−1)
j

〉∣∣∣
‖X1:T−1,i‖2 ‖r

(k−1)
j ‖2

(6.14)

We only need to re-estimate the coefficient column w
(k)
j and recompute the residuals r

(k)
j , which

can be done in the same way as in the standard OMP algorithm. The other support sets, coefficient
columns, and residuals remain unchanged for j′ 6= j(k).

The pseudocode for the orthogonal matching pursuit algorithm extended to multiple response
variables has been given in Algorithm 6.3. To apply it to our setting, the explanatory variables
corresponds to X1:T−1,·, and the response variables corresponds to X2:T,·

Algorithm 6.3: Orthogonal Matching Pursuit algorithm for multiple response
Variables

Input: explanatory variables X = [X1:T−1,1, . . . ,X1:T−1,p] ∈ RT−1×p,
response matrix Y = [X2:T,1, . . . ,X2:T,p] ∈ RT−1×p, threshold ε.

Output: A coefficient matrix W ∈ Rp×p.

1: X̃j ← Xj/||Xj ||2, the normalized basis for j = 1, ..., p.

2: Λ
(0)
j ← ∅, j = 1, . . . , p

3: w
(0)
j ← 0 ∈ Rp, j = 1, . . . , p

4: r
(0)
j ← Yi −Xw(0)

i , j = 1, . . . , p

5: for k = 1, 2, . . . do

6: (i(k), j(k))← arg maxi,j
∣∣〈X̃i, r

(k−1)
j 〉

∣∣/‖r(k−1)j ‖2 . get most correlated pair

7: if maxi,j
∣∣〈X̃i, r

(k−1)
j 〉

∣∣/‖r(k−1)j ‖2 > ε then

8: Λ
(k)
j ← Λ

(k−1)
j ∪ {(i(k)} . update Λ

(k−1)
j , w

(k−1)
j , r

(k−1)
j for j

9: X(k) ← X, with column X
(k)
i all zeros if i 6∈ Λ(k).

10: w
(k)
j ←

(
X(k)X(k)T

)−1
X(k)T Yj . OLS solution restricted to Λ

(k)
j

11: r
(k)
j ← Yj −Xw(k)

12: Λ
(k)
j′ ← Λ

(k−1)
j′ for j′ 6= j . copy over Λ

(k−1)
j′ , w

(k−1)
j′ , r

(k−1)
j′ for j 6= j′

13: w
(k)
j′ ← w

(k−1)
j′ for j′ 6= j

14: r
(k)
j′ ← r

(k−1)
j′ for j′ 6= j

15: else
16: return the matrix W (k−1) =

(
w

(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
p

)
17: end if
18: end for
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Enforcing acyclicity of W . In its current form, Algorithm 6.3 does not enforce acyclicity. We
can enforce acyclicity by first checking if the arc (i, j) will introduce a cycle. To check for a cycle,

we can do a topological sort on W or, its support matrix Λ(k) =
(

Λ
(k)
1 ,Λ

(k)
2 , . . . ,Λ

(k)
p

)
, so that we

need not estimate W (k) before knowing if arc (i, j) will introduce a cycle.
If adding (i, j) indeed introduces a cycle, we exclude the aforementioned arc (i, j) that in-

troduced the cycle from ever being considered again. We can argue that arc (i, j) was the least
important arc in the cycle anyhow. We use “anti-support” sets Fj that contain all entries i such
arcs (i, j) will introduce a cycle. If a cycle is indeed introduced, we remove i from Λj and add i
to the set of forbidden arcs Fj . We decrement k so that W (k) will still correspond to the matrix

with k estimated coefficients. Now, instead of looking for any (Xi, r
(k−1)
j ) pair that maximizes

Equation 6.14, we are now interested in finding the pair such that also i 6∈ Fj . The pseudocode
for this modified version of OMP, abbreviated as DAG-OMP, is described in Algorithm 6.4.

Algorithm 6.4: DAG-OMP

textbfInput: explanatory variables X = [X1:T−1,1, . . . ,X1:T−1,p] ∈ RT−1×p,
response matrix Y = [X2:T,1, . . . ,X2:T,p] ∈ RT−1×p, threshold ε.

Output: An acyclic coefficient matrix W ∈ Rp×p.

1: X̃j ← Xj/||Xj ||2, the normalized basis for j = 1, ..., p.

2: Λ
(0)
i ← ∅, i = 1, . . . , p

3: w
(0)
i ← 0 ∈ Rp, i = 1, . . . , p

4: r
(0)
i ← Yi −Xw(0)

i , i = 1, . . . , p

5: F
(0)
i ← ∅, i = 1, . . . , p

6: for k = 1, 2, . . . do

7: (i, j)← arg max
(i,j):i 6∈F (k−1)

j

∣∣〈X̃i, r
(k−1)
j 〉

∣∣/‖r(k−1)j ‖2 . get most correlated pair

8: if max
(i,j):i6∈F (k−1)

j

∣∣∣〈X̃i, r
(k−1)
j

〉∣∣∣ /‖r(k−1)j ‖2 > ε then

9: Λ
(k)
j ← Λ

(k−1)
j ∪ {i}. . try adding arc (i, j)

10: if G
((

Λ
(k)
1 ,Λ

(k)
2 , . . . ,Λ

(k)
p

))
is not acyclic then

11: X(k) ← X, with column X
(k)
i all zeros if i 6∈ Λ(k).

12: w
(k)
j ←

(
X(k)X(k)T

)−1
X(k)T Yj . OLS solution restricted to Λ

(k)
j

13: r
(k)
j ← Yj −Xw(k)

j

14: Λ
(k)
j′ ← Λ

(k−1)
j′ for j′ 6= j . Copy over Λ

(k−1)
j′ , w

(k−1)
j′ , r

(k−1)
j′

15: w
(k)
j′ ← w

(k−1)
j′ for j′ 6= j

16: r
(k)
j′ ← r

(k−1)
j′ for j′ 6= j

17: F
(k)
j′ ← F

(k−1)
j′ for j′ 6= j

18: else . Exclude arc (i, j) from being considered again

19: Λ
(k)
j ← Λ

(k−1)
j \ {i}.

20: F
(k)
j ← F

(k−1)
j ∪ {i}.

21: k ← k − 1
22: end if
23: else
24: return W (k−1) =

(
w

(k−1)
1 , w

(k−1)
2 , . . . , w

(k−1)
p

)
25: end if
26: end for
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Applying DAG-OMP on data generated by an acyclic W ∗. Having gone quite some lengths to
translate the orthogonal matching pursuit algorithm to our setting, let us consider the effectiveness
of this iterative approach.

Example 6.3 DAG-OMP on three variables.

Let us apply DAG-OMP on the same three-dimensional setting as in Example 5.4 and Example
5.6, where each time series consists of one hundred time steps each, and the data generating
matrix was

W ∗ =

0.50 −0.65 0.00
0.00 0.50 −0.25
0.00 0.00 0.40

 .

To ease notation, we will use the matrix C(k) ∈ R3×3 to denote the correlations at the start
of iteration k, and W (k) to denote the coefficient matrix at the end of iteration k,

c
(k)
ij =

∣∣∣〈X1:T−1,i, r
(k−1)
j

〉∣∣∣
‖X1:T−1,i‖2 ‖r

(k−1)
j ‖2

, W (k) =
(
w

(k)
1 w

(k)
2 w

(k)
3

)
. (6.15)

If arc (i, j) has been included or explicitly excluded, we will leave the corresponding entry cij
blank. Computing which covariate Xi is most correlated with the residual of the response
variable Yj results the correlations C(1) given on the left-hand side of Equation 6.16.

C(1) =

0.53 0.62 0.21
0.23 0.71 0.43
0.07 0.36 0.50

⇒W (1) =

0.00 0.00 0.00
0.00 0.71 0.00
0.00 0.00 0.00

 (6.16)

Arc (2, 2) corresponds to the largest residual correlation. Estimating the corresponding
coefficient using constrained ordinary least squares yields w22 = 0.72. Now, the updated
correlations are given on the left-hand side of Equation 6.17.

C(2) =

0.53 0.55 0.21
0.23 0.43
0.07 0.16 0.50

⇒W (2) =

0.00 −0.64 0.00
0.00 0.57 0.00
0.00 0.00 0.00

 (6.17)

The residual correlations in the first and third columns have not changed after estimating
w12, as the corresponding coefficients and residuals remain unaltered. On the other hand,
the correlations in column 2 have decreased and the coefficient w22 has been re-estimated.

In the next three iterations, we add the arcs (1, 1), (3, 3), and (2, 3), respectively.

C(3) =

0.53 0.21
0.23 0.43
0.07 0.12 0.50

⇒W (3) =

0.53 −0.64 0.00
0.00 0.57 0.00
0.00 0.00 0.00

 , (6.18)

C(4) =

 0.21
0.07 0.43
0.05 0.12 0.50

⇒W (4) =

0.53 −0.64 0.00
0.00 0.57 0.00
0.00 0.00 0.50

 , (6.19)

C(5) =

 0.12
0.07 0.30
0.05 0.12

⇒W (5) =

0.53 −0.64 0.00
0.00 0.57 −0.20
0.00 0.00 0.40

 . (6.20)

At this stage, we have recovered all true coefficients of W ∗.
If the threshold value ε would have been between 0.12 and 0.30, we would have recovered

the true support of W ∗ and no arc more. However, knowing such a threshold value before-
hand is generally not possible. Therefore, we continue until we have estimated a full acyclic
coefficient matrix consisting of p(p+ 1)/2 = 6 coefficients. At the next iteration, we have
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C(6) =

 0.03
0.07
0.05 0.12

⇒W (6) =

0.53 −0.64 0.03
0.00 0.57 −0.20
0.00 0.00 0.40

 . (6.21)

The correlation corresponding to arc (3, 2) is maximal. However, arc (2, 3) is already included
in our structure, so adding arc (2, 3) would introduce a cycle. Hence, we exclude (3, 2) from
consideration, and consider the second-largest entry, corresponding to arc (1, 2). However
this arcs would also introduce a cycle, and the third-best choice, arc (3, 1), would introduce
a cycle of length three. Therefore, our only option is to include arc (1, 3), yielding the final
matrix on the right-hand side of Equation 6.21.

The DAG-OMP algorithm is able to estimate a coefficient matrix W that fits X reasonably well.
Its iterative approach also gives the insight which edges were deemed most important, and which
edges were deemed less important. Furthermore, acyclicity was enforced at each iteration, although
intervention was only necessary when we added the final arc.

Applying DAG-OMP on data generated by a cyclic W ∗. Let us now verify how suitable
DAG-OMP is when the data generating matrix W ∗ is cyclic. We have seen several continuous
methods such as the gradient descent method in Section 5.1 and DAG-LASSO in Section 5.3 struggle
with cyclic structures, as their global approaches do not consider arcs individually.

Example 6.4 DAG-OMP on three variables with cyclic W .

Let us apply DAG-OMP on the same three-dimensional setting as in Example 5.5 and Example
5.7, where each time series consisted of one hundred time steps and the data generating
matrix

W ∗ =

 0.35 0.40 0.00
−0.50 0.30 0.00

0.00 0.00 0.50


corresponds to a cyclic structure.

To ease notation, we will again use the matrix C(k) ∈ R3×3 to denote the correlations
computed at the start of iteration k, and W (k) to denote the coefficient matrix at iteration
k. The first matrix of correlations C(0) is given on the left-hand side of Equation 6.22.

C(1) =

0.31 0.35 0.19
0.57 0.32 0.07
0.05 0.09 0.32

⇒W (1) =

 0.00 0.00 0.00
−0.50 0.00 0.00

0.00 0.00 0.00

 . (6.22)

Arc (2, 1) corresponds to the largest residual correlation. Estimating the corresponding
coefficient using constrained ordinary least squares yields w21 = −0.50. Now, the updated
residual correlations are given on the left-hand side of Equation 6.23.

C(2) =

0.34 0.35 0.19
0.32 0.07

0.09 0.09 0.32

⇒W (2) =

 0.28 0.00 0.00
−0.50 0.00 0.00

0.00 0.00 0.00

 . (6.23)

After adding arc (2, 1), the reversed arc (1, 2) is deemed most important. However, this would
create a cycle of length two, so we exclude arc (1, 2) and select the arc that corresponds to
the second-largest correlation, which is arc (1, 1), resulting in the coefficient w11 = 0.28. In
the coming iterations, we need not consider the correlation corresponding to arc (2, 1).

In the next three iterations, we add the arcs (3, 3), (2, 2), and (1, 3), respectively.

C(3) =

 0.19
0.32 0.07

0.09 0.09 0.32

⇒W (3) =

 0.28 0.00 0.00
−0.50 0.00 0.00

0.00 0.00 0.32

 . (6.24)
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C(4) =

 0.21
0.32 0.01

0.09 0.09

⇒W (4) =

 0.28 0.00 0.00
−0.50 0.32 0.00

0.00 0.00 0.32

 . (6.25)

C(5) =

 0.21
0.01

0.09 0.02

⇒W (5) =

 0.28 0.00 −0.18
−0.49 0.32 0.00

0.00 0.00 0.32

 . (6.26)

To add the sixth arc to W (5), the corresponding correlations are

C(6) =

 0.01
0.09 0.02

⇒W (6) =

 0.28 0.00 −0.19
−0.49 0.32 0.02

0.00 0.00 0.31

 . (6.27)

The arcs (3, 1) and (3, 2) both introduce a cycle, so we will exclude those, and settle for the
least important arc (2, 3), as it is the only arc that does not introduce a cycle.

In Example 6.4, we have seen that this iterative approach is indeed suitable for estimating an
acyclic coefficient matrix, even when the data generating matrix W ∗ was cyclic. Due to its
iterative approach, where one arc is considered at the time, we can effectively enforce acyclicity
of the inferred structure.

Speeding up DAG-OMP. Several approaches exist to improve the computational efficiency of
DAG-OMP. First, if we decide to include the arc (i, j), where i 6= j, then we can already exclude the
arc (j, i), as adding arc (j, i) would introduce a cycle of length two. This would approximately
half the number of residual correlations we need to compute.

A more significant improvement can be made by reconsidering the constrained ordinary least
squares computation in line 12 of Algorithm 6.4. Computing wj requires three matrix multiplica-
tions, two (p×T −1)×(T −1×p) matrix multiplication and one (p×p)×(p×p) multiplication, as
well as inverting a p× p matrix. We can speed this up significantly by precomputing the relevant
inner products and storing them in the matrices Ψ and K, as is also proposed in [43]. We define

Ψ = XT
1:T−1,·X1:T−1,· ∈ Rp×p, K = XT

1:T−1,·X2:T,· ∈ Rp×p. (6.28)

Here, Ψ represents the Gram matrix of the columns of X1:T−1,·, so Ψij = 〈X1:T−1,i,X1:T−1,j〉,
and 〈·, ·〉 represents the inner product of two vectors. Similarly, Kij = 〈X1:T−1,i,X2:T,j〉.

We can avoid the two (p × T − 1) × (T − 1 × p) matrix multiplications using our matrices Ψ
and K. Let Ψ′ be the matrix containing the entries of Ψ, but the entries Ψ′ij and Ψ′ji are set to
zero if i is contained in Λj . Then, computing the constrained ordinary least squares solution of
the j column vector w·,j corresponds to

w·,j = Ψ′−1K·,j, (6.29)

which requires one (p×p)×(p×p) matrix multiplication and computing the inverse of a p×p mat-
rix. These matrices Ψ and K need to be computed beforehand, but we can reuse these matrices
for every iteration, thereby greatly reducing the computational costs.

Additional tricks exist to speed up the algorithm, mostly focused on speeding up the constrained
least squares computations. Several approaches are discussed in [91] to compute the constrained
ordinary least squares estimate more efficiently, such as using the matrix inversion lemma [33], a
Cholesky decomposition approach [18], or a QR-factorization approach [76].
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6.2 Using a backward Iterative Procedure

In Section 6.1, we have constructed an algorithm that can learn a sparse matrix by using an iterat-
ive forward procedure called orthogonal matching pursuit. We have first extended the orthogonal
matching pursuit algorithm to multiple response variables, after which we added an additional
condition that enforces the estimated coefficient matrix W to be acyclic.

Instead of forward iterative approaches, we can also construct a coefficient matrix in the op-
posite direction. We start with a dense coefficient matrix, and based on some deletion criterion,
we prune the coefficient matrix until we have an acyclic structure.

Introduction to DAG-OLS. Let us describe a simple yet effective approach to estimate a suitable
acyclic matrix using a backward iterative procedure. Recall at the beginning of Chapter 4 that the
maximum likelihood estimator of the data generating matrix W ∗ can be found using an ordinary
least squares estimation. Let X2:T,· represent the first T − 1 time steps of the data matrix X, and
let X2:T,· represent the last T −1 time steps of the data matrix X. Then, the maximum likelihood
estimator of X corresponds to the ordinary least squares (OLS) estimator,

WOLS =
(
XT

1:T−1,·X1:T−1,·
)−1

XT
1:T−1,·X2:T,·, (6.30)

where the T in the subscript represents the number of time steps T , and the T in the superscript
represents the transpose.

As we had also encountered in Chapter 4, the maximum likelihood estimator WOLS does not
necessarily correspond to an acyclic structure. Therefore, we must modify WOLS.

A naive yet effective solution is to iteratively set the smallest nonzero coefficient to zero until
the coefficient matrix is acyclic. Such an approach was also just one step of the algorithm described
in [66]. We first compute the ordinary least squares estimate, after which we iteratively set the
nonzero coefficient wij that is smallest in absolute value to zero. As this is a procedure to transform
the graph induced by the ordinary least squares estimate into a directed acyclic graph, we have
called this algorithm DAG-OLS. The pseudocode of DAG-OLS is given in Algorithm 6.6.

Algorithm 6.5: DAG-OLS.

Input: A data matrix X ∈ RT×p.
Output: A coefficient matrix W ∈ Rp×p such that W is a acyclic.

1: W ←
(
XT

1:T−1,·X1:T−1,·
)−1

XT
1:T−1,·X2:T,·

2: while W contains a cycle do
3: i, j ← arg mini,j {|wij | | wij 6= 0}
4: wij ← 0
5: end while
6: return W

Although this algorithm may seem quite naive, the maximum likelihood estimator would have been
a sensible choice if we did not need to enforce acyclicity. In addition, the OLS estimate WOLS is a
consistent estimator for the data generating coefficient matrix W ∗. This means that when X has
been generated according to a VAR(1) model, then the maximum likelihood estimate converges to

the true matrix as the number of samples T tends to infinity, WOLS
T→∞−→ W ∗. Therefore, when T

is large enough, if a coefficient in W ∗ is equal to zero, then the corresponding coefficient in WOLS

will be close to zero as well.

Applying DAG-OLS on data generated by an acyclic W ∗. Encouraged by the statement on
the consistency of the ordinary least squares estimate, let us see whether this consistency is also
useful in a finite sample setting.
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If the data generating matrix W ∗ is acyclic, we expect the ordinary least squares solution
WOLS to estimate all coefficients rather well, up to some slight deviations due to noise. Therefore,
the only coefficients which have a significant contribution will form an acyclic structure which
DAG-OLS will hopefully recover.

Example 6.5 DAG-OLS on three dimensional data generated by acyclic W ∗.

Let us consider the same data matrix X ∈ R100×3 as in Example 6.3, consisting of three time
series of one hundred time steps each. The data has been generated according to a VAR(1)
model with data generating matrix

W ∗ =

 0.50 −0.65 0.00
0.00 0.50 −0.25
0.00 0.00 0.40

 .

The ordinary least squares estimate, or equivalently, the maximum likelihood estimate WOLS,
has been given on the left-hand side of Equation 6.31.

WOLS =

 0.50 −0.62 0.01
−0.02 0.54 −0.16
−0.14 −0.11 0.32

 WDAG-OLS =

 0.50 −0.62 0.00
0.00 0.54 −0.16
0.00 0.00 0.32

 . (6.31)

Applying DAG-OLS, we will iteratively set the non-zero coefficient that is smallest in absolute
value to zero until the structure is acyclic. For this, we set the coefficients w13, w21, w32,
and lastly w31 to zero. The final matrix WDAG-OLS has been given on the right-hand side of
Equation 6.31. We see that the solution contains all the true coefficients of W ∗.

Applying DAG-OLS on data generated by a cyclic W ∗. Let us now consider a cyclic data
generating matrix W ∗. Just as in Example 6.5, we expect the ordinary least squares estimate to
be reasonably close to W ∗. However, as W ∗ is acyclic, we cannot estimate all coefficients of W ∗.
Therefore, a large number of true arcs may be removed until we have an acyclic structure.

We need to “break” all cycles in WOLS, and DAG-OLS does that by setting the smallest coefficient
in that cycle to zero. However, all coefficients that are smaller in absolute value will first be
removed, which could make the final coefficient matrix much sparser than we might prefer.

Example 6.6 DAG-OLS on three dimensional data generated by a cyclic W ∗.

Let us consider the same data matrix X ∈ R100×3 as in Example 6.4, consisting of three time
series of one hundred time steps each. The data has been generated according to a VAR(1)
model with data generating matrix

W ∗ =

 0.35 0.40 0.00
−0.50 0.30 0.00

0.00 0.00 0.50

 .

Computing the ordinary least squares estimate, or equivalently, the maximum likelihood
estimator yields the matrix WOLS given on the left-hand side of Equation 6.32.

WOLS =

 0.28 0.42 −0.18
−0.50 0.33 0.01
−0.02 −0.03 0.32

 WDAG-OLS =

 0.00 0.00 0.00
−0.50 0.00 0.00

0.00 0.00 0.00

 . (6.32)

DAG-OLS will iteratively set the non-zero coefficient that is smallest in absolute value to zero
until the structure is acyclic. This means that we set the coefficients w23, w31, w32, w13,
w11, w33, w22, and lastly w21, to zero. The final matrix WDAG-OLS on the right-hand side of
Equation 6.32 contains only one non-zero entry, the entry w12 that was largest in absolute
value in WOLS.
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On using the coefficient size as a deletion criterion. The deletion criterion of DAG-OLS
is to iteratively set the smallest nonzero coefficient to zero. The reasoning behind this criterion
is that we want to remove the least important coefficients first before we start removing more
important coefficients. As it is difficult to know how important a coefficient is, we naively use
the magnitude of the coefficient as an indicator of its importance. Although a simple an efficient
strategy, this is not always a clever choice.

A method that set coefficients to zero based on their predictive performance is the DAG-LASSO

algorithm described in Section 5.3, where we used a penalty parameter λ to shrink the coefficients
in Wλ until acyclicity has been reached. From a predictive viewpoint, DAG-LASSO is more capable
of recovering the important coefficients of W ∗ than DAG-OLS. DAG-LASSO shrinks all coefficients
proportional to their predictive performance.

Example 6.7 DAG-OLS versus DAG-LASSO on two dimensional data.

Consider the data matrix X ∈ R100×2, consisting of two time series with 100 time steps each.
The data has been generated according to a VAR(1) model with coefficient matrix

W ∗ =

(
0.95 −0.25
1.00 0.00

)
.

The time series are plotted in Figure 6.2.
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Figure 6.2: Visualization of the two variables X1, X2 of Example 6.7

W ∗ does not correspond to an acyclic structure, as both off-diagonals contain non-zero
entries. To obtain an acyclic structure, we must either set w12 or w21 to zero. Preferably,
we set the least important coefficient to zero.

From simply inspecting coefficient value, we would say that w21 is the most important
coefficient. However, w21 corresponds to a contribution of 1.00Xt−1,2 to Xt,1, whereas the
value of Xt,1 is mostly determined by its autoregressive component 0.95Xt−1,1. Furthermore,
as w22 = 0.00, we have that the Xt−1,2 is simply the noise coefficient εt−1,2. Therefore,
although w21 is the largest coefficient, its contribution is quite modest. It is likely that the
contribution attributed to w12 is greater, although its size is four times smaller.

WOLS =

(
1.03 −0.11
1.19 0.14

)
, WDAG-OLS =

(
0.00 0.00
1.19 0.00

)
, WDAG-LASSO =

(
0.65 −0.10
0.00 0.00

)
(6.33)

DAG-OLS estimates the matrix in the middle of Equation 6.33. All coefficients except the least
important coefficient w21 have been removed. DAG-LASSO estimates the matrix on the right-
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hand side of Equation 6.33. The DAG-LASSO approach obtains a more suitable coefficient
matrix W , where the “correct” choice between w12 and w21 is made.

The improvement of DAG-LASSO can also be seen in the solution path of the coefficients of
Wλ in Figure 6.3. For λ = 0, we obtain the ordinary least squares estimate, with w21 indeed
the largest coefficient in magnitude. However, if we increase the penalty parameter, then the
coefficient w21 decreases much quicker in size than other coefficients. Even the coefficient
w12, which was more than four times smaller in magnitude than w21, “survives” longer than
w21, until we have an acyclic graph for λ∗ ≈ 1.19.
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Solution path of the coefficients W as a function of λ.
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Figure 6.3: Visualization of the solution path of Wλ for Example 6.7.

This example shows that the coefficient size may not be an appropriate indicator of its
predictive importance.

6.3 Several Other Iterative Approaches.

So far, we have discussed two iterative approaches. Firstly we have introduced DAG-OMP in Sec-
tion 6.1, where we iteratively add the coefficient wij such that the covariate Xi has the largest
correlation with the residual of the response variable Yj , while ensuring the structure remains
acyclic. Secondly, we have described DAG-OLS in Section 6.2, where we start with the ordinary
least squares estimate and iteratively set the smallest nonzero coefficient to zero until acyclicity
has been reached.

In this section, we will first be discussing whether we can also use these two approaches in
the opposite direction. Furthermore, we will be introducing a useful trick that improves the
performance of backward iterative procedures by only removing arcs that are contained in a cycle,
a so-called backward-violations first approach.

Forward DAG-OLS. We can also employ DAG-OLS as a forwards procedure. Originally, DAG-OLS
first estimates a full coefficient matrix WOLS, after which arcs are iteratively removed until the
structure is acyclic.

Now, rather than doing a backward iterative procedure, we can use the coefficient size as a
selection criterion for the forward iterative procedure. The algorithm for this is similar to DAG-OMP,
but instead of maximizing the residual correlation, we would maximize the coefficient size after
refitting. That is, we estimate all coefficients in our matrix W and add the arc corresponding to
the coefficient with the largest absolute value.

This would require one model fit each iteration. However, we have seen in Example 6.7 that
the magnitude of a coefficient size may not be the best metric to assess the importance of the
coefficient. Therefore, it seems that this forward variant of DAG-OLS would perform strictly worse
than DAG-OMP, whereas both algorithms would require an equal amount of model fits.
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Backward DAG-OMP. Similarly, we could investigate DAG-OMP in the opposite direction, thereby
doing a backward iterative approach. We would start with a fully estimated matrix W . Then, we
would remove the coefficient that yields the largest residual correlation after its removal. However,
to compute these correlations, we first need to refit the model without using this coefficient.

Now, we require a new model fit for each arc we are considering. At iteration k, a total of
p2 − k + 1 arcs could be removed. Furthermore, it is possible that we have an acyclic matrix as
late as iteration p2− 1, for example when the two most important arcs form a cycle of length two.

Therefore, in the worst case, this means that we need to refit the model
∑p2−1
k=1 p2−(k−1) = O(p4)

times. Even for just 10 variables, this yields a total of 5, 049 model fits. Therefore, we see that
the backward variant of DAG-OMP is less efficient than the forward variant.

Nevertheless, similar approaches to a backward orthogonal matching pursuit exist, such as
the Backward Optimized Orthogonal Matching Pursuit (BOOMP) approach [2]. However, this
method is designed rather to sparsify the solution obtained by a forward orthogonal matching
pursuit approach. The authors in [2] propose update rules such that the less model fits are
required and the model fits are computationally less demanding.

Furthermore, although the backward procedure of DAG-OMP is a bit cumbersome, we still expect
this backward procedure to outperform DAG-OLS, as the removal criterion is more appropriate.
Therefore, if the number of variables is manageable, say only a couple of dozens of nodes, then we
expect this method to be tractable as well.

6.3.1 A Backward-Violators First Approach.

As we have seen in Example 6.6, the backward iterative procedure DAG-OLS is not suitable when the
data generating matrix W ∗ is cyclic. This is a shortcoming of the continuous method DAG-LASSO

as well, as we saw in the previous chapter in Example 5.7. However, for iterative approaches,
there exists a clever trick to make these backward iterative approaches robust against such model
mismatches, that is, when we need to estimate an acyclic coefficient matrix W , yet W ∗ is cyclic.

Just as before, we start with the dense ordinary least squares estimate WOLS. Next, we only
consider removing arcs that violate the acyclicity assumption. If acyclicity is violated due to some
cycle of length two, then it is unnecessary to remove an arbitrary arc that does not violate the
acyclicity assumption. In Example 6.7, we should have only considered removing coefficients w12

and w21. Using this violators-first approach, we would not have considered removed w11, as this
arc did not introduce any cycles. Nevertheless, we would have still removed w21 although w21 is
the more important coefficient, but that problem is inherent to DAG-OLS rather than the backward
iterative approach.

Finding the arcs that violate the acyclicity constraint. To employ this trick of only
removing edges that violate the acyclicity assumption, we require an efficient procedure to retrieve
all arcs that violate the acyclicity assumption.

An initial idea is to first count all cycles in the directed graph, and then remove all arcs that
are contained in at least one cycle. Efficient algorithms and their implementations exist, one
example being Johnson’s algorithm [36]. However, the number of cycles grows exponentially with
the number of nodes. To see this, suppose we have a fully connected directed graph. To get a cycle
of length k, we can start at any arbitrary node, and traverse to k−1 other unique nodes arbitrarily,
before returning to the first node. There are p!/(p− k)! ways to gets such an ordered sequence of
length k when there are p nodes. However, each cycle will be counted k times, once with the first
node as “starter”, once with the second node as “starter”, etc. Therefore, the number of cycles of
length k in a fully connected directed graph is equal to p!/((p− k)!k), yielding a total number of
cycles of

p∑
k=2

p!

(p− k)!k
. (6.34)
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Even for a complete directed graph on 10 nodes, the number of cycles is approximately 1.1 · 106.
Therefore, iterating over the number of cycles is inefficient, as the running time will be exponential
with respect to the number of nodes when the graph is dense.

A more tractable approach is to iterate over all arcs and for each arc, determine whether it belongs
to a cycle. The method most readily available to us is a trace exponential function h(W ). In the
beginning of this chapter, we have proposed the trace exponential function h(W ) to verify whether
a coefficient matrix W corresponds to an acyclic structure,

h(W ) = Tr
(
eW̃
)
− p =

∞∑
k=1

1

k!
W̃ k. (6.35)

Here, W̃ corresponds to the matrix W with the diagonal entries set to zero. To verify whether
arc (i, j) was part of any cycle, we can compare the values of h(W ) and h

(
W−ij

)
, where W−ij

represents the matrix where we have set wij to zero. Then,

arc (i, j) is contained in any cycle ⇐⇒ h(W )− h
(
W−(i,j)

)
6= 0. (6.36)

Evaluating this trace exponential function h(W ) can be done in O(p3), and efficient implement-
ations such as [1] are readily available in standard libraries. As there are O(p2) possible arcs,
finding all arcs that violate acyclicity using this approach requires O(p5) time.

More efficiently, we can also detect whether an arc is contained in any cycle by using an arc
traversal algorithm such as depth-first search. We start by first traversing the arc (i, j) and then
continue a depth-first search. If we manage to return to the node i from which we started, we
know that arc (i, j) must be contained in at least one cycle. Performing this depth-first search
starting from an arc (i, j) requires traversing all arcs once. As there are p2 possible arcs, finding
all arcs that violate acyclicity requires approximately O(p4) running time.

The DAG-OLS algorithm revisited. Let us now use this trick to overcome the issues with
DAG-OLS. Instead of looking for the non-zero coefficient wij that is smallest in magnitude, we
are now looking for the coefficient wij that is smallest in magnitude and violates the acyclicity
constraint, in other words, is contained in a cycle. We now call this algorithm DAG-OLS-V, where
the V stands for the word “violators”.

Algorithm 6.6: DAG-OLS-V.

Input: A data matrix X ∈ RT×p.
Output: A coefficient matrix W such that the corresponding structure is acyclic.

1: W ←
(
XT

1:T−1X1:T−1
)−1

XT
1:T−1X2:T

2: while W contains a cycle do
3: AC ← set of all arcs in the graph induced by W that are contained in a cycle
4: i, j ← arg min(i,j)∈AC

{|wij | | wij 6= 0}
5: wij ← 0
6: end while
7: return W
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Example 6.8 Applying DAG-OLS-V on data generated by an W ∗

We again consider the data matrix X ∈ R100×3 corresponding to the same cyclic coefficient
matrix as in Example 6.6, where

W ∗ =

 0.35 0.40 0.00
−0.50 0.30 0.00

0.00 0.00 0.50

 , WOLS =

 0.28 0.42 −0.18
−0.50 0.33 0.01
−0.02 −0.03 0.32

 .

Recall that DAG-OLS obtained a matrix where the only non-zero coefficient was w21 = −0.50.
Now, let us consider DAG-OLS-V. In the beginning, all coefficients except for the diagonal

entries are contained in a cycle. As w23 is smallest in absolute value, we will set this coefficient
to zero. In the next iteration, the the remaining five off-diagonal entries are still contained
in a cycle, so we now set w31 to zero. The other four coefficients continue to be contained
in a cycle, so now coefficient w32 will be set to zero.

Now, the arc (1, 3) is not contained in a cycle anymore, so we will not no longer consider
removing it. The remaining two arcs to consider are arc (1, 2) and arc (2, 1), so we will set
w12 to zero, after which the structure is acyclic. This yield the matrix

WDAG-OLS-V =

 0.28 0.00 −0.18
−0.50 0.33 0.00

0.00 0.00 0.32

 .

DAG-OLS-V recovers four out of the five coefficients of W ∗, which is the maximum amount
of correct arcs to include in an acyclic structure, as there is a cycle of length two in W ∗.

Using backward-violators first to detect a cyclic W ∗. We can also use this modified
backward direction to detect whether we have a model mismatch, that is, whether we are trying
to recover an acyclic representation of a cyclic matrix W ∗. Using a backward-violators first
approach, the last arc we remove can be considered as the most important violating arc. To detect
a cyclic coefficient matrix W ∗, let us first describe how to acquire an ordering of importance of the
coefficients using a forwards search, a backward search, and a backward-violators first approach.

For the forward (F) approach, we can acquire an ordering of the coefficients by considering the

matrices W
(k)
F , where k refers to the iteration number and the number of non-zero coefficients. For

the backward (B) approach, we can acquire a reverse ordering of the coefficients by considering the

coefficient matrix W
(p2−k)
B , where k refers to the iteration number, which is equal to the number

of coefficients that have been set to zero. Therefore, the sequence of (W
(k)
B )p

2

k=0 corresponds to the
reverse order in which the coefficients have been removed. Note, however, that not all matrices in
this sequence will correspond to acyclic coefficient matrices.

For the backward-violators first (B-V) approach, we apply the same strategy for the backward
approach, but we first only remove arcs that are contained in a cycle. Then, once we have an acyclic
coefficient matrix, we iteratively remove the least important coefficient just as in the backward
approach. The reverse order in which the coefficients have been removed then corresponds to an

ordering of importance (W
(k)
B-V )p

2

k=0.

Example 6.9 Using directions to detect cyclicity of W ∗ using DAG-OMP.

Let us consider a data matrix X100×5 consisting of five time series, generated according to
a VAR(1) model with

W ∗ =


0.50 0.00 0.00 0.00 0.00
0.00 0.50 0.00 0.00 0.00
−0.47 0.47 0.50 0.83 0.00

0.00 0.00 −0.83 0.50 0.00
0.53 −0.55 0.00 0.00 0.50

 ,WOLS =


0.60 −0.05 0.05 0.03 0.09
0.00 0.51 0.01 0.02 0.16
−0.41 0.51 0.51 0.79 0.00

0.00 −0.11 −0.75 0.46 −0.02
0.48 −0.50 −0.20 −0.07 0.59

 .

Structure Learning in High-Dimensional Time Series Data 82



We will use Orthogonal Matching Pursuit using the three aforementioned directions: Forward
(-F), Backward (-B), and Backward-Violations first (-B-V). These result in the coefficient
matrices in Equation 6.37.

WF =


0.58 −0.05 0.65 0.01 0.00
0.00 0.51 0.00 0.00 0.00
0.00 0.51 0.46 0.79 0.00
0.00 −0.11 0.00 0.47 0.00
0.59 −0.50 0.52 0.08 0.57

 ,WB =


0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.81 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

 .

WB-V =


0.60 0.00 0.00 0.00 0.00
0.00 0.46 0.00 0.00 0.00
−0.41 0.51 0.48 0.80 0.00

0.00 0.00 0.00 0.46 0.00
0.48 −0.55 −0.23 0.00 0.57

 . (6.37)

We use the aforementioned approach to obtain an ordering of importance for each of the

three procedures, which we denote by (W
(k)
F )15k=0, (W

(k)
V )25k=0, and (W

(k)
B-V )25k=0. We have

computed the mean squared errors when using the coefficient matrix W (k) on X to see how
the predictive performance changes. The mean squared errors have been plotted in Figure
6.4. Furthermore, we have also visualized until which value of k the coefficient matrices was
acyclic for the backward procedures.
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Figure 6.4: Visualization of the solution path for the coefficients of W of Example 5.7

For k = 0, the matrices achieve a low predictive performance for all three methods, as the
matrix contains no arcs. As the number of coefficients increases, the predictive performance
increases as well. The backward procedure seems to perform the best, but note that acyclicity
is only attained for k ≤ 1, so the backward procedure does not provide an acyclic coefficient
matrices for k ≥ 2.

The forward and backward-violations first method achieve a comparable predictive per-
formance. However, at iteration k = 12, the mean squared error of the backward-violations
first approach significantly decreases. It first removes all violators that are less important,
but when 12 arcs remain in WDAG-OMP-B-V, the choice between w34 and w43 had to be made,
which meant that a large part of the predictive performance was lost.

This “jump” or “drop”, depending from which side we are looking, between k = 11 and
k = 12 of DAG-OMP-B-V combined with the large discrepancy in predictive performance
between DAG-OMP-F and DAG-OMP-B indicates that the original structure was not acyclic.

We have seen in Example 6.9 that these iterative approaches give more insights into the import-
ance of individual edges than the permutation based methods from Chapter 4 or the continuous
approaches from Chapter 5.
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6.4 Selecting a suitable number of arcs.

As mentioned in Chapter 1, a crucial aspect is that the inferred structure W must also be simple
to interpret. Therefore, we prefer to have as few arcs as possible in the structure, yet the structure
still adequately captures the relations between our variables. However, the discussed methods
tend to estimate more arcs than required.

Example 6.10 Selecting a suitable number of arcs in a ten-dimensional setting.

Consider the ten-dimensional dataset X ∈ R100×10 visualized in Figure 6.5 that we will be
using throughout the examples in this section. The data has been generated using an acyclic
coefficient matrix W ∗, consisting of 25 arcs, of which 15 arcs are off-diagonal.

0 20 40 60 80 100

time step t

−5

0

5

10

v
a
lu

e

Figure 6.5: Visualization of the data matrix X ∈ R100×10 from Example 6.10.

We can use DAG-OMP to infer an acyclic coefficient matrix W that hopefully resembles the
data generating matrix W ∗. If we set the threshold to zero, we will estimate a dense directed
acyclic graph, consisting of 55 arcs, whereas the true W ∗ only contained 25 arcs.

As we were interested in recovering this sparse acyclic structure, we require a principled
approach to determine which arcs are important enough to be included. As a visual approach,
we can plot how the predictive performance of the coefficient increases as we add more arcs.
Let W (k) represent the coefficient matrix at iteration k of DAG-OMP, containing k non-zero
coefficients. In Figure 6.6, we have plotted the mean squared error as a function of W (k).
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Figure 6.6: Mean squared error of W (k) on X as a function of k.
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The first arcs were indeed quite important, as the mean squared error significantly decreases.
However, the predictive gain seems to decrease, and after k = 25, the mean squared error
seems to plateau. Therefore, we see that the predictive performance of W (25) is almost as
good as the predictive performance of W (55), indicating that W (25) is preferred over W (55).
The graphical model of W (25) is less complex, in the sense that is contains much fewer arcs,
while still achieving almost the same predictive performance.

Next, let us consider some approaches that can help us in selecting a suitable subset of arcs from
an acyclic coefficient matrix W , such that the graphical model becomes less complex while still
retaining a suitable predictive performance.

6.4.1 Bootstrapping

Predicting the coefficients of W would have been much easier if we had more data. However,
obtaining more data can be quite difficult in real life or outright impossible. Luckily, there exists
an interesting approach to obtain “new” data by using a bootstrapping approach.

In such a bootstrapping approach, we use our available data matrix X and our estimated
statistical model to resample “new” data. This idea is first introduced in [21]. We will be invest-
igating two methods that utilize this bootstrapping procedure. The first method relies on using
bootstrapping to construct marginal confidence intervals of the coefficients in W . The second
method relies on using bootstrapping to verify the recoverability of coefficients in W .

Bootstrapping for VAR(1) models. We will consider the following bootstrapping proced-
ure for VAR(1) models. A great book covering bootstrapping methods for VAR(1) models is
“Resampling Methods for Dependent Data” by Lahiri [40].

The bootstrapping method is simple, yet effective. Suppose we have a dataset X ∈ RT×p that
has been generated by a VAR(1) model,

Xt,· = Xt−1,·W
∗ + εt, (6.38)

where εt ∈ Rp, t = 2, . . . , T are all independent and identically multivariate Gaussian random
variables with zero mean and covariance matrix Σ. Furthermore, we assume that we are in
a stationary setting, so we will generate X1,· according to its stationary distribution, which is
N (0, B), where

vec(B) =
(
Ip2 − (W ∗ ⊗W ∗)T

)−1
vec (Σ) . (6.39)

Now, the bootstrapping method described by Lahiri is as follows. First, we use any method
discussed so far to retrieve an acyclic estimator W for the true coefficient matrix W ∗. Then, we
compute the estimated residuals

ε̂t = Xt,· −Xt−1,·W. (6.40)

Using the assumption that our data has been generated according to Equation 6.38, we know that

ε̂t = Xt,· −Xt−1,·W. (6.41)

= εt −Xt−1,· (W
∗ −W ) . (6.42)

Assuming W ∗ was acyclic as well, we expect our estimate W to be “close” to the true estimate
W ∗. Therefore, we expect ε̂t to be “close” to the true residual εt. Then, sampling from {ε̂}Tt=2

seems to be a good alternative when there is no other way to retrieve new data X′ or residuals ε′t.
As we require the residuals to be centered around zero, we will first subtract the average from

our estimated residuals ε̂t,

ε̃t = ε̂t − ε̄, where ε̄ =
1

T − 1

T∑
t=2

ε̂t. (6.43)

where ε̄ represents the sample mean of the estimated residuals.
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Next, we can start sampling with replacement from our set of centered residuals {ε̃t}Tt=2. Sup-
pose we want to resample a VAR(1) model with T2 samples. First, we generate T2 “bootstrapped”
residuals {ε′t}

T2
t=1 by repeatedly selecting one of the centered residuals with uniform probability,

ε′i = ε̃t with probability
1

T − 1
∀ t = 2, . . . , T, i = 1, . . . , T2 . (6.44)

Now, given these new residuals, we can generate our data X′ using our estimated coefficient matrix
W ,

X ′t,· = X ′t−1,·W + ε′t, 2 ≤ t ≤ T2, (6.45)

with initial state X ′1,· = ε′1. The procedure of generating a new data matrix X′ ∈ RT2×p, called
the autoregressive bootstrapping procedure, is given in Algorithm 6.7.

Algorithm 6.7: Bootstrapping for VAR(1) models

Input: A data matrix X ∈ RT×p, an estimate W ∈ Rp×p for the coefficient matrix.
Output: A bootstrapped data matrix X′ ∈ RT×p.

1: compute the residuals

ε̂t = Xt,· −Xt−1,·W, t = 2, . . . T.

2: center the residuals

ε̃t = ε̂t −
1

T − 1

T∑
t=2

ε̂t, t = 2, . . . T.

3: sample 2T new residuals ε′t uniformly at random from {ε̃t}Tt=2 with replacement
4: set X ′1,· = ε′1
5: generate the rest of the bootstrapped data matrix X′ as

X ′t,· = WX ′t−1,· + ε′t, t = 2, . . . , 2T.

6: return the final T time steps of X′ to ensure stationarity

Note that the bootstrapped data matrix X′ is not in its stationary distribution from the first
measurement X ′1,· immediately. As X ′1,· = ε′1, these values may be much closer to zero than is
expected of X′ in its stationary distribution. Therefore, we generate a bootstrap sample of length
2T and then only use the last T samples. Then, the bootstrapped data matrix X′ is hopefully
in its stationary distribution from the outset. For coefficient matrices who are close to being
non-stationary, we expect this to be particularly effective.

Another approach would be to use either the first value X1,· or the value at any random time
step Xt,· as the initial value. However, we do not know whether the the original data matrix X
was in its stationary distribution from the beginning.

Example 6.11 Bootstrapping VAR(1) model until stationarity.

Suppose we want to bootstrap a new data matrix X′ ∈ R50×3 based on a data matrix
X ∈ R50×3 and an estimated coefficient matrix

Ŵ =

 0.9 0.0 0.0
−0.5 0.9 0.0

0.5 0.5 0.9

 .

Now, using Algorithm 6.7, we would simply set X ′1,· = ε′1. However, this means that the
first values of X′ are not near its stationary distribution, as the values are set artificially
close to zero. Some time steps may be required until the data matrix X′ is in its stationary
distribution. This behavior is showcased in Figure 6.7.
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Figure 6.7: Visualization of the bootstrapped sample X′ from Example 6.11, showcasing
that X′ is not in its stationary distribution from the beginning.

Some time steps are required until X′ reaches its stationary distribution, say t = 30. If we
want X′ ∈ R50×3 to start in its stationary distribution, we should not select the first 50 time
steps of X′, but rather the final 50 time steps to get a stationary bootstrapped data matrix
X′. For this reason, we bootstrap a data matrix X′ consisting of 2T time steps, and use
only the final T time steps of X′, as is depicted in the final line of Algorithm 6.7.

We have seen that we can sensibly generate a data matrix X′ using an autoregressive bootstrapping
procedure as described in Algorithm 6.7. To solve the problem addressed in the introduction of
this chapter, we need to employ this bootstrapping procedure to determine the important arcs in
W . We have developed two approaches that utilize this bootstrapping procedure.

Using bootstrapping to determine marginal confidence intervals of W . One approach
is to use this bootstrap approach to compute marginal confidence intervals of the coefficients of
W . If we bootstrap a total of N bootstrap samples {X′(n)}Nn=1, we can use one of the developed
methods to compute a total of N acyclic coefficient matrix {W (n)}Nn=1. We can then calculate
the α/2th and (100 − α/2)th percentiles of each coefficient wij in W , yielding us an empirical
(1−α)%-confidence interval of each coefficient of W . If the value 0 is contained in the confidence
interval, then we can argue that this coefficient is irrelevant and can therefore be set to zero.

The corresponding pseudocode has been given in Algorithm 6.8.

Algorithm 6.8: Using bootstrapping to recover marginal confidence intervals.

Input: A data matrix X ∈ RT×p, an coefficient matrix estimate W ∈ Rp×p, a total
number of bootstrap samples N , and a confidence level 0 ≤ α < 0.5.
Output: WL,WU ∈ Rp×p, containing the bootstrapped α/2th and 1 − α/2th per-
centiles of the coefficient matrix W .

1: sample N bootstrapped data matrices X′(n), n = 1, . . . , N with length T using
Algorithm 6.7 with data matrix X and coefficient matrix W

2: estimate N the coefficient matrix W (n) on the bootstrapped data matrices X(n)

3: WL ←− the α/2th percentile for each coefficient from the set {W (n)}Nn=1

4: WU ←− the (1− α/2)th percentile for each coefficient from the set {W (n)}Nn=1

5: return WL, WU

We can use these percentiles to determine whether an arc or coefficient in W is significantly
different from zero. The coefficients of the thresholded matrix Wthreshold are then

wthreshold,ij =

{
0 if wLij ≤ 0 ≤ wUij ,
wij otherwise.

(6.46)
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Example 6.12 Using bootstrapped confidence intervals to recover important arcs.

Let us consider the four dimensional setting with 250 time steps visualized in Figure 6.8,
where X has been generated according to a VAR(1) model, where the data generating matrix
W ∗ has been given on the left-hand side of Equation 6.47.

Furthermore, assume that we have estimated the matrix W on the right-hand of Equation
6.47 using DAG-OMP. Note, however, that we could have used any method that estimates an
acyclic coefficient matrix. We see that the correct arcs have been recovered, but there are
also several arcs which originate from spurious correlation with the noise.

W ∗ =


0.85 0.00 0.00 0.00
0.00 0.85 0.00 0.00
−0.28 0.26 0.85 0.00

0.46 0.00 0.00 0.85

 , W =


0.85 0.00 0.00 0.00
0.03 0.90 0.00 −0.01
−0.29 0.19 0.90 0.01

0.50 0.00 0.00 0.83

 (6.47)
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Figure 6.8: Visualization of the data matrix X from Example 6.12.

We will now generate 1000 bootstrapped data matrices {X′(n)}1000n=1 and use DAG-OMP again to
estimate a suitable coefficient matrix for each bootstrapped data matrix, yielding 1000 coef-
ficient matrices {W (n)}1000n=1 . Constructing the 10th and 90th percentile for each coefficient
wij using {W (n)}Nn=1 yields percentile matrices in Equation 6.48.

WL =


0.82 −0.03 0.00 0.00
0.08 0.84 0.00 −0.04
−0.35 0.14 0.84 0.05

0.43 −0.06 −0.06 0.75

 ,WU =


0.88 0.02 0.00 0.00
0.00 0.92 0.00 0.02
−0.23 0.26 0.93 0.06

0.59 0.07 0.06 0.88

 . (6.48)

Keeping the coefficients where the value 0 lies completely outside the percentile range yields
the thresholded matrix

Wthreshold =


0.85 0.00 0.00 0.00
0.00 0.90 0.00 0.00
−0.29 0.19 0.90 0.00

0.50 0.00 0.00 0.83

 ,

which indeed retrieves all the correct entries.
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Bootstrapping to verify the recoverability of coefficients. A second approach to distin-
guish true coefficients from noise is by inspecting the rate of recoverability of the coefficients. The
intuition is that if an entry in the coefficient matrix W is important, then we will also recover this
element after bootstrapping. For this, we require an ordering of the arcs from most important
to least important. To obtain such an ordering, we can for example use a forward iterative ap-
proach such as DAG-OMP, or we can iteratively remove coefficients from an acyclic structure using
a backward approach as we have done in Example 6.9. The pseudocode is given in Algorithm 6.9.

Algorithm 6.9: Using bootstrapping to inspect the recoverability of edges.

Input: A list of coefficient matrices (Wk)Kk=0, representing the coefficient matrix
W after the kth iteration of the DAG-OMP algorithm, and N , the number of bootstrap
samples per coefficient matrix Wk.
Output: A list arcs missed, representing the average number of arcs in Wk that
were not recovered using DAG-OMP on bootstrapped data matrices.

1: let arcs missed be a list of length K
2: for each coefficient matrix Wk do
3: use Wk to generate N bootstrapped data matrices X(n), n = 1, . . . , N

4: use DAG-OMP to estimate the coefficient matrix Ŵ
(n)
k for each X(n), where

Ŵ
(n)
k is obtained by terminating DAG-OMP after k iterations

5: let Bk and B̂
(n)
k be the support matrices of Wk and Ŵ

(n)
k , respectively

6: compute the average number of arcs in Wk that were not recovered,

arcs missed[k] =
1

2N

N∑
n=1

∥∥∥Bk − B̂(n)
k

∥∥∥
0

7: end for
8: return arcs missed

Example 6.13 Using bootstrapping to inspect the recoverability of arcs.

Let us consider the same four-dimensional setting on T = 250 time steps as in Example 6.12.
After applying DAG-OMP on X, we obtain a sequence of coefficient matrices (Wk)10k=0, where
Wk corresponds to the coefficient matrix at iteration k of the DAG-OMP algorithm.

Now, for each matrix Wk, we bootstrap 100 data matrices {X(n)
k }100n=1, and use DAG-OMP

to obtain 100 coefficient matrices {W (n)
k }100n=1 that contain exactly k arcs. We then compute

the average number of arcs that were not recovered. Plotting the average number of missed
arcs as a function of k, the number of arcs, yields the plot in Figure 6.9.
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Figure 6.9: Plot of arcs missed from Example 6.13.
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The number of missed arcs remains close to zero until we have recovered all true arcs at
k = 7. Intuitively, this means that these arcs were important enough to be recovered. Once
we consider W8, an arc is often missed, approximately 80% of the time. This implies that
arcs 8, 9, and 10 were all not significant enough to be recovered, indicating that W7 would
be the most suitable matrix. Indeed, the support of W7 is equal to the support of the matrix
Wthreshold we recovered using the confidence interval approach in Example 6.12.

Bootstrapping performance in higher dimensions Having explained the two bootstrapping
approaches to distinguish true edges from noise in Example 6.12 and Example 6.13, let us now
consider higher-dimensional settings with fewer time steps T .

Example 6.14 Applying the bootstrapping approaches in the high-dimensional setting.

Let us consider a ten-dimensional time series with one hundred time steps from Example 6.10.
The data generating matrix W ∗ consists of 25 arcs, of which 15 are off-diagonal. Applying
DAG-OMP yields a sequence of coefficient matrices (Wk)

55
k=0, where the index k corresponds to

the number of non-zero entries in Wk. Referring back to the mean squared error achieved by
each Wk in Figure 6.5, we indeed see that the mean squared error plateaus around k = 25,
corresponding to the total number of edges in W ∗.

We can first apply the bootstrapping approach to compute the 2.5th and 97.5th percentile
of each coefficient in W . We have again used 1000 bootstrapped data matrices containing
an equal number of time steps as X. If we remove all arcs where the value zero lies inside
its confidence interval, we managed to exactly recover all true coefficients and no arc more.

Secondly, we can use bootstrapping to investigate the recoverability of the arcs in each
matrix Wk. The average number of arcs that were missed has been plotted in Figure 6.10
as a function of k. The first 25 arcs were deemed important enough to be recovered almost
always. From k = 25 onward, the number of missed arcs steadily increases, indicating that
these arcs were not important enough to be recovered consistently. This also indicates that
there are indeed approximately 25 true arcs, and thus W25 here seems the best trade-off
between predictive performance and model complexity.
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Figure 6.10: Plot arcs missed from Example 6.14, showcasing the steep incline at k = 25.

6.4.2 Cross-Validation

If the data were independent, then cross-validation would be a sensible choice. As first introduced
in [71], cross-validation is a technique where we split the available data in a training set and a
validation set. We would train on the training set, and then verify the predictive performance on
the unseen validation set. For cross-validation, we use the same data matrix to randomly generate
several train and validation sets, and average the performance of the different models on their
corresponding validation sets. As the data is reused as both training data and validation data
several times, we call such an approach cross-validation.
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However, in our setting, we do not have independent data. The measurements of the current
time step Xt,· depend heavily on the previous time step Xt−1,·. Therefore, if we split our data
and train on the training data, then the validation set does not technically contain unseen data,
as some of the information of the training set has “bled” into the validation set. Therefore, cross-
validation should be done carefully when the data contains dependencies. Several principles of
proper validation, the “do’s and don’ts” of cross-validation, are explained in greater detail in [23].

Nevertheless, several cross-validation techniques for autoregressive models have been employed
before, and the validity of cross-validation on AR(1) models seems reasonable under certain as-
sumptions, such as having a stationary time series, having a consistent estimator, and making
sure that the noise components form a Martingale difference sequence [5]. Therefore, we will na-
ively disregard the dependencies. Even though cross-validation is only known to be sensible for
independent data, we show empirically that this approach seems suitable for model selection in
dependent data.

Leave-one-out cross-validation. We will naively regard our data matrix X ∈ RT×p as a set
D = {Xt−1,·, Xt,·}Tt=2, consisting of T − 1 independent features and labels.

For each of the T − 1 pairs, we will construct the training set as D
(−t)
Tr = D \ {(Xt−1,·, Xt,·)},

and the validation set will simply be the left out pair D
(t)
V = {(Xt−1,·, Xt,·)}. As we leave out one

pair each time, this approach is called “leave-one-out cross-validation”. We estimate a suitable

coefficient matrix W (−t) using the data in training set D
(t)
Tr . We then compute the leave-one-out

cross-validation score of W (−t) on the validation set. The score for the validation set D
(t)
V then

will be

LOOCVt

(
W (−t)

)
=
∥∥∥Xt,· −Xt−1,·W

(−t)
∥∥∥2
2
, t = 2, . . . , T. (6.49)

Now, the average LOOCV score for W is the average across the T − 1 validation sets,

LOOCV(W ) =
1

T − 1

T∑
t=2

LOOCVt

(
W (−t)

)
. (6.50)

We expect that true coefficient will decrease the leave-one-out cross-validation score, as the arc
provides a significant increase to the predictive performance. However, estimated coefficients which
were equal to zero in W ∗ are estimated because of spurious correlations with the noise. Although
these correlations may be apparent in DTr, these will most likely not appear in DV . Therefore,
we expect the leave-one-out cross-validation score to decrease as long as we add correct arcs to
Wk, and to increase when we start adding incorrect arcs to Wk.

Therefore, there will be a specific value k∗ that minimizes this LOOCV score. This value for
k∗ will hopefully correspond to the number of non-zero coefficients in W ∗, such that selecting Wk∗

corresponds to the most suitable matrix. A great advantages of such an approach is that there is
no additional parameter that needs to be chosen.

Example 6.15 Cross-Validation for VAR(1) model selection.

Consider the data matrix X ∈ R100×10 which we have also used in Example 6.14. The
coefficient matrix W ∗ consists of 25 coefficients, of which 15 are off-diagonal.

We split our data matrix D = {{(Xt−1,·, Xt,·)}}100t=2 into 99 folds of the form Dt =
{(Xt−1,·, Xt,·)} one for each pair, where t = 2, . . . , 100. We will use these folds to create 99
combinations of train and validation sets,

D
(−t)
Tr = D \ {(Xt−1,·, Xt,·)} , D

(t)
V = {(Xt−1,·, Xt,·)} , t = 2, . . . , T.

For each training set we use DAG-OMP to obtain a sequence of acyclic coefficient matrices(
W

(−t)
k

)55
k=0

and compute the average leave-one-out cross-validation score on D
(−t)
V for each

coefficient matrix Wk,
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LOOCV(Wk) =
1

T − 1

T∑
t=2

∥∥∥Xt,· −Xt−1W
(−t)
k

∥∥∥2
2
.

These leave-one-out cross-validation scores LOOCV(Wk) are plotted as a function of k, the
number of non-zero coefficients in the coefficient matrix Wk in Figure 6.11.
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Figure 6.11: Plot of the leave-one-out cross-validation scores as a function of k, the number
of arcs in Wk. The smallest leave-one-out cross-validation score was attained for k = 25.

We see that the cost value first decreases quite steeply, after which the cost function is
minimized for k = 25 arcs. After k = 25, we first see that the cost slightly increases until
around k = 35, after which the cost function remains approximately constant. Therefore,
we see that a total of k = 25 non-zero coefficients seems to be the correct number of arcs.
Therefore, we will now apply DAG-OMP on the full dataset X, and return the coefficient matrix
after iteration k = 25. Using this approach, we recovered exactly all true coefficients of W ∗,
and no arc more, just as both bootstrapping approaches.

6.5 An Analysis of Cross-Validation for AR(1) models.

As we have seen, the leave-one-out cross-validation technique seems to be a suitable approach to
regularize our coefficient matrix W . This seems counter-intuitive, as cross-validation is often not
advised in time-series models due to the dependency between different time steps [8]. Therefore,
we devote this section to analyze the performance of cross-validation in a much simpler setting.

6.5.1 AR(1) setting without mean.

Suppose that we are dealing with a one-dimensional data matrix X ∈ RT which has been generated
by an auto regressive (AR) model of order 1,

Xt = a0Xt−1 + εt. (6.51)

The parameter a0 represents the auto regressive coefficient, and is assumed to be less than one
in absolute value to ensure that the time series is stationary. Furthermore, εt represents random
noise, which we assume to be independent standard Gaussian random variables,

εt ∼ N (0, 1) ∀ t = 2, . . . , T. (6.52)

To make sure the data matrix X is in its stationary distribution from the very start, we sample
X1 according to its stationary distribution,

X1 ∼ N
(

0,
1

1− a20

)
. (6.53)
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Assume we know that X has been generated by an AR(1) model with auto regressive coefficient
a0. We would like to verify whether the data has actually been generated by a0,

H0 : a = a0 versus the alternative hypothesis H1 : a 6= a0.

We propose cross-validation to verify H0, which is an unorthodox approach. We will compare
the negative log-likelihood when using a = a0 to the average negative log-likelihood of using
{a(−t)}Tt=2 the leave-one-out cross-validation estimates for a. Let −2LL0(X) represent the negative
log-likelihood of a0 given the data matrix X, multiplied by two,

− 2LL0(X) = −2

T∑
t=2

log

(
− 1√

2π

)
+

T∑
t=2

(Xt − a0Xt−1)
2
, (6.54)

and −2LLLOOCV(X) the average negative log-likelihood given X of the leave-one-out cross-
validation estimates, multiplied by two,

− 2LLLOOCV(X) = −2

T∑
t=2

log

(
− 1√

2π

)
+

T∑
t=2

(
Xt − â(−t)Xt−1

)2
. (6.55)

Here, â(−t) denotes the maximum likelihood estimate of a given the data without (Xt−1, Xt),

â(−t) =

∑T
i=2Xi−1Xi −Xt−1Xt∑T

i=2X
2
i −X2

t−1
. (6.56)

We accept the null-hypothesis H0 if −2LL0(X) ≤ −2LLLOOCV(X), and reject the null-hypothesis
otherwise. Let us do some simulations to verify how often we correctly accept the null-hypothesis.

Simulation Study. For varying values of a0 and T , we have simulated a total of N data
matrices X(n) ∈ RT , n = 1 . . . , N according to this AR(1) model. For each data matrix, we
have computed −2LL0(X) and −2LLLOOCV(X), and counted how often we correctly accept H0,
i.e., −2LLLOOCV(X) ≤ −LL0(X). The ratio of correct acceptances of H0 is then equal to

RCH0(a, T ) =
1

N

N∑
n=1

1
{
−2LL0

(
X(n)

)
≤ −2LLLOOCV

(
X(n)

)}
. (6.57)

The value RCH0(a, T ) has been computed for the values a ∈ {0.0, 0.3, 0.6, 0.9, 0.95, 0.99, 0.995}
and T ∈ {25, 50, 100, 250, 500, 1000}. For each (a0, T ) pair, we used N = 1,000,000 data matrices
X(n) to estimate RCH0(a0, T ). The values RCH0(a0, T ) have been plotted as a function of a0 in
Figure 6.12 and as a function of T in Figure 6.13.

We accept the null-hypothesis using cross-validation quite often, ranging from approximately
80% to 85% of the time. Therefore, cross-validation seems to be sensible for model selection, even
when the data is dependent.

Let us first consider the ratio of correct H0 acceptances as a function of the autoregressive
coefficient a0. For a = 0.0 until a = 0.900, the ratio of correct acceptance of H0 remains constant
for the different values of T . However, as a0 tends closer and closer to one, the dependency
increases, and we see that the ratio of correct acceptance of H0 decreases slightly. This decrease
is especially visible for smaller values of T .

Secondly, let us investigate the ratio of correct H0 acceptances as a function of T . When we
have more time steps, the ratio of correct acceptance of H0 increases. For a = 0.0 until a = 0.95,
the increase happens quite soon, and already attains its maximum around T = 250, after which it
remains constant. For values of a0 closer to one, there is more dependency between the time steps
in X, and therefore we also see that the ratio increases more slowly. Nevertheless, these ratios
also seem to converge to the same value.
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Figure 6.12: Plot of RCH0(a0, T ) as a function of the autoregressive coefficient a0 for varying
values of the number of time steps T .
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Figure 6.13: Plot of RCH0(a0, T ) as a function of the number of time steps T for varying values
of the autoregressive coefficient a0.

Asymptotic value of RCH0(a0, T ). What is especially interesting is that these ratios do not
converge to one, yet they seem to converge to some value around 0.84, regardless of the value for
a0 < 1. For values of a0 closer to one, convergence requires a larger number of time steps T , but
also then the ratio converges to approximately 0.84.

Our conjecture regarding this asymptotic value is provided in Conjecture 6.1.
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Conjecture 6.1 Asymptotic value of RCH(a0, T )

Let |a0| < 1. Furthermore, let X be generated according to an AR(1) model. Then,
we conjecture that the difference between the two negative log-likelihoods as defined in
Equation 6.54 and Equation 6.55 converges to a chi-squared random variable with one degree
of freedom, shifted two units to the left. That is,

lim
T→∞

− 2LL0(X) + 2LLLOOCV(X) ∼ χ2
1 − 2. (6.58)

Moreover, let RCH0(a0, T ) denote the ratio of correct acceptance of H0 as defined in Equa-
tion 6.60. Then, we conjecture the value of RCH0(a0, T ) converges to P(Q ≤ 2) as T tends
to infinity, where Q is a chi-squared random variable with one degree of freedom,

lim
T→∞

E [RCH0(a0, T )] = const, where const = P(Q ≤ 2) and Q ∼ χ2
1. (6.59)

We want to stress that this is a conjecture, not a theorem or lemma, as a formal argument is not
provided. Nevertheless, we will provide convincing arguments that support Conjecture 6.1.

Now, assume that Equation 6.58 is indeed true. Then,

lim
T→∞

E [RCH0(a, T )] = lim
T→∞

E [1 {−2LL0 (X) ≤ −2LLLOOCV (X)}]

= lim
T→∞

P (−2LL0 (X) ≤ −2LLLOOCV (X))

= lim
T→∞

P (−2LL0(X) + 2LLLOOCV(X) ≤ 0)

= P (Q ≤ 2) , where Q ∼ χ2
1.

Using the cumulative distribution function of the chi-squared distribution, we see that

P(Q ≤ 2) =
γ(1/2, 1)

Γ(1/2)
=

1√
π

∞∑
k=0

e−1

1/2 · (1/2 + 1) · · · . . . · · · (1/2 + k)
≈ 0.8427,

which indeed closely resembles the limit we see in Figure 6.13.
To further verify our conjecture, we consider the histogram of −2LL0(X) + 2LLLOOCV(X) for

a = 0.5 and T = 10,000. We generate 50,000 data matrices X ∈ RT and compute −2LL0(X) +
2LLLOOCV(X). These values are plotted in Figure 6.14, along with the probability density function
of Q ∼ χ2

1 − 2.
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Figure 6.14: Histogram of −2LL0(X) + 2LLLOOCV(X), computed from 50,000 data matrices
X ∈ RT with T = 10,000 using an AR(1) model with a = 0.5.
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The random variable −2LL0(X) + 2LLLOOCV(X) indeed perfectly follows a chi squared distri-
bution with one degree of freedom, shifted two units to the left. Here, a value smaller than zero
indicates that −2LL0(X) ≤ −2LLLOOCV(X), indicating that we correctly accept reject H0. The
bars where −2LL0(X) ≤ −2LLLOOCV(X) have been plotted in green and the ratio of green bars
indeed corresponds to a value of approximately 0.84296, close to the value P(Q ≤ 2) ≈ 0.8427.

A more careful derivation that further supports our claim in Conjecture 6.1 has been provided
in Appendix A.3.

Modifying the type-I error Equation 6.59 unveils an interesting relation between the leave-
one-out cross-validation score and hypothesis testing. We can use the leave-one-out cross-validation
score to determine whether a time series X has indeed been generated using the auto regressive
coefficient a0. Without changing the leave-one-out cross-validation score, we know that the ratio
of correctly accepting H0 is equal to P (Q ≤ 2) ≈ 0.8427, where Q ∼ χ2

1. However, we can modify
this to adjust the confidence of correctly accepting the null-hypothesis, otherwise known as the
type-1 error α. For example, if we prefer a type-II error of α = 0.05, that means we are looking
for a k such that P(Q ≤ k) = 0.95 ⇒ k ≈ 3.8414 by looking up the quantiles of the chi-squared
distribution. We could achieve this by changing our decision rule to

RCH0(a, T ) =
1

N

N∑
n=1

1
{
−2LL0

(
X(n)

)
≤ −2LLLOOCV

(
X(n)

)
+ 1.8414

}
. (6.60)

6.5.2 AR(1) Setting with mean.

We will now investigate the setting in which the autoregressive model consisted of two parameters,
an autoregressive coefficient a0 and a mean of b0. Now, the model is defined as

Xt = b0 + a0(Xt−1 − b0) + εt. (6.61)

Again, εt represents random noise, which we assume to be identically and independently standard
normal distributed,

εt ∼ N (0, 1) ∀ t = 2, . . . , T.

To make sure the data matrix X is in its stationary distribution from the very start, we sample
X1 according to its stationary distribution,

X1 ∼ N
(
b0,

1

1− a20

)
.

The setting is now as follows. Assume X has been generated by an AR(1) model with auto
regressive coefficient a0 and mean b0. We would now like to verify whether the data has actually
been generated by a0,

H0 : a = a0 versus the alternative hypothesis H1 : a 6= a0.

We will again use cross-validation, hoping it will be effective just an for the AR(1) setting without
any mean. The difference between the previous setting is that we now need to estimate b as well.

Deriving −2LL0(X). We will compare the negative log-likelihood when using a = a0 multiplied
by two against the average negative log-likelihood of using {a(−t)}T−1t=1 , the leave-one-out cross-
validation estimates for a. However, we now also need to estimate b.

Let −2LL0(X) represent the negative log-likelihood, multiplied by two, of a0 given the data
matrix X, which is now defined as

− 2LL0(X) = −2

T∑
t=2

log

(
− 1√

2π

)
+

T∑
t=2

(
(X1 − b̂(−t)0 )− a0

(
Xt−1 − b̂(−t)0

))2
, (6.62)
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where b̂
(−t)
0 corresponds to the leave-one-out maximum likelihood estimator given a0 and X, where

we have left out the pair (Xt−1, Xt),

b̂
(−t)
0 =

(∑T
k=2Xk −Xt

)
− a0

(∑T−1
k=1 Xk −Xt

)
(T − 2)(1− a0)

. (6.63)

Deriving −2LLLOOCV(X). Deriving the negative log-likelihood using leave-one-out cross-validation

to derive both â(−t) and b̂(−t) is slightly more involved. We cannot use Equation 6.63, as we do
not have an estimate for â(−t). If we had known â(−t), then the estimate for b̂(−t) would be

b̂(−t) =

(∑T
k=2Xk −Xt

)
− â(−t)

(∑T−1
k=1 Xk −Xt

)
(T − 2)(1− â(−t))

. (6.64)

Analogously, if we had known b̂(−t), then the estimate for â(−t) would be

â(−t) =

∑T
i=2

(
Xi−1 − b̂(−t)

)(
Xi − b̂(−t)

)
−
(
Xt−1 − b̂(−t)

)(
Xt − b̂(−t)

)
∑T
i=2

(
Xi − b̂(−t)

)2
−
(
Xt−1 − b̂(−t)

)2 . (6.65)

Now, we could do an iterative approach, where we will initially estimate b̂ without â(−t) as b̂(−t) ≈
(T − 2)−1

∑T
i=2Xi−Xt. Then, we iteratively use Equation 6.64 and Equation 6.65 to update our

leave-one-out coefficients â(−t) and b̂(−t) until the negative log-likelihood has converged. Then,
the corresponding negative log-likelihood, multiplied by two, corresponds to

− 2LLLOOCV(X) = −2

T∑
t=2

log

(
− 1√

2π

)
+

T∑
t=2

((
Xt − b̂(−t)

)
− â(−t)

(
Xt−1 − b̂(−t)

))2
. (6.66)

We again accept the null-hypothesis if the negative log-likelihood under H0 is smaller than when
we would use the leave-one-out cross-validation score, that is, when −2LL0(X) ≤ −2LLLOOCV.

Simulation Study. Let us first investigate how b0 affects the ratio of correct acceptance. For
varying values of b0 and a fixed value a0 = 0.5 and T = 100, we have generated a total of
N = 10,000 data matrices X(n) ∈ RT , n = 1 . . . , N of length T according to this AR(1) model.

For each data matrix, we compute −2LL0(X) and −2LLLOOCV(X) according to Equation
6.62 and Equation 6.66, respectively. Subsequently, we count how often we correctly accept H0,
i.e., −2LL0(X) ≤ −2LLLOOCV(X).
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Figure 6.15: Plot of RCH0(a0, b0, T ) for varying values of the mean b0. Shaded parts correspond
to the standard errors.
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The value for b0 does not influence the value for RCH0(a0, b0, T ). We know that both b̂
(−t)
0 and

b̂(−t) are both estimated using cross-validation using Equation 6.63 and Equation 6.64, respectively,
albeit with a different value for a. Therefore, as the estimation procedures are similar, it is not
unexpected that the value for b0 does not affect RCH0(a0, b0, T ).

Now, let us see how the values for a and T influence the value of RCH0(a0, b0, T ). Based on
the analysis in Subsection 6.5.1, we expect the value of RCH0(a0, b0, T ) to decrease when a0 is
close to one or when T is small. We have again generated N = 10,000 data matrices for each
(a0, T ) pair in the two dimensional range of values for a0 ∈ {0.0, 0.25, 0.6, 0.9, 0.95, 0.99, 0.995}
and T ∈ {25, 50, 100, 250, 500, 1000}. The values RCH0(a0, b0, T ) have been plotted as a function
of a0 in Figure 6.16 and as a function of T in Figure 6.17. As the value for b0 did not have any
effect on RCH0(a0, b0, T ), we have fixed b0 = 0, but will still be estimated.
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Figure 6.16: Plot of RCH0(a0, b0, T ) as a function of the autoregressive coefficient a0 for varying
values of the number of time steps T . Shaded parts correspond to the standard errors.

Just as in Subsection 6.5.1, we see that the ratio of correct acceptance of H0 is is slightly larger than
0.80 when either a0 is close to zero or when T is large. However, the ratio of correct acceptance
of H0 decreases quite quickly when a0 gets closer to zero, especially when T is small. The ratio of
correct acceptance of H0 can also get much smaller than in the previous subsection. As we need
to estimate b in both models, the additional parameter in the leave-one-out cross-validation score
allows for more flexibility. So, the leave-one-out cross-validation score −2LLLOOCV is now more
often smaller than −2LL0, resulting in a lower value for RCH0(a0, b0, T ). When we have more
samples, the ratio of correct acceptance of H0 remains constant around 0.84 for quite some time
until a0 = 0.9.

Secondly, let us investigate the ratio of correct H0 acceptances as a function of T . The cor-
responding values for RCH0(a0, b0, T ) a a function of T have been plotted in Figure 6.17. When
we have more time steps, the ratio of correct acceptance of H0 increases, just as in the scenario
where we had no mean. Especially for values of a0 close to one, we see that the ratio of correct
acceptance of H0 increases when we increase the number of samples. When we have more data,
this method is more capable of correctly accepting H0.

Interestingly, we again see that this ratio does not converge to one, but again some value
around 0.84. This is most likely due to the same behavior we have seen in Subsection 6.5.1, where
this difference between the negative log-likelihoods, multiplied by two, seems to converge to a
chi-squared distribution, shifted two units to the right.
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Figure 6.17: Plot of RCH0(a0, b0, T ) as a function of the number of time steps T for varying
values of the autoregressive coefficient a0, where b0 = 0. For each (a0, T ) pair, we have conducted
a total of N = 104 simulations. Shaded parts correspond to the standard errors.
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Chapter 7

Evaluation

Throughout Chapters 4, 5, and 6, we have presented several methods for learning an acyclic
structure that characterizes the linear dependencies between the variables in time series data
X ∈ RT×p. We have already highlighted the advantages and disadvantages of most methods
in their respective chapters using toy examples, but the methods have not been objectively and
quantitatively compared to each other. As no theoretical results have been provided, the methods
will be evaluated using both simulated and real-life data.

We will predominantly evaluate our models on time series data, but we will also briefly discuss
the performance of our methods in independent data in Section 7.2.

Methods that will be evaluated. We have developed several methods. However, some meth-
ods will not be evaluated for several reasons. For example, the exhaustive approach in Section 4.1
is not tractable for more than ten variables. Furthermore, the method where we relaxed the set of
permutation matrices to the Birkhoff polytope in Section 5.1 will not be evaluated, as the method
did not properly enforce acyclicity and convergence was rather slow.

We will be evaluating the random walk approach as discussed in Section 4.2, where we can only
transition to the permutations that are one transposition away, as defined in Equation 4.33 and
Equation 4.34. Furthermore, we will be evaluating the regular Metropolis-Hastings approach
discussed in Section 4.3, as well as the greedy variant, where we only transition to permutations
that achieve a strictly larger likelihood than the current permutation. We will terminate the
permutation based approaches after one thousand permutations have been evaluated.

From the continuous-based methods, we will be evaluating the NOTEARS approach modified
for VAR(1) models as discussed in Section 5.2, as well as the DAG-LASSO approach as discussed in
Section 5.3. Lastly, from the iterative approaches, we will be evaluating the DAG-OMP approach
from Section 6.1, and the DAG-OLS-V approach, where we will be using the “violators-first”
approach as discussed in Subsection 6.3.1.

This yields a total of seven methods that we will be evaluating throughout this chapter.

Performance criteria. We will evaluate the aforementioned methods based on both structural
performance criteria, where we will assess how closely the estimated matrix W resembles to the
ground truth W ∗, as predictive performance criteria, where we will investigate how well W can
be used to predict X.

Structural performance criteria are widely used to assess the performance of methods in the
structure learning community, for example in [20, 26, 80]. Such structural performance criteria
give insights into how similar the structures of W and W ∗ are, without considering the data
matrix X. We consider each entry in W ∗ to be equally important. Whether the coefficient in W ∗

is equal to 0.01 or 1.00, from a structural point of view, failing to recover any of these coefficients
is considered equally problematic.

From a predictive point of view, it is unimportant how well W resembles W ∗. All arcs could
be incorrectly recovered, as long as W is useful in prediction for our data matrix X.
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Structural Hamming Distance (SHD). The Structural Hamming Distance (SHD) is a per-
formance metric that captures both the number of false positives (an incorrectly recovered arc)
and the number of false negatives (and incorrectly missed arc). The SHD has first been used in
[77] to compare adjacency matrices of directed graphs. The structural hamming distance between
two adjacency matrices W ∗ and W is defined as the smallest number of arc additions, deletions,
and reversals in order to transform the graph G(W ) into the graph G(W ∗).

Let supp(W ) be the set of all indices corresponding to non-zero indices in W . Furthermore,
let supp(W ) denote the set of all indices corresponding to zero entries in W . Furthermore, let
W̃ represent the coefficient matrix W with the coefficients on the diagonal set to zero. Then, the
SHD can be computed as

SHD(W ∗,W ) = #arc additions + #arc deletions + #arc reversals (7.1)

= |supp(W ) ∩ supp(W ∗)|+ |supp(W ) ∩ supp(W ∗)| − |supp(W̃T ) ∩ supp(W ∗)|,

An arc reversal is counted as both a required arc addition and a required arc deletion in the
two components of Equation 7.1. Therefore, the third component of Equation 7.1 subtracts one
mistake for each incorrectly directed off-diagonal arc. To ensure only off-diagonal arcs are counted
in the third component, we use W̃ rather than W .

On one hand, the SHD quantifies how many arcs of W ∗ are contained in W , and on the other
hand, how many missing arcs of W ∗ are also not contained in W . This combination is useful as we
often want a trade-off between the number of true positives and the number of true negatives. We
can “recover” all arcs with a matrix W that only has nonzero coefficients, and we can “recover”
all true negatives with a matrix W that does not have any nonzero coefficients. To get an optimal
SHD, however, we require W to contain exactly all arcs of W ∗ and no more. As the SHD considers
an incorrect arc direction as only one mistake, we see that the SHD is also more lenient with respect
to arc discovery, as a metric such as the accuracy regards this as two mistakes.

Empirical risk Empirical risk is a performance criteria that quantifies the usefulness of W for
prediction. For our VAR(1) model, we are interested in assessing how close Xt,· is to our prediction
Xt−1,·W . The empirical risk of a coefficient matrix W on a data matrix X ∈ RT×p is defined as

Remp(W ) =
1

T − 1

T∑
t=2

‖Xt,· −Xt−1,·W‖22 (7.2)

This is in fact equivalent to the mean squared error, as was defined in Equation 4.28.
A lower empirical risk of W indicates that it was more likely that X has been generated by a

VAR(1) model characterized by W , as was also explained in the introduction of Chapter 4.

True Risk. Although the empirical risk adequately assesses how suitable a coefficient matrix
W predicts X, we also want to assess whether W achieve a low empirical risk on similar data X′.

Therefore, we also consider the true risk. The true risk can only be evaluated when the data
generating model is available. When we generate data according to a VAR(1) model,

Xt,· = Xt−1,·W
∗ + εt. (7.3)

Assuming the generated time series is stationary, that is, E [Xt,·] = E [Xt′,·] and V (Xt,·) = V (Xt′,·)
for all t, t′, then the true risk of W is calculated by taking the expectation of a single prediction,

R(W ) = E
[
‖Xt,· −Xt−1,·W‖22

]
= Tr

(
(W ∗ −W )TV(Xt,·)(W

∗ −W ) + V (εt)
)
, (7.4)

where we can compute the covariance of V(Xt,·) as

vec (V(Xt,·)) =
(
Ip2 − (W ∗ ⊗W ∗)T

)−1
vec (V (εt)) . (7.5)

Note that the true risk is lower bounded by Tr (V (εt)), which will be equal to p throughout all
simulations.
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7.1 Time Series Experiments

Having defined the necessary performance criteria to evaluate our methods, we propose the follow-
ing three types of time series experiments. First, we will simulate an optimal setting in Subsection
7.1.1 where X has been generated by a VAR(1) model with an acyclic coefficient matrix W ∗. This
is the exact setting we are assuming, and therefore we expect our methods to perform well.

Secondly, we will simulate a sub-optimal setting where the data X has been generated by
a VAR(1) model, but the coefficient matrix W ∗ is cyclic. Therefore, we cannot expect to find
an acyclic coefficient matrix W that exactly resembles W ∗. Nevertheless, we hope our methods
will retrieve a reasonably suitable coefficient matrix W . The results of these experiments will be
discussed in Subsection 7.1.2.

Lastly, we will verify our methods on real-life data in Subsection 7.1.3. In real-life settings, the
VAR(1) modeling assumption might be violated. However, applying our methods on real-life data
could provide an interesting use case that highlights the directed relations between the variables.

Generating W ∗ and X. To generate the true coefficient matrix W ∗, we first specify the number
of variables p. For the time series experiments, the p auto regressive coefficients on the diagonal
will be set to 0.5. This value is rather low, but necessary to ensure stationarity when there are
numerous off-diagonal entries, especially for large values of p. Lastly, a total of s off-diagonal arcs
will be set to 0.5 such that W ∗ corresponds to an acyclic structure in Subsection 7.1.1, and to a
cyclic structure in Subsection 7.1.2.

Given our coefficient matrix W ∗, we can generate our data matrices X ∈ RT×p by generating
T samples according to a VAR(1) model as defined in Definition 2.3. The noise variables are all
Gaussian random variables with mean zero and identity covariance. To ensure stationarity, X1,·
will have a covariance corresponding to its stationary distribution.

Experimental Setups. There are many parameters with respect to the data generating process
that we can consider. As we are predominantly interested in high-dimensional time series, we will
carefully investigate the influence of p in the small sample setting and the large sample setting.
Additionally, we can change the sparsity of the coefficient matrix W by altering s, the number of
off-diagonal arcs. We will consider the following range of parameters.

• The number of variables p ∈ {5, 10, 15, 25, 50}, ranging from low to high-dimensional.

• The number of time steps T ∈ {100, 1000}, corresponding to few samples and many samples.

• The number of arcs s ∈ {3p, 5p}, corresponding to an average of three outgoing arcs per
variable (sparse setting) and five outgoing arcs per variable (dense setting), respectively.
The number of arcs will be thresholded to p(p − 1)/2 as that is the maximum number of
off-diagonal arcs in a directed acyclic graph.

For each triple (p, T, s), we generate ten datasets to obtain reliable estimates. We will compute the
mean and corresponding standard errors of our three performance metric to express uncertainty.

For all methods, we will compute the empirical risk Remp(W ) as defined in Equation 7.2.
Subsequently, we will threshold all coefficients in W with an absolute value smaller than ε = 0.30
to zero in order to obtain a suitable number of arcs. Based on this thresholded matrix, we will
compute SHD according to Equation 7.1. Lastly, we re-estimate the non-zero coefficients of the
thresholded matrix to compute the true risk R(W ) as defined in Equation 7.4.

Justification for the threshold ε Although thresholding is often employed to select a suitable
number of arcs [82, 87, 89], some justification is required for the seemingly arbitrary choice for
the threshold value ε = 0.30. A fair argument is that this threshold has been selected such that
it sits nicely between the 0.0 and 0.5, the values of the coefficients in W ∗. Therefore, using such
a threshold may sketch an overly optimistic picture of the methods. Furthermore, the size of a
coefficient is not necessarily a suitable indicator of its performance, so there is reasoning to not
do thresholding at all.
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However, our reasoning is that we wanted to create a level playing field to assess the structure
recovery of all methods, and applying the same threshold to all methods seemed a fair approach.
Apart from DAG-LASSO, no other methods shrink their coefficients. Nevertheless, we have in-
vestigated the influence of the threshold value ε in Appendix B.5. We have analyzed how the
results change for the values ε ∈ {0.0, 0.05, 0.15, 0.3, 0.4}. We saw that, although the threshold
indeed significantly affects the performance of all methods, the relative performance between the
methods remained unchanged. Therefore, the choice of ε might influence the absolute results, but
the relative performance results of all methods remains valid.

7.1.1 Simulated VAR(1) data with an acyclic coefficient matrix W ∗

Let us consider the setting where we have a sparse coefficient matrix, meaning that each variable
has an average of three incoming arcs. For the results on dense acyclic coefficient matrices, we
refer the interested reader to Section B.2 in the appendix.

The results for the true risk are given in Table 7.1 and have also been plotted with standard
errors in Figure 7.1 and Figure 7.2. The results for the Structural Hamming Distance are given in
Table 7.2, Figure 7.3, and Figure 7.4. We refer the reader to Appendix B.1 for the empirical risk.

Table 7.1: Average true risk R(W ) as a function of p for T = 100 and T = 1000, where s = 3p and
W corresponds to an acyclic structure. A lower true risk indicates a better predictive performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 5.26 12.70 20.85 41.30 109.70 5.02 11.92 19.41 37.87 89.57

MH-Regular 5.26 12.47 20.85 41.28 109.54 5.02 11.87 20.35 37.91 95.08

MH-Greedy 5.38 11.41 17.02 28.95 68.01 5.02 10.46 15.47 25.67 54.62

NOTEARS 5.26 10.59 16.08 27.08 61.03 5.02 10.04 15.07 25.10 50.19

DAG-LASSO 12.32 51.51 68.16 148.08 353.65 10.72 46.02 69.44 136.20 290.74

DAG-OMP 5.26 11.45 17.51 27.88 63.64 5.02 10.52 15.85 25.34 50.62

DAG-OLS-V 5.28 10.55 16.15 27.61 128.07 5.02 10.04 15.06 25.10 50.19

10 20 30 40 50

p, number of variables

0

25

50

75

100

125

a
v
er

a
g
e

tr
u

e
ri

sk
R

(W
)

Random Walk MH-R MH-G NO TEARS DAG-OMP DAG-OLS-V

Figure 7.1: Plot of the average true risk as a
function of p, where T = 100 for the methods in
Table 7.1, excluding DAG-LASSO.
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Figure 7.2: Plot of the average true risk as a
function of p, where T = 1000 for the methods
in Table 7.1, excluding DAG-LASSO.

DAG-LASSO achieves by far the poorest true risk. As only DAG-LASSO shrinks its coefficients,
thresholding will unfairly penalize this method. Although this is true, we have conducted these
experiments for several threshold values in Appendix B.5. Even with the most favorable threshold,
DAG-LASSO was not on par with the other methods. Its global approach removes too many
coefficients when one false coefficient is important due to spurious correlations. As the results of
DAG-LASSO skew the plots, we do include them results in the figures.
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The random walk and the regular Metropolis-Hastings approach achieve a decent true risk for
p ∈ {5, 10, 15}, after which the performance decreases. This is most likely due to the exponential
increase of the search space. Trying only 1000 permutations is enough to try all permutations
for p = 5 and a reasonable subset for p = 10 and p = 15. However, for p = 25, we only
cover a minuscule portion of 25!/1000 ≈ 10−20% of the search space, so these permutation-based
approaches will decrease in performance as p increases. The regular Metropolis-Hastings approach
is not much better than the random walk, most likely because the coefficient matrix is relatively
sparse, as discussed in Example 4.6. On the other hand, the greedy Metropolis-Hastings approach
performs surprisingly well, even though only a minuscule fraction of the search space has been
explored. The exploitative decision rule seems to allow for an efficient traversal of the search space.

NOTEARS, DAG-OMP, and DAG-OLS perform quite well. Note that the optimal coefficient
matrix will still yield a true risk of p due to the noise, indicating that NOTEARS and DAG-
OMP perform close to optimal. DAG-OLS-V, quite surprisingly, is on par with NOTEARS and
DAG-OMP, yet performs poorly for p = 50, T = 100. We think that the initial OLS estimate is
too inaccurate in such a high-dimensional small-sample setting. Furthermore, all methods benefit
from having a larger sample size T , although the permutation-based approaches seem to benefit
relatively less. The bottleneck for permutation-based approaches was not the sample size, but
rather the iteration limit.

Table 7.2: Average structural hamming distance (SHD) as a function of p for T = 100 and
T = 1000, where s = 3p and W is acyclic. A lower SHD indicates a better structural performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 0.3 5.4 11.2 29.5 97.5 0.0 4.5 9.1 22.6 57.7

MH-Regular 0.3 5.2 11.2 30.6 99.6 0.0 4.3 10.8 20.8 58.4

MH-Greedy 0.7 2.3 2.4 6.1 33.2 0.0 1.1 0.8 1.2 6.0

NOTEARS 0.3 0.4 0.7 1.9 20.0 0.0 0.0 0.0 0.0 0.0

DAG-LASSO 12.1 37.2 54.5 92.8 188.1 9.1 36.1 55.0 91.9 184.6

DAG-OMP 0.3 1.6 1.4 3.6 22.3 0.0 0.6 0.9 0.4 0.3

DAG-OLS-V 0.4 0.3 0.8 2.9 58.1 0.0 0.0 0.0 0.0 0.0
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Figure 7.3: Plot of the structural hamming dis-
tance as a function of p, where T = 100 for the
methods in Table 7.2, excluding DAG-LASSO.

10 20 30 40 50

p, number of variables

0

20

40

60

a
v
er

a
g
e

S
H

D

Figure 7.4: Plot of the structural hamming dis-
tance as a function of p, where T = 1000 for the
methods in Table 7.2, excluding DAG-LASSO.

Considering the structural hamming distance, we see comparable results as with the true risk. All
methods improve as we have more samples, most notably the DAG-OLS-V approach as it relies
on a suitable initial ordinary least squares estimate. The sharp increase in SHD from p = 25 to
p = 50 in the small-sample setting highlights the increase in difficulty of recovering a suitable
structure increases when the number of dimensions increases.
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The random walk and the regular Metropolis-Hastings approach perform quite poor com-
pared to the other methods. The greedy Metropolis-Hastings approach performs quite well, but
NOTEARS and DAG-OMP perform slightly better, especially for larger values of p. DAG-OLS-
V again performs surprisingly well apart from the setting where T = 100 and p = 50. In the
large-sample setting, NOTEARS and DAG-OLS-V perfectly recover the acyclic structure.

Using cross-validation to determine a suitable number of arcs
To create a level playing field for the permutation-based methods, we have used thresholding to
select a suitable number of arcs. This thresholding is rather unjustified, as it might benefit some
methods over others. Furthermore, the threshold was chosen such that it sits nicely in between
zero and the value of the true coefficients, which is information we do not have in practice.

Therefore, we will also provide the true risk and structural hamming distance where we have
not applied any thresholding. We apply cross-validation for the iterative methods and the regu-
larization parameter λ = 0.1 for NOTEARS, which the authors proposed. The results are shown
in Table 7.3 and Table 7.4. We obtain an ordering of the arcs for DAG-OLS-V by repeating its
deletion criterion until the graph is empty. We could also apply such a deletion criterion to the
permutation-based approaches, after which we could use cross-validation as well. However, we con-
sider the ordering an advantage of the iterative approach, and we consider “lending” this feature
to the permutation-based approaches unfair. Furthermore, this would have been computationally
infeasible for p ≥ 15, as the method needs to be applied T times rather than once.

Table 7.3: Average true risk using cross-validation for the iterative approaches and λ = 0.1 for
NOTEARS as a function of p for T = 100 and T = 1000, where s = 3p and W ∗ corresponds to
an acyclic structure. A lower true risk indicates a better predictive performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 5.17 12.69 20.33 42.26 130.67 5.02 11.99 19.15 35.93 80.92

MH-Regular 5.17 12.87 20.41 43.98 136.06 5.02 11.80 19.73 36.46 84.11

MH-Greedy 5.17 11.38 16.98 32.18 96.01 5.02 10.29 15.18 26.10 55.39

NOTEARS 5.17 10.63 16.53 29.52 69.33 5.02 10.04 15.08 25.15 50.36

DAG-LASSO 8.47 37.04 50.79 101.90 244.59 8.24 29.30 49.07 87.45 205.30

DAG-OMP 5.17 11.26 16.92 27.54 58.9 5.02 10.38 15.73 25.36 50.45

DAG-OLS-V 5.17 10.64 16.39 28.65 63.50 5.02 10.06 15.13 25.27 50.93

Table 7.4: Average structural hamming distance using cross-validation for the iterative ap-
proaches and λ = 0.1 for NOTEARS as a function of p for T = 100 and T = 1000, where s = 3p
and W ∗ is acyclic. A lower SHD indicates a better structural performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 0.0 23.8 74.8 263.2 1177.2 0.0 23.6 75.8 267.0 1176.0

MH-Regular 0.0 23.8 76.2 266.0 1182.6 0.0 22.2 78.8 267.4 1189.0

MH-Greedy 0.0 18.2 61.0 229.4 1095.2 0.0 16.2 60.2 227.6 1089.4

NOTEARS 0.0 7.3 26.0 91.0 370.3 0.0 0.7 4.9 11.2 34.6

DAG-LASSO 8.7 37.3 58.2 96.0 205.3 6.8 35.9 57.0 94.7 195.3

DAG-OMP 0.0 4.3 8.6 20.6 44.9 0.0 3.5 9.1 12.7 17.5

DAG-OLS-V 0.0 7.4 18.1 56.3 166.9 0.0 5.8 20.9 60.0 229.0
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Cross-validation for iterative methods and using λ = 0.10 for NOTEARS yield poorer structural
performance than thresholding, as we do not have the oracle information of a suitable threshold.
However, these regularization approaches yield only a minor decrease in predictive performance
compared to thresholding. For the permutation-based approaches, the SHD increases drastically
if we do not apply thresholding, and the true risk increases slightly.

In the small sample setting, cross-validation seems preferred over NOTEARS with λ = 0.10.
DAG-OMP performs slightly better than DAG-OLS-V, most likely due to its more sensible se-
lection criterion. In the large sample setting, NOTEARS with default λ seems preferred over
cross-validation in terms of structure, and just slightly better in terms of prediction. In both
settings, the regularized approaches yield much better results than permutation-based methods.
Lastly, DAG-LASSO without thresholding still performs poorest.

7.1.2 Simulated VAR(1) data with a cyclic coefficient matrix W ∗

Let us consider the setting where the coefficient matrix W ∗ is cyclic. Therefore, we can never
achieve a structural hamming distance of zero, or a true risk as low as when W ∗ was acyclic.
Nevertheless, it is interesting to see which methods cope best with acyclicity.

The results for the true risk R(W ) are given in Table 7.5, Figure 7.5, and Figure 7.6. The
results for the Structural Hamming Distance, are given in Table 7.6, Figure 7.7 and Figure 7.8.
We refer the reader to Appendix B.3 for the empirical risk.

Table 7.5: Average true risk R(W ) as a function of p for T = 100 and T = 1000, where s = 3p and
W ∗ corresponds to a cyclic structure. A lower true risk indicates a better predictive performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 6.79 13.88 21.32 40.23 95.62 6.61 13.10 19.97 36.75 77.33

MH-Regular 6.79 13.80 20.64 41.22 93.31 6.61 13.29 20.12 37.06 79.32

MH-Greedy 7.01 13.85 19.94 35.72 81.01 6.75 13.02 18.39 31.50 63.20

NOTEARS 6.83 13.47 19.57 34.58 74.41 6.66 12.76 18.27 32.87 60.35

DAG-LASSO 20.03 42.85 67.68 129.41 334.85 19.63 42.49 64.84 127.45 268.56

DAG-OMP 7.38 14.35 20.44 35.86 77.72 7.08 13.35 18.65 31.78 60.93

DAG-OLS-V 7.89 14.82 21.21 36.25 58.18 7.49 14.02 19.39 33.99 63.09

10 20 30 40 50

p, number of variables

20

40

60

80

100

a
v
er

a
g
e

tr
u

e
ri

sk
R

(W
)

Random Walk MH-R MH-G NO TEARS DAG-OMP DAG-OLS-V

Figure 7.5: Plot of the average true risk as a
function of p where T = 100 for the methods in
Table 7.5, excluding DAG-LASSO.
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Figure 7.6: Plot of the average true risk as a
function of p where T = 1000 for the methods
in Table 7.5, excluding DAG-LASSO.
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The predictive performance of the six methods seem to be closer than in the acyclic setting,
especially for p ∈ {5, 10, 15}, with DAG-LASSO being the exception as expected. As the num-
ber of variables increases, the permutation-based approaches fall slightly behind, as the number
of permutations grows exponentially. For T = 1000, the non permutation-based approaches all
achieve a similar true risk, which is most likely close to optimal. However, the permutation-based
approaches who are not able to efficiently travel the search space seem to benefit very little of this
larger sample size. Arguably the simplest method, the DAG-OLS-V algorithm, performs surpris-
ingly well in the T = 100 setting, outperforming a state-of-the-art method such as NOTEARS
when p = 50.

Table 7.6: Average structural hamming distance (SHD) as a function of p for T = 100 and
T = 1000, where s = 3p and W ∗ is cyclic. A lower SHD indicates a better structural performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 3.5 7.1 12.7 25.0 73.9 3.3 5.5 9.7 18.0 37.2

MH-Regular 3.5 6.7 11.5 26.7 78.4 3.3 5.0 9.9 17.7 40.1

MH-Greedy 3.7 5.8 9.6 15.7 52.7 3.8 5.6 6.1 8.2 15.6

NOTEARS 3.7 5.7 8.2 13.0 42.1 3.3 4.9 5.8 9.2 11.3

DAG-LASSO 14.3 28.2 41.8 69.7 140.3 14.2 27.9 42.0 69.4 134.9

DAG-OMP 4.6 8.1 10.4 16.2 49.8 4.3 6.3 7.0 10.2 13.8

DAG-OLS-V 4.5 6.8 10.0 14.7 23.5 4.6 6.5 7.4 11.8 17.4
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Figure 7.7: Plot of the structural hamming
distance as a function of p where T = 100 for the
methods in Table 7.6, excluding DAG-LASSO.
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Figure 7.8: Plot of the structural hamming dis-
tance as a function of p where T = 1000 for the
methods in Table 7.6, excluding DAG-LASSO.

From a structural perspective, the random walk and the regular Metropolis-Hastings achieve quite
a large structural hamming distance, indicating that their recovered coefficient matrix deviates
quite a lot from the true coefficient matrix. For small sample sizes, the DAG-OLS-V approach
seems to recover the structure of W ∗ best, as NOTEARS, DAG-OMP, and the greedy Metropolis-
Hastings approach seem to struggle more when T = 100 and p = 50.

For larger sample sizes, the structural performance increases for all methods, with NOTEARS
being slightly better than DAG-OMP, the greedy Metropolis-Hastings approach, and DAG-OLS-V.
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7.1.3 Real Life Time Series Data.

In the previous two subsections, we have generated data according to a VAR(1) model, where
all noise components were all independently and identically distributed with mean zero and an
identity covariance matrix. This setting is quite optimistic, as it perfectly aligns with our model
assumptions, apart from the acyclicity assumption in Subsection 7.1.2.

However, more often than not, real-life data does not perfectly align with the model assump-
tions. Hopefully, these violations are not too problematic and we can still obtain interesting results.
Furthermore, these real-life datasets allow us to give meaning to the directed relationships. Rather
than X1 → X2, these variables have a physical meaning, such as how the sales of one product
affect the sales of another product. Therefore, let us consider the Dominick’s Finer Foods data.

Dominick’s Finer Foods data. Dominick’s Finer Foods was a well-established supermarket
chain in Chicago which was declared defunct in 2013 [39, 53]. Information regarding the prices,
sales and promotions of all their available products was gathered from 1989 until 1999, as part
of a partnership with Chicago Booth, the graduate business school of the University of Chicago.
For each Dominick’s Finer Foods store, the weekly number of units sold has been recorded. Many
more attributes have been recorded, such as the demographics of customers, prices of the products,
profit margin, deal codes, etc. Nevertheless, we will only focus on the sales of the products.

Over those seven years, more than 3,500 different Universal Product Codes (UPCs) have been
tracked, corresponding to specific products sold by Dominick’s Finer Foods. These UPCs have
been categorized into 29 different categories, ranging from foods such as “cheese” and “crackers”,
beverages such as “beer” and “bottled juice”, and general commodities such as “dish detergent”
and “toothbrushes”. We have decided to focus on the sixteen consumable categories, which cor-
respond to: “beer”, “bottled juice”, “canned soup”, “canned tuna”, “cereal”, “cheese”, “cookies”,
“cracker”, “front end candy”, “frozen dinner”, “frozen entree”, “frozen juice”, “oatmeal”, “refri-
gerated juice”, “snack cracker”, and “soft drink”.

We follow the same approach as [27] and [70] by only considering data from January 1993
until July 1994, yielding 77 weeks of sales numbers for sixteen categories in total. Next the log-
differences of the sales have been considered rather than the actual sales to ensure stationarity
of the time series. This results in sixteen time series of 76 time steps for each Dominick’s Finer
Foods store. Now, we are interested in seeing how the sales of one category influence the sales
of another category. We conjecture that similar product categories, such as “bottled juice” and
“refrigerated juice” will have some relation, as they are similar categories. We argue that when
quite a lot of bottled juice is sold in one week, then this might be at the expensive of refrigerated
drinks the next week. Similarly, if the sales of cheese increase this week, then this be associated
with an increase of other snacks and unhealthy beverages the next week. Furthermore, we expect
no relation to exist between dissimilar categories, such as “canned tuna” and “beer”. If customers
purchase more beer, we do not expect more canned tuna to be sold in the next week.

We use DAG-OMP from Section 6.1 to estimate a dense acyclic structure, after which we use leave-
one-out cross-validation to determine a suitable number of arcs. This yields the sparse coefficient
matrix W in Figure 7.9, containing nine off-diagonal arcs. We have only drawn variables that had
at least one incoming or outgoing arc as to clutter the structure as little as possible.
We see some interesting relations between the product categories. First of all, we see that the
sales of cheese seem to affect the future sales of beverages such as soft drinks and beer, as well as
frozen dinner. This is in line with the conjecture that snacks such as cheese are frequently bought
either together or in quick succession of other unhealthy consumables such as frozen pizzas, beer,
or soft drinks.

Furthermore, we also see a directed relationship from refrigerated juice to bottled juice, and
from snack cracker to oatmeal. The former could be explained that when customer purchase more
refrigerated juice, they see no need to purchase bottled juice in the near future. For the latter
directed relationship, no reasonable explanation could be deduced.
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Figure 7.9: Acyclic structure corresponding to the Dominick’s Finer Foods data. The structure
has been inferred using DAG-OMP, and the number of arcs was chosen using leave-one-out cross-
validation. Variables with no incoming or outgoing arcs have been omitted.

Lastly, the future sales of frozen entrees is affected by canned tuna, canned soup, cookies, and
front end candy. It seems that when customers purchase canned food or sweet snacks such as
cookies and candy, then this will affect how much frozen entrees are purchased in the near future.

We would like to stress that all these assumptions should be taken with a grain of salt, as it
is difficult to verify whether our findings sensible. Furthermore, the time granularity of one week
makes these relations more difficult to interpret. Nevertheless, it provides an interesting use case
of how the sales of consumables affect the future sales of other consumables.

7.2 Time-Independent Experiments

So far, all methods and concepts introduced assumed the time-series setting of a VAR(1) model.
However, recall that most structure learning methodologies assume instantaneous relations, for
example through a linear structural equation model as defined in Definition 2.2. Although all
methods and examples have been developed for time series data, we will use this section to briefly
investigate the performance of our discussed methods on independent data. We will first evaluate
the methods based on simulated data in Subsection 7.2.1, after which we will also evaluate our
methods on real-life biological data in Subsection 7.2.2.

Modifications to the methods. Luckily, our methods need to be adjusted only slightly. For
the permutation-based and iterative approaches, we only need to align the index of the response
and explanatory variable, rather than shifting one time index. Furthermore, we must fix the
diagonal entries of W to zero, as we cannot use the value of a variable to predict itself. For
the continuous-based methods, NOTEARS now becomes the regular method as the authors have
proposed in [87]. The DAG-LASSO algorithm, unfortunately, was not suitable for these models
as it shrinks all coefficients until no cycle remains.

We also need to modify the predictive performance criteria. The empirical risk Remp(W ) is
now computed as

Remp(W ) =
1

T

T∑
t=1

‖Xt,· −Xt,·W‖22 , (7.6)

and the true risk R(W ) is calculated just as in Equation 7.4, but now the covariance of Xt,· is

V(Xt,·) =
(

(Ip −W ∗)−1
)T (

Ip −W ∗
)−1

. (7.7)
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7.2.1 Simulated Time-Independent Data

Generating W ∗ and X. For the linear structural equation model, we will generate an acyclic
coefficient matrix W ∗ by setting s = min{3p, p(p−1)/2} coefficients to non-zero, thereby enforcing
that the structure remains acyclic and the diagonal coefficients remain zero. The values of the s
non-zero coefficients will be sampled uniformly from the range (−2.0,−0.5) ∪ (0.5, 2.0).

Given this coefficient matrixW ∗, we generate T independent p-dimensional vectorsX according
to a linear structural equation model (SEM)

X = XW ∗ + ε, (7.8)

where ε is an independent Gaussian random variable with mean zero and as covariance matrix
the identity matrix. Additionally, we first need to sample the variables with no incoming arcs,
and continue only sampling variables when all its parents have been sampled first, a so-called
ancestor-first sampling. Generating T of these independent and identically distributed variables
Xt,·, t = 1, . . . , T yields the data matrix X ∈ RT×p.

The results for the true risk R(W ) are given in Table 7.7 and have been plotted in Figure 7.10
and Figure 7.11. The results for the Structural Hamming Distance are given in Table 7.8, Figure
7.12 and Figure 7.13. We refer the reader to Appendix B.4 for the empirical risk.

Table 7.7: Average true risk R(W ) as a function of p for T = 100 and T = 1000, where s = 3p
and the data has been generated according to a linear structural equation model. A lower true
risk indicates a better predictive performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 5.13 13.12 29.26 62.28 335.55 5.01 14.08 30.09 54.89 498.40

MH-Regular 5.13 12.68 25.57 66.41 290.89 5.01 12.13 25.31 58.90 462.91

MH-Greedy 5.13 10.41 15.82 27.35 67.77 5.01 10.03 15.04 25.11 56.25

NOTEARS 5.20 10.82 16.36 30.27 152.6 5.06 10.44 22.55 28.38 153.32

DAG-OMP 5.98 15.34 19.71 37.92 77.2 5.95 15.35 19.08 33.74 74.26

DAG-OLS-V 7.04 26.88 63.67 182.5 2154.0 7.11 34.43 98.66 194.27 2468.56
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Figure 7.10: Plot of the average true risk as a
function of p where T = 100 for the methods in
Table 7.7.
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Figure 7.11: Plot of the average true risk as a
function of p where T = 1000 for the methods
in Table 7.7.

The DAG-OLS-V algorithm achieves the poorest true risk of the six methods, whereas it performed
much better on data generated by VAR(1) models. Apparently, its ordinary least squares estimate
is not a suitable starting point for linear SEMs. The two explorative permutation-based approaches
achieve quite a good performance for p ∈ {5, 10, 15}, but this performance decreases as p increases.
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The number of permutations scales so fast that such an exploratory approach is not tractable
in higher dimensions. Interestingly, the exploitative permutation-based approach seems to be
achieving the smallest true risk, significantly smaller than the state-of-the-art method NOTEARS.
Furthermore, the DAG-OMP approach seems to be a more suitable approach than NOTEARS
when p = 50 for both small and large sample sizes, indicating that an iterative approach is
relatively more suitable when the number of variables is quite large.

Table 7.8: Average structural hamming distance as a function of p for T = 100 and T = 1000,
where s = 3p and the data has been generated according to a linear structural equation model. A
lower SHD indicates a better structural performance.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 0.2 13.9 43.4 112.0 375.8 0.0 12.5 37.9 87.4 261.7

MH-Regular 0.2 12.5 40.7 104.9 372.6 0.0 10.7 42.3 95.8 260.3

MH-Greedy 0.2 3.1 10.4 45.7 270.1 0.0 0.0 0.0 1.0 39.1

NOTEARS 1.5 6.6 15.3 49.3 220.1 1.2 3.6 6.6 9.9 54.6

DAG-OMP 2.9 15.3 25.8 78.3 272.4 2.6 15.4 25.2 39.0 93.8

DAG-OLS-V 1.9 13.5 30.5 54.7 138.7 1.4 15.8 29.5 50.5 125.5
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Figure 7.12: Plot of the average structural
hamming distance as a function of p where T =
100 for the methods in Table 7.8.
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Figure 7.13: Plot of the average structural
hamming distance as a function of p where T =
1000 for the methods in Table 7.8.

DAG-OLS-V now achieves the lowest SHD, which seems to contradict the observation that the
method achieved the worst predictive performance. An explanation for this is that DAG-OLS-V
estimates a coefficient matrix W that is much too sparse. We can achieve an average SHD of
s = 3p simply by returning the zero matrix. Therefore, we need to compare the methods on both
predictive and structural performance criteria to ensure that the method is adequate.

The random walk and the regular Metropolis-Hastings algorithm both perform quite poorly. In-
terestingly, the greedy Metropolis-Hastings approach outperforms the state-of-the-art NOTEARS
method also with respect to the structural hamming distance. The DAG-OMP algorithm is slightly
worse from a structural perspective, although it performed quite well from a predictive perspective.
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7.2.2 Real-Life Time-Independent Data

In this section, we will consider the dataset introduced by Sachs et al. [64]. It contains a total of
7,466 measurements of 11 types of phosphorylated proteins and phospholipids. Sachs et al. used
this dataset to learn the causal pathways between these proteins and phospholipids.

This dataset is widely used as a benchmark in the structure learning community because these
pathway links are already known from the existing literature. Figure 7.14 depicts a network widely
accepted by biologists as a sensible ground truth. However, note that unknown confounders might
exist or other factors that have not been discovered yet. Sachs. et al have considered the eleven
variables colored in orange. Having such a ground truth widely accepted by biologists, researchers
can benchmark their methods against real-life data.

The model reported by Sachs et al is shown in Figure 7.15. They acquired this model using
the following procedure. They first removed 30% of the data which they considered to be outliers,
then discretized the data and applied a heuristic search to maximize their proposed Bayesian
score. Their heuristic searches the space of directed acyclic graphs by randomly modifying (that
is, removing, adding, or reversing) an arc without violating the acyclicity assumption. This new
directed acyclic graph is accepted if it achieves a better score. To avoid local optima, they
occasionally accept a graph that achieves a lower score. Then they employ model averaging
by applying this heuristic a total of 500 times, yielding 500 models, and only keep arcs that occur
in more than 85% of the models.

Figure 7.14: Biological overview of the causal path-
ways widely accepted by biologists. Variables that were
included in the dataset are colored in orange. Retrieved
from [64].

Figure 7.15: The network obtained
by Sachs et al. in [64]. Fourteen
expected pathways were correctly re-
covered, one pathway was recovered in
the reversed direction, and three path-
ways were missed. Furthermore, two
pathways were reported but were not
among the widely accepted pathways.

Some authors use the model reported by Sachs as the ground truth [87, 85], whereas others authors
use the original biologists’ view as the ground truth [60, 19]. We will be using the same ground
truth as NOTEARS, as that is the state-of-the-art method that we will compare our methods
to, which corresponds to Figure 7.15. Furthermore, several versions of the dataset exists, such as
discretized versions or where outliers have been removed. For clarity, we have selected the original
dataset as provided in the supplementary material of their publication.

We have applied our five methods, as well as the state of the art NO TEARS method on this
biological dataset. The results are shown in Table 7.9.
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Table 7.9: Results of applying our methods as well as NOTEARS on the time-independent
protein dataset of Sachs et al. [64]. We have reported the total number of predicted edges, as well
as the true positives (TP) out of 20, the structural hamming distance, and the empirical risk. We
consider the graph in Figure 7.15 to be the ground truth.

Method Predicted edges TP (out of 20) SHD Remp(W )

Random Walk 13 6 21 5.037 · 105

MH-Regular 15 7 21 5.051 · 105

MH-Greedy 17 8 21 4.998 · 105

NOTEARS 16 8 22 5.032 · 105

DAG-OMP 17 8 21 5.000 · 105

DAG-OLS-V 14 7 20 5.156 · 105

From Table 7.9, we conclude that all methods seem to achieve similar performance. All methods
correctly recover either six, seven, or eight of the causal pathways. Furthermore, the corresponding
structural hamming distance is either 20, 21, or 22 for all methods, indicating that their structural
performance is similar. Furthermore, all methods achieve a similar empirical risk, with the greedy
Metropolis-Hastings approach attaining the lowest empirical risk at 4.998 · 105, and DAG-OLS-V
attaining the highest empirical risk at 5.156 · 105.

As the number of variables p is quite low, it is not unexpected that the permutation-based
approaches achieve a similar performance to the other methods. Even a naive random walk that
has tried 1000 permutations attains a similar performance as a state of the art method such
as NOTEARS. Furthermore, as the number of samples is quite large, we expected the iterative
approaches to achieve a decent performance.
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Chapter 8

Conclusion

In this work, we have discussed the notion of structure learning in time series data. Given a set
of time series, the research objective was to learn how the past values of one time series influence
the future values of another time series. These directed relationships can be summarized in a
graphical model where an arc from node i to j indicates that time series i is useful in predicting
future values of time series j. To enhance interpretability and to promote sparsity of the learned
graphical model, we have explicitly forbidden the existence of cycles, excluding self-loops.

In Chapter 2, we have formalized the notion of structure learning in time series, and have
introduced the VAR(1) model that we have employed to learn an acyclic structure in time series
data. Subsequently, we have discussed some interesting state-of-the-art methodologies in Chapter
3 which can learn the structure of time-independent data and how these methodologies can be
extended to time series data.

Methodologies. A natural start in Chapter 4 was to consider maximum likelihood estimation.
However, such a procedure does not enforce acyclicity. Therefore, we have discussed several
permutation-based approaches with an increasing level of complexity. Acyclicity was enforced
by first selecting a permutation after which only arcs were permitted that respect the induced
permutation. That is, only arcs were permitted from a variable i to another variable j if variable
i precedes variable j in the permutation. In Section 4.1, we have investigated an exhaustive
approach, where we simply try all possible permutations. As such a method is not tractable
for more than ten variables, we have proposed heuristic search algorithms such as a Metropolis-
Hastings based searched that do not try all permutations, but rather a subset of all permutations.
These methods seem adequate up to a moderate number of variables, based on empirical evidence,
but their performance seems to scale poorly with the number of variables.

To deal with such a large number of variables, we considered approaches that relax the original
search space to a continuous optimization problem. We have investigated in Section 5.1 relaxing
the space of permutation matrices to the space of doubly stochastic matrices, after which we found
a local optimum using gradient descent with Lagrange multipliers. Unfortunately, this approach
was unsuccessful, as convergence was slow and this method was unable to enforce acyclicity.
Alternatively, we have modified the NOTEARS [87] algorithm to learn an acyclic VAR(1) model
by using a continuous constraint that enforces acyclicity in Section 5.2. As a last continuous
approach, we have used a LASSO-penalty to enforce acyclicity by increasing the penalty parameter
until the inferred structure was acyclic in Section 5.3.

Thirdly, we have developed iterative methods where our learned structure is updated one arc
at a time rather than all arcs simultaneously. We have first extended the Orthogonal Matching
Pursuit algorithm to estimate sparse VAR(1) models, after which we also enforce acyclicity in
Section 6.1. A backward ordinary least squares approach was proposed in Section 6.2 and an im-
provement to backward approaches was discussed in Section 6.3. Additionally, we have developed
several approaches to determine a suitable number of arcs in our structure. Too few arcs may
cause a significant drop in predictive performance and, on the other hand, too many arcs may
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result in an overly complex structure. Therefore, we have developed two approaches that rely on
bootstrapping and one approach that relies on cross-validation to learn a suitable number of arcs
in Section 6.4. Lastly, as cross-validation was surprisingly effective for model selection despite
having dependent data, we have conducted a small theoretical analysis regarding leave-one-out
cross-validation on autoregressive models in Section 6.5. There, we have closely investigated a
simpler setting to understand why leave-one-out cross-validation, despite being morally wrong in
our time series setting, might still be quite useful for model selection. Our investigations suggest
an interesting relation between Wilk’s theorem and the leave-one-out cross-validation score.

Evaluations. The aforementioned methods have been evaluated and their predictive and struc-
tural performance have been compared on simulated data. For the time series setting, we have
simulated acyclic VAR(1) models and cyclic VAR(1) models. All methods except for DAG-LASSO
performed well, even when the generated VAR(1) model was cyclic. The permutation-based
approaches were particularly effective when the number of variables was small. However, the
permutation-based approaches dropped in performance as the number of variables increased, as
the number of possible permutations increases exponentially with the number of variables. The
iterative approaches seemed particularly effective when the number of time series was large and suf-
ficient time steps were available. The NOTEARS approach was effective as well, yet our developed
methods were competitive with NOTEARS. We have also briefly investigated the performance of
our methodologies on time-independent data. We have used simulated data in the form of a linear
structural equation model. Rather surprisingly, we discovered that our methods, especially the
greedy Metropolis-Hastings approach, were competitive with a state-of-the-art method such as
NOTEARS.

Furthermore, we have applied our methods to real-life data. As a use case, we have investigated
whether DAG-OMP was capable of inferring the structure between different grocery products
using weekly scanner data of the convenience store chain “Dominick’s Finer Foods”. Secondly, we
have evaluated all our methods on the real-life biological dataset provided by Sachs et al. [64],
consisting of causal pathways in protein interactions within a biological cell. All methods evaluated
on time-independent data achieved a similar performance on the biological dataset compared to
the state-of-the-art method NOTEARS.

8.1 Limitations

Throughout this work, certain assumptions have been made to limit the scope of research. Fur-
thermore, due to time constraints, some concepts in this thesis have not been investigated at the
level of detail we had hoped. In this section, we will describe these limitations.

Strictness of the graphical models

The most severe limitation of this thesis is the strictness of the graphical model. Throughout
this thesis, we have only considered two types of graphical models, the linear structural equation
model (SEM) as per Definition 2.2 and the Vector AutoRegressive model of order 1 (VAR(1))
as per Definition 2.3. The linear SEM only allows for instantaneous linear relationships and the
VAR(1) model only allows for linear relationships with a single time lag.

Although it is a realistic assumption that only the past can predict the present, in real-life
measurements, instantaneous relations may exist, especially when the time intervals between con-
secutive measurements is large. If we acquire daily measurements, it is reasonable to assume that
the rainfall of that day has influenced the wetness of the pavement that day. Therefore, a time
series model should also allow for instantaneous effects.

Furthermore, it is reasonable to assume that more intricate relationships exist than linear
relations based on values of exactly one time step ago. Especially in time series, seasonality or the
day of the week can play a large role. Suggestions to allow for more intricate relationships will be
discussed in the Section 8.2 where we will propose future directions of research.
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Model Complexity Selection

From the outset of this thesis, the goal was to recover a structure of X that captures the relations
between the variables, while simultaneously being intuitive to understand. Sparsity of the struc-
ture, meaning the graphical model contains few arcs, is crucial for obtaining a simple graphical
model. For iterative procedures, quite some different methods have been devised to select an
appropriate number of arcs, as iterative procedures provide an ordering of the inferred arcs.

However, for the permutation-based approaches discussed in Chapter 4, little research has
been done to sensibly select an appropriate number of arcs. As permutation-based approaches
estimate a full directed acyclic graph that respects a given permutation, numerous arcs in W are
superfluous. Nevertheless, not many sensible approaches have been discussed that can “prune”
such a coefficient matrix W efficiently. Thresholding the coefficient matrix is an effective approach,
yet the approach is quite naive as the coefficient size of an arc is not always a suitable indication
of its importance. Furthermore, selecting no principled approach has been provided to select such
a threshold. We have investigated the impact of the threshold value on the simulation results in
Appendix B.5, and the threshold value indeed significantly impacts the structural performance.
Therefore, we consider the lack of suitable methods for selecting an appropriate number of arcs
for permutation-based methods a limitation of this thesis.

For the continuous-based approaches discussed in Chapter 5, no methods are provided to select
an appropriate number of arcs as well. On the one hand, the LASSO-penalty used in NOTEARS
and DAG-LASSO does promote some degree of sparsity. However, little research has been done
into selecting the correct magnitude of this LASSO-penalty parameter in our time-series setting.
We also consider this to be a shortcoming of this work.

8.2 Future Work

Although this thesis can be regarded as quite a comprehensive work, numerous avenues are inter-
esting directions for future work. Due to time constraints, these were not pursued. However, we
will provide some initial investigations and pointers which an enthusiastic reader may continue on.

Allowing for more complex models

As mentioned in the previous section, the VAR(1) model is quite a simple model that does not
allow for much flexibility. There are several approaches to allow for more complex models.

Incorporating instantaneous relationships. Although instantaneous relations may be un-
realistic in theory, the time intervals at which variables are measured can be so far apart that we
should also incorporate instantaneous relationships in our model.

A natural extension is a combination of the VAR(1) model from Definition 2.3 and the lin-
ear Structural Equation Model from Definition 2.2. Instantaneous relations are captured in the
coefficient matrix W0, and time-lagged relations are captured in W1,

Xt,· = Xt,·W0 +Xt−1,·W1 + εt, (8.1)

where εt is a p-dimensional vector representing the noise. Note that W0 must be an acyclic
coefficient matrix where the diagonal entries are equal to zero, just as for the linear SEM.

Extending to VAR(k) models. Throughout this thesis, we have predominantly focused on
time series data. As our goal was to infer the structure of a graphical model, a natural first step
was the VAR(1) model, where we have but a single coefficient matrix W . However, it is reasonable
to assume that a vector of variables Xt,· depends on more than just its previous time step Xt−1,·.
Therefore, a VAR(1) model might fail to capture more intricate relations. Extending the proposed
methodologies to more complex models would be an interesting direction for future work.

We can quite easily extend the VAR(1) model by considering a VAR(k) model. Here, the
values of Xt,· do not depend only on the past value, but the past k values,
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Xt,· =

k∑
i=1

Xt−1,·Wi + εt, (8.2)

where εt represents some zero-mean noise. For a VAR(1) model, we had k = 1 and we only had
the matrix W1, which we simply denoted as W . Now, we have k coefficient matrices.

Enforcing acyclicity of W or W1 was quite intuitive and straightforward, as we could regard
this as one network. However, the notion of acyclicity has become ambiguous now that we have
k coefficient matrices. First, we could say that the structure is acyclic if and only if all its k
coefficient matrices separately are acyclic. However, this could mean that in W1 we have the arc
(1, 2), and W2 contains the arc (2, 1) such that we still have some form of cyclic dependency. A
second approach would be to consider some sort of combined network, where the combination of
all coefficient matrices must be acyclic. Consider W ′, where

W ′ =

k∑
i=1

|Wi| , (8.3)

where | · | represents the element-wise absolute value. Therefore, W ′ contains an arc (i, j) if and
only if the arc (i, j) is contained in at least one of the k coefficient matrices. We then could
consider the structure to be acyclic if and only if W ′ is acyclic. This means that if there is an
arc (i, j) in some coefficient matrix, then we know that there is no other path from variable j
to variable i, where we can use all arcs from the k coefficient matrices. Such a definition might
be more sensible as there can be no cycles in the relations between the variables across different
time lags. A similar approach for learning sparse VAR(k) models by decomposing the indices into
groups has been investigated in [50], so that may prove a useful starting point.

So, extending the methodologies and acyclicity to higher-order models is not more difficult,
but the notion of acyclicity becomes less intuitive. It would be interesting to see how higher-order
models are perhaps more suitable to estimate more complex simulated data and real-life time
series, and what the advantages and disadvantages of the proposed notions of acyclicity are.

As a side note, instantaneous relationships can also be incorporated in VAR(k) models, yielding
a structural VAR(k) model. Then, Xt,· can be written as

Xt,· = Xt,·W0 +

k∑
i=1

Xt−1,·Wi + εt, (8.4)

where W0 characterizes instantaneous relationships, Wi characterizes time-lagged relationships,
and εt represents random noise. Again, W0 must be acyclic with zero entries on the diagonal.

Non-linear relationships. Rather than only allowing for linear relationships in the form of a
coefficient matrix W , we can also learn non-linear relationships between our variables. Rather
than assuming Xj is a linear function of its parent set Pa (X),

Xj =
∑

Xi∈Pa(Xj)

wijXi, (8.5)

we can also assume that Xj is some non-linear function g of its parents,

Xj = g (Pa(Xj)) . (8.6)

Several methods exist to learn non-linear relationships, such as the recent non-linear version of
NOTEARS [88], and DAG-GNN [85] where the authors employ a variational autoencoder. Both
utilize neural networks to learn non-linear relationships between variables.
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More complex noise structure. Throughout this thesis, we have made the assumption that
all noise random variables εt are independently and identically distributed as a Gaussian random
variable with zero mean and an identity matrix as the covariance matrix,

εt ∼ N (0, Ip) . (8.7)

However, this assumption is rather strict, as such a homogeneity assumption of the noise variables
is often violated in practice. Some variables may exhibit larger fluctuations, or in real life, some
variables can be measured more accurately.

For future work, the suitability of the model may increase if we allow for more complex noise
structures. Rather than assuming that V (εt) = Ip, we can assume that all noise components are
independent yet heterogeneous,

V (εt) = diag
(
ω2
1 , . . . , ω

2
p

)
, (8.8)

where ω2
i represents the variance associated with the noise of the ith variable. Furthermore,

diag(ω2
1 , . . . , ω

2
2) ∈ Rp×p represents the diagonal matrix with ω2

i as the ith value along the diagonal.
It should be noted, however, that this adds a total of p extra parameters to estimate, which may
be problematic when we have few samples. However, as the number of possible arcs is quadratic
with respect to the number of variables, the number of parameters does not drastically increase.

We can also assume even more complex noise structures. We can, for example, allow some
dependency between noise variables of the same time step. Then, we assume that

V (εt) = Ω, (8.9)

where Ω ∈ Rp×p is positive semi-definite. This yields p(p − 1)/2 extra parameters over Equation
8.8, so the number of parameters remains quadratic with respect to the number of variables.

Developing Theoretical Guarantees

Although we have provided an interesting conjecture for autoregressive models, this conjecture
was not extended to more complex models such as VAR(1) models. Additionally, it would have
been nice to provide some theoretical guarantees for some of our methodologies.

Orthogonal Matching Pursuit. For the Orthogonal Matching Pursuit algorithm discussed in
Section 6.1, performance guarantees have been provided for the standard regression setting with
noise [9, 86] and without noise [75]. However, our setting is more involved, where we have mul-
tiple response variables and there are dependencies in the data. Therefore, existing performance
guarantees for Orthogonal Matching Pursuit could not be directly applied.

However, it would be of great value to investigate whether we can translate the orthogonal
matching pursuit guarantees in some way to the DAG-OMP algorithm. Having a formal statement
that guarantees that the correct features will be recovered under certain conditions can provide
more insights into the performance of DAG-OMP. Unfortunately, this was not pursued due to time
constraints, but it could be an interesting avenue to investigate.

Greedy Metropolis-Hastings. When we evaluated our methods, the greedy Metropolis-Hastings
approach seemed to perform surprisingly well. For the linear SEM with equal variances, some per-
formance guarantees are provided for algorithms that employ a greedy approach such as [12] and
[57]. In [12], the authors show that when the data has indeed been generated by a linear SEM
and some other conditions are met, for example that the covariance matrix of the data has only
nonnegative eigenvalues, then the probability of recovering the true structure converges to one in
the infinite sample setting.

Both methods are similar to ours, so we expect a performance guarantee to exist for the
greedy Metropolis-Hastings algorithm as well. For example, an asymptotic bound on the number
of iterations required to recover the support of the data generating matrix. We expect that these
performance guarantees can also be cast in the VAR(1) setting. Providing such a performance
guarantee could be an interesting direction for future work.
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Nevertheless, both [12] and [57] state that the risk of such a greedy approach is that we might
get stuck in a local optimum. Therefore, one of their proposals is to run the algorithm several
times from different starting points. Furthermore, a similar discussed in [58] states that their
greedy method is not guaranteed to find the best scoring graph due to local optima. So, the
greedy nature of our method may cause difficulties when deriving performance guarantees as well.

Sparsity imposed by acyclicity

Another interesting direction for future work that we have not thoroughly explored is how acyclicity
could be used to derive tighter theoretical guarantees for known methods such as the LASSO.
Well-known theoretical guarantees exist for the LASSO approach in the regression setting. For
example, in [81], the authors show that under certain conditions, the LASSO-penalty should be
approximately λ ≈

√
log(p)/n in order to recover the nonzero coefficients. Here, n is the number

of independent samples and p is the number of variables. Note that this is for the linear regression
setting where all samples are independent, not for a time series setting as we are investigating.
Now, what if instead of knowing that the coefficient vector contains only k non-zero coefficients,
or when we know that the coefficient matrix is acyclic? If our coefficient matrix is acyclic, we
know it contains at most p(p + 1)/2 nonzero parameters, which is already much fewer than the
possible p2 parameters.

The question arises whether the acyclicity assumption can provide tighter bounds on conver-
gence rates, penalty parameter values, etc. The number of possible parameters remains quadratic,
so in terms of complexity we have not gained much. However, a more optimistic perspective is by
considering the reduction in search space. If we would allow any coefficient matrix, or equivalently
any structure on p variables without self-loops, then there are a total of 2p

2−p different structures,
as p2−p entries can either be zero or non-zero. However, we have seen that the number of directed
acyclic graphs grows much smaller. The number of possible directed acyclic graphs up to fourteen
nodes has been reported in [51]. Now, define Rp as the ratio of the total number of possible
directed acyclic graphs on p nodes over the total number of possible directed graphs on p nodes.
Then, some values of Rp are

R1 = 1, R2 = 0.75, . . . , R5 = 0.027, . . . , R10 = 3.4 · 10−9, . . . , R14 = 2.3 · 10−19. (8.10)

From Equation 8.10, we see that the search space of structures has decreased massively. Even
for a moderate total of ten nodes, knowing that the true structure is acyclic has reduced the
number of possible structures by a factor 109. As acyclicity indeed massively decreases the search
space, perhaps this may also imply that we can obtain tighter bounds for several performance
guarantees of existing methods. Investigating this in greater depth as future work may provide
some interesting novel results.
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Appendix A

Derivations

A.1 Rewriting the matrix notation to vector notation

In this section, we will provide a derivation to cast our matrix regression notation

X2:T,· = X1:T−1,·W + ε2:T (A.1)

into a vector regression notation
y′ = X ′w′ + ε (A.2)

. To achieve this, we construct a response vector y′, explanatory variables X ′, and a coefficient
vector w′ such that

X2:T,· −X1:T−1,·W = ε2:T ∈ RT−1×p ⇐⇒ y′ −X ′w′ = vec(ε2:T ), (A.3)

where the the vectorized dimensions will be

y′ ∈ R(T−1)·p, X ′ ∈ R(T−1)·p×p2 , w′ ∈ Rp
2

. (A.4)

.

Rewrite response matrix X2:T,· to response vector y′. To rewrite our response matrix
X2:T,· ∈ R(T−1)×p to a response vector y′ ∈ R(T−1)·p, We will vertically stack the p columns to
get a single column vector y ∈ Rp·(T−1). In mathematical notation,

y′ = vec(X2:T,1,X2:T,2, . . . ,X2:T,p−1,X2:T,p) (A.5)

=
(
X2,1, . . . , XT,1︸ ︷︷ ︸

X2:T,1

, X2,2, . . . , XT,2︸ ︷︷ ︸
X2:T,2

, . . . , X2,p−1, . . . , XT,p−1︸ ︷︷ ︸
X2:T,p−1

, X2,p, . . . , XT,p︸ ︷︷ ︸
X2:T,p

)T
. (A.6)

Rewrite coefficient matrix W to coefficient vector w′. Secondly, we will vectorize our
coefficient matrix W ∈ Rp×p to a coefficient vector w′ ∈ Rp2 by vertically stacking the columns
w·,j . Therefore, we have

w′ = vec(w1,·, w2,·, . . . , wp−1,·, wp,·) (A.7)

= (w11, . . . , wp1, . . . , w1p, . . . , wpp)
T
. (A.8)

Rewrite explanatory matrix X1:T−1,· to explanatory matrix X ′. Lastly, we need to trans-
form our explanatory matrix X1:T−1,··· to match our response vector y′. Therefore, our new

explanatory matrix must be of the form X ′ ∈ R(T−1)·p×p2 such that

vec (X1:T−1,·W ) = X ′w′. (A.9)
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We achieve this by repeating the explanatory matrix X1:T−1,· ∈ R(T−1)×p a total of p times along
the diagonal. The other entries in the matrix X ′ are all equal to zero. In matrix notation, we get

X ′ =


X1:T−1,· O · · · O O

O X1:T−1,· · · · O O
...

...
. . .

...
...

O O · · · X1:T−1,· O
O O · · · O X1:T−1,·

 ∈ R(T−1)·p×p2 . (A.10)

A more concise mathematical notation for Equation A.10 using the Kronecker product is

X ′ = Ip ⊗X1:T−1,· ∈ R(T−1)·p×p2 . (A.11)

To conclude, we see that we have rewritten our matrix setting to a vectorized setting.

A.2 Deriving the gradients for gradient descent

In the coming two paragraphs, we will be deriving both gradients ∇PC ′(P,U) and ∇UC ′(P,U)
required for the gradient descent algorithm in Section 5.1. We start with ∇UC ′(P,U), as that one
is easier.

Deriving ∇UC ′(P,U). The gradient of C ′(P,U) with respect to U can be quite easily derived
by using matrix derivatives. By filling in the derived expected cost from Equation 5.15 and using
the linearity of the trace operation, we get that the matrix derivative of C ′(P,U) with respect to
U is equal to

∂C ′(P,U)

∂U
=
∂Tr

(
V (εt) + (W ∗ −W )

T V (Xt,·) (W ∗ −W )
)

∂U

=
∂Tr (V (εt))

∂U
+
∂Tr

(
(W ∗ −W )

T V (Xt,·) (W ∗ −W )
)

∂U

=
∂Tr

(
(W ∗ −W )

T V (Xt,·) (W ∗ −W )
)

∂U
, (A.12)

where we could remove the first component in Equation A.12 as the matrix derivative of εt with
respect to U is zero.

Now, let us use Equation (111) of the matrix cookbook [59], which corresponds to

∂Tr(XTBX)

∂X
= XBT +XB, (Equation 111 of [59])

which is equal to 2XB if B is symmetric.
Applying this formula on Equation A.12 and applying the chain rule yields

∂Tr
(

(W ∗ −W )
T V (Xt,·) (W ∗ −W )

)
∂U

= −2(W ∗ −W )V (Xt,·)P
−1 ∂Tr(U)

∂U
P

= −2(W ∗ −W )V (Xt,·) . (A.13)

Note, however, that we will fix the gradient of U to be equal to zero for all lower triangular entries.
Therefore, we have that the partial derivatives in our gradient ∇UC ′(P,U) can be computed as

(
∇UC ′(P,U)

)
ij

=


(
− 2(W −W ∗)V (Xt,·)

)
ij

if i ≤ j,

0 otherwise.
(A.14)

Structure Learning in High-Dimensional Time Series Data 127



Deriving ∇PC ′(P,U). Deriving the gradient of C ′(P,U) with respect to P is slightly more
involved than with respect to U , but nevertheless doable. Analogous to the gradient with respect
to U , we first derive the matrix derivative

∂C ′(P,U)

∂P
= 2Tr

(
(W ∗ −W )V (Xt,·)

∂Tr (W ∗ −W )

∂P

)
= −2Tr

(
(W ∗ −W )V (Xt,·)

∂P−1UP

∂P

)
.

What is left is to derive the partial derivatives

∂P−1UP

∂pij
. (A.15)

We can use the product rule to decompose the partial derivative in Equation A.15 into the two
components

∂P−1UP

∂pij
=
∂P−1

∂pij
UP + P−1U

P

∂pij
, (A.16)

where the second component in Equation A.16 can be computed as

P−1U
P

∂pij
= P−1UJij . (A.17)

Here, Jij corresponds to the matrix with zeros everywhere, except for the value in the ith row of
the jth column, which is equal to one.

The first component in Equation A.16 requires computing the derivative of the inverse P−1,
which also has a closed form. The partial derivative of the inverse matrix P−1 can be written as

∂P−1

∂pij
= −P−1 ∂P

∂pij
P−1 = −P−1J ijP−1. (A.18)

Hence, the first component in Equation A.16 is equal to

∂P−1

∂pij
UP = −P−1J ijP−1UP. (A.19)

Putting the two components together, we can conclude that the partial derivative of the cost
function C ′(P,U) with respect to pij is equal to

∂C ′(P,U)

∂pij
= −2Tr

(
V (Xt,·) (W ∗ −W )T

∂P−1UP

∂pij

)
= −2Tr

(
V (Xt,·) (W ∗ −W )T

(
−P−1J ijP−1UP + P−1UJ ij

))
, (A.20)

Then, the coefficients of the gradient ∇PC ′(P,U) are equal to

(∇PC ′(P,U))ij =
∂C ′(P,U)

∂pij
(A.21)

To verify our derivations, we have plotted the partial derivatives of our cost function both with
respect to U and P in Example A.1, where we indeed see that the partial derivatives are equal to
zero exactly where C ′(P,U) attains its minimum.
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Example A.1 Verifying the gradients ∇PC ′(P,U) and ∇UC ′(P,U).

Consider a two-dimensional scenario where

P ∗ =

(
1 0
0 1

)
, U∗ =

(
0.8 0.5
0.0 0.6

)
.

For each entry pij , 1 ≤ i, j ≤ 2, we have plotted both the cost function C ′(P ∗, U∗) and the
corresponding partial derivative in Figure A.1. All other values for P ∗ and U∗ the same,

0.0 0.5 1.0
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0.0
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5.0
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y = 0 C(P,U) (∇UC(P,U))ij x = arg minpij
C(P,U)

Figure A.1: Value of the cost function and its partial derivative with respect to pij as a
function of the four coefficients pij of P .

When the cost function C ′(P,U) attains its minimum for pij , the partial derivative with
respect to pij equals zero. For each upper triangular entry uij , 1 ≤ i < j ≤ 2, we have
plotted the cost function and the corresponding partial derivatives in Figure A.2.

−2 −1 0 1 2
u11

0

20

−2 −1 0 1 2
u12

−20

0

20

−2 −1 0 1 2
u22

−20

0

20y = 0

C(P,U)

(∇UC(P,U))ij

x = arg min C(aij)

Figure A.2: Value of the cost function and its partial derivative with respect to uij as a
function of the three upper triangular coefficients uij of U .

The cost function attains its minimum for uij when the partial derivative with respect to
uij is equal to zero. Furthermore, we have checked that the slope of the partial derivative
indeed corresponds to the rate of change of the cost function.
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A.3 Difference of the negative log-likelihoods.

In this section of the appendix, we will provide more arguments to support our conjecture stated
in Subsection 6.5.1. We will reiterate the conjecture here.

Conjecture A.1 Asymptotic value of RCH(a0, T )

Let |a0| < 1. Furthermore, let X be generated according to an AR(1) model. Then,
we conjecture that the difference between the two negative log-likelihoods as defined in
Equation 6.54 and Equation 6.55 converges to a chi-squared random variable with one degree
of freedom, shifted two units to the left. That is,

lim
T→∞

− 2LL0(X) + 2LLLOOCV(X) ∼ χ2
1 − 2. (A.22)

Moreover, let RCH0(a0, T ) denote the ratio of correct acceptance of H0 as defined in Equa-
tion 6.60. Then, we conjecture the value of RCH0(a0, T ) converges to P(Q ≤ 2) as T tends
to infinity, where Q is a chi-squared random variable with one degree of freedom,

lim
T→∞

E [RCH0(a0, T )] = const, where const = P(Q ≤ 2) and Q ∼ χ2
1. (A.23)

Decomposing Equation A.22 To support our claim in Conjecture A.1, we will first rewrite
the equation and subsequently invoke Wilk’s theorem. Let −2LL1(X) represent twice the negative
log-likelihood of corresponding the maximum likelihood estimator â,

−2LL1(X) = −2

T∑
t=2

log

(
− 1√

2π

)
+

T∑
t=2

(Xt − âXt−1)
2
,

where the maximum likelihood estimator of a0 can be computed as

â =

∑T
t=2Xt−1Xt∑T
t=2X

2
t−1

. (A.24)

We can rewrite −2LL0 + 2LLLOOCV to

−2LL0 + LLLOOCV =

T∑
t=2

(Xt − a0Xt−1)
2 −

T∑
t=2

(
Xt − â(−t)Xt−1

)2
=

T∑
t=2

(Xt − a0Xt−1)
2 −

T∑
t=2

(
Xt −

(
â− â+ â(−t)

)
Xt−1

)2
=

T∑
t=2

(Xt − a0Xt−1)
2 −

T∑
t=2

(
Xt − âXt−1 −

(
â(−t) − â

)
Xt−1

)2
=

T∑
t=2

(Xt − a0Xt−1)
2 −

T∑
t=2

(
(Xt − âXt−1)

2

− 2 (Xt − âXt−1)
((
â(−t) − â

)
Xt−1

)
+
((
â(−t) − â

)
Xt−1

)2 )
= −2LL0 + 2LL1 + CT ,

where

CT =

T∑
t=2

(
− 2 (Xt − âXt−1)

((
â(−t) − â

)
Xt−1

)
+
((
â(−t) − â

)
Xt−1

)2 )
. (A.25)
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Let us first consider the negative log-likelihood ratio −2LL0(X)+2LL1(X). Wilk’s theorem states
that under the null-hypothesis,

− 2LL0(X) + 2LL1(X) ∼ χ2
1. (A.26)

From this decomposition, we can see the from where this chi-squared distribution originates. What
remains now is to compute the limit of CT .

Decomposing CT . Now, let us further dissect this quantity CT . We are only interested in
terms that do not vanish as T gets arbitrarily large. For CT , that means that we can disregard
all components of CT that are of order O(1/T ), roughly indicating that they are upper bounded
by c/T for some positive constant c and T sufficiently large.

Intuitively, we expect â(−t) and â to be close to each other in value. In fact, their difference

will be of the order of O(1/T ). Therefore, we see that the
(
a(−t) − â

)2
to be of the order O(1/T 2),

and therefore their sum over T will be of the order O(1/T ), which converges to zero as T tends
to infinity. Therefore, we can disregard the last component of the sum.

Secondly, the first component of Equation A.25 can be decomposed into

−2

T∑
t=2

(
(Xt − âXt−1)

((
â(−t) − â

)
Xt−1

)
= −2

T∑
t=2

(
(aXt−1 + εt − âXt−1)

((
â(−t) − â

)
Xt−1

)
= −2

T∑
t=2

((
â(−t) − â

) (
(a− â)X2

t−1 +Xt−1εt
))

.

(A.27)

We see that the first part of the summation is a product of the difference between a and â and the
difference between â(−t) and â, both of which are approximately of the order O(1/T ), meaning
that the product is of the order O(1/T 2). Therefore, summing over these products yields a value
of the order O(1/T ), which also converges to zero as T tends to infinity. Therefore, we can also
disregard the first component of Equation A.27. What remains is the final component,

− 2

T∑
t=2

(
â(−t) − â

)
Xt−1εt. (A.28)

Now, the difference between â(−t) and â is of the order O(1/T ), so summing difference over T
should give some nonzero constant.

To slim Equation A.28 down even further, let us first remark that we can rewrite â(−t) − â as

â(−t) − â = − Xt−1∑T
k=2X

2
k−1 −X2

t−1
(Xt − âXt−1)

= − Xt−1∑T
k=2X

2
k−1 −X2

t−1
((a− â)Xt−1 + εt) .

Again, as (a− â) is of the order of O(1/T ), and 1/
(∑T

k=2X
2
k−1 −X2

t−1

)
is also of O(1/T ), the

product of both components will be of the order O(1/T 2). Therefore,

â(−t) − â = − Xt−1∑T
k=2X

2
k−1 −X2

t−1
((a− â)Xt−1 + εt)

= − Xt−1εt∑T
k=2X

2
k−1 −X2

t−1
+O(1/T 2). (A.29)

Returning back to Equation A.28, using Equation A.29, we get that

−2

T∑
t=2

(
â(−t) − â

)
Xt−1εt = −2

T∑
t=2

(
(Xt−1εt)

2

X2
t−1 −

∑T
k=2X

2
k−1

)
+O(1/T ).
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Let us also quickly remark that the first order component of each entry in the sum is negative, as
the nominator is always positive, whereas the denominator is always negative.

To quickly summarize, we have done a careful derivation of CT , which was given into Equation
A.25. We have split CT into two components, the part which is of order O(1/T ), and its leading
terms, yielding the decomposition

CT = −2

T−1∑
t=1

(
(Xtεt+1)

2

X2
t −

∑T−1
k=1 X

2
k

)
︸ ︷︷ ︸

:=CT,approx

+O(1/T ), (A.30)

So, it seems that lim
T→∞

CT = CT,approx.

Comparing CT to CT,approx. Let us first inspect whether the derivation from CT to CT,approx
was sensible. We generated data from an AR(1) model with autoregressive coefficient a = 0.9 and
a total of T = 10, 000 time steps. Now, the exact value for CT from Equation A.25 was −2.0179,
whereas the approximate value CT,approx, where we have removed all components of order O(1/T )
after summation, was equal to −2.0182. We see that the derivation was still accurate up to three
decimals, so it seems that the derivation was indeed sensible.

To see whether the distribution remains the same for CT and CT,approx, let us consider histo-
grams for CT and CT,approx for a fixed value of the autoregressive coefficient a and the number of
time steps T . We have plotted the two histograms consisting of N = 100,000 samples of CT and
CT,approx for a = 0.5 and T = 10,000 in Figure A.3.
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Figure A.3: Histogram visualizing the distribution of CT and CT,approx as defined in Equation
A.25 and Equation A.30, respectively. We see that the two histograms overlap almost perfectly.
Furthermore, we have fitted a normal distribution with a mean of −2 and a variance of −24/T ,
which seems a perfect fit for both CT and the approximate CT .

We see that both CT and CT,approx follow a normal distribution with a mean of −2 and a variance
of 24/T . Therefore, as T tends to infinity, the variance of CT will tend to zero. In conclusion, we
have that the limit of CT is equal to

lim
T→∞

CT = −2. (A.31)

Combining this statement with the statement from Equation A.26, where we used Wilk’s theorem,
we have that

lim
T→∞

− 2LL0 + 2LLLOOCV = lim
T→∞

− 2LL0 + 2LL1 + CT ∼ χ2
1 − 2. (A.32)
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Appendix B

Additional tables and figures

In Chapter 7, the methods discussed in this thesis have been compared using several performance
criteria. Furthermore, we have experimented with several settings. The following settings were
considered:

• Sparse acyclic VAR(1) models, where the number of off-diagonal arcs was 3p. Furthermore,
we have generated data matrices consisting of few time steps T = 100 and many time steps
T = 1000. The corresponding table and figure of the empirical risk are given in Section B.1.

• Dense acyclic VAR(1) models, where the number of off-diagonal arcs was 5p. Furthermore,
we have generated data matrices consisting of few time steps T = 100 and many time steps
T = 1000. The three corresponding tables and figures of the empirical risk, true risk, and
structural hamming distance are given in Section B.2.

• Sparse cyclic VAR(1) models, where the number of off-diagonal arcs was 2p. Furthermore,
we have generated data matrices consisting of few time steps T = 100 and many time steps
T = 1000. The corresponding table and figure of the empirical risk are given in Section B.3.

• Sparse linear structural equation models, where the number of off-diagonal arcs was 2p.
Furthermore, we have generated data matrices consisting of few time steps T = 100 and
many time steps T = 1000. The corresponding table and figure of the empirical risk are
given in Section B.4.

• The influence of the threshold for the sparse acyclic setting has been investigated in Section
B.5.
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B.1 Sparse acyclic VAR(1) models

Table B.1: Average empirical risk Remp(W ) for the aforementioned methods for several values
of p and T , where s = 3p and W corresponds to an acyclic structure.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 4.81 10.67 17.22 29.62 57.53 4.95 11.57 18.55 34.69 76.29

MH-Regular 4.81 10.74 16.95 30.06 58.18 4.95 11.55 19.42 35.11 79.12

MH-Greedy 4.91 9.64 14.00 21.47 38.03 4.95 10.25 15.15 25.01 51.48

NOTEARS 4.81 9.18 13.46 20.89 34.79 4.95 9.87 14.79 24.55 48.57

DAG-LASSO 10.75 46.94 62.76 123.03 305.72 9.19 38.92 62.57 112.58 270.07

DAG-OMP 4.81 9.76 13.90 21.09 35.85 4.95 10.18 15.39 24.71 48.59

DAG-OLS-V 4.81 9.31 14.30 24.08 110.21 4.95 9.88 14.84 24.75 49.58
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Figure B.1: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 100 for the methods in Table B.1, excluding
DAG-LASSO.
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Figure B.2: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 1000 for the methods in Table B.1, exclud-
ing DAG-LASSO.
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B.2 Dense acyclic VAR(1) models

Table B.2: Average empirical risk Remp(W ) as a function of p for T = 100 and T = 1000, where
s = 5p and W corresponds to an acyclic structure.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 4.81 12.13 23.05 45.40 100.85 4.95 13.02 26.04 52.87 132.65

MH-Regular 4.81 12.49 23.47 45.49 103.04 4.95 13.65 26.50 53.92 145.3

MH-Greedy 4.81 9.25 14.06 23.36 49.01 4.95 9.87 15.32 27.83 64.72

NOTEARS 4.81 9.25 13.60 21.14 36.04 4.95 9.87 14.83 24.62 50.37

DAG-LASSO 10.75 65.91 332.95 565.14 3004.02 9.19 65.92 255.99 435.44 2661.91

DAG-OMP 4.81 9.63 17.41 23.75 45.55 4.95 9.94 19.37 28.36 65.94

DAG-OLS-V 4.81 9.25 13.89 24.31 212.65 4.95 9.87 14.83 24.71 49.5
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Figure B.3: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 100 for the methods in Table B.2, excluding
DAG-LASSO.
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Figure B.4: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 1000 for the methods in Table B.2, exclud-
ing DAG-LASSO.
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Table B.3: Average true risk R(W ) as a function of p for T = 100 and T = 1000, where s = 5p
and W corresponds to an acyclic structure.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 5.26 14.65 31.45 73.38 270.40 5.02 14.57 29.22 64.67 212.57

MH-Regular 5.26 15.30 30.46 76.33 278.67 5.02 14.58 28.75 68.29 218.29

MH-Greedy 5.26 10.74 17.13 31.30 117.50 5.02 10.06 15.81 29.46 78.15

NOTEARS 5.26 10.74 16.32 27.83 65.44 5.02 10.06 15.09 25.16 50.32

DAG-LASSO 12.32 69.26 481.20 643.96 5183.68 10.72 76.76 459.05 515.09 4645.04

DAG-OMP 5.26 11.39 23.82 39.79 158.59 5.02 10.13 20.82 31.63 100.15

DAG-OLS-V 5.28 10.74 16.32 28.8 301.54 5.02 10.06 15.09 25.16 50.32
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Figure B.5: Plot of the average true risk as
a function of p, the number of variables, where
T = 100 for the methods in Table B.3, excluding
DAG-LASSO.
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Figure B.6: Plot of the average true risk as
a function of p, the number of variables, where
T = 1000 for the methods in Table B.3, exclud-
ing DAG-LASSO.

Structure Learning in High-Dimensional Time Series Data 136



Table B.4: Average structural hamming distance (SHD) as a function of p for T = 100 and
T = 1000, where s = 5p and W corresponds to an acyclic structure.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 0.3 9.2 24.5 61.4 177.4 0.0 8.5 24.6 53.4 118.5

MH-Regular 0.3 10.9 22.9 61.6 183.7 0.0 9.7 22.7 50.8 135.0

MH-Greedy 0.3 0.5 2.2 9.0 67.9 0.0 0.0 1.5 7.3 29.3

NOTEARS 0.3 0.5 0.6 2.0 15.5 0.0 0.0 0.0 0.0 0.0

DAG-LASSO 12.1 50.9 86.8 145.6 294.3 9.1 51.0 85.4 143.5 291.7

DAG-OMP 0.3 1.4 6.4 7.9 62.8 0.0 0.1 4.6 5.5 18.7

DAG-OLS-V 0.4 0.5 0.6 3.1 74.9 0.0 0.0 0.0 0.0 0.0
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Figure B.7: Plot of the average structural
hamming distance as a function of p, the num-
ber of variables, where T = 100 for the methods
in Table B.4, excluding DAG-LASSO.
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Figure B.8: Plot of the average structural
hamming distance as a function of p, the number
of variables, where T = 1000 for the methods in
Table B.4, excluding DAG-LASSO.
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B.3 Sparse cyclic VAR(1) models

Table B.5: Average empirical risk Remp(W ) as a function of p for T = 100 and T = 1000, where
s = 2p and W corresponds to a cyclic structure.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 6.48 11.90 17.42 28.92 51.43 6.49 12.54 19.02 33.04 66.88

MH-Regular 6.48 11.77 17.30 29.30 52.08 6.49 12.66 19.15 33.28 67.82

MH-Greedy 6.68 11.47 16.30 25.55 42.77 6.64 12.48 17.72 29.36 57.42

NOTEARS 6.58 11.28 15.99 24.53 40.05 6.51 12.26 17.6 29.52 54.58

DAG-LASSO 20.56 42.37 54.78 103.97 288.88 16.77 35.97 54.48 107.46 222.84

DAG-OMP 7.07 12.03 16.29 25.78 42.25 6.93 13.0 17.87 29.87 55.62

DAG-OLS-V 7.57 13.28 18.96 31.22 58.18 7.24 13.68 18.93 32.96 60.77
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Figure B.9: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 100 for the methods in Table B.5, excluding
DAG-LASSO.
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Figure B.10: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 1000 for the methods in Table B.5, exclud-
ing DAG-LASSO.
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B.4 Linear structural equation models.

Table B.6: Average empirical risk Remp(W ) for the aforementioned methods for several values of
p and T , where s = 3p and the data has been generated according to a linear structural equation
model.

T = 100 T = 1000

Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

Random Walk 4.97 11.60 24.44 44.08 143.06 5.02 12.30 24.20 46.22 172.68

MH-Regular 4.97 11.45 21.28 45.60 147.32 5.02 11.73 23.18 48.07 160.71

MH-Greedy 4.97 9.59 14.07 22.35 39.35 5.02 9.93 14.91 24.70 53.35

NOTEARS 5.03 17.09 395.64 136.79 2667.6 5.07 11.86 326.30 32.91 1209.85

DAG-OMP 5.65 13.39 16.62 27.65 44.74 5.87 14.12 18.24 30.16 62.24

DAG-OLS-V 6.87 23.62 58.98 175.61 1985.58 7.10 34.19 96.83 191.95 2384.91
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Figure B.11: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 100 for the methods in Table B.6, excluding
DAG-LASSO.
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Figure B.12: Plot of the average empirical risk
as a function of p, the number of variables, where
T = 1000 for the methods in Table B.6, exclud-
ing DAG-LASSO.
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B.5 Investigating the influence of the threshold

The experiments from Appendix B.1 have been redone for thresholds ε ∈ {0.00, 0.05, 0.15, 0.30, 0.40}
to investigate its influence. The true risk R(W ) and structural hamming distance (SHD) for these
threshold values are given in Table B.7 and Table B.8.

Table B.7: Average true risk as a function of p for T = 100 and T = 1000, where s = 3p and W
is acyclic for different thresholds ε.

T = 100 T = 1000

Threshold Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

0.00 Random Walk 5.17 12.69 20.33 42.26 130.67 5.02 11.99 19.15 35.93 80.92

0.00 MH-Regular 5.17 12.87 20.41 43.98 136.06 5.02 11.80 19.73 36.46 84.11

0.00 MH-Greedy 5.17 11.38 16.98 32.18 96.01 5.02 10.29 15.18 26.1 55.39

0.00 NOTEARS 5.17 10.68 16.72 30.7 87.18 5.02 10.06 15.15 25.36 51.47

0.00 DAG-LASSO 8.47 37.04 50.79 101.90 244.59 8.24 29.30 49.07 87.45 205.30

0.00 DAG-OMP 5.17 11.34 17.46 30.84 85.33 5.02 10.39 15.78 25.55 51.65

0.00 DAG-OLS-V 5.17 10.64 16.39 28.65 63.76 5.02 10.06 15.13 25.27 50.92

0.05 Random Walk 5.17 12.65 20.24 41.62 126.33 5.02 11.97 19.12 35.84 80.44

0.05 MH-Regular 5.17 12.83 20.28 43.44 131.58 5.02 11.79 19.71 36.36 83.71

0.05 MH-Greedy 5.17 11.35 16.89 31.81 92.69 5.02 10.27 15.13 25.89 54.44

0.05 NOTEARS 5.17 10.67 16.64 30.32 84.85 5.02 10.05 15.09 25.14 50.46

0.05 DAG-LASSO 8.64 39.05 54.00 105.35 254.44 8.47 31.06 51.21 90.98 216.13

0.05 DAG-OMP 5.17 11.32 17.37 30.46 82.93 5.02 10.38 15.72 25.34 50.62

0.05 DAG-OLS-V 5.17 10.64 16.39 28.64 63.74 5.02 10.05 15.09 25.15 50.44

0.15 Random Walk 5.17 12.56 19.79 39.30 106.11 5.02 12.00 19.26 36.59 84.07

0.15 MH-Regular 5.17 12.78 19.82 41.03 109.51 5.02 11.80 19.85 37.00 87.19

0.15 MH-Greedy 5.17 11.21 16.32 29.02 70.74 5.02 10.27 15.11 25.87 54.56

0.15 NOTEARS 5.17 10.53 16.07 27.41 62.52 5.02 10.04 15.07 25.10 50.19

0.15 DAG-LASSO 9.93 45.21 60.87 117.77 293.00 8.65 35.89 56.65 102.29 245.60

0.15 DAG-OMP 5.17 11.23 16.97 27.79 63.29 5.02 10.39 15.75 25.33 50.43

0.15 DAG-OLS-V 5.17 10.52 16.05 27.26 58.18 5.02 10.04 15.07 25.10 50.19

0.30 Random Walk 5.26 12.71 20.14 40.24 109.74 5.02 12.33 19.7 37.72 88.83

0.30 MH-Regular 5.26 13.12 20.12 41.93 115.55 5.02 12.24 20.26 38.23 93.01

0.30 MH-Greedy 5.26 11.34 16.41 29.09 71.41 5.02 10.27 15.11 26.01 55.76

0.30 NOTEARS 5.26 10.59 16.08 27.08 61.03 5.02 10.04 15.07 25.10 50.19

0.30 DAG-LASSO 12.32 51.51 68.16 148.08 353.65 10.72 46.02 69.44 136.2 290.74

0.30 DAG-OMP 5.26 11.45 17.51 27.88 63.64 5.02 10.52 15.85 25.34 50.62

0.30 DAG-OLS-V 5.26 10.59 16.05 26.71 54.61 5.02 10.04 15.07 25.10 50.19

0.40 Random Walk 5.91 14.11 24.84 47.58 143.70 5.02 12.49 20.64 40.28 94.02

0.40 MH-Regular 5.91 14.38 24.39 50.55 142.37 5.02 12.57 21.18 40.30 96.72

0.40 MH-Greedy 5.91 13.23 20.53 37.17 109.48 5.02 10.33 15.11 26.31 57.72

0.40 NOTEARS 5.91 12.27 19.92 34.21 106.49 5.02 10.04 15.07 25.10 50.19

0.40 DAG-LASSO 13.79 54.4 77.76 177.18 400.56 12.04 48.88 81.05 152.41 334.92

0.40 DAG-OMP 5.91 13.48 21.05 36.13 101.94 5.02 10.61 16.11 25.62 50.68

0.40 DAG-OLS-V 5.91 12.34 19.92 33.05 73.2 5.02 10.04 15.07 25.10 50.19

For T = 100, the performance of all methods increases if we increase the threshold. However, for
ε = 0.40, the performance decreases as the true coefficients are also thresholded. For T = 1000,
the threshold barely influences the iterative methods and NOTEARS. The permutation-based
methods attain slightly higher true risks. For DAG-LASSO, a smaller threshold is better, but the
results for DAG-LASSO remain the worst of all methods by quite a margin.
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Table B.8: Average structural hamming distance (SHD) as a function of p for T = 100 and
T = 1000, where s = 3p and W is acyclic for different thresholds ε.

T = 100 T = 1000

Threshold Method p = 5 p = 10 p = 15 p = 25 p = 50 p = 5 p = 10 p = 15 p = 25 p = 50

0.00 Random Walk 0.0 23.8 74.8 263.2 1177.2 0.0 23.6 75.8 267.0 1176.0

0.00 MH-Regular 0.0 23.8 76.2 266.0 1182.6 0.0 22.2 78.8 267.4 1189.0

0.00 MH-Greedy 0.0 18.2 61.0 229.4 1095.2 0.0 16.2 60.2 227.6 1089.4

0.00 NOTEARS 0.0 14.3 52.9 204.1 992.0 0.0 9.3 42.3 149.1 699.6

0.00 DAG-LASSO 8.7 37.3 58.2 96.0 205.3 6.8 35.9 57.0 94.7 195.3

0.00 DAG-OMP 0.0 16.0 60.8 225.6 1077.8 0.0 15.4 60.8 225.4 1075.2

0.00 DAG-OLS-V 0.0 7.4 18.1 56.3 169.5 0.0 5.8 20.9 60.0 226.0

0.05 Random Walk 0.0 14.4 43.0 155.8 755.0 0.0 6.0 19.9 62.0 215.8

0.05 MH-Regular 0.0 14.6 42.8 162.0 774.4 0.0 6.2 23.2 60.7 220.7

0.05 MH-Greedy 0.0 11.6 33.8 137.9 691.8 0.0 1.7 4.5 12.7 82.5

0.05 NOTEARS 0.0 9.7 33.0 135.8 700.5 0.0 0.9 4.3 9.5 61.1

0.05 DAG-LASSO 9.0 37.1 55.5 93.8 192.2 7.1 34.9 54.6 89.9 184.3

0.05 DAG-OMP 0.0 9.9 33.9 132.4 674.9 0.0 1.2 6.8 11.6 61.4

0.05 DAG-OLS-V 0.0 7.3 17.4 54.4 168.2 0.0 1.0 3.8 10.3 48.9

0.15 Random Walk 0.0 6.9 16.3 52.1 273.0 0.0 4.8 11.0 29.0 75.5

0.15 MH-Regular 0.0 6.7 14.8 56.4 282.3 0.0 4.9 12.7 28.7 80.2

0.15 MH-Greedy 0.0 3.0 7.4 27.7 204.1 0.0 0.6 0.2 1.9 11.9

0.15 NOTEARS 0.0 1.2 6.2 26.3 191.3 0.0 0.0 0.0 0.0 0.0

0.15 DAG-LASSO 10.2 36.9 54.3 91.5 186.9 7.1 34.9 54.0 89.1 180.9

0.15 DAG-OMP 0.0 2.4 7.2 25.3 172.5 0.0 0.4 1.1 0.5 0.8

0.15 DAG-OLS-V 0.0 0.8 5.5 19.2 94.6 0.0 0.0 0.0 0.0 0.0

0.30 Random Walk 0.3 5.6 9.2 27.2 97.3 0.0 4.8 9.4 22.9 55.4

0.30 MH-Regular 0.3 5.9 9.9 28.7 106.9 0.0 4.2 11.0 23.9 59.8

0.30 MH-Greedy 0.3 2.3 1.3 5.6 39.3 0.0 0.6 0.1 1.6 8.4

0.30 NOTEARS 0.3 0.4 0.7 1.9 20.0 0.0 0.0 0.0 0.0 0.0

0.30 DAG-LASSO 12.1 37.2 54.5 92.8 188.1 9.1 36.1 55.0 91.9 184.6

0.30 DAG-OMP 0.3 1.6 1.4 3.6 22.3 0.0 0.6 0.9 0.4 0.3

0.30 DAG-OLS-V 0.3 0.4 0.6 1.3 6.0 0.0 0.0 0.0 0.0 0.0

0.40 Random Walk 2.3 8.5 15.6 33.1 96.9 0.0 5.6 10.6 25.7 59.0

0.40 MH-Regular 2.3 8.3 15.3 36.5 101.9 0.0 5.6 12.0 27.2 64.4

0.40 MH-Greedy 2.3 5.7 7.5 14.2 50.6 0.0 0.8 0.1 1.9 9.4

0.40 NOTEARS 2.3 3.4 6.3 11.0 37.2 0.0 0.0 0.0 0.0 0.0

0.40 DAG-LASSO 13.3 37.6 55.7 95.1 190.6 12.0 36.7 55.9 93.4 188.0

0.40 DAG-OMP 2.3 4.6 7.3 13.4 39.9 0.0 0.8 1.1 0.5 0.2

0.40 DAG-OLS-V 2.3 3.5 6.3 9.9 23.2 0.0 0.0 0.0 0.0 0.0

For T = 100, having no threshold is detrimental for all methods, although DAG-LASSO seems
to perform better structurally, although the predictive performance of DAG-LASSO was quite
poor. Increasing the threshold significantly improves the structural performance of all methods,
except DAG-LASSO whose performance remains approximately the same. However, the perform-
ance drops for ε = 0.40, most likely because too many coefficients are thresholded.

For T = 1000, when we have no threshold, the SHD of all methods is poor, especially the
permutation-based methods and DAG-OMP. A threshold of 0.05 slightly improves the SHD, and
for larger threshold values, the SHD does not seem to change much.

The value of the threshold drastically affects the structural performance of all methods, yet
their relative performance, that is, their performance compared to each other, remains similar.
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