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Abstract

An LED driver has multiple tasks that need to be executed in parallel. Its core functionality is
that of a power supply. To implement that, several control tasks need to be executed at constant
intervals. A communication protocol is also run to provide remote control capabilities. The signals
for this communication protocol are captured through an interrupt. The communication interrupt
is unscheduled and can interfere with control tasks. In this thesis, the current implementation
is analysed. Then, three solutions to the problem are proposed. The first one is changing the
scheduling algorithm of the system. The second one is using a server to manage the interrupt.
The third solution is to limit the preemption of control tasks. The theoretical and practical aspects
of the solutions are examined. It is concluded that only limiting the preemption of control tasks
is an improvement over the current implementation.
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Chapter 1

Introduction

This thesis concerns real-time scheduling policies for a real-time system. Real-time systems are
computing systems that aim to create a response to events within a predictable window of time.
The predictability of real-time systems is critical to their operation, ensuring that the system
functions correctly. Real-time systems are often found at the border between the cyber and phys-
ical world, enabling the control of physical processes while being able to interact with the digital
world. They are usually implemented with an embedded microcontroller, and their applicability
ranges from small consumer electronics to safety-critical systems such as aeronautics and medical
devices.

The functionality of a real-time system is often realised by several tasks. These tasks must be
executed in conformance with timing requirements, which may differ for each task. One simple
but common way to classify tasks is based on their deadlines. There are hard and soft real-time
tasks. Hard real-time tasks’ deadlines need to be met to ensure the functionality of the system.
On the other hand, soft real-time tasks have deadlines that do not need to be met, but if they are
missed, it affects the quality of service(QoS) of the system proportionally to the time passed after
the deadline. Moreover, some tasks do not have a clear deadline, with their execution constraints
coming from their purpose. To ensure the correct behaviour of the system, hard real-time tasks
need to be scheduled such that they all meet their deadlines, and soft real-time tasks have their
QoS maximised. Another way of classifying real-time tasks is based on their arrival patterns.
Some tasks arrive periodically, while others arrive sporadically. The main focus of this thesis is to
explore existing scheduling algorithms and implement an adequate solution to schedule the tasks
of a lighting driver used in smart LED lighting devices.

In this chapter, the context and background for the thesis are presented, and we introduce
the problem that is addressed in this thesis. Then the research goal and approach are presented,
together with the main contributions of this thesis.

1.1 Context and Background

The project is done at the LED Electronics department of Signify, whose aim is to design and
develop LED drivers. This is part of the technological development around light. Light is an
essential part of the natural environment, which makes it an integral part of many applications.
In the last decades, the advent of the light-emitting diode (LED) enabled more efficient and
versatile lighting applications. A central device in many such applications is the driver. Such a
driver can be seen in Figure 1.1a. The main function of the driver is to supply electrical power to
the LED load. One example of such an LED load can be seen in Figure 1.1b. The load displayed in
the figure is called linear due to the shape the LEDs are arranged in. The driver has to ensure that
the electric current that goes to the load is stable and at the desired level, to create a qualitative
lighting experience. On top of this functionality, the driver may communicate with a local area
controller, which is a device that can be used by humans to configure and send commands to the
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1.2. USE CASES CHAPTER 1. INTRODUCTION

driver, and optionally receives input from a sensor and other devices, increasing the possible use
cases of LED systems.

(a) A linear LED driver in its case (b) Linear LED load

Figure 1.1: Examples of an LED driver and load

In recent years, improvements in the areas of embedded computers, actuators and more accur-
ate sensors shaped the technology used for a lighting driver. The driver was initially an analog
power supply with no additional features, such as controlling the driver remotely or determining
the remaining lifetime of the device. Adding them increased the usability and marketability of the
driver. To implement them, a microcontroller was added to the driver. The addition of the micro-
controller to the driver made possible a digital implementation of the power converters, ensuring
the stable output of power. All functionality is structured in software modules, which are further
structured in tasks. Two particular kinds of tasks are control and communication tasks. Control
tasks are periodic tasks without a precise deadline but whose functionality depends on executing
them as fast as possible. On the other hand, communication tasks have a precise deadline dictated
by the protocol they implement, and if they do not meet their deadline, the protocol will not be
satisfied. This thesis will study different scheduling algorithms that can be used to accommodate
the timing requirements of these two types of tasks. While the problem, solution and approach
are meant to be general, a particular use case will be employed to illustrate the concepts better
and allow practical validation.

1.2 Use cases

1.2.1 Overview

The system considered in this thesis consists of a lighting system with one LED load. The system
can be controlled remotely. It contains a light emitter(i.e., the LED load), its driver, a local area
controller and a power supply. The components of the driver, as well as the interactions between
them, are captured in a component diagram. The diagram is shown in Figure 1.2.

The possible interactions of the driver with the actors around it are shown in Figure 1.3. The
first actor included in the system is the local area controller. Its purpose is to specify the char-
acteristics of the light being emitted, such as dimming level or warmth. The controller passes
its commands to the LED driver using DALI, which will be described in more detail in subsec-
tion 1.2.3. Apart from that, the driver can be configured through near-field communication(NFC),
which is incorporated into the external storage. On the electrical input and output, the driver is
supplied by mains with alternative current (AC), which is then converted to direct current (DC)
to supply the LEDs.

A picture of the components of the system, as they are laid out on the workbench, can be seen
in Figure 1.4. A USB hub connecting the computer to various components can be seen on the left.
The computer uses an interface to the DALI protocol. The LED load can be seen on the right.
In the middle, there is the LED driver that is used. It has three wired connections to the mains
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Figure 1.2: UML Component Diagram of the Driver

Figure 1.3: Use case diagram of the system in which the driver operates

power supply, the communication line, and the LED load. In the upper right corner, a colorimeter
can be seen. It is used to measure light flicker.

1.2.2 Electrical Components

The main purpose of the driver is to supply power to the light emitters, being an AC-DC power
supply. The electronic components decrease the power factor of the driver, leading to increased
power consumption and even fines from the electricity supplier. The power factor of a device can
be increased by a power factor corrector (PFC).

AC power is composed of a voltage and current wave, which are not necessarily in phase. The
difference between the phases of the two waves creates a difference between the apparent power
consumed by the device, which is the power the device draws from the mains, and the real power,
which is the power that is used by the device. The power factor is the ratio between the real and
apparent power, having values between -1 and 1. Having a poor power factor can be penalised by
the electricity supplier through extra costs, so it is not desirable.

The circuits of the driver decrease the power factor because they contain inductors and ca-
pacitors that shift the current and voltage waves, decreasing the real power used by the driver.
To increase the power factor of the driver, a correction needs to be applied, and the circuit that
realises it is called power factor corrector (PFC). The PFC contains a transistor that is switched
on and off to achieve the correction. However, while the PFC increases the power factor, its circuit
creates DC electricity that has a very high voltage. To bring the voltage down to the levels accep-
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Figure 1.4: Workbench

ted by the light emitter, a buck converter circuit is used. Both the PFC and the buck converter
employ transistors to control their behaviour. Their transistors are switched on and off based on
a duty cycle determined by a controller, ensuring the output level of each circuit corresponds to
the desired one. Both the PFC and the buck converter have a dedicated controller.

The driver contains an ARM M0 microcontroller that executes the controllers of the PFC and
buck converter. The microcontroller also implements the DALI communication protocol, which
allows the driver to communicate with a local area controller that plays the role of a master of a set
of light emitters. Moreover, the driver has an external memory module, which communicates with
the microcontroller using the I2C protocol. The memory module is used to store configuration
and diagnostics data in a non-volatile form. Other features provided by the driver are monitoring
of the mains, energy metering, diagnostics, and estimation of the end-of-life (EOL) of the LED
load.

The emitters that produce light are light-emitting diodes (LEDs). The load controlled by the
driver consists of multiple LEDs connected in parallel or series.

1.2.3 DALI communication protocol

Digital Addressable Lighting Interface [1] (DALI) is a standardised wired communication protocol
dedicated to digital lighting control. The DALI protocol adheres to the master-slave design pat-
tern. There are three types of devices: control devices, input devices, and control gears. Control
devices play the role of masters, being application controllers. Input devices consist of sensors
detecting the state of the environment. They can be queried by the control device. Control gears
consist of lighting actuators, usually the driver of the lighting device. The control devices and the
control gear are connected through a wired bus. An example of such a DALI system can be seen
in Figure 1.5.

At the physical layer, connections are realised through a two-wire bus. The protocol is a digital
one, using logic high and low signals across the wires. The nominal voltage of the bus is 16V, with
the logic high represented by a voltage level between 9.5 and 22.5V. The logic low is represented
by a voltage below 6.5V. The rise and fall time of an edge is capped at 15 us. The bus can also
act as a power supply for the sensors connected to the network.

At the data link layer, messages are marked by start and stop framing. At the networking
layer, a DALI network can have 64 short addresses, which may be used by either slaves or masters.
Slaves can be logically grouped, and there can be up to 16 groups. Masters are able to send 16-bit
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Figure 1.5: Example of a DALI system[2]

forward frames to control gear and 24-bit frames to input devices, and they receive 8-bit backward
frames as a reply.

DALI also allows the definition of scenes, in which every device has a particular setting to
create a lighting scene in the room they are deployed. Information about group membership and
scene-setting is stored locally in each slave. Slaves can be addressed in three modes: individually,
through their group or all at once through a broadcast. There are three types of commands that
can be issued by masters: instructions, configuration and queries.

1.3 LED Driver and Software Components

The elements on the LED driver employed in the use case can be seen in Figure 1.6. The driver
converts the AC supplied by the mains to the DC required by the LED load. Its circuits are split
into four parts. The input circuit converts the current from AC to DC. The second part is the
PFC circuit, which corrects the poor power factor introduced by the driver. The third part is a
buck converter that lowers the voltage to the level that is required by the LEDs. This is done
both to bring the voltage to the normal functioning parameters of the LED load as well as to
implement light dimming to the desired level. The fourth part is the output circuit that passes
current to the LEDs. The computation power is given by an XMC1402 microcontroller mounted
on the driver.

Figure 1.6: UML Class diagram of the driver

Real-time scheduling for an LED driver 5



1.3. LED DRIVER AND SOFTWARE COMPONENTS CHAPTER 1. INTRODUCTION

1.3.1 Controllers and other circuit-related features

The PFC and buck converter are controlled digitally. A general block diagram for the controllers
can be seen in Figure 1.7. Their controllers consist of two parts. The first one is a cycle-by-cycle
controller implemented by configurable hardware, switching the transistors with high frequency.
This controller reacts to current fluctuations in the circuit. The second controller is a feedback
controller implemented by software. The feedback is received from the bus voltage, measured at
different points in the circuit for the PFC and the buck converter controllers. The bus voltage is
measured by an analog to digital converter. The output of the software controller is a pulse width
modulation(PWM) signal that configures the hardware controllers. The PWM signal is generated
by capture and control units(CCU), which are part of the industrial control peripherals of the
microcontroller. The software controllers must be executed at a fixed frequency for the quality of
the light to be at an acceptable level.

Figure 1.7: Generic block diagram of the controllers

As already said, other features implemented on the controller are mains monitoring, energy
metering, diagnostics, and estimation of the EOL of the LED load. Mains monitoring serves
two purposes. Firstly, the driver detects whether the power source is AC or DC, together with
the frequency of AC. This makes the driver capable of using both AC and DC from the power
supply, adapting the behaviour of the PFC controller accordingly. Secondly, the driver stores
its configuration parameters in non-volatile memory when the power supply is stopped. To do
this, it uses a narrow window of time between the moment the stop is detected and when the
power actually stops. Energy metering is used to measure the energy efficiency of the driver. The
diagnostics feature enables the driver to auto-detect malfunctions. Estimation of the EOL of the
LED load facilitates timely replacement and continuous service for the load. These features have
hard real-time requirements because their functionality relies on storing parameters of the current
of the circuit at a fixed frequency. Another reason for measurements at fixed intervals is that
they are not done by sampling the analog lines directly but rather by reading sampled values from
dedicated registers, which are overwritten each time a new value is taken.

1.3.2 DALI Implementation

The DALI protocol is implemented on several layers. The hardware support is provided by the
CCU. When receiving, the CCU captures the timestamps of rising and falling edges, and when
transmitting, it times the interval between outgoing edges. The CCU communicates with the
microcontroller through interrupts, which happen when either two edges are detected on the wire
that connects the master to the slave or when a new edge is sent from the slave to the master.

The generated interrupt stores received edges in a queue or sets the line to the corresponding
value when transmitting. The edges are picked up by a decoder, which assembles the DALI
message and makes it available for an application layer interpreter, that reacts accordingly.
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1.3.3 EEPROM synchronization

As mentioned in section 1.2, the driver uses an external memory EEPROMmodule. This is used to
store non-volatile data. As the EEPROM module is external to the microcontroller of the board,
reading and writing to it create a large latency. To ameliorate this, the microcontroller keeps a
cache of the EEPROM in the flash memory. The content of the two is synchronised when the
number of write modifications in the cache passes a threshold. Moreover, the EEPROM module
can also be accessed through NFC, and when that happens, the cache needs to be synchronised.
The microcontroller uses an interrupt to signal when the EEPROM has been accessed through
NFC. The I2C protocol is used to communicate with the external EEPROM. The protocol is
handled by the Universal Serial Interface Channel (USIC), which decreases processing time.

1.4 Current Implementation

The current firmware of the driver assigns tasks to two different schedulers. The first scheduler
runs inside the process context. That scheduler is implemented as the main loop of the program.
It schedules tasks that do not have hard real-time requirements. The scheduler is cooperative and
non-preemptive, iterating through all events and executing the triggered events until completion.
This logic can be seen in Listing 1.1. It supports both sporadic and periodic tasks. The tasks’
period is maintained by software timers, which are updated with a frequency of 1 kHz.

f o r ( ; ; ) {
update system time ( ) ;
f o r each event e {

i f ( e i s t r i g g e r e d ) {
e x e c u t e a s s o c i a t e d c a l l b a c k ( ) ;

}
}

}

Listing 1.1: Main Loop

Tasks which have hard real-time constraints are executed by a cyclic executive scheduler divided
into twelve time slots. Tasks handled by this scheduler correspond to features related to circuit
control and measurement. A timer is used to call the scheduler at a frequency of 12 kHz at the
beginning of each time slot. The assignment of tasks to time slots determines the frequency at
which they are executed. Since the high-frequency scheduler functions off an interrupt, and the
low-frequency one is executed in process context, the former can interrupt the latter and thus
ensures that its tasks are executed on time.

There are four interrupts used in the system, seen in Table 1.1. As seen from the priority
assignment, the DALI protocol interrupt has a higher priority than the cyclic executive scheduler
and can interfere with it. This is because DALI does not have any error correction mechanism,
and therefore misses are not allowed. The interrupt is triggered when the driver is receiving a
message, and it detects an edge on the DALI line or when the timer triggers when transmitting.

Function Priority (0=highest) Frequency
DALI Protocol 0 Sporadic

Cyclic Executive Scheduler 1 12 kHz
Cooperative Scheduler 3 1 kHz

NFC Busy 3 Sporadic

Table 1.1: System interrupts

Infineon XMC1000/4400 microcontroller The driver has an embedded microprocessor to
handle communication and control the circuits that regulate the power it outputs to the LEDs.
The current design uses an Infineon XMC1402 microcontroller, which contains an ARM Cortex-M0
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processor. However, in future iterations, a move towards an XMC4400 with an Arm Cortex-M4
processor is considered. This would make more space and processing power available on the
platform, as seen in Table 1.2. The increase in capacity opens the door to future features that
will complement the existing ones, and this is part of the trend described in section 1.1. One
disadvantage is that the new processor lacks some of the peripherals that the old one has, but that
would be solved with other models that also use a Cortex-M4 core. One example of such a lacking
peripheral is the LED brightness & color control module, which handles LED color and brightness
transitions. Therefore the XMC4400 will also be considered throughout the thesis to compare the
performance of the solution on two platforms as well as to create a solid base for future iterations
of the product.

Feature Processor Processor Speed RAM Flash Peripherals clock
XMC1402 Arm Cortex M0 48MHz 16 kB 64 kB 96MHz
XMC4400 Arm Cortex M4F 120MHz 80 kB 512 kB 120MHz

Table 1.2: Feature Comparison of XMC 1402 and XMC 4400

1.5 Problem Description

Multiple software tasks need to run simultaneously on the same processor: the control software,
DALI and I2C communication. The controllers are crucial in ensuring that the emitted light meets
the quality standards. At the same time, the DALI communication needs to be handled within
the time constraints of the protocol. Otherwise, the device would not be compatible with other
devices on the market and would not receive a certification. These conflicting requirements make
scheduling tasks difficult.

The difference between the DALI and I2C protocols is that I2C has the advantage of having
direct memory access and hardware decoders. The reception and transmission of messages at the
physical layer are performed by hardware. This leaves only the application layer to the processor.
As the application layer does not have strict timing requirements, it can be executed in the
background as part of the cooperative scheduler. On the other hand, DALI is a domain-specific
communication protocol. Because its use is not widespread, it does not benefit from hardware
support. Thus, DALI messages need to be received and decoded by the microcontroller. The
part with the strictest timing requirement is the reception and transmission of signals on the
communication medium, i.e. on the wire.

The timing requirements of the physical layer of the DALI interrupt are different between the
case when the driver is transmitting and when it is receiving messages. When receiving, the timing
of incoming signals is recorded by the CCU. The DALI interrupt must read the registers of the
CCU and store the recorded timing before other signals come. If other signals come before that
happens, they will overwrite the registers. The timing requirements are more relaxed when the
driver is transmitting messages, as it controls the timing of the signals. It must nevertheless meet
the requirements of the DALI protocol.

Thus the microcontroller must handle a task with strict timing requirements. To do that,
it uses an interrupt. The interrupt has the highest priority in the system. When it triggers, it

Figure 1.8: DALI interrupt interfering with the buck controller after an edge is received
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interferes with control tasks from the cyclic executive. This interference can be seen in Figure 1.8.
Moreover, the interrupt is sporadic and unscheduled, and there is no protection for the execution
of the control tasks. Thus, it interferes with them, creating spikes in the output current, and
decreasing the lighting quality. The expectation is that a more flexible and robust solution would
enable the two types of tasks to execute with limited interference.

1.6 Goal and approach of the research

Given the challenges laid out in section 1.5, the goal is to introduce a new scheduling policy for
the tasks that are executed on the driver such that the interference between the communication
protocol and the control tasks is controlled, taking into account the real-time attributes and
requirements of both task category.

This involves choosing or designing an algorithm which guarantees that the functional and QoS
requirements of the lighting application and of the communication protocol are met. Moreover,
the interference between tasks needs to be controlled. The algorithm will be theoretically analysed
to guarantee this. Then, a practical implementation will be created to test the theoretical results.

The research question that stems from the problem description is, therefore:

How can a real-time scheduling policy be applied to a subset of tasks executed on an
LED driver, such that all tasks meet their deadlines, and the interference between
communication-related tasks and control-related tasks is controlled?

Specifically, for the specific use case considered in this project, we must control the interference
between tasks such that the flickering of the light is below a predefined threshold, the hard real-
time timing requirements of the DALI communication protocol are respected, and the response
time of the control tasks is minimised. The above research question sprawls other questions related
to the steps that must be taken to answer the main question, reflecting the approach that will be
used.

1. How can the system’s tasks be modelled, and what properties and requirements can be
derived from the model?

2. Which scheduling policy may produce a schedule for the tasks running on the LED driver,
such that all tasks meet their deadlines?

3. What techniques can be used to control the interference between control and communication-
related tasks?

4. How can the policy producing a valid schedule with the least amount of interference be
implemented on the targeted specific platform?

5. How does the produced implementation compare with an existing implementation in terms
of interference and response time?

1.7 Contributions

The contributions of this thesis reflect the research questions and can be summarised as follows:

1. A study and review of the state-of-the-art real-time scheduling algorithms for a single-core
real-time platform

2. A scheduling policy for an LED driver, together with a theoretical analysis
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3. A technique for controlling the interference between the communication and control-related
tasks

4. A proof-of-concept implementation of the proposed algorithm on the targeted hardware to
assess its performance and industrial applicability.

5. An evaluation of the proof-of-concept implementation

1.8 Thesis outline

The remaining chapters of this thesis are organised in the following way. Chapter 2 provides
an overview of the state-of-the-art algorithms for real-time scheduling on single-sore platforms.
Chapter 3 describes how the driver system can be modelled. Chapter 4 presents three different
theoretical solutions together with their analysis. Chapter 5 shows how an RTOS can be evaluated
for the given use case. Chapter 6 presents how a subset of the system can be ported to FreeRTOS.
Chapter 7 presents different implementations of solutions that directly control the DALI interrupt.
Chapter 8 contains conclusions and reflections.
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Chapter 2

State-of-the-Art

This chapter will present a survey of the relevant literature and technologies related to the topic.
It is presented in two parts. The first part covers literature about different scheduling algorithms
and techniques. The second part presents different operating systems available on the market,
which may be used as a platform for implementing the algorithms.

2.1 Scheduling algorithms

The kind of tasks and constraints that the scheduling algorithm needs to accommodate are laid
out in section 3.7. There are periodic hard-real time tasks without a well-defined deadline, but
with QoS inverse proportional to the jitter and interference experienced, and sporadic tasks with
hard deadlines. Thus the system needs to deal with a mixed task set. This section will present
different algorithms that can be used to schedule periodic hard-real time task sets on a uniprocessor
platform. They provide guarantees that the tasks meet their deadlines, together with various
techniques to study their jitter.

Of the few algorithms designed to schedule periodic tasks, the simplest one is the cyclic ex-
ecutive. It involves having the processor time divided into time slots, each executing tasks in a
sequence that repeats itself. This is the method currently used on the LED driver. Its simplicity
makes it highly analysable and easy to use. However, there are some drawbacks of this method,
outlined in [3], which appear under certain conditions. The first one is poor management of over-
head situations, in which a task exceeds its execution budget and may overrun the next timeslot.
The second one is its sensitivity to changes. When a task is redesigned and requires more compu-
tation time or a higher frequency, a new scheduler needs to be computed and analysed. Another
problem is that aperiodic tasks are hard to integrate into the schedule.

Before presenting other algorithms, an overview of notations is needed to establish common
ground, as many papers define their own different notations. Table 2.1 summarizes the notations
used in this section. Another useful notion is the concept of a necessary and sufficient condition
for the schedulability of a task set under a given algorithm. If a task set is schedulable by the
algorithm, it is implied that it meets the necessary condition. On the other hand, if a task meets
a sufficient condition, the task set is schedulable.

Table 2.1: Notations Overview

Notation Explanation
Γ Set of tasks
Ci Worst-case execution time of task τi
Ti Period of task τi
Di Deadline of task τi, relative to its release
Wi Worst-case response time of a task τi
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Notation Explanation
Bi Best-case response time of a task τi

Ui = Ci/Ti Processor utilization factor of task τi
U =

∑n
i=1(Ci/Ti) Total processor utilization for a task set

Ulub
Least utilization bound of an algorithm - the maximum total utilization
for which a task set is schedulable given a certain scheduling algorithm.

Up Total utilization of periodic tasks in a task set
Us Server utilization

Preemptability One characteristic of scheduling algorithms is whether they are preemptive or
not. A preemptive algorithm considers the tasks preemptable, meaning that they may be inter-
rupted by higher priority tasks. A non-preemptive algorithm lets tasks execute until completion
after they are selected to execute. There are also algorithms that employ limited preemption, in
which tasks can only be preempted under certain conditions.

Priority-based algorithms are a class of scheduling algorithms where tasks are executed based
on their priority. Although they can be used with any preemption environment, they are most
commonly used assuming full-preemptability. The algorithms can be classified based on the run-
time behaviour of priorities. If priorities are fixed, the algorithm is static, and if not, it is said to
be dynamic.

Static priority algorithms are the easiest to implement of the two options, as they only rely on
a system that can support priority scheduling and preemption. The priority assignment is given at
compile-time, and they are fixed. In contrast, to support a dynamic assignment, the system also
needs to recompute the new priority of tasks. Static priority algorithms are important because
they can be implemented natively in all real-time operating systems.

2.1.1 Rate-monotonic scheduling

Rate-monotonic scheduling (RMS) is a static priority scheduling algorithm in which priorities are
assigned based on the periodicity of each task. Tasks with a smaller period have a higher priority.
It has been shown that when deadlines are equal to periods, RMS is optimal among static priority
scheduling algorithms [4]. This means that if a task set can be scheduled by another static priority
algorithm, then it can also be scheduled by RMS.

There are two sufficient conditions for RMS based on processor utilization. The first one is the
Liu-Layland bound[4]. This bound is Ulub = n(21/n − 1), where n is the number of tasks to be
scheduled. For a large n, this converges to ln 2 ≈ 0.69. The second one is the hyperbolic bound,
which is less pessimistic than the Liu-Layland bound[5]. According to this bound, a task set is
guaranteed to be schedulable by RMS if

∏n
i=1(Ui + 1) ≤ 2.

2.1.2 Deadline monotonic scheduling

A variation of the RMS is deadline monotonic scheduling (DMS)[6], which is a static priority
scheduling algorithm where higher priorities are assigned to tasks that have a smaller relative
deadline. When deadlines are less or equal to periods, it is optimal among static-priority scheduling
algorithms, meaning that if a task set can be scheduled by another static priority algorithm, DMS
is also able to schedule it. When deadlines are equal to periods, DMS has trivially the same
behaviour as RMS.

As DMS can handle tasks with smaller deadlines than their periods, it is more suited to schedule
control tasks than RMS because if a deadline is smaller than the period of a task, the interval
between different task executions has less variation. Indeed, with DMS, the jitter of tasks can be
bounded[7]. The schedulability analysis technique that is used for DMS is response time analysis,
which can guarantee that a task set is schedulable or not.
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2.1.3 Earliest deadline first

Earliest deadline first(EDF) scheduling is a scheduling algorithm using a priority assignment in
which higher priorities are assigned to tasks that have earlier absolute deadlines. Because the
earliest deadlines change during run-time, the priorities of the tasks change as well, and the
algorithm is classified as a dynamic priority algorithm. EDF has been proven to be optimal
among dynamic-priority algorithms on a single core[8], meaning that if a task set is schedulable
by any other dynamic priority algorithm, it will also be schedulable by EDF.

Under the assumption that deadlines are equal to periods, the least utilization bound of EDF
is 1, meaning that it can schedule any task set that is not overloaded. However, EDF may also be
used to schedule tasks whose deadlines are shorter than their periods. In this case, the analysis
is conducted using processor demand[9]. This checks that tasks do not require more computation
time than is actually available in an interval. The processor demand of a task τi in an interval
[t1, t2] is given by the sum of the computation time of instances of τi having their release time and
deadline in the given interval. This leads to the introduction of a demand bound function (dbf),
which is defined as

dbf(t) =
n∑

i=1

⌊ t+ Ti −Di

Ti
⌋Cifor anyt ≥ 0

This function leads to the schedulability condition for EDF with deadlines less or equal to
periods: dbf(t) ≤ t,∀t > 0. Another schedulability test is to compute the worst-case response
time for each task and compare it to its deadline. The computation of the worst case response is
based on [10]. The analysis assumes that the worst-case response time of a task will appear when
the other tasks have a busy period, meaning that they will keep the processor as busy as possible
before the task is released.

EDF leads to a lower number of preemptions compared to a static-priority algorithm[3]. How-
ever, it involves larger run-time computations, and it is not always supported by a real-time
operating system.

2.2 Scheduling sporadic tasks

The algorithms described in section 2.1 assume a periodic or sporadic task set. However, in the
case of the driver’s task set, the non-periodic tasks can be activated at a rate that causes problems
for the rest of the tasks. To deal with tasks whose activation needs to be limited, there are several
algorithms which execute non-periodic tasks while guaranteeing the deadlines of periodic tasks.
This section will review the existing research on combining these two task categories.

Background scheduling The simplest solution for combining periodic tasks with non-periodic
real-time tasks is to execute the non-periodic tasks while there are no available periodic tasks to
execute. This approach intrinsically preserves the schedulability of the periodic tasks. Its main
advantage consists of its simplicity. However, under high loads, non-periodic tasks may have large
response times. As a note, this is the method that is used in the current implementation of the
driver, with the cooperative scheduler acting as the background scheduler for soft and firm hard
real-time tasks.

Servers One common way to manage the execution of sporadic tasks is through servers. Servers
are defined as periodic tasks that execute sporadic tasks with a certain budget. Server algorithms
are categorized into fixed and dynamic priority servers based on the type of algorithm used for
scheduling the periodic tasks. They are used to improve the average response time of non-periodic
tasks compared to background scheduling.
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2.2.1 Fixed priority servers

Fixed priority servers are a class of server algorithms that are used in combination with a static
priority scheduling algorithm, such as RMS and DMS. The server task does not take execution
time unless there are requests from sporadic tasks, but it does receive a budget, i.e. maximum
computation time allotted to them, every period. Usually, the server task has the highest priority
in the system.

The algorithms presented in the following subsections are shown in their order of complexity,
together with how their schedulability may be analysed and what is the maximum utilization of
the server task such that the task set is still schedulable. Table 2.2 shows schedulability tests and
maximum utilization of servers.

Polling Server

The polling server algorithm allocates the server task a budget every period. If there are sporadic
tasks pending, then the server preserves its budget until it is selected by the scheduling algorithm
to execute. Then the server executes sporadic tasks within the limit of its budget. If there are no
sporadic tasks pending, the server loses its budget[11].

The server can be considered a periodic task when analysing the schedulability of a periodic task
set in the presence of a polling server. Thus, the same analysis techniques used for fixed-priority
scheduling can be applied, namely doing a utilization bound test or response time analysis[3].

Deferrable Server

The deferrable server is similar to the polling server, with the difference that its budget is not
lost when there are no sporadic tasks pending[11]. The budget is replenished up to its limit every
server period. The advantage over the polling server is the improved responsiveness of sporadic
tasks.

There are also schedulability tests for the deferrable server that determine whether a task set
is schedulable in the presence of a deferrable server. One of them uses the number of periodic
tasks as a parameter, while another schedulability test is based on the hyperbolic bound[3].

Priority Exchange Server

The priority exchange server(PES)[11] has its budget replenished every period. If there are no
sporadic tasks to be executed, the server exchanges its capacity for the execution time of the active
periodic task with the highest priority. The goal of the priority exchange server is to improve the
responsiveness of sporadic tasks over the polling server. Compared to the DS, PES has a slightly
larger maximum utilization, but it is more difficult to implement[3].

Sporadic Server

The sporadic server[12] functions differently than the other static priority server algorithms because
instead of replenishing its budget periodically, it has, by default, a full budget that is consumed
when sporadic tasks arrive. The consumed budget is replenished after a time interval equal to the
period of the server. Its goal is to improve the responsiveness of sporadic tasks over the polling
server.

Table 2.2: Schedulability tests and maximum dimension of servers[3]

Server Schedulability Test Hyperbolic Bound Test Dimensioning

Polling Up ≤ n

[(
2

Us+1

)1/n

− 1

] ∏n
i=1(Ui + 1) ≤ 2

Us+1 Umax
s ≤ 2−P

P

Deferrable Up ≤ n

[(
Us+2
2Us+1

)1/n

− 1

] ∏n
i=1(Ui + 1) ≤ Us+2

2Us+1 Umax
s ≤ 2−P

2P−1
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Server Schedulability Test Hyperbolic Bound Test Dimensioning

Priority Exchange Up ≤ n

[(
2

Us+1

)1/n

− 1

] ∏n
i=1(Ui + 1) ≤ 2

Us+1 Umax
s ≤ 2−P

P

Sporadic Up ≤ n

[(
2

Us+1

)1/n

− 1

] ∏n
i=1(Ui + 1) ≤ 2

Us+1 Umax
s ≤ 2−P

P

2.2.2 Dynamic priority servers

Another category of server algorithms is dedicated to executing soft and firm real-time tasks
in combination with a set of hard real-time tasks scheduled with a dynamic priority scheduling
algorithm. Given that the optimal and most used algorithm in this category is EDF, the server
algorithms presented below are designed and analysed having EDF in mind. In over to be able to
schedule the task set, Up + Us ≤ 1 has to hold.

Dynamic Priority Exchange Server

The dynamic priority exchange server[13] is an adaptation of the priority exchange server to a
dynamic priority scheduling setting.

Dynamic Sporadic Server

A dynamic sporadic server[13] solution is the adaptation of the sporadic server to operate beside
a dynamic priority scheduled task set.

Constant Utilization Server

The idea of the constant utilization server[14] is that the server task has a certain utilization Us,
and when a sporadic job arrives with an expected computation time of Ci, the server receives
a relative deadline equal to Ds = Ci/Us. A new sporadic job is budgeted for after the current
deadline of the server passes.

Total Bandwidth Server

The total bandwidth server[15] is similar to the constant utilization server, with the exception
that it allows budgeting for a new task even if the deadline of the server has not passed if the
previous job was already executed. When budgeting for a new job with expected computation
requirements of Ci, and having a deadline, the current deadline is extended: Ds = Ds + Ci/Us

Constant Bandwidth Server

The constant utilization and total bandwidth servers rely on knowing the expected computation
time of arriving sporadic jobs. However, that is not always the case. The constant bandwidth
server[16] solves that by having a certain budget Qs and a period Ts. When a new job arrives,
the computation time allocated to it is set to Qs, and the relative deadline of the server is set to
Ts. If the task does not take the whole computation budget, the remainder is retained until the
deadline. If the task exceeds its computation budget, the deadline is extended with Ts, as well
as the computation time with Qs. CBS is implemented and used as part of the SCHED_DEADLINE

scheduler of the Linux kernel[17].

2.3 Interrupt analysis

An important aspect for the system executing on the driver is analysing the schedulability of the
task set in the presence of interrupts, as the scheduler is sporadically interrupted by the DALI
interrupt handlers.

Real-time scheduling for an LED driver 15



2.4. SCHEDULING CONTROL TASKS CHAPTER 2. STATE-OF-THE-ART

An analysis technique for both static and dynamic priority scheduled task sets in the presence
of interrupts has been proposed[18]. This technique is based on knowing the amount of work
required by interrupts in a certain time interval.

There have also been other schedulability tests for tasks scheduled by EDF in the presence of
a periodic high-priority task[19]. These tests may also be used for analysing interrupt overhead if
the interrupt handler is modelled as a sporadic task.

2.4 Scheduling Control Tasks

An important topic is the scheduling of tasks that implement control algorithms. This is relevant
because control tasks are designed to execute at regular intervals, and scheduling them with a
deadline equal to their period may result in jitter even if they are scheduled correctly. There
are two sources of jitter. The first one is the overhead of the algorithm, and the second one is
the algorithm itself, as a job of the task may not be executed upon release but delayed in the
limit of its deadline. This jitter may degrade the performance of the algorithm if not taken into
account. The research in this area has been focused on either designing control laws that take the
latency and jitter of the scheduled task into account or on scheduling the control task such that
the influence of latency and jitter is as low as possible[20].

Executing control tasks through a constant bandwidth server has also been shown to be able
to be a feasible solution that generates small latency and jitter[21].

2.5 Limited Preemption

Allowing the full preemption of tasks increases the schedulability of the system, but at the same
time, it causes increased overhead due to frequent context switching. On the other side, a non-
preemptive solution may not be able to schedule the tasks. A middle ground can be found with
limited preemption solutions, which only allow preemption under certain conditions[22].

One possible solution is the preemption threshold algorithm. With this solution, each task has
a preemption threshold, which functions as a second priority, and only tasks with a higher priority
than the preemption threshold of the current task may preempt it. The second solution is deferred
preemption, realized through either fixed or floating non-preemptive regions. With fixed regions,
each task has predefined preemption points placed at specific points of their execution (e.g. after
executing a specific function or a certain number of iterations of a loop), and higher priority tasks
may only preempt the running task at these points. Floating regions do not define fixed points,
but rather when a higher priority task is released, the preemption is delayed by a given amount
of time, thereby giving an opportunity to the running task to complete its execution and cede the
processor voluntarily.

2.6 Real Time Operating Systems

The algorithms presented before are implemented through a scheduler. There are already a number
of schedulers provided as part of an operating system, and using them makes the development
process faster and more convenient. In the next section, a selection of operating systems is
presented, together with their features.

2.6.1 Requirements for the real-time operating system

Before presenting the possible options for an operating system, it is useful to have a feature list
of what an operating system may provide. Some of the most important features are:

1. Support the definition of tasks with priorities. This is needed to enable priority-based
scheduling policies.
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2. Support software timers. As most of the tasks are periodic, software timers are needed as a
means to implement their periodicity.

3. Offer task synchronization primitives. This is needed to implement precedence constraints.
Examples of such primitives are:

(a) Semaphores

(b) Mutexes

(c) Message Queues between tasks

(d) Management for the priority inversion problem

4. Integration with interrupts

5. Support for dynamic scheduling algorithms

6. Support for server implementation

Besides the number of features implemented, an important non-functional aspect of the system
is its licensing. In a final product, a closed-source operating system is preferred for quality and
support reasons. However, in the exploratory phase, which is represented by this project, an
open-source platform is more appropriate because the feasibility of the system can be determined
without licencing fees, and having access to the source enables better profiling and analysis of the
performance of the system.

2.6.2 Options

There is an array of operating systems available on the market. The RTOSes presented below all
offer preemptive, static priority scheduling, together with task synchronization mechanisms, and
are compatible with the XMC library.

FreeRTOS[23] is a free and open-source operating system supported by Amazon. It offers
support for task definition with priorities and support for software timers on top of the kernel
primitives. It also offers synchronization primitives and is compatible with the XMC library. The
periodicity of tasks is supported through either executing the tasks in a timer task or by explicitly
calling kernel primitives in a task and delaying it the desired period.

Dynamic priority scheduling is not supported by default in the kernel, but there have been
various implementations in either the user space [24] or the kernel space[25]. Similarly, server
algorithms are not supported by default, with existing implementations being available[24].

MicroC/OS[26] has two versions, MicroC/OS-II and III, both being open-source. Their kernel
supports task definition with fixed priorities and offers task synchronization primitives together
with software timers. The kernel is written in C, and it is compatible with the XMC library.

Dynamic priority scheduling algorithms are not supported, but EDF has been implemented
by third parties[27]. However, there are comparatively fewer papers discussing implementations
of various scheduling algorithms than for FreeRTOS.

KeilRTX[28] is an open-source operating system developed by ARM, targeted at the Arm
Cortex-M processor architecture. It supports task definition with fixed priorities, software timers
and offers task synchronization primitives.

The Linux kernel has also been used in real-time projects. However, its RAM requirements
are too high to use on either the XMC1400 or 4400.

VxWorks[29] and EmbOs[30] are closed-source operating systems. Their use is limited by a
commercial license, and they do not allow modification of the kernel, so there is only limited
research on implementing dynamic scheduling algorithms or servers.

In addition to comparing the operating system based on their functional and non-functional
requirements, there have also been studies about their performance. For instance, FreeRTOS has
been shown to have a faster context switch time than KeilRTX but a slower message passing
implementation[31]. However, other researchers[32] have found FreeRTOS to have the largest
context switch time when the switch is triggered by task synchronization mechanisms.
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2.6.3 Scheduler implementation

In all operating systems presented above, the scheduler is implemented in the process context,
which allows the use of task synchronization and preemption. In contrast to that, tasks executed
in an interrupt usually have a run-to-completion behaviour and preempt tasks that execute in the
process context. This creates two separate priority spaces, which may not be a desirable situation
if a process task needs to have its priority increased. There has been research into how interrupts
can be used to implement all tasks and how they can be augmented with some preemption and
synchronization primitives. One example of research in this direction is the Sleepy Sloth[33], which
is an experimental kernel implementing this concept. Moreover, it was shown that this concept
could also be implemented in FreeRTOS [34].
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Chapter 3

System Model

This chapter will describe a model of the system. The aim is to gain insight into its requirements
by exploring and defining how tasks are executed. In this context, the system represents the
complete software that is executed on the microprocessor. The model is an abstraction of the
system, which is decomposed into modules and tasks, as explained in this chapter. The first
section presents the theoretical notions that are used. The second section goes over the software
modules of the system. Then the tasks executed in the cyclic executive scheduler are presented.

3.1 Notions and Definitions

This section will establish the notions that will be used when describing the system model. As
mentioned before, the system represents the complete software running on the microprocessor. It
can be decomposed into modules and tasks. A module is a part of the software focused on only
one area of functionality. Modules can be further decomposed into tasks.

A task is the sequence of actions that must be carried out to respond to an event. An event is
a change in the system’s state that requires a response. The event may be triggered by external
or internal actions. The activation of a task is the moment when the event corresponding to that
task is triggered. A task is defined by a name, a worst-case computation time and a worst-case
deadline relative to the activation of the task.

Figure 3.1: Task classification and attributes

The arrival pattern of a task is the pattern of its activations. Tasks may be classified based on
their arrival patterns. This classification may be seen in Figure 3.1. Tasks that are activated at
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fixed intervals are called periodic tasks. Besides the basic characteristics listed above, they have a
period, which is the time between consecutive activations, and a phase, which is the time until the
first activation. Periodic tasks may also have activation jitter, in which case the activation may
not happen exactly at each period interval but rather in a time window after that moment. The
duration of that window is the activation jitter. Alternatively, tasks may be sporadic or elastic.
Sporadic tasks have a minimum inter-arrival time between consecutive activations, but after that
time, they may be activated at any moment. Elastic tasks have both a minimum and maximum
inter-arrival time. These different arrival patterns can be seen in figure Figure 3.2.

Figure 3.2: Arrival patterns visualization

At each of its activation, we say that the task must perform a job. A job is thus an instance
of a task. It is defined by an activation time, an execution time, a worst-case deadline, a start
time and a finalization time. The deadline can be defined with an absolute value in time or with
a relative value as passed time from an event. The deadline of a job has an absolute value, while
the deadline of a task is relative to its activation.

3.2 Software Modules

There are several modules in the system, and each of them decomposes into tasks. The decom-
position of the system on modules is given below. Each module contains software that handles
one specific functionality.

1. Mains: Monitors mains, implements zero-voltage detection and detects the frequency of the
current

2. PFC: Contains the PFC controller

3. Output Power Stage (OPS): controls the buck converter.

4. Energy Metering: Handles energy metering

5. EOLL: Determines the end of life of the LED

6. Light App: Manages the control of the light
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7. Gear App: Starts the driver submodules, and implements functionalities at the highest level

8. Gear Control: Manages the state of the driver at a high level

9. HAL: Manages the state of the driver’s hardware

10. ACDC detect: detects whether the power supply is DC or AC

11. DALI bus: layer between the DALI driver and higher DALI logic, handles messages and
events from the DALI driver

12. DALI driver: assembles the DALI messages from the edges detected on the DALI line

13. EEPROM Cache: handles the EEPROM cache and the synchronization with the NFC EE-
PROM

14. Sub-memory bank: Manages read and writes to certain memory banks.

15. TDC: handles the Touch-Dim Corridor protocol, an application that uses the DALI line for
messages.

16. Diagnostics: Collects diagnostics data as histograms

17. Measurement: Receives input samples from various hardware signals and filters them to be
used by other software modules.

Types of tasks associated with modules The software modules presented above can be
further decomposed into tasks. While the specific tasks are described in the following sections, it
is helpful to point out the categories of tasks with them. Tasks contained by the Mains, PFC and
OPS modules directly control and monitor the electrical circuits of the driver. They are strictly
periodic but do not have a defined deadline, and they must be executed as fast as possible to
maintain QoS.

Tasks that record the electrical measurements sampled by the VADC unit of the XMC micro-
controller are periodic tasks with hard real-time deadlines equal to their period. Measurements
are used for further processing by periodic tasks with no deadlines.

The DALI communication and the TDC protocol each rely on a periodic task with a hard
real-time deadline. The rest of the system’s tasks are either periodic or sporadic tasks with no
deadlines.

3.3 Cyclic Executive Scheduler

The first scheduler of the system is implemented using the cyclic executive pattern. It is triggered
with a frequency of 12 kHz, and every time, it executes the tasks assigned to the current timeslot.
The length of the cycle is 12 timeslots, repeating every millisecond. The scheduler executes tasks
managing the electrical circuit and controlling the output voltage of the led driver, together with
tasks recording measurements sampled by the VADC.

Table 3.1 shows the description of each task that is executed in the cyclic executive. It is
important to note that PFC vExecute and MAINS vExecute behave differently based on the
argument they are given, so they can be considered separate tasks.

Table 3.1: Tasks executed in the cyclic executive scheduler

Task ID Task Software Module Description

T1
Process LED Current

measurements for the buck
OPS

Handles raw current samples
for the buck controller

T2 Buck Controller OPS Buck Control Loop
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Task ID Task Software Module Description

T3 Set Mains Level Mains
Implements ZVD, and handles

raw measurements on the mains voltage

T4 Execute Mains Mains

Mains Computation task, Handles ZVD,
increases a half-mains period counter
generates the one second tick for gear

updates the mains state

T5 Store Sample PFC PFC
Stores a sample of the bus

voltage for the PFC controller

T6 PFC Controller PFC
Updates the state of the PFC
FSM and calls its controller

T7 Process Energy Measurement Energy Metering
Stores a raw sample for
Energy Measurement

T8 Notify NTC sampled Diagnostics
Toggles notification that driver
temperature has been sampled

T9 Store measurement sample Measurement
Stores a measurement for

further processing

T10 ADC Trigger HAL
Triggers the sampling of additional

measurements in the ADC

Listing 3.1 shows how the execution of the cyclic executive scheduler proceeds. The routine
is called by a periodically activated interrupt, after which the tasks allocated to the current time
slot are executed. At the end of a cycle, a measurement data ready event is generated. After each
time slot, the ADC is triggered, to have data ready for the next one. Note that the measurements
taken when the ADC is triggered are not the ones needed for the control tasks but are used for
measurement and diagnostics purposes.

void Inte r rupt Hand l e r ( void ) {
s t a t i c byte s l o t = 0 ;
switch ( s l o t ) {

case 0 :
<<ta sk s a s s i gned to s l o t 0>>
break ;
case 1 :
.
.
d e f au l t :
break ;

}
i f ( s l o t < 12) {

s l o t++;
} e l s e {

s l o t = 0 ;
t r i g g e r da t a r e ady ev en t ( ) ;

}
trigger ADC ( ) ;

}

Listing 3.1: Cyclic Executive Scheduler workflow

The schedule of the cycle is given in Table 3.2. This schedule can be visually inspected in
Figure 3.3. The figure also shows the difference between the major and the minor cycle. The major
cycle is an execution of the whole schedule, while the minor cycle is the execution of the schedule
in a single slot. The assignment of tasks to timeslots serves two purposes. Firstly, it enforces
the periodicity of each task execution. If a task is assigned to multiple timeslots, its execution
frequency increases. Hence, some of the tasks execute at a frequency of 4kHz, while others execute
at 1 kHz. Secondly, the assignment takes into account dependencies between tasks, ordering their
execution temporally such that dependencies are satisfied. The real-time requirement of the tasks
executed by this scheduler is that they execute within the allocated timeslot.
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Figure 3.3: Visualization of the schedule executed by the cyclic executive

Table 3.2: Schedule of the cyclic executive scheduler

Time Slot Task TaskID Dependency

0

Process LED Current
Measurements for the buck

T1 -

Buck Controller T2 T1
ADC Trigger T10 -

1
Set Mains Level T3 -

Process Energy Measurement T7 -
ADC Trigger T10 -

2

Store Sample PFC T5 -
Execute Mains T4 T3
PFC Controller T6 T4

Notify NTC sampled T8 -
Store measurement sample T9 -

ADC Trigger T10 -

3

Process LED Current
Measurements for the buck

T1 -

Buck Controller T2 T1
ADC Trigger T10 -

4
Set Mains Level T3 -

Process Energy Measurement T7 -
ADC Trigger T10 -

5
Execute Mains T4 T3
PFC Controller T6 -
ADC Trigger T10 -

6

Process LED Current
Measurements for the buck

T1 -

Buck Controller T2 T1
ADC Trigger T10 -

7
Set Mains Level T3 -

Process Energy Measurement T7 -
ADC Trigger T10 -

8
PFC Controller T6 -
Execute Mains T4 T3
ADC Trigger T10 -

9

Process LED Current
Measurements for the buck

T1 -

Buck Controller T2 T1
ADC Trigger T10 -
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Time Slot Task TaskID Dependency

10
Set Mains Level T3 -

Process Energy Measurement T7 -
ADC Trigger T10 -

11
Execute Mains T4 T3
PFC Controller T6 -
ADC Trigger T10 -

3.4 Cooperative scheduler

The cooperative scheduler executes in the main loop of the program. The scheduler employs a list
of functions, events and timers. Its functions represent tasks and are connected to events. Events
may be triggered from other tasks or by timers. Timers are connected to events. The resolution of
the timers is one us. The loop of the scheduler checks the system time and updates the timers. It
then iterates through the list of events, and for each triggered event, it calls the function connected
to it.

The cooperative scheduler is designed to execute tasks that are not time-critical and can be
scheduled in the background of the cyclic executive scheduler. A notable example of tasks assigned
to it is the DALI communication stack. The DALI interrupt, which interferes with the cyclic
executive scheduler, receives incoming edges and stores them in a queue, and when transmitting,
it triggers at a constant interval to set the line to the corresponding value. Decoding and encoding
edges are handled by a task executed in the cooperative scheduler. The interpretation of the
assembled messages at the application layer is implemented by another background task triggered
by the arrival of a message.

3.5 DALI timing requirements

To understand how the DALI protocol may be scheduled, its timing requirements need to be
presented. First, the DALI stack will be presented, together with the behaviour of the interrupt
that interferes with the control tasks. Then, higher-level timing requirements will be presented to
determine the worst-case arrival patterns when the driver is receiving and transmitting a message.

The DALI stack can be visualized in Figure 3.4. At the software level, it is composed of 3
levels. The lowest level is represented by the DALI interrupt. The interrupt is triggered by a
capture-and-compare unit, and it behaves differently based on whether the driver is receiving a
message or transmitting it. When receiving, it reads captured edges and stores them in a queue.
When transmitting, the CCU functions as a timer, and the interrupt is triggered when a new edge
needs to be transmitted. From a scheduling point of view, the interrupt arrives sporadically, in
bursts. It has a bound execution time and a higher priority than the cyclic executive interrupt,
being able to preempt it. The higher level consists of a decoder that filters spikes and assembles
messages. Then the application layer interprets the messages and responds to them.

The baud rate of the protocol is 2400 baud, and the bit rate is 1200 bps, as each bit is
transmitted through two half-bit periods in which the line is either high or low. A 1 is encoded
by a low half-bit followed by a high one, and a 0 is encoded by a high half-bit followed by a low
one. The specified baud rate results in a half-bit period equal to Te = 416.67µs.

3.5.1 Reception analysis

When the driver receives a message, the CCU4 unit functions in capture mode, capturing the value
of the timer when receiving a falling or rising edge. The edges are captured in pairs. The first one
is the falling edges. The next edge will be a rising edge, and when it is received, the value of the
timer is captured, and the timer is reset. When the timer is reset, the DALI interrupt triggers.
It collects the captured values and stores them in a buffer for further processing. The CCU4 is
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configured to only capture an edge if its level remains stable for at least 9.33 us, effectively making
the minimum interarrival time of the DALI interrupt 18.66 us. The queue in which the edges are
stored has a length of 15. If the queue is full when the interrupt attempts to write in it, it will
enter an error state of at least 1400 us.

Figure 3.4: Different components of the DALI stack

At the next layer, the DALI decoder picks up the stored edges with a periodic task with a
period of 1ms. The base unit of the protocol is the half-bit period, as the protocol ensures that
there is a change in the voltage level of the line at least every bit period, and this guaranteed
change happens in the middle of the bit. Then, an additional change may happen at the bit
boundaries, if necessary. More concrete, the change happens if the next bit is the same as the
previous one. The baud rate of the protocol is 2400 baud, with a bit rate is 1200 bps. A 1 is
encoded by a low half-bit followed by a high one, and a 0 is encoded by a high half-bit followed
by a low one. The specification sets a typical half-bit period to Te = 416.7µs, but allows it to be
in the interval 333.3us− 500us.

The decoder has two stages. The first stage is a filter for short spikes that may appear on the
line. A spike is defined as two consecutive edges that are closer than a maximum time interval,
which is at least 50µs according to the specification. The decoder should filter two types of spikes,
single spikes that happen during a half-bit interval and double spikes found at half-bit boundaries.
The second stage of the decoder assembles the DALI message from filtered edges, and if there are
any abnormalities, such as edges with an unexpected length, it drives the receiver into an error
state lasting at least 1400 us.

On a higher level, a forward frame has a length of 16 bits. Because the line is set to high while
idling, the start bit is always a 1, making the line low at the beginning of the message. Then, the
16 data bits follow, appended by the stop condition, which is a period of where the line is high
at the end of the message. Therefore the message has a length of 33Te or 34Te, depending on
whether there is a change on the last bit boundary. After that, there is a settling time between
2.4ms and 12.4 ms until an eventual backward frame, when the driver will be transmitting.

The maximum arrival rate will happen in a scenario where the receiver experiences the max-
imum amount of interrupts that do not drive it into an error, followed by entering the error state
through interrupts happening as fast as possible. For single spikes, the first interval between edges
may be as short as possible(limited at 9.33us), but the second one should be larger than the spike
interval, so at least 50 us. This corresponds to an interrupt happening every 59.33 us. A double
spike may happen at the half-bit boundary, but after that, the next edge is expected to be at
least a minimum half-bit, so the worst-case scenario happens when there are single continuous
spikes during a half-bit. The arrival pattern, in this case, can be seen in Figure 3.5. A second
bottleneck for a continuous worst-case receiver is the queue that stores the DALI edges. If this
queue fills up, the receiver will stop. The queue has a length of 15, and it is emptied every ms.
As there an interrupt stores two edges at a time, the queue limits the interrupt inter-arrival time
to 1000/7 = 142.85us.

The second case of the worst-case scenario happens when edges are received at normal intervals,
followed by a burst of edges on the line. The burst continues until the queue storing edges fills
up, so until there are 15 stored edges. As there an interrupt stores two edges at a time, to fill up
the queue would take 18.66 ∗ 8 = 149.28us.
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Figure 3.5: Visualization of the worst-case interarrival time for the DALI interrupt when receiving

3.5.2 Transmission analysis

When transmitting, the implementation uses the same CCU unit to trigger a timer every half-bit
period to set the line to the appropriate level. The window for a correct transmission is within
[366.7, 466.7]us. The size of this window is larger than one slot of the cyclic executive scheduler, i.e.
83.33us, and given that no task takes the whole slot, the transmission interrupt can be scheduled
in the background under the initial implementation.

3.6 Reduced System Model

While the full system model is useful for deriving requirements, a subset of the tasks will be used in
the analysis so that it is more manageable while retaining the real-time characteristics. The subset
that was selected consists of the control-related tasks, the tasks associated with the measurement
module, the communication protocol, and the light app, which converts dimming values received
through DALI into reference values for the buck controller.

Deadlines are set equal to periods in this model to get the first schedulability result. The impact
of the tightness of deadlines will be analysed later. The DALI receiver, transmitter and interpreter
tasks are exceptions. The deadline of the receiver is set to a value close to their execution time
to be executed as fast as possible. The transmission deadline corresponds to the window of time
allowed by the protocol. The interpreter task deadline is set according to the specification of the
protocol and is discussed in section 3.5.

The computation time is an estimated worst-case execution time. The estimation is based on
measurements taken by executing the tasks on a Duvel 90W S 21mm driver, with software version
0.1.0.21842 and hardware version 0.1. The measurements were taken by setting a GPIO pin to
high just before the task started to execute and setting it low just after the task finished executing.
The pin voltage level was measured using a Teledyne Lecroy waverunner 8054 500 MHz 20GS/s
oscilloscope.

Table 3.3: Reduced System Model

Task Type
Period/Minimum
Interarrival time

Computation
Times

Deadline

Buck Controller Periodic 250 us 20 us 250 us
Set Mains Level Periodic 250 us 4.65 us 250 us
Execute Mains Periodic 250 us 13 us 250 us

Continuation on next page
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Task Type
Period/Minimum
Interarrival time

Computation
Times

Deadline

Store Sample PFC Periodic 1ms 6.23 us 1 ms
PFC Controller Periodic 250 us 28 us 250 us

Store Sample Measurement Periodic 1 ms 8.26 us 1 ms
Measurement Task Periodic 1 ms 95 us 1 ms

DALI Interrupt (Reception) Sporadic 142.85 us 7.35 us 18.66 us
DALI Interrupt (Transmission) Sporadic 416 us 3.52 us 100us

DALI Decoder Periodic 1 ms 26.65 us 1 ms
DALI Interpreter Sporadic 43.33 ms 6.6 us 5ms
Lightapp Task Periodic 5 ms 3.42 us 5 ms

3.7 Summary of the system model

There are multiple types of tasks in the system. The first one is strictly periodic tasks with dead-
lines equal to their period. Another category consists of tasks that are periodic and have to be
executed with reduced jitter but do not have a determined deadline. There are also sporadic com-
munication tasks with hard deadlines dictated by the constraints of the DALI protocol. Moreover,
there are a number of dependencies between different tasks.
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Chapter 4

Theoretical analysis

This chapter presents a theoretical analysis of the existing system, together with potential solutions
to the interference between control tasks and the communication driver. Three potential solutions
are considered: using a priority-based scheduling algorithm, using a server to control the firing rate
of the communication driver, and limiting the preemption of control tasks when the communication
driver has to execute.

4.1 Initial system

The initial system is the current existing implementation of the driver’s tasks and how they
are scheduled. More precisely, this analysis will look into the properties of the cyclic executive
scheduler and of the DALI interrupt, as they are tasks with real-time requirements.

The first part of the chapter will be focused on the initial system to establish a baseline for
comparison. The analysis will present the worst-case response time of tasks of interest. The
response time is considered to be the time elapsed from the activation of a task to its finalization.
The activation of a task is defined differently for sporadic and periodic tasks. For sporadic tasks,
it is the time of the event that triggers it. For periodic tasks, it is at the beginning of the current
period, the moment in which the task becomes available to be executed. The finalization time is
the end of its computation time for both types of tasks.

The analysis is focused on the worst-case response time. Another interesting measure is the
response time jitter of tasks, which is the difference between the best-case and worst-case response
time. For the initial system, the best-case response time is the execution time of each task. Given
that they do not overrun their slots, tasks in the cyclic executive scheduler do not interfere with
each other, and in the best-case, the DALI interrupt does not trigger. As the DALI interrupt has
the highest priority, when it is triggered, it will immediately begin to execute.

For the worst-case response time analysis, the DALI interrupt will be treated as a sporadic task,
with a worst-case execution time of CD = 7.5us, a minimum inter-arrival time of TD = 18.66, and
a deadline equal to its period. Its worst-case response time is equal to its best case, CD = 7.5us.

Tasks of the cyclic executive scheduler only suffer interference from the DALI interrupt in
the worst case. They are interleaved by the scheduler, and as long as they do not overrun their
assigned slot, they do not interfere with each other. This is indeed the case, as the worst-case
interference of the DALI interrupt on a slot of TS = 83.33us is equal to the number of times the
DALI interrupt may trigger in that time interval multiplied by the execution time of the interrupt.
This amounts to ⌈ TS

TD
⌉∗CD = ⌈ 83.33

18.66⌉∗7.5 = 37.5us. This means that as long as the total execution
time of the tasks assigned to a slot is shorter than 83.33 − 37.7 = 45.83us, it will not overrun to
the next slot.

The worst-case execution time for a task with computation time CI is equal to CI plus the
interference from the DALI interrupt. The worst case happens when the DALI interrupt starts to
execute upon the activation of the task. This can be visualized in Figure 4.1. The interference is the
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maximum number of DALI interrupts that happen in that interval multiplied by its computation
time. The task will be executed in the background of the DALI interrupt. The task will execute
in chunks of TD − CD, needing CI

TD−CD
of these chunks to finish executing. The number of DALI

interrupt executions is, therefore, the ceiling of the number of chunks the task needs.

Figure 4.1: Visualization of the worst-case response time for a slot

The exact formulas can be found in Table 4.1. The application of the formulas to the tasks
scheduled in the cyclic executive scheduler that are present in the reduced system model can be
seen in Table 4.2.

Task
Best-case

response time
Worst-case

response time

DALI CD CD

Control Ci Ci +
⌈

Ci

TD−CD

⌉
∗ CD

Table 4.1: Response time formulas for the initial system

Task
Best-case

response time(us)
Worst-case

response time(us)
Response time

jitter(us)
Buck Controller 20 34.7 14.7
Set Mains Level 4.65 12.0 7.35
Execute Mains 13 27.7 14.7

Store Sample PFC 6.23 13.58 7.35
PFC Controller 28 50.05 22.05

Store Sample Measurement 8.26 15.61 7.35

Table 4.2: Response times for the initial system

4.2 Proposed solutions

The analysis presented in section 4.1 considers the original system. Under the original implement-
ation, the DALI interrupt is executed as soon as it is triggered. However, the DALI interrupt does
not need to be executed immediately. Its deadline is larger than its computation time. This is
true in its worst-case activation pattern, which occurs when the driver is receiving a message. It
is also true when the driver is transmitting, and in that case, the deadline is even more relaxed.
Therefore, there is room to reduce the interference suffered by the control tasks.

Three different solutions will be studied. The first solution is changing the underlying schedul-
ing algorithm from using a cyclic executive to using a priority-based scheduling algorithm. Using
a priority-based algorithm has two potential benefits. The first one is that the difference between
the deadline and the computation time of the DALI interrupt would be exploited inherently. The
second benefit is that it improves non-functional aspects of the system, such as maintainability
and extendability of the system because adding new tasks or modifying existing tasks would not
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require generating a new schedule for the cyclic executive. The new schedule would be created
automatically by the scheduling algorithm at runtime.

Priority-based scheduling algorithms can assign priorities in two ways: static or dynamic. A
static assignment means that priorities are assigned before the scheduler begins to execute and
remain fixed. Therefore, a task with a high priority will always be allowed to preempt a lower
priority task. A dynamic assignment means that tasks change their priority during execution
based on a chosen criteria. One algorithm from each category will be evaluated as a potential
solution to the interference between the DALI interrupt and control tasks.

Static priority algorithms have the advantage of being simple to implement. Because of this,
they are supported in multiple operating systems. Furthermore, they have a smaller scheduling
overhead compared to dynamic priority assignments. This is due to the fact that their queue of
ready tasks is based on the assigned static priorities. Thus, they can select the highest priority
task with an associated complexity of O(1).

On the other hand, the queue for dynamic priority algorithms needs to keep track of a runtime
attribute of the tasks. To select the highest priority task, the associated priority is O(log(n)),
where n is the number of tasks. This makes their implementation more involved, and therefore
there is limited support for them in operating systems. However, they generate fewer context
switches compared to static priority algorithms. Moreover, they can cope with higher processor
utilization.

The second proposed solution is the use of a server to manage the DALI interrupt. This
solution has the advantage of being independent of the underlying scheduling algorithm. This
means that it will be compatible with the existing cyclic executive, as well as any potential future
alternative. Regarding the scheduling of the DALI interrupt, the server will control the amount
of interference of the interrupt suffered by control tasks.

The third proposed solution is the use of limited preemption for the control tasks. That
is, the DALI interrupt will preempt control tasks only if the control task cannot complete its
execution within a predefined amount of time. This solution exploits the longer deadline of the
DALI interrupt compared to its computation time by delaying the execution of the interrupt until
a convenient moment. This has the potential of lowering the interference of the DALI interrupt
on control tasks, while ensuring that the timing requirements of the DALI protocol are met.

4.3 Deadline-Monotonic Scheduling

Deadline monotonic scheduling is a static priority scheduling algorithm. This means that the
priority assigned to tasks remains fixed during the execution of the scheduler. The deadline
monotonic algorithm assigns higher priorities to tasks having shorter deadlines. Taking the reduced
system model yields the priority assignment from Table 4.3. The computation time and the
deadline of the DALI interrupt is considered to be the ones of its worst-case arrival pattern,
CD = 7.5us and TD = 18.66us. Each task needs to have a unique priority assignment. Therefore,
tasks that have the same deadline are enumerated on different levels. The assignment used in the
analysis can be seen in Table 4.4.

4.3.1 Analysis

In this section, we apply several schedulability tests to the task set. Schedulability tests are used to
determine whether the task set can be scheduled by the deadline monotonic scheduling algorithm.
Moreover, the response time jitter of the DALI interrupt and of the control tasks is also of interest.
It will determine whether this algorithm can ameliorate the interference suffered by the control
tasks. We use two different tests, a utilization test and a response time test.

Utilization test

The first schedulability test is the utilization test. The test assesses whether there is enough
computation time available for the tasks to finish their execution before their deadlines. The test
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Priority Tasks Deadline (us)
0 DALI Interrupt 18.66

1

Buck Controller
Set Mains Level
Execute Mains
PFC Controller

250

2

Store Sample PFC
Store Sample Measurement

Measurement Task
DALI Decoder

1000

3
DALI Interpreter
Lightapp Task

5000

Table 4.3: Deadline monotonic priority as-
signment

Priority Task Deadline(us)
0 DALI interrupt 18.66
1 Buck Controller 250
2 Set Mains Level 250
3 Execute Mains 250
4 PFC Controller 250
5 Store Sample PFC 1000

6
Store Sample
Measurement

1000

7 Measurement Task 1000
8 DALI Decoder 1000
9 DALI Interpreter 5000
10 Lightapp Task 5000

Table 4.4: Deadline monotonic analysed pri-
ority assignment

is sufficient yet not necessary. This means that a successful test guarantees the schedulability of
the task set, but failing the test does not mean that the task set is not schedulable. The test
consists of evaluating the expression given below[3]:

n∑
i=1

Ci

Di
≤ n(21/n − 1), ∀ tasks τi

For the analysed task set, this evaluates to 0.79463 ≤ 0.713557132. As this is false, the
test fails. The test was established by Liu-Layland for the rate monotonic scheduling algorithm.
The rate monotonic algorithm assigns higher priorities to tasks that have a shorter period. In its
original form, the denominator in the sum is the period of the task. Its adaptation for the deadline
monotonic algorithm uses the deadline of the task instead. This makes the test pessimistic because
tasks that have a deadline shorter than their period are represented by a higher utilization than
they actually have.

Response time test

The second schedulability test is a response time analysis. For this test, both the worst-case and
best-case response time of each task is computed. Then the worst-case response time is compared
to the deadline of the task. If it is higher than the deadline, the test fails. The best-case response
time is computed to be able to determine the tasks’ response time jitter. This gives a way to
evaluate the solution against the current implementation. The test is sufficient and necessary, as
it uses all attributes of the tasks, such as their deadlines, priorities, and computation time.

The worst-case response time occurs in a critical instance. The critical instance for deadline
monotonic is when all tasks are released at the same time. The worst-case response time of a task
is composed of its computation time and the amount of interference it suffers from higher priority
tasks. The interference from a task is equal to the number of jobs the task has multiplied by
its computation time. Then the sum over all higher priority tasks is the total interference. The
number of jobs a task with period Ti releases in an interval t is equal to ⌈ t

Ti
⌉.

The DALI interrupt has the highest priority with deadline monotonic priority assignment. It
will not suffer any interference in this scenario. In the actual implementation, the DALI interrupt
has different behaviour depending on the state of the communication protocol. Therefore, its
worst-case interference on the other tasks can be computed in a way that is more close to reality.

Its worst-case computation time is given when the task is executed at its minimum inter-arrival
time. The implementation of the protocol stops its execution for a set amount of time upon high
utilization, to limit its interference on other tasks. Therefore, the maximum interference in a set
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period of time is achieved when the interrupt executes as often as possible without triggering the
stop of the protocol. This is followed by triggering it as fast as possible at the end, until it is
stopped.

In subsection 3.5.1, it is shown that when receiving, the protocol can receive up to 7 DALI
interrupts in a ms. Then, in the last ms, the protocol will stop upon the 8th interrupt. These
constraints are given by the queue used to store edges for further processing. Two cases can be
distinguished here. If the time interval is shorter than a forward frame, the end of the interval
will feature interrupts happening as fast as possible. When the queue is filled, the interrupt is
disabled. If the time interval is longer, then the reception should not trigger an error state to
allow a backward frame to be transmitted. When transmitting, the DALI interrupt is considered
to happen once every Te. Maximum interference happens while receiving. Thus, a message starts
to be received at the beginning of a critical instant. The algorithm used for computing the DALI
interference is shown in Listing 4.1. It returns the interference that happens up from the beginning
of a message until a time t.

DALI inte r f e rence ( t ) :
I = 0
forward frame end = 34 ∗ Temax

backward frame start = forward frame+ settlingforward backward

backwad frame end = backward frame start+ 18 ∗ Te
period = backwad frame end+ settlingbackward forward

whi le ( t >= 0) {
i f ( t <= forward frame end) {

I = I +
⌈

t
1000

⌉
∗ 7 ∗ CDALI reception

I = I +min(⌊ t−⌊t/1000⌋∗1000
18.66

⌋, 8) ∗ CDALI reception

} e l s e {
I = I + ⌈ forward frame end

1000
∗ 7⌉ ∗ CDALI reception

}
I = I +

⌈
min(max(0,t−backward frame start),backwad frame end)

Te

⌉
∗ CDALI transmission

t = t - per iod
}
r e turn i n t e r f e r e n c e

Listing 4.1: DALI interference computation

The worst-case response time of tasks can be computed using the algorithm shown in List-
ing 4.2. The computation is an iterative process. The worst-case response time is initialized with
the smallest possible value. The smallest value is the computation time of the task, as it cannot
be completed faster than that. Then the interference from higher priority tasks is added to the
computation time. The sum is considered to be the new worst-case response time. After that, the
process is repeated until the worst-case response time does not increase anymore.

compute wc response t imes (Γ) {
r e spons e t imes = [ ]
f o r each τi ∈ Γ {

wr = Ci

wr next = Ci +DALI interference(wr) +
∑i−1

j=0

⌈
wr
Tj

⌉
Cj

whi le (wr ̸= wr next) {
wr = wr next

wr next = Ci +DALI interference(wr) +
∑i−1

j=0

⌈
wr
Tj

⌉
Cj

i f (wr next > Di )
break

}
r e sponse t imes . append (wr )

}
}

Listing 4.2: Worst-case response time computation

compute bc response t imes (Γ) {
r e spons e t imes = [ ]
f o r each τi ∈ Γ {

br = wr(τi)

br next = Ci +
∑i−1

j=0(
⌈

br
Tj

⌉
− 1)Cj

whi le (br ̸= br next) {
br = br next

br next = Ci +
∑i−1

j=0(
⌈

br
Tj

⌉
− 1)Cj

}
r e spons e t imes . append (br )

}
}

Listing 4.3: Best-case response time
computation
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For the best-case response time computation, an optimal instant is considered. The optimal
instant occurs when the task suffers minimal interference from the other tasks. The optimal
instant occurs when the task is executed just before the simultaneous release of the other tasks.
The best-case interference of a sporadic task is when it does not trigger. Thus, the DALI interrupt
is considered to not happen in the optimal instant.

The computation of the best-case response time of a task is iterative. The best-case response
time is initialized with the largest response time a task can have. Thus, the initial value is the
worst-case response time. The next value is computed by summing the computation time of the
task with the interference of higher priority tasks for the current best-case response time. As the
starting point is the worst-case response time, and there is less interference in the optimal instant,
the current best-case response time will decrease. The computation is stopped when the response
time is not decreasing anymore. The algorithm can be seen in Listing 4.3.

The results of the analysis can be seen in table 4.5. It can be seen that all tasks meet their
deadlines. However, the jitter suffered by control tasks is higher compared to the initial imple-
mentation. Therefore, using the deadline monotonic scheduling algorithm does not improve the
original system scheduling solution. This is mainly due to the short deadline of the DALI interrupt,
which makes it the highest priority task under the DM scheduling algorithm.

Task
Computation

Time
Best case

response time
Worst case

response time
Response
time jitter

Deadline

Buck Controller 20 20 108.2 88.2 250
Set Mains Level 4.65 4.65 120.2 115.55 250
Execute Mains 13 13.0 140.55 127.55 250
PFC Controller 28 28.0 175.9 147.9 250

Store Sample PFC 6.23 6.23 182.13 175.9 1000
Store Sample Measurement 8.26 8.26 190.39 182.13 1000

Measurement Task 95 95.0 351.04 256.04 1000
DALI Decoder 26.65 26.65 377.69 351.04 1000

DALI Interpreter 6.6 6.6 384.29 377.69 5000
Lightapp Task 3.42 3.42 387.71 384.29 5000

Table 4.5: Response times(us)

Figure 4.2: RTOS overhead[35]

4.3.2 Analysing the overhead of the RTOS

It has been noticed that the deadline-monotonic priority assignment produces more jitter than
the current implementation. At the same time, the tasks meet their deadlines. A priority-based
algorithm has some secondary advantages related to non-functional attributes. Therefore, it may
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be advantageous to use if those non-functional attributes are important or desirable and the control
tasks can cope with a higher jitter. The next step in the analysis is investigating if the task set is
schedulable in the presence of a real-time operating system (RTOS).

Table 4.6: RTOS overhead

Component Overhead
RTOS tick 4 us
Preemption 13 us
Task exit 15 us

The overhead of the RTOS can be included in the theoretical
analysis[35]. The overhead is composed of 3 elements. The oper-
ating system model that is used is shown in Figure 4.2. It uses
a time-triggered function to keep track of executing tasks, called
the RTOS tick. When a task preempts another task, it generates
some overhead due to the context switch. Moreover, when the task
finishes its execution, it needs to reschedule itself to trigger at its
next period.

To estimate the overhead of the RTOS, the overhead of FreeR-
TOS on an Arm Cortex-M0 processor of the driver has been measured, and can be seen in Table 4.6.
The RTOS tick has a variable execution time, depending on the number of tasks that are activated
at that tick. To simplify the analysis, an average value will be used in this analysis. The period
between OS ticks is Ttic = 83.33us.

To determine whether the task set remains schedulable in the presence of an operating system,
the response time analysis is redone. The algorithm used to compute the worst-case response time
taking into account the RTOS overhead is shown in Listing 4.4. It is similar to the original one,
but it adds the RTOS tick overhead to the interference suffered by tasks, as well as the preemption
and exit overhead to the computation time of the task. The terms representing the overhead are
coloured in red.

compute wc response t imes (Γ) {
r e spons e t imes = [ ]
f o r each τi ∈ Γ {

wr = Ci + Cpreempt

wr next = Ci + Cpreempt +DALI interference(wr) +
⌈

wr
Ttic

⌉
∗ Ctimer +

∑i−1
j=0

⌈
wr
Tj

⌉
(Cj + Cpreempt + Cexit)

whi l e (wr ̸= wr next) {
wr = wr next

wr next = Ci + Cpreempt +DALI interference(wr) +
⌈

wr
Ttic

⌉
∗ Ctimer +

∑i−1
j=0

⌈
wr
Tj

⌉
(Cj + Cpreempt + Cexit)

i f (wr next > Di )
break

}
r e sponse t imes . append (wr )

}
}

Listing 4.4: Response Time Analysis Algorithm, taking into account the RTOS overhead

The analysis with the RTOS overhead shows that only the Buck Controller, Set Mains Level,
Execute Mains, Store Sample PFC and Store Sample Measurement tasks meet their deadlines.
Therefore the task set may not be schedulable with an operating system, when using deadline
monotonic scheduling.

4.4 Earliest Deadline First

The second priority-based algorithm that is analysed is earliest deadline first(EDF). As a priority-
based algorithm, it assigns priorities to tasks. In contrast to deadline monotonic scheduling, it
is a dynamic priority algorithm. This means that priorities change during the execution of the
scheduler. The algorithm assigns higher priorities to tasks with earliest deadline.

The algorithm is considered an improvement to the initial solution because it takes advantage
of the slack of the DALI interrupt. Furthermore, it is more flexible than deadline monotonic, as
the DALI interrupt will not have the higher priority at all times, only when it is the task with the
earliest deadline.

For the analysis of the task set, there are two aspects of interest. The first one is whether the
task set is schedulable with EDF. This means that the tasks scheduled with EDF would be able to
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meet their deadlines. The second point of interest is the response time of tasks. This is important
because it enables a comparison with the original implementation.

We use two analyses for EDF scheduling. The first one uses processor demand as a means
to evaluate the task set’s schedulability. The second one is the computation of the worst-case
response time of tasks. Then it is compared to tasks’ deadlines.

4.4.1 Processor Demand

The first analysis is conducted using processor demand[3]. More precisely, what it is checked is that
at no point, the tasks demand more computation time than is actually available. To determine
this, a function to compute the maximum demand is used. This function is called the demand
bound function. It returns the processor demand up until a time t. This function can be seen
below. The analysis assumes that tasks are released synchronously, at t = 0.

dbt(t)
def
=

n∑
i=1

⌊ t+ Ti −Di

Ti

⌋
∗ Ci

The task set analysed for EDF is shown in Table 3.3. It is considered that the DALI interrupt is
receiving a message, because that is when it has the highest utilization. Because tasks’ priorities
are dynamic, it is not known when preemptions are happening. Therefore, the more realistic DALI
interference function used in the analysis of deadline monotonic cannot be used in this case.

A task set is schedulable if ∀t ≥ 0, dbf(t) ≤ t. This means that the computation time demand
is not higher than the actual time available. The formula is required to be true at all points in
time. However, the test points can be reduced to the set of points in time when tasks have their
absolute deadline. Those are the points when tasks’ demand changes. The set of test points is
extended up to the point when tasks repeat their behaviour.

The formula for the set of test points is[3]:

D = {d|d = Di + j ∗ Ti, τi ∈ Γ, j ∈ N&d < min(H,max(Di, L
∗)}, where

L∗ =

∑n
i=1(Ti −Di)Ui

1− U
, Ui =

Ci

Ti
, U =

n∑
i=1

Ui and H = greatest common multiple of Ti, ∀τi ∈ Γ

For the analysed task set, L∗ = 22.72, H is at least 43330, and the maximum deadline is 5000.
Therefore, test points are the set of absolute deadlines smaller than 5000.

The results of the analysis can be seen in Table 4.7. It can be seen that at all test points,
the demand bound function evaluates to less than t. This means that tasks do not demand more
computation time than is available.

4.4.2 Worst case response time analysis

The other analysis of interest is the response time analysis. The first step is determining the
worst-case computation time for all tasks. The worst-case response time computation is based
on [10]. The analysis assumes that the worst-case response time of a task will appear when the
other tasks have a busy period. A busy period means that they will keep the processor as busy
as possible. The busy period is found when all tasks are released at the same time. However, the
worst-case computation time does not happen when it is released at the same time as the other
tasks. Due to the fact that EDF assigns a higher priority to tasks that have earliest deadlines, a
task may suffer a higher interference when it is released after a bit of time since the simultaneous
release of the other tasks. The analysis tests different points in the busy period to determine
what is the worst-case computation time of the tasks. There is no exact best-case response time
computation algorithm under EDF. However, the computation time of tasks may be used as an
approximation for it.

The results of the analysis are given in Table 4.8. The analysis confirms that the task set is
schedulable. However, it leads to higher interference than the current implementation. As EDF
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Table 4.7: EDF Analysis Results

t dbt(t) dbt(t) < t
18.66 7.35 True
161.66 7.35 True
250 80.35 True

304.66 87.7 True
447.66 95.05 True
500 160.7 True

590.66 168.05 True
733.66 175.4 True
750 241.05 True

876.66 248.4 True
1000 450.19 True

1019.66 450.19 True
1162.66 464.89 True
1250 530.54 True

1305.66 537.89 True
1448.66 545.24 True
1500 610.89 True

1591.66 618.24 True

t dbt(t) dbt(t) < t
1734.66 625.59 True
1750 691.24 True

1877.66 698.59 True
2000 900.38 True

2020.66 907.73 True
2163.66 915.08 True
2250 980.73 True

2306.66 988.08 True
2449.66 995.43 True
2500 1061.08 True

2592.66 1068.43 True
2735.66 1075.78 True
2750 1141.43 True

2878.66 1148.78 True
3000 1350.57 True

3021.66 1357.92 True
3164.66 1365.27 True
3250 1430.92 True

t dbt(t) dbt(t) < t
3307.66 1438.27 True
3450.66 1445.62 True
3500 1511.27 True

3593.66 1518.62 True
3736.66 1525.97 True
3750 1591.62 True

3879.66 1598.97 True
4000 1800.76 True

4022.66 1808.11 True
4165.66 1815.46 True
4250 1881.11 True

4308.66 1888.46 True
4451.66 1895.81 True
4500 1961.46 True

4594.66 1968.81 True
4737.66 1976.16 True
4750 2041.81 True

4880.66 2049.16 True

assigns priorities to earliest deadlines, the deadlines of the tasks have a great influence in the
amount of interference the tasks have. Thus, it may be interesting to explore assigning more
constrained deadlines for tasks involved in the control functionality. Unfortunately, constraining
the deadlines of these tasks does not improve their worst-case response time. Their deadlines
would still be between the one of the DALI interrupt and of the tasks with deadlines of 1000 or
larger. This makes the relative priorities of tasks the same. Thus constraining deadlines does not
reduce the worst-case response time.

Table 4.8: Response times when using EDF

Task
Computation

Time
Best case

response time
Worst case

response time
Response
time jitter

Deadline

Buck Controller 20 20.0 73.0 53.0 250
Set Mains Level 4.65 4.65 73.0 68.35 250
Execute Mains 13 13.0 73.0 60.0 250

Store Sample PFC 6.23 6.23 216.49 210.26 1000
PFC Controller 28 28.0 73.0 45.0 250

Store Sample Measurement 8.26 8.26 216.49 208.23 1000
Measurement Task 95 95.0 216.49 121.49 1000
DALI Receiver 7.35 7.35 7.35 0.0 18.66
DALI Decoder 26.65 26.65 216.49 189.84 1000

DALI Interpreter 6.6 6.6 226.51 219.91 5000
Lightapp Task 3.42 3.42 226.51 223.09 5000

4.5 Server

A server is used to manage a number of tasks. It ensures their interference on the rest of the
tasks is limited. A server has a computational budget for the managed tasks. Ideally, the budget
would be as large as possible, to serve all requests as soon as possible. However, the maximum
limit for the budget is the maximum interference control tasks may suffer, such that the quality
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requirements are met. For the analysed use case, the maximum interference was determined to
be 30 us in a 250 us interval. The second parameter of the server is its period. A shorter period
distributes the load more evenly, while a longer period allows for fewer preemptions for the tasks
executed in the server.

Applied to the use case, the server can be used to limit the interference of the DALI interrupt
to the levels accepted by control tasks. However, there is a caveat to this situation. If DALI
interrupt arrives when the budget of the server is depleted, the edges it is supposed to process
may be missed. This is compensated by the fact that the worst-case activation rate of the DALI
interrupt has a low chance of happening in practice.

4.6 Limited Preemption

The interference of the DALI interrupt on control tasks can be limited by deferring the preemption
of the latter when the interrupt is triggered. This limited preemption is implemented through
deferral. The interrupt is executed after a set period of time, or when the control task is not
running, whichever happens first. This can be seen in figure Figure 4.3, which depicts both the
scenario in which the communication interrupt is executed before the control task completes, as
well as the one in which it is executed at the end. This allows the running task to complete
its execution and cede the processor voluntarily. The duration of the deferral can be set to the
largest delay the communication protocol can take. As this interval is may be significantly larger
depending on the state of the communication, it may be advantageous to change it accordingly.

Figure 4.3: Limited Preeemption Design

4.6.1 Response time

The response time of the DALI interrupt and of the control tasks is influenced by the length of the
deferrable interval. This interval is denoted as Def . There are three scenarios in which the DALI
interrupt may trigger. If the control task is not executing, the DALI interrupt will be executed
immediately. Its response time is its computation time CD. The second scenario is the interrupt
triggering when there is more than Def until the end of the control task. Then, it will be delayed
by Def and executed. Its response time in this case is CD + Def . The third scenario is when
the control task finishes execution before the end of the Def interval. Then, the interrupt will be
executed at the end of the control task. In this scenario, the response time of the DALI interrupt
is between [CD, CD +Def ]. Thus, it is guaranteed that the interrupt will start to execute at most
Def after its release. This allows the communication protocol to meet its deadline, given that it
may be delayed.

Using limited preemption, the time interval in which a control task may be interrupted is
reduced from Ci to Ci − Def , where Ci is the computation time of the control task, and Def
is the deferrable interval. Therefore, the maximum interference suffered by a control task is⌈
Ci−Def
TD−CD

⌉
∗ CD. This translates to a reduction in interference.

This solution can be easily integrated with the cyclic executive design patterns, as well as with
a priority-based scheduling algorithm. Moreover, it is an improvement over the initial implement-
ation.
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4.7 Conclusions of theoretical analysis

After doing the theoretical analysis, it can be concluded that changing the underlying scheduling
algorithm does not help in the analysed use case. While tasks meet their deadline, their worst-case
response time is increased significantly. This can be seen in Figure 4.4. There are two reasons for
this situation. The first is that the DALI interrupt is scheduled with a high priority with both
priority-based algorithms. This is due to its short deadline. The second reason is that control
tasks suffer interference from other tasks than the DALI interrupt, which is not the case for the
initial system.

However, there are other advantages to using a priority-based scheduling algorithm. These are
related to non-functional attributes of the system, such as maintainability and extendibility. These
are important for the management of the system. Moreover, the algorithms are most often used
with an operating system. The operating system provides additional benefits, such as protection
for the memory stack. Therefore, we will further analyse the applicability, benefits and limitations
of using an operating system through practical experiments in the next chapters.

Figure 4.4: Worst-case response time for control tasks

Using a server to manage the DALI interrupt is not an ideal solution for the use case. This
is due to the fact that, ideally, no DALI interrupts may be missed. However, the worst-case
activation rate has a small probability of occurring in practice. Therefore, it makes sense to test
a server implementation that protects the control tasks from interference.

Limiting the preemption of the control tasks is the most promising solution. It is able to reduce
the interference caused by the DALI interrupt. Moreover, it ensures that the timing requirements
of the DALI protocol are met. This can be done by setting a proper amount of time by which the
preemption is deferred.
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Chapter 5

Analysis of an RTOS Overhead

This chapter discusses experiments conducted to evaluate the overhead of FreeRTOS. The overhead
is critical to determine how feasible it is to run an operating system on the driver. The results
presented below were used to estimate the overhead used in subsection 4.3.2.

5.1 Experiments

The overhead of the operating system is the execution time spent on kernel operations. It falls
under two categories, scheduling and message passing overhead. The former is analysed in sub-
section 5.1.1 and the later in subsection 5.1.2 and subsection 5.1.3. The tests are split in three
different categories, focusing on the overhead of context switching, RTOS task notifications and
semaphores.

The results of the evaluation of FreeRTOS are given below. The experiments were conducted
on a microcontroller with a Cortex M0 processor and one with an M4. The differences are a result
of the different processor speeds (48MHz vs 120 Mhz), as well as the existence of optimized kernel
calls that use additional instructions only present on an M4 core.

5.1.1 Context switch with delayUntil

Most real-time systems need to implement tasks with periodic activation. An example is the case
of the buck converter control task in our use case. There are two common ways of implementing
periodic activation in FreeRTOS. The first one is to use the delay() function, which blocks the
tasks until a certain number of ticks has passed since the function was called. This solution is not
very accurate however because in the case the task is preempted by another task for a number of
ticks before the function is called, that delay will not be considered for the next activation. The
second and preferred solution is to use the delayUntil() function. It schedules the task to be
activated at a number of ticks since the last activation, not since the function is called.

The experiments are related to the RTOS tick computation. The RTOS tick is called at a fixed
frequency. When it is called, it updates the system time. It then checks whether there are any
tasks that become active at the current tick. If that is the case, the RTOS tick switches in the
task with the highest priority. The delayUntil() function is called at the end of the task and
schedules the next activation of the task.

The experiments performed related to the context switch and the overhead of the delayUntil()
function are presented in Table 5.1. The sequence diagram of the first experiment can be seen in
Figure 5.1. It shows how the task interacts with the RTOS. Two intervals are measured through
toggling pins. The first one is the interval between the RTOS tick until a task is resumed. The
second interval is from the moment the task calls delayUntil until the idle task of the RTOS is
resumed. The other experiments are variations on this experiment. They add background tasks
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Figure 5.1: Experiment 1 with context switch

to evaluate the effects of loading the RTOS. The last experiment measures the RTOS tick without
any running task.

The results of the experiments are shown in Table 5.2. They show that the operating system
overhead is significant when compared to the frequency of the cyclic executive. That frequency
generates slots of 83.33 us. The scheduling overhead would be, in this case, about a quarter of
that slot.

ID Short description Motivation
1 task A periodic Measure delay with one task

2 task A periodic; task B suspended Measure influence of the suspended queue

3 task A periodic; task B continuous Measure overhead with multiple tasks activated

4

task A periodic
Measure overhead when lower

priority tasks are ready at the same RTOS tick
a) 1 periodic background task
b) 2 periodic background tasks
c) 2 periodic background tasks
each with different priorities,

both lower than A

5
task A periodic,

6 periodic background tasks
Measure overhead with multiple tasks

6 No tasks executing Measure the RTOS tick with no tasks

Table 5.1: Experiments with delayUntil() API

5.1.2 Semaphores

Semaphores are a way to share variables and states provided by FreeRTOS. They are similar to
a mutex in that regard. They are important in the context of the use case as they can be used
to implement events. Tasks may be activated when certain events happen. A task may wait on
a semaphore for a certain event to happen. As task dependencies can be represented through
events, semaphores are a way to implement said dependencies.
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ID Measurement
M0 (us) M4 (us)

avg min max sdev avg min max sdev

1
Task resumption 12.87 12.86 12.89 0.004 3.57 3.57 3.57 0.000
Task suspension 16.73 15.92 17.58 0.544 4.92 4.91 4.92 0.004

2
Task resumption 12.88 12.86 12.89 0.004 3.49 3.49 3.49 0.000
Task suspension 17.09 16.44 17.74 0.513 4.72 4.49 4.94 0.148

3
Task resumption 12.88 12.86 12.89 0.004 3.50 3.49 3.50 0.000
Task suspension 16.02 15.9 16.14 0.082 4.51 4.51 4.51 0.000

4 a
Task resumption 15.96 15.94 15.98 0.005 4.55 4.55 4.55 0.000
Task suspension 16.66 16.64 16.68 0.006 4.57 4.57 4.57 0.000

4 b
Task resumption 19.04 19.01 19.06 0.006 5.52 5.52 5.52 0.000
Task suspension 16.66 16.64 16.68 0.005 4.57 4.57 4.57 0.000

4 c
Task resumption 19.04 19.02 19.06 0.006 5.52 5.52 5.52 0.000
Task suspension 16.66 16.64 16.68 0.006 4.57 4.57 4.57 0.000

5
Task resumption 31.36 31.32 31.40 0.011 9.45 9.45 9.45 0.000
Task suspension 16.66 16.64 16.68 0.006 4.57 4.57 4.57 0.000

6 RTOS tick 3.95 3.94 3.95 0.001 0.866 0.866 0.866 0.000

Table 5.2: Overhead of delayUntil() API

Semaphores can be declared as either a binary or a counting semaphore. A binary semaphore
can have two values, 0 and 1, and two operations: giving and taking. When a semaphore is given,
its value is set to 1, and tasks waiting for it are activated. When it is taken, its value is set to 0.
If its value was already 0, the task that tried to take the semaphore is suspended.

The overhead of a binary semaphore is composed of two components. The first one is the
interval between the moment semaphore is given, until tasks waiting on it are activated. The
second one is the interval between the moment a task signals that it waits on a semaphore, until
the kernel suspends it and chooses another task.

Counting semaphores can have any non-negative value. They also feature the giving and taking
operations. In addition to them, they can also return the value they hold without modifying it.
This is the third component of their overhead, specific to them.

ID Short description

1
Counting semaphore give
Counting semaphore take

2
Binary semaphore give
Binary semaphore take

3
Get current value

of counting semaphore

Table 5.3: Experiments with sema-
phore API

Two types of experiments were performed for sema-
phores. The first type aimed at determining the overhead
of calling the API. The second type of experiment tested
the responsiveness of the RTOS when semaphores are
used to signal events. They measure the time between
triggering the event and resuming the task associated
with that event. A second measurement is done to de-
termine the time between the finalization of the task and
the resumption of other tasks. The task finalizes by try-
ing to take the semaphore and waiting for the next event
to trigger. The sequence diagram of the first experiment
with a semaphore as an event can be seen in Figure 5.2.
Here, an interrupt represents an event triggering. It gives
the semaphore that task A is waiting on, and the kernel resumes the task as a consequence. Then,
task A finishes its execution and takes the semaphore. This operation is not successful, as the
semaphore cannot the taken at the moment, and the kernel suspends task A. Then, the idle task of
the operating system is resumed. The two intervals mentioned are measured by means of toggling
two pins.
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Figure 5.2: Experiment 1 with semaphore as event

The next experiments are variations of the first one. In experiments 2-4, the environment
of the RTOS is changed by adding different background tasks. In experiment 5, task A is not
triggered by an ISR, but by another task B. Moreover, as there are two versions of semaphores in
FreeRTOS, binary and counting, the experiments are redone for both of them.

The results with the overhead of the API are given in Table 5.5. The results of using semaphores
as events are given in Table 5.4. It can be seen that changing the environment by adding multiple
tasks does not significantly influence the measured times. However, the resumption of task A
takes more time. The results show that semaphores are too slow to use for control tasks, which
have strict timing requirements. However, they can be used to implement events for the rest of
the tasks, as they do not have the same strict requirements.

1 Task A woken by ISR Response time when there is nothing else running

2
Task A woken by ISR;
Task B suspended

Response time with a suspended task

3
Task A woken by ISR;

task B continuous, lower priority
Response time with a running task

4
Task A woken by ISR;
6 continuous tasks

Response time with multiple running tasks

5 Task A woken by periodic task B Response time when triggered from another task

Table 5.4: Experiments with semaphores as events
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ID Measurement
M0 (us) M4 (us)

avg min max sdev avg min max sdev

1
Counting Semaphore Given 6.37 6.36 6.37 0.002 1.75 1.75 2.27 0.024
Counting Semaphore Takes 3.91 3.90 3.91 0.001 1.10 1.10 1.34 0.013

2
Binary Semaphore Given 6.36 6.36 6.37 0.002 1.84 1.84 1.84 0.000
Binary Semaphore Takes 3.90 3.90 3.91 0.001 1.10 1.10 1.10 0.000

3 Get count of semaphore 2.66 2.66 2.67 0.001 1.10 1.10 1.10 0.000

Table 5.5: Overhead of semaphore API

ID Measurement
M0 (us) M4 (us)

avg min max sdev avg min max sdev

B
in
ar
y

1
Task woken 16.90 16.57 21.37 1.145 4.92 4.90 5.98 0.134

Task suspension 35.12 33.46 41.25 1.980 9.58 9.24 11.17 0.289

2
Task woken 17.18 16.57 31.52 2.031 4.95 4.89 8.22 0.240

Task suspension 35.22 33.44 50.44 2.901 9.36 9.06 11.85 0.368

3
Task woken 16.93 16.56 21.37 1.172 4.89 4.87 5.95 0.147

Task suspension 33.91 32.96 39.37 1.926 9.47 9.35 10.95 0.276

4
Task woken 16.95 16.56 21.37 1.205 4.98 4.94 6.08 0.186

Task suspension 33.96 32.93 42.21 2.180 9.63 9.52 11.10 0.271

5
Task woken 18.79 18.77 18.81 0.006 4.88 4.88 4.88 0.000

Task suspension 33.68 33.66 33.73 0.011 9.22 9.22 9.22 0.000

C
ou

n
ti
n
g

1
Task A resumption 16.91 16.55 21.37 1.161 4.93 4.91 5.99 0.116
Task suspension 35.104 33.43 41.20 1.161 9.65 9.39 11.31 0.318

2
Task woken 17.04 16.55 31.48 1.747 4.93 4.87 9.32 0.296

Task suspension 35.271 32.97 49.85 2.817 9.63 9.31 13.74 0.435

3
Task woken 16.95 16.56 21.39 1.216 4.85 4.82 5.90 0.180

Task suspension 33.75 32.96 39.34 1.768 9.72 9.60 11.17 0.280

4
Task woken 16.94 16.56 21.36 2.256 5.05 5.02 6.10 0.156

Task suspension 34.03 32.94 42.15 2.256 9.70 9.60 11.90 0.293

5
Task woken 18.79 18.77 18.82 0.006 5.09 5.09 5.09 0.000

Task suspension 33.70 33.67 33.74 0.011 9.12 9.12 9.12 0.000

Table 5.6: Responsiveness of semaphores as events

5.1.3 Task Notifications

FreeRTOS provides multiple means of waking blocked tasks on the basis of an event. If the task
to be resumed is known beforehand, the fastest means is to notify the task directly using task
notifications. They are an alternative to semaphores. Compared to them, the woken task is
coupled with the triggering function. This represents a trade-off between speed of execution and
abstraction. In the analysed use case, the relations between tasks are known before runtime. This
enables the use of task notifications.

The experiments involving task notifications are the same ones as the ones used to evaluate
semaphores as events. They are described in Table 5.4. The difference is that task notifications
are used instead of semaphores. The results of the experiments are shown in Table 5.7. They
show a clear reduction in execution time compared to semaphores.
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ID Measurement
M0 (us) M4 (us)

avg min max sdev avg min max sdev

1
Task woken 13.90 13.58 18.39 1.082 4.37 4.31 5.40 0.230

Task suspension 13.06 12.04 18.47 1.114 3.55 3.28 4.87 0.247

2
Task woken 13.92 13.59 18.39 1.131 4.28 4.22 5.30 0.227

Task suspension 13.04 12.04 18.53 1.055 3.65 3.24 4.66 0.210

3
Task woken 13.88 13.59 18.39 1.052 4.29 4.24 5.31 0.223

Task suspension 11.91 11.56 16.51 0.952 3.35 3.28 4.35 0.183

4
Task woken 13.92 13.6 18.38 1.093 4.32 4.24 5.40 0.244

Task suspension 12.05 11.55 20.41 1.744 3.40 3.25 5.59 0.458

5
Task woken 15.06 14.79 19.60 1.040 4.04 4.04 4.04 0.000

Task suspension 12.42 12.16 17.15 1.006 3.50 3.50 3.50 0.000

Table 5.7: Overhead of task notifications
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Chapter 6

Porting the Use Case to
FreeRTOS

This chapter describes how the system may be ported to FreeRTOS and how a static priority
algorithm can be used to schedule a selection of tasks from the system. The aim is to determine
to what extent all the functionalities could be implemented with the intended behavior on an
out-of-the-shelf real-time operating system. Having both a bare metal and OS implementation of
the analyzed solutions allowed us to measure the overhead of using an operating system.

6.1 Functionality selection

The port implements a subset of the functionality available in the driver. The first reason these
functions were selected is that they represent the core functionality of the driver. This subset
consists of the buck controller, the tasks of the measurement module, and the DALI communication
protocol. The buck controller maintains the output current at a stable level, enabling the use of
the LED load. The measurement module is used by the controller to store, filter and retrieve
measurements. DALI communication enables remote control and data access.

The second reason for the selection of these features is that they constitute different task
types. They show how the operating system can handle different use cases. The buck controller
is a periodic task that has to be executed as fast as possible with minimal jitter. It was originally
executed in the cyclic executive scheduler. The measurement module contains periodic tasks with
deadlines equal to their period. The DALI communication protocol is implemented through a
sporadic interrupt that either collects incoming edges. The DALI decoder is called periodically.
The DALI interpreter is called when a full message is received.

The focus of the implementation is the integration of the DALI interrupt and decoder with a
control task. Therefore the application layer of the DALI protocol is simplified. The port does
not use all types of messages that can be interpreted by the application layer. Only broadcast
messages are accepted and processed. They are used to set the value of the light level.

6.2 RTOS selection

The operating system used in the experiment is FreeRTOS. There are three reasons for this
selection. The first one is that it is free and open-source. This makes it faster and cheaper to test
it on the driver, because it does not require a licence. The second reason is its large support and
documentation. This makes debugging and understanding its implementation easier. The third
reason is that it supports priority-based scheduling, and offers task synchronization primitives.
These features enable porting the use case.
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6.2.1 FreeRTOS Setup

Task scheduling in FreeRTOS is based on the execution of a periodic tick. Its role is to measure
time for the real-time kernel, track when tasks need to be activated and select the highest priority
task to be run. The frequency of the operating system tick is set to 12kHz. This frequency matches
the granularity of the cyclic executive scheduler. The default total heap size for the whole system
was reduced from 10000 words to 5000. The reduction was needed in order to fit in the RAM of
the XMC1400.

6.3 Task priority assignment

The implementation explores how static priority scheduling can be used, since it is the base for
multiple scheduling algorithms. Tasks are assigned a fixed priority, and higher priority tasks may
preempt lower priority tasks. This method is supported by multiple real-time operating systems.

The priority assignment does not follow any particular algorithm, such as deadline monotonic,
but rather mimics the tasks’ assignment to the cyclic executive and cooperative schedulers in the
original implementation of our use case. This was done in order to introduce as few modifications
as possible when testing whether the microcontroller is able to run an operating system. Thus,
tasks originating from the cooperative scheduler are scheduled in the background(i.e., are assigned
low priorities), while tasks coming from the cyclic executive scheduler are given the highest priority.

6.4 Task design

Periodic FreeRTOS tasks are implemented as seen in Listing 6.1. They use the vTaskDelayUntil
function to create periodicity. This function was chosen over vTaskDelay because the latter delays
a task from the moment it is called, and the former delays the task from the last wake time.

void vTask ( void ∗pvParameters ) {
TickType t xLastWakeTime ;
// s e t the per iod o f the task
const TickType t xFrequency = t a s k t i c k i n t e r v a l ;
// get the i n i t i a l wake time
xLastWakeTime = xTaskGetTickCount ( ) ;

whi l e (1 ) {
// execute the task
Task vExecute ( ) ;
// de lay the task un t i l i t s next a c t i v a t i o n
vTaskDelayUntil (&xLastWakeTime , xFrequency ) ;

}
}

Listing 6.1: FreeRTOS Generic Task Implementation

The features selected for implementation are mapped to FreeRTOS tasks. The first feature is
the buck controller. The actions needed for the controller correspond to tasks T1 and T2 from
Table 3.2. As T2 is dependent on T1, and they have the same frequency, they are mapped to the
same task and executed one after the other. To achieve the desired frequency of 4 kHz, its period
is set to 3 operating system ticks.

The functions of the measurement and of the DALI modules are called with a frequency of 1
kHz. They are implemented as separate tasks in FreeRTOS. When a DALI message is decoded, a
third task is called to interpret it. The DALI decoder task calls the interpreter task through task
notification. The architecture of the task design can be seen in Table 6.1.
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Task Type Period(Rtos Ticks) Priority(1 = lowest)
Buck Controller Periodic 3 2
Measurement Periodic 12 1
DALI Decoder Periodic 12 1

DALI Interpreter Notified task - 1

Table 6.1: Architecture of RTOS port of the use case

6.5 Initialization sequence

After designing the architecture of the tasks, the next step is writing the initialization sequence.
In the original system, the initialization was performed by higher level tasks. These monitor the
state of the driver from a higher level. They are used to separate the management of different
software modules from their implementation. Because they involved tasks from software modules
not included in this port, such as the PFC controller, they were also not included. Thus, in the
new implementation, the initialization had to be done manually.

The initialization sequence was checked by inspecting state variables with a debugger. Another
way to validate the sequence is to check that the hardware cycle-by-cycle buck controller behaves
as expected. It controls the output current of the driver. It is crucial that it works correctly. Oth-
erwise the driver may suffer damage in tests with high voltage. To verify the hardware controller,
the initialization code was run on a bootkit board with an XMC1402 microcontroller connected
to a buck converter made of discrete electronic components.

6.6 Alternative implemenation

Porting each task from the original system to its individual task has some disadvantages. The
periodicity of the tasks is realized manually through kernel calls. This adds boiler plate code. As
this is repeated for all of them, it increases the risk of error which is not a good practice.

Periodic and sporadic tasks are implemented differently using kernel callback functions. While
this is not a disadvantage in itself, in the cooperative scheduler, there is a common mechanism to
define both types of tasks. This is achieved by having all tasks triggered by events. Events can
be triggered by either the expiration of timers or through a direct call. Thus, the porting of tasks
to FreeRTOS is not straightforward, because a different paradigm is used.

Another disadvantage is that each task do not use a common stack. Each task is allocated a
RAM section to be used as stack. Even though tasks are not executed at the same time, they
occupy RAM simultaneously, increasing the memory footprint of the system.

FreeRTOS features a timer task. The timer task keeps track of several software timers and
callback functions. Tasks can be defined as callback functions and attached to a timer. The timer
task also enables pending a call to a callback function. This provides a way to represent events.
The generic structure of a callback function can be seen in Listing 6.2.

void vT imer ca l l back func t i on ( TimerHandle t xTimer ) {
Task vExecute ( ) ;

}

Listing 6.2: FreeRTOS Generic Timer callback function implementation

The advantage of this solution is that it defines tasks similarly to the cooperative scheduler,
easing their porting. The second advantage is a reduced RAM footprint, as there is only one task
control block created to manage multiple functionalities. However, the callback functions of the
timer task are executed in a cooperative way. Therefore, only tasks at a single priority level may
be places under its management.

In the implementation of the use case, the buck controller is still defined as a separate task,
because it has a higher priority compared to the other tasks. The rest of the tasks can be defined
as callback functions for the timer task.
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6.7 Results

The aim of the experiments conducted with the FreeRTOS-ported system is to evaluate its over-
head on the microcontroller. A secondary goal was to examine how tasks behave in the environment
of an RTOS. The execution of the buck controller, measurement and DALI decoder task can be
seen in Figure 6.1. The figure shows a critical instance when all tasks are released at the same
time. The delay between the RTOS tick and the execution of the buck controller task is constant,
being around 6µs. After the execution of the buck controller task, it suspends itself and calls the
operating system scheduler. The scheduler then sets its next execution, and then chooses the next
task to execute from the ready queue. This operation takes around 15µs. The version using the
timer task offered by FreeRTOS has a similar overhead, as it internally uses the same underlying
primitives.

Figure 6.1: Execution of the tasks compared to the RTOS tick

The DALI interpreter can receive broadcast messages and change the reference value for the
buck software controller. The reception of a DALI message can be seen in Figure 6.2. The DALI
communication line is shown in blue in the figure. Its idle state is up, at 15 volts. When bits
are transmitted, it goes from the idle state, to using Manchester encoding. The pink line shows
the activations of the DALI decoder task. When the DALI line is set to 0, it shows spikes due
to electrical interferences. After the DALI message is transmitted, it can be seen that the DALI
decoder task is executed, calling the DALI interpreter task. Its execution can be seen on the
yellow line.

Figure 6.2: Reception of a DALI message

The experiments show that using FreeRTOS to implement a functionality subset is feasible.
However, its overhead is too high to be used for scheduling multiple control tasks. Its use would
only be feasible in scheduling soft real-time tasks that were scheduled in the cooperative sched-
uler. Because they have the same priority and do not have strict timing requirements, it is not
advantageous to use an operating system instead of the original implementation.
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Chapter 7

Improving QoS by Controlling
Interference and Response Jitter

Using a priority-based scheduling algorithm to schedule the DALI interrupt as a regular task
does not improve its interference on the control tasks. Therefore, another way to control that
interference is needed. In this chapter, different server implementations and one solution for
limiting preemption were developed around an interrupt. These were designed to be independent
of an operating system and of an underlying scheduling algorithm. These implementations are
presented and the impact they have when used on the original system is shown.

7.1 Jitter interference on controllers

One important aspect for a potential solution to the interference suffered by control tasks is the
effect of jitter on them. More precisely, this section aims at determining the amount of jitter under
which control tasks still deliver a high quality of service(QoS). The relation between jitter and the
QoS delivered by controllers is determined through practical experimentation.

The experiments concerning jitter were aimed at measuring the amount of flicker from the
LED load. This is an indirect measure of the QoS offered by the driver. The jitter was introduced
in the buck controller, as that is the last stage in the electrical pipeline, making the effect of jitter
more pronounced. If jitter were introduced in the PFC controller, the buck controller would be
able to ameliorate the jitter’s effect.

7.1.1 Delay types

There are two types of delay that can be introduced and that affect the quality of the controller.
The first one is the delay between the release of the task and the reception of the input. The
second one is the delay between the input and output of the controller. These delays occur when
other tasks, most importantly the DALI interrupt, preempt a control task. The delays can be
visualized in Figure 7.1.

Static delays To examine the effect of the delays, they are artificially introduced through
making the task busy wait at the 2 points in time. The busy wait is introduced through a while
loop. The interference is determined by measuring the flicker of the light emitted by the LEDs. The
flicker is measured by using a Klein K-1 colorimeter with software provided by the manufactured,
KLEIN K Colorimeter. The set-up used for the flicker measurement can be seen in Figure 7.2.

Variable Delays To further explore the effect of jitter, a variable jitter was introduced in the
buck controller. The jitter was between 2us, which was the overhead of generating the random
number, and a maximum delay set for that experiment. Jitter was introduced in both the release
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Figure 7.1: Potential delays in the control task

Figure 7.2: Flicker measurement settings

of the task, as well as between the input and output of the controller, and the driver was running
the whole system, connected to AC.

7.1.2 Static Jitter

The first set of experiments was conducted by introducing a fixed delay in the buck controller
running as the sole task in the system. The results of the flicker measurements can be seen
in Figure 7.3. For each combination, the average flicker value measured in percentage is given,
together with the peak value. The goal is to have the flicker never pass 0.05. It can be seen that
the delay between the input and the output of the control loop has the biggest influence on the
light quality.

7.1.3 Variable Jitter

To further explore the effect of jitter, a variable jitter was introduced in the buck controller. The
jitter was between 2us, which was the overhead of generating the random number, and a maximum
delay set for that experiment.

Some results are plotted in Figure 7.4. The plot can be interpreted in the following way. The
colorimeter records flicker by taking measurements as fast as possible in a 5-minute period. Each
measurement represents flicker at a given moment. The flicker is a wave that can be decomposed
into frequency components. Each component has a certain amplitude, expressed in dB. For each
measurement, the frequency with the highest amplitude is taken as representative. The plot shows
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Figure 7.3: Flicker measurements results

(a) Flicker with no jitter (b) Flicker with variable input-output jitter of 10 us

the set of highest frequencies, one for each measurement. The bars represent the histogram of
frequencies. It shows the distribution of the highest frequencies. The count for each frequency
can be seen on the left vertical axis. Overlaying over the histogram are 3 line plots. The purple
line represents the amplitude average for each frequency. The red line represents the maximum
amplitude found for each frequency. The green line represents the maximum acceptable level of
flicker for each frequency. The right vertical axis represents the amplitude values for each line
plot.

Variable jitter was introduced in both the release of the task, as well as between the input and
output of the controller, and the driver was running the whole system, connected to AC.

From the results, there is enough room in the system for jitter, without a significant impact
on the flicker. However, the system was only tested with jitter on the buck controller, and with a
maximum delay that would not cause an overflow of the task in another slot of the cyclic executive
scheduler. Therefore, a smaller maximum value of jitter needs to be considered when looking for
a solution. Combined with the value obtained from analysing static jitter, the maximum amount
of jitter acceptable in a control task is estimated to be 30us for every period of a controller, which
is equal to 250 us.
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(c) Flicker with variable input-output jitter of 80 us (d) Flicker with both release and input-output jitter of 120 us

Figure 7.4: Flicker with variable controller jitter

7.2 Server

One method of controlling the interference of the communication protocol on the controllers is
through a server. A server is a dedicated task that limits the interference of sporadic jobs. It can
be used to manage the execution of the DALI interrupt. Servers accept or deny sporadic jobs based
on a predefined budget. The implementation assumes that the sporadic jobs are non-preemptive,
and they can only be managed by disabling them. This mirrors the fact that interrupts of the
communication protocol cannot be preempted once they start to execute. Another assumption that
was made is that the jobs managed by the server cannot interrupt each other. This assumption
eliminates the case when the server manages interrupts coming from communication protocols
with different priorities.

Fixed-priority servers are usually executed with the highest priority. Thus, they do not need
information about periodic tasks. They have a simple implementation, which consists of 3 callback
functions. The first one is the server period callback, whose purpose is to replenish the server’s
budget. The second and third ones are job arrival and finalization callbacks, which manage the
budget of the server, and disable new job arrivals if the budget is exhausted.

The overhead of the operating system exceeds the computation time of the interrupt. Thus,
managing the interrupt with a server implemented as an RTOS task would only increase the
interference on control tasks. The server is implemented independently of the operating system.
It uses a separate hardware timer to keep track of time. Moreover, the server can be integrated
with the complete use case, enabling the comparison of results with the original implementation.
To reduce hardware requirements, only one hardware timer is used.

The server’s budget is the computation time allowed for sporadic tasks in a server period. If
the worst-case computation time of the managed tasks is known, the budget can be defined as the
number of jobs to be admitted in that period. Either way, the budget is stored in an integer. The
capacity of a server is the remaining budget at any given time. When a sporadic job arrives, the
server’s capacity needs to be reduced. If the budget is a number of jobs, the reduction can be done
at the job’s arrival. If the budget is defined as computation time, the reduction needs to be done
at the end of the job, as its computation time is assumed to not be known beforehand. When the
budget of the server is exhausted, the source of the sporadic jobs is disabled. In the analysed use
case, that source is represented by the DALI interrupt. The server has custom implementations
depending on the definition of the budget, to minimize overhead. For instance, if the budget is
only one job, upon a job arrival, the interrupt is disabled immediately. This is done without
keeping track of the server’s capacity, because the budget is known to have been exhausted upon
the job arrival.

52 Real-time scheduling for an LED driver



CHAPTER 7. INTERFERENCE CONTROL 7.2. SERVER

It is assumed that jobs may not interrupt each other. The assumption is not relevant for the
implementation if the budget is a number of jobs. This is the case because the server only has to
keep track of the number of admitted jobs, which is the same. However, if the budget is defined as
computation time, the reduction of capacity happens at the end of the job. If the possibility of jobs
interrupting each other is not taken into account, the same computation time may be deducted
multiple times from the server’s capacity. To counteract this, the server keeps track of multiple
arrival times, and upon the finalization of a job, it takes into account the computation time of jobs
that interrupted it. The computation time is equal to the finalization time minus the arrival time,
and minus the sum of the difference between finalization and arrival times of the interrupting jobs.
For the example, in Figure 7.5, the computation time of T1 is f1− a1− [(f2− a2) + (f4− a4)].
To hold the computation time of the interrupting jobs, as well as multiple arrival times at once,
a stack is used.

Figure 7.5: Computation times of interrupting jobs

The nested vectored interrupt controller(NVIC) is an important aspect for the server’s imple-
mentation. It handles interrupts on the ARM Cortex-M processors. If an interrupt is disabled by
software and cannot be executed immediately, the NVIC sets a pending flag for that interrupt. A
server can take advantage of this feature to know if sporadic jobs were activated while its budget
is exhausted.

7.2.1 Server Variants

There are several fixed-priority server algorithms available, suited for different applications. How-
ever, their implementations are quite similar. They can all be implemented using the three callback
functions described in the previous section. Therefore, it is interesting to evaluate their behaviour
on the XMC1400 microcontroller. Thus, they were implemented and tested. In this subsection,
the implementation aspects specific to each algorithm are discussed.

Polling and Deferrable Servers

The polling and deferrable servers are both periodic servers. Their budget is replenished to its
maximum value every period. In the implementation, this is done with the server interrupt callback
function. The difference between the two is the way the budget is consumed. The budget of the
polling server is intended for immediate consumption. Thus, if there are no pending jobs at the
beginning of a period, the budget is lost for that period. The budget of the deferrable server is
left available for the duration of the period. Thus, it can serve jobs immediately upon arrival, in
the limit of its budget.

The polling server replenishes its budget only if there are pending jobs when it is activated.
This can be checked using the pending interrupt flag set by the NVIC. If there are no pending
jobs upon finalization, interrupts are disabled, which corresponds to making the budget 0.

Real-time scheduling for an LED driver 53



7.2. SERVER CHAPTER 7. INTERFERENCE CONTROL

Sporadic Server

The sporadic server is not a periodic server, in contrast to the polling and deferrable servers. It
replenishes its budget only if a job has consumed it beforehand. The replenishment happens one
server period after the consumption began. This can be seen in Figure 7.6.

Figure 7.6: Operation of the sporadic server

There is only one hardware timer that is used to time the next replenishment. After the arrival
of the first job, the timer is loaded with the server period. However, the time between further
replenishments is stored as deltas from the last replenishment in a queue. If the server timer
is running upon arrival, the replenishment time is computed by subtracting the sum of further
replenishments, the remaining time until the timer expires, and the computation time of the server
period callback function. This calculation can be seen in Figure 7.7. If the server uses a time
budget, the amount to be replenished is put together with the replenishment time in the queue. If
the budget is a number of jobs, the amount to be replenished is one, because each replenishment
corresponds to one job.

Figure 7.7: Server Replenishment Time

7.2.2 Overhead

The server is used to manage the DALI interrupt. Because of this, the overhead of the server is
critical. The overhead of the different server implementations is measured by simulating a burst
of jobs. The results are given in Table 7.1. It can be seen that the overhead of the server increases
as the assumptions concerning jobs are lifted. The smaller overhead is obtained in the case where
the server admits only one job. For a budget of multiple jobs, the server also needs to keep track
of its budget, which increases its computation time. If the budget is defined as computation time,
the server also needs to compute the time spent by each job. Furthermore, if jobs can interrupt
each other, the server needs to keep track of the interrupts in a stack, which adds to its overhead.
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Table 7.1: Server implementation overhead

Algorithm Budget
Arrival

Function(ns)
Finalization
Function(ns)

Server
Function(ns)

Periodic

1 job 496 - 433 - 951ns
n jobs 455 - 1380 372 - 1300 413 - 1070
time 414 992 - 2810 454 - 1170

time nested 518 1490 - 3350 455 - 1170

Deferrable

1 job 579 - 723
n jobs 496 - 847 - 869
time 352 744 - 1170 993

time nested 580 1210 - 1570 993

Sporadic

1 job 725 - 725
n jobs 869 - 2960 - 1220 - 3480
time 620 - 3430 910 - 2310 1880 - 3840

time nested 972- 4690 1790 - 2620 2540 - 6040

The server variant that was chosen to be integrated with the original system is the sporadic
server. This is due to the fact that it does not produce any overhead when the interrupt is not
active. The budget of the server was set to 1 job. This can be done as the computation time of the
interrupt is bounded. Moreover, setting the budget to 1 job has the least overhead. The activation
of a DALI interrupt under the server can be seen in Figure 7.8. The activation is followed by the
replenishment of the server budget.

Figure 7.8: Activation of DALI interrupt under a sporadic server

The maximum interference allowed by the server was estimated to be 30 us in any 250 us. As
the maximum computation time of the interrupt is about 7.5 us, the server can allow at most 4
interrupts. Thus, the period of the server was set to 250/4=62,5us.

Two measurements were taken to evaluate the effects of using a sporadic server. The first one
is the response time of the DALI interrupt and of the buck controller. The second measurement
is the light flicker of the LED load. For these measurements, 4 different situations were taken into
account. Firstly, the server was used, but there were no messages sent. In the second experiment,
stress messages were sent as fast as possible. The messages altered between one setting a register,
requiring no response, and one that requests the value of the set register, to trigger a response
from the driver. The same set-up was used for the system with no server, to compare the results.

7.2.3 Response time

Response time is crucial for the buck controller, as it is a measure of the interference is suffers from
the DALI interrupt. Response time measurements are given in Table 7.2. They were taken when
the system was under stress of DALI messages, as described in the previous section. It can be
seen that the server does not increase the response time of the buck controller. At the same time,
the response time of the DALI interrupt is increased by the overhead of the server, as expected.
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Function Min Max Mean Sdev
Buck Controller without server 21.28 33.91 21.79 0.59
Buck Controller with server 21.26 33.82 21.79 0.66

DALI Interrupt without server 3.96 9.1 7.21 0.85
DALI Interrupt with server 4.52 11.08 8.26 0.93

Table 7.2: Response times with server (us)

7.2.4 Light Flicker

Another important measurement is the light flicker of the LED load. It is an indirect measure of
the impact of servers on the quality of service provided by the buck controller. Light flicker was
analysed by a colorimeter, taking multiple measurement in a span of 5 minutes. Each flicker meas-
urement was decomposed, showing the amplitude of its composing frequencies. Then frequencies
with the largest amplitude value measured through the complete experiment were recorded, and
used as an estimate for the buck controller performance.

Frequency
(Hz)

Maximum
peak(dB)

48 -66,3
47 -66,9
43 -67,49
45 -67,85
46 -68,38
44 -68,6
42 -68,65
33 -68,67
41 -68,71
30 -69,09

Avg -68,064

(a) Server without DALI
messages

Frequency
(Hz)

Maximum
peak(dB)

48 -66,13
44 -66,34
45 -66,4
47 -67,59
46 -67,79
37 -68,06
43 -68,14
42 -68,45
41 -68,79
32 -68,96

Avg -67,665

(b) Server with DALI mes-
sages

Frequency
(Hz)

Maximum
peak(dB)

47 -64,1
45 -66,51
39 -66,82
46 -67,11
48 -67,57
44 -68,1
38 -68,37
42 -68,39
25 -68,94
43 -68,95

Avg -67,486

(c) No server without
DALI messages

Frequency
(Hz)

Maximum
peak(dB)

47 -66,74
41 -67,08
48 -67,18
45 -67,32
39 -67,51
46 -68,16
42 -68,32
44 -68,64
36 -68,72
43 -68,73

Avg -67,84

(d) No server with DALI
messages

Table 7.3: Light Flicker Tests of Server

The top 10 frequencies with the highest amplitude registered for each experiment can be seen
in Table 7.3. Moreover, Figure 7.9 shows a plot of the biggest amplitude frequencies when the
system is under stress.

Despite the fact that DALI messages were sent at maximum speed, there were no spikes on the
line, so interrupts were spaced by Te = 416us. The result is that the server does not slow down
the interrupts in this setup, but rather only adds overhead, which can be seen in the flicker. On
the other hand, this also shows that the overhead does not increase the flicker over the acceptance
threshold.
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(a) No server with DALI messages (b) Server with DALI messages

Figure 7.9: Influence of server on the system

7.3 Limited Preemption

Limiting the preemption of the control tasks can be achieved by delaying the execution of the
DALI interrupt in certain conditions. If a control task is running when the interrupt is triggered,
the interrupt is delayed by a set amount of time. There are 2 cases in this scenario. The first case
is when the amount of time passes before the control task finishes its execution. Then the DALI
interrupt will preempt the control task. The second case is when the control task completes its
execution before the amount of time passes. The DALI interrupt will be executed afterwards, and
the control task will not be preempted. These two scenarios can be seen in Figure 7.10.

(a) The buck controller does not finish its execution
before the delayed interval passed and is preempted

(b) The buck controller finishes its execution, and
the DALI interrupt executes afterwards

Figure 7.10: Activation of the DALI interrupt under limited preemption

The implementation of limited preemption requires a way to measure time. To that end,
a hardware timer is used. This makes the implementation independent of an operating system.
There are three callback functions necessary. They are grouped inside a C module. The first one is
called from the communication interrupt when it starts to execute. It signals that it was released.
This function determines if the interrupt is to be delayed or allowed to execute. If it is delayed,
it will start the hardware timer. The timer triggers an interrupt which pends a new execution of
the communication interrupt. The running task calls a function to signal that its execution has
finished, and this function stops the hardware timer and executes the communication interrupt
if it is pending. Besides that, the solution requires a shared variable through which the control
task signals that it is running. That function stops the hardware timer, and it pends a DALI
interrupt, to be executed. A visualization of when functions are called, in both scenarios, is shown
in Figure 7.11.
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Figure 7.11: Limited Preemption Implementation

7.3.1 Overhead

Because the control tasks and the DALI interrupt are time sensitive, the overhead of the imple-
mentation is important. The overhead measurements can be seen in Table 7.4. These measure-
ments can be used to set-up the delay interval when the implementation is integrated with the
original system. The situation in which the delay interval matters is when the DALI interrupt
needs to be triggered while the control task is still executing. In that case, two executions of
the arrival function and one of the preemption interrupt will take place. This makes a maximum
overhead of 1263+ 1263+ 415 = 2941(ns). The minimum interarrival time of the DALI interrupt
is 18.66 us, with an execution time of about 7.5us. With an overhead of 2.91us, the maximum
deferrable interval that ensures that there are no lost edges is 8.219us. To leave room for errors, an
interval of 8us was chosen. When the driver is transmitting a message, the deadline of the DALI
interrupt is 100us, with an execution time of 3.5 us. To meet this deadline, the delay interval is
set to 100− 2.941− 3.5 = 93.559 ≈ 93us.

Function Min Max Mean Sdev
Arrival 412 1263 575 30

Finalization 804 2293 808 39
Preemption Interrupt 413 415 414 0

Table 7.4: Limited Preemption Overhead (ns)

7.3.2 Response time

An interesting measure of the impact of the limited preemption solution is the response time of
the control tasks and of the DALI interrupt. The response time was measured when receiving and
transmitting DALI messages, with limited preemption activated and deactivated. The measured
control task was the buck controller. The results can be seen in Table 7.5. It can be seen that in
the worst case, the response time of the buck controller is higher when using limited preemption.
This is due to the fact that in the worst case, limiting the preemption just delays the execution
of the DALI interrupt, so the controller experiences interference from both the implementation of
limited preemption, as well as from the DALI interrupt. However, the mean response time was
similar. The response time of the DALI interrupt is increased. This is to be expected, and it is
one of the effects of the algorithm.

7.3.3 Light Flicker

Light flicker is an indirect measure of the quality of service provided by the buck controller. The
test procedure for limited preemption is the same as for the server implementation, testing without
and with DALI messages sent as fast as possible. Two variants of limited preemption were tested.
The difference between the two is whether they are aware of the state of the communication

58 Real-time scheduling for an LED driver



CHAPTER 7. INTERFERENCE CONTROL 7.3. LIMITED PREEMPTION

Function Min Max Mean Sdev
Buck Controller without limited preemption 21.28 33.91 21.79 0.59
Buck Controller with limited preemption 21.44 37.44 21.88 0.93

DALI Interrupt without limited preemption 3.96 9.1 7.21 0.85
DALI Interrupt with limited preemption 10.15 21.62 9.865 4.182

Table 7.5: Response times with limited preemption (us)

protocol. The first variant is not aware of that, and it uses the 8us delay interval all the time.
The second variant is aware of the state of the protocol, and changes the delay amount based on
that. Thus, when the driver is transmitting a message, the delay interval is changed to 93us.

The results can be seen in Table 7.6. Furthermore, Figure 7.12 shows the largest and the
average amplitude for each frequency, when the system is under DALI message stress. Figure 7.12
shows the case in which there is no limited preemption, and the one when the state is not taken
into account. The figures correspond to Table 7.6d and Table 7.6e.

The results indicate that there is no influence on the flicker when there are no DALI messages
received, which is to be expected. When the system is under stress, there is a clear improvement
when using limited preemption, of up to 0.8 dB. Moreover, when comparing the stateless and
stateful implementations, there is no significant difference between them. It is interesting to
note that the stateless solution has a lower average over the top ten frequencies with the largest
amplitude, but the stateful implementation has a lower maximum peak amplitude.

While the reduction in light flicker is visible, the overhead of the implementation is significant
compared to the computation time of the DALI interrupt. This reduces the impact this solution
has. Moreover, this points to the fact that the original implementation is already quite performant.

Frequency
(Hz)

Maximum
peak(dB)

47 -64,1
45 -66,51
39 -66,82
46 -67,11
48 -67,57
44 -68,1
38 -68,37
42 -68,39
25 -68,94
43 -68,95

Avg -67,486

(a) Preemption not lim-
ited without messages

Frequency
(Hz)

Maximum
peak(dB)

48 -66,01
44 -66,56
47 -66,91
46 -67,45
45 -67,71
41 -67,95
43 -68,17
32 -68,62
39 -68,75
40 -69,07

Avg -67,72

(b) Stateless limited pree-
mption without messages

Frequency
(Hz)

Maximum
peak(dB)

47 -66,62
48 -66,68
46 -67,27
41 -67,69
43 -67,72
27 -67,79
42 -68
45 -68,13
44 -68,27
26 -69,3

Avg -67,747

(c) Stateful limited pree-
mption without messages
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Frequency
(Hz)

Maximum
peak(dB)

47 -66,74
41 -67,08
48 -67,18
45 -67,32
39 -67,51
46 -68,16
42 -68,32
44 -68,64
36 -68,72
43 -68,73

Avg -67,84

(d) Preemption not lim-
ited with messages

Frequency
(Hz)

Maximum
peak(dB)

48 -66,54
47 -67
45 -67,64
46 -67,88
41 -68,19
44 -68,39
43 -68,75
40 -69,37
34 -69,43
42 -69,6

Avg -68,279

(e) Stateless limited pree-
mption with messages

Frequency
(Hz)

Maximum
peak(dB)

45 -67,1
48 -67,26
47 -67,3
44 -67,81
43 -67,94
46 -68,24
37 -68,66
42 -68,73
32 -68,83
41 -68,95

Avg -68,082

(f) Stateful limited pree-
mption with messages

Table 7.6: Light Flicker Tests of Limited Preemption

(a) Flicker without limited preemption (b) Flicker with limited preemption

Figure 7.12: Influence of limiting preemption on the system
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Chapter 8

Reflection and Conclusion

This chapter contains the evaluation of the solutions as well as reflections on the applicability of
the results. The problem investigated was the interference between a task that implements the
communication protocol and tasks that need to be executed periodically and with as little jitter
as possible. The maximum jitter accepted by a controller in a period of 250 us was estimated to
be 30 us, as shown in section 7.1. The concrete use case is the integration of the DALI protocol
with control tasks executed on a smart lighting driver. The communication protocol has to meet
its timing requirements, and its driver requires processor time as it does not benefit from direct
memory access or hardware decoders. Control tasks are affected by two types of jitter. The first
one is release jitter, which happens when a task begins to execute later than its activation. The
second type is response time jitter, which makes the time between collecting input and releasing
its output variable.

8.1 Research questions

In the beginning, a number of research questions were formulated with the goal of answering them.
A list of the questions can be found below, together with the answer provided by this thesis.

1. How can the system’s tasks be modelled, and what properties and requirements can be derived
from the model?

The system can be modelled as a set of tasks. There are multiple types of tasks in the system.
There are strictly periodic tasks with deadlines equal to their period. Other types of tasks are
periodic and have to be executed with reduced jitter but do not have a determined deadline.
There are also sporadic communication tasks with hard deadlines dictated by the constraints
of the DALI protocol. Moreover, there are a number of dependencies between different tasks.
The system model is useful in the theoretical analysis that was undertaken.

2. Which scheduling policy may produce a schedule for the tasks running on the LED driver, such
that all tasks meet their deadlines?

Deadline monotonic and earliest deadline first scheduling policies both produce a schedule in
which the tasks meet their deadline, but the jitter of control-related tasks may be very large
in the worst-case scenario. That said, using such a scheduling algorithm may have other non-
functional advantages such as improved maintainability and extendability.

3. What techniques can be used to control the interference between control and communication-
related tasks?

Server algorithms and limited preemption are potential techniques to control this interference.
However, for the analysed use case, only limited preemption yields a reduction in interference.
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4. How can the policy producing a valid schedule with the least amount of interference be imple-
mented on the targeted specific platform?

Server algorithms and limited preemption can be implemented with the use of a hardware timer
inside a C module. Deadline monotonic scheduling can be implemented with an operating
system. However, this implementation showed too much overhead for our specific use case.

5. How does the produced implementation compare with an existing implementation in terms of
interference and response time?

The interference, measured indirectly in terms of light flicker, is improved by 0.8 dB when using
limited preemption. The response time of the control tasks has not seen a significant improve-
ment on average. This is due to the additional execution time added by the implementation in
the worst-case scenario.

8.2 Summary of the investigated solutions

Several potential solutions were evaluated. They aimed at controlling the way the DALI interrupt
triggers. The goal was to control the interference between the interrupt and control tasks.

8.2.1 Scheduling Algorithms

The first attempt was to change the scheduling algorithm used for the control tasks. The ex-
pectation was that a different scheduling policy would be able to take advantage of the difference
between the execution time of the DALI interrupt and its deadline. Two possible policies were
analysed theoretically. They are both priority-based algorithms.

Priority-based algorithms use priorities to choose the running task. A static priority algorithm
keeps priorities fixed at run-time. A dynamic priority algorithm can change the priorities of tasks
depending on the situation. The algorithms that were examined were a static priority algorithm,
deadline monotonic scheduling, and a dynamic priority algorithm, earliest deadline first.

The result of the investigation was that under both of them, control tasks exhibited greater
jitter than with the original implementation. This was due to tasks suffering interference from
both the DALI interrupt and other tasks in the system. Ultimately, the short deadline of the
DALI interrupt prevents those scheduling algorithms from improving the situation.

8.2.2 Server

Another possible solution is to place the DALI interrupt under the management of a server. While
this ensures that the interference of the DALI interrupt on the control tasks is limited, the nature
of the communication protocol limits its applicability in this use case. All DALI interrupts need
to be executed before another one arrives, as new captured edges overwrite old values. Thus, in
the situation when the server would actually limit the number of DALI interrupts, there is the
risk of not implementing correctly the communication protocol. When the server does not limit
the number of DALI interrupts, it just adds unnecessary overhead to the system.

There are situations in which a server would be needed, but that depends on the nature of
the managed tasks. Tasks managed by a server should have soft or firm real-time requirements.
One example would be tasks whose jobs may be skipped or that require only a number of jobs to
be executed in any time interval. Another example would be tasks that have an execution time
depending on their input data to prevent them from holding the processor for too much time.

One potential application of servers in the use case is to partition the computation time of the
cooperative scheduler for different categories of features. This ensures that features can be added
to the product without starving the already existing ones. It also provides a way for managing
the existing features, allocating more computation time to the ones with higher priority.
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CHAPTER 8. REFLECTION AND CONCLUSION 8.3. FUTURE WORK

8.2.3 Limited Preemption

The most promising solution is to limit the preemption of control tasks by the DALI interrupt.
This allows the control tasks to finish their execution as long as the DALI driver is guaranteed
to meet its constraints. If there is enough room for delay, the DALI interrupt will be executed
as soon as the current running control task finishes. Moreover, the amount of time the DALI
interrupt is delayed can be adjusted based on the state of the driver. This takes advantage of the
larger deadline of the DALI interrupt when the driver is transmitting.

The improvement in light flicker was only marginal. This is because the DALI interrupt has a
small computation time compared to the implementation, making the overhead significant. Thus,
the implementation overhead offsets the theoretical reduction in light flicker. This solution is
best used when a communication protocol cannot miss any incoming edges and does not have
mechanisms ensuring redundancy, such as checksums for error correction or detection.

8.3 Future Work

There are several aspects of the work that may be interesting to be continued in a future invest-
igation. The first one is the effect of different phasing of tasks. Currently, tasks are assumed to
be released at the same time during what is called a critical instant. This assumption was made
in order to make the solution more generally applicable. However, tasks can be designed to have
different phasing. This means that tasks with the same period may not necessarily interfere with
each other, as they would be interleaved. Introducing more constraints, one of which is fixing the
tasks’ phasing, may reveal that a solution involving a different scheduling algorithm is feasible. It
is therefore an interesting point of investigation.

The second point of improvement is investigating the effect of a more powerful processor. It
has been shown that the Cortex-M4 processor is faster. Redoing the experiments involving the
measurement of light flicker can provide valuable data. However, those require a driver using such
a powerful processor, which was not available at the time of writing.

The third aspect is the investigation of the scheduling behaviour of a communication protocol
that benefits from error correction or detection. Such a protocol may be able to afford missing
jobs, which changes its real-time properties. Therefore it would be valuable to investigate the
applicability of the solutions presented in this thesis for such a protocol.
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