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Exploration of fine-grained self-healing concepts
for approximate multipliers

Q. C. Peters - q.c.peters@student.tue.nl - 0951927

Abstract—Approximate computing is a known method to
save energy consumption in hardware. Approximate computing
is trading accuracy of calculations in for decrease of energy
consumption. Self-healing is a special method of creating ap-
proximate hardware. It is error correction for approximate
computing, where computing elements are combined in such way
that errors are canceled and the final error is minimized. In this
research, methods of fine-grained self-healing are investigated
for the array multiplier. Fine-grained refers to the detailed
granularity of adapting the computing hardware. In this case,
adaptations are made in the truth tables of full adder cells.
The goal is to improve upon the state-of-the-art by finding an
automated and generic method to create designs faster with
less accuracy loss than when no self-healing is applied. Current
self-healing methods barely include automation and little design
space exploration. The main challenge is the trade-off between
design time and the quality of the designs. Two fine-grained
methods are tested. The first method partitions the multiplier in
blocks and choices are made regarding the creation of those
blocks and how to substitute them. The second method is
choosing what each separate cell in the multiplier should be
based on a cell’s error using backtracking and pruning. The
methods are tested on a 3x3 array multiplier. The found designs
along with the run time show that there is no hard and consistent
evidence that self-healing on this fine granularity is scalable in
the long run. Recommended is to find a method which combines
the non-automated state-of-the-art with the automated design
space exploration used in this research. This way, more of the
design space is explored than currently has been, but with a
higher chance of optimizing the creation of approximate circuits.
It is also recommended not to maximize the genericness of the
methodology as the knowledge of the arithmetic unit can be
essential to increase the quality of the found designs.

Keywords— approximate computing, self-healing, design space
exploration, heuristic

I. INTRODUCTION

Technology has developed much over the last years. For example,
mobile phones are not used for only calling anymore. Playing
games, video processing, and navigation amongst others are tasks
that are integrated in these small portable devices as well. All these
applications on such small devices require hardware doing many
computations. Even on bigger devices, such as a desktop, we want to
do be able to do more complex tasks. Neural networks are becoming
more advanced and are able to perform more complicated tasks such
as more advanced recognition or prediction. All the calculations
necessary for these tasks require much energy, which might limit
the possibilities hardware-wise. Taking into considering what future
applications might hold, it is desired to look for a method to limit
energy consumption without compromising quality.

A well-known method to decrease hardware energy consumption
is approximate computing. Just as it is for humans, it is less time and
energy consuming for hardware to do simpler calculations with less
precision. In other words, the outcome of calculations is not fully
accurate. This can be done in several ways and on different levels
of abstraction. Approximate computing involves a trade-off between
three factors: accuracy, latency, and energy consumption. Accuracy is

lower with improved latency and energy consumption. Approximate
computing is a well-explored method for energy savings. [1] and [2]
both discuss extensively multiple techniques to design approximate
circuits, on different levels of abstraction even.

Using inaccurate answers without compromising the quality is
used in neural networks and image processing amongst others. If an
application is used to classify images to detect if a cat or dog is
depicted on the image, it does not need to know the full-precision
outcome of an calculation. If the calculation outcome is higher than
a certain threshold value, the application categorizes the image as a
dog and a cat otherwise. This way, both time and energy consumption
is improved when making use of approximate computing.

A special form of approximate computing is self-healing. Ap-
proximate computing results in computation outputs which are not
accurate. If the error of such calculation is known, one can make
use of that and possibly correct that error with other approximate
outcomes. In other words, when multiple approximate calculations
are performed and their outcomes are accumulated, it might be
possible to have a close-to-accurate outcome when those approximate
outcomes could cancel each other out. Also with self-healing, there
are multiple ways to achieve this effect on different levels of
abstraction. Self-healing is merely a variant of using approximate
computing, a special way to apply the concept of approximate com-
puting. Using the self-healing ideology, it might be possible to create
approximate hardware with less accuracy loss than conventional
approximate computing hardware. Even though self-healing is less
matured than conventional approximate computing, working methods
are already developed such as [3], [4].

The relevance of the self-healing method is similar to that of
approximate computing. Using a special technique to create ap-
proximate hardware, we obtain hardware which is faster and less
energy-consuming, but now with the additional advantage of higher
accuracy. Because in a datapath errors might accumulate too much
when making use of approximate computing only.

The state-of-the-art offers self-healing solutions which do not
include exploration of a large design space. The solutions require
manual effort and little to no automation. Additionally, the methods
are not generic. Hence, the solutions may only work for specific
structures. The methods are not generic because adaptations were
made on a high level (coarse-grained). In this research, the focus lies
on changing bits in truth tables which is low-level (fine-grained).

The purpose of this research is to investigate several methods
of applying the self-heal concept to design approximate computing
hardware. This paper presents the following main contributions.
1) Exploring fine-grained self-healing methods, based on changes
made on the truth tables. Since changes are made on a fine granular-
ity, the methods could be generic and be used for multiple structures.
2) Automation of exploring the design space. Current methods
require much manual effort. In this research, automation is key to
explore a large design space. Limits must be set automatically as
well, to prevent the design space from exploding.

The paper is structured as follows. Firstly, the state-of-the-art is
explained in section II. This section covers the existing approximate
and self-healing concepts in more detail. Secondly, required back-
ground knowledge is given in section III. Thirdly, the methodology
is explained in section IV. In this section, it is explained what the
reference of this research is and how each of the investigated self-
healing methods work including their benefits and shortcomings.
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Fourthly, the results of each methods are shown in section V. Further
recommendations for future research on this topic are given in
section VI. Lastly, there is a summary and conclusion in section VII.

II. RELATED WORK

Conventional approximate computing adapts circuitry to return
inaccurate outcomes without trying to compensate for those errors
further in the datapath. An elaborate survey on different methods of
approximate computing are [1] and [2]. Examples of conventional
approximate computing are [5], [6]. Approximate computing is
already quite matured. There are even tools to run the state-of-the-art
approximate techniques such as [7] to compare all existing methods.

As mentioned in the introduction, there are different levels of
abstraction which are explained in these surveys as well. Adaptions
can be made on software level, architecture level, and low level
circuit level. The latter is the focus of this research. In particular, the
focus lies on adapting truth tables, which is called the fine-grained
approach.

Examples of fine grained approximating are [8]–[10]. In these
researches, alterations were made of the full adder truth table. In
the first case, a few full adders were available since the creation
of the approximate full adders was done manually by looking the
transistor schematic of the full adder. In [9], firstly non-pareto
possible full adders cells were filtered out regarding energy and
accuracy. Afterwards, it was manually checked which cells were the
most usable for that research. In [10] automation of this process was
applied, increasing the design space and decreasing manual effort.
Both researches show decrease in energy consumption without severe
loss of quality in image processing and neural network applications.
The research in this paper searches for an automated method and
hence, the approach of [10] is used and further explored using the
self-healing concept.

Unfortunately, state-of-the-art self-healing is coarse-grained. In
this research, it means that the changes made to approximate circuitry
is done on a higher level than truth tables. Hence, it is difficult
to combine the ideology of [8]–[10] with the current methods.
Examples of these coarse-grained self-healing solutions are [3], [11]–
[14] where either error signals or error correction modules are used
to heal some of the errors, which causes extra overhead.

To heal errors, errors must be tracked or known somehow. [3],
[11] do this by using error signals and choosing to change certain
operations in the following arithmetic units depending on the error
signals. It increases the accuracy with the loss of gaining overhead.
Similar is [12]. It also uses the known error, but only creates one
correction module to fix the errors in adders, saving overhead. The
research is tested for some commonly used approximate adders and
the correction is based on the fact that the error can only be certain
specific values in these adders. [14] shows that using using error
correction this way does not always end up in favour of the healing
solution compared to non-healing approximate variant and that much
tweaking and parameterizing is possible and should be done in order
to see profit. Methods using an error correction module such as [3],
[11], [12], [14] involve overhead and they are not automated. Hence,
these methods are not proven to be generic. For another multiplier
or adder, this method might not work anymore.

Some other state-of-the-art self-healing solutions are specific to
certain arithmetic adders, such as [15]. This makes automation and
maintaining genericness difficult. Even machine-learning is possible
to use to apply self-healing as shown in [16], but this will not be
part of the current research.

A more generic method of self-healing, but limiting to design
space is [4]. In this work, the datapath in which approximating
and healing is done, consists of multiple multiplications and an
accumulator at the end. The accumulator stage acts as an healing
stage since the accumulated results of the multiplier should cancel
out. For example, one multiplier outcome results a number higher
than accurate, whereas the other in a lower number with the same
magnitude. The limitation in this research is that the number of
multipliers must be even.

A somewhat more fine-grained method is [17] where alterations to
truth tables were made to small multipliers. However, in this work
the truth tables used only had 1 approximate entry for the whole
multiplier. Hence, much of the design space is not explored yet.

A research of which its ideology is similar to the research in
this paper is [18], called MACISH. This work is more fine-grained
than the previously mentioned methods, because it creates small 2x2
multipliers by changing their truth tables. Using these small 2x2
multipliers, larger multipliers such as a 4x4 or 8x8 can be created.
The errors in the 2x2 multipliers are canceled out by other 2x2
multipliers, using the ideology of [4] but not necessarily in pairs
of two only. The focus in [18] is not so much how to adapt the
2x2 multiplier truth tables, but mostly how to substitute the small
multipliers in a larger multiplier. Hence, it could miss much of the
possible design space as the small 2x2 multipliers are not created
automatically and a limited number of variations is available.

Compared to [18], the goal is to explore more of the design space
by making changes even more fine grained, on full adder truth table
level. Additionally, more different truth tables are created and tested
to explore even more of the design space.

To conclude, the current fine grained self healing methods for
approximate computing are limited. When the approach is somewhat
fine grained such as [17], it does not explore the design space of
the truth tables automatically and it misses a large part of the total
design space. Moreover, [18] is one of the very few methods which
does the approximating and healing internally. This work is the most
fine-grained research so far. Overall, there is a lack of genericness
and automation. This research attempts to find a new method which
does cover an even more fine-grained methodology which could be
generic and makes use of automated design space exploration.

III. BACKGROUND

A. Full adders and half adders
The starting point of this research are the full adder (FA) and the

half adder (HA). Their truth tables are shown in Table I and Table II,
respectively. The full adder accepts three inputs and outputs 2 bits.
The full adder is essentially a 1-bit adder including a carry out bit.
The half adder accepts only two inputs, but also outputs two bits.
Each cell has its own energy, which is found by synthesizing the
cells.

Table I: Truth table of an accurate full adder. It serves as a
1-bit adder with A and B as input and C_in as carry in.

Input Output
A B C_in C_out S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table II: Truth table of an accurate half adder. It serves as a
1-bit adder with only two outputs, A and B.

Input Output
A B C_out S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The truth tables of these cells are changed to make them approxi-
mate FA and HA. When errors are introduced to the truth tables, the
cell will have an error rate for each output bit (error_rateCout

and error_rateS). The error rate per output bit is the rate that
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the approximate output is not equal to the accurate output bit. For
example, one error means an error rate of 1/8. This can either be
that the approximate output is 0 instead of 1, or vice versa. Using
the error rate the error of the carry output bit and the sum output bit
are calculated as follows, respectively.

errorcarry = error_rateCout · 2
1 (1)

errorsum = error_rateS · 20 (2)

The carry output is twice as significant as the sum output bit.
When a carry propagates through a circuit, it has a greater influence
on the outcome. Therefore, the multiplication factor is twice as high
than the sum output bit when multiplying with the error rate. The
total error of a cell is then found by

errorcell = errorcarry + errorsum (3)

B. Array multiplier
The starting point of testing different methods is the array multi-

plier as shown in Figure 1. This array multiplier accepts two inputs A
and B, each 3 bits, and outputs the multiplied product of these inputs
as an unsigned 6-bit number (Output 5 to Output 0, most significant
bit (MSB) to least significant bit (LSB). The array multiplier consists
of FA and HA cells which can be accurate or approximate.

There will be many variations of this array multiplier and to assess
the quality of each variation, two metrics are used. The estimated
energy consumption, and the average absolute error over all input
combinations. Firstly, it is infeasible time-wise to do design space
exploration for a large design space when the array multiplier must
be synthesized for every different design to obtain the energy. Hence,
only the FA and HA are synthesized and the estimated energy for
the total multiplier is the addition of each FA and HA energy
consumption separately. Secondly, it is assumed that each input
combination for A and B occurs evenly distributed. Therefore, for
every design all input combinations are tested, the absolute error
compared to the accurate outcome is saved, and the average of those
errors is used as quality metric.

Output bit 0

B0A0B1A0B2A0

B0A1B1A1B2A1

Output bit 1

0
(HA)

1
(FA)

2
(HA)

s0

c0c1

B0A2B1A2B2A2

3
(HA)

4
(FA)

5
(FA)

c3c4

Output bit 2

s3

s1s2

c2

Output bit 3

s4

Output bit 4

s5

Output bit 5

c5

Figure 1: An unsigned array multiplier accepting 2 3-bit
inputs A and B, resulting in a 6-bit number. Each coloured
rectangular is the definition of a block for the method in
subsection IV-B.

IV. METHODOLOGY

In this research, fine-grained self-healing concepts are tested to
create approximate computing. The methods are more fine-grained
than the state-of-the-art, but there can be still variation in granularity.
The basis of all is still adapting the truth tables of FA and HA

cells. There is one method which is based on the state-of-the-art
self-healing [18]: partitioning by using blocks and canceling out
using the blocks decimal errors but in a different way. A second
method is tested which is even more fine-grained. The latter makes
choices for each smallest element in the multiplier. It does this by
using backtracking and pruning. The following subsections cover the
proposed methods and are structured as follows.

1) Creating a reference
2) Blocks: Multiplier partitions
3) Use of blocks 1: Grid search
4) Use of blocks 2: Use error of blocks
5) Backtracking
6) Weights and pruning
The methods are all tested on the 3x3 multiplier as shown in

Figure 1, and they are compared to a created reference. The reference
is the best achievable pareto front of found multiplier designs within
the set criteria and resources. The goal is to find a method which
can find these pareto designs and that method can ultimately be used
for larger multipliers with some guarantee that it will be close to the
actual optimal result without the necessity to create another reference
beforehand.

Instead of synthesizing every multiplier design, it is chosen to
do only a functional simulation in Python to obtain the error of the
multiplier.

A. Creating a reference
The fine-grained methodology adapts the truth tables of the FA and

HA. For the full adder, there are 216 different truth tables possible.
There are 28 different HA variations. The number of all different
3x3 array multiplier designs is equal to

Nr. different designs = 655363 ∗ 2563 = 4.7 ∗ 1021. (4)

Finding designs this way is not scalable, because there are more
cells when the multiplier size increases. Hence, it is not time feasible
to continue with all possible FA variations. Therefore, a selection of
FA and HA is necessary at first. With only those selected FA and
HA, the best possible pareto front is obtained by substituting those
cells exhaustively. The result obtained by the exhaustive simulation is
the reference and is the best possible front. A reference is necessary
because one must be able to asses the quality of the found fine-
grained self-healing designs.

Even though it should be possible to heal errors in the FA and
HA cells in the multiplier, one cannot assume this can be done
indefinitely. Hence, a first limit is set here on the maximum errorcell
as calculated by Equation 3, which is 0.5. This still introduces
errors and possibilities to heal them. Even though applications may
be error-tolerant, there is always a limit on the error. Therefore,
already setting a limit on errorcell prevents finding designs with
disproportional high errors and low energy savings which will never
be used in practice.

Setting a limit to errorcell of 0.5 shrinks the number of cells
down to 487 FA. This is still not feasible to do an exhaustive search
with. Therefore, a design parameter is introduced: the number of
nearby-pareto iterations. One could only take the pareto FA and
HA regarding the cell’s absolute error and their synthesized energy
consumption. This would end up with 9 FA and 5 HA cells. However,
it is possible to include the following pareto cells as well, the cells
which are pareto when you do not take into account the previous
pareto ones. These are not actual pareto, but nearby-pareto and they
are part of a fat-pareto selection. This process can be repeated until
the designer is satisfied with the reference line and the number of
the cells is still feasible to experiment with.

It is worth to include non-pareto cells as well, because the error
rate of a cell does not take into account where the errors are. It might
be necessary to heal pareto cells with a non-pareto cells. When only
pareto cells are selected, these solutions would be disregarded. Of
course, the combined energy consumption should not exceed that
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of accurate cells. Hence, it is not worth to look too far from the
fat-pareto curve.

Since the concept of self-healing is canceling overestimated an-
swers with underestimated answers or vice versa, it is important to
make a distinction between those. Therefore, all cells are categorized
into positive (net overestimating output bits) and negative (net
underestimating the output bits). For each category, the nearby-pareto
iteration process is done. This categorizing beforehand can result in
better design space exploration.

B. Blocks: Multiplier partitions
Inspired from the state-of-the-art [18], there is still possibility to

partitioning the multiplier in a fine-grained method. In this research,
this is done by creating blocks: rows of FA and HA as shown
in Figure 1. Using the same FA and HA as for the reference, as
described in subsection IV-A, the blocks are created exhaustively.
There is no additional logic between blocks and no overhead. Hence,
the blocks are not treated as actual self-functioning multipliers.
However, their output is treated as a decimal number to quantify
their error such that only the best blocks can be chosen.

Since creating the blocks exhaustively results possibly in too many
blocks, a selection is necessary as well. The choice of blocks is
similar to the selection of FA and HA cells, selecting pareto blocks
only or include nearby-pareto blocks. Note that creation must be
done for a first row block and non-first row blocks separately, as
they differ.

The blocks are created using the FA and HA cells which were
found in a fine-grained manner. Hence, using blocks is still a fine-
grained method. Partitioning the multiplier in blocks is a method to
limit the design space, because no full exhaustive search is necessary
anymore. The disadvantage of using blocks similar to these, is that
they are not actual multipliers. Their error output is not actual a result
of a multiplication, and it also does not store information on which
bits of the blocks cause errors and how they propagate. Because of
this, the healing effect will not be 100%. However, that does not
mean that no healing is done. Error correction can still occur.

C. Use of blocks 1: Grid search
Grid search is similar to exhaustive search, in the sense that all

designs are created with the available resources. The difference in
this case, is that this grid search includes extra filtering steps. Firstly,
blocks were created and either only pareto blocks or extra nearby-
pareto blocks were selected. Those blocks were used to exhaustively
substitute in the array multiplier to find designs.

Even though grid search substitutes blocks exhaustively, it can still
be beneficial for the exploration because it can find many designs
but the design time has been limited because of the creation and
filtering of blocks beforehand. Instead of six positions to substitute
for, there are only two. Therefore, the main advantage of a block
grid search is the reduction of design time.

Disadvantage is that it might not be scalable or easy to make it
scalable for larger multipliers. For instance, a 16x16 array multiplier
could be divided in different forms of blocks. One could keep using
rows, but substituting 16 rows has two disadvantages. Firstly, creating
rows is exhaustively substituting 16 cells which is time infeasible.
Secondly, substituting 16 rows might also not be the fastest method
to find a good pareto front. Therefore, blocks might have to be
created differently for larger multipliers which adds up to the design
time. Furthermore, what the block looks like is different for every
arithmetic unit and its size.

In a 16x16 multiplier when using rows of 16 cells, if one wanted to
create these rows with only the pareto FA and HA, it would already
create 914 ∗ 52 different rows for the first row, and 915 ∗ 5 different
rows for the non-first rows. In case you would only select 10 rows,
as an example, there would be 1016 designs using grid search. This
is less feasible.

A solution could be to have extra filtering steps when creating
rows for grid search. One could take into account the significance

of each cell such that the most significant cells in a block contain
less errors than the least significant cells. Furthermore, each row can
also have different error criteria when selecting, depending which
row is substituted for in the multiplier. However, these solutions are
not scalable, nor generic for other multipliers or adders.

D. Use of blocks 2: Use error of blocks
Instead of doing a block grid search, one could also replace the

blocks in the array multiplier in a more intelligent way. This method
is inspired by [18]. Each block has an error which is treated as a
decimal number. Using the same analogy as in the state-of-the-art
coarse grained healing, one can substitute blocks based on the errors
of previously substituted blocks in the multiplier.

For example, if the blue block in Figure 1 has an error of 3, then
the red block should counter this error. Since the red block carries
more significance, the red block’s error should only be -1.5 and not
-3. One could build in a margin which can choose how much off
the error is of the red block such that an error of -1.3 is also tried
in the design space for example. This can be a design parameter as
well to limit design time. In this research, three blocks are chosen
with their error closest to the desired error.

In this method, the blocks are treated as separate multipliers
because their outcome is treated as a decimal number. In reality
this is not truly correct, because a block is not a multiplier in itself.
Hence, the canceling out will not fully occur. It is not taken into
account which connections and which cells cause the error within a
block.

The advantage of this method, is that it is quicker than grid search.
Not all possible designs are simulated. Another advantage is that
tweaking is possible using the design parameters: how many blocks
to select, and the error margin. The disadvantage is that it is not
fully reliable since the blocks are not actual multipliers. The error
of a block is represented as a decimal number. If the blue block has
an average error of 3, it is not clear which bits cause the error and
how the error is propagating. Assuming an error of -1.5 for the red
block can fix some of the propagation errors, but not all of them.

This method is much more scalable than the grid search, because
not all possible combinations are tried. In a larger multiplier of 16x16
there could still be 16 rows, but the number of tried designs are
limited based on the design parameters. Hence, when a good error
margin is set which still limits the design space, this method could
be scalable.

As an example, if there were 10 options per row, in this method
only 1 or 2 (depending on the design parameters) rows could be tried
depending on the error margin set. This would limit the design space
from 1016 to 216. Of course, when more design time is possible,
a wider margin could be set and more options per row could be
included.

E. Backtracking
Backtracking is a common algorithm used in many applications

[19]. In this research, it can be explained as follows, using Figure 2.
The tree depicts the design space. The first top node is the design
node for the first cell HA0 in Figure 1. There are 4 options in this
example for HA0, hence, four outgoing arrows to next nodes. From
there on, one must choose what FA1 is going to be. This can be the
same number (as in the picture), but also more or less. The depth
of the tree is equal to the number of cells in the multiplier. The
number of outgoing connections leaving each node, is the number
of possible FA and HA for that cell. In backtracking, the search is
depth-first. Figure 2 serves as an explanation and is not depicting
the actual design space, as the design space is too large to visualize
properly.

Backtracking is a method to search designs systematically. How-
ever, when the design space is large it consumes much time. To
disregard subtrees (part of the design space), backtracking uses
pruning. Pruning is stopping the search from that point on because
it will not give better results anymore. When and how to prune is
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Figure 2: A backtracking tree depicting the design space, each node has as many child nodes as there are choices for the next
cell in the array multiplier. The number at each node indicates for which cell a choice is made at that point. Backtracking is a
dept-first search method, which is an exhaustive search when there is no pruning. Three dots suggest that there are sub-trees
as well but left out for visual purpose.

defined by the designer, who creates ’rules’ how to prune. Those
rules indicate which paths should or should not be explored. When
the pruning rules are implemented correctly, the algorithm can find
the optimal solutions without searching the whole design space.

In backtracking, heuristics are used to give ’score’ to each
solution, a value to indicate the quality of the solution so far. If
a certain design choice has a low score, it can be chosen not too
continue this path and prune it. In this case, if options are chosen
for the first three cells and those options can not lead to an optimal
design anymore according to a set heuristic, it prunes this part of
the design space.

The advantage of backtracking is that it is a well-known and
matured method and easy to implement. Secondly, it could be
generic. It is tested on this array multiplier, but it can work for
any arithmetic unit. As long as the connections between cells are
known, backtracking is possible. However, pruning rules can differ
per arithmetic unit.

The disadvantage is that it is difficult to find good heuristics and
knowing the limits of pruning. There is a trade-off between pruning
and design time in this research. One could choose to set strict
pruning rules to limit design time, at the cost of not finding the
reference designs.

F. Weights and pruning
In this research, the pruning of the design space is making use of

the knowledge of the array multiplier. Each connection between cells
contribute to the output eventually. However, not each connection
is as significant as the other. For instance, c4 in Figure 1 could
cause a greater error than c0 on the final output if chosen with a
high errorcell for two reasons. Firstly, because c0 is early in the
chain and hence, some correction might still be applied. Secondly,
c4 contributes with a higher impact on Output 4 and Output 5 which
are the two most significant output bits.

The goal with this method, is to assign weights to each connection
and use those weights to estimate the error and therefore, the quality
of a choice. If the weight assignment is done correctly, the weights
together with the known errors of each cell could make an estimation
of the actual error of multiplier designs. There is an infinite number
of ways to assign weights. In this research two weight assignments
are tried. One based on [20], and one based on output bit significance.

Both weight assignments start at the same point. Each output bit
0-5 is assigned a significance. This is simply 2n where n is the
output bit number. From there on, the two assignments differ. The
final weights assignments are shown in Figure 3a and Figure 3b.

Firstly, [20] assumes that each connection contributes to the whole
chain this connection is part of. Even though c4 is more significant
than c0, c0 could still have impact on Output 4 and Output 5, because

c0 impacts HA1 which impacts HA3 and so on. This applies for
all connections. Hence, the weight of each output bit is taken and
accumulated to each connection which is on the path to this output
bit, just as [20] suggests. However, in this research it is taken into
account that the impact of c4 on Output 4 is greater than the impact of
c0 on Output 4. Namely, instead of directly accumulating the weight
of 24 = 16 to connection c0, it is divided by 24 = 16 because four
is the logical depth of the cell from the primary output. This is done
for each output bit to each connection.

Secondly, the weights can also be assigned more scientifically.
The array multiplier can be seen as columns of cells in which each
column contributes to an output bit. Each column to the left is twice
as more impactful than the column to the right. All cell connections
in the column of Output 2 have the same weight, namely, 22 = 4. The
carries are twice as significant as the sum bits so, c1 and c3 have
the same weight as the sums in the column of Output 3, namely,
23 = 8.

Using these weights, it is possible to choose cells for each
position. The pesudo-code is shown in algorithm 1. The algorithm
works as follows. Each cell has its own error rate for the carry
and sum output bits. When you multiple the error rate with the
corresponding weight, you get the expected error that that cells gives
for that connection. When you do this for a whole datapath and
accumulate those results, it is possible to calculate what the error is
at a certain point in the datapath. It is important to take into account
all paths leading up to a point, an example is shown in Figure 4. In
this example, a choice must be made for FA4. The incoming paths
are chosen already so their error rates and weights are known. These
paths will accumulate into an error in FA4.
When this error is known, the current cell FA4 should counter
this. The desired error of FA4 should be the same in magnitude
but different in sign of the incoming accumulated error. This is
the desired healing effect. The error rates of each possible cell is
known, as well as the weights of each connection. Hence, only cells
with suitable error rates to heal the incoming accumulated error are
suitable. The rest of the cells should not be tested anymore and that
part of the design space can be pruned.

There are different levels of strictness here. One can choose to
only take the cheapest suitable cell, but also to take a top three of
the cheapest or something else. It is worth to use more than only
1 option, because the error rate of multiple cells can be the same,
their error distribution is not. The error rate does not qualify which
inputs are approximated and this may play a role in the quality of
the designs.
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(a) Accumulative weight assignment, inspired by [20]
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(b) Weight assignment based on output bit significance

Figure 3: Two types of weight assignments to connections in the array multiplier. Weights are used to estimate the error and
to set pruning rules for backtracking.
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Figure 4: Example with example error rates to illustrate how
weights and error rates are used. Here, a choice for FA4 must
be made. Colored cells are cells which have been chosen
already before this point.

V. RESULTS

Similar to the methodology section, the result section shows and
explains the findings in subsections for each method. The result
section consists of showing the reference pareto front of this research,
the results of each method, and an analysis on the runtimes and
scalability of each method. There are design parameters involved
which influence the results and the time, these are summarized in
Table III.

A. Reference
The design parameter in creating the reference is the number of

nearby-pareto iterations to perform when choosing the FA and HA
for the exhaustive simulation. The design space is already limited
by this so, it is not fully exhaustive. Hence, this will be referred to
as the selective exhaustive reference. Figure 5 shows the reference
front and the impact of choosing more FA and HA.

The front becomes more dense and shows better cheaper designs
when choosing more FA and HA. The gain from pareto only
to one iteration extra is larger than the gain from one iteration
to two iterations extra. No conclusion can be drawn yet if this
trend continues when selecting even more different cells, as this is
infeasible to simulate. Nevertheless, the fronts can still serve as a

Algorithm 1: Backtracking
Function backtrack_main(available_cells,

mult_graph, current_cell, pareto_front):
if current_cell is last cell from mult_graph then

current_energy, current_error =
simulate_design(mult_graph)

add current_energy and current_error to
pareto_front if they are pareto

end
for cell in available_cells do

current_cell.cell_type = cell
if prune(mult_graph, current_cell) then

continue
end
backtrack_main(available_cells, mult_graph,
next cell in mult_graph, pareto_front)

end

return pareto_front

Function prune(mult_graph, current_cell):
set variable intermediate_error to accumulated

error of all cell errors up to current_cell
desired_error = -intermediate_error

if current_cell.sum_error +
current_cell.carry_error is not desired_error then

return True
end

return False

reference as they show the best achievable front for each selection
of FA and HA.

Analyzing Figure 5, the cheaper designs with the same average
error come mainly from an effect that is typical for the array
multiplier. The array multiplier has input dependencies. This leads
to the effect that certain inputs do not occur. If the cell’s truth table
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Table III: The values of the design parameters in this research

Method Parameter Value
Exhaustive reference FA nearby-pareto iter. 2, total of 25 FA

HA nearby-pareto iter. 2, total of 10 HA
Block grid search: pareto only First row blocks nearby-pareto iter. 0 (only pareto), total of 23 blocks

Non-first row blocks nearby-pareto iter. 0, total of 20 blocks
Block grid search: more blocks First row blocks nearby-pareto iter. 3, total of 109 blocks

Non-first row blocks nearby-pareto iter. 5, total of 155 blocks
Blocks: based on error First row blocks nearby-pareto iter. 3, total of 109 blocks

Non-first row blocks nearby-pareto iter. 5, total of 155 blocks
Error margin Three blocks with their error closest to desired error
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Figure 5: Results of exhaustive search with a selection of FA
and HA cells. It also shows the impact of choosing more FA
and HA. The red dots serve as the reference for this research.

has an error for such input, then that approximate output is never
triggered. Hence, this cell might act as if it is accurate.

For example, the approximate cell variant with such property was
substituted in place 1 and 5 in Figure 1. The input combination
for which cell gave an approximate output never occurred. This is
verified by tracking what inputs A and B should be in order for this
input to occur and that could not happen. It required bits of A and
B to be 0 and 1 simultaneously.

Another particularity in the fronts, is that after an average absolute
error of 0.5, the designs contain a higher error but the energy savings
become less. The interesting part of the front, is where the front is
steep and that the increase in error is still worth because of significant
energy savings.

B. Block grid search
When creating the blocks, it is again a design parameter how

many blocks out of all are selected to do the block grid search with.
The results of the block grid search are shown in Figure 6. When
selecting only the pareto blocks, the front does not fully cover the
reference. However, when doing more nearby-pareto iterations when
selecting, it is possible to find the reference points.

The block grid search has potential to find the reference designs.
The grid search front in Figure 6 that is almost fully covering
the reference, was obtained by doing 5 nearby-pareto iterations of
selection for the first row, and 3 nearby-pareto iterations for the non-
first row. The gain obtained by doing another pareto iteration every
run, was only a few points or little movement closer to the reference.
This is trade-off between design time and the quality of the found
designs.

It is possible to analyze the errors of the blocks to verify if a
pattern of self-healing is found. Unfortunately, the pareto designs
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Using more blocks until no improvement

Figure 6: Results of a block grid search, showing the impact
of choosing more blocks in the grid search. The red dots are
the reference.

contained combinations of blocks of which their errors were both
negative. There was no consistent evidence of self-healing.

When analyzing which blocks were used to create the reference,
many blocks were close to the block selection front. However, there
were blocks which would only be picked when taking a lot of nearby-
pareto iterations. This would slow down the design time significantly
and hence, it is up to the designer if that is worth it. In this research,
it was chosen not to since the current grid search with the current
block selection came already close to the reference with much time
savings and this is only to prove a concept.

C. Replace blocks using their errors

The result of choosing blocks based on their errors is shown in
Figure 7. As was expected when analyzing the results of Figure 6,
this front does not overlap with the reference. The same blocks were
used in this method as the one in Figure 6 which overlapped with
the reference. Therefore, with these blocks it should be possible to
achieve the reference front.

It was attempted to increase the margin. Instead of choosing only
the one block with their error closest to the desired error, the three
closest errors were picked. This way, there are two extra options.
Unfortunately, this addition did not move up the front at all. This
confirms previous suspicion that the margin must be increased in
such way that it becomes close to the grid search again.

Even though the front does not deviate from the reference front
drastically, it cannot be guaranteed what happens when the multiplier
is larger. The fronts may deviate more the bigger the multiplier
becomes. In that case, there is no certainty if it will remain close to
the best possible front.
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D. Backtracking
The results of the backtracking with pruning are shown in Fig-

ure 7. There are two fronts for this method, one for each weight
assignment.

Unfortunately, using the same ideology regarding error cancel-
lation as for the blocks, the backtracking method does not come
close to the reference front. It is assumed that the weight assignment
with the error rates is simply too restricting for the design space
exploration. When analyzing Figure 5, the pareto solutions gave
no consistent sign of making use of canceling out, and no direct
correlation was found using error rates.

Additionally, from Figure 5, it can be assumed that the error of
each cell alone is not sufficient to make a choice. It is possible to
obtain zero error but still include approximate cells due to the input
dependencies. In the backtracking, those pseudo-accurate cells still
have an error and might not be chosen even though they do not cause
an error in the multiplier.

The difference between the two weight assignments is also pecu-
liar. The output bit-based assignment has the same weights multiple
times for connections in the multiplier, whereas the weight values in
the accumulated assignment are all different. In the latter, this makes
the outcome of the calculation of the desired error quite unique and
hence, restricting to the design space. This explains why there are
more data points for the output bit-based assignment than as for the
accumulated assignment.

E. Comparison
All designs found by the tested methods are shown in Figure 7. To

quantify the quality of each front, the area below the curve (AUC)
is calculated using the trapezoidal rule. Since the interesting part of
the fronts is where the curve is steep, the area of the curves up to
an error of 2.5 is also shown in Table IV.

The zoomed-in version (Figure 7b) is more representative for
comparison than Figure 7a as the interesting part is the part where
the energy savings are worth the accuracy loss. When comparing the
AUC, the previous analysis is confirmed regarding the quality of the
found designs per method.

F. Run times
Besides the energy consumption and accuracy, the run time of

each method is crucial in the trade-off as well. The run times are
shown in Table V. For comparison purposes, the grid search was
also run for a slightly larger 4x4 array multiplier.

Creating the reference for the 3x3 multiplier was already time-
consuming and hence, for a 4x4 multiplier or even larger, no
reference such as this can be created. The block method and the
backtracking method decreased the run time in such magnitude
that tweaking of design parameters was possible without significant
increase of run time.

When applying a method with blocks, one must take into account
that creation of the blocks also take time. For larger multipliers, this
is even more because creation of blocks takes more time and also
substituting these blocks. This is shown when comparing the 3x3
multiplier run times with the available 4x4 times. As mentioned in
section IV, it could be possible to create large blocks from previously
created 4x1 blocks for example which would limit the increase of
design time when creating blocks.

For the 4x4 multiplier, the grid search takes up a few minutes
but increases drastically to hours when using more blocks. From
Figure 6, it can be assumed that using more blocks in the grid
search does move up the front closer to the reference, and again,
it is the choice of the designer to decide how much time is spent.
Important to note here, is that besides the larger blocks, the total
size of the multiplier is also larger. Each functional simulation of
a 4x4 multiplier takes more time than a 3x3 multiplier. Hence, it
would be advised to use a scalable method to simulate the multiplier
functionally.

When comparing the run times and number of configurations run
to [18], this research used methods which were significantly slower.
[18] was able to explore 5.42∗1044 8x8 multiplier designs within 4
minutes. The methods that were run below 4 minutes in this research,
did not even come close to this number of configurations.

Nevertheless, the methods proposed in this paper showed that it is
possible to limit the design space significantly as shown in Table V,
with still the possibility to find pareto reference designs using the
grid search. This indicates that using blocks has the potential to
shrink down the design space without pruning away optimal results.

G. Scalability
Each method has its own advantages and disadvantages regarding

the designs and design time. The tests have been performed only on
a 3x3 multiplier. Therefore, it is important to assess the scalability
of each method for further research.

Firstly, the exhaustive search is not scalable. Even when pareto
cells are taken only, it is not feasible to run. It could only be possible
when a stricter selection is performed, but in that case, it would not
be exhaustive anymore but already including some sort of heuristics.

Secondly, the block grid search showed that it was possible to
obtain the reference designs using blocks. However, this method
is not perfectly scalable either. Creation of blocks become more
difficult when scaling to a large multiplier such as 8x8. A different
partition than rows will be necessary because a row of 8 cells takes
up much time to create. In this case, the approach of [18] can be an
inspiration. It is not recommended to have different size of blocks
every time the multiplier becomes larger, because this increases
design time and manual effort significantly.

Thirdly, choosing blocks based on previous errors can have some
potential. However, no clear evidence of using the blocks’ error like
this has been found. This was verified by analyzing which blocks the
reference designs consist of. In case this method would be pursued,
the same recommendations apply as for the grid search. The block
size must be consistent for every size of multiplier to prevent manual
effort. Additionally, a clear replacement strategy is necessary because
a block in a larger multiplier might be connected to multiple blocks.
Hence, treating the output of a block as a decimal number might
even have a worse effect than in this research.

Lastly, the backtracking could be scalable. However, it is not
efficient to use substitution per cell in the multiplier. The input distri-
bution was not taken into account, and neither the error distribution
of a cell. Even if weights of the connections are assigned correctly,
a lot more criteria must be set in order for backtracking to be
working. Additionally, for other multiplier types or adders, pruning
rules must be created again. Hence, the method in itself is generic,
but the implementation is not with respect to pruning. However,
02 showed the positive sides of backtracking when making use of
blocks. Therefore, perhaps the block approach could be combined
with backtracking.

VI. FUTURE WORK

Regarding self-healing to create approximate arithmetic units,
there are several factors to take into account. One can continue the
path of fine-grained self-healing, or go back to more coarse-grained
healing. In both categories, there are some recommendations and
also some general recommendations.

Firstly, in case one wants to explore this fine-grained approach
more, it is advised to find a good weight assignment and pruning
rules for backtracking. Moreover, it is important to to trade-in some
of the genericness to find better pruning. The input distribution is
important to do good pruning which was not done in this research.
Good pruning and making use of the error rates speeds up the process
because no full simulation is necessary to obtain the error, since the
weights could estimate the results decently. Error estimation could
also be done in another way, as described in [21] for example. This
is another topic of research, but in case of approximate computing
it can be useful.
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Figure 7: Comparison of all pareto fronts of tested methdos and a close-up up until an error of 2.5

Table IV: AUC (area under curve) of the pareto fronts of all tested methods. The AUC is calculated using the trapezoidal
rule.

Method AUC [x10−3] AUC up to error of 2.5 [x10−3]
Reference (exhaustive) 308.26 54.16
Block grid search: pareto blocks only 312.40 58.00
Block grid search: more nearby-pareto blocks 308.95 54.85
Choosing blocks based on their errors 338.94 69.04
Backtracking: accumulative weights 573.64 99.17
Backtracking: output bit-based weights 539.78 98.52

Table V: The run time of each method along with the total number of designs found. Unless specified, all methods were run
on a single thread on a AMD Ryzen Threadripper.

Method #Designs Run time Remarks

Exhaustive reference 15625000 3.9h
5 machines in parallel:
4x 24 threads on AMD Ryzen Threadripper 2920X
1x 16 threads on Intel(R) Core(TM) i9-9900K

Creating blocks - 26s
Block grid search: pareto blocks only 460 1.29s 24 threads on AMD Ryzen Threadripper 2920X
Block grid search: more nearby-pareto blocks 16895 37s 24 threads on AMD Ryzen Threadripper 2920X
Block replace based on error 445 16s
Backtracking: accumulative weights 2187 72s
Backtracking: output bit-based weights 2277 74s
Creating blocks 4x4 - 107s
Block grid search 4x4: pareto blocks only 22464 9m 24 threads on AMD Ryzen Threadripper 2920X
Block grid search 4x4: more nearby-pareto blocks 809900 14.5h 24 threads on AMD Ryzen Threadripper 2920X

Additionally, the current methods in this paper were not tested on
a different multiplier or an adder. The initial purpose of the research
was to find a generic method, but that has not been tested yet. The
same methods could be implemented for another multiplier or adder
to verify if the methods were in fact generic or not.

For the array multiplier, making use of redundant inputs led to
cheaper designs without error increase. It can be chosen to exploit
this fact to create better array multiplier designs, or to explore this
effect on other arithmetic units too. This would not make use of
the self-healing property, but it is another way to possibly create
approximate circuits.

Secondly, as the results might suggest, a more coarse-grained
approach could result in better results which are closer to a set
reference. To improve upon the state-of-the-art, it is recommended
to include more variations of possible truth tables when creating
approximate circuits. Additionally, automation of the process could
still explore much of the design space even if the granularity is
coarse. Suggestions on automated design space explorations are
made in [22], [23].

Lastly, regardless the granularity, there are several general recom-

mendations as well. In this research the simulations were done purely
functional. In the future, one might look at a more efficient way to
do this than Python. Moreover, the input distribution was assumed
to be homogeneous. In reality, when knowing the application, one
knows which inputs occur more often or if certain inputs do not
occur at all. When making use of this, it could open doors to more
optimization.

VII. CONCLUSION

The state-of-the-art self-healing concept to create approximate
circuits is not automated, nor fine-grained, and nor exploring a
large design space. This research aimed to find a method which
includes those three properties, and test it in an array multiplier. The
results showed that the attempted methods did not fully succeed
on all three properties. The block grid search was able to find
results close to the set reference, but the method might not be
scalable for larger multipliers and is not generic. Using backtracking
in combination with good pruning, fine-grained self healing can
be scalable. Unfortunately, the pruning was unsuccessful in this
research.
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Recommended is to focus on a slightly less fine-grained method,
but include automation of the design space exploration, contrarily
to the state-of-the-art. When the design space is large, it is also
recommended to focus on a good functional simulation model to
speed up the process or to have model which can estimate the error
close to the actual error. It is the designer’s choice if the method
should remain as generic as possible, or to include knowledge of the
arithmetic unit and input distribution of the application. The latter is
advised.
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