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Chapter 1

Introduction

Increasing complexity and demand for flexibility have been important factors in the evolution
of manufacturing systems throughout the last decades. Before the eighties, manufacturing
equipment was mainly dominated by dedicated manufacturing systems. These dedicated sys-
tems were typically used for manufacturing a single product at a high production rate. This
made it possible to achieve low cost per product [34]. With increasing need for mass customiz-
ation and for greater responsiveness to changes in products, dedicated manufacturing systems
could no longer satisfy the demands of markets. Flexible manufacturing was introduced as a
response to such needs and flexible manufacturing systems (FMS) were developed to address
mid-volume, mid-variety production needs [49].

1.1 Performance Variability in FMS

In order to address variable production needs, FMS need to be configured for different cir-
cumstances. Three main sources of variations are product variability, production process
variability and machine resource variability (PPR variability) [38]. To obtain an effective
FMS, designers need to optimize an FMS’s performance under different conditions. With the
variability and increased complexity that needs to be addressed, an FMS’s design space is
very large. Because of the sheer size of this design space, finding the best trade-off between
performance characteristics, like throughput and makespan, and other system-level concerns,
such as cost, is very challenging.

Variability in PPR implies that the performance of an FMS depends on many paramet-
ers, both numerical parameters and categorical ones. Together, these parameters with their
possible values define the parameter space of the FMS. An important question is how per-
formance of the FMS depends on these parameters.

Manual parameter-space exploration is time consuming and, because of the size of the space,
it is almost impossible to explore the entire space. In order to handle the complexity, [45] ad-
vocates model-driven system-performance engineering (MD-SysPE). System-level models are
critical in MD-SysPE, as they act as the single source of truth driving the entire performance
analysis. Therefore, we need to create models at a high abstraction level that are accurate
enough to explore the system performance during early system development.

Characterizing Performance Variability in Manufacturing System Configurations 1



CHAPTER 1. INTRODUCTION

1.2 Variability in FMS Critical Paths

For the performance analysis of manufacturing systems, critical-path analysis is especially
significant considering that the critical path(s) of a system determine important performance
characteristics such as makespan and throughput. With critical-path analysis, a system’s
performance bottlenecks are detected and the overall performance can be improved by alle-
viating these bottlenecks.

Compared to dedicated manufacturing systems, because of PPR variability, FMS behavior is
characterized by different scenarios. Between these different scenarios, there are variations in
the product, the used resources and the production process. Therefore, FMS bottlenecks also
vary in between different scenarios. The overall performance of an FMS is determined by the
combination of its performance in different scenarios. Then, the detection and alleviation of
different bottlenecks in different scenarios play an important role for improving the overall
performance of FMS.

1.3 LSAT

The Logistics Specification and Analysis Tool (LSAT) [44] is a tool for rapid design-space
exploration of supervisory controllers in FMS. LSAT is based on domain-specific languages.
In contrast to other languages that have a generic syntax to support a broad range of systems
such as the ones used by POOSL [47], UPPAAL [36] and mCRL2 [21], LSAT is designed to
specifically support performance analysis during the early design phase of FMS. This enables
modeling at a higher level of abstraction without the need for encoding domain concepts.
LSAT uses precise and explicit formal models of so-called activities that have sufficient detail
to facilitate design-space exploration. It further exploits the structure of these models to
prune the design space and improve scalability of the performance analysis. LSAT supports,
among others, makespan analysis and critical-path analysis.

Currently, LSAT is being extended by parameterisation of its domain-specific languages.
The goal of this extension is to achieve models that enable expression of PPR variability.
With the development of proper performance analysis techniques capable of analysing such
parameterised models, LSAT’s current analysis capabilities, which are mostly limited to ana-
lyzing performance bounds of a concrete model, are going to be expanded with analysis of
how performance depends on the choices for the parameters defining the parameter space.
We define this problem as the parameter-space performance characterization problem.

The goal for characterization problems is to capture the impact of parameter values on the
performance throughout the entire parameter space. Note that characterization is different
from optimization. In contrast to characterization, the goal for optimization problems is to
find specific point(s) in the parameter space that optimize a certain performance criterion.
An example of an optimization problem is to find the best-case throughput of an FMS and the
parameter values realizing this throughput, while the corresponding characterization problem
aims to capture how the highest achievable throughput depends on the parameter values.

2 Characterizing Performance Variability in Manufacturing System Configurations



CHAPTER 1. INTRODUCTION

1.4 Contributions

The main focus of this thesis is the parameter-space characterization for the critical path(s)
of a parameterised LSAT model with a given parameter space of interest. We define the cor-
responding problem as the parametric critical-path problem. This is an instance of the already
mentioned characterization problem. With certain assumptions, the parametric critical-path
problem can be solved by solving the corresponding characterization problem. The two main
contributions of this thesis are given as the following:

• Contribution 1: Two different algorithms are designed and implemented to solve the
characterization problem. One of them is a polytope-based characterization algorithm
that does the characterization by partitioning the parameter space into polytopes. The
other one is a hyperrectangle-based algorithm which partitions the parameter space into
hyperrectangles. We experiment on the performance of these algorithms in order to find
the best possible algorithm, or combination thereof.

• Contribution 2: Taking advantage of the structure of the models used in LSAT,
we propose an approach to perform parametric critical-path analysis of parameterised
LSAT models.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents related work in the
literature. Chapter 3 illustrates the modeling concepts of LSAT using an example model. It
further introduces the mathematical notations and problem definitions that are used through-
out the thesis. Chapters 4 and 5 illustrate the polytope-based and hyperrectangle-based
characterization algorithms, respectively, by solving an example characterization problem.
These chapters further provide pseudocodes and detailed descriptions of the algorithms.
Chapter 6 provides the results of the experiments on the performance of the algorithms
and the corresponding conclusions. Chapter 7 summarizes the critical-path analysis of the
non-parameterized models that is performed by LSAT. It also provides the description of
the proposed approach for the parametric critical-path analysis of the parameterised LSAT
models. Finally, Chapter 8 concludes the thesis and discusses possible future work.

Characterizing Performance Variability in Manufacturing System Configurations 3



Chapter 2

Related Work

In this thesis, our focus is on the parameter-space characterization for the critical path(s) of
a parameterized LSAT model. [46] targets the parametric critical-path analysis for event net-
works with minimal and maximal timelags. The structure of these event networks is highly
similar to the structure of the activity models of LSAT, essentially being directed acyclic
graphs. [46] proposes an efficient algorithm for characterizing the duration (length) of critical
path(s) in event models with timelags that are affine functions of parameters. The result is
a set of convex regions partitioning the parameter space and a corresponding expression for
the duration of the critical path(s). The approach allows an arbitrary number of parameters,
with rational numbers as values and weights. The convexity of critical-path regions allows to
characterize a region by only analysing the corner points. Most of the methods proposed for
the parametric analysis of critical paths with multiple parameters ([46], [24], [27], [19]) are
based on the convexity of performance regions. Parameterised LSAT models greatly depend
on nonlinear behavior such as motion profiles [35]. Because of this nonlinear behavior, such
convexity of performance regions is generally not satisfied. Therefore, direct application of
methods based on convexity of performance regions is not possible.

From [46], we observe that the parametric critical-path problem can be transformed to a
system of inequality constraints. A method for solving such systems with no limitation to
convexity is proposed in [31]. The focus of this work is on the approximation of regions defined
by inequality constraints. Since it is not possible to efficiently find the exact boundaries of the
regions in the parameter space for general nonlinear inequality constraints, the work proposes
an algorithm that estimates the region with a bounded error using interval analysis (which
is a mathematical technique that represents the value of a function as a range of possibilit-
ies, including the actual value, rather than a single value). The algorithm (SIVIA) is based
on partitioning of the parameter space into sets of hyperrectangles and enclosing the region
between internal and external unions of these hyperrectangles. Using inclusion functions, each
hyperrectangle is classified as feasible, infeasible or indeterminate. Feasible hyperrectangles
are guaranteed to only include parameter values that satisfy the inequality constraints while
infeasible hyperrectangles are guaranteed to only include parameter values that do not satisfy
the inequality constraints. No such guarantee can be given for the indeterminate hyperrect-
angles. The algorithm continues until each hyperrectangle is classified as feasible, infeasible,
or indeterminate, where the indeterminate ones have a size smaller than a given threshold.
This threshold determines the error that bounds the accuracy of the estimation. Because of
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no limitation to convexity and the general applicability of interval arithmetic to functions
with different characteristics, one version of the hyperrectangle-based algorithms, presented
in Chapter 5, in this thesis is an adaptation of SIVIA.

In the execution of SIVIA, an increased number of partitions results in an increased number of
hyperrectangles that needs to be analysed. This can significantly increase the computational
complexity. To this end, algorithms called contractors are proposed. Contractors are used to
decrease the size of a hyperrectangle by identifying the parts of it that are infeasible. This
makes it possible to obtain a smaller hyperrectangle without partitioning it, leading to ana-
lysis of one smaller hyperrectangle rather than two smaller hyperrectangles. In the book [30],
several contractors are introduced. Some examples are based on Gauss elimination, forward-
backward propagation, and linear programming. These contractors are further generalized
to deal with a much larger class of problems and made to collaborate in order to increase
their efficiency. It is stated that no contractor is universally better than the others and their
efficiency depends on the problem at hand such as the properties of equalities/inequalities
and size of boxes. Some other works that discuss contractors are [29], [25], [48], [5], [39],
[7], [28], [4], [3], [17]. The use of contractors may also be beneficial for our characterization
algorithms. However, we did not yet explore this. This is an interesting direction for future
work.

Another field of research that works on nonlinear systems of inequality constraints is para-
metric programming. [8] introduces multi-parametric programming as “an optimisation based
methodology which systematically characterises the effect of uncertain parameters on the op-
timal solution of mathematical programming problems”. Our interest is multi-parametric
nonlinear programming (mp-NLP). [8] classifies the work in the literature by convex prob-
lems and nonconvex problems. For convex mp-NLP, [33] proposes an approximate algorithm
by partitioning the parameter space into a set of hyperrectangles. Using linear interpolation,
a fixed-point NLP problem is solved for each corner of the hyperrectangles. The partition-
ing is done with a prespecified tolerance in order to increase the accuracy of the solutions.
[2] proposes a similar algorithm but, instead of hyperrectangles, it partitions the parameter
space using simplices. For parameter spaces defined by nonlinear inequalities, [10] uses local
mp-QPs/LPs (Q stands for quadratic and L for linear) approximations of the mp-NLP. For
nonconvex mp-NLP, [11] proposes different parametric convex over-approximations with a
branch-and-bound algorithm. [12] focuses on mp-NLPs with polynomial nonlinear terms and
uses Cylindrical Algebraic Decomposition [13] and Homotopy Continuation methods [14] to
find analytical solutions. [22] transforms mp-NLP into a system of simultaneous nonlinear
equations and a follow-up work [23] approximates the solutions of these nonlinear systems
using parameterised triangulations. [37] introduces subgradient-approaches while [9] presents
an exact solution for the case of exponential nonlinear terms.

In general, characterization problems cannot be classified as parametric programming prob-
lems since parametric programming is focused on optimisation. However, in parametric pro-
gramming, the uncertainty in parameters is specified using systems of equalities/inequalities
and optimisation is done under these constraints. Such systems form the basis of our char-
acterization problem as it is presented in [46]. In our work, we do not directly use any meth-
ods from parametric programming. However, we were inspired by the fact that parametric
programming methods for mp-NLPs are highly dependent on affine and/or quadratic approx-
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imations. In the polytope-based characterization algorithm, presented in Chapter 4, we use
such affine approximations to be able to use methods in the literature, designed for paramet-
ric critical-path problems with convex performance regions, for our parametric critical-path
problem with nonconvex performance regions. Specifically, by using affine approximations of
nonlinear expressions in the inequality constraints, we use the approach of [46] which does
characterization of a region by only analysing the corner points.

With respect to approximation, we are specifically interested in approximation techniques for
nonlinear functions that can provide a bound on the accuracy of the approximation, because
these can enable solutions with guaranteed accuracy for our characterization problem. [40] in-
troduces an algorithm that finds piecewise-affine under- and over-approximations of functions
with one or two variables over triangular regions with arbitrary precision. For certain types
of functions with more than two variables, the work proposes transformations that enable
the use of one- and two-dimensional approximation techniques. [1] finds arbitrarily precise
piecewise-affine under- and over-approximations of Lipschitz-continuous nonlinear functions
by partitioning the parameter space with hyperrectangles and finding a pair of affine under-
and over-approximations for each hyperrectangle. If the accuracy of the approximations is
below a given threshold then the hyperrectangle is split into smaller hyperrectangles and ap-
proximation is done again for these smaller hyperrectangles. The algorithm continues until
approximations with desired accuracy are found for all the hyperrectangles. The approxima-
tions are done by using the Lipschitz constant of the function. [32] finds such approximations
by partitioning the parameter space with polytopes. It uses mesh-based approximation tech-
niques that can be used for functions with different differentiability properties rather than
only Lipschitz-continuous functions. However, this creates complications as finding a suitable
mesh for a polytope is not as straightforward as finding a mesh for a hyperrectangle. It tackles
this issue by finding a bigger polytope that encapsulates the polytope in consideration and
making the approximation according to the mesh of this bigger polytope. In the polytope-
based characterization algorithm, we use the approach of [32] to find affine approximations
of the nonlinear duration functions of potentially critical paths.

6 Characterizing Performance Variability in Manufacturing System Configurations



Chapter 3

Preliminaries

3.1 Modeling Concepts of LSAT

In this section, we present a simple LSAT model that is also used in Chapters 4 and 5 as a
motivating example. We demonstrate only a small part of the capabilities of LSAT as our
main goal is to show the structure of activity diagrams. A detailed explanation about the
theory behind LSAT can be found in [43] and [44] and a guide for the tool is available on the
official website of LSAT, https://www.eclipse.org/lsat/.

An activity is a piece of functionally determinate behavior that consists of actions executed
on peripherals of resources, in some specified order. Action-level concurrency is allowed, as
long as the functional behavior is determinate. A machine specification is used to specify
the resources with their peripherals. Two types of peripherals are unmovable and movable
peripherals. Unmovable peripherals only declare actions. Movable peripherals (that can also
declare actions) are peripherals that change their physical location. For the specification of
the physical location change, SetPoints define a physical coordinate system. Axes relate to
the symbolic coordinate system on which the physical locations are applied.

Figure 3.1 shows a part of the machine specification for our LSAT example model that specifies
the peripheral types. Clamp is an example of an unmovable peripheral as it only declares
actions clamp and unclamp while Motor is a movable peripheral with defined SetPoints
and Axes. Any number of SetPoints can be specified on the corresponding Axes.

A resource defines its peripherals with specification of their symbolic positions and paths
if the peripheral is of type movable. SymbolicPositions declare the symbolic positions for a
movable peripheral, Profiles declare the speed profiles to use for the paths and Paths declare
which moves are allowed in the system with the corresponding speed profile.

Figure 3.2 shows a fragment of the machine file of our example that specifies resources using
instantiations of peripherals in Figure 3.1. Robot1 includes a peripheral P1 of type Mo-
tor and SymbolicPositions declares the symbolic positions as Right and Left. Profiles
declare the speed profile normal and Paths declare two paths between Right and Left.
Robot2 and Robot3 only include one peripheral P2 and P3, respectively, of type Clamp.
It should be noted that this model does not represent an actual machine as, in general, motors

Characterizing Performance Variability in Manufacturing System Configurations 7
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are combined with some other peripheral(s) that they move and peripherals such as clamps
are combined with a motor as they cannot move on their own. Such details are ignored in
the example to keep the model as simple as possible.

Figure 3.1: Peripherals Figure 3.2: Resources

To specify action durations, we need timings. A timing can be a fixed value, a normal distri-
bution, a triangular distribution or a Pert distribution. A motion profile needs to be assigned
to each speed profile. By default, LSAT uses third-order point-to-point motion profiles, which
need specification of velocity, acceleration, jerk and (optionally) settling time. A user can
also specify a custom motion profile. Positions specify the physical absolute locations.

Figure 3.3 shows the specifications of the timings for the peripherals and their actions. Ac-
tion unclamp of Robot2.P2 is specified using a normal distribution while the rest of the
actions are specified using fixed values. For the movable peripheral Robot1.P1, we define
a motion profile for its speed profile normal and physical relative locations to Right and
Left. We use the default third-order point-to-point motion profile provided by LSAT
(where V is velocity, A is acceleration, J is jerk and S is settling time).

Activity specifies activities by defining individual actions and dependencies among these ac-
tions. Prerequisites specifies the initial location for all movable peripherals for this activity.
Actions can specify four different types. Resource claiming is done with claim actions while
resource releasing is done with release actions. The timings of these types of actions are equal
to zero. Other types of actions are peripheral action and move action. Action flow specifies
dependencies between actions by using arrows.

Figure 3.4 shows the specification of a simple activity. The initial location of Robot1.P1 is
defined to be Left. Resources need to be claimed before their actions can be executed (the cli
actions in the figure) and released (the rli actions) in order to complete the activity. Action
a1 is a move action of Robot1.P1 from Left to Right using the defined speed profile nor-
mal. Actions a2 and a3 are peripheral actions clamp. The arrows in action flow specify
the precedence relations between actions such as action a1 cannot start until cl1 finishes.

8 Characterizing Performance Variability in Manufacturing System Configurations
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The graphical representation of the activity is shown in Figure 3.5.

Figure 3.3: Settings Figure 3.4: Activity

Figure 3.5: Graphical Representation of an Activity

Characterizing Performance Variability in Manufacturing System Configurations 9
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3.2 Notations

This section introduces the definitions that are used in the following chapters.

• A directed graph DG(N ,→) consists of a set N of nodes and a set → ⊆ N of depend-
encies. A dependency (n1, n2) ∈ → is written as n1 → n2 and defines node n1 as a
predecessor of node n2. A node that has no predecessor is called a source node. A node
that is not a predecessor of any node is called a sink node.

• A path p of length k ∈ N in a directed graph DG(N ,→) is a sequence of nodes p =
(n0, n1, ... , nk) such that ni ∈ N for i = 0, 1, ..., k and nj → nj+1 for j = 0, 1, ..., k − 1;
nodes ni are said to be elements of p, denoted ni ∈ p.

• A cycle in a directed graph DG(N ,→) is a path with length k > 0 and the additional
constraint that the first and last nodes are equal.

• A directed acyclic graph DAG(N ,→) is a directed graph DG(N ,→) with no cycles.

• A d-polyhedron is the intersection of finitely many half-spaces in Rd.

• A d-polytope is a bounded d-polyhedron.

• A set of sets Par is a partition of a set X if and only if all of the following conditions
hold:

– ∅ /∈ Par

–
⋃

A∈Par

A = X where each A ∈ Par is called a block

– Ai ∩Aj = ∅ for all Ai, Aj ∈ Par with i ̸= j

• An affine over-approximation f of a function f over domain P is an affine function such
that f(x) ≥ f(x) for all x ∈ P .

• An affine under-approximation f of a function f over domain P is an affine function
such that f(x) ≤ f(x) for all x ∈ P .

10 Characterizing Performance Variability in Manufacturing System Configurations
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3.3 Parametric Critical-Path Problem

We focus on the parametric critical-path analysis of a directed acyclic graph. The adopted notation
is given as follows:

• Let D ⊂ Rn be a bounded parameter space where n is the number of parameters.

• A node n ∈ N of a directed acyclic graph DAG(N ,→) is associated with a continuous duration
function dn : D → R≥0.

• A maximal path in a directed acyclic graph DAG(N ,→) is a path in which the first node is a
source node and the last node is a sink node.

• Let PA be the set of all maximal paths in a given directed acyclic graph A = DAG(N ,→).

• A path p is associated with a duration function fp : D → R≥0 that is the summation of the
duration functions of all the nodes included in p : fp =

∑
n∈p dn.

• A maximal path pc ∈ PA of a directed acyclic graph A is a critical path at point x ∈ D if and
only if fpc(x) = max

p∈PA

fp(x).

We define the parametric critical-path problem as follows:

Given a directed acyclic graph A and a bounded parameter space D, find the mapping PCPA : D →
℘(PA) \ {∅}, where ℘(PA) is the power set of PA, that associates each parameter point x ∈ D to its
critical path(s).

3.4 Parameterised LSAT Model

The activity model given in Figure 3.5 is equal to the directed acyclic graph A = DAG(NA,→A) given
in Figure 3.6.

Figure 3.6: DAG of the activity model

Each action node n ∈ NA is mapped on to an action with the corresponding peripheral; for example,
n2 is mapped on to (a1, p1). The claim nodes n1, n4 and n7 are mapped on to claim actions while
the release nodes n3, n6 and n9 are mapped on to release actions. Claim and release actions have a
corresponding resource rather than a peripheral. It should be noted that resources Robot1, Robot2
and Robot3 are represented with r1, r2 and r3, respectively.

As shown in Figure 3.3, the durations of actions in the model are specified concretely, by fixed values,
motion profiles, or distributions. Now, we parameterise this model by assigning duration functions to
actions. No duration function is assigned to claim and release actions considering that LSAT prescribes
that their durations are always fixed to 0. The duration functions assigned to the other actions are
the following:

Characterizing Performance Variability in Manufacturing System Configurations 11
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da1
(x, y) = x3 + y3 − 20x− 20y + 150 (3.1)

da2(x, y) = −x3 + y2 + 20x+ y + 110 (3.2)

da3(x, y) = x2 + 130 (3.3)

Note that these duration functions are chosen to illustrate the characterization algorithms in later
chapters. They do no represent any meaningful system.

By defining the duration functions dn of nodes n ∈ NA to be equal to the duration functions of
the corresponding actions, we get the following duration functions:

dn1 , dn3 , dn4 , dn6 , dn7 , dn9 = 0 (3.4)

dn2(x, y) = da1(x, y) = x3 + y3 − 20x− 20y + 150 (3.5)

dn5
(x, y) = da2

(x, y) = −x3 + y2 + 20x+ y + 110 (3.6)

dn8
(x, y) = da3

(x, y) = x2 + 130 (3.7)

The set of all maximal paths in A is PA = {p1, p2, p3} where p1 = (n1, n2, n3), p2 = (n4, n5, n6) and
p3 = (n7, n8, n9). Then, the duration functions of these maximal paths are fp1

= dn1
+ dn2

+ dn3
=

dn2
, fp2

= dn4
+ dn5

+ dn6
= dn5

and fp3
= dn7

+ dn8
+ dn9

= dn8
. Let the parameter space of interest

for this activity be DA = Dx×Dy where Dx = [3, 6] and Dy = [3, 6]. Then, the parametric critical-path
problem for A is to find the mapping PCPA : DA → ℘(PA) \ {∅}.

3.5 Characterization Problem

This section defines a generic characterization problem. Assuming that the duration functions of
maximal paths in a DAG are known, the parametric critical-path problem can be solved by solving
the corresponding characterization problem.

• Let P ⊂ Rn be a bounded parameter space where n is the number of parameters.

• Let F be a set of performance functions of the form f : P → R.

• A performance function fd ∈ F is a dominant function at point x ∈ P if and only if fd(x ) =
max
f∈F

f(x).

We define the characterization problem as follows:

Given a parameter space P and a function set F , find the mapping C : P → ℘(F) \ {∅} that as-

sociates each parameter point x ∈ P to the function(s) f ∈ F that are dominant at point x.

The solution of the parametric critical-path problem PCPA : D → ℘(PA) \ {∅} is equivalent to the

solution of the characterization problem C : P → ℘(F) \ {∅} where P = D and fp ∈ F for all p ∈ PA.

Therefore, if we obtain the duration functions of all the maximal paths in A, then we can solve the

corresponding characterization problem to solve the parametric critical-path problem.

The characterization problem for the example parameterised activity model is to find the mapping

C : P → ℘(F) \ {∅} with P = Px × Py and f1, f2, f3 ∈ F where Px = [3, 6], Py = [3, 6] and

f1(x, y) = x3 + y3 − 20x− 20y + 150, f2(x, y) = −x3 + y2 + 20x+ y + 110 and f3(x, y) = x2 + 130.
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3.6 Third-Order Point-To-Point Motion Profiles

This section presents the third-order point-to-point motion profile that is used by default in
LSAT. Given distance dis and maximum levels of velocity vMax , acceleration aMax and jerk
jMax , the duration of the third order point-to-point motion profile f(dis, vMax , aMax , jMax )
is given as follows:

1: //Calculation of f(dis, vMax , aMax , jMax ) is done according to the following constraints:

2: if aMax −
√
vMax · jMax < 0 then

3: if dis − vMax2

aMax − vMax ·aMax
jMax > 0 then

4: f(dis, vMax , aMax , jMax ) = aMax
jMax + vMax

aMax + dis
vMax

5: else if dis − 2aMax3

jMax2 > 0 then

6: f(dis, vMax , aMax , jMax ) = aMax
jMax +

√
aMax2

jMax2 + 4dis
aMax

7: else
8: f(dis, vMax , aMax , jMax ) = 4 3

√
dis

2jMax

9: end if
10: else

11: if dis − 2
√

vMax3

jMax < 0 then

12: f(dis, vMax , aMax , jMax ) = 4 3

√
dis

2jMax

13: else
14: f(dis, vMax , aMax , jMax ) = 2

√
vMax
jMax + dis

vMax

15: end if
16: end if

Considering that the values of dis, vMax , aMax and jMax are positive, the left-hand side
expressions of the constraints (Lines 2, 3, 5, 11) are monotone; that is, the expressions’
first-order partial derivatives with respect to all variables (dis, vMax , aMax , jMax ) are always
positive or always negative. The right-hand side expressions in Lines 4, 6, 8, 12 and 14 are
also monotone for the domain of variables that satisfy the corresponding constraint. For
example, the expression aMax

jMax + vMax
aMax + dis

vMax is monotone for variables that satisfy dis −
vMax2

aMax − vMax ·aMax
jMax > 0. Furthermore, these right-hand side expressions’ first-order partial

derivatives with respect to all variables are monotone too.
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Chapter 4

Polytope-Based Characterization

In this chapter and the following one, we present different algorithms that solve the char-
acterization problem introduced in Section 3.5. Manufacturing systems depend on physical
subsystems that transport the material from one processing station to another. The modeling
of such physical movement is an important part of FMS design. By default, LSAT models use
third-order point-to-point motion profiles (given in Section 3.6). The presented polytope- and
hyperrectangle-based algorithms are specifically targeted towards characterization of models
using the third-order point-to-point motion profiles as action duration functions. Therefore,
the (monotonicity) properties required by the algorithms are motivated by the properties of
the third-order point-to-point motion profiles. Considering that LSAT models do not only use
the third-order point-to-point motion profiles, for generic applicability, we also implement a
hyperrectangle-based algorithm that uses interval arithmetic. The algorithms are illustrated
by solving the earlier introduced example characterization problem given in Section 3.5. To
facilitate understanding, in this example problem, we use the simple performance functions
introduced earlier rather than the complex third-order point-to-point motion profiles.

In this chapter, we demonstrate the polytope-based characterization algorithm (polytope
algorithm, for short). In the first section, we solve the earlier introduced example characteriz-
ation problem using the polytope algorithm. In the second section, we provide the pseudocode
for the polytope algorithm and provide further details.

4.1 Polytope Algorithm Example

The polytope algorithm is illustrated by solving the following characterization problem:
Find the mapping C : P0 → ℘(F) \ {∅} with F = {f1, f2, f3} and P0 = {p ∈ R2 | Gp ≥ g}
where

f1(x, y) = x3 + y3 − 20x− 20y + 150
f2(x, y) = −x3 + y2 + 20x+ y + 110

f3(x, y) = x2 + 130

G =


−2
3 −1
−2 1
3
4 1
1 −1

 g =


−9
−7
27
4
−3
2
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Figure 4.1: Sampled performance
functions blue:f1(x, y), red:f2(x, y),
green:f3(x, y)

Figure 4.2: Sampled exact solution of
the characterization problem blue:f1,
red:f2, green:f3

This characterization problem is the one presented in Section 3.5 with a change in the para-
meter space P. This change is applied to show that the polytope algorithm allows arbitrary
polytopes as parameter space rather than only hyperrectangles, which are a specific type of
polytope.

Example 4.1.1 Figure 4.1 shows sampled versions of f1, f2 and f3 for the parameter space
P0. A sampled version of the exact solution of this characterization problem is given in Fig-
ure 4.2. The blue region is the part of the parameter space with f1 being the only dominant
performance function. Only f2 is dominant in the red region and only f3 is dominant in the
green region. The only exceptions are the borders between regions. On the borders where
two different regions meet, both performance functions are dominant. At the point where all
three regions meet, all of the performance functions are dominant.

To solve the characterization problem, the polytope algorithm uses affine over- and under-
approximations of the performance functions. We calculate these affine approximations by
using the approach of Jin et al. [32]. We assume that the partial derivatives of performance
functions with respect to all of their parameters are monotone. This is needed to efficiently
compute the approximations. Without the monotonicity assumption, we would require op-
timization techniques that are computationally expensive. The assumption of monotonicity
is further motivated by the monotonicity properties of the third-order point-to-point motion
profile.

Example 4.1.2 In the presented characterization problem, the partial derivatives of perform-
ance functions f1, f2 and f3 with respect to parameters x and y are monotone on polytope P0.

The first step of the polytope algorithm is to calculate affine over- and under-approximations
of the performance functions over the entire parameter space.

Example 4.1.3 For the given characterization problem, the algorithm first calculates affine
over- and under- approximations of f1, f2 and f3 over P0. We demonstrate this calculation by
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Figure 4.3: Uniform mesh for EH0,1

and IGP0,1 (blue)
Figure 4.4: Extended boundar-
ies of the parameter space P0

(green), OGP0,1 (magenta) and
GP0,1 (magenta and blue)

showing the steps for calculating the approximations of performance function f1. Performance
function f1 has both parameters (x and y) of P0. Therefore, we use the polytope parameter
space P0,1 = P0 to calculate approximations of f1 over P0. We first find the smallest hyper-
rectangle that encapsulates the polytope parameter space P0,1. This smallest encapsulating
hyperrectangle EH0,1 = {(x, y) | x ∈ [3, 6] , y ∈ [3, 6]} can be seen in Figure 4.2 as the
accumulation of the white and colored regions. We need a mesh of grid points to find the
affine approximations. By using this encapsulating hyperrectangle EH0,1, we create a uniform
mesh, because directly creating a non-uniform mesh for a polytope could be computationally
expensive. Figure 4.3 shows a uniform mesh for EH0,1. The set IGP0,1 includes the blue
colored grid points that are inside or on the border of P0,1. The number of grid points along
each dimension (x and y) or resolution is equal to 21 for this mesh. In general, a different
resolution can be chosen for different dimensions. If we use all the grid points to find the
affine approximations, then we obtain approximations of f1 over EH0,1. Considering that we
want to find affine approximations over P0,1, these approximations over the entire EH0,1 are
suboptimal over P0,1. Therefore, rather than using all the grid points, we eliminate some of
the points that are not needed to obtain approximations over P0,1. If we only use the blue
grid points that are inside or on the border of P0,1, then the resulting approximations may not
be applicable over the entire P0,1. Therefore, we create a larger polytope that encapsulates
P0,1 by “extending its boundaries outwards by the distance between adjacent grid points in
each dimension such that the enlarged polytope P̃0,1 is guaranteed to include the immediate
neighbor grid points to the boundaries” [32]. Figure 4.4 shows the extended boundaries for
our characterization problem using green lines. The set OGP0,1 includes the magenta colored
grid points that are inside or on the border of P̃0,1 but not inside or on the border of P0,1. Let
set GP0,1 be the union of IGP0,1 and OGP0,1 including both the magenta and blue colored
points in Figure 4.4. GP0,1 is the set of grid points that we use to calculate over- and under-
approximations of f1.

To solve the characterization problem, the parameter space is partitioned step by step as we
continue calculating new affine over- and under-approximations and use these approximations
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to characterize as much region as possible. To calculate affine over- and under-approximations
over P0, we solve the following linear program for all fj ∈ F to obtain two affine approxima-
tions for each performance function.

min
θ,A0,j ,A0,j ,h0,j ,h0,j

|θ| subject to

A0,j p+ h0,j ≥ fj(p),

A0,j p+ h0,j ≤ fj(p),

(A0,j −A0,j) p+ h0,j − h0,j ≤ θ,

∀p ∈ GP0,j

(4.1)

The affine approximations obtained from Linear Program 4.1 (A0,j p+ h0,j and A0,j p+ h0,j)
for performance function fj are not over- and under-approximations over the entire continu-
ous P0. These approximations only hold for the grid points (GP0,j), but possibly not for the
points in between.

Example 4.1.4 Figure 4.5 shows sampled performance function f1 ∈ F and sampled af-
fine approximations A0,1 p + h0,1 and A0,1 p + h0,1 for f1 where A0,1 ≈ [44.8 43.5], h0,1 ≈
−211, A0,1 ≈ [44.8 43.5], h0,1 ≈ −245.1. Figure 4.6 shows the minima of all three functions in
Figure 4.5, i.e. a projection along the Z-axis. The blue points show that A0,1 p+h0,1 ≤ f1(p)
is not satisfied for all p ∈ P0.

As shown in Equations 4.2 and 4.3, we need quantified approximation errors (σ) to obtain
affine over- and under-approximations that are applicable for all p ∈ P0. We obtain affine
over- and under-approximations over the entire continuous P0 using the following equations.

A0,j p+ h0,j + σ0,j ≥ fj(p) (4.2)

A0,j p+ h0,j − σ0,j ≤ fj(p) (4.3)

for p ∈ P0 and fj ∈ F , where A0,j , h0,j , A0,j , h0,j are obtained by solving Linear Program 4.1
for fj and σ0,j is the approximation error of fj for P0.

We do not directly calculate σ0,j . Instead, we use the bound δ∗0,j maxp∈P0,j ||f ′
j(p)||2 ≥ σ0,j

from [32] to obtain an approximation of σ0,j of each performance function fj ∈ F for P0. The
obtained affine over- and under-approximations are given below.

f0,j = A0,j p+ h0,j + δ∗0,j maxp∈P0,j ||f
′
j(p)||2 ≥ A0,j p+ h0,j + σ0,j ≥ fj(p) (4.4)

f
0,j

= A0,j p+ h0,j − δ∗0,j maxp∈P0,j ||f
′
j(p)||2 ≤ A0,j p+ h0,j − σ0,j ≤ fj(p) (4.5)

where δ∗0,j = δ0,j
√

n
2(n+1) for P0,j ⊂ Rn. δ0,j is the diameter of the mesh elements of the

uniform mesh that is used to find the affine approximations for fj ∈ F . The diameter of a
polytope is the greatest distance between its vertices.

Example 4.1.5 For f1, we used the uniform mesh given in Figure 4.3 with resolution
equal to 21 for both dimensions (x and y). The distance between neighboring grid points
for each dimension is equal to 6−3

20 = 0.15 meaning that the diameter of mesh elements is
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Figure 4.5: Performance function
f1 (blue) and affine approximations
A1 p + h1 (red) and A1 p + h1
(green)

Figure 4.6: Visualization of Figure
4.5 from below (It shows that A1 p+
h1 ≤ f1 is not satisfied for the entire
continuous P0)

equal to δ0,1 =
√
0.152 + 0.152 ≈ 0.213. This results in δ∗0,1 ≈ 0.213

√
2

2(2+1) ≈ 0.123 con-

sidering P0,1 ⊂ R2. With the assumption of partial derivatives of performance functions
being monotone, we approximate the value of maxp∈P0,j ||f ′

j(p)||2 by using the grid points

in OGP0,j . Because the extended boundaries are constructed in a way that P̃0,j is guar-
anteed to include the immediate neighbor grid points to the boundaries of P0,j , we know
that maxg∈OGP0,j ||f ′

j(g)||2 ≥ maxp∈P0,j ||f ′
j(p)||2 ≥ σ0,j is satisfied for all fj ∈ F . In the

example, maxg∈OGP0,1 ||f ′
1(g)||2 ≈ 108.05 and σ0,1 ≈ 0.123 · 108.05 = 13.3. Figure 4.7 shows

the obtained affine over- and under-approximations f0,1 and f
0,1

for f1 ∈ F . Just as f1,

performance function f2 ∈ F has both parameters (x and y) resulting in P0,2 = P0,1 = P0.
This means that we use the same set of grid points, for the calculation of affine over- and
under-approximations of f2, that we used for f1 (GP0,2 = GP0,1). The obtained affine over-
and under-approximations of f2 (f0,2 and f

0,2
) are given in Figure 4.8.

Example 4.1.6 Unlike f1 and f2, performance function f3 ∈ F has only parameter x.
For f3, if we use the same set of grid points that we used for f1 and f2, then we would
use redundant grid points that do not contribute to a better accuracy for f0,3 and f

0,3
.

This can simply be seen by the fact that f3(3, 3) = f3(3, 3.15) = f3(3, 3.3) = ... and
||f ′

3(3, 4.35)||2 = ||f ′
3(3, 4.5)||2 = ||f ′

3(3, 4.65)||2 = .... Therefore, rather than creating a uni-
form mesh for the entire two-dimensional EH0,1 as we did for f1 and f2, we only need to create
a uniform mesh for a one-dimensional subspace. By projecting the two-dimensional vertices of
P0 onto the one-dimensional subspace (x axis) and computing the convex hull of these projec-
ted vertices, we find the projection of P0 onto the x axis. We use this projection, P0,3, to find
approximations of f3 over P0. The vertices of P0 are (4.5, 6), (6, 5), (5, 3), (3, 4.5). The projec-
tions of these vertices onto the x axis are found by simply removing the y values. Therefore,
the projections of these vertices on the x axis are (4.5), (6), (5), (3). The convex hull of these
points is P0,3 = {x ∈ R |x ≥ 3, x ≤ 6}, which is a one-dimensional polytope. The smallest
hyperrectangle that encapsulates this polytope is EH0,3 = {x ∈ R |x ≥ 3, x ≤ 6} considering
that a one-dimensional polytope is also a one-dimensional hyperrectangle. The intersection
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Figure 4.7: Performance function f1
(blue) and affine over- and under-
approximations f1(p) (red) and f

1
(p)

(green)

Figure 4.8: Performance function f2
(red) and affine over- and under-
approximations f2(p) (blue) and
f
2
(p) (green)

of the enlarged polytope P̃0,3, which is obtained by extending the boundaries of polytope
P0,3, with the encapsulating hyperrectangle EH0,3 is P̃0,3 ∩ EH0,3 = {x ∈ R |x ≥ 3, x ≤ 6}.
Therefore, to obtain affine over- and under-approximations of f3, we use all the grid points
in the uniform mesh for the encapsulating hyperrectangle EH0,3, which is given in Figure 4.9.
Apart from using a projection of polytope P0, the other steps of the calculation are the same
as for f1 and f2. The obtained affine over- and under-approximations f0,3 and f

0,3
for f3 are

given in Figure 4.10.

Using the obtained affine over- and under-approximations of f ∈ F , we perform characteriza-
tion of P0. Let F0 be the set of potentially dominant performance functions in P0. Considering
that no characterization is done until now, F0 := F . We compare all the different pairs of
approximations (f0,i, f0,j

) where fi, fj ∈ F0 for i ̸= j. Let V0 be the set of vertices of P0.

In step one for P0, we check if we can eliminate any performance function that is not dom-
inant at all the points in P0 (if such a performance function exist). If, for any fi, fj ∈ F0,
f
0,j

(v) > f0,i(v) is satisfied for all v ∈ V0, then it is proven that performance function fi is

not dominant in P0 resulting in F0 := F0 \ {fi}.

Example 4.1.7 We do the characterization of P0 using the approximations given in Fig-
ure 4.7, 4.8 and 4.10. As stated before, because no characterization is done until now,
F0 := F = {f1, f2, f3}. In step one, we cannot do any elimination considering that no
function pair fi, fj ∈ F0 satisfies f

0,j
(v) > f0,i(v) for all v ∈ V0. Therefore, we move on to

step two with no change in F0.

In step two for P0, using the remaining performance functions in F0, we check if we can char-
acterize part of P0. If, for any fi, fj ∈ F0, f0,j

(v) > f0,i(v) is satisfied for any v ∈ V0, then it

is proven that performance function fi is not dominant in polytope P1 = {p ∈ P0 | f0,j
(p) >

f0,i(p)}. Therefore, we split P0 into two smaller polytopes P1 = {p ∈ P0 | f0,j
(p) ≥ f0,i(p)}

and P2 = {p ∈ P0 | f0,j
(p) ≤ f0,i(p)}. It should be noted that, even if it is proven that fi
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Figure 4.9: Uniform mesh for encap-
sulating hyperrectangle x = [3 6]

Figure 4.10: Performance function
f3 (green) and affine over- and
under-approximations f3(p) (red)
and f

3
(p) (blue)

is not dominant in polytope P1 = {p ∈ P0 | f0,j
(p) > f0,i(p)}, we use the polytope that in-

cludes the borders P1 = {p ∈ P0 | f0,j
(p) ≥ f0,i(p)}. This is required because we need explicit

corner points to compare the approximations. As a result, the elimination of performance
function fi is not true for the points that are on the border of P1. Other than the border,
performance function fi is not dominant in entire P1 while no elimination is possible for P2,
meaning that F1 := F0 \ {fi} and F2 := F0. Using the approximations we calculated over
P0 (f0,i, f0,i

), we repeat steps one and two for P1 and P2. In step one for P1, we check if, for

any fi, fj ∈ F1, f0,j
(v) > f0,i(v) is satisfied for all v ∈ V1 where V1 is the set of vertices of

P1. Such fi ∈ F1 is eliminated by F1 := F1 \ {fi}. In step two for P1, we check if, for any
fi, fj ∈ F1, f0,j

(v) > f0,i(v) is satisfied for any v ∈ V1. If this is satisfied, then P1 is split into

two smaller polytopes P3 = {p ∈ P1 | f0,j
(p) ≥ f0,i(p)} and P4 = {p ∈ P1 | f0,j

(p) ≤ f0,i(p)}
with F3 := F1 \ {fi} and F4 := F1. It is important to note that we use the approximations
f0,i, f0,i

, which we calculated over P0, for the characterization of P1 even though they are

suboptimal for P1. Our goal is to do all the characterization that is possible by using ap-
proximations f0,i, f0,i

, which leads to calculating fewer approximations resulting in reduced

computation time. That is, we use approximations fn,i, fn,i
, calculated over polytope Pn, for

the characterization of any polytope Pm that is a subspace of Pn until no more characteriza-
tion can be done using fn,i, fn,i

.

Example 4.1.8 In step two for P0, we find that f
0,2

(v) > f0,1(v) for any v ∈ V0 is sat-

isfied. This is shown in Figure 4.11. Therefore, we split P0 into two smaller polytopes
P1 = {p ∈ P0 | f0,2

(p) ≥ f0,1(p)} and P2 = {p ∈ P0 | f0,2
(p) ≤ f0,1(p)} with F1 := F0 \ {f1} =

{f2, f3} and F2 := F0. These polytopes are given in Figure 4.12. For P1, we repeat step
one using f0,2, f0,2

, f0,3 and f
0,3

considering F1 = {f2, f3}. Again, no elimination can be

done in step one and we move on to step two with no change in F1. In step two, we find
that f

0,2
(v) > f0,3(v) for any v ∈ V1 is satisfied. Therefore, we split P1 into two smal-

ler polytopes P3 = {p ∈ P1 | f0,2
(p) ≥ f0,3(p)} and P4 = {p ∈ P1 | f0,2

(p) ≤ f0,3(p)} with
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F3 := F1 \ {f3} = {f2} and F4 := F1. Because there is only one performance function left in
F3, the characterization of P3 is complete.

Figure 4.11: Sampled approxima-
tions f0,2(p) (red) and f

0,1
(p) (green)

where p ∈ P0

Figure 4.12: Polytopes P1 (green)
and P2 (red)

If, in step two for P0, f0,j
(v) > f0,i(v) for any v ∈ V0 is not satisfied for any pair fi, fj ∈ F0,

then we cannot do any more characterization of P0 using approximations f0,i, f0,i
. Therefore,

similar to the previous case, we split P0 into two smaller polytopes P1 and P2. However, dif-
ferent from the previous case, no elimination is done for P1 and P2 resulting in F1 := F0 and
F2 := F0. Also, no further characterization can be done for P1 and P2 using approximations
f0,i, f0,i

. Therefore, we find new approximations f1,i, f1,i
and f2,i, f2,i

calculated over P1 and

P2, respectively. Because these approximations are calculated over smaller polytopes, they
are more accurate than the approximations we calculated over the bigger polytope (It should
be noted that at the worst case, the accuracy of the approximations is the same). Using these
more accurate approximations gives us the chance to do further characterization of P1 and P2.

Example 4.1.9 For P4, we repeat steps one and two using f0,2, f0,2
, f0,3 and f

0,3
. No

elimination can be done in step one. Also, in step two, f
0,j

(v) > f0,i(v) for any v ∈ V4 is

not satisfied for any fi, fj ∈ F4. This means that we cannot do any further characterization
of P4 using approximations that we found for P0. Therefore, we continue characterization
of P4 by first calculating new approximations f4,2, f4,2

, f4,3 and f
4,3

over P4. These approx-

imations are expected to be more accurate than the approximations that we calculated over
P0. We repeat steps one and two for P4 using these new approximations f4,2, f4,2

, f4,3 and

f
4,3

. The procedure described above is repeated for newly created smaller polytopes until

the algorithm terminates. Figure 4.13 shows the total characterization done for P0 by 150
seconds of execution of the polytope algorithm. The blue, red and green colored polytopes are
completely characterized. In the cyan colored polytopes, performance function f3 is elimin-
ated. In the magenta colored polytopes, performance function f1 is eliminated. In the yellow
colored polytopes, performance function f2 is eliminated.

Characterizing Performance Variability in Manufacturing System Configurations 21



CHAPTER 4. POLYTOPE-BASED CHARACTERIZATION

Figure 4.13: The total characterization after 150 seconds of exe-
cution of the polytope algorithm. Eliminated functions are blue:
f2, f3, red: f1, f3, green: f1, f2, cyan: f3, magenta: f1 and yellow:
f2

4.2 Polytope Algorithm Pseudocode

In this section, we provide the pseudocode and its description for the polytope algorithm
illustrated in Section 4.1.

In the remainder of this section, the word polytope does not only stand for the geometric spe-
cification but it rather represents an object with certain properties, its geometric specification
is one of these properties. The properties of a polytope P can be listed as follows.

• P .PS is the polytope specification that stands for the geometric specification of P .

• P .FOU is the set of tuples fou = (f, f , f) where fou.f is a potentially dominant per-

formance function in P .PS , fou.f is an affine over-approximation of fou.f over P .PS
and fou.f is an affine under-approximation of fou.f over P .PS .

• P .splitPars is the set of parameters whose domains have been split to create P .PS .
We keep track of such parameters to avoid unnecessary calculation of approximations.
That is, we only find new approximations for performance functions that have such
parameters.

• P .isApproximated is a binary variable showing if P is using approximations calculated
over a parent polytope specification (Pparent .PS ⊃ P .PS ) or approximations calculated
over P .PS . It should be noted that an approximation calculated over Pparent .PS is
also an approximation over P .PS . However, an approximation calculated over P .PS is
generally more accurate than an approximation calculated over Pparent .PS .
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Algorithm 1 solves the characterization problem for an input polytope parameter space given
as a polytope specification IPS and a set of performance functions IF . As stated in the
previous section, the partial derivatives of performance functions f ∈ IF are assumed to be
monotone with respect to all of their parameters. The characterization is terminated when
the execution time reaches the input termination time tt . As illustrated in Section 4.1, Al-
gorithm 1 first calculates affine over- and under-approximations of all performance functions
f ∈ IF over IPS . This is shown in Line 2 to Line 7. Given a polytope specification PS ,
functions and their approximations FOU and a set of parameters Par , Algorithm 2 finds new
approximations for functions fou.f ∈ FOU that have at least one parameter par ∈ Par . At
the beginning of Algorithm 1, we need to find approximations for all functions f ∈ IF over
IPS . Therefore, in Line 7, the set of all parameters of IPS is provided as input to Algorithm
2. The input polytope is initialized in Line 9. Its polytope specification is equal to IPS
considering that we want to characterize IPS , its FOU contains all the functions f ∈ IF with
their approximations found in Line 7, its splitPars is empty because this is the input poly-
tope meaning that it has no parent polytope and its isApproximated is equal to true because
we calculated the approximations of functions over its polytope specification P.PS = IPS .
Then, in Line 11, this input polytope is pushed into Queue, which holds the polytopes to be
characterized. The set FCP , in Line 13, contains the fully characterized polytopes.

Before continuing with Algorithm 1, we provide further details about Algorithm 2. In Ex-
amples 4.1.3 to 4.1.6, we illustrated how an approximation is calculated for a function. These
steps are shown in Line 6 to Line 17 of Algorithm 2. First, in Line 6, we check if a parameter of
PS is not included in fou.f . If this is true, then it means that we can use a lower-dimensional
polytope specification projectedPS rather than using PS . Algorithm 3 shows how the poly-
tope specification is projected to obtain a lower-dimensional polytope specification. As it
was done for function f3 in Example 4.1.6, we remove values of parameters (that are not
included in f) from corners of polytope specification PS . If, in Line 6 of Algorithm 2, all
the parameters of PS are included in fou.f , then there is no need for projection considering
that we need to use the entire PS . In Line 10, we continue with finding a hyperrectangle
encapsulatingHyperrectangle that encapsulates projectedPS . In Line 11, we create a uniform
mesh gridPoints for encapsulatingHyperrectangle with the chosen resolution and calculate the
corresponding diameter of mesh elements. The definition of the diameter of a polytope was
given in Section 4.1 and an example of finding the diameter of mesh elements was given in Ex-
ample 4.1.5. In Line 12, we find a polytope encapsulatingPS that encapsulates projectedPS .
As stated in Example 4.1.3, using all the grid points gp ∈ gridPoints to find an approxim-
ation of fou.f over PS results in suboptimal approximations. Using only gp ∈ gridPoints
that are inside or on the border of projectedPS results in approximations that are not applic-
able for the entire projectedPS . This is the reason that we find this encapsulating polytope
encapsulatingPS that contains the neighboring grid points of projectedPS . A detailed ex-
planation about how this encapsulating polytope is calculated is given in Lemma 2 of [32].
In Line 13, we create two sets of grid points gridPoints1 and gridPoints2 . gridPoints1 con-
tains the grid points gp ∈ gridPoints that are inside or on the border of encapsulatingPS
while gridPoints2 contains the grid points gp ∈ gridPoints that are inside or on the border
of encapsulatingPS but not inside of projectedPS . In Line 14, we solve the linear program
4.1 for fou.f using gridPoints1 to obtain affine approximations A, h,A, h of fou.f over PS .
In Line 15, we find an approximation of approximation error σ by calculating the bound
σbound = δ∗maxp∈PS ||fou.f ′(p)||2 ≥ σ using gridPoints2 and diameter . In Lines 16 and 17,
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we obtain affine over- and under-approximations of fou.f by combining the obtained affine
approximations with σbound.

Now, we return to Algorithm 1. In Line 14, we check the termination conditions. If Queue is
empty, then it means that characterization of IPS is completed, resulting in termination of
Algorithm 1. Algorithm 1 also terminates if the execution time exceeds the input termination
time tt. If none of these terminating conditions are satisfied, then, in Line 15, we continue
by taking the polytope at the head of Queue in order to be characterized. To characterize
a polytope P , we first use Algorithm 4 to search for functions fou.f ∈ P .FOU that are not
dominant in the entire P .PS . As shown in Lines 2 to 4 of Algorithm 4, we search for function
pairs foui.f, fouj .f that satisfy fouj .f (c) > foui .f (c) at all corners c of PS . We remove such
foui.f together with its approximations from FOU considering that foui.f is proven to be
not dominant in the entire PS . In Line 17 of Algorithm 1, we check if the size of P .FOU is
larger than one. If it is equal to one, then it means that the characterization of P is complete
and, in Line 40, it is included in FCP . If the size is larger than one, then we continue with
its characterization. In Line 18, we check if P .PS has any parameter that is not included
in any remaining fou ∈ P .FOU . We check for such parameters, because they are no longer
needed for the characterization of the polytope P . Algorithm 5 shows how such parameters
are removed from P .PS . Similar to Algorithm 3, we remove values of such parameters from
the corners of PS and find the convex hull of these corner points. The resulting projection
projectedPS has fewer corner points than P leading to fewer comparisons by Algorithms 4
and 6. In Line 9 of Algorithm 5, we also remove such parameters from splitPars considering
that they are no longer included in PS .

In Line 20 of Algorithm 1, Algorithm 6 searches for remaining functions fou.f ∈ P .FOU
that are not dominant in part of P .PS . As shown in Lines 3 and 4 of Algorithm 6, we search
for a function pair foui , fouj ∈ FOU that satisfies fouj .f (c) > foui .f (c) at any corner c of PS .

If such a function pair is found, then it is proven that there is a hyperplane fouj .f − foui .f

that splits PS into two smaller polytopes PS 1 = {p ∈ PS | fouj .f(p) − foui .f(p) ≥ 0} and

PS 2 = {p ∈ PS | fouj .f(p) − foui .f(p) ≤ 0}. Function fou.i is not dominant in PS 1 while
no elimination is done for PS 2. To create PS 1 and PS 2, we split the domains of parameters
included in hyperplane fouj .f − foui .f . Therefore, in Lines 9 and 10, such parameters are
included in splitPars. In Line 21 of Algorithm 1, we check if such a hyperplane is found. If it
is found, then we add the corresponding smaller polytopes P1 and P2 to Queue for further
characterization.

If a hyperplane is not found in Line 20, then, in Line 27, we check if P .isApproximated
is false. If it is false, then it means that some of the approximations fou.f , fou.f ∈ P .FOU
can be suboptimal over P .PS considering that all of these approximations are calculated over
a parent polytope of P .PS . Therefore, in Line 28, we find new approximations calculated
over P .PS . An important thing to note here is that, unlike in Line 7 of Algorithm 1, the
input parameter set is P .splitPars. In Line 7, we needed to find approximations for all of
the functions in IF . However, in Line 28, we only need to find new approximations to a
function (calculated over P .PS ) if these new approximations are expected to be better than
the approximations at hand (which are approximations calculated over a parent polytope of
P .PS ). As shown in Lines 3 and 4 of Algorithm 2, if a function fou.f does not have any
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parameter par ∈ splitPars, then the domains of its parameters are not changed since the
last calculation of its approximations fou.f and fou.f over a parent polytope of PS . If we

calculate new approximations f new and f
new

of fou.f over PS, then these approximations

are going to be equal to the approximations fou.f and fou.f . Therefore, we do not find new
approximations for such functions. However, for the functions fou.f which have at least one
parameter par ∈ splitPars we calculate new approximations. Because the domain of at least
one parameter is reduced, the new approximations f new and f

new
are expected to be more

accurate then the approximations fou.f and fou.f . It should be noted that, in Line 29 of
Algorithm 1, P .splitPars is assigned to be empty because we need to keep track of changes
in domains of parameters in between calculations of approximations. In Line 30, polytope P
(with updated approximations) is added to Queue for further characterization.

If P .isApproximated is true (Line 31), then the approximations fou.f and fou.f of fou.f
are calculated over P .PS and we know that no further characterization is possible using these
approximations. Therefore, to find better approximations and perform further characteriza-
tion, we split P .PS into two smaller polytopes and calculate new approximations over these
smaller polytopes. Algorithm 7 shows how this splitting is done. As shown in Lines 3 to 8,
we first find the hyperrectangle encapsulatingHyperrectangle that encapsulates PS . Then, we
find the parameter par of encapsulatingHyperrectangle with the largest interval (domain) and
the hyperplane that splits this interval into two equal intervals. Using this hyperplane, we
split PS into two smaller polytopes PS1 and PS2 . Because we only split the domain of par
to create PS1 and PS2 , that is the only parameter we add to splitParsnew in Line 9. In Lines
33 and 34 of Algorithm 1, new approximations are calculated over PS1 and PS2 . In Lines 37
and 38, polytopes P1 and P2 are added to Queue for further characterization.

When Algorithm 1 terminates, we return both FCP and Queue. Because FCP contains
polytopes that are fully characterized while Queue contains polytopes that are partially char-
acterized.
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Algorithm 1 Solve the characterization problem for input polytope with specification IPS
and input performance functions IF

1: function characterizePolytope(input polytope specification IPS , input performance func-
tion set IF , termination time tt)

2: setOfAllPar = {par | par is a parameter of IPS}
3: //Functions and their (over/under-)approximations (FOU) are represented as a set

of tuples ( f, f , f)
4: FOU input = Ø
5: for each function f ∈ IF
6: FOU input = FOU input ∪ {(f,−,−)}
7: FOU input = findApproximations(IPS ,FOU input, setOfAllPar)
8: //A polytope P is represented as a tuple P = (PS ,FOU , splitPars, isApproximated)
9: Pinput = (IPS ,FOU input,Ø, true)

10: // Queue containing the polytopes to be characterized
11: Queue.enqueue(Pinput)
12: // The set containing the fully characterized polytopes
13: FCP = Ø
14: while ¬Queue.isEmpty && executionTime < tt
15: P = Queue.dequeue
16: P .FOU = removeNotDominantFunctions(P .PS ,P .FOU )
17: if size(P .FOU ) > 1 then
18: if a parameter of P .PS is not included in any fou ∈ P .FOU
19: P .PS ,P .splitPars = findProjectionToEliminateParameters(P .PS ,P .FOU ,P .splitPars)
20: isHyperplaneFound ,PS 1,PS 2, founotDom, splitPars =

findHyperplaneToSplit(P .PS ,P .FOU ,P .splitPars)
21: if isHyperplaneFound then
22: P1 = (PS 1,P .FOU \ {founotDom}, splitPars, false)
23: P2 = (PS 2,P .FOU , splitPars, false)
24: Queue.enqueue(P1)
25: Queue.enqueue(P2)
26: else
27: if ¬P.isApproximated then
28: FOU better = findApproximations(P .PS ,P .FOU ,P .splitPars)
29: P = (P .PS ,FOUbetter ,Ø, true)
30: Queue.enqueue(P )
31: else
32: PS1 ,PS2 , splitPars = split(P .PS ,P .splitPars)
33: FOU better1 = findApproximations(PS 1,P .FOU , splitPars)
34: FOU better2 = findApproximations(PS 2,P .FOU , splitPars)
35: P1 = (PS 1,FOU better1 ,Ø, true)
36: P2 = (PS 2,FOU better2 ,Ø, true)
37: Queue.enqueue(P1)
38: Queue.enqueue(P2)
39: else
40: FCP = FCP ∪ {P}
41: end
42: return FCP ,Queue
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Algorithm 2 Calculate affine over- and under-approximations of all performance functions
fou.f , that include at least one parameter in splitPars, over polytope specification PS

1: function findApproximations(polytope specification PS , functions and their (over/under-
)approximations FOU , parameter set splitPars)

2: FOU new = {}
3: for each fou.f that includes no parameter par ∈ splitPars, where fou ∈ FOU
4: FOU new = FOU new ∪ {fou}
5: for each fou.f that includes a parameter par ∈ splitPars, where fou ∈ FOU
6: if a parameter of PS is not included in fou.f then
7: projectedPS = findProjectionForFunction(fou.f ,PS )
8: else
9: projectedPS = PS

10: encapsulatingHyperrectangle = findEncapsulatingHyperrectangle(projectedPS )
11: gridPoints, diameter = createUniformMesh(encapsulatingHyperrectangle, resolution)
12: encapsulatingPS = findEncapsulatingPolytope(projectedPS , resolution)
13: gridPoints1, gridPoints2 = groupGridPoints(gridPoints, projectedPS , encapsulatingPS )
14: A, h,A, h = findOverUnderLinearInterpolations(gridPoints1, fou.f )
15: σbound = findApproximationErrorBound(fou.f , gridPoints2, diameter)
16: fnew = Ap+ h+ σbound
17: f

new
= Ap+ h− σbound

18: founew = (fou.f , f new , f new )
19: FOUnew = FOUnew ∪ {founew}
20: return FOUnew

Algorithm 3 Find the projection of polytope specification PS that only includes parameters
that are included in performance function f

1: function findProjectionForFunction(performance function f , polytope specification PS )
2: projectionOfCorners = {c | c is a corner of PS}
3: for each parameter par of PS that is not included in f
4: for each c ∈ projectionOfCorners
5: // Point c becomes one less dimensional with each removal
6: Remove value of par from c
7: projectedPS = Convex Hull of points p ∈ projectionOfCorners
8: return projectedPS

Algorithm 4 Remove performance functions fou.f that are not dominant in entire polytope
specification PS

1: function removeNotDominantFunctions(polytope specification PS , functions and their
(over/under)-approximations FOU )

2: for each (foui .f , fouj .f) where foui , fouj ∈ FOU with i ̸= j

3: if fouj .f (c) > foui .f (c) at all corners c of PS then
4: FOU = FOU \ {foui}
5: return FOU
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Algorithm 5 Find the projection of polytope specification PS that does not include para-
meters that are not included in functions fou.f

1: function findProjectionToEliminateParameters(polytope specification PS , functions and
their (over/under)-approximations FOU , parameter set Par)

2: splitPars = Par
3: projectionOfCorners = {c | c is a corner of PS}
4: for each parameter par of PS that is not included in any fou ∈ FOU
5: for each c ∈ projectionOfCorners
6: // Point c becomes one less dimensional with each removal
7: Remove value of par from c
8: if par ∈ splitPars then
9: splitPars = splitPars \ {par}

10: projectedPS = Convex Hull of points p ∈ projectionOfCorners
11: return projectedPS

Algorithm 6 Using pairs of over- and under-approximations (foui .f , fouj .f), find if there is

a hyperplane fouj .f − foui .f that cuts polytope specification PS

1: function findHyperplaneToSplit(polytope specification PS , functions and their (over/
under)-approximations FOU , set of parameters Par)

2: splitPars = Par
3: for each (foui .f , fouj .f) where foui , fouj ∈ FOU with i ̸= j

4: if fouj .f (c) > foui .f (c) at any corner c of PS then
5: isHyperplaneFound = true
6: PS 1 = {p ∈ PS | fouj .f(p)− foui .f(p) ≥ 0}
7: PS 2 = {p ∈ PS | fouj .f(p)− foui .f(p) ≤ 0}
8: founotDom = foui

9: for each parameter par that is included in fouj .f − foui .f and par /∈ splitPars
10: splitPars = splitPars ∪ {par}
11: return isHyperplaneFound ,PS 1,PS 2, founotDom, splitPars
12: isHyperplaneFound = false
13: return isHyperplaneFound , null

28 Characterizing Performance Variability in Manufacturing System Configurations



CHAPTER 4. POLYTOPE-BASED CHARACTERIZATION

Algorithm 7 Split polytope specification PS into two smaller polytope specifications

1: function split(polytope specification PS , set of parameters splitPars)
2: splitParsnew = splitPars
3: encapsulatingHyperrectangle = findEncapsulatingHyperrectangle(PS )
4: //The lower bound of a parameter par (lbpar) of a hyperrectangle H is its smallest

value in H
5: //The upper bound of a parameter par (ubpar) of a hyperrectangle H is its largest value

in H
6: for the parameter par of encapsulatingHyperrectangle with the largest interval

parint = ubpar − lbpar
7: PS 1 = {p ∈ PS | ppar ≤ lbpar+ubpar

2 }
8: PS 2 = {p ∈ PS | ppar ≥ lbpar+ubpar

2 }
9: splitParsnew = splitParsnew ∪ {par}

10: return PS 1,PS 2, par

4.3 Conclusion

In this chapter, a polytope-based characterization algorithm is introduced to solve the pre-
viously defined characterization problem. For this algorithm, we assume that the given per-
formance functions satisfy the same monotonicity properties as the third-order point-to-point
motion profile. This algorithm calculates affine over- and under-approximation functions for
each performance function by using these monotonicity properties to compare the values of
the these performance functions. If the value of an under-approximation is greater than the
value of an over-approximation at all the corner points of the characterized polytope, then
the performance function with the corresponding over-approximation is eliminated from all
the points in the characterized polytope considering that it can never be the maximum per-
formance function.

A performance function can also be eliminated from part of the characterized polytope if
the value of an under-approximation is greater than the value of its over-approximation at
some corner points of the characterized polytope but not all. In this case, the characterized
polytope is split into two smaller polytopes and the performance function with the corres-
ponding over-approximation is only eliminated from one of these smaller polytopes. If the
characterized polytope cannot be split as a result of performance function elimination, then
it is divided manually by using the hyperplane that splits the encapsulating hyperrectangle
into two equal-sized smaller hyperrectangles.

For the smaller polytopes (obtained either from the comparison of over- and under-approximations
or from the manual splitting), we continue characterization by updating the affine over-
and under-approximation functions and comparing these updated affine over- and under-
approximation functions. These steps of updating the approximations, comparing them and
splitting the characterized polytope is repeated until either we obtain the exact solution of
the problem or the execution time of the algorithm exceeds the input termination time.

It is important to note that this algorithm does not guarantee the exact solution as a result.
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It rather provides an approximation of the exact solution. As the input termination time
increases, the approximation gets closer to the exact solution. For some characterization
problems, it is possible to obtain the exact solution in a finite amount of time. However, this
is not the case for all the characterization problems.
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Chapter 5

Hyperrectangle-Based
Characterization

In this chapter, we demonstrate a hyperrectangle-based characterization algorithm (hyper-
rectangle algorithm, for short) that solves the characterization problem introduced in Section
3.5. Similar to Chapter 4, in the first section, we solve the example characterization problem
(given in Section 3.5) using the hyperrectangle algorithm. In the second section, we provide
the pseudocode for the hyperrectangle algorithm with the further details.

We use two different hyperrectangle algorithms. One algorithm is the one presented in this
chapter that uses a monotonicity assumption and the other one uses interval arithmetic. The
reason that we use the algorithm with interval arithmetic is that the interval techniques are
commonly used in state-of-the-art methods of constraint programming [41] and the generic ap-
plicability of interval arithmetic makes it possible to characterize performance functions with
different properties. The reason that we use the algorithm with the monotonicity assumption
is mainly motivated by the properties of the third-order point-to-point motion profiles. With
the monotonicity assumption, we do not require interval techniques to find approximations
of the maximum and minimum values of performance functions. We directly find the exact
maximum and minimum values without using computationally expensive interval arithmetic.
Comparing this algorithm with the polytope algorithm gives us an idea about how the poly-
tope algorithm compares to a hyperrectangle-based algorithm that is also targeted towards
the third-order point-to-point motion profiles.

5.1 Hyperrectangle Algorithm Example

The hyperrectangle algorithm is presented by solving the following characterization problem:

Find the mapping C : H0 → ℘(F) \ {∅} with F = {f1, f2, f3} and H0 = {p ∈ R2 | Gp ≥ g}
where

f1(x, y) = x3 + y3 − 20x− 20y + 150
f2(x, y) = −x3 + y2 + 20x+ y + 110

f3(x, y) = x2 + 130
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G =


1 0
−1 0
0 1
0 −1

 g =


3
−6
3
−6


This characterization problem is the one presented in Section 3.5. Unlike the polytope al-
gorithm, the hyperrectangle algorithm only accepts hyperrectangle parameter spaces.

Example 5.1.1 Similar to Figures 4.1 and 4.2, Figure 5.1 shows performance functions f1, f2
and f3 for the parameter space H0 and Figure 5.2 shows the solution of the characterization
problem.

In Chapter 4, the polytope algorithm calculates affine approximations to compare perform-
ance functions and eliminate the ones that are not dominant. To make such comparisons, the
hyperrectangle-based algorithms (the monotone version and the interval-arithmetic version)
calculate bounds rather than affine approximations. For the hyperrectangle parameter space
H0, these algorithms calculate bounds [lb0,i, ub0,i] for all fi ∈ F where lb0,i ≤ fi(p) ≤ ub0,i for
all p ∈ H0. If a pair fi, fj ∈ F satisfies lb0,j > ub0,i, then it is proven that fi is not dominant
in H0.

For the monotone version of the hyperrectangle algorithm introduced in this chapter, we
assume that the performance functions are monotone. With this assumption, we find the
bound [lb0,i, ub0,i] of a function fi ∈ F by only using the corner points of H0. Because of
the monotonicity assumption, the lower bound is equal to the minimum of the performance
function lb0,i = minp∈H0 fi(p) = min0,i and the upper bound is equal to the maximum of the
performance function ub0,i = maxp∈H0 fi(p) = max0,i. In the given characterization problem,
performance functions f1, f2 and f3 are monotone.

For the interval-arithmetic version of the hyperrectangle algorithm, we use interval arith-
metic to find the bounds [lb0,i, ub0,i] of a performance function fi ∈ F . This version does not
require monotonicity and many of the standard arithmetic operations have a corresponding
interval-arithmetic operation. Therefore, with this version, a more generic class of perform-
ance functions can be characterized compared to the monotone version, which can only char-
acterize monotone performance functions. However, calculations using interval arithmetic
are, in general, more computationally expensive and the calculated lower and upper bounds
are, in general, not equal to the minimum and maximum of the performance functions. The
details about interval arithmetic can be found in [26].

The first step of the monotone version of the hyperrectangle algorithm is to calculate the
maximum and minimum values of all the performance functions in the entire parameter space.

Example 5.1.2 For the given characterization problem, the algorithm finds the max-
imum and minimum values of f1, f2 and f3 in H0. We demonstrate this calculation by
showing the steps for f1. Performance function f1 has both parameters (x and y) of
H0. Therefore, we use the corners of the hyperrectangle H0,1 = H0 to find the max-
imum (max0,1) and minimum (min0,1) values of f1. The values of f1 at the corner
points of H0,1 are f1(3, 3) = 84, f1(3, 6) = 213, f1(6, 3) = 213 and f1(6, 6) = 342.
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Figure 5.1: Sampled performance
functions blue:f1(x, y), red:f2(x, y),
green:f3(x, y)

Figure 5.2: Sampled exact solution of
the characterization problem blue:f1,
red:f2, green:f3

The maximum of f1 is max0,1 = max(f1(3, 3), f1(3, 6), f1(6, 3), f1(6, 6)) = 342 and
the minimum of f1 is min0,1 = min(f1(3, 3), f1(3, 6), f1(6, 3), f1(6, 6)) = 84. Sim-
ilar to f1, performance function f2 has both parameters of H0. Using all the
corner points of H0, min0,2 = min(f2(3, 3), f2(3, 6), f2(6, 3), f2(6, 6)) = 26 and
max0,2 = max(f2(3, 3), f2(3, 6), f2(6, 3), f2(6, 6)) = 185.

For performance functions that do not have all the parameters of the hyperrectangle,
there is no need for using all of the corner points.

Example 5.1.3 In the given characterization problem, performance function f3 only
has one parameter (x). If we use all the corners of H0 to find the maximum and minimum
values of f3, then we would use redundant points where the value of f3 is the same. This can
be seen from f3(3, 3) = f3(3, 6) and f3(6, 3) = f3(6, 6). Therefore, similar to what we did in
the polytope algorithm, we find the projection of the hyperrectangle parameter space (which
has all the parameters) onto a lower dimensional subspace (which has only the parameters
of the performance function whose maximum and minimum values are calculated) resulting
in a hyperrectangle parameter space with fewer corners. f3 only has parameter x and the
minimum and maximum values of x in H0 are 3 and 6, respectively. Therefore, the projection
is H0,3 = {x ∈ R | x ≥ 3, x ≤ 6} with corner points x = 3 and x = 6. The maximum value of
f3 in H0 is max0,3 = max(f3(3), f3(6)) = 166 and min0,3 = min(f3(3), f3(6)) = 139.

We do the characterization of H0 by using the maximum and minimum values that
we calculated for f ∈ F . The set of potentially dominant performance functions in H0 is
F0 = F . As previously stated, we compare all the different pairs of maximum and minimum
values (max0,i,min0,j) where fi, fj ∈ F0. If min0,j > max0,i is satisfied for any fi, fj ∈ F0,
then it is proven that performance function fi is not dominant at any point in H0 resulting
in F0 := F0 \ {fi}. If the number of performance functions remaining in F0 is larger than
one, then H0 is split into two smaller hyperrectangles. We repeat the same steps for these
smaller hyperrectangles by calculating new maximum and minimum values for the remaining
performance functions, eliminating the performance functions that are not dominant and
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splitting the hyperrectangle if the number of remaining performance functions is more than
one.

Example 5.1.4 There is no performance function pair fi, fj ∈ F0 that satisfies
min0,j > max0,i. This is expected since there is no performance function f ∈ F that
is not dominant at all p ∈ H0. Therefore, we split H0 into two equally-sized smaller
hyperrectangles H1 = {p ∈ H0 | y ≤ 4.5} and H1 = {p ∈ H0|y ≥ 4.5} with F1 = F0 and
F2 = F0. For the characterization of H1, we calculate the maximum and minimum values
of performance functions in H1. However, because only the interval y ∈ [3, 6] is changed
for the smaller hyperrectangles, we only need to update maximum and minimum values of
performance functions that have y. Therefore, the maximum and minimum values of only f1
and f2 are calculated while the maximum and minimum values of f3 stay the same resulting
in max1,1 = 247.125,min1,1 = 84,max1,2 = 167.75,min1,2 = 26,max1,3 = max0,3 =
166,min1,3 = min0,3 = 139. Again, no performance function pair fi, fj ∈ F1 satisfies
min1,j > max1,i. Therefore, no function is eliminated and we split H1 into two smaller
hyperrectangles. This procedure described above is repeated for newly created smaller
hyperrectangles until the algorithm terminates. Figure 5.3 shows the total characterization
for H0 after 2 seconds of execution of the hyperrectangle algorithm. The blue, red and
green colored hyperrectangles are completely characterized. The hyperrectangles that are
not completely characterized are hard to see considering their sizes. Comparing Figures 4.13
and 5.3, we can see that, in a much lower amount of time, the hyperrectangle algorithm
characterizes more regions than the polytope algorithm for the example problem.

Figure 5.3: The total characterization after 2 seconds of execution
of the hyperrectangle algorithm
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5.2 Hyperrectangle Algorithm Pseudocode

In this section, we provide the pseudocode and its description for the hyperrectangle
algorithm illustrated in Section 5.1.

Similar to Section 4.2, in the remainder of this section, the word hyperrectangle does
not only stand for the geometric specification but it rather represents an object with certain
properties. The properties of a hyperrectangle H can be listed as follows.

• H .HS is the hyperrectangle specification which stands for the geometric specification
of H.

• H .FMM is the set of tuples fmm = (f,max ,min) where fmm.f is a potentially dominant
performance function in H .HS , fmm.max is the maximum value of fmm.f (p) for all
p ∈ H .HS and fmm.min is the minimum value of fmm.f (p) for all p ∈ H .HS .

Algorithm 8 solves the characterization problem for a hyperrectangle parameter space with
hyperrectangle specification IHS and a set of performance functions IF . As stated in the
previous section, the performance functions f ∈ IF are assumed to be monotone. The
characterization is terminated when the execution time exceeds the input termination time
tt . Algorithm 8 first calculates the maximum and minimum values of all performance
functions f ∈ IF in IHS . This is shown in Lines 4 to 7. As illustrated in Section 5.1, we find
these maximum and minimum values by checking the values of f ∈ IF at the corner points
of IHS . The input hyperrectangle is initialized at Line 9. Its hyperrectangle specification
is equal to IHS and its FMM contains all the functions f ∈ IF with their maximum and
minimum values in IHS . Then, at Line 11, this input hyperrectangle is pushed into Queue
which holds the hyperrectangles to be characterized. The set FCH , at Line 13, contains the
fully characterized hyperrectangles.

Similar to Algorithm 1, Algorithm 8 terminates if Queue is empty or the execution
time exceeds the input termination time tt . If these conditions are not satisfied, then, at
Line 15, we continue characterization by taking the hyperrectangle at the head of Queue in
order to be characterized. At Line 16, Algorithm 9 searches for functions fmm.f that are
not dominant in the entire H .HS . As shown in Lines 2 to 4 of Algorithm 9, we search for
function pairs fmmi .f , fmmj .f that satisfy fmmj .min > fmmi .max . We remove such fmmi

from FMM as fmmi .f is proven to be not dominant in entire H .HS . At Line 17 of Algorithm
8, we check if the characterization of H is complete or not. If it is complete, then, at Line
28, it is included in FCH . If it is not complete, then, at Line 18, Algorithm 10 splits H .HS
into two equally sized smaller hyperrectangles.

As shown at Lines 4 to 6 of Algorithm 10, HS is split by splitting the domain that is
the largest among all its parameters into two. At Line 7, the parameter with this largest
domain is stored in splitPar . At Lines 19 and 20 of Algorithm 8, we find new maximum
and minimum values for functions (that are remaining in H .FMM ) whose maximum and
minimum values are changed due to the splitting of H .HS into HS1 and HS2 . As shown
at Lines 3 to 6 of Algorithm 11, we only calculate new maximum and minimum values
for functions fmm.f that have splitPar , because only the domain of splitPar is different
in HS1 and HS2 from H .HS . For the remaining functions, at Lines 7 and 8, we use the
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already calculated maximum and minimum values. At Lines 21 and 22 of Algorithm 8, the
smaller hyperrectangles H1 and H2 are initialized with the corresponding hyperrectangle
specifications and, maximum and minimum values. Then, at Lines 23 and 24, they are added
to Queue for further characterization. Similar to Algorithm 1, when Algorithm 8 terminates,
we return both FCH and Queue.

Algorithm 8 Solve the characterization problem for input hyperrectangle with specification
IHS and input performance functions IF

1: function characterizeHyperrectangle(input hyperrectangle specification IHS , input per-
formance function set IF , termination time tt)

2: // Functions and their maximum and minimum values (FMM) are represented as a
set of tuples (f,max,min)

3: FMMinput = {}
4: for each function f ∈ IF
5: max = max

p∈ IHS
f(p)

6: min = min
p∈ IHS

f(p)

7: FMMinput = FMMinput ∪ {(f,max ,min)}
8: // A hyperrectangle H is represented as a tuple H = (HS ,FMM )
9: Hinput = (IHS ,FMM input)

10: // Queue containing the hyperrectangles to be characterized
11: Queue.enqueue(Hinput)
12: // The set containing the fully characterized hyperrectangles
13: FCH = {}
14: while ¬Queue.isEmpty && executionT ime < tt
15: H = Queue.dequeue
16: H .FMM = removeNotDominantFunctions(H .FMM )
17: if size(H .FMM ) > 1 then
18: HS1 ,HS2 , splitPar = splitInTwo(H.HS)
19: FMM1 = findMinMax(HS1 ,H .FMM , splitPar)
20: FMM2 = findMinMax(HS2 ,H .FMM , splitPar)
21: H1 = (HS1 ,FMM1 )
22: H2 = (HS2 ,FMM2 )
23: Queue.enqueue(H1 )
24: Queue.enqueue(H2 )
25: else
26: FCH = FCH ∪ {H}
27: return FCH ,Queue
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Algorithm 9 Remove performance functions fmm.f that are not dominant in the entire
hyperrectangle

1: function removeNotDominantFunctions(functions and their maximum and minimum val-
ues FMM )

2: for each (fmmi.max, fmmj .min) where fmmi, fmmj ∈ FMM and i ̸= j
3: if fmmj .min > fmmi.max
4: FMM = FMM \ {fmmi}
5: return FMM

Algorithm 10 Split the hyperrectangle specification HS into two smaller hyperrectangle
specifications HS1 and HS2

1: function splitInTwo(hyperrectangle specification HS )
2: //The lower bound of a parameter par (lbpar ) is its smallest value in HS
3: //The upper bound of a parameter par (ubpar ) is its largest value in HS
4: for the parameter par of HS with the largest interval parint = ubpar − lbpar
5: HS1 = {p ∈ HS | ppar ≤ lbpar+ubpar

2 }
6: HS2 = {p ∈ HS | ppar ≥ lbpar+ubpar

2 }
7: splitPar = par
8: return HS1 ,HS2 , splitPar

Algorithm 11 Find the minimum and maximum of functions fmm.f that have splitPar as
a parameter in hyperrectangle specification HS

1: function findMinMax(hyperrectangle specification HS , functions and their maximum and
minimum values FMM , parameter splitPar)

2: FMMnew = {}
3: for each function fmm.f that includes splitPar where fmm ∈ FMM
4: maxnew = max

p∈HS
fmm.f (p)

5: minnew = min
p∈HS

fmm.f (p)

6: FMMnew = {(fmm.f ,maxnew ,minnew )}
7: for each function fmm.f that does not include par where fmm ∈ FMM
8: FMMnew = FMMnew ∪ {fmm}
9: return FMMnew
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5.3 Conclusion

In this chapter, two hyperrectangle-based characterization algorithms are introduced to solve
the previously defined characterization problem. One of these algorithms is presented by
solving an example characterization problem and giving the pseudocode. For this presented
algorithm, it is assumed that the given performance functions satisfy the same monotonicity
properties as the third-order point-to-point motion profile. These hyperrectangle-based
characterization algorithms uses upper and lower bounds to compare the values of perform-
ance functions. For the presented algorithm, we use the monotonicity properties to find
the maximum and minimum values of each performance function in a hyperrectangular
parameter space and these maximum and minimum values are used as the upper and lower
bounds of the performance functions. The only difference between the hyperrectangle-based
characterization algorithms is the way that they calculate the upper and lower bounds.
The presented algorithm uses the monotonicity assumption while the other algorithm uses
interval arithmetic which does not require such assumptions.

If the lower bound of a performance function is greater than the upper bound of another
performance function, then the value of the performance function with the corresponding
upper bound can never be maximum at any point in the characterized hyperrectangular
parameter space. We eliminate such performance functions and if the number of remaining
performance functions is larger than one, then the characterization is not complete. If the
characterization is not complete and the execution time of the algorithm is less than the input
termination time, then the hyperrectangular parameter space is divided into two equal-sized
hyperrectangles. The previous steps of finding upper and lower bounds, comparing them
and splitting the characterized hyperrectangular parameter space is repeated until either we
obtain the exact solution of the problem or the execution time of the algorithm exceeds the
input termination time.

Just like the polytope-based algorithm, the hyperrectangle-based algorithms also provide
approximations of the exact solution as a result.
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Chapter 6

Performance Analysis of the
Characterization Algorithms

In this chapter, we analyse the performance of the polytope- and hyperrectangle-based
characterization algorithms, presented in Chapters 4 and 5, by providing the results of our
experiments and the corresponding conclusions. Our main focus is on the analysis of the
polytope algorithm and the monotone version of the hyperrectangle algorithm. Because both
of these algorithms were targeted towards the third-order point-to-point motion profiles used
by LSAT. However, for general applicability, we also implemented the interval-arithmetic
version of the hyperrectangle algorithm.

The polytope algorithm and the monotone hyperrectangle algorithm are implemented
in the C language using the cddlib library [15]. This library uses the double description
method [16] for the representation of polytopes and the operations are done using the GMP
library [20]. For correctness of the algorithms, we use exact arithmetic for both of the
algorithms. The interval-arithmetic version of the hyperrectangle algorithm is implemented
in the C++ language using the IBEX library. All of the algorithms are run on a 64-bit
Ubuntu machine.

6.1 Characteristics of the Algorithms

The polytope- and hyperrectangle-based algorithms have two main parts: the calculation
of affine approximations/bounds and the characterization done by using these affine
approximations/bounds. In the monotone version of the hyperrectangle algorithm, the
bounds of a performance function are simply calculated by checking the function values
at the corners of hyperrectangles. In the polytope algorithm, the calculation of an affine
approximation includes the formation of a mesh and the solution of the LP given in Equation
4.1. Therefore, the calculation of affine approximations is more computationally expensive
than the calculation of bounds.

In the hyperrectangle algorithm, the characterization of a hyperrectangle is done by using
the calculated bounds. By comparing the lower and upper bounds of different performance
functions, we eliminate performance functions that are not dominant in the entire hyper-
rectangle. In the polytope algorithm, the characterization of a polytope is done by using the
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calculated affine approximations. By comparing the affine over- and under-approximations
of different performance functions, we either eliminate performance functions that are not
dominant in the entire polytope or we characterize part of the polytope by splitting it into two
smaller polytopes and eliminating the performance function in one of these smaller polytopes.

Intuitively, the amount of characterization resulting from comparing affine approxima-
tions is expected to be greater than the amount of characterization resulting from comparing
bounds, because affine approximations can eliminate functions either in the entire poly-
topes or part of the polytopes while bounds can only eliminate functions in the entire
hyperrectangles. Then, our aim is to answer the question: Is it possible for the polytope
algorithm to characterize more area/volume per time unit than the hyperrectangle algorithm
by using computationally expensive affine approximations that, potentially, provide better
characterization compared to bounds?

6.2 Experiments and Results

The main factors that affect the computation time of the calculation of a performance func-
tion’s affine approximations in the polytope algorithm are the following:

• The number of parameters that the performance function has (parNum)

• The chosen resolution (res)

For a performance function f with parNumf parameters and a chosen resolution res, the
number of grid points in the mesh is equal to resparNumf , meaning that the computation
of the affine approximations is done in exponential time. Therefore, the scalability of the
polytope algorithm is mainly limited to performance functions with only a few parameters.
The chosen resolution introduces a trade-off. If a low resolution is chosen, then the accuracy
of the affine approximations is expected to be low. This means that the computation time
of the affine approximations is low, but the regions that are characterized using these affine
approximations are expected to be small. If a high resolution is chosen, then the accuracy
of the affine approximations is expected to be higher. In general, this results in better
characterization, meaning that the total number of affine approximations that need to be
calculated is lower than with low resolution. In our experiments, we analyze this trade-off by
testing with different resolutions.

We quantify the characterization results by calculating the volume of the character-
ized regions. Calculation of the volume of an n-dimensional polytope is a complex task [6].
Considering that we were able to compute the exact volumes of polytopes with three or fewer
dimensions, the parameter spaces in the experiments have three or fewer dimensions.

Tables 6.1 to 6.6 and 6.11 to 6.13 provide the results of experiments with generic per-
formance functions. We use these experiments to analyse the scalability and performance
of the algorithms. Tables 6.7 to 6.10 provide the results of experiments with third-order
point-to-point motion profiles.

For the polytope algorithm, the first column in the results tables shows the chosen
resolution. The second column shows the percentage of characterized area of the total area.
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The third column shows the chosen termination time. The fourth column shows the average
time needed to calculate affine approximations of a performance function. The last column
shows the total number of calculated affine approximations for the performance functions.
For each resolution, the first row shows the results for the case in which we calculate affine
approximations only once for each performance function. This provides us with a base value
for the average calculation time of affine approximations.

Table 6.1 shows the results of the polytope algorithm for the characterization problem
with two performance functions f1 = x2, f2 = y2 and parameter space x ∈ [1, 2], y ∈ [1, 2].
It can be seen that the average calculation time of affine approximations increases with the
increasing total number of calculated affine approximations. This is a result of the GMP
rational numbers that we use for exact arithmetic. GMP represents a rational number
using a denominator and a numerator. The computation time of operations on rational
numbers increases with increasing values of the denominator and numerator of the rational
numbers. With an increasing number of iterations of the polytope algorithm, the parameter
space is divided into more and more polytopes. These divisions introduce more and more
factors into the denominators and numerators, which results in increased values. For
example, for resolution equal to 10, some of the grid points that are used for the calculation
of affine approximations over the initial polytope are 1000/999, 1001/999 and 334/333.
Some of the grid points that are used for the seventh affine approximation calculation are
(14080...57291)/(99484...23168) and (70360...11377)/(49692...72416). We do not include the
entire numbers because they have approximately 350 digits. This explains the increase in
the average calculation time of affine approximations as the total number of calculated affine
approximations increases with increasing termination time.

In Table 6.1, we can see that, for the same termination time, the percentage of char-
acterized area increases with an increasing resolution up to some point. For example, the
percentage of characterized area for resolution 10 and termination time 5 seconds is 0.98171.
For resolution 50 and termination time 5, this increases to 0.99252. However, starting from
resolution 100, we can see that the percentage of characterized area decreases for the same
termination time with increasing resolution. This is the result of the aforementioned trade-off
between the accuracy of the affine approximations and the time it takes to calculate them.

Table 6.2 shows the results of the monotone hyperrectangle algorithm for the same
characterization problem. We can see that, unlike the polytope algorithm, the average
calculation time of a bound does not increase with the increasing total number of calculated
bounds. Similar to the polytope algorithm, the monotone hyperrectangle algorithm divides
the parameter space into more and more hyperrectangles as the number of iterations
increases. However, unlike the polytope algorithm, the hyperrectangles are always divided
down the middle. Therefore, this division only introduces a factor of 2 to the denominator
of some of the corners. This does not result in a significant change in the computation time
of rational number operations. Another reason is that the calculation of a bound is done by
checking the function values at the corners of the hyperrectangles. Therefore, the number of
performed operations is much more lower than the number of operations that is needed to
calculate affine approximations.

Comparing the results in Tables 6.1 and 6.2, we see that, for these performance func-
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tions and parameter space, the monotone hyperrectangle algorithm always characterizes
more area per second than the polytope algorithm. It should be noted that we do not
provide the percentage of characterized area of the monotone hyperrectangle algorithm for
high termination times, because it is already clear from the lower termination times that the
monotone hyperrectangle algorithm performs better.

Resolution
Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of Ap-
proximations
(seconds)

Number of
Calculated
Approxima-

tions

10 0.59220 0.009438 0.001208 2

10 0.95712 1 0.006876 78

10 0.98171 5 0.015201 188

10 0.98808 10 0.019771 282

50 0.79119 0.012779 0.002907 2

50 0.98052 1 0.015938 54

50 0.99252 5 0.038108 114

50 0.99572 10 0.051742 164

100 0.81578 0.016817 0.004818 2

100 0.97643 1 0.021415 42

100 0.99179 5 0.055885 84

100 0.99578 10 0.077118 124

200 0.82804 0.024967 0.008946 2

200 0.97080 1 0.029087 34

200 0.99114 5 0.093018 66

200 0.99288 10 0.130452 76

300 0.83212 0.034175 0.013344 2

300 0.96964 1 0.032124 30

300 0.98917 5 0.127365 54

300 0.99189 10 0.154221 66

Table 6.1: Polytope algorithm: characterization results for f1 = x2, f2 = y2 with
x ∈ [1, 2], y ∈ [1, 2]

42 Characterizing Performance Variability in Manufacturing System Configurations



CHAPTER 6. PERFORMANCE ANALYSIS OF THE CHARACTERIZATION
ALGORITHMS

Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of a
Bound

(seconds)

Number of
Calculated
Bounds

0.97875 0.005 0.00000295 786

0.99023 0.01 0.00000291 1518

0.99902 0.1 0.00000302 15066

- 5 0.00000298 756254

- 10 0.00000296 1581102

Table 6.2: Monotone hyperrectangle algorithm: characterization results for f1 = x2, f2 = y2

with x ∈ [1, 2], y ∈ [1, 2]

Table 6.3 shows the results of the polytope algorithm for the characterization problem with
two performance functions f1 = x4, f2 = y4 and parameter space x ∈ [1, 2], y ∈ [1, 2]. It
should be noted that, even if the performance functions are slightly changed compared to
the previous experiment, the solution of the previous characterization problem and this
characterization problem are the same. In Table 6.3, similar to Table 6.1, we can see that
the average calculation time of approximations increases with the increasing resolution and
termination time. Compared to Table 6.1, for the same resolution and termination time, we
can see that the percentage of characterized area decreases. For example, for resolution 100
and termination time 10, the percentage of characterized area is 0.98539 in Table 6.3, while,
for the same resolution and termination time, the percentage of characterized area is 0.99578
in Table 6.1. This is expected because the first-order partial derivatives of the performance
functions f1 = x4, f2 = y4 are increasing faster than the first-order partial derivatives
of f1 = x2, f2 = y2. In other words, the calculated affine approximations of x4 are less
accurate than the calculated affine approximations of x2. Another reason for this decrease
in the percentage of characterized area is the increase in the average calculation time of
approximations, which results in fewer calculated approximations for the same termination
time. We can see that, in Table 6.3, the average calculation time of approximations increased
for the same resolution and termination time compared to Table 6.1. For example, for
resolution 10 and termination time 5, the average calculation time of approximations is
equal to 0.021221 in Table 6.3, while, for the same resolution and termination time, the
average calculation time of approximations is equal to 0.015201 in Table 6.1, because the
number of operations that is needed to calculate affine approximations of f1 = x4, f2 = y4

is greater than the number of operations needed for f1 = x2, f2 = y2. We can see that this
increase in the average calculation time of approximations results in fewer calculated ap-
proximations for the same resolution and termination time in Table 6.3 compared to Table 6.1.

Table 6.4 shows the results of the monotone hyperrectangle algorithm for the same
characterization problem in Table 6.3. Similar to the results for the polytope algorithm,
we can see that the average calculation time of a bound for the same termination time
increased in Table 6.4 compared to Table 6.2. This is again caused by the increased number
of operations needed for x4 compared to x2. However, the increase in the average calculation
time of a bound from Table 6.2 to Table 6.4 is approximately 5% while the increase in the
average calculation time of approximations from Table 6.1 to Table 6.3 is approximately
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50% when the resolution is equal to 10. This percentage even increases more with increasing
resolution. Therefore, the increase in the number of operations, which is needed to calculate
performance functions, increases the average calculation time of approximations much more
significantly than the average calculation time of a bound.

Comparing Tables 6.4 and 6.3, we can see that, for these performance functions and
parameter space, the monotone hyperrectangle algorithm always characterizes more area per
second than the polytope algorithm, similar to the previous experiment.

Resolution
Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of Ap-
proximations
(seconds)

Number of
Calculated
Approxima-

tions

10 0.28205 0.009206 0.001210 2

10 0.92708 1 0.009153 66

10 0.96992 5 0.021221 158

10 0.98145 10 0.028093 226

50 0.52503 0.012351 0.002775 2

50 0.91516 1 0.023945 40

50 0.97479 5 0.060637 76

50 0.98460 10 0.085490 110

100 0.55737 0.016777 0.004924 2

100 0.92685 1 0.024880 36

100 0.96938 5 0.075992 64

100 0.98539 10 0.111001 86

200 0.57365 0.024613 0.008802 2

200 0.91647 1 0.037113 30

200 0.96426 5 0.100251 50

200 0.97252 10 0.163213 62

300 0.57910 0.033455 0.013199 2

300 0.91868 1 0.038040 28

300 0.93876 5 0.114599 44

300 0.96564 10 0.192580 54

Table 6.3: Polytope algorithm: characterization results for f1 = x4, f2 = y4 with
x ∈ [1, 2], y ∈ [1, 2]
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Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of a
Bound

(seconds)

Number of
Calculated
Bounds

0.97705 0.005 0.00000308 790

0.98950 0.01 0.00000307 1562

0.99902 0.1 0.00000308 14850

- 5 0.00000323 744258

- 10 0.00000326 1469698

Table 6.4: Monotone hyperrectangle algorithm: characterization results for f1 = x4, f2 = y4

with x ∈ [1, 2], y ∈ [1, 2]
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Table 6.5 shows the results of the polytope algorithm for the characterization problem with
two performance functions f1 = x3+y2, f2 = x2+y3 and parameter space x ∈ [1, 2], y ∈ [1, 2].
The solution of this characterization problem is the same as the solutions of the previous
characterization problems. The major difference between the previous experiments and this
one is the number of parameters of the performance functions. The performance functions
of this characterization problem have two parameters while the performance functions in the
previous characterization problems have one parameter. We can see that this results in a
significant increase in the average calculation time of approximations in Table 6.5 compared
to Tables 6.1 and 6.3. For example, for resolution 100 and termination time 10, the average
calculation time of approximations is equal to 2.046528 in Table 6.5, while, for the same
resolution and termination time, it is equal to 0.077118 and 0.111001 in Tables 6.1 and 6.3,
respectively. This is expected because the number of grid points increases exponentially with
the increasing number of function parameters. This increase in the average calculation time
of approximations decreases the total number of calculated approximations for the same
termination time, resulting in a decreased percentage of characterized area. For example, for
resolution 100 and termination time 10, the number of calculated approximations is equal to
10 and the percentage of characterized area is equal to 0.60853 in Table 6.5. For the same
resolution and termination time, the number of calculated approximations is equal to 124
and the percentage of characterized area is equal to 0.99578 in Table 6.1 and the number of
calculated approximations is equal to 86 and the percentage of characterized area is equal to
0.98539 in Table 6.3.

Table 6.6 shows the results of the monotone hyperrectangle algorithm for the same
characterization problem. Similar to the polytope algorithm, there is a significant increase
in the average calculation time of a bound in Table 6.6 compared to Tables 6.2 and 6.4.
This is caused by the increase in the number of corner points that is needed to be checked
for each function resulting from the increase in the number of parameters. For example, for
termination time 0.01, the average calculation time of a bound is 0.00001083 in Table 6.6,
while, for the same termination time, the average calculation time of a bound is 0.00000291 in
Table 6.2 and 0.00000307 in Table 6.4. This is an approximately 300% increase in the average
calculation time of a bound. For the polytope algorithm, the percentage of increase in the
average calculation time of approximations is approximately 2000% from Tables 6.1 and 6.3
to Table 6.5. Also, with the increasing termination time, there is no significant change in
the average calculation time of a bound for the monotone hyperrectangle algorithm. For
termination time 0.005, the average calculation time of a bound is equal to 0.00001059 and,
for termination time 10, the average calculation time of a bound is equal to 0.00001115, which
is approximately a 5% increase. For the polytope algorithm, there is a much more substantial
increase in the average calculation time of approximations with increasing termination time.
In Table 6.5, for resolution 100 and termination time 5, the average calculation time of
approximations is equal to 1.158823. For the same resolution with termination time 50, the
average calculation time of approximations is equal to 3.573191 which is approximately a
300% increase.

Similar to the previous experiments, comparing Tables 6.5 and 6.6, we can see that
the monotone hyperrectangle algorithm always characterizes more area per second than the
polytope algorithm.
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Resolution
Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of Ap-
proximations
(seconds)

Number of
Calculated
Approxima-

tions

10 0.00693 0.025529 0.009421 2

10 0.51752 1 0.022098 44

10 0.79952 5 0.042229 112

10 0.86495 10 0.056092 168

10 0.94996 50 0.102464 450

50 0.30254 0.404440 0.198874 2

50 0.37379 1 0.312391 6

50 0.52652 5 0.628326 12

50 0.60740 10 0.787105 16

50 0.83943 50 1.476834 34

100 0.36389 1.81527 0.904168 2

100 0.44198 5 1.158823 6

100 0.60853 10 2.046528 10

100 0.73011 50 3.573191 18

200 0.39619 8.918722 4.455851 2

200 0.64761 50 7.040665 10

200 0.64761 100 9.822113 12

200 0.67985 200 14.782102 14

300 0.40719 23.955888 11.9743 2

300 0.48749 50 12.610881 6

300 0.50539 100 14.237742 8

300 0.66045 200 22.561653 12

Table 6.5: Polytope algorithm: characterization results for f1 = x3 + y2, f2 = x2 + y3 with
x ∈ [1, 2], y ∈ [1, 2]

Percentage of
Characterized

Area

Termination
Time

(seconds)

Average
Calculation
Time of a
Bound

(seconds)

Number of
Calculated
Bounds

0.45312 0.005 0.00001059 370

0.64843 0.01 0.00001083 718

0.94287 0.1 0.00001087 7082

- 5 0.00001111 332406

- 10 0.00001115 686946

Table 6.6: Monotone hyperrectangle algorithm: characterization results for f1 = x3+y2, f2 =
x2 + y3 with x ∈ [1, 2], y ∈ [1, 2]
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Tables 6.7 to 6.10 show the results of the experiments with the third-order point-to-point mo-
tion profiles. It can be seen that the monotone hyperrectangle algorithm always characterizes
more area per second than the polytope algorithm in these experiments too. We conclude
that, in all of the experiments, the monotone hyperrectangle algorithm always performs better
than the polytope algorithm.

Resolution
Percentage of
Characterized

Area

Termination
Time

(seconds)

10 0.94488 1

10 0.97884 5

10 0.98720 10

10 0.99587 50

50 0.97242 1

50 0.99283 5

50 0.99599 10

50 0.99854 50

100 0.97004 1

100 0.99248 5

100 0.99536 10

100 0.99853 50

200 0.97052 1

200 0.97913 5

200 0.98911 10

200 0.99783 50

300 0.94623 1

300 0.97552 5

300 0.98741 10

300 0.99700 50

Table 6.7: Polytope algorithm: characterization results for f1 = fmp1(50, 20, aMax 1, 4), f2 =
fmp2(50, 20, aMax 2, 4) with aMax 1 ∈ [4, 5], aMax 2 ∈ [4, 5]

Percentage of
Characterized

Area

Termination
Time

(seconds)

0.96875 0.01

0.99660 0.1

0.99975 1

Table 6.8: Monotone hyperrectangle algorithm: characterization results for f1 =
fmp1(50, 20, aMax 1, 4), f2 = fmp2(50, 20, aMax 2, 4) with aMax 1 ∈ [4, 5], aMax 2 ∈ [4, 5]
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Resolution
Percentage of
Characterized

Volume

Termination
Time

(seconds)

10 0.67098 1

10 0.83524 5

10 0.87196 10

10 0.93001 50

50 0.76850 1

50 0.79687 5

50 0.81768 10

50 0.92476 50

100 0.35376 1

100 0.80002 5

100 0.80002 10

100 0.86635 50

200 0.36183 1

200 0.78855 5

200 0.78855 10

200 0.81551 50

300 0.36456 1

300 0.36456 5

300 0.36456 10

300 0.82072 50

Table 6.9: Polytope algorithm: characterization results for f1 = fmp1(40, vMax1 , 2.5, 4), f2 =
fmp2(40, vMax2 , aMax 2, 4) with vMax1 ∈ [4, 5], vMax2 ∈ [4, 5], aMax 2 = [2, 3]

Percentage of
Characterized

Volume

Termination
Time

(seconds)

0.70312 0.01

0.87670 0.1

0.96308 1

Table 6.10: Monotone hyperrectangle algorithm: characterization results for f1 =
fmp1(40, vMax1 , 2.5, 4), f2 = fmp2(40, vMax2 , aMax 2, 4) with vMax1 ∈ [4, 5], vMax2 ∈
[4, 5], aMax 2 = [2, 3]
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Tables 6.11, 6.12 and 6.13 show the results of the interval-arithmetic version of the hyperrect-
angle algorithm for the same experiments given in Tables 6.1 to 6.6. In all of the experiments,
the interval-arithmetic hyperrectangle algorithm always characterizes more area per second
than the polytope algorithm and it performs slightly worse than the monotone hyperrectangle
algorithm. For example, for termination time 0.1, the percentage of characterized area is equal
to 0.99902 in Table 6.2 and 0.99721 in Table 6.11. This slight decrease in performance may
be acceptable because of its general applicability compared to the monotone hyperrectangle
algorithm.

Percentage of
Characterized

Area

Termination
Time

(seconds)

0.95117 0.005

0.97705 0.01

0.99721 0.1

Table 6.11: Interval-arithmetic hyperrectangle algorithm: characterization results for f1 =
x2, f2 = y2 with x ∈ [1, 2], y ∈ [1, 2]

Percentage of
Characterized

Area

Termination
Time

(seconds)

0.95703 0.005

0.97851 0.01

0.99804 0.1

Table 6.12: Interval-arithmetic hyperrectangle algorithm: characterization results for f1 =
x4, f2 = y4 with x ∈ [1, 2], y ∈ [1, 2]

Percentage of
Characterized

Area

Termination
Time

(seconds)

0.43693 0.005

0.62649 0.01

0.91743 0.1

Table 6.13: Interval-arithmetic hyperrectangle algorithm: characterization results for f1 =
x3 + y2, f2 = x2 + y3 with x ∈ [1, 2], y ∈ [1, 2]

6.3 Conclusion

From the results of the experiments, for the polytope-based algorithm, it is observed that
the chosen resolution introduces a trade-off. In all of the experiments, it is observed that
increasing the resolution up to a certain threshold increases the percentage of characterized
area when the termination time is kept constant. However, when the resolution is increased
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more than this threshold, the percentage of characterized area decreases. It is also observed
that there are factors that increase the average calculation time of affine approximations
which has a negative impact on the scalability of the algorithm. These factors are observed to
be increasing the termination time, increasing the number of operations in the performance
functions and increasing the number of parameters in the performance functions. With
increasing termination time, the number of parameter space divisions increases and this
results in more complex grid points. Exact arithmetic operations with complex grid points
result in an increased computation time which increases the average calculation time of
affine approximations. With increasing number of operations in the performance functions,
the number of exact arithmetic operations that is needed to calculate affine approximations
increases which results in an increased average calculation time of affine approximations.
With increasing number of parameters in the performance functions, the number of grid
points in the mesh increases exponentially which results in an increased number of exact
operations for the calculation of affine approximations.

For the monotone hyperrectangle-based algorithm, the factors that are listed for the
polytope algorithm do not result in a significant change in the average calculation time of
bounds. The main reason for this is that the number of exact arithmetic operations needed
to calculate a bound is much more smaller than the number of exact arithmetic operations
needed to calculate an affine approximation.

It is observed from the results of the experiments that the hyperrectangle-based al-
gorithms always characterize more area per second than polytope algorithm and the
monotone hyperrectangle algorithm characterizes slightly more area than the hyperrectangle
algorithm that uses interval arithmetic. However, it should be noted that the monotone
hyperrectangle algorithm is only limited to be used for performance functions that are
monotone while interval arithmetic is not limited to such performance functions.
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Chapter 7

LSAT Extension

In this chapter, we propose a parametric extension for the critical-path analysis performed
by LSAT. In the first section, we provide a brief description on how LSAT performs critical-
path analysis. In the second section, we provide the description of the proposed parametric
extension.

7.1 Critical-Path Analysis of LSAT Models with Fixed Action
Durations

In this section, we summarize the basics of the critical-path analysis performed by LSAT.
Further details about this analysis and the modeling concepts used in LSAT can be found in
[42].

Activities, as a directed acyclic graph, have a special structure. In an activity, each
resource is claimed not more than once and each resource is released not more than once.
This can be seen in Figure 3.6. As shown in Figure 3.4, this example activity uses three
resources: Robot1, Robot2 and Robot3. Nodes n1 and n3 are the corresponding claim and
release nodes for Robot1 while n4, n6 and n7, n9 are the corresponding nodes for Robot2 and
Robot3, respectively.

In LSAT, system behavior is modeled using activity sequences. Figure 7.1 shows two
activities A1 and A2. The values at the center of the nodes show the fixed durations of
the corresponding actions. An example activity sequence, using these activities, is A1 · A2.
The execution of an activity sequence starts from the first activity, for our example A1.
Each node can only execute if the executions of all of its predecessor nodes are complete.
An activity needs to claim a resource before it can execute action nodes that use that
resource. For our example, A2 needs to claim resource r1 before it can execute its node
with action (e, p2). However, before A2 claims r1, r1 needs to be released by A1 considering
that A1 is executed before A2. Therefore, in an activity, every claim node is succeeded
by a release node on the corresponding resource. Because of the special structure of the
activities, it is possible to represent an activity sequence by using a single concatenated
activity. In a concatenation, two activities are connected by replacing the release and
claim node pair of each resource by dependencies. In A1 · A2, A1 is followed by A2.
Therefore, the release nodes n4, n8 of A1 and the claim nodes n9, n12 of A2 are removed
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and the predecessor(s) of each claim node is connected with a dependency to the successor
node(s) of the corresponding release node. This can be seen in Figure 7.2 as n19 is con-
nected to n20 with a dependency and n24 is connected to both n25 and n26 with dependencies.

To find the critical path(s) of an activity sequence, such as A1 · A2, an obvious way
is to first find the concatenated activity. Then, we can use well-known algorithms that find
the critical path(s) of directed acyclic graphs with fixed node durations. However, LSAT
uses a more efficient approach to find the critical path(s) of activity sequences. Because of
the special structure of activities, it is possible to represent the timing behavior of an activity
using matrices. To find the timing matrix MA of an activity A = DAG(NA,→A), we find the
starting time start(n) and ending time end(n) of each node n ∈ NA. The starting time of a
node is equal to the maximum of the ending times of its predecessors and the ending time
of a node is equal to its starting time plus its duration. An algorithm for computing these
timing matrices automatically can be found in [18]. As an example, we calculate the timing
matrix MA1 of activity A1. Let γ be a resource time stamp vector with each entry showing
the availability time of the corresponding resource. Considering that A1 and A2 have two
resources, for our example, γ = [γ(r1) γ(r2)]

T.

end(n1) = γ(r1)

end(n5) = γ(r2)

end(n2) = max(end(n1)) + 1 = γ(r1) + 1

end(n6) = max(end(n5)) + 2 = γ(r2) + 2

end(n3) = max(end(n2), end(n6)) + 3

= max(γ(r1) + 1, γ(r2) + 2) + 3

= max(γ(r1) + 4, γ(r2) + 5)

end(n7) = max(end(n6)) + 1 = γ(r2) + 3

end(n4) = end(n3) = max(γ(r1) + 4, γ(r2) + 5)

end(n8) = end(n7) = γ(r2) + 3

The ending times of the release nodes can be written in the following normal form:

end(n4) = max(γ(r1) + 4, γ(r2) + 5)

end(n8) = max(γ(r1) +−∞, γ(r2) + 3).

These equations show that end(n4) is dependent on both the availability time of r1 (γ(r1))
and the availability time of r2 (γ(r2)). This can be seen in Figure 7.1. In A1, n4 can only
be executed after the execution of n3 and n3 can only be executed after the execution of n2

and n6. Because the execution of n2 is dependent on the availability time of r1, end(n4) is
also dependent on the availability time of r1. A similar reasoning can be applied for n6. The
equations show that end(n8) = max(γ(r1)+−∞, γ(r2)+3). The part with γ(r1)+−∞ shows
that the execution of n8 is not dependent on the availability time of r1. The corresponding
timing matrix MA1 is the following:

MA1 =

[
4 5

−∞ 3

]
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It should be noted that the entries of a timing matrix capture the longest/critical paths
between resource claims and releases; that is, M i,j is the duration of the longest path from
the claim of resource rj till the release of resource ri. In A1, there is one path from the claim
of r1 till the release of r1 (n1, n2, n3, n4), so [MA1 ]1,1 is equal to 4 which is the duration of
this path. The same reasoning applies for [MA1 ]1,2 and [MA1 ]2,2. [MA1 ]2,1 is equal to −∞,
because there is no path from the claim of resource r1 to the release of resource r2.

LSAT finds the critical path(s) of an activity sequence using the individual timing
matrices of the activities in the sequence. First, LSAT finds the updated resource time
stamp vectors after the execution of the activities in the sequence. These updated resource
time stamp vectors are found by using the initial resource time stamp vector and the timing
matrices of the activities in the sequence. For an initial resource time stamp vector γ, let γ′

be the updated resource time stamp vector after the execution of an activity A. A resource
ri cannot be released before all the longest paths, from the claim of any resource rj to the
release of ri, are executed. This means that the sum of [MA]i,j and γ(rj), for any resource
rj , limits the earliest time possible for the release of ri. Therefore, the earliest time possible
for the release of ri (γ

′(ri)) is the maximum of these summations.

For our example, let γ0 = [0 0] be the initial resource time stamp. Then, the updated
resource time stamp vector γ1 after the execution of activity A1 is the following:

γ1(r1) = max([MA1 ]1,1 + γ0(r1), [MA1 ]1,2 + γ0(r2)) = max(4 + 0, 5 + 0) = 5

γ1(r2) = max([MA1 ]2,1 + γ0(r1), [MA1 ]2,2 + γ0(r2)) = max(−∞+ 0, 3 + 0) = 3

A2 is executed after the execution of A1. Therefore, the final resource time stamp vector γ2
after the execution of activity A2 is the following:

MA2 =

[
2 3
2 3

]

γ2(r1) = max([MA2 ]1,1 + γ1(r1), [MA2 ]1,2 + γ1(r2)) = max(2 + 5, 3 + 3) = 7

γ2(r2) = max([MA2 ]2,1 + γ1(r1), [MA2 ]2,2 + γ1(r2)) = max(2 + 5, 3 + 3) = 7

Using the obtained resource time stamp vectors and the timing matrices of the activities in
the sequence, LSAT finds the critical-path segments in each activity. This is done by tracing
the matrix entries, in the obtained resource time stamp vectors and the timing matrices of
the activities, that contribute to the duration of the critical path(s). The duration of the
critical path(s) is the maximum of the resource availability times in the final resource time
stamp vector.

In our example, the duration of the critical path(s) is equal to max(γ2(r1), γ2(r2)) =
max(7, 7) = 7. Both of the availability times γ2(r1) and γ2(r2) are equal to the duration of
the critical path(s). Therefore, all the entries, in γ1 and MA2 , that contribute to γ2(r1) or
γ2(r2) need to be found. These entries are γ1(r1), [MA2 ]1,1 and [MA2 ]2,1. The entries, in
γ0 and MA1 , that contribute to γ1(r1) are γ0(r2) and [MA1 ]1,2. Then, in A1, the longest
path(s) from the claim of r2 to the release of r1 (whose duration(s) is equal to [MA1 ]1,2) is the
critical-path segment(s). In A2, the longest path(s) from the claim of r1 to the release of r1
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(whose duration(s) is equal to [MA2 ]1,1) and the longest path(s) from the claim of r1 to the
release of r2 (whose duration(s) is equal to [MA2 ]2,1) are the critical-path segments. This can
be seen in Figures 7.1 and 7.2. In A1 · A2, there are two critical paths n22, n23, n19, n20, n21

and n22, n23, n19, n20, n28. In A1, the duration of the path n5, n6, n3, n4 is equal to [MA1 ]1,2
and this path (without the release node n4) is equal to a segment of the critical paths
n22, n23, n19. In A2, the durations of the paths n9, n10, n11 and n9, n10, n16 are equal to
[MA2 ]1,1 and [MA2 ]2,1, respectively, and these paths (without the claim node n9) are equal
to segments of the critical paths n20, n21 and n20, n28, respectively.

To find the optimal activity sequence for a system, LSAT analyses the timing beha-
vior of different activitiy sequences. By using the explained modular activity-based
approach, rather than finding the concatenated activity of each activity sequence, LSAT
re-uses the partial analyses across different activity sequences which results in higher
efficiency.

Figure 7.1: Activities A1 and A2

Figure 7.2: Activity A1 ·A2

7.2 Critical-Path Analysis of Parameterised LSAT Models

In the previous section, we provide a brief description on how LSAT performs the critical-path
analysis of models with fixed action durations. In this section, we provide an approach for
the parametric critical-path analysis of parameterised LSAT models.
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Figure 7.3: Parameterised activities A1 and A2

Figure 7.4: Parameterised activity A1 ·A2

As stated in the previous section, to find the critical path(s) of an activity sequence,
LSAT uses the individual timing matrices of the activities in the sequence. We propose a
similar approach for the parametric critical-path analysis.

Figure 7.3 shows the parameterised activities A1 and A2 and Figure 7.4 shows the
parameterised concatenated activity A1 · A2. The functions in the center of the nodes
represent the duration functions of the corresponding actions. Then, the following defines
the duration functions of the nodes:

dn2(x, y) = dn18(x, y) = da(x, y) = x2 + y2 + 3y

dn6(x, y) = dn23(x, y) = db(x, y) = y3 + x

dn3(x, y) = dn19(x, y) = dc(x, y) = y4 + 4x

dn7(x, y) = dn24(x, y) = dd(x, y) = 3x+ 1

dn10(x, y) = dn20(x, y) = de(x, y) = x2 − x+ 3

dn13(x, y) = dn25(x, y) = df(x, y) = x2 + 3

dn14(x, y) = dn27(x, y) = dg(x, y) = y2 + 5y

dn15(x, y) = dn26(x, y) = dh(x, y) = y3 + 2

In an activity with fixed action durations, the starting time of a node n with prede-
cessors np1 and np2 is calculated by finding the maximum of the ending times of np1 and
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np2. The ending times of np1 and np2 are of the form max(γ(r1) + c11, γ(r2) + c12, ...)
and max(γ(r1) + c21, γ(r2) + c22, ...), respectively. Therefore, the starting time of n is
max(γ(r1) + max(c11, c21), γ(r2) + max(c12, c22), ...). The maximum of these fixed values,
such as max(c11, c21), is also a fixed value.

For parameterised activities, similar to the activities with fixed action durations, we
represent the timing behavior by using parameterised timing matrices. However, considering
that the durations are functions rather than fixed values, the duration functions of paths
can be maximum at different points in the domain of interest and we need to keep track of
every path that is potentially a part of a critical path at any point in the domain of interest.
Therefore, we use starting duration-function set start(n) and ending duration-function set
end(n) to represent the starting time and ending time of a node n in a parameterised
activity. In order to eliminate some of the paths that are not a part of a critical path at any
point in the domain of interest, we find start(n) by comparing the duration functions in the
ending duration-function sets of the predecessors of n. This comparison is done by finding
the lower bounds of the differences between these duration functions.

Given parameterised activity A = DAG(NA,→A), hyperrectangular parameter space
of interest D and parameterised resource time stamp vector γ, let Pred(n) be the
set of all predecessors of a node n ∈ NA and endPred (n) be the set of all duration
functions in the ending duration-function sets of the predecessors of n which means
endPred (n) =

⋃
nin∈Pred(n) end(nin). Additionally, let lbfj−fi be a lower bound of the

difference of the duration functions fi and fj that satisfies fj(p) − fi(p) ≥ lbfj−fi ∀p ∈ D.
Then, the starting duration-function set start(n) and the ending duration-function set
end(n) is found as follows:

start(n) =

{
γ(r) if n has a cl/rl action

{fi | fi ∈ endPred (n) ∧ lbfj−fi ≤ 0 ∀fj ∈ endPred (n)} otherwise

end(n) = {f + d(n) | f ∈ start(n)}

In the above definition, each duration function f ∈ endPred (n) is the duration function of a dif-
ferent path with a predecessor of n as the last node. If, for a duration function fi ∈ endPred (n),
lbfj−fi > 0 is true for any fj ∈ endPred (n), then fj(p)− fi(p) ≥ lbfj−fi > 0 ∀p ∈ D is satisfied.
This proves that the path with the duration function fi is not a part of a critical path at any
point p ∈ D. Therefore, in start(n), we only include duration functions fi ∈ endPred (n) that
satisfy lbfj−fi ≤ 0 ∀fj ∈ endPred (n).

As discussed in Chapter 5, the lower bounds can be calculated by using interval arithmetic.
If the monotonicity requirements are satisfied, then it is also possible to use the corners of D
to find the exact maximum and minimum, just like we presented in Chapter 5. However, in
practical models, such monotonicity requirements are not always satisfied.

Now, as an example, we calculate start(n) and end(n) of all nodes n ∈ NA2 and the
corresponding parameterised timing matrix MA2 for parameter space D = Dx × Dy where
Dx = [4, 6] and Dy = [1, 2]. We use interval arithmetic to find the bounds of the differences
between the duration functions.
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The nodes n9 and n12 have claim (cl) actions.

start(n9) = γ(r1)

end(n9) = {f + 0 | f ∈ γ(r1)} = γ(r1)

start(n12) = γ(r2)

end(n12) = {f + 0 | f ∈ γ(r2)} = γ(r2)

The nodes n13 and n15 have only one predecessor node. Therefore, no comparison is needed.

start(n13) = end(n12)

end(n13) = {f + dn13 | f ∈ end(n12)} = {f + dn13 | f ∈ γ(r2)}
start(n15) = end(n12)

end(n15) = {f + dn15 | f ∈ end(n12)} = {f + dn15 | f ∈ γ(r2)}

By checking the ending duration-function sets of the predecessors of n10, end(n9) = γ(r1)
and end(n13) = {f + dn13 | f ∈ γ(r2)}, we see that end(n9) only depends on γ(r1), while
end(n13) only depends on γ(r2). Therefore, it is not possible to compare the duration functions
fi ∈ end(n9) with the duration functions fj ∈ end(n13) which means that no elimination is
possible for start(n10).

start(n10) = end(n9) ∪ end(n13) = {f | f ∈ γ(r1)} ∪ {f + dn13 | f ∈ γ(r2)}
end(n10) = {f + dn10 | f ∈ start(n10)} = {f + dn10 | f ∈ γ(r1)} ∪ {f + dn13 + dn10 | f ∈ γ(r2)}
start(n11) = end(n10)

end(n11) = start(n11) = {f + dn10 | f ∈ γ(r1)} ∪ {f + dn13 + dn10 | f ∈ γ(r2)}

By checking the ending duration-function sets of the predecessors of n14, end(n13) = {f +
dn13 | f ∈ γ(r2)} and end(n15) = {f + dn15 | f ∈ γ(r2)}, we see that both end(n13) and
end(n15) depend on γ(r2). Therefore, we can make a comparison and check if we can do any
elimination for start(n14).

9 ≤ dn13(p)− dn15(p) ≤ 36 ∀p ∈ D
lbdn13−dn15

= 9 > 0

Because of lbdn13−dn15
= 9 > 0, we know that there is a duration function fbig ∈ {f +dn13 | f ∈

γ(r2)} for each duration function f ∈ {f + dn15 | f ∈ γ(r2)} such that fbig(p) > f (p) for all
p ∈ D. This proves that the path (n12, n15, n14) is not a part of a critical path at any point
in D, because the value of the duration function of the path (n12, n13, n14) is greater than the
value of the duration function of (n12, n15, n14) at any point in D. Therefore, the duration
functions in end(n15) are eliminated.

start(n14) = end(n13) = {f + dn13 | f ∈ γ(r2)}
end(n14) = {f + dn13 + dn14 | f ∈ γ(r2)}

For start(n16), the ending duration-function sets of the predecessors are end(n10) = {f +
dn10 | f ∈ γ(r1)} ∪ {f + dn13 + dn10 | f ∈ γ(r2)} and end(n14) = {f + dn13 + dn14 | f ∈ γ(r2)}.
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We do the following comparisons.

−1 ≤ dn13 + dn10 − dn13 − dn14 ≤ 29

lbdn10−dn14
= −1 ≤ 0

−29 ≤ dn13 + dn14 − dn13 − dn10 ≤ 1

lbdn14−dn10
= −29 ≤ 0

Because of lbdn10−dn14
= −1 ≤ 0 and lbdn14−dn10

= −29 ≤ 0, no elimination can be done for
start(n16).

start(n16) = end(n10) ∪ end(n14)

end(n16) = start(n16) =

{f + dn10 | f ∈ γ(r1)} ∪ {f + dn13 + dn10 | f ∈ γ(r2)} ∪ {f + dn13 + dn14 | f ∈ γ(r2)}

The release nodes of A2 are n11 and n16. Because of end(n11) = {f + dn10 | f ∈ γ(r1)} ∪
{f + dn13 + dn10 | f ∈ γ(r2)}, [MA2 ]11 is equal to {(dn10)} and [MA2 ]12 is equal to {(dn13 +
dn10)}. Similarly, because of end(n16) = {f + dn10 | f ∈ γ(r1)} ∪ {f + dn13 + dn10 | f ∈
γ(r2)} ∪ {f + dn13 + dn14 | f ∈ γ(r2)}, [MA2 ]21 is equal to {(dn10)} and [MA2 ]22 is equal to
{(dn13 + dn10), (dn13 + dn14)}. Then, the parameterised timing matrix of activity A2 is the
following:

MA2 =

[
{(dn10)} {(dn13 + dn10)}
{(dn10)} {(dn13 + dn10), (dn13 + dn14)}

]
To solve the parametric critical-path problem, defined in Section 3.3, for a parameterised
activity sequence such as A1 · A2, one way is to first find the corresponding concatenated
activity A = A1 · A2 and its parameterised timing matrix MA. Then, the duration
functions that are members of the elements [MA]i,j are the duration functions of the
maximal paths of A. It should be noted that we eliminate some of the maximal paths, that
are not critical at all p ∈ D, while constructing the matrix with duration function comparisons.

The parameterised timing matrix of the concatenated activity A1 ·A2 is given below.

MA1·A2 =

[
fs1,1 fs1,2
fs2,1 fs2,2

]

fs1,1 = {(dn18 + dn19 + dn20)}
fs1,2 = {(dn23 + dn19 + dn20), (dn23 + dn24 + dn25 + dn20)}
fs2,1 = {(dn18 + dn19 + dn20)}
fs2,2 = {(dn23 + dn19 + dn20), (dn23 + dn24 + dn25 + dn20), (dn23 + dn24 + dn25 + dn27)}

Then, FmaxPaths = fs1,1∪ fs1,2∪ fs2,1∪ fs2,2 = {(dn18 +dn19 +dn20), (dn23 +dn19 +dn20), (dn23 +
dn24 + dn25 + dn20), (dn23 + dn24 + dn25 + dn27)} is the set of the duration functions of the max-
imal paths of A1 · A2. The duration functions of maximal paths p1 = (n17, n18, n19, n20, n21)
and p2 = (n17, n18, n19, n20, n28) are fp1 = fp2 = (dn18 + dn19 + dn20), the duration func-
tions of maximal paths p3 = (n22, n23, n19, n20, n21) and p4 = (n22, n23, n19, n20, n28) are
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fp3 = fp4 = (dn23 + dn19 + dn20) and etc. It should be noted that the duration function of
maximal path p5 = (n22, n23, n24, n26, n27, n28) is fp5 = (dn23 + dn24 + dn26 + dn27) and it is
not a member of FmaxPaths. Because we concluded that it is not critical at all points p ∈ D,
as a result of the comparisons we did while we constructed matrix MA1·A2 .

Now, we have the duration functions of the maximal paths of A1 · A2. Therefore, we
can solve the parametric critical-path problem for A1 ·A2 by solving the following character-
ization problem: find the mapping C : P → ℘(F) \ {∅} where P = D and F = FmaxPaths.

There is a more efficient approach to solve the parametric critical-path problem for
parameterised activity sequences. Similar to the case with fixed action durations, we use
the individual parameterised timing matrices of the activities in the activity sequence. By
using these individual matrices, we find the duration functions of the maximal paths of the
concatenated activity without calculating the concatenated activity.

Given a parameterised resource time stamp vector γ, let each entry of the paramet-
erised resource time stamp vector γ′ show the availability of the corresponding resource
after the execution of activity A. We can calculate γ′ by using parameterised matrix
multiplication, γ′ = MA ⊗ γ, which is given as follows.

Given hyperrectangular domain D, m × p parameterised timing matrix MA and p × 1
parameterised resource time stamp vector γ, the elements of the resulting parameterised
resource time stamp vector γ′ = MA ⊗ γ are determined by:

γ′(ri) = {f1 | f1 ∈ FCom ∧ lbf2−f1 ≤ 0 ∀f2 ∈ FCom ∧

FCom =

p⋃
k=1

{fA + fB | fA ∈ [MA]ik ∧ fB ∈ γ(rk)}}

The definition of the parameterised matrix multiplication is quite similar to the definition
of the starting duration-function set. However, there are significant differences. In the
calculation of the starting duration-function set, we only use the dependencies on the
availability of the resources. Because we are interested in the individual timing behavior of
an activity. In the parameterised matrix multiplication, the timing behavior (parameterised
timing matrix) of an activity is already known and, by using a concrete parameterised
resource time stamp vector with duration functions in its entries, we find the availability of
the resources after the execution of the activity. Each duration function f ∈ FCom is the
summation of the duration function (fA) of a path that starts from the claim of a resource rk
and ends with the release of ri, and a duration function (fB) whose value is potentially equal
to the availability time of rk at some point in D. By comparing these duration functions, we
eliminate any duration function fA + fB whose value is never equal to the availability time
of ri after the execution of activity A.

For an activity sequence, if we continue finding the parameterised resource time stamp vectors
following the sequential execution of the activities then, at the end, we find the duration func-
tions of the maximal paths of the concatenated activity. Now, as an example, we show how we
can calculate the duration functions of the maximal paths of A1 ·A2 using the matrices MA1
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and MA2 . We assume an initial parameterised resource time stamp vector γ0 = [{0} {0}].

MA1 =

[
{(dn2 + dn3)} {(dn6 + dn3)}

−∞ {(dn2 + dn3)}

]

MA2 =

[
{(dn10)} {(dn13 + dn10)}
{(dn10)} {(dn13 + dn10), (dn13 + dn14)}

]

γ1 = MA1 ⊗ γ0 =

[
{(dn2 + dn3)} {(dn6 + dn3)}

−∞ {(dn6 + dn7)}

]
⊗
[
{0}
{0}

]
=

[
{(dn2 + dn3)}
{(dn6 + dn7)}

]
To find γ1(r1), the duration functions (dn2 +dn3 +0) and (dn6 +dn3 +0) are compared. Using
interval arithmetic, we find the bound 6 ≤ dn2 − dn6 ≤ 41. Because of lbdn2−dn6

= 6 > 0, it
is proven that the value of the duration function of the path (n5, n6, n3, n4) is greater than
the value of the duration function of the path (n1, n2, n3, n4) at any point in D for the initial
parameterised resource time stamp vector γ0 = [{0} {0}]. Therefore, (n5, n6, n3, n4) is not a
part of a critical path at any point in D and (dn6 + dn3 + 0) is eliminated.

γ2 = MA2 ⊗ γ1 =

[
{(dn10)} {(dn13 + dn10)}
{(dn10)} {(dn13 + dn10), (dn13 + dn14)}

]
⊗

[
{(dn2 + dn3)}
{(dn6 + dn7)}

]
=

[
γfs(r1)
γfs(r2)

]
where γfs(r1) = {(dn2 + dn3 + dn10), (dn6 + dn7 + dn13 + dn10)} and γf (r2) =
{(dn2 + dn3 + dn10), (dn6 + dn7 + dn13 + dn10), (dn6 + dn7 + dn13 + dn14}.

We can see that γfs(r1) = fs1,1 ∪ fs1,2 and γf (r2) = fs2,1 ∪ fs2,2. Therefore, we ob-
tain the same set of duration functions with MA1·A2 .

To find the duration functions of the maximal paths of an activity sequence, using in-
dividual parameterised timing matrices and parameterised matrix multiplication is more
efficient than directly calculating the concatenated matrix and the corresponding paramet-
erised timing matrix. Because we need to calculate the individual parameterised timing
matrices only once, and then we can re-use these parameterised timing matrices to find the
parameterised timing matrix of any activity sequence.

7.3 Conclusion

In this chapter, the first section provides a brief summary about how LSAT performs
critical-path analysis when the durations of nodes are fixed values. By using the special
structure of the activities (obtained by soundness rules), the timing behavior of an activity
is represented using a timing matrix. To find the critical path of an activity sequence, LSAT
uses the timing matrices of the individual activities in the sequence. With this modular
approach, it is possible to use the partial analysis of each activity in the critical-path analysis
of different activity sequences.

In the second section, we proposed a parametric extension to this modular approach.
With parameterised durations of nodes, a different path can be the path with the maximum
duration value at different points in the parameter space. Therefore, in parameterised
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activity sequences, we keep track of every path that has the potential to be the path with
the maximum duration value at some point in the parameter space. Then, using a similar
modular approach, we find all the potentially critical paths of an activity sequence by using
the parameterised timing matrices of the individual activities in the sequence. After these
potentially critical paths of the activity sequence are found with their corresponding duration
functions. The parametric critical-path problem for this activity sequence can be solved by
solving the corresponding characterization problem (with performance functions equal to
the duration functions of the potentially critical paths) using the presented characterization
algorithms.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

This thesis focuses on the parametric critical-path analysis of parameterized LSAT models.
Two main contributions are the following:

• We designed and implemented a polytope-based characterization algorithm and a
hyperrectangle-based characterization algorithm targeted towards the third-order point-
to-point motion profiles that are used in LSAT. We also designed and implemented a
more generic hyperrectangle-based characterization algorithm that uses interval arith-
metic.

• We proposed a parametric extension to the critical-path analysis performed by LSAT.

The algorithms that are targeted towards the third-order point-to-point motion profiles were
designed according to the properties of the third-order point-to-point motion profiles. We
analysed the scalability and performances of these algorithms using generic performance
functions. Because of its exponential time complexity, the polytope algorithm is targeted
towards performance functions with few parameters. The experiments showed that, even
for performance functions with few parameters, the monotonic hyperrectangle algorithm
performs better than the polytope algorithm. Apart from the exponential complexity,
the rational numbers that are used for exact arithmetic caused significant increases in the
calculation time of affine approximations that are used in the polytope algorithm. The
experiments also showed that the interval-arithmetic hyperrectangle algorithm performs
better than the polytope algorithm and slightly worse than the monotonic hyperrectangle
algorithm. We concluded that, considering the general applicability of interval arithmetic,
this slight decrease in performance can be acceptable.

We provided a brief summary of the critical-path analysis performed by LSAT for
non-parameterised models. LSAT uses the special structure of the activities to find the
critical paths of activity sequences without calculating the concatenated activity. Using the
individual timing matrices of the activities in the sequence, LSAT finds the critical path
segments in different activities independent of each other. This modular activity-based
approach provides efficiency since the partial analyses are re-used to analyse the timing
behavior of different activity sequences. We proposed a parametric extension to this analysis.
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For the parameterised LSAT models, we proposed to use parametric timing matrices that
are calculated by using the bounds of the duration functions of the actions in the activities.
By using a parameterised matrix multiplication, we calculated the parametric timing matrix
of the concatenated activity without calculating the concatenated activity. Then, the
parametric critical-path problem for this activity sequence can be solved by solving the
corresponding characterization problem, with the set of performance functions being equal
to the set of duration functions in the parametric timing matrix of the concatenated activity,
using the three developed characterization algorithms.

8.2 Future Work

For the three developed characterization algorithms, the number of experiments can be
increased by using different types of performance functions for a more thorough analysis
of the performance and scalability of the algorithms. A significant improvement in the
polytope algorithm can be achieved by eliminating the increase in the computation time
of affine approximations caused by the rational numbers. This may be achieved by using
floating-point arithmetic and calculating the corresponding error, so that we can still give
correct results without using computationally expensive rational numbers.

The proposed parametric extension can be implemented and its performance can be
analysed by experiments. Considering the results of the experiments in this thesis, the
hyperrectangle-based algorithm using interval arithmetic is the best candidate for this
parametric extension. By analysing the characteristics of the duration functions of the
actions that are used in parameterised LSAT models, we can find contractors from the
literature to further increase the performance of this algorithm.
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[4] F. Benhamou, F. Goualard, É. Languénou, and M. Christie. Interval Constraint Solving
for Camera Control and Motion Planning. ACM Transactions on Computational Logic
(TOCL), 5(4):732–767, 2004. 5

[5] F. Benhamou and L. Granvilliers. Continuous and Interval Constraints. Foundations of
Artificial Intelligence, 2:571–603, 2006. 5
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