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Abstract

Pairing-based cryptography has allowed for many new types of cryptographic protocols. It is a
cryptography operation on elliptic curves that maps every two points from two groups to a third
point in another group. This type of primitive allows for wide ranges of new or much improved
algorithms. The challenge with pairing-based cryptography is the complexity of the required
computations, leading to high execution times.

In principle, such a requirement makes pairing-based cryptography poorly suited to be executed
on constrained devices, those without much computational power, such as devices used in IoT.
Furthermore, these devices commonly have other limitations, such as a fixed amount of energy
or time available to run.

It sounds like these properties make it impossible to run pairing-based cryptography on con-
strained devices. However, this is not necessarily the case.

This report analyses the resource requirements of pairing-based cryptography on constrained
devices. Specifically, the execution time and energy usage of the computation is considered, as
well as the communication of the operands using common IoT protocols such as IEEE 802.15.4.
Two different types of elliptic curves at different levels of security are evaluated.
The results show the effect of hardware acceleration on the resource usage, and which part of
the resources is taken up by communicating the inputs or results. The conclusions can be used
by developers to determine if applying pairing-based cryptography on constrained devices fits
within their use case and constraints.
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1 Introduction

Pairing-based cryptography (PBC) is an area of cryptography that makes use of pairing opera-
tions on elliptic curves. A pairing is an operation that is possible on certain elliptic curves, where
each pair of two elements from two different groups maps to an element of a third group [25].

Initially, pairings were used to enhance attacks on cryptographic primitives like the discrete
logarithms [11]. Since, various applications have been proposed to build new protocols based on
pairings. Some provide a more efficient version of existing features [8], however there are also
new protocols which were previously impossible without pairings [5, 6, 9].

The software processing required to achieve pairings is generally considered to be computation-
ally intensive [18]. Additionally, one has to take into account the energy and time required to
communicate these pairings using the limited available bandwidth. The current consensus is that
pairing operations are in general too expensive to execute on constrained devices [44].

This project aims to provide a comprehensive performance assessment of pairing operations on
constrained devices. Its goal is to provide baseline from several perspectives on the feasibility of
pairings on IoT devices. Using this baseline, one can estimate how feasible using pairing-based
cryptography based algorithms are, given the requirements of their project.

In order to achieve this comprehensiveness, this report evaluates many different configurations:
different curves at various security levels are used, and multiple types of hardware acceleration are
tested. There is also a wide selection of tests, such as the time and energy to perform a pairing,
or the initialisation. Also, the required bandwidth for communication is evaluated. None of the
existing literature combines time and power measurements for both a pairing operation and the
corresponding communication. Also the incorporation of this type of hardware acceleration is
unique.

The remainder of this report is structured as follows. Section 2 provides some background
information on pairing-based cryptography and the constrained hardware used in this project.
Next, section 4 provides more detailed information on the hardware and software setup used
for testing. Similar research has been done before, these are compared in section 3. This is
followed by the results of our testing in section 5. Finally, this report is concluded in section 6
and section 7 makes some recommendations for the future.
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2 Background

This sections provides some background information for this project. It covers both pairing-based
cryptography and its applications, and the constrained device on which it should run.

2.1 Pairing-based Cryptography

The first uses of bilinear pairings in security were the MOV [27] and FR [14] attacks, using
the Weil and Tate pairings, respectively. Since then, pairings have been used constructively
for various different applications. The first was a three-party one-round Diffie-Hellman key
agreement by Joux [21] in 2000.

Security proofs of protocols based on pairings are all based on variants of the Diffie-Hellman
problem [11] (i.e., the discrete log problem). Depending on the situation, it may be using the
decisional1 (DDH) or computational2 Diffie-Hellman (CDH) problem.

2.1.1 (Bilinear) Pairing

In general pairings are defined as follows

e : G1 ×G2 −→ GT

In some cases the two input elements are part of the same group, in which case the pairing is
symmetric.

ê : G×G −→ GT

in both cases the inputs need to be elements in additive groups of prime order. GT must be a
multiplicative group of prime order. There are three additional conditions required [26] for e or
ê to be a bilinear pairing that we can use for security algorithms:

• bilinearity: ∀R,S,T∈G : e(R+ S, T ) = e(R, T )e(S, T ) and
∀R,S,T∈G : e(R,S + T ) = e(R,S)e(R, T )

• non-degeneracy: ∀P,Q∈G : e(P,Q) ̸= 1

• e can be computed efficiently

These conditions lead to several other mathematical properties, as described by Menezes [26].
For more information on pairing in cryptography, the reader is referred to Meffert [25].

Even though (bilinear) pairings can be performed on groups in general, they are generally used in
combination with an elliptic curve over finite fields3. In general elliptic curves follow the formula
y2 + cxy + dy = x3 + ex2 + ax+ b, however we only look at curves of the form y2 = x3 + b, and
supersingular curves of the form4 y2 = x3 + ax+ b.

1Whether the attacker has a non-zero “advantage” over randomly guessing to distinguish between two cipher-
texts.

2An attacker cannot perform a polynomial-time computation to break the Diffie-Hellman key agreement
protocol.

3A finite field is a finite set of elements on which the operations multiplication, division, addition, and
subtraction are defined. The order is given by the number of elements in the field, which is always a prime power
(q = pk).

4Only curves with characteristic not equal to 2 or 3 can be written in this form.



8 2 BACKGROUND

Supersingular pairings Pairings on supersingular curves are a subset of pairings. Elliptic
curves of the form E/Fq are supersingular when, as described by Freeman et al. [13], q and t are
not co-prime, with t = #E(Fq)− q − 1.
The supersingular curves used in this report are of the form y2 = x3 + x with embedding degree
k = 2. The pairings on this curve are symmetric.

Barreto-Naehrig pairings Pairings on curves introduced by Barreto and Naehrig [4] are
commonly referred to as BN pairings. T In their work, they introduced a way to easily generate
curves with embedding degree k = 12. Higher embedding degrees offer more security, but are
generally more complex to compute. BN curves are of the form y2 = x3 + b [24] and are similar
to Miyaji-Nakabayashi-Takano (MNT) curves [13].

2.1.2 Applications

Identity-based encryption (IBE) is a concept where the decryption key is given by one’s identity
(such as their email address). The Boneh-Franklin [6] scheme uses Weil pairings and was, at that
time, the only known way to fully implement IBE.

A more complex version of IBE is attribute-based encryption (ABE) [5]. In Ciphertext Policy-
ABE, each user has a set of “attributes”, based on their person (e.g., job function, experience,
department). Using these attributes, the encrypter of a message can specify which attributes are
required to decrypt the message using a combination of binary AND and OR operators.

Another application of pairings are various types of signatures. Some work has been able to
develop schemes that generate shorter signatures [8] than existing schemes, whereas there are
also new applications of signatures like group signatures [7].

A more extensive overview of different applications using PBC is given by Dutta et al. [11]. All
the applications above rely on some form of pairing computations. In order to execute these
pairings on constrained devices, section 2.2 will evaluate the constraints and requirements.

2.1.3 Security level

A security level is a number, generally expressed in bits, that indicates the theoretical amount of
security a cryptographic algorithm offers. Within the same class of algorithms, this allows one
to compare security to, for example, parameter size or execution time.

There are various definitions of security levels, which makes comparisons not always trivial.
Symmetric and asymmetric cryptography characterise the theoretical security provided by a
cryptographic primitive using the security level λ to indicate approximately 2λ computations
required to break the primitive [23].

Table 1: Table of examples of pairing friendly elliptic curves including their parameters, size and
security level. A more extensive overview is available in the IETF “Pairing-Friendly Curves”
draft [33].

Name Size q
Symmetric

security level
k log(q)

security level
ISO [20] BN 384 384 128 4608
ISO [20] MNT 256 256 128 1536
ISO [20] Freeman 256 252 128 2520
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More relevant to PBC is the elliptic curve definition of security level: “the bit size of the largest
prime subgroup” [30]. Several publications also estimate a relationship between elliptic curve
security levels and asymmetric, specifically RSA, security levels [15, 30]. For pairings, this
means the security level is k log2(q), with embedding degree k and elliptic curve field size q.
The embedding degree causes elements to be mapped onto a larger range, thereby increasing
security [24].

Note that the security level only gives an indication of how much security might be obtained
using a particular method. For example, as mentioned by Lynn [24], the field size protects
against index calculus attacks (and influences the security level) and the elliptic curve group
size protects against Pollard rho and lambda attacks (but does not influence the security level).
Ideally, one should use standardised and verified parameters to ensure proper security. Table 1
shows some standardised curves that are well suited for pairing operations.

2.2 Hardware Platform

This project is evaluating pairing-based cryptography on constrained devices. IoT devices are
always constrained in some form [38]. We use the concept of IoT device and constrained device
interchangeably.

There are a few constraining factors taken into account in this project. The next paragraphs
each discuss one of the constraints to be considered for IoT devices.

Energy constraints Many IoT applications, for example in wireless sensor networks (WSNs),
the devices are primarily energy constrained, since they commonly run on battery power. Energy
usage is the main criterion to determine the success of running PBC operations on a device. The
components drawing the most power are the transceiver and CPU. Hence, the focus should be
on minimising energy usage of these components.

Energy usage is the power draw of a device over time. The power draw of a the CPU may not
always be easy to affect, aside from going into sleep mode, therefore this project regularly focuses
on minimising execution time instead.

IoT devices almost always require some form of communication. Due to their limited nature,
they generally depend on a third party to get instructions, or to process and store their mea-
surements. For the results to be as generically applicable as possible, we evaluate energy usage
when communicating raw input and output of pairing operations in section 5.4.

Computational constraints One of the consequences of limited energy usage is a limited
processor. Many IoT devices use a processor based on the ARM Cortex M processor family [45].
ARM licenses their processor designs to be used in products by many different manufacturers,
and are characterised by their 32-bit Reduced Instruction Set Computer (RISC) architecture and
low power usage.

The best way to reduce power draw of a processor, is to reduce the number of features it
has, thereby having to power fewer transistors at once. The consequence of this is that RISC
supports much fewer instructions than traditional Complex Instruction Set Computer (CISC) PC
processors. It generally does not offer hardware acceleration (e.g., for media encoding/decoding),
and it has much less memory to work with. The last of which is a constrained discussed later
on.
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The inherent problem with limited computation power is the search for a balance to reduce energy
usage. A low-power processor may take a very long time to perform a computation thereby, using
a significant amount of energy. A faster computation can be achieved using a more power-hungry
processor, where the time reduction may or may not compensate for the higher power draw. In
most cases a large part of this decision has already been made by the CPU designer, only leaving
settings like clock speed and sleep modes for the user to decide [41].

Storage constraints Apart from a constrained CPU, many constrained devices are also lim-
ited in their RAM and ROM. Modern IoT devices commonly only have very limited RAM
available to store variables and the program state [39], commonly only several kilobytes. ROM is
used to store the program description and constant numbers, and is generally available in greater
quantities than RAM, albeit still constrained [39]. Many devices have less than a megabyte of
ROM.

Practically, these storage constraints mean that no conventional operating systems can run. In
turn, this creates challenges to run complex programs. Section 4.2 discusses how this problem is
resolved such that it still possible to execute pairing operations.

Communication bandwidth constraints There are multiple factors to the limited commu-
nication bandwidth available. The power draw of the transceiver: which is one of the components
with the greatest energy usage [12]. Using less bandwidth means the transceiver is active for
shorter periods of time.

Another factor is the communication protocols used in IoT are constrained in the number of bits
per second they can transmit. The commonly used IEEE 802.15.4 [19] only has a theoretical
maximum bitrate of 250 kbps, and even less if signal loss, data integrity or protection, and an
application layer protocol.

Time constraints There are many applications in IoT where there is a real-time compo-
nent [2]. This limitation is closely connected to the computational constraints. In some cases
even, one may consider to trade less computation time for more energy usage, for example by
increasing the processor frequency.

In order to objectively compare pairing operations, one needs to be able to measure the execution
time with sufficient precision and accuracy. There is some variance to be expected from the device
itself, the random input, and the measurement setup. We aim to achieve an overall accuracy
better than 1% variation within one configuration. Section 5.1.1 describes the setup to measure
execution time of operations.

Cost constraints Finally, the cost of IoT devices is an important factor. In most cases they are
either deployed in large numbers (such as in a wireless sensor network), or are a small component
inside a larger product. In both cases, keeping cost low is vital. Luckily, less advanced processors
are generally not only more power efficient, but also cheaper. Devices are regularly tailored
to specific use cases, including or leaving out functions like buttons, LEDs, communication
frequencies, etc. based on the specific application.
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Table 2: Comparison between various related works. A ✓ indicates that the work covers a topic.
A ✗ indicates that the work does not satisfy the property.
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This work ✓ ✓ ✓ ✓ ✓

Yu and Li [46] ✗ ✓ ✓
Zhou and Su [47] ✗ ✓ ✓
Sankaran [35] ✗ ✓ ✓
Ramachandran et al. [32] ✓ ✓
Ometov et al. [29] ✓ ✓ ✓
Canard et al. [10] ✗ ✓ ✓
Szczechowiak et al. [40] ✓ ✓5 ✓
Salman et al. [34] ✓ ✓ ✓ ✓
Hajny et al. [17] ✓ ✓

3 Related work

Measuring performance of pairing operations on constrained devices has been done numerous
times in literature. Table 2 shows a summarised comparison of several publications covered in
more detail in the remainder of this section.

There have been many publications presenting new applications of PBC for constrained devices.
Many of these also present execution time measurements [46, 47] and sometimes power [35] mea-
surements (either on real devices, or in simulation) for their configurations. These measurements
are however not nearly comprehensive enough to draw generic conclusions from. Moreover, since
they are trying to show the effectiveness of their own method, their measurements may be biased,
hence the ✗ in table 2.

There are more comprehensive studies such as by Ranmachandran et al. [32] or Ometov et al. [29].
The latter analyse the time to perform traditional (RSA, AES, SHA) cryptography and compare
it to elliptic curve and pairing operations. Ometov et al. do this on 9 different wearable IoT
devices, albeit significantly more powerful than evaluated in this report: they have at least 1000
times more RAM, and all use at least the significantly more performant ARM Cortex A series.

Rather than thoroughly evaluating the performance of PBC on constrained devices, Canard
et al. [10] look for alterations in the computations to make pairing operations more feasible. They
consider to delegate pairing computations to a more powerful peer, but recommend replacing
the bilinear pairing operations by different elliptic curve operations. Their pairings take place
on the Barreto-Naehrig elliptic curve, but they seem to use a non-standard pairing operation.

5Does not measure energy usage, only estimates it.
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Szczechowiak et al. [40] provide the most comprehensive evaluation found of PBC on constrained
devices in a WSN. They evaluate pairings on both supersingular and MNT curves on three devices
with 8, 16, and 32-bits processors, respectively. For each, they have developed an implementation
in C code, and one in assembly. Their comparison metric is the number of instructions executed,
and their assembly implementation is significantly faster than the C version. Results for energy
usage are provided, but come from simulations. Their evaluation unfortunately does not consider
communication cost (neither in time nor in energy), even though this an extremely relevant factor
for WSNs.

Salman et al. [34] take a different approach, and evaluate performance when introducing hardware
accelerated operations: they are using a hardware-based Montgomery multiplier to accelerate
pairings on BN curves. Their configuration is not supported by generic processors, as they make
use of an field-programmable gate array (FPGA) connected to the main CPU, thereby severely
limiting possible applications.

Finally, Hajny et al. [17] evaluate pairings on smartcards and Raspberry Pis. The APIs of
many smartcards do not fully support elliptic curves, and none supports pairing operations. A
custom pairing implementation, like Szczechowiak et al. [40] is not considered. The Raspberry
Pis perform the elliptic curves using five different libraries. They only evaluate timing, and do
not consider the power usage of these operations.

This work evaluates the performance of pairing operations on two different curves on a modern
32-bit constrained device, using a commonly used [17, 22, 31] library. Moreover, it determines
the possible advantages of hardware acceleration to replace parts of the pairing computations.
Additionally, we provide a much more comprehensive overview by including the cost to commu-
nicate the inputs and results of these pairing operations in the analysis, unlike any of the other
publications.
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4 Deployment

This section explores the setup used for the performance evaluation carried out in this project.
It motivates the considerations and choices made for hardware and software that are used to
obtain the results in section 5.

4.1 Hardware

4.1.1 Requirements

There is a list of requirements to be satisfied by an hardware platform in order to be able to be
used in the tests in section 5. These are based on the constraints previously listed in section 2.2.

• Computation Given the situation described in section 2.2, the goal is to find a similarly
constrained processor. Processors based on the Cortex-M family of CPUs from ARM [45]
are the most straightforward candidate. Low power usage of the processor is one of the
main criteria.

• Sleep The processor must be able to go into sleep mode to further reduce power draw
when idling, or waiting for other processes to finish.

• Hardware acceleration Hardware built to perform very specific operations using less
resources may be built into the processor.This allows us to test if it is possible to per-
form pairing operations significantly faster, or using less energy when they are (partially)
performed in specialised hardware.

• Development board This project requires a full development board, rather than only a
CPU or a board intended for deployment. While such a board may have many features
that will go unused, is more expensive, and may have higher energy usage, it also makes
testing much easier.

• Communication The board needs to provide some form of communication. Ideally it
should support IEEE 802.15.4 [19], but any standardised form of wireless communication
commonly used in IoT will suffice.

• Software support The software chosen in section 4.2, should be able to run on the selected
device. While there may be some flexibility in choosing software based on the device, a
well supported and documented device is more convenient in general.

4.1.2 TI CC2538

Texas Instruments has several CPUs that satisfy the requirements above. For example, the
CC13x0, CC16x0, and CC2538. All these CPUs are based on an ARM Cortex M3 core [45] that
is power efficient and provides some form of wireless communication. There are also cryptographic
hardware accelerators, the CC26506 for example has an AES module. The CC2538 was chosen
for this project because of its generic hardware accelerators and relatively large flash and SRAM.
Additionally, the CC2538 has a 2.4 GHz transceiver built-in to communicate using the well known
802.15.4 [19] standard.

6https://www.ti.com/product/CC2650

https://www.ti.com/product/CC2650
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4.1.3 Zolertia RE-Mote

One of the manufacturers that uses the CC2538 is Zolertia7. They have several development
boards, most of which use their Zoul module. Besides being based on the CC2538, it contains a
CC1200 to gain sub-GHz wireless connectivity. It features two buttons, a three-coloured LED, an
SD card slot for storage, various GPIO pins, and can run on a battery. Our tests are performed
using the RE-Mote Revision B1, of which the details are published on GitHub8.

4.2 Software

Several software components are necessary to be able to perform pairing operations on con-
strained devices. The operating system (OS) provides a basic feature set to build programs
upon. Such a set generally includes features like a hardware abstraction layer such that the OS
can be used on different boards, a scheduler to manage multiple tasks, and a (wireless) commu-
nication library. In our case, we also require support for hardware acceleration for (parts of)
pairing computations.
The operating system is generally combined with a compiler to generate executables from the C
source code. GNU offers an ARM cross-compiler called arm-none-eabi-gcc which can be used
for the CC2538.

Besides the OS, we need a software implementation of pairings. C libraries exist to provide this
functionality, offering various ECC curves and security levels.

Based on the operating system and libraries, an implementation9 was constructed which will be
used in the tests in section 5.

4.2.1 Contiki-NG

Contiki-NG [28] is the Next Generation version of Contiki OS. This new version focuses on the
future use of Contiki, and replaces or removes the legacy components of the old Contiki OS. It has
much more detailed documentation than the original Contiki OS. Important for our application is
the support for hardware accelerated operations on the CC2538. Contiki-NG supports 9 different
CPUs, some of which are used in multiple boards.

Cooja is a simulator that comes from the original Contiki OS. Important to note is that this is not
an emulator, and behaviour may be different between simulation and execution on the real device.
The main purpose of Cooja is to simulate a network of devices, including their communication. It
can obtain measurements from these simulations, such as power usage estimates. Unfortunately,
Cooja does not by default support the CC2538.

RIOT OS RIOT OS [3] was also considered as a possible operating system. This project
started in 2008. Applications can be programmed in C, C++ or Rust. At the time of writing,
it has support for 238 boards, using 68 different CPUs. It can emulate using Renode10 and
Qemu11, which make testing and debugging significantly easier. Renode supports the CC2538
CPU, and allows one to connect to GDB (GNU Debugger).

7https://zolertia.io
8https://github.com/Zolertia/Resources
9https://gitlab.com/jorritolthuis/pairing-contiki

10https://renode.io
11https://www.qemu.org

https://zolertia.io
https://github.com/Zolertia/Resources
https://gitlab.com/jorritolthuis/pairing-contiki
https://renode.io
https://www.qemu.org
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RIOT OS however does not support hardware acceleration for the CC2538, which would re-
quire more work to port these features from the Contiki-NG implementation. Additionally,
Girgenti et al. [16]12 has already used Contiki-NG to perform pairing operations on the CC2538,
which makes that a much more convenient starting point.

4.2.2 PBC

There are many libraries that offer pairing operations, some of which have been compared by
Hajny et al. [17]. The main requirement is that the library is written in C or C++, such that
it works well with Contiki-NG. Support for various curves is also a plus, as this creates the
opportunity for comparisons.

The pairing-based cryptography (PBC) library by Ben Lynn [24] is written in C and provides
seven different types of curves. Additionally, it is used by many different projects [17, 22, 31]
and has various derivatives in different programming languages13. As shown by Hajny et al. [17],
PBC is a rather inefficient library, and can hence provide us with worst case measurements.

Of the seven supported curves, section 5 will look at type A (y2 = x3 + x, also known as
supersingular (SS) curves) and type F (y2 = x3+b, also known as Barreto-Naehrig (BN) curves).
For each of the curve types, PBC can generate its own parameters. How security holds up for
these generated parameters is unclear.

PBC was not designed with IoT devices in mind. It relies heavily on dynamic memory allocations
and even overallocates memory in places: “Instead of right shifting every iteration, I allocate more
room for the z array.”. The heavy reliance on function pointers makes things worse, since it is
significantly more difficult - both for a compiler and a human - to determine what code is actually
required and used. Finally, the library does not compile using its built-in build process when
modifying the setting for ARM14.

The PBC library is not actively maintained. The last release was in 2013 (9 years ago
at the time of writing). Since, there have been a few commits on GitHuba, but no new
release. Additionally, no messages on the mailing listb have recently been answered.
Given the lack of maintenance, it should not be trusted for real world computations requir-
ing actual security. Since this project is not comparing security, but rather performance,
the details of the implementation are less relevant.

ahttps://github.com/blynn/pbc/commits/master
bhttps://groups.google.com/g/pbc-devel

Warning

12https://github.com/wellsaid
13

Python: https://github.com/debatem1/pypbc
Perl: https://metacpan.org/dist/Crypt-PBC
C++: https://crysp.uwaterloo.ca/software/PBCWrapper/
Java: http://gas.dia.unisa.it/projects/jpbc/index.html
.NET: https://github.com/ymcrcat/MASHaBLE

14On the website of PBC, a version for ARM by KISON research group, UOC is listed. The URL of this is
however broken at the time of writing, so using this is not an option.

https://github.com/blynn/pbc/commits/master
https://groups.google.com/g/pbc-devel
https://github.com/wellsaid
https://github.com/debatem1/pypbc
https://metacpan.org/dist/Crypt-PBC
https://crysp.uwaterloo.ca/software/PBCWrapper/
http://gas.dia.unisa.it/projects/jpbc/index.html
https://github.com/ymcrcat/MASHaBLE
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GMP Pairing computations are performed on ECC curves where operands of several hundreds
of bits or more are common. Most recent IoT devices only offer hardware operations up to 32
bits wide. This means that all computations on the large numbers must be split up into smaller
computations such that they can be performed in hardware by the CPU.

The PBC library uses the GMP library for functions on arbitrarily large numbers (only limited
by RAM size). It also offers arbitrary precision computations, however that feature goes unused
in this project, as all numbers are integers15.

A significant disadvantage of GMP is that it was clearly not designed for IoT devices. While it is
optimised in terms of computational power, there was less attention to the code size and dynamic
memory allocations. Code size is relevant due to the very limited amount of flash available on the
CC2538 (or similar devices): it only has 512 kB available for all the program code, including the
libraries. Luckily, the compiler is rather good at distinguishing what is code might be used, and
removing anything else. Dynamic memory allocations are generally frowned upon for embedded
devices16, given that SRAM is also a very precious resource (the CC2538 has 32 kB). Dynamic
allocations make it virtually impossible to predict if or when the device will run out.

Note that GMP does not make any security claims. Consider the possibility that it leaks secrets
through side channels.

15Also important to note is that the CC2538 does not support any floating point arithmetic in hardware,
regardless.

16In favour of static, but deterministic memory allocation.
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5 Results

Given the described configuration of the Zolertia RE-Mote (section 4.1.3), Contiki-NG (sec-
tion 4.2.1), and the PBC library (section 4.2.2), tests are executed in this section. There are four
different curve sizes under test. They are based on supersingular and Barreto-Naehrig curves.

For all curves, the parameters were generated using the PBC library. For supersingular curves
one can choose the length of the group and field sizes separately. Barreto-Naehrig curves only
allow a single security parameter to be set.
In general, the security level is given by the size of qk = k log2(q) with k the embedding degree [4,
22, 30, 37]. However, as noted by Lynn [24], the size of the field is to prevent index calculus
attacks, and the size of the group is to protect against Pohlig-Hellman attacks [37].
Appendix A lists the full parameters used for each of the following configurations.

• SS 512 A supersingular curve with the minimum recommended 512 bits in size. Because
this curve has an embedding degree of 2, it has a security level of 1024. The size of the
group order is 160 bits, like all supersingular curves, as recommended [24].

• BN 53 The size of the Barreto-Naehrig curves is limited by the library and RAM of the
embedded device. This limits the size of both the field size and the group order to 53 bits.
Due to the embedding degree of 12, it provides 636 bits of theoretical security. Important
to note is that the group order is also 53 bits, significantly less than the recommended 160
bits, leaving this curve possibly specifically exposed to Pohlig-Hellman attacks [37].

• SS 318 To compare the timing and power results of BN 53 to a supersingular curve of
roughly the same security level, SS 318 also offers 636 bits of security (although the group
order is 160 bits here, as recommended).

• SS 700 Finally, SS 700 is roughly the maximum size17 that can be handled using the
combination of the PBC library and RAM available. With the same embedding degree of
2 as the other supersingular curves, this provides a security level of 1400 bits.

5.1 Measurements

For the further results sections, we are primarily interested in execution time and energy usage.
Sections 5.1.1 and 5.1.2 describe, respectively, the setup to measure these properties.

5.1.1 Time measurements

Most devices offer a low frequency timer that can be probed to obtain the time. For example,
the TI CC2538 [41] has a 32 kHz rtimer for this purpose. The time difference between two
measurement points can be used to compute execution time.

Unfortunately, our testing has shown that the rtimer does not provide reliable measurements.
Figure 1 should show two horizontal lines for two configurations, but it clearly does not: the black
and green should together form one horizontal line, and the blue and red line should together
form the other horizontal line. The measurements vary from day to day, but they seem consistent
within one day. This could be due to many factors, however we rule out the effect of temperature
and humidity in the room as these were monitored during the tests.

17At size 768 bits, the pairing is not able to complete.
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Figure 1: Execution of two software configurations measured over a period of four days. Measured
on two instances of the CC2538 using rtimer.

The difference between the configurations is the use of hardware acceleration (HWA). The oper-
ations in hardware use a different clock. The variance could partially be explained by different
variations of the main clock and hardware clock. The CC2538 has RC (Resistor Capacitor)
clocks, which can have a lot of variance. However at 32 MHz, we are guaranteed to use the much
more stable crystal oscillators, which makes this explanation also unlikely.

An alternative explanation could be the interrupts disturbing the execution. Although one
would expect to occur irrespective of the day and sample, rather than clearly separated by day.
This hypothesis was tested by disabling the “master interrupt”. Unfortunately, the exact same
behaviour was observed.

The final solution, motivated by figure 2, is to extract timing measurements from the power
measurements. We see that the time obtained using this method are far more constant, within
1%. By inserting sleep periods before and after the pairing operation, we can see and measure
the time taken for the execution. The major disadvantage of this method is the resolution, rather
than having minimum period of 30 µs with rtimer, this setup has a minimum period of 2 ms.
The limitations of this setup are discussed in more detail in section 5.1.2.

5.1.2 Energy measurements

In order to measure energy usage, there are two general approaches: Provide the hardware with
a known amount of energy stored, and compare this to the remaining energy after execution [1];
or sample the power usage regularly throughout the execution. We opted for the latter due to
its relative simplicity. The disadvantage is that this method will miss short peaks, both up and
down, in the power draw.
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Figure 2: Time measurements compared to time measurements extracted from power measure-
ments over four days on one device.

Figure 3 shows the power measurement setup. It revolves around the TI INA219 Power Mea-
surement IC. This chip measures the voltage drop over a shunt resistor to determine the current
going through the IoT device. Additionally, it measures the voltage drop over the device itself.
The product of both measurements gives us the power draw.

The INA219 can be configured to work on various ranges of inputs. It can measure at most
32 V and 2 A (i.e., 64 W). Since constrained devices use significantly less than 64 W, we used
a configuration with a higher resolution. After configuration, the voltage precision is 16 V

12 bit =

4 mV/bit, and current precision is 400 mA
12 bit ≈ 10 µA/bit. Note that 10 µA/bit comes at the cost

of overflowing before reaching 400 mA, however the board is not expected to reach these levels
anyway.
In total, we get a power draw precision of 0.04 µW at 2 kHz (i.e. the maximum frequency of the
ADC) [42]. By default, the INA219 power measurement has a precision 20 times less than the
precision of the current measurement, a better resolution can be achieved by multiplying current
and voltage manually as a form of post-processing.

The INA219 is connected over an I2C bus to an Arduino Due. AdaFruit provides a library for
using the INA219 on Arduino boards 18, which makes them especially convenient. Although any
Arduino would work, the Due was chosen because of its high clock speed and large SRAM. To
get as close as possible to the maximum frequency of the analog to digital converter (ADC), one
needs to buffer the measurements, rather than immediately printing them out to the serial bus.

The program used to perform these power measurements is available on GitLab19. It outputs time
difference between measurements, and the voltage and current measurements. The measurement
accuracy is subject to the accuracy of the shunt resistor, voltage meters, and ADC.

18https://www.arduino.cc/reference/en/libraries/adafruit-ina219/
19https://gitlab.com/jorritolthuis/pairing-contiki/-/blob/master/getcurrent_csv_arduino.ino

https://www.arduino.cc/reference/en/libraries/adafruit-ina219/
https://gitlab.com/jorritolthuis/pairing-contiki/-/blob/master/getcurrent_csv_arduino.ino
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Figure 3: Power measurement setup using the INA219 and Arduino Due. The device under test
is the Zolertia board with the red border. The battery pack is illustrative for any DC power
supply at 3.3V.

5.2 Hardware acceleration

For each of the previously described curves, a set of tests was executed. The tests consist of
an implementation fully in software, and various software implementations augmented by one or
more hardware operations. These configurations are compared based on their execution time,
which are shown in table 3.

First, we look at figures 4 and 5. These show executions of a supersingular and Barreto-Naehrig
pairing, respectively. Figures 6 and 7 show the full execution (including initialisation of the
PBC library). Appendix B contains larger and more detailed versions of these figures. Each
block represents a function in the code, and has a number indicating the cumulative number of
execution steps20 (inclusive of execution time of sub-functions) of that block. There are arrows
between the blocks indicating function calls, and numbers showing the number of calls. The
executions were performed on a PC (rather than a constrained device). While there may be
some small differences (e.g. due to the presence of certain complex hardware components), the
graphs can still be used to identify resource intensive computations.

While the results are primarily based on the execution times without initialisation, it is an impor-
tant variable to consider. As mentioned before, the PBC library uses a considerable amount of
memory. If replacing (or rebuilding) the library is not an option, one may consider to uninitialise
the library when not in use, leading to repeated initialisation cycles.

Table 3: Description of four different testing configurations and the section numbers in which
the results are presented.

Configuration name Description
Configuration 1 (5.2.1) Full software
Configuration 2 (5.2.2) Field element modular inversion acceleration
Configuration 3 (5.2.3) Field element modular multiplication acceleration
Configuration 4 (5.2.4) Elliptic curve hardware acceleration

20According to the callgrind authors: “The Ir counts are basically the count of assembly instructions executed”.
[43]
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Figure 4: Graph of callgrind [43] execution of a supersingular pairing, indicating which compu-
tations take the most time.

Figure 5: Graph of callgrind [43] execution of a Barreto-Naehrig pairing, indicating which com-
putations take the most time.
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Figure 6: Graph of callgrind [43] execution of a supersingular pairing, including initialisation of
the PBC library, indicating which computations take the most time.

Figure 7: Graph of callgrind [43] execution of a Barreto-Naehrig pairing, including initialisation
of the PBC library, indicating which computations take the most time.
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Figure 8: A boxplot indicating the variance of 28 measurements of one configuration, with the
mean and 95% confidence interval shown by the red vertical lines.

For each of the timing tests in the following sections a small number of trials was averaged.
Figure 8 shows that measurements are very constant, and that therefore a small number of tests
is sufficient: the two sides of the 95% confidence interval are only 0.6% away from the mean,
showing that we do not need many measurements to be confident in our result: the probability
that, when we have two measurements, both are more than 0.06% away from the true mean is
0.06%21. All tested combinations of curves and configurations had two or three test samples. The
standard deviations were never more than 4 ms, confirming the conclusion drawn from figure 8
and the goal error margin set in section 2.2. The mean values are used in the sections below.

5.2.1 Configuration 1

The reference implementation is a version completely implemented in software. It uses the
default pairing functionality in the PBC library, corresponding to the given curve. The input is
randomly generated using the random number generator in Contiki-NG. The setup and random
number generation time and energy usage are not taken into account, unless explicitly stated
otherwise. These times provide the baseline to compare against in the next sections.

This configuration can also be executed on a PC, since it does not rely on CC2538-specific
operations. An execution at a security level of 1024 bits is shown in the callgrind figures.

Table 4: Execution time in seconds of one pairing operation in software (i.e. configuration 1).

BN 53 SS 318 SS 512 BN 700
2.581 1.308 1.880 6.714

21If the two measurements fall outside different sides of the confidence interval, this error would be noticed by
an abnormally high standard deviation.
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The execution times are shown in table 4. As expected, larger sizes of the supersingular curves
lead to higher execution times. We can also confirm that BN pairings take more time than SS
at the same security level, as claimed by the PBC authors.

Additionally, the setup time of both SS and BN curves was measured. Figures 6 and 7 show an
execution including both the setup phase and one pairing operation. The setup consists of two
parts: initialising the PBC library, as well as generating random input. The setup times are 0.82
seconds and 3.4 seconds for the SS and BN pairings at equal security levels, respectively.

5.2.2 Configuration 2

The first function that we evaluate for hardware acceleration is the modular inversion (i.e. it
computes A−1 such that A · A−1 ≡ 1 mod q). The software implementation uses the extended
Euclidean algorithm to perform this computation.

For supersingular pairings, we see in this function under the name fp invert in figure 6. It
takes 11.1 million out of 20.7 million samples, leading to a theoretical maximum speed up of
more than 50% for the full process, including setup. However, since the function is not shown in
figure 4, we should expect limited change for just the pairing operation.

The function is not shown in either call graph of the BN curve, meaning it is not called at all,
or does not constitute a significant portion of the execution. No significant change in execution
time should be expected.

Table 5 shows the execution times compared to the full software implementation. The relative
difference is at most 0.86% slower, which is well within the error margin described in section 5.1.2.
This is expected, given fp invert’s absence in figure 4.

In the setup phase of the supersingular pairing, fp invert takes 11.1 million out of 16.4 million
cycles, leading to a theoretical maximum improvement of 67%. The setup takes 45% longer than
configuration 1: 1.19 seconds. The unexpected time increase could be explained by the fact that
modular inversions in software are already very optimised by the extended Euclidean algorithm.

We can conclude from this that there is no advantage for timing to using hardware acceleration
for modular inversions for pairing operations on both SS and BN curves. There may be an
advantage in terms of executable size or memory.

Table 5: Execution time of one pairing operation using hardware acceleration for the fp invert

function (configuration 2), compared to a full software implementation (configuration 1).

BN 53 SS 318 SS 512 SS 700
Configuration 1 [s] 2.581 1.308 1.880 6.714
Configuration 2 [s] 2.562 1.319 1.896 6.747

Configuration 1 [%] 100 100 100 100
Configuration 2 [%] 99.25 100.81 100.86 100.49
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5.2.3 Configuration 3

Rather than focusing on the full execution graph, if we instead focus only on the call graph of the
pairing function. We see that the fp mul function takes 3.4 million out of 4.4 million cycles for
a supersingular pairing in figure 4. This means that there is a theoretical improvement possible
of over 75%.

fp mul takes two field elements (from the same field), and multiplies these two together to obtain
a third element (also in the same field). The CC2538 does not provide a function to perform
this computation directly. Rather, we perform this computations in two steps: a multiplication
of two numbers, followed by a modular reduction to ensure the result falls within the field22.

We verified this acceleration specifically for SS curves by comparing various results between the
original software implementation and the new hardware accelerated version.

The results in table 6 show us that replacing one function by a combination of two hardware
functions is very ineffective. Rather than reducing execution time, it doubles it. While this
does not completely rule out all cases (a very inefficient software implementation or very efficient
hardware implementation may have possibilities), it should be taken as a warning not to depend
on such a situation before performing tests.

The main conclusion that can be drawn from the data in table 6 is that the software operation
to perform modular multiplication is significantly faster than the combination of two hardware
accelerated operations. The software implementation is roughly as fast as a single hardware
accelerated operation, a similar result to that in section 5.2.2.

The execution time of SS 700 is too large to obtain timing measurements for. The results of SS
318 and SS 512 can be used to make a reasonable estimate for the pattern to extrapolate to SS
700.

5.2.4 Configuration 4

This implementation accelerates various elliptic curve operations. It was developed for the pub-
lication by Girgenti et al. [16]. Perazzo et al. [31] used the same acceleration implementation and
did not find any advantage for their application (using supersingular curves): “The BSW scheme
does not benefit from hardware acceleration”. This is expected as none of the accelerated func-
tions (curve mul, curve double, element pow mpz, and element mul mpz) are used according
to figure 4 in SS pairings.

Table 6: Execution time of one pairing operation using hardware acceleration for the fp mul

function (configuration 3), compared to a full software implementation (configuration 1).

SS 318 SS 512
Configuration 1 [s] 1.308 1.880
Configuration 3 [s] 2.783 3.509

Configuration 1 [%] 100 100
Configuration 3 [%] 212.74 186.69

22This order of operations is not the most memory efficient: exponentiation by squaring with repeated modulo
operations has a lower peak memory usage.
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Instead, figure 5 shows that generic pow mpz is extensively used by BN pairings23. This function
takes 29.6 million cycles out of the total 43.1 million, and should be able to benefit greatly from
this hardware acceleration.

Table 7 confirms our hypothesis: the hardware accelerated version of the BN pairing is 68.4%
faster than it was in software only. This is very close to the theoretical maximum of 68.7%, closer
than could reasonably be expected. A possible explanation is that this phenomenon is caused
by callgrind, as it was executed at a different security level, as well as on a different machine (a
PC, rather than a constrained device).

Looking at the setup phase of the SS pairing in figures 6, large parts of the setup are taken up
by generic pow mpz, it takes up to 95% of setup time. Comparing this theoretical maximum
with the actual supersingular setup time, we see that the setup phase takes 43% less time than
in software. This is a great improvement, given that the theoretical improvement can only
be achieved if the HWA takes 0 time for its computation. This shows that in some use cases
reinitialising the PBC library can be made feasible by using HWA.

5.2.5 Discussion

While it was shown that hardware acceleration can make pairing operations significantly faster
in section 5.2.4, it has to be used under the right circumstances.

Section 5.2.3 has shown that it is not generally worth it to replace a single software operation
by a combination of two hardware functions. What exact hardware accelerations are available
depends on the CPU. Section 5.2.2 shows some improvement over a software implementation
when the replaced function is only used in the setup phase.

In all cases that hardware acceleration is considered, one should also consider whether a large
part of the software implementation can be replaced by a single hardware operation. If there is
not, one may consider using a different curve, resulting in different pairing operations.

Note that PBC author says the current implementation of Barreto-Naehrig pairings is not as fast
as supersingular pairings 24. Whether how much of this difference is due to lack of optimisation
and how much is due to inherent computational complexity is unclear. A more optimised version
of BN pairings may reduce the relative effectiveness of the hardware acceleration, although it is
unlikely to ever be faster than the hardware accelerated version.

Table 7: Execution time of one pairing operation using hardware acceleration for the
element pow mpz and element mul mpz functions (configuration 4), compared to a full soft-
ware implementation (configuration 1).

BN 53 SS 318
Configuration 1 [s] 2.581 1.308
Configuration 4 [s] 0.816 1.314

Configuration 1 [%] 100 100
Configuration 4 [%] 31.63 100.43

23Due to some problems between different configurations, we only use acceleration for scalar point multiplica-
tion: element pow mpz and element mul mpz provided by Girgenti et al. [16].

24https://crypto.stanford.edu/pbc/times.html

https://crypto.stanford.edu/pbc/times.html
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For the supersingular curve, further investigation will be performed at its minimum recommended
security level of 1024 bits (i.e. SS 512). The fastest implementation was found to be the full
software implementation, which will be the configuration used in the next sections.
Unfortunately, the BN curves are not at this minimum recommended level, so it will rather be
run at the greatest security level that was supported: 618 bits. As the elliptic curve acceleration
showed great results for BN curves, this acceleration will be enabled for the next sections.

5.3 Energy measurements

We evaluate the optimal configurations of SS 512 and BN 53 for energy usage. This is done using
the setup described in section 5.1.2.

5.3.1 Barreto-Naehrig curves

As shown in the previous section, BN 53 is the fastest using elliptic curve hardware acceleration.
The evaluation in this section is based on this fastest configuration.

Sleep during hardware acceleration While the CC2538 is performing hardware accelerated
operations, the main CPU is not performing any operations. This means we can put the main
CPU to sleep during hardware acceleration (HWA). The CC2538 user guide [41] describes that
it is safe to drop into the power modes PM0 and PM1. PM2 and PM3 cannot be used as those
remove power from half of the SRAM and the hardware accelerator module.
Surprisingly, testing shows that this does not significantly improve energy usage. The measured
energy savings by going to sleep are less than 1%. This is less than error margin. This may
for example be caused by the low frequency of the power measurement setup, or the powered
required to switch power modes is offsetting the advantage.

One BN pairing operation on the RE-Mote takes on average 0.127 Joule. This average is based
on 10 measurements from two different devices. There is noticeable difference between the two
instances of the device, albeit well within the margin of error. Figure 9 shows the spread of the
measurements, as well as the difference between the two devices. Note that the full range of the
graph is less than 1% of the total energy usage.

5.3.2 Supersingular curves

Section 5.2 did not find a good acceleration for supersingular pairings. Therefore, this section
will present the results of the software implementation of the SS 512 pairing.

Like the power measurements of the Barreto-Naehrig pairing, we take the average of 10 mea-
surements. The implementation is software on the RE-Mote board uses on average 0.293 Joule
to perform one pairing operation.

Figure 10 shows the distribution of these energy measurements. The 10 measurements consist of
measurements taken over several days. Although the relative range of the datapoints is larger,
at less than 3%, it still provides a precise measurement of the energy usage for one pairing
operation.

5.4 Communications

While the computation is a large part of the energy usage, close to all IoT devices doing pairing
operations will have to do some form of communication.
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Figure 9: Boxplot to illustrate how the energy measurements of BN 53 with HWA are spread
out.
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Figure 10: Energy usage of a single SS pairing operation, compared between several days
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The exact details of the communication will depend on the application of the pairing operations.
Therefore, this section evaluates the time and energy required to generically send and receive
inputs and outputs for the pairing operations.

5.4.1 Test setup

Many factors of communication influence time and energy: frequency band, MAC and routing
protocol, application protocol, number and location of nodes in the network, interference, etc.

As mentioned before, Contiki-NG offers the Cooja simulator which can simulate networks of
devices. This simulation is for example used by Szczechowiak et al. [40]. Besides the fact
that Cooja does not support the CC2538 natively, real measurements can be significantly more
insightful than simulations.

Contiki-NG offers examples using IEEE 802.15.4 [19] and the constrained application protocol
(CoAP) application layer protocol. Our setup consists of two nodes: a client and a server, and
they can communicate directly. The client performs a GET request for a certain resource from
the server, after which the server responds in one or more packets. The code for these tests is
available on Gitlab25.

IEEE 802.15.4 uses the 2.4 GHz frequency band, just like WiFi and Bluetooth. Most likely, there
has been some amount of interference. This interference has not been measured, nor controlled.

Measurements of time and power were both performed using the setup described in section 5.1.2.
Going to sleep, like for previous tests caused the device to issue a hard reset. Instead, the power
draw of the LED is used to signal the start and end of the communication.

Some transmissions are too fast to be registered with the testing setup, this could be improved
as part of future work26. Instead, we perform a set of 50 consecutive identical transmissions and
average over these. This also helps to compensate for interference. The main problem with this
setup is that we measure too much time on the server side: the time during which the client is
crafting a new packet, the server is idle. However, this idle time is now also measured. Because
of this, server side measurements are excluded from the results27.

Configurations Measurements have been performed for various configurations. The length
used for supersingular curves is 512 bits, for Barreto-Naehrig curves the length is 53 bits. Each
curve has specific lengths for the inputs and output, that can be sent and received. Table 8
summarises the different configurations and the corresponding length of the transmitted message
in our tests.

Messages are transmitted in hexadecimal text. Each packet can contain at most 64 bytes of
payload, which means that the messages in table 8 take 1 or 3 packets to transmit over the
CoAP protocol.

25https://gitlab.com/jorritolthuis/comm-contiki
26The expected duration of a one packet transmission, excluding creating or decoding the packet, is 3 ms [36].

The measurement setup has a resolution of 2 ms.
27A possible partial solution would be to use a POST request, rather than GET request. The request will

contain the data, sent by the client. Alternatively, one can use a faster measurement setup such that single
transmission can be measured. Both are left for future work.

https://gitlab.com/jorritolthuis/comm-contiki
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Table 8: Message length in bytes, encoded as hexadecimal text.

SS 512 BN 53
Input 1 192 28
Input 2 192 56
Output 191 168

Table 9: Average time in milliseconds to exchange one message.

Receive
SS 512 BN 53

Input 1 56.6 52.5
Input 2 59.6 57.3
Output 62.8 54.8

5.4.2 Timing

Table 9 shows the execution times to receive the messages as specified in table 8. Compared
to the pairing execution times obtained in section 5.2, these times are between 3 and 7% of a
pairing operation. When one would have to transmit both inputs and the output, transmissions
take a considerable amount of time: up to 17% of the total operation. Important to note is also
the lack of a network in this case. In applications such as WSNs communications paths are likely
indirect, causing longer waiting periods for both parties.

Figure 11 shows how the message size affects the transmission time. While the smallest trans-
mission size seems slightly shorter than the larger messages, the mean values in the table show
minimal difference. This seems to indicate that constant factors play a relatively important role
in execution time, compared to operations performed per packet. For example time to create,
transmit and decode the GET request packet.

The times are so much higher than the time expected to be taken up by the transceiver, showing
that the resource usage of communication cannot simply be ignored. One could measure time,
using a much faster setup, to confirm exactly which operation or network stack layer takes the
most amount of time.

5.4.3 Energy

For energy usage we look at the same configurations as in section 5.4.2. Table 10 shows the
average energy usage in millijoule to request and receive a certain message. Compared to the
energy usage in section 5.3, the communication draws less power than the computation. We see
a smaller part of the energy usage coming from the communication: between 2 and 5% of the
computation energy. The same holds when communicating all the inputs and the output, which
would take between 6 and 13% of the total energy.

Interesting to note is that the shortest message is using less energy than the larger messages, 5.7 J
compared to 6.5 J. However, the Joule/byte metric is much worse: the long messages average
0.03 J/byte, whereas the short message uses 0.2 J/byte. More research is required to what causes
this.
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Figure 11: Relationship between transmission time and transmission size, with the vertical lines
indicating packet size.
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Figure 12: Relationship between transmission energy and transmission size, which the vertical
lines indicating packet size.
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Table 10: Energy usage in millijoule to exchange one message.

Receive
SS 512 BN 53

Input 1 6.17 5.74
Input 2 6.51 6.22
Output 6.87 5.97

Figure 12 compares the energy usage to the message size. The result is very similar to that of
figure 11 because average power draw is within 1% for all measurements. One would expect more
variance due to for example interference, however any possible variance is averaged out over 50
transmissions.

5.4.4 Discussion

Due to the large number of different network configurations, communication time and energy
may vary wildly. Also the choice including or excluding energy and time to relay message will
significantly change the measurements. Regardless, the results shown in sections 5.4.2 and 5.4.3
provide a starting point to analyse the communication.

To start, the observation that the communication of one element takes less than 10% of the
computational resources (i.e., time or energy) should be made. If the computation is more
optimised, like for the BN pairing, the communication will relatively take more resources. The
computation is much easier to optimise than the communication part.

If one is sending or receiving more than one element (e.g. both inputs, or also the output) the
relative resource usage of the communication may increase to more than 10%. The exact details
are again very much dependent on the optimisation level of the computation.
Another factor can be what exactly is transmitted. Many protocols will likely need more or
different information besides the bare pairing operands. This can affect the number of bytes to
be transmitted.

What has not been taken into account, but is an important factor, is the possible need for
additional encryption. Depending on the application, it may not be safe to send the operands in
plaintext over a wireless channel. A simple authentication and symmetric encryption might be
sufficient, but does require additional resources.

Finally, a significant variating factor are the protocols, including frequency band, and the network
topology. A different frequency will use a different transceiver, which most likely has a different
power draw. A star topology has few hops, but likely many medium collisions. A line topology
will require interaction with many more nodes, but may suffer less from collisions. These factors
are interesting to investigate, but left for future work.
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6 Conclusions

This report has investigated the performance of pairing-based cryptography operations on con-
strained devices. Specifically, the performance of a pairing using the PBC library in Contiki-NG,
running on a Zolertia RE-Mote board. The performance of two different curves at a total of four
different configurations was evaluated.

Section 5 presented these performance results. The possibility of using hardware acceleration
in the Zolertia RE-Mote board was considered to save resources. Apart from a full software
implementation, three different accelerations were presented: modular inversion, modular mul-
tiplication, and elliptic curve operations.

The results showed little to no execution time improvement for most combinations of curve con-
figuration and hardware acceleration. Only the elliptic curve acceleration on Barreto-Naehrig
curves was very effective and resulted in a 70% execution time reduction.
The conclusion drawn from this data was that one can predict how much can be gained from
hardware acceleration from a callgrind graph. The best way to get an execution time improve-
ment is to find a function in the callgrind graph with a great execution time that can be replaced
by a single hardware accelerated operation.

Two of the best configurations in the execution time measurements were selected for the energy
consumption tests. The pairing on the Barreto-Naehrig curve used on average 0.127 Joule, on
the supersingular with a higher security level it takes 0.293 Joule.
While some variance was detected in the measurements, both caused by testing on different days
and on different instances of RE-Mote, all measurements fell within 1% of their mean.

Finally, some tests were performed to measure the resource usage when communicating inputs
or output of a pairing operation. These showed that the resource usage to communicate one
operand is generally less than 10% of the computation. This value can however easily rise
above this percentage when all operands are communicated. It is also noted how these values
are very dependent on configuration details like the algorithm in which pairings are used, the
communication protocol and the network topology.

One can use these results to determine if it is feasible to use pairing-based cryptography on a
constrained device for their application. In general, this work has shown that there can be situ-
ations where it is more resource efficient to perform a pairing operation locally on a constrained
device than to communicate the operands through a network to have a third party compute the
result.
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7 Future Work

Throughout this report, several ways have been discussed in which the project could be improved
in the future. This section elaborates on these possible ways to continue this work in the future.

An interesting future research path could involve analysing more optimistic scenarios. As shown
by Hajny et al. [17], the PBC is a relatively inefficient library to perform pairing-based cryp-
tography computations. An alternative direction could be to optimise PBC for IoT devices, by
minimising dynamic memory allocations and simplifying the code base to reduce size. The ex-
pected outcome would be a more positive picture of pairing-based cryptography on constrained
devices. Hopefully this also allows pairings at higher levels of security, offering more security for
the future.

This research can become significantly more valuable by presenting more data. Testing different
devices, possibly supporting different types of hardware acceleration, different types of curves
at different sizes, different communication protocols, etc. This all helps to provide a more
comprehensive overview of the challenges and possibilities to use pairing-based cryptography on
constrained devices. In turn, it will be easier to use this research to predict performance for
specific applications using more complex cryptographic algorithms.

The final proposed work for the future is to improve the measurement setup. The first priority
would be to make the setup more accurate and faster. One way to do this is to replace the
Arduino Due by a different device that can communicate over I2C. Alternatively, one may build
a different setup using an oscilloscope and a shunt resistor. The desired outcome is to measure
with higher frequency, increasing the likelihood of measuring short bursts of power draw, and
measuring them at a higher resolution.
Secondly, the measurement setup would benefit from more and improved automation. The many
manual steps in measuring introduce many possible points of human error. Additionally, the
automated parts, such as the script to extract the useful part of the measurement, could be
improved to require less tuning.
Finally, an improved measurement setup should be used to identify the variances in measure-
ments. By controlling the maximum amount variables, the goal would be to identify which
influence the execution time and power draw the most, such that tests can correct for these
effects.
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Acronyms

ABE attribute-based encryption. 8

ADC analog to digital converter. 19

BN Barreto-Naehrig. 2, 8, 11, 12, 15, 17, 20–24, 26–29, 33, 35, 45

CDH computational Diffie-Hellman problem. 7

CISC Complex Instruction Set Computer. 9

CoAP constrained application protocol. 29

DDH decisional Diffie-Hellman problem. 7

FPGA field-programmable gate array. 12

GMP GNU multiple precision arithmetic library. 16

HWA hardware acceleration. 13, 18, 24, 26–28

IBE identity-based encryption. 8

IoT Internet of Things. 1, 5, 9–11, 13, 15, 16, 19

MNT Miyaji-Nakabayashi-Takano. 8, 12

OS operating system. 14

PBC pairing-based cryptography. 1, 2, 5, 7–9, 11, 12, 15–17, 20, 22, 24, 26, 35, 37

RISC Reduced Instruction Set Computer. 9

SS supersingular. 2, 8, 12, 15, 17, 20–29, 35, 45, 46

WSN wireless sensor network. 9, 10, 12, 30
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[10] Sébastien Canard, Nicolas Desmoulins, Julien Devigne, and Jacques Traoré. On the imple-
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A Curve parameters

A.1 BN 53

Generated using pb param init f gen(parameters, 53).

q = 672220231350823
r = 672220205417377
b = 111399333710995
beta = 509999402509525
alpha0 = 397313476779944
alpha1 = 307533454640401

A.2 SS 318

Generated using pbc param init a gen(parameters, 160, 318).

q = 3842846966350979718854344552020288445552941311824
39900383555083845499594039097285073035217037147

h = 525876268049579567842409815013488694543267436708
r = 730751167114595186142829002853739519958614802431
exp1 = 128
exp2 = 159
s ign0 = −1
s ign1 = 1

A.3 SS 512

Generated using pbc param init a gen(parameters, 160, 512).

q = 25592495515765067051642300423336670621430538560550
08623829437526624232114092719019306504590419724185
8828084036025639

h = 35022192055157566125252273151275491786431099978820
680852024212634920

r = 730750818665451621361119245571504901405976559617
exp1 = 107
exp2 = 159
s ign0 = 1
s ign1 = 1
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A.4 SS 700

Generated using pbc param init a gen(parameters, 160, 700).

q = 46627891161150428916710649802834087853435010026153
34469384822955925632547299171660569484932170229366
46347107388502055095979954873341076120197804740677
33078422696160069748821992596026559519228907668620
8917577471

h = 63808191781525246219613177528601056410312484691950
86362893712600021468846590063875192757132991704012
02535932901477366315385843058236108613060906988730
590111997696

r = 730750862221594424981965739670091261094297337857
exp1 = 135
exp2 = 159
s ign0 = 1
s ign1 = 1
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B Detailed callgrind graphs
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