
 Eindhoven University of Technology

MASTER

Discerning Wheat from Chaff in SOCs
A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers

Mulders, Tom R.J.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/31dc0bf1-4bc9-479f-9f6a-b4c3a8aed658

Discerning Wheat from Chaff in SOCs: A Model to Identify
‘Non-Interesting’ Events in Security Operation Centers

Tom Mulders
t.r.j.mulders@student.tue.nl

Eindhoven University of Technology
Eindhoven, The Netherlands

ABSTRACT
The swift identification of non-interesting security events is vital
to the quality of service provided by security operation centers.
Despite in-depth research into solutions automating the process
of tier 1 security analysts, there is little insight into the actual
process these analysts perform. Moreover, proposed automations
often yield no insight into the reason for the classification of a
security event and do not provide evidence. In this work, we design
a model consisting of analysis steps, encompassing the analysis
process of tier 1 security analysts in a SOC. The model aims to iden-
tify non-interesting security event in a swift and methodological,
evidence-based manner. We verify the suggested model by running
an experiment representative of a real SOC environment, using tier
1 analysts to perform analysis of a range security events. The exper-
iment validates the performance of individual model steps in terms
of consistency and accuracy, and validates the accuracy and com-
pleteness of the model as a whole. Our experimental results show
varying consistency and accuracy for the individual model steps.
Moreover, the results confirm the completeness of the model as a
whole and we observe high accuracy in identifying non-interesting
events. The designed model proves to be an effective tool for a
multitude of applications in the SOC as well as in research.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Usabil-
ity in security and privacy.

KEYWORDS
Security Operations Centers, Network Intrusion Detection Systems,
Security analysis

ACM Reference Format:
TomMulders. 2022. Discerning Wheat from Chaff in SOCs: A Model to Iden-
tify ‘Non-Interesting’ Events in Security Operation Centers. In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The security of organizations is an ever increasingly important
topic. At a time where a large number of devices and services are
internet-connected, and society depends on these devices and ser-
vicesmore than ever, cyber-attacks are becomingmore common and
sophisticated. At this pivotal point in time, where cyber-criminals
are increasingly more capable of monetizing their attacks and a
global pandemic provides the context for large phishing campaigns,
organizations are spending vast amounts of resources on cyber-
defenses. Organizations implement a number of security measures,
from technical solutions to prevent or detect attacks, to awareness
trainings.

An often implemented security with medium to large organiza-
tion is a security operations center (SOC). A SOC aims to detect
cyber-threats within the customer landscape, by means of various
technical solutions. At the heart of the SOC, however, are human
analysts with a wide range of expertise and diverse roles, analyzing
security events, making decisions about escalation and mitigation,
and supporting the owners of the monitored environments. These
analysts are nowadays in short supply, as the demand for secu-
rity analysts increases. Due to this shortage and the nature of the
job, security analysts experience high workloads, tight KPIs and
repetitive tasks in their daily operations[18] [4]. Specifically, tier
1 security analysts, who are the firstline responders to security
events within the SOC, often analyze hundreds or even thousands
of security events on a daily basis, and are expected to accurately
discern ‘interesting security events’ (worth of further investigation
and potentially of being escalated to the higher tiers in the SOC)
from uninteresting security events (that may safely be disregarded).
Due to the high demands and repetitive nature of the job, SOCs
observe high stress levels for these analysts and suffer from high
turnover rate[15][17] that imply additional costs and time to re-
hire and re-train new employees on a regular basis. To maintain
the effectiveness and efficiency of the SOC, automations should be
implemented to support the tier 1 analysts’ work. Achieving this,
however, requires an in-depth understanding and description of
the work of the tier 1 analysts.

Unfortunately, the literature shows a lack of knowledge when
it comes to what tier 1 security analysts do specifically, and what
drives them to make specific decisions. There is no clear, repro-
ducible process defined, describing the methodology of these ana-
lyst, which in turn makes it hard for researchers to reason about the
analysis of security events, or the performance of SOCs. This is es-
pecially hard, since the job of security analyst is notoriously vague
and ill-defined[14]. On the other hand, this is critical to accomplish
as it would allow the field to develop further automation without
losing ‘explainability’ of the decisions (e.g. for a SOC to report to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

the infrastructure owner the reasons why certain alerts were ig-
nored altogether), and to develop methods to train and support the
entry-level workforce in a SOC.

In this thesis we investigate the general analysis process of tier
1 security analysts in a SOC and aims to identify a systematic
approach to discern interesting security events from uninteresting
events. To this extent, we identify a sequence of steps encompassing
the analysis process and derive an evidence-based model applicable
for all general security events generated in the SOC. To achieve
this we iteratively identify a sequence of analysis steps meant to
guide the analyst in looking for evidence that the alert may be
‘interesting’, based on real security events in a SOC. Secondly we
derive a model which is based on the analysis steps and allows for
the systematic and quick identification of uninteresting security
event. It is key to identify uninteresting security event quickly,
because the number of incoming security events is generally too
large to investigate everything[12]. The model consists of stages,
which aim to identify the necessary evidence to label an alerts
as interesting, a lack of this evidence indicates the alert may be
uninteresting. We verify our findings in an experiment, where five
tier 1 security analysts investigated 200 unique security events
consisting of real traffic and injected attacks, using exclusively the
proposed model. From the experimental results we obtained that
the identified sequence of steps performs varying depending on the
model step. However, for the model as a whole we obtained high
accuracy across the board indicating the model performs well.

Our contributions are as follows:
• we develop a model that identifies uninteresting security
events methodologically using evidence

• we test the model against real SOC data over a period of 10
days showing that it can be used by tier 1 analysts to analyze
a range of different network security events

• we evaluate accuracy and consistency of model predictions
and discuss implications for research and practice

The remainder of the paper is structured as follows. Section 2
provides background about SOCs and the security analysis process.
Section 3 details the related work and section 4 identifies the prob-
lem statement and gap. Section 5 explains the methodology utilized
for this research and section 6 describes the sequence of analysis
steps as well as the model. Then section 7 details the experiment set
up and its execution, and section 8 shows the results obtained from
this experiment. In section 9 we discuss the results, and identify
implications for research and practise and finally in section 10 we
provide our conclusions.

2 BACKGROUND
2.1 Security Operation Centers
A security operation center (SOC) is a provider of security services
to organizations. These services range from network intrusion de-
tection systems (NIDS), to endpoint detection, firewall monitoring
and security information and event management systems (SIEM).
The tools providing these services may include static detection
mechanisms, dynamic systems, machine learning, artificial intelli-
gence and more. However, all of these technical security solutions
generate security events which are in the end evaluated, in first
instance, by a so-called Tier 1 analyst in the SOC. The analysis

Figure 1: Overview of the analysis process [19]

performed by tier 1 analysts aims to discern interesting security
events from uninteresting events. Or in other words, identify true
attack with impact, from false-positives or attacks with no impact.
The interesting security events are escalated to tier 2 and tier 3 se-
curity analysts accordingly, for further investigation, classification,
communication to customers and mitigation.

2.2 The security analysis process
The analysis process of a tier 1 analysts has as input a security
event, and as output a classification and/or escalation of this se-
curity event. Generally, analysts correlate the security event with
other (security) events from any available and relevant source and
perform a triage[21] [1] [11]. This triage aims to investigate net-
work events and identify attack chains from the data, as can be seen
in figure 1. The figure illustrates that analysts perform operations
on network events to identify attack chains and the exploits which
make up the chain. It furthermore demonstrates how the analysts
must be able to separate attack chains from each other and from
benign networks events, using search and filter queries. On a high
level, this is the main task performed by security analysts in a SOC.

The investigations into security events as performed by tier 1
analysts are generally repetitive, time-consuming and error prone
[18] [4]. Naturally, the quality of the analysis and thus the accu-
racy of the classification is dependent on the individual skill of the
analyst. However, external factors can impact this significantly;
for example, the arrival of external information such as the publi-
cation of a new vulnerability, or addition of a new customer can
drastically impact the workload. Given that this occurs regularly,
however not necessarily predictably, the general quality of security
event analyses can be quite variable. This combined with a general
shortage in security experts, and specifically SOC analysts, makes
it difficult to deliver consistent and accurate security services to
customers, while also growing and improving the SOC.

Since tier 1 analysts are the first to analyze and classify security
event, the accuracy of the analysis is key. However, timeliness is
equally important. Responding appropriately to a cyber attack, but
in an untimely fashion leaves time for the attack to complete [3].
This can make any mitigation harder or even useless, as the attacker
may have already achieved their objective at least partially (e.g.
encrypting files to ask a ransom, exfiltrate sensitive data, ..).

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

3 RELATEDWORK
The timeliness and quality of alert analyses, and the general per-
formance of a SOC is dependent on the tooling available to the
tier 1 analysts, and on the workload of these analysts. These two
aspects are closely related; the introduction of tooling in the SOC
may significantly reduce the workload of analysts. Given that SOCs
detect vast amounts of alerts and security events, which makes
it impossible to investigate everything[12], automations are a ne-
cessity in a modern SOC. This is demonstrated by Sundaramurthy
et al. in [13], where the authors develop a tool which automates
the monotonous workflow of investigating command and control
(C&C) traffic from internal hosts. Developed specifically for this
workflow, the tool can reduce the workload of tier 1 analysts by
orders of magnitude, from 10 minutes on average to a mere 10
seconds. This is significantly impactful, for the analysis of C&C
traffic, and allows more time for analysing other alerts. However,
the tool is only applicable to the specific workflow, it is not a fully
featured solution to any security event. Developing similar tools
for all workflows in a SOC, and maintaining those, is not feasible.

Another workflow automation proposed by Van Ede et al., fo-
cusses on security event correlation. The authors propose DeepCase,
a semi-supervised approach for the correlation of related security
events[16]. The clustered alert can then be classified by analyst-
driven policies. This approach focusses solely on the clustering of
security events and does not encompass the entire analysis pro-
cess, similar to the earlier proposed tool by Sundaramurthy et al.
Also, this semi-supervised approach, fails to highlight the reason
for clustering or in other words does not provide evidence that the
correlated events are related.

Another type of automation proposed by Du et al. is DeepLog[2],
which translates (security) logs into human readable text. This is
achieved using a deep neural network, which then also detects
anomalies in the logs. These anomalies can then be investigated
by security analysts, using a workflow outputted by Deeplog. This
automation can best be categorized as an anomaly detection system,
not necessarily the automation of the task of an analyst as it takes
as input any system or event log, not necessarily security events.
In order to incorporate DeepLog into a SOC, the analysts must
be trained to handle alarms generated by DeepLog and be able to
interpret the workflows outputted by it. This highlights, that any
automation within the SOC must either fit in existing workflows,
or require additional training and effort of the analysts. In the latter
case, one could argue that the workload of the analyst is increased,
which is sub-optimal.

Zhong et al. propose an all-encompassing solution, based on the
triage operations performed by security analysts. They observed
high-performance and satisfactory false-positive rates. They do
note, however, that the quality of the system depends on the qual-
ity of the triage traces, which in turn depends on the quality of
the analyst. Notably, this approach utilizes the operations of the
analysts, such as "searching", "selecting" and "filtering"[19], and
does not capture why an analyst performs this action, nor what
evidence is obtained from this operation. The usage of traces also
suggests, that the system requires a number of triages performed by
analysts, before being able to automatically perform triage. Finally,

the output of the systems requires verification by human analysts
and these analysts need to learn to interpret the output.

In earlier work by Zhong et al.[20], they also captured analysis
operations performed by analysts in a SOC and the hypotheses they
generate and utilize in this process. Here, they utilize cognitive task
analysis (CTA), to capture fine-grained processes performed as part
of the analysis. They captured a number analyses of security alerts
in terms of actions performed and intermediate hypothesis, this
gives great inside into the mind of an analyst. Interestingly, in the
discussion the authors highlight that they observed different strate-
gies being utilize to explore the data, and generate the hypotheses.
This indicates the lack of a clear predefined process for analysts.
In turn, this implies that given the same input security event, one
cannot make any assumptions about the trace of the correspond-
ing analysis and that these are fully dependent on the (quality of)
security analyst.

Next to designing automation within the SOC, research has
also been conducted on how to measure the performance of SOCs
or of automations utilized within the SOC. Rosso et al. propose
SAIBERSOC[9][10], a tool and methodology which enables re-
searchers and SOC operators to test the performance of the SOC,
analysts and tooling. Based on the MITRE ATT&CK framework,
it enables the simulation and injection of attacks into SOC enviro-
ments. Utilizing SAIBERSOC, one can design attacks and reason
about projected outcomes, and then verify the hypothesis by execu-
tion a simulation of the attack. Most importantly, this simulation is
as close to being an actual attack as one can achieve without impact-
ing SOC or monitored enviroment systems, and is indistinguishable
from other real traffic (and attacks) in the monitored environment.

The importance of tools such as SAIBERSOC for measuring SOC
performance, is highlighted in research by Kokulu et al. In their
qualitative study on issues within the SOC[5], one of the primary
findings is the currentmetrics for SOC performance are not effective.
Moreover, this is a point of contention between security analysts
and their managers. They also found the speed of response and the
level of automation, to be similarly important and big issues within
SOCs. Additionally they noted that poor analyst training and high
false-positive rates are issues within the SOCs in their research.
This all culminates into poor quality of analysis, if left unaddressed.

Another interesting observation, done by Sunderamurthy et al
in [14], is the problem of tacit knowledge within the SOC; deci-
sions made by security analysts are based on intuition and not
documented. Often, the security analysts cannot clearly commu-
nicate their knowledge related to the incident and the reason for
their classification of this incident. This is a key component of the
services provided by SOCs, as the contact point for the monitored
environment must be provided with evidence of a security incident.
Reporting that malware has been installed on a system for example,
is often not satisfactory as mitigation may significantly impact the
business processes provided by the monitored environment. The
contact person must be convinced that mitigation is necessary and
warrant a potential interruption of business processes. Similarly,
tier 1 security analysts must do this as well when escalating to tier
2 or 3 analysts. Good communication about what a tier 1 analyst
has observed, supporting evidence and their decision process is re-
quired, as otherwise higher tier analysts must perform this (partial)
analysis again. More strongly, “SOC jobs such as incident response

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

and forensic analysis have become so sophisticated and expertise
driven that understanding the process is nearly impossible without
doing the job.”[14]

To our knowledge there is no automated solution which can be
applied to all types of security events and at the same time produces
a reproducible, evidence-based analysis of these events. At the same
time, the analysis process for tier 1 analysts is ill-defined or not
defined at all. This leads to difficulty in communication, as well as
to unverifiable alert classifications as well as gives no insight into
what tier 1 security analysts do and for what reasons. These are
all essential parts required for proper communication to owners
of monitored environments. It also makes it hard to measure the
performance of SOCs, analysts and tooling.

4 PROBLEM STATEMENT AND RESEARCH
QUESTIONS

4.1 Problem statement
The process of alert investigation is repetitive, time-consuming and
error prone[18] [4], which is why automation of these tasks can
yield great benefits for the SOC. Much research has been done on
individual steps or parts of the investigation, such as correlation
and alert reduction, often relying on learning techniques. While
these techniques often yield great results in terms of true positives,
the number of false negatives can also be quite high, and these
techniques often offer little transparency in their decision making
as they are grey or black-box solutions, which requires analyst
training to interpret. Understanding alerts and attacks is key in
the service provided by SOCs which is to inform the customers
about concrete risk to their business. The information provided
to customers about risk must be factually correct and based on
thoughtful analysis of concrete evidence, which is why human
analysts are still key to the process.

To move towards the automation of the analysis process, it is
first needed to build a model that describes it. Different steps of
the model can then be potentially automated, meaning that specific
outcomes can then be explained based on the model description
of that step. Additionally, such model would provide the backbone
for so-called decision support systems that guide the human analyst
and can at least partially automate away part of the analysis, par-
ticularly the more repetitive tasks, while keeping the analyst in the
decision loop. The model stages must consist of closely related data
points and its content should allow analysts to answer a generic
binary question about this particular stage. For example: Is the
alert under investigation relevant for the owner of the monitored
environment? The final stage of the model should allow for the
generic classification "interesting" as well, as opposed to earlier
stages. Each stages builds the necessary evidence towards the alert
being potentially interesting, a lack of this evidence indicates alerts
may be uninteresting.

Further, modeling the analysis process can provide useful in-
sights and data for analysts and researchers. By modeling the anal-
ysis process, analysts can utilize a clearly defined process with
labeling and distinct steps to perform analysis. This in turn, enables
researchers to perform experiments using analysts which produce
predictable and clearly defined outcomes, as well as serving as a

Figure 2: Overview of methodology

training tool or guidelines for new analysts. Additionally, the pres-
ence of an analysis model may aid performance evaluation of T1
analysts and the SOC as a whole, for example through experiments
evaluating analysis accuracy across different phases of the process
(e.g. to identify bottle-necks in the analysis process).

As tier 1 analysts are the gateway to escalated events that are
then analysed more in depth, in this thesis we focus on modelling
the T1 analysis process.

4.2 Research questions
The problem statement above gives raise to the main research
question of this thesis:

RQ: How can tier 1 analysts’ process be modelled?
To answer the main research question, the following sub-questions
have been identified:

SRQ1: Which sequence of steps determine a generic model to
analyze alerts for tier 1 analysts?

SRQ2: Can the resulting steps be executed by an analyst in an
accurate and consistent manner?

SRQ3: Is the resulting model as a whole accurate and complete
in capturing relevant analysis steps?

5 METHODOLOGY
Overview of method. To investigate how a tier 1 analysts’ can be
generically modeled we first identified a sequence of analysis steps
taken by analysts when investigating alerts. This sequence is the
basis for the model. Next, we generalized the model and designed
an experiment to verify the accuracy and consistency of the steps
of the model and to verify the completeness and accuracy of the
model as a whole. Figure 2 details the developed method.

5.1 Analysis step identification and
categorization

In order to establish a sequence of steps which encompasses the tier
1 analyst’s analysis process, we adopt a bottom-up approach and
sample a set of 10 security alerts from a the prototype sensor of the
ESH-SOC. The 10 alerts consist of malware, exploits, command &
control, policy violations and scans. Moreover, some of these were
true-positive events with impact, which we refer to as "interesting"

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

in this paper, and other were true-positive events with no impact
or false-positives, these we refer to as "uninteresting" in this pa-
per. We also included 2 occurrences of the same alert, where the
classification was different, to ensure the model can differentiate
between different network events which end up triggering the same
alert. The sampling of these alert occurred between office hours
during a weekday, therefore it is representative of the type of alerts
that commonly trigger during the operation hours of the ESH-SOC.
These alerts are analyzed completely by the authors of this paper,
who is a tier 2 analyst with approximately 3 years of experience,
with the aim of identifying all information which might be relevant
for the analysis of the alert.

Having analyzed and classified the alerts, we established the
potential steps of the analysis by reviewing the collection of analysis
and identifying related sources of information which are key in
the classification of those alerts. The data points identified in the
analysis are then labeled and clustered together in related categories.
These categories correspond to model steps and are sequenced into
model stages, to create a first generic model for alert analysis.

Given the model, we approached two experts within the field of
cyber security, one tier 3 security analyst and one experienced secu-
rity researcher, and asked them to analyze 3 random security alerts,
using exclusively the model. These 3 random alerts are sampled
from the same environment, but distinct from the alerts used in to
construct the model. Based on these analyses and the feedback re-
garding the completeness (i.e. the extent to which it capture the tier
1 analysts’ analysis process), accuracy and usability of the model by
these two experts, the model was iteratively refined and reviewed.
Prior to the experimental phase of this research, we implemented
all feedback provided by the experts, and obtained approval of both
experts that the model performs well with regards to the aspects
listed above.

5.2 Experiment Design
In order to measure the consistency and accuracy of the model
steps, as well as the completeness and accuracy of the model, an
experiment was designed. This experiment consists of the analysis
of 200 random security alerts generated by a real SOC of which
22 are injected attack, over the course of 10 days. Attacks were
injected, since the experiment environment yielded too few "inter-
esting" alerts on a regular basis. The 200 random security alerts
are analyzed by two experiment subject, so that we can compare
the two analysis of a single alert one-to-one, and determine if the
model and its step lead to consistent results. The experiment sub-
jects are 5 tier 1 analysts working as interns at the ESH-SOC at the
Eindhoven University of Technology. Given the similar knowledge
level and identical data available to the experimental subjects, the
participants should have produced the same results.

The experiment subjects perform the analysis of the random
alerts according to the model, and collect the findings of each model
step in a standardized results form. The results form contains prede-
fined fields with questions that are designed to capture the outcome
of each model step. Collecting the results in this way, allows us to
compare the outcome of the model and its steps directly to other
analysts and generate general statistics about the model. Addition-
ally, whenever relevant free-text explanation fields are provided

to report evidence to the decision as well as to note down any
encountered issues with the analysis following the model.

A full description of the experimental setup, subjects, and of the
experiment execution is provided in Section 7.

5.3 Verification of the accuracy and consistency
of the identified steps

Using the designed experiment, we first verify if the identified
model steps are accurate and consistent. In other words, does a
model step generate the same outcome, given the same input alert
and security data, and is this outcome correct.

5.3.1 Consistency. To measure the consistency of each model step,
we compare the experimental results of each step from both exper-
iment participants of the same day. Concretely, we compute the
agreement rate between subjects. When the agreement rate is lower
than 0.7, we consider the step to be inconsistent. This is based on
the "strength of agreement" as defined by Landis at el. in [6], where
0.7 right in the middle of what the authors consider "substantial"
agreement.

5.3.2 Accuracy. To measure the accuracy of each model step, we
review the results produced during the experiment for every step
and compare it to the ground truth. The ground truth of 50 alerts,
consists of a random sub-set of the alert analyzed by the test subjects
and is produced by a tier 2 analyst. It is recorded in the exact
same manner as the results of the experiment as performed by the
subjects, and therefore allows for easy comparison. The sub-set
of alerts part of the ground truth includes, but is not limited to,
all injected attacks. Accuracy is evaluated based on the degree to
which the final classification of an alert matches with the associated
classification in the ground truth. Concretely, we first verify the
general quality of the results by utilizing the Chi-Squared method
to see if any test subject performs significantly differently from
the others. Further, we evaluate whether accuracy is affected by
the specific rule categories. Then, to finally capture the model step
accuracy, we compute the overlap with the ground truth. For the
accuracy, we count the duplicate alert analysis as 2 distinct analysis,
meaning we do not take into account whether the two analyses of
the same alert are the same (i.e. consistent).

5.4 Verification of model completeness and
accuracy

Having constructed the model from the sequence of steps, we ana-
lyze the completeness and accuracy of the model as a whole.

5.4.1 Completeness. As the model is meant to encapsulate the
entire analysis of a tier 1 analyst, we must verify that the model
is complete. In order to measure the completeness of the model,
we again utilize the experimental results. From the results sheet,
the completeness can be qualitatively determined using mandatory
free-text comment boxes. These comments boxes contain comments
about specific model stages, as well as the entire analysis and model
limitations are be recorded there.

5.4.2 Accuracy. To measure the accuracy of the model, i.e. to what
extent the classifications of alerts are correct, we again compare
the experimental results to the ground truth and compute the rate

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

at which respondents perform the assessment correctly. Here we
consider the assessment to be correct, only when both respondents
are in agreement. Concretely we utilize a confusion matrix, to
compute the sensitivity and specificity of the model. The sensitivity
(or true positive rate, TPR) is computed as follows: 𝑇𝑃𝑅 = 𝑇𝑃/𝑃 ,
were 𝑇𝑃 is the number of correctly classified "interesting" alerts,
and 𝑃 is the total number of alerts classified as "interesting" in
the ground truth. The specificity (or true negative rate, TNR) is
computed as follows: 𝑇𝑁𝑅 = 𝑇𝑁 /𝑁 were 𝑇𝑁 is the number of
correctly classified "uninteresting" alerts, and 𝑁 is the total number
of alerts classified as "uninteresting" in the ground truth.

6 MODEL DESCRIPTION
6.1 Initial generic sequence of steps
As a first step in identifying a generic sequence of analysis steps, 10
random alerts from the SOC are sampled. These alerts are analyzed
and classified by the author of this paper with approximately 3
years of experience, following common practices.

From the resulting analyses, we identified 13 categories of in-
formation which form the steps of the model and encapsulate the
tier 1 analysts’ process. The 13 steps are further combined into
a total of 4 sequential model stages. Each stage allows the explo-
ration of closely related steps and the identification of necessary
evidence to classify the alert as interesting, a lack of this evidence
indicates uninteresting alerts. The following model stage have been
identified:

• Relevance Indicators: this stage aims to identify whether the
alert under investigation is even relevant for the owner of the
monitored environment. This is based on the signature and
the scope of the customer, and gives an initial opportunity to
prune uninteresting events when one determines that there
is no evidence of the alert being relevant.

• Additional Alerts: In this stage one identifies other alerts
that have triggered within the monitored environment and
reasons about the alert under investigation based on the
history of that alert triggering. As well as other alerts which
may surround the alert under investigation. This way, alerts
that have never been interesting in the past can be identified,
which allows one to compare alerts; if exactly the same is
observed one can exit the model. The other alerts that may
have triggered surrounding the alert investigation, may add
evidence that there is indeed a potential attack happening.

• Contextual Information: This stage focuses on the behaviour
and observables of the involved internal host. It identifies
logs which may be related to the alert under investigation,
investigates the traffic stream which triggered the alert and
the internal hosts behaviour. Furthermore, if any informa-
tion about the internal host is known, such as OS, software
versions etc. it is utilized at this stage as well.

• Attack evidence: This stage focusses on identifying the poten-
tial attack. Firstly information is gathered about the alleged
attack and this is matched against the observed behaviour in
the evidence collected so far, this way one can see if it is an
actual attack happening. Similarly, this stage gather informa-
tion about what would be observable if the potential attack

Figure 3: Overview of the model

is successful, and again this is matched against already col-
lected evidence. Then, the attacker is investigated, to identify
if the potential attack comes from a known, trusted source.
And finally, the collected evidence is reviewed and matches
against the use cases of the monitored environment. This
way, the owner of said environment can be informed appro-
priately.

Each of the stages aims to answer a general question about the
alert under investigation, and allows one to exit the model based
on the answer given. The questions are listed below, in the order in
which they appear in the model:

• Is the alert under investigation relevant to the owner of the
monitored environment?

• Is the alert under investigation a known not-interesting?
• Is there evidence that the potential attack reached a vulnera-
ble hosts?

• Is there evidence of a successful attack?
Each model stage, and the steps it includes, is described below.

For the steps we use abbreviations throughout the thesis, these are
explained in the individual stage sections, but can also be viewed
in appendix A.

6.2 Relevance Indicators
The first stage identified as part of the model is relevance indicators,
a collection of steps aimed at determining whether a triggered
security alert is relevant for the affected customer. This is achieved
by three specific steps; signature specificity(SiS), signature age(SiA)
and customer scope(CS). This model stage attempts to answer the
following general question: Is the alert relevant to the customer?

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

The is an initial assessment of an alert, without drilling down into
the details of the event which triggered it. Purely based on the
quality of the signature and the scope of themonitored environment,
the analyst determined whether the alert is relevant or not. There
is no room for interpretation, if the analyst is unsure it should
always be considered related. Further model stages will eliminate
the possibility of the alert being interesting, if it turns out the alert
was in fact unrelated.

6.2.1 Signature specificity. When estimating the relevance of an
alert to the owner of the monitored environment, the analyst in-
vestigates the general signature quality of the signature that trig-
gered the alert. To determine ‘quality’, firstly the analyst determines
whether the triggered signature is specific to a certain attack or
service, or whether it is only a generic indicator. This step allows
one to establish the initial priority of the alert analysis (e.g. specific
indicators may be prioritised over generic indicators), as well as
determine what to investigate in future steps. For example, a sig-
nature for DNS request for a suspicious TLD, would be considered
generic, whereas a signature for a DNS request for a phishing do-
main would be considered specific. Generally, identifying that the
signature is specific here increases confidence in the event being
interesting. Identifying that the signature is generic may decrease
the confidence, depending on the level of generality.

6.2.2 Signature age. When looking further into the signaturewhich
generated the alert the analyst can also review the signature cre-
ation date and last updated date. Using this data, one can quickly
see if the behaviour triggering the alert is a recent or an old threat.
Again, this allows one to determine the potential severity depending
on the age of associated threat, or indicates a potential uninterest-
ing security event, if the trigger conditions of the indicator are
time-dependent (e.g. trigger condition is an IP address, which may
have been reassigned between the creation of the indicator and the
triggering of the alerts).

6.2.3 Customer scope. The analyst then reviews whether the ob-
served potential threat is within the monitoring scope of the cus-
tomer. This is determined by reviewing the customer security policy,
as well as the service level agreements about sub-nets and reporting.
The alerts with no to low impact, in for example a guest network
of the customer, can in this way be classified early on in the model,
preserving analyses effort for more high impact alerts.

6.3 Additional alerts
The second stage of the model investigates the alert history(AH)
and how the alert under investigation triggered in the past. Fur-
thermore, it identifies potentially related surrounding alerts(SA)
by looking at alerts triggered by the same involved hosts around
the same time of the original alert. This stage attempts to answer
the following general question: Is the alert under investigation a
known "not interesting" alert? The model can only be exited at
this stage, if the alert history indicates a common "not interesting",
and the alert contents match one-to-one. If this is not the case, the
presence of previous occurrences of this alert, or of surrounding
alerts may add evidence that alert is interesting.

6.3.1 Alert history. First the analyst investigates the history of the
alert under investigation; how often has it triggered in the past,
how often was it interesting, has it triggered for the same internal
host before. Using this information, an analyst can verify quickly
whether the observed attack (assuming it is an attack) was not
successful in the past. Having verified the past occurrence to be
identical and not interesting, the alert under investigation can be
classified identically as well.

6.3.2 Surrounding alerts. Besides looking at the history of the
alert under investigation, the analyst also investigates similar alerts
which were triggered by one or both of the involved hosts, around
the time of the potential attack. When looking at these surrounding
alerts, analysts may observe different alerts with similar names,
indicating the same potential attack. This adds evidence that the
event underlying these alerts, is interesting. Or the analyst may
observe alerts for different attack stages. For example, investigating
a malware alert, a surrounding alert may be for a CnC. Identifying
these surrounding alerts allows the analyst to get a complete picture
of the attack happening and at the same time it gives the analyst
more evidence that there is in fact an ongoing (attempted) attack.
It is worth noting that not every surrounding alert is relevant, this
depends on the type of alert and it is up to the analyst’s expertise
to identify those that are, if any.

6.4 Contextual information
The third stage of the model investigates the context around the
alert under investigation. The context provides meaningful insight
into what type of host is being attacked, what the actual traffic gen-
erating the alert is and whether there is any follow-up traffic which
may be generated as a result of the alert under investigation. More
specifically, the analyst determines a set of related logs(RL), which
contain information about the cause of an alert, or the result/impact
of that alert. They investigate the traffic stream information(TSI)
which triggered the alert and finally review any target host infor-
mation(THI) available. Having done so, the analyst finally looks at
the target hosts behaviour (THB) to determine if the system was
impacted by the attack. The general question we attempt to answer
in this model stage is the following: Was a vulnerable host reached
by a potential attack? At this stage, the analyst collects concrete evi-
dence generated by the security systems (Zeek, in the experimental
setup), and information provided by the owner of the monitored
environment. Only if at this stage the analyst determines there is
zero evidence of potential attack reaching a vulnerable host is the
model exited. Otherwise, evidence to the contrary is identified and
the model is further executed.

6.4.1 Related logs. To get a clear and complete picture of what is
happening on a monitored host, this model step focuses on identi-
fying logs which may impact the cause or the outcome of the attack
under investigation. This selection is largely dependent on the type
of alert, and the type of traffic it is triggered on. In general, the RL
consists of at least a connection log, a protocol specific log (such as
HTTP, or SSH), in addition to the alert log. Furthermore, any other
logs generated by the defending host of the protocol in the alert or
DNS logs are typically related. Generally, the RL are from the time
around the alert. When identifying RL, a full overview of all logs

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

surrounding the alert is also viewed, and from this any unexpected
logs may also be added to the set of RL. For example, investigating
an exploit attempt against a server in the customer data center, a
log of a successful SSH connection from the internet, generated
just after the attack, could very well be included in the set of RL.

6.4.2 Traffic stream information. Having identified a set of RL,
the analyst has now an idea of the context of the attack and the
traffic which triggered the alert. The analyst can view more detailed
information about the number of bytes and packets sent by the
attacker and defender, by reviewing the TSI. The aim is to identify
if the amount of traffic can be considered normal in this context.
This allows analysts to easily identify failed port scans by viewing if
a response packet was sent to the scanner, this also allows analysts
to determine whether any ‘lucky hits’ were possibly generated. A
‘lucky hit’ occurs when the trigger conditions of a signature are met
by pure chance on a random sequence of bytes or characters, and
thus trigger on traffic they are not supposed to trigger on producing
false-positives (or "uninsteresting" to stick with the convention
of the thesis). Observing a very large traffic stream, indicates to
the analyst that the chances of a lucky hit larger than compared
with small traffic streams, so this would indicate that an analyst
should take the possibility of lucky hits into account. Moreover,
the number of packets and bytes in a traffic stream, may indicate
that the connection associated with that stream is successful or not
successful, which may later be used to reason about A/EI or ASI.

6.4.3 Target host information. This stage considers information
about the targeted host. This information can vary greatly from
SOC to SOC and even from monitored environment to monitored
environment. In general, however, the analyst can utilize informa-
tion about the host, such as whether it is a desktop or a server, its
purpose (for example DNS server), its OS, its associated sub-net,
host name, open ports and so on, to reason about whether the at-
tack under investigation can ever lead to successful violation of
corporate policies. Clearly, investigating a Linux-specific exploit
while the targeted host is running, say, Windows, is valuable in-
formation that allows an analyst to quickly eliminate cases where
non-vulnerable hosts were reached by an attack.

6.4.4 Target host behaviour. Next to utilizing known information
about the targeted host, the analyst can also review the target hosts
behaviour. For this, the logs produced by the IDS and network
sniffer are utilized and are used to review the behaviour of the host
before and after the attack. If there is a significant difference, this
may indicate that the host was impacted by the attack. We can also
more generally review the hosts behaviour, for example weekly
occurring backups or updates can be identified and this can help in
identifying false positives.

6.5 Attack evidence
In the fourth and final model stage the analyst knows a potential
attack reached a vulnerable host, and investigates the presence of
attack evidence. First the analyst identifies the exact type of attack
by looking at the attack/exploit information(A/EI). From the at-
tack/exploit information, they investigate potential indicators of a
successful attack by reviewing the attack success indicators (ASI)
for this specific attack and the attacker information (AI). Finally,

knowing whether an attack took place, and whether it was success-
ful, they review its relation to the use cases(RUC) for the associated
environment. This final step allows the analyst to correctly classify
the alert and determine its impact on the environment. In this final
model stage, the model answers the following general question: Is
there evidence of a successful attack? At this stage, the model can
be exited if there is no evidence of an attack, or if the attack was
not covered by the use cases or unsuccessful.

6.5.1 Attack/Exploit information. In this model step, the analyst
determines the exact attack, tools involved and associated hack-
ing groups. The information required for determining this mainly
originates from the signature which triggered the alert, and often
a reference to source about the attack is included as well. Further-
more, an analyst utilizes any open sources available to get a full
picture of what attack is occurring. From this step, it should be
clear whether there is an attack, and if so what attack specifically.
Using this information, again the analyst estimates the impact on
the customer.

6.5.2 Attacker information. Similar to investigating the attack, the
analyst can also investigate the behaviour of the attacker (or at least
of the attacking system). Using the logs generated as a result of
the attacker behaviour, as well as using public sources, the analyst
can determine whether the attacker is an actual attacker. This step
is needed to distinguish actual attackers from known and trusted
sources such as (vulnerability) scanners, as well as help identify
false positive alerts generating ‘hits’ on backup streams, update
and executable downloads.

6.5.3 Attack success indicators. Having determined which attack
reached a vulnerable host, the analyst now investigates whether
the attack was successful. Again, analysts use information obtained
from former stages and open sources that identify clear indicators
of successful attacks. For example, when investigating a Mirai bot-
net alert, an analyst may observe a second-stage download location
in the payload of the request when reviewing the related logs, or
surrounding alerts. This download location, typically an IP but
sometimes a domain, can then be used as an attack success indi-
cator; if the analyst sees a connection to this IP/domain after the
alert has been set up from the defending host, they can be confident
that the initial exploitation was successful. Generally, the attack
success indicators are highly dependent on the specific attack, how-
ever, generic indicators such as DNS request for strange top-level
domains, rapid connections or internal scanning can often be used
as well.

6.5.4 Relation to use cases. Finally, knowing a successful attack
took place, the analyst consults the use cases for the affected envi-
ronment. This step helps them to correctly identify the full impact
for the environment, and thus the final classification of the alert. It
also eliminates any alerts which are not important to the environ-
ment. For example, investigating a generic malware alert, having
determined that it is actually adware on a desktop, the use cases
may call for no action at all, depending on the environment. Or
a non-successful port scan, in a highly secure sub-net, might be
highly interesting in a specific environment and may therefore be
escalated. Finally, the use cases provide useful information and

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

guidance on what and how to report to higher tier analysts or the
affected customer.

6.6 Alert classification
Using the model detailed above, analysts can systematically classify
alerts; at any model stage, the model can be exited. Exiting the
model prior to the final stage (attack evidence), implies the alert
is classified as "not interesting". If the final stage of the model is
reached, then an alert is only classified as interesting if there are
actual indicators of a successful attack and the attack is covered by
the user cases. As highlighted earlier, this is the classification of a
tier 1 analyst. Further classification of the alert may be performed
by higher tier analysts, and the classification may differ from the
original one.

7 EXPERIMENT EXECUTION
7.1 Experiment participants
For this experiment, five analysts in an operational SOC have been
recruited. The analysts are SOC intern computer science students
specializing in cyber security. These students have been trained to
be tier 1 analysts and have approximately 3 months of part-time
experience in that role. The subjects exclusively have experience
analyzing network security events generated by Suricata, network
logs produced by Zeek and the Security Onion Dashboard and as
such the experiment environment as exposed to the subjects is
equivalent to the real environment they are used to. This reduces
the chance of errors and eliminates a learning curve for new tools.

7.2 Experiment preparation
To prepare the experiment participants, an hour-long training was
prepared explaining the model, its stages and steps, in great detail.
The experimental setup and constrains and the results sheet were
conveyed as well. The slides from this training were provided to
the subjects after the training, to be used as a guide during the
experiment.

For the duration of the experiment, the subjects are forbidden
from communicating with each other about the experiment. To
enforce this, a schedule was maintained which assures no subjects
work on the same day as another subject twice, i.e. having worked
on the same day as another subject, these two subjects will not work
again on the same day. Furthermore, this schedule was distributed
to the subjects individually, assuring the subjects are not aware of
which subject is working on the same day as them. Additionally, the
subjects have no knowledge about alerts assigned to other subjects.

Given that the subjects have experience as tier 1 analysts, for the
accuracy of the experiment, they were not allowed to ask questions
about how to analyze an alert, as the model should provide enough
basis for this next to their previous experience. The subject is only
permitted to ask questions about unclear details of the model or
the provided results sheet. These questions are exclusively allowed
to the researcher supervising the experiment.

7.3 Environment
The environment for the experiment was designed to be as repre-
sentative of a real operational SOC as possible. To this extent, a

Figure 4: Security Onion Dashboard

slightly customized Security Onion environment was set up. Secu-
rity Onion is an all-in-one solution for SOCs, it includes a Suricata
for detecting network attacks, and Zeek for logging all traffic. For
Suricata we deployed the open source Emerging Threat Open rule-
set, as well as the licensed Emerging Threat PRO ruleset. From
these signatures a subset was disabled according to a configuration
used in production in the SOC the subjects are recruited from; these
signatures typically generate false positives or simply too many
alerts. The disabled signatures include, but are not limited to, any
hunting, policy or info signatures.

Furthermore, the environment includes the Security Onion Dash-
board which is visible in figure 4, which allows analysts to interact
with alerts and logs and query for data. The Security Onion Dash-
board is the primary tool for investigation in the experiment, and
displays the current unresolved alerts, along with the alert name,
customer and alert severity. Connected to the Security Onion sen-
sor is a real office network segment of the university, with over
500 unique hosts and multiple DNS and file servers. Test subjects
exclusively use Suricata or Zeek logs, or public sources for the
investigation of alerts in the experiment.1

Next to monitoring a real office environment, the Security Onion
instance was also connected to a local deployment of SAIBER-
SOC. [9] SAIBERSOC is a tool that allows researches to inject
attacks in environments, while customizing the traffic to be in-
distinguishable from real traffic. This feature is key, for we must
inject attacks into the environment in order to test the model on
true-positive successful attacks. And these injected attack must be
indistinguishable in terms of source (sensor) and destination (in
customer IP range) from the real alerts generated by actual traffic,
otherwise the experiment results will be unreliable.

Finally, test subjects use their personal computers to access the
experiment environment over VPN, and next to the Security Onion
Dashboard they may access the internet for any OSINT investiga-
tions.

7.4 Sampling
To validate the model, a sample of the alerts generated and in-
jected into the experiment SOC must be analyzed. This sample
1The Security Onion enviroment (sensor, storage and master node) were deployed in a
distributed manner on left-over hardware. This meant that PCAP retention is severely
limited, to approximately one hour. For this reason, as well as that tier 1 analysts in
this environment do not necessarily require PCAPS, led to the decision to exclude
PCAPS altogether from the experiment.

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

must includes a range of alert types, and most importantly, actual
successful attacks.

Analysis of the data collected by Security Onion over the course
of two-and-a-half weeks, identified the generation 150 unique alerts
in total and on average 60 unique alerts per day. In total, 350.000
alerts were generated and over 160 million logs were created. Close
to 100 million connections were attempted or established and 48
million DNS requests were made.

To generate our sample to give to the analysts, we sample alerts
from 9 AM to 5 PM, ensuring representative traffic of an office
environment. The experimental sample was chosen to be 200 alerts,
to be analyzed twice for measuring consistency. Because each alert
is analysed independently by two analysts, in total 400 alert analyses
are conducted.

From analysis of the experiment sensor data, it was observed that
the alerts generated are predominantly scans, and exploit attempts
from the internet, exceeding 90% of all alerts generated. For this
reason, a stratified random sampling method was devised to assure
good coverage of all alerts.

Firstly, we categorize all triggered alerts within the sampling
window based on their included rule category[8]. The rule cate-
gory captures the type of threat, such as scan, malware or exploit
or it refers to a tactic or technique used by attackers. From the
rule category, the analysts prioritize open alerts based on overall
severity and the policy associated with the monitored environment.
It also can also be used as indication of the type of traffic which
triggered the alert. For each of the rule categories, we randomly
select a unique rule, and from that we sample a random alert gener-
ated by that rule. This way, for each category at least one alert will
be included. Since the injected attacks generate alerts of rule cate-
gories only seldom triggered, at least one alert of the injected attack
is present in the sample as there will be no other (non-injected)
occurrences of these alert categories.

Multiple alerts of the injected attack may be included, if the
alerts result from randomly sampling more common rule categories.
Additionally, as far as possible, five new instances of alerts from
the previous experiment day, are included in the next days sample.
These are randomly sampled from the previous day, and if the
alert did not occur on the next day, we re-sampled until one was
found which did occur. This allows us to compare the analyses of
multiple unique occurrences of an alert; further, this replicates a
real environment in which this is often the case.

7.5 Attack Injection
To investigate the validity of the model for true-positive successful
attacks, on every experiment day a (multi-stage) attack is injected.
The attacks are acquired from malware-traffic-analysis.net[7]. This
website hosts many PCAPs with malicious network traffic and
analysis of the associated (multi-stage) attacks. The injected attack
were selected on being multi-stage if possible, but most importantly
they should generate meaningful alerts and logs in the experiment
environment. The attack are detailed in appendix C.

Having verified the attacks generated alerts in the experiment
environment, the environment was fully cleaned before experiment
start to leave no trace of the injected attacks. The attacks are injected
at random times within the sampling window of the associated

experiment day. Additionally, the internal IP addresses in the attacks
was modified to be random unassigned IP addresses within the
experiment network. An exception to this are the DNS servers used
in the attacks, these were re-set to be the actual internal DNS servers
in that sub-net, as this is the corporate policy for that sub-net.

Unassigned IPswere chosen, to avoid conflicting real information
in the logs of that host impacting the analyses of the alerts in
the sample. External IP addresses were not changed, to allow real
investigation of the external hosts conducting the attack, using
OSINT. Using SAIBERSOC, the attack are injected on the same
interface the office network is connected to, to make these injected
attacks appear to be originating from the office network as well.

7.6 Experiment execution
Alerts to investigate are passed to the analysts as entered into a
standardized Excel sheet for that day mentioning the rule name,
category and a direct URL to the selected alert in the experiment
environment. Furthermore, the Excel sheet contains criteria to
include to measure the model, more on this in another chapter.
After producing the sample and the Excel sheet, the next day the
experiment subjects perform the analyses.

In order to balance the workload of the experiment participants,
and control the time when the analyses are performed, the exper-
iment took place over the course of 10 days. On each day, two
analysts analyze the same 20 alerts. At the end of the day, the re-
sults are collected and verified to be complete and corresponding
to the model steps.

7.7 Experiment results collection
In order to capture the results of the experiment in a meaningful
way, which allows us to compare analyses directly, a standardized
results sheet was created. The results sheet, delivered to the ex-
periment subjects at the start of each experiment day, requires the
collections of predefined pieces of information. For each stage in
the model, as well as for each category of the model, questions
have been designed with multiple-choice answers. The questions
are aimed to collect and summarize the particular model step out-
comes.

Additionally, for steps where a multiple-choice answer was not
sufficient and/or the step is complex, an additional free text field
is included to provided evidence for the multiple-choice answer
chosen. This is also where test subjects record any missing model
features, or other limitations in their ability to analyze the alert. A
detailed overview of the results sheet formulation is provided in
appendix B.

All fields in the results sheet are mandatory and must be filled in.
The experimental results as produced by the experiment subject, are
not edited by anyone except the original subject. When verification
of the results shows horizontal inconsistencies or missing data, test
subjects are asked to correct the errors themselves, immediately.
Only after approval by the experiment supervisor are the results
of an experiment day final. After receiving all final experiment
results, these are combined into one results sheet on which the data
analysis is performed.

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

Figure 5: Consistency rate of model steps

8 EXPERIMENT RESULTS
The experiment as described above was executed without technical
or procedural issues. All 400 alert analyses were collected and a
ground truth of 50 alerts analyses was created for result verification.

8.1 Step consistency
In order to measure the consistency of the model steps, we compute
how often test subjects agreed in their analyses. Only when the two
subjects of the same day agree, the result is considered consistent.
The computed step consistency rate is visible in figure 5. This bar
chart shows the agreement rate between the 2 experiment partici-
pant who analyzed the same alert, per model step. The horizontal
orange bar indicates the consistency threshold of 70%.

8.1.1 Relevance indicators. First of all, for CS we recorded the
agreement rate at 98%, so we can consider this step to be consistent.
Then for SiS we achieved an agreement rate of 62.5%, so by our
definition this step is inconsistent. For SiA we found an agreement
rate of 97%, indicating this step is highly consistent. Overall this
model stage performs well, though improvements should be made
to SiS.

8.1.2 Surrounding alerts. Firstly for the AH we achieved an agree-
ment rate of 55%, meaning this step is inconsistent. The for SA, we
observed an agreement rate of 70%, which makes this step consis-
tent. Given this poor to mediocre overall performance, this model
stage requires improvement before it we can utilize it for further
research or in practise.

8.1.3 Contextual information. The RL proved to be the worst per-
forming step in the model, with an agreement rate of 25%, thus this
step is highly inconsistent. The TSI performed slightly better, with
an agreement rate of 43.5%, meaning that also this step is inconsis-
tent. For THI, we achieved an agreement rate of 91.5%, so the THI
can be considered consistent. Finally, for the THB we achieved
an agreement rate of 79.5%, therefore we consider THB to be a
consistent step of the model. While the steps of this stage related
to the targeted host perform well, the RL and TSI step perform
poorly and requires improvement.

Figure 6: Model step accuracy

8.1.4 Attack evidence. First of all, for A/EI we found an agreement
rate of 82.5% indicating consistency. For AI we observed similar
results, with an agreement rate of 85.5%, making this a consistent
step as well. Then for ASI we found an agreement rate of 40.5%,
indicating this step is highly inconsistent. Then finally for RUC we
observed an agreement rate of 50%, making this step inconsistent
as well. Overall the steps in this stage related to attacker or attack
information perform well, with the exception of success indicators,
which requires improvement. Additionally, the relation to the use
cases also performed poorly and will require adjustments.

Overall, we observe that 6 out the 13 steps in the model yield
inconsistent results. Out of the model stages, we found the steps in
the stage surrounding alerts to be the most inconsistent.

8.2 Step accuracy
We have found that the step accuracy was highly correlated with
the step consistency, i.e. an inconsistent step is also mostly inac-
curate. This is unsurprising as for each step only one assessment
is deemed as ‘correct’, meaning that any inconsistency would also
lead to a lower overall accuracy in the assessment of that step. The
step accuracy is reported in figure 6. The figure shows the agree-
ment between an experiment participant and the ground truth. The
horizontal orange bar corresponds to the accuracy threshold of 70%.
For each model stage, we describe the accuracy per step below.

8.2.1 Relevance indicators. Firstly for CS we found an accuracy
of 99%, with a single result being different from the ground truth.
For SiS we observed an accuracy of 59% making this an inaccurate
step. Finally for SiA we observed an accuracy of 95%, with only a
single occurrence where both test subjects were incorrect in their
analysis.

8.2.2 Additional alerts. The AH proved to be inaccurate with a
rate of 62%. Similarly, for SA we observed an accuracy of 56%.

8.2.3 Contextual information. For the contextual information we
observed mostly inaccurate results. The RL yielded an accuracy
of just 27%, where only 4 out of the 50 alerts of the ground truth
were correctly labeled by both test subjects. This is by far the worst
performing model step. For THI we observed an accuracy of 62%

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

Table 1: Confusion matrix based on ground truth

n=50 pred. interesting: 21 pred. uninteresting: 29
actual interesting: 22 18 4
actual uninteresting:28 3 25

and for TSI we observed inaccurate results, with a rate of 58%.
Finally for THB we obtained an accuracy of 88%.

8.2.4 Attack evidence. Firstly for the A/EI we found an accuracy
of 87%. For the AI, we achieved an accuracy of 91%. Then for the
ASI we observed poor accuracy of only 50% and finally of the RUC
a good accuracy of 77%.

Overall, we observe that 7 out of the 13 steps in the model yield
inaccurate results. Similar to the step consistency, for step accuracy
we observe that the steps in the stage additional alerts mostly
yields inaccurate results. Additionally for the step RL we found
very poor accuracy at just 27%. Interestingly, THI is consistent, but
not accurate. And for RUC we obtained inconsistent, but accurate
results.

8.3 Model accuracy
Table 1 reports the confusion matrix of the results against the
ground truth. A Chi-Squared test shows that the distribution of
outcomes is significantly different from what expected from a
random association, suggesting that analysts where better than
chance at identifying the correct category for the classification
(𝑝 = 1.861𝑒−6, 𝑑 𝑓 = 1, 𝜒2 = 22.734). We can determine the accuracy
of the model by computing the sensitivity (i.e. true positive rate)
and specificity (i.e. true negative rate) using the confusion matrix in
table 1. From this we obtain a sensitivity of 0.818 and a specificity
of 0.893 which indicate great accuracy.

8.4 Model completeness
For the completeness of the model, the free-text comment fields
were analyzed for model steps as well as for the final classification.
Here it was found that experiment subjects occasionally required
PCAPs for analysis. This can be classified as a comment on the
available data to the test subjects and is not a model limitation.
The majority of the comment fields contain comments about which
data source was used to perform a given model step. While some
of these comments did include mentions of missing logs, and there-
fore the inability to classify an alert accurately, this again is not a
model limitation but and issue of available data. This corresponds
with the initial findings by the two experts, who gave their sign of
approval that the model was complete, and capable of capturing all
relevant steps of the analysis process of tier 1 analysts. Given this,
we consider the model to be complete.

9 DISCUSSION
The results above show varying levels of reliability of the model.
In this section we discuss these in detail, as well as providing a
perspective on implications of this work on both research and
practice, and discuss future steps to improve the model.

9.1 Which sequence of steps determine a
generic model to analyze alerts for tier 1
analysts?

The sequence of steps identified at the start of the research is verified
by two independent experts within the cyber security field. The
experts conducted analysis of security events using exclusively the
model and commented on its performance. Firstly, they identified
that although the model was complete, the question corresponding
to the model stage "contextual information" was too narrow to be
applicable to all alerts in some cases. A new question was identified
based on this feedback, which allows more (later verified to be all)
alerts to be captured.

Next, they identified that several model steps’ definitions were
unclear or overlapping. This resulted in a more concrete definition
of several of these labels, as well as several model steps being split
up into multiple steps. This aided in the atomicity and understand-
ability of the steps.

The overall changes as a result of the iterative verification pro-
cess with the experts were quite minor, and having implemented
the changes, the experts agreed that the model is complete and
encapsulates the general analysis process of tier 1 security analysts
in a SOC. The concrete changes made to the model as result of the
experts can be viewed in appendex D.

9.2 Are the resulting steps accurate and
consistent?

From the results above, we can observe that the many of the steps
produce inconsistent results and that accuracy is largely the same
as consistency. In order to explain this, we qualitatively analyzed
the results and the comments.

9.2.1 Relevance indicators. For relevance indicators we found that
the CS is highly consistent and accurate. This is believed to be
largely due to the definition of "in scope" and the experiment set
up. In a real SOC environment, however, the scope is also clearly
defined, so we believe the performance of CS in the experiment to
be representative of real world performance.

For SiS, we collected primarily inconsistent and inaccurate re-
sults. The inaccuracy and inconsistency can be attributed to an
unclear definition of specific versus generic. We believe the general
idea behind this step was clear, however, the edge cases caused
some confusion. To mitigate this a set of clear conditions to identify
a specific signature should be identified.

For SiAwe found highly consistent and accurate results, possibly
due to the clear definition of the step.

Given the inaccuracy and inconsistency of SiS, the definition of
generic versus specific signatures should be concretized and made
more clear. Afterwards, the experiment should be repeated in order
to identify whether this model step is consistent and accurate. For
CSmore research can be performed in to how to automatically tune
a ruleset to subnet or customer, by for example labeling subnets
at a certain level of risk or trust, and correlating this with rule
severity as defined in the signatures. For SiA more research can be
done into assocating the dates in the signature with the relevance
of the threat they are detecting. For example, an old signature as
determined by the dates in the signature, could be enriched with the

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

release date of associated CVE number, to give a better indication
of the age of the threat as well.

9.2.2 Additional alerts. For the additional alerts we captured re-
sults by means of questions and free-text comment box per step. For
AH, we found primarily highly inconsistent results. The comment
field revealed that the definition of the AH was not clear. There
was confusion between whether it was the very first time an alert
triggered in the SOC altogether, or whether it was the first time of
that analyst seeing that alert. This lead to a significant difference
in results: one alert was classified as "first occurrence" by one test
subject, and "as Typically NI" by the other, stating over 6000 of these
alerts had triggered in the past. Due to this we cannot draw any
definite conclusion on the performance of this step. For the SA, we
again found inconsistent results though less so than AH. Also, the
accuracy was bad. From the comment field we identified that there
was a misinterpretation of how the SA add evidence. Often, when
classified as "adds evidence" the comment is "multiple alerts of same
attack or scan", indicating that multiple of occurrences of the same
alert adds evidence of a successful attack. This is not strictly true
and not the intention of the this category; only different alerts about
the same attack, or alerts about different attack stages really add
such evidence. Also, often this category was (partially) confused
with AH. We believe this issue partially arose as a consequence of
the difference in knowledge by the model designer and verifiers and
the test subjects. Future designs and adjustments should therefore
include tier 1 analysts to verify the definition and scope of steps
and stages.

Having observed poor performance for the steps in additional
alerts, it is clear that clearer definition of AH and SA must be pro-
vided. Additionally, for the future we aim to include tier 1 analysts
into the design process as well, as SA highlighted that there is a
significant knowledge gap between analysts of different tiers which
warrant collaboration to ensure usability of the model.

9.2.3 Contextual information. Firstly, for the RL we observed in-
consistent results. It is worth reviewing the possible results here;
"nothing", "logs which indicate the event which caused the alert",
"logs which indicate result/impact of the event causing the alert"
and "both". Most occurrences where the test subjects did not agree,
are answers where one test subject answered "both" and the other
answered "logs which indicate the event which caused the alert" or
"logs which indicate result/impact of the event causing the alert".
We observed only a few cases where one of the subject answered
"nothing" and the other subject did not answer "nothing". This in-
dicates to us that if there are RL, they will be identified by analysts
using the model, however the completeness of the set of RL is not
consistent. We believe adjusting the possible results to reduce the
complexity will improve the consistency. For this, we should first
ask for logs indicating the event which caused the alert, and then
ask for the logs indicating the result/impact of the event causing the
alert, separately. Similarly for the accuracy of the RL, this is quite
poor yet there were but a few cases where "nothing" was identified
by subjects while the ground truth states another outcome.

Secondly, for the TSI we obtained inconsistent results. Here, we
clearly observed a misinterpretation as visible from the comment
fields of RL. Here, subjects often claimed a "normal" sized connec-
tion, explaining in the comment field that a single SYN scan packet

was not met with a response packet. Clearly, a single packet "con-
nection" is not a normal sized connection for TCP connections. This
also compromises the accuracy of this category. The combination
of misinterpretation and general knowledge level of the experiment
subjects, again leads us to believe including tier 1 analysts in the de-
sign and verification process is necessary. Moreover, the definition
should be more clearly defined.

Finally, for the THI we observed good consistency but poor
accuracy. The consistency is likely due to the fact that this is a clear
process, with predefined information sources and assumptions by
the experiment environment. Yet it is representative of real per-
formance, as the aforementioned process, information sources and
assumptions are based on the real SOC environment. The accuracy
however is at 62% which is just below our accuracy threshold. We
believe this might be due to the limited information in the afore-
mentioned information sources, where experience and knowledge
is required to correctly identify this. For the THB the results also
proved to be accurate and consistent. Again, the definition and
scope aided in this.

From the results of RL it is clear that this model step needs to
be more concrete and defined more clearly. To this extent, clear
constraints for "related" should be defined. Having this definition,
executing the experiment will lead to more consistent accurate
results in our opinion. Next, for TSI again there should be clear
constraints and definitions of when a traffic stream is considered
to be small, normal or large. With the new definition we expect the
results of this step to be consistent and accurate.

9.2.4 Attack evidence. For the first category A/EI, we found satis-
factory consistency and accuracy. As the test subjects have access to
any information included in the signatures, and any open sources,
they are capable of performing in-depth research about attack indi-
cators. Together with the available logs, we believe the test subject
were well equipped to assess whether there was an actual attack.
In cases of doubt, the subject should err on the side of caution
and answer "attack", as to escalate it to a tier 2 analyst, given that
false-negatives are unacceptable. We believe this contributed to
the consistency and accuracy, and again this is representative of
real SOC operations. For the AI we also observe high consistency
and accuracy. This can be explained by the availability of open
sources and again airing on the side of caution in the classifications.
Only if a host is undeniably trusted, should this option be chosen.
This strong constraint aided particularly in the accuracy of the
outcomes.

Then for ASI we observed inconsistent and thus inaccurate re-
sults. We believe this is due to the way results were captured, the
options being: Definitely unsuccessful, successful and unknown.
Including the option "unknown", led to the individual test subject’s
knowledge level and experience being a big factor. Test subjects
were observed answering "unknown" when they did not know how
do perform the analyses of an alert. Meanwhile, the goal of this out-
come is to capture instances where the success of an attack cannot
be determined from the logs. To better capture this category’s per-
formance, this option should be removed and test subjects should
output "successful" when they are unable to determine that it is
"definitely unsuccessful". That being said, there were only a few
occurrences were one test subject classified the ASI as "successful"

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

and the other subject answered "definitely unsuccessful". Therefore,
we believe this category performs better than the data suggests.

Lastly, for the RUC we observed inconsistent but accurate re-
sults. We believe this is mainly due to the the lack of there being an
actual customer policy and use cases for the experiment setup. A
clear set of use cases alongside a customer security policy, will allow
analysts to perform this analysis fully, leading to more consistent
results. A possible reason for this step being accurate despite the
inconsistency is that on average the test subjects were knowledge-
able enough to make the distinction based on their past experience.
Implementing the changes for the consistency, might improve the
accuracy as well.

We note that the tier 1 analyst performed well on this stage,
where several OSINT investigation had to be performed. This in-
dicates that though a very important stage, it is not as complex
as thought earlier. However, for RUC we found very poor results.
For this reason, we must incorporate the use cases of customer
better into the process of tier 1 analysts. Also, the use case must
be properly defined, to allow analysts to make use of them. It is
also this model step, that should be focused on when training new
analysts.

9.3 Is the resulting model accurate and
complete?

As visible from the results, the model overall is accurate with a
sensitivity of 0.818 and specificity of 0.893. These results differ
significantly from the accuracy of the individual model steps. This
difference can be explained by the model ability to handle errors;
whenever an error is made at an early step, and the model is not
exited with a classification of "not interesting", at a later model step
conflicting or no evidence will be found, which in turn means the
model will be exited anyway. Due to the model natural resilience
to errors in the steps, the overall accuracy of the model improves at
the cost of individual step accuracy. This is a positive feature of the
model, given that the overall classification of an alerts outweighs the
intermediate classifications made throughout the analysis process.

Furthermore, we have also determined the model to be complete
from the qualitative analysis of the experiment results. Participant
of the experiment did comment on the absence of PCAPs. This is not
a limitation of the model however, as PCAPs can be considered to be
part of A/EI and ASI. Also occasionally comment were left about
the absence of logs, again this is not a model limitation. Very rarely
there were comments about an experiment participant not being
able to analyze an alert, due to limitations in their knowledge. Given
that the model is designed to guide an analyst, the model should
support the experiment participants in these cases. Given that we
observed high accuracy, we believe that the model is sufficiently
capable of this and therefore we also consider the model to be
complete.

9.4 Implications for research and practise
9.4.1 Implications for research. The identified sequence of steps
lays the foundation for various further research possibilities. Firstly,
having a complete and accurate sequence, allows researchers to
capture attack and analysis information about specific steps in the

analysis process. This, in turn, allows the identification of bottle-
necks or easily automatable steps. It also allows researchers to
measure the quality of new solutions or products. For example, the
benefit of a new threat intelligence dashboard could be measured,
by analyzing the performance of the A/EI, AI and ASI with and
without the dashboard. The model can be further employed as a
prioritization tool whereby alerts associated with more evidence
that a security violation happened can be discerned from those for
which no or little evidence is found. Automated methods for the
collection of this information should be developed.

For A/EI, given the great accuracy and consistency, this step can
potentially be automated. As an automation, we can make use of
NLP to interpret the attack or exploit of the signature. Next, using
this information, we can query public sources, such as VirusTotal
to, security providers’ blog posts for attack or exploit information
or threat intelligence providers. The exact implementation of this
will have to results from future research. Given that the ASI is
fairly similar to A/EI and AI we can enrich this model step in a
similar fashion, after having verified its performance using the
suggested changes to the experiment result capture. Finally, to
properly measure the performance of RUC we must re-run the
experiment with a properly defined customer.

9.4.2 Implication for practice. For use in practise, the sequence of
steps proves useful as well. The sequence of steps is already used
in training new tier 1 analysts in the ESH-SOC, and it provides
a structured method of analyzing to existing tier 1 analysts. Due
to this, collaboration becomes easier as pieces of information can
be identified by the sequence step it is associated with. Further,
the presence of a model over which to run specific automation
processes allows outcomes of that automation to be mapped to the
reasons why a certain overall classification was given to that input.
Similarly, one can use the identified sequence of steps in a decision
support system for tier 1 analysts. For example, the application of
the model provides a clear progression in the analysis that adds
evidence to the potential ‘relevance’ of the investigated alert. This
may serve as a means to prioritize further investigations based
on the (automated) analysis performed. As the model highlights
which types of information are needed for alert analysis, it can also
be utilised to enrich automated reporting of incident and alerts
to customers with evidence of attacks. It can also be utilized to
automatically generate a likelihood of an alert being interesting,
which can be used by analysts to prioritize which alerts to analyze
first.

From the relevance indicator results it is clear that CS and SiA
appear to be automatable model steps, due to their high consistency
and accuracy. An implementation of such automation of CS can be
realised by defining rulesets specific to customers and their subnets,
this is common practise in the industry. Iteratively, indicators can
be enabled or disabled based on alert generation and classification.
Furthermore, for SiA one can create an automation which parses
rules, and computes the age based on the creation and last modi-
fication date of the rule. This way, aged signatures which match
other conditions (for example, the rule being generic), can also
automatically be disabled.

Given the great performance of THI and THB, automation
for these steps appear to be feasible. Firstly, for THI, a system

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

can be designed which intakes information about the customer
hosts and networks. This system is most similar to a vulnerability
management system combined with a service description per host
and network. Using this, the THB can also be determined more
accurately. The implementation can be a query-able database, or a
fully integrated database in the SOC dashboard.

9.5 Limitations
One of the primary limitations of the research is the fact that a
bottom-up approach was taken, using 10 alerts from a single envi-
ronment. Moreover, only 3 experts were available to confirm the
validity of the model, associated with the SOC from which the orig-
inal 10 alerts were samples. This may pose a threat to the validity
of the model across other environments, across all alerts which can
be observed in a SOC or experts from other SOCs. This limitation
was partially mitigated by the experiment, where the alerts were
sampled from a different environment and a larger number was
sampled. Future research will be required to mitigate the limitation
with regards to expert opinion, where other experts from different
SOCs apply the model or are interviewed to gain a broader insight
into the model performance.

As preluded to in the discussion of the individual model steps
above, several results were impacted by limitations of the experi-
ment. This section identifies such limitation and suggests correc-
tions for future experiment executions. Firstly for the CS we found
that in the experiment environment, it was not possible to properly
define a distinct customer scope, as the IPs in the network were
quite arbitrary and no information was available for the majority of
the hosts. There were no clear subnets were similarly functioning
hosts operated, such as a data center. For this reason, test subjects
should only answer "not in scope" if the IPs involved in the alert
were not within the customer scope. Due to the technical set up,
this is near-impossible to occur, resulting in almost exclusively
"in scope" results. While this is also expected in most real-world
SOC but the least mature ones, a new execution of the experiment,
with clearly defined subnets and policies will allow us to properly
measure this model step.

Next, for AH we found that the method of capturing the answer
was resulting in inaccurate results; not all answers were distinct,
which meant we cannot clearly distinguish why the results are
as they are. Also the definition of those answers should be made
more clear; for example, "first occurrence" means first occurrence
in the SOC, not the analyst first interaction with this alert. In the
future we would split this question up into a yes/no question about
it being the first occurrence in the SOC, and a separate question
about it being typically FP, or NI (or n/a). This does not affect the
model, only the method of results capture. Furthermore, due to
the experiment being executed in an experimental setup, there is
no proper history of alert classification for this environment. In a
real SOC environment an analyst may be able to review previous
alerts analyses to aid in this model step. Then, for SA we found
that mostly the results were impacted by a misinterpretation of the
step. A redefinition and scoping of SA must clarify this, as it was
often confused with AH. Furthermore, test subjects were observed
to incorrectly label other alerts as adding evidence. This is most
likely due to a knowledge gap between model designers and test

subjects. In or to mitigate this, a clear definition of when an alert
adds evidence to another alert must be defined.

For RL we found the method of capturing results to be insuffi-
cient for measure the performance of this step. Having an answer
encompassing both other answers obscures the true performance of
this step. To mitigate this, we split up the question into a question
for logs indicating the cause and a question for logs indicating the
cause/result of an alert. For THI we found inconsistent results,
just below our threshold for accuracy. This might be impacted
by the limited information known about hosts in the experiment
environment.

Then for TSI we found that the results as reported by the test
subjects are consistently incorrent. This is due to the knowledge
gap between analyst tiers. During the experiment introduction and
training this step was left too implicit, so to improve this step we
must clearly define when which answers is expected.

For ASI we also encountered issues in the method of result
capture, where an aswer "unknown" was possible. Again, this was
misinterpreted; if a test subject did not know what to do, they
answered "unknown", despite this being exclusively for cases where
the success of an attack could not be determined, due to lack of
logs, or encryption for example. A next iteration of the experiment
will redefine the "unknown" answer.

Finally, for RUC we found poor results due to the lack of an
actual customer and associated use cases in the experiment set up.
In the future, a (fictional) customer security policy and associated
use case should be defined to properly measure the performance of
this model step.

Furthermore, due to technical limitations no PCAPs were not
available to be used for the analysis of alerts. PCAPs can be consid-
ered to be part of A/EI andASI, yet they are not always available in
real SOCs, nor do they allow for automation as well as logs do. Test
subjects only occasionally commented they would have liked the
PCAP for an analysis. There was no consistency in when or why
they preferred this. Given this, we believe the absence of PCAPs
did not impact the performance significantly, and should not be
considered essential for this model to perform well.

10 CONCLUSION
Our research shows that the general analysis process of tier 1 an-
alysts, with as goal to identify non-interesting security events in
a SOC, can be modeled. The experimental results shows that the
designed model is complete and overall yields reliable results, both
in term of true positives as well as true negatives. We found that the
model can be used for training analysts, or as the basis for technical
automations, such as decision support systems. Additionally, the
model provides researchers with a basis on which they can perform
research on specific SOC elements, for example the performance
of new tooling. We furthermore identified that several model steps
do yield unreliable results and need to be improved in future re-
search. However, for the model step that performwell, we identified
possible automations which can aid in the performance of the SOC.

11 APPENDICES
12 ACKNOWLEDGMENTS
This work is supervised by Luca Allodi.

Conference’17, July 2017, Washington, DC, USA Mulders, et al.

REFERENCES
[1] A. D’Amico and K. Whitley. 2008. The Real Work of Computer Network Defense

Analysts. Springer Berlin Heidelberg, Berlin, Heidelberg, 19–37. https://doi.org/
10.1007/978-3-540-78243-8_2

[2] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog:
Anomaly Detection and Diagnosis from System Logs through Deep Learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (Dallas, Texas, USA) (CCS ’17). Association for Com-
puting Machinery, New York, NY, USA, 1285–1298. https://doi.org/10.1145/
3133956.3134015

[3] Varun Dutt, Young-Suk Ahn, and Cleotilde Gonzalez. 2011. Cyber Situation
Awareness: Modeling the Security Analyst in a Cyber-Attack Scenario through
Instance-Based Learning. 20th Annual Conference on Behavior Representation
in Modeling and Simulation 2011, BRiMS 2011, 280–292. https://doi.org/10.1007/
978-3-642-22348-8_24

[4] Eric T. Greenlee, Gregory J. Funke, Joel S. Warm, Ben D. Sawyer, Victor S. Fi-
nomore, Vince F. Mancuso, Matthew E. Funke, and Gerald Matthews. 2016. Stress
and Workload Profiles of Network Analysis: Not All Tasks Are Created Equal. In
Advances in Human Factors in Cybersecurity, Denise Nicholson (Ed.). Springer
International Publishing, Cham, 153–166.

[5] Faris Bugra Kokulu, Ananta Soneji, Tiffany Bao, Yan Shoshitaishvili, Ziming
Zhao, Adam Doupé, and Gail-Joon Ahn. 2019. Matched and Mismatched SOCs:
A Qualitative Study on Security Operations Center Issues. In Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications Security
(London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 1955–1970. https://doi.org/10.1145/3319535.3354239

[6] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[7] @malware_traffic. [n. d.]. My Technical Blog Posts. Retrieved May 5, 2022 from
https://www.malware-traffic-analysis.net/

[8] Proofpoint. [n. d.]. TECH BRIEFET Category Descriptions. Retrieved August 3,
2022 from https://tools.emergingthreats.net/docs/ETPro%20Rule%20Categories.
pdf

[9] Martin Rosso, Michele Campobasso, Ganduulga Gankhuyag, and Luca Allodi.
2020. SAIBERSOC: Synthetic Attack Injection to Benchmark and Evaluate
the Performance of Security Operation Centers. In Annual Computer Security
Applications Conference (Austin, USA) (ACSAC ’20). Association for Comput-
ing Machinery, New York, NY, USA, 141–153. https://doi.org/10.1145/3427228.
3427233

[10] Martin Rosso, Michele Campobasso, Ganduulga Gankhuyag, and Luca Allodi.
2022. SAIBERSOC: A Methodology and Tool for Experimenting with Security
Operation Centers. Digital Threats 3, 2, Article 14 (feb 2022), 29 pages. https:
//doi.org/10.1145/3491266

[11] Reza Sadoddin and Ali Ghorbani. 2006. Alert correlation survey: framework and
techniques. 37. https://doi.org/10.1145/1501434.1501479

[12] Ankit Shah, Rajesh Ganesan, Sushil Jajodia, and Hasan Cam. 2019. Understanding
Tradeoffs Between Throughput, Quality, and Cost of Alert Analysis in a CSOC.
IEEE Transactions on Information Forensics and Security 14, 5 (2019), 1155–1170.
https://doi.org/10.1109/TIFS.2018.2871744

[13] Sathya Chandran Sundaramurthy, John McHugh, Xinming Ou, Michael Wesch,
Alexandru G. Bardas, and S. Raj Rajagopalan. 2016. Turning Contradictions
into Innovations or: How We Learned to Stop Whining and Improve Security
Operations. In Twelfth Symposium onUsable Privacy and Security (SOUPS 2016).
USENIX Association, Denver, CO, 237–251. https://www.usenix.org/conference/
soups2016/technical-sessions/presentation/sundaramurthy

[14] Sathya Chandran Sundaramurthy, John McHugh, Xinming Simon Ou, S. Raj Ra-
jagopalan, and Michael Wesch. 2014. An Anthropological Approach to Studying
CSIRTs. IEEE Security Privacy 12, 5 (2014), 52–60. https://doi.org/10.1109/MSP.
2014.84

[15] Sathya Chandran Sundaramurthy, Michael Wesch, Xinming Ou, John McHugh,
Siva Rajagopalan, and Alexandru Bardas. 2017. Humans are dynamic. Our tools
should be too. Innovations from the Anthropological Study of Security Operations
Centers. IEEE Internet Computing PP (06 2017), 1–1. https://doi.org/10.1109/
MIC.2017.265103212

[16] Thijs van Ede, Hojjat Aghakhani, Noah Spahn, Riccardo Bortolameotti, Marco
Cova, Andrea Continella, Maarten van Steen, Andreas Peter, Christopher Kruegel,
and Giovanni Vigna. 2022. DeepCASE: Semi-Supervised Contextual Analysis of
Security Events. In Proceedings of the IEEE Symposium on Security and Privacy
(SP). IEEE.

[17] Manfred Vielberth, Fabian Böhm, Ines Fichtinger, and Günther Pernul. 2020.
Security Operations Center: A Systematic Study and Open Challenges. IEEE
Access 8 (2020), 227756–227779. https://doi.org/10.1109/ACCESS.2020.3045514

[18] Chen Zhong, John Yen, Peng Liu, and Robert Erbacher. 2016. Automate Cyberse-
curity Data Triage by Leveraging Human Analysts’ Cognitive Process. 357–363.
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.41

[19] Chen Zhong, John Yen, Peng Liu, and Robert Erbacher. 2018. Learning From
Experts’ Experience: Toward Automated Cyber Security Data Triage. IEEE

Abbreviation Step Name
SiS Signature Specificity
SiA Signature Age
CS Customer Scope
AH Alert History
SA Surrounding Alerts
RL Related Logs
TSI Traffic Stream Information
THI Target Host Information
THB Target Host Behaviour
A/EI Attack/Exploit Indicators
ASI Attack Success Indicators
AI Attacker Information
RUC Relation to Use Cases

Systems Journal PP (05 2018), 1–12. https://doi.org/10.1109/JSYST.2018.2828832
[20] Chen Zhong, John Yen, Peng Liu, Rob Erbacher, Renee Etoty, and Christopher Gar-

neau. 2015. An Integrated Computer-Aided Cognitive Task Analysis Method for
Tracing Cyber-Attack Analysis Processes. In Proceedings of the 2015 Symposium
and Bootcamp on the Science of Security (Urbana, Illinois) (HotSoS ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 9, 11 pages.
https://doi.org/10.1145/2746194.2746203

[21] Chen Zhong, John Yen, Peng Liu, Rob F. Erbacher, Christopher Garneau, and
Bo Chen. 2017. Studying Analysts’ Data Triage Operations in Cyber Defense
Situational Analysis. Springer International Publishing, Cham, 128–169. https:
//doi.org/10.1007/978-3-319-61152-5_6

A GLOSSARY
B RESULTS SHEET FORMULATION
B.1 Relevance indicators
For the relevance indicators, we collect three multiple-choice results
in total. For the CS we have the binary question of whether the
alert is within the customer scope or not. For SiS, we ask whether
the signature which generated the alert is generic or specific to a
certain attack. For SiA we ask if the signature is old or new; if it
updated last before 2020 we consider it old, otherwise we classify
it as new.

B.2 Additional alerts
For the additional alerts stage of the model, we collect the results
of the AH category, and the SA. For AH, we ask the experiment
subject to indicate whether the alert is the first occurrence within
the SOC, whether it is typically false positive, or not interesting or if
theAH is inconclusive. Here we also ask for a free-text comment, to
indicate exactly which information led the subject to this conclusion.
Then for the SA, we ask the binary question of whether the SA
add evidence, in addition to the original alert, that an attack is
happening or has been successful. Again, we ask for a free-text
comment to capture the exact reasoning of the subject.

B.3 Contextual information
For contextual information, we capture results for the RL, TSI,
THI and THB steps. When reviewing the related logs, experiment
subject are asked to indicate whether the RL show evidence of the
cause of an alert, evidence of the impact/result of the alert, both, or
whether they do not add any evidence. Here we also ask for a free-
text comment about which log provided which type of information,

https://doi.org/10.1007/978-3-540-78243-8_2
https://doi.org/10.1007/978-3-540-78243-8_2
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1007/978-3-642-22348-8_24
https://doi.org/10.1007/978-3-642-22348-8_24
https://doi.org/10.1145/3319535.3354239
https://www.malware-traffic-analysis.net/
https://tools.emergingthreats.net/docs/ETPro%20Rule%20Categories.pdf
https://tools.emergingthreats.net/docs/ETPro%20Rule%20Categories.pdf
https://doi.org/10.1145/3427228.3427233
https://doi.org/10.1145/3427228.3427233
https://doi.org/10.1145/3491266
https://doi.org/10.1145/3491266
https://doi.org/10.1145/1501434.1501479
https://doi.org/10.1109/TIFS.2018.2871744
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/sundaramurthy
https://www.usenix.org/conference/soups2016/technical-sessions/presentation/sundaramurthy
https://doi.org/10.1109/MSP.2014.84
https://doi.org/10.1109/MSP.2014.84
https://doi.org/10.1109/MIC.2017.265103212
https://doi.org/10.1109/MIC.2017.265103212
https://doi.org/10.1109/ACCESS.2020.3045514
https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.41
https://doi.org/10.1109/JSYST.2018.2828832
https://doi.org/10.1145/2746194.2746203
https://doi.org/10.1007/978-3-319-61152-5_6
https://doi.org/10.1007/978-3-319-61152-5_6

Discerning Wheat from Chaff in SOCs: A Model to Identify ‘Non-Interesting’ Events in Security Operation Centers Conference’17, July 2017, Washington, DC, USA

if any. For the TSI, the test subject estimate whether the size of the
connection (i.e. number of packet/bytes) which triggered the alert,
is normal for that type of connection, or whether it particularly
small or large. For THI, we ask the question: from the information
available from the customer and from the observed traffic, is the
targeted host vulnerable to the potential attack? And finally for
THB: does the targeted host exhibit unusual behaviour surrounding,
but particularly, after the alert, or is there only normal behaviour.
For the latter question, we also require a free-text comment about
why the behaviour was normal or unusual.

B.4 Attack evidence
In order to capture the attack evidence in the results, we record
findings about the A/EI, AI, ASI and RUC. Firstly, for the A/EI we
ask the question: from the attack evidence in the alert, the logs and
in public sources, is the observed traffic an attack or not. And forAI
we ask: is the attacker a known trusted host, or an unknown host.
Then, for the ASI, given the success indicators for the observed at-
tack, was the attack successful, definitely unsuccessful or unknown.
It should be noted, that in case in A/EI "no attack" was recorded in
the results, that here the test subject always enters "unknown". For
this question we also ask a free-text explanation to identify which
(if any) success indicators were observed. Finally, for RUC we ask
the binary question of whether the alert is covered by the use cases
for the specific customer, given the evidence collected through-out
the model.

B.5 Alert classification
Besides collecting information about the model stages and steps, at
the end the test subjects must also classify the alerts as either Inter-
esting or Not Interesting. Where Interesting is defined as: potentially
a successful attack with impact for the customer. Not interesting
can be defined as either a false-positive or a true-positive alert with
no impact.

These rather generic classifications were chosen, since tier 1
analysts generally do not analyze and classify alerts to completion;
their job description prescribes escalation to tier 2 or 3 analysts as
soon as they identify something out of the ordinary.

There is also a final comment field, to indicate anything not
covered by the model or results sheet, as well other issues occurring
during the experiment.

C INJECTED ATTACKS
The list below identifies the attacks that were injected as part of the
experiment, and the general behaviour that could be determined
from the logs and alerts the attacks generated in the experiment
environment.

(1) Remcos RAT: installation, command & control, lateral move-
ment

(2) RIG Exploit Kit and Dridex: installation, command & control
(3) Emotet and Trickbot: command & control, lateral movement
(4) Qakbot and Cobalt Strike: installation, command & control,

lateral movement
(5) Qakbot and Spambot: installation, command & control
(6) Hancitor and Cobalt Strike: installation, command & control,

lateral movement

(7) Ghost RAT: command & control
(8) BazaarLoader and Cobalt Strike: installation, command &

control, lateral movement
(9) MalSpam Brazil: installation, command & control
(10) Ursnif: installation, command & control

D MODEL CHANGES AS A RESULT OF
EXPERT FEEDBACK

The initial sequence steps identified was extended with CS after
the first round of verification, and the RUC was moved from the
start of the sequence to its tail. CS was previously covered by RUC,
but was found to be atomic and impactful enough to justify its own
step. Additionally, CS can be determined more easily and earlier
on in the process, than RUC.

As discovered during the verification by the experts, RUC re-
quires details about the attack, the affected system and the impact,
which are not available early on in the analysis process. For this
reason as well, RUC was moved to the end of the sequence of
steps. The adjustments detailed above were implemented before
the experiment design and execution.

The question corresponding to the stage contextual information
was changed from "2-way communication established between
attacker and attacked host" to "Vulnerable host reached by potential
attack", to capture cases were attacks or exploits do not result in
two-way communication or no two-way communication between
attacker and attacked host.

Finally, a model step "signature quality" (now omitted) was split
up into "signature specificity" and "signature age", the step "target
host information" was split up into "target host information" and
"target host behaviour" and the step "attack/exploit information"
was split into "attack/exploit information" and "attacker informa-
tion". These changes were made to make the steps more atomic and
easier to capture results for.

	Abstract
	1 Introduction
	2 Background
	2.1 Security Operation Centers
	2.2 The security analysis process

	3 Related work
	4 Problem statement and research questions
	4.1 Problem statement
	4.2 Research questions

	5 Methodology
	5.1 Analysis step identification and categorization
	5.2 Experiment Design
	5.3 Verification of the accuracy and consistency of the identified steps
	5.4 Verification of model completeness and accuracy

	6 Model description
	6.1 Initial generic sequence of steps
	6.2 Relevance Indicators
	6.3 Additional alerts
	6.4 Contextual information
	6.5 Attack evidence
	6.6 Alert classification

	7 Experiment execution
	7.1 Experiment participants
	7.2 Experiment preparation
	7.3 Environment
	7.4 Sampling
	7.5 Attack Injection
	7.6 Experiment execution
	7.7 Experiment results collection

	8 Experiment results
	8.1 Step consistency
	8.2 Step accuracy
	8.3 Model accuracy
	8.4 Model completeness

	9 Discussion
	9.1 Which sequence of steps determine a generic model to analyze alerts for tier 1 analysts?
	9.2 Are the resulting steps accurate and consistent?
	9.3 Is the resulting model accurate and complete?
	9.4 Implications for research and practise
	9.5 Limitations

	10 Conclusion
	11 Appendices
	12 Acknowledgments
	References
	A Glossary
	B Results sheet formulation
	B.1 Relevance indicators
	B.2 Additional alerts
	B.3 Contextual information
	B.4 Attack evidence
	B.5 Alert classification

	C Injected attacks
	D Model changes as a result of expert feedback

