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Abstract
We consider an interacting particle system with singular interaction, describing the dy-
namics of finite numbers of (charged) dislocations in one-dimensional space, including
annihilation. In this thesis, we formalise several possible methods for introducing cre-
ation into the formal description of such a system. This results in three definitions of
solution concepts to these systems, for one of which we prove uniqueness and other prop-
erties. Moreover, we describe a framework in which long-range effects of different cre-
ation methods can be compared, and draw conclusions on the effect of our developed
creation methods. In addition, we describe basic numerical simulation of the developed
system, which is non-trivial (even with automatic ODE-solvers) due to the intricacies of
creation.
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1 Introduction
The study of dislocations in lattice structures gives important insights into the behaviour and mater-
ial properties of metals and other materials under stress. Dislocations are defects in regular lattice
structures, such as the atoms in a crystal or metal. We specifically consider edge dislocations, the
phenomenon where a plane of atoms is not continued in the way that is regular for the lattice. Figure
1.1 visualises an example:

Edge
dislocation

line

Burgers vector
b

Figure 1.1: Example of an edge dislocation in a cubic lattice. [9]

In essence, dislocations can be seen as charged particles, attracting or repelling each other depend-
ing on the orientation of the dislocation; in particular, we model the defect between atoms, not the
atoms themselves, as particles. When forces such as shear stress act upon the material, dislocations
can move through the material as shown in Figure 1.2:

Shear
stress

Slip plane

Edge
dislocation

line

BA C D A B C D A B C D

Figure 1.2: Slip-confined dislocation movement in cubic lattice. [9]

When two dislocations with half-planes extending on opposite sides (i.e. with opposite charges)
meet, the half-planes connect and both dislocations disappear; this is known as annihilation. Under
external forces, new dislocations can also appear; this is called creation or nucleation. Disregarding
the boundary of the material, dislocations can only be created in pairs of opposite charge, which we
refer to as dipoles.1

Considering edge dislocations extending throughout the material reduces the space from three to
two spatial dimensions. Even more, dislocations often move within a cross-section of the material, on
so-called slip planes; with this in mind, we restrict ourselves to studying the movement of dislocations

1In principle, several pairs could be created at a single point in time and space, as long as the net charge of all created
dislocations is 0. We however restrict ourselves to the creation of one pair at a time.
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in a single dimension. This movement is governed by the following (singular) ODE, where 𝑥𝑖 is the
position, and 𝑏𝑖 the charge of dislocation 𝑖:

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗
𝑥𝑖 − 𝑥𝑗

.

1.1 Motivation
Evolutions of such dislocations have been studied extensively in various ways and on different

scales. Currently however, only few mathematical models for dislocations include creation of new
dislocations, whereas in reality this is an important aspect and defining for material properties; thus,
most existing models fall short of physical representation. The studies that do cover creation usually
do not give a precise and fundamental mathematical description of the process.

The main motivation for this thesis is that covering the aforementioned gap would be of great
value for the understanding of dislocation behaviour and for physical accuracy. We aim to build a
mathematical foundation beneath the numerous studies involving the creation of dislocations. In doing
so, we conclude that it is possible to add creation to a mathematical model of dislocation motion in
a mathematically precise manner, although the details require a lot of care. Moreover, we show that
solutions to the resulting evolution equation are unique, and propose methods to simulate such systems.

There are ample theoretical studies of dislocation evolution in lattice structures, the setting that
we also work in. Research is conducted on many different levels, ranging from experimental to purely
theoretical. We will focus on the latter. Hull and Bacon provide a comprehensive overview of dis-
location theory in [2]. Including creation and annihilation in studies of dislocation dynamics is not
new, and neither is analysis of fundamental questions such as well-posedness of dislocation dynamics
models. However, the combination of both is rarely found. In [1], Cleveringa, Van Der Giessen and
Needleman study creation via Frank-Read sources, only more from an engineering point of view and
with emphasis on numerical simulation; the choice of the used process is only briefly argued. In 2004,
Yefimov, Groma and Van der Giessen continue the study, developing a two-dimensional continuum
plasticity theory with creation.

Hudson studies dislocations on a more fundamental mathematical level. In [5] he discusses dislo-
cations on a triangular lattice, and proves existence of a geometrically necessary dislocation. Later, in
[7] he gives a well-posed formulation of Discrete Dislocation Dynamics (DDD) in 3D, with dislocation
configurations represented on larger scale, as integral currents. The study gives an explicit expression
of the Peach-Koehler force, but creation is not included.

On the side of continuum dislocation dynamics (CDD), Monavari and Zaiser study dislocation
dynamics in terms of field variables (similar to densities), and in [8] describe both creation and anni-
hilation of dislocations. On a more microscopic scale, in [6] Van Meurs studies discrete-to-continuum
limits of gradient flows in interacting dislocations, both in 1D and 2D, and describes and analyses nu-
merical simulation with regularised interaction potentials. Recently, together with Peletier and Pozar,
in [10] he also formally defines a continuous dislocation dynamics model with annihilation as an in-
teracting particle system in 1D, and proves well-definedness and properties of such a system. From
there on, they study the system’s many-particle limit.

The main novelty in our work is defining creation on the most fundamental level, considering
specific dislocations and single creation events, and working towards a well-posed description of a

2 Defining creation in 1D dislocation dynamics J. Moraal



DDD system with creation. The system of interest throughout this thesis is the following:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛

with annihilation upon collision
with creation via Frank-Read sources

(𝑃𝐶𝑛)

Here the novelty will be in describing a creation process, as the system without creation has been
studied extensively in other work (e.g. [10]).

The outline of our work is as follows. We develop a model for dislocation dynamics with creation
of new dislocations in several phases. In Section 2 we first construct a general framework for the
definition of solutions to (𝑃𝐶𝑛), leaving the exact details of creation methods open. Then in Section
3 we study specific creation processes separately, to fit into the previously built framework. Having
properly defined different creation methods, in Section 4 we analyse and compare the different systems
with creation and their solutions. We conclude our theoretical analysis by stating properties of one of
the formal definitions of solutions to (𝑃𝐶𝑛). In Section 6 we then discuss the numerical simulation
of such systems, and further analyse and compare their behaviour. Finally, we draw conclusions and
reflect on our work.
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2 The Solution Concept
In this section, we develop a general framework for a solution definition to 𝑃𝐶𝑛. We first discuss the
definition of a solution to (𝑃𝐶𝑛) but without creation; this will serve as a basis for our definition incor-
porating creation. Next, we study how the definition should be adapted to facilitate the incorporation
of creation.

2.1 Solutions without creation
The same system as (𝑃𝐶𝑛) but then without creation is formally defined in [10], Section 2. Van

Meurs et al. additionally scale the ODE by a factor 1∕𝑛, but leaving out this term does not influence
the proposed theory1. We state and briefly discuss this result here, as it serves as a basis for our further
work. The system of interest may be given as follows:

⎧

⎪

⎨

⎪

⎩

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛

with annihilation upon collision.
(𝑃𝑛)

As state-space, we take the following subset of the cartesian product of all positions and charges:
𝑛 ∶=

{

(𝑥, 𝑏) ∈ ℝ𝑛 × {−1, 0, 1}𝑛 s.t if 𝑖 > 𝑗 and 𝑏𝑖𝑏𝑗 ≠ 0, then 𝑥𝑖 > 𝑥𝑗
}

A solution to (𝑃𝑛) is then a pair of 𝑛-dimensional vector functions of the form (𝐱,𝐛) ∶ [0, 𝑇 ] → 𝑛. The
condition imposed here ensures ordering of charged dislocations (i.e. dislocations 𝑖 with 𝑏𝑖 ≠ 0). Note
that if 𝑏𝑖 = 0, by the ODE in (𝑃𝑛), 𝑥′𝑖 = 0 and there is no interaction anymore between dislocation
𝑖 and the rest of the system; hence, setting a dislocation’s charge to 0 is equivalent to removing it
from the system, and ordering is not relevant anymore.2 We adhere to this convention of ‘removing’
dislocations from the system by setting their charge to 0, instead of re-defining the state space with a
different number of dislocations.

Having defined the the state space, we arrive at the formal definition of a solution:
Definition 2.1.1 (Solution to (𝑃𝑛)). Let 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑛. Then (𝐱,𝐛) : [0, 𝑇 ] → 𝑛 is a
solution of (𝑃𝑛) if there exists a finite subset 𝑆 ⊂ (0, 𝑇 ] such that

(i) (Regularity) 𝐱 ∈ 𝐶([0, 𝑇 ]) ∩ 𝐶1([0, 𝑇 ] ⧵ 𝑆), and 𝑏1,… , 𝑏𝑛 ∶ [0, 𝑇 ] → {−1, 0, 1} are right-
continuous;

(ii) (Initial condition) (𝐱(0),𝐛(0)) = (𝐱0,𝐛0);

(iii) (Annihilation) Each 𝑏𝑖 has at most one discontinuity3. If 𝑏𝑖 is discontinuous at 𝑡 ∈ [0, 𝑇 ], then
𝑡 ∈ 𝑆, lim𝑠↑𝑡

|

|

𝑏𝑖(𝑠)|| = 1 and 𝑏𝑖(𝑡) = 0 (b is right-continuous). Moreover, for all (𝜏, 𝑦) ∈ 𝑆 ×ℝ,
∑

𝑖∶𝑥𝑖(𝜏)=𝑦

(

(𝑏𝑖(𝜏+) − 𝑏𝑖(𝜏−)
)

= 0.4

1For details, see Appendix A.2.1
2This is an important modelling choice, and is specific to this setting with annihilation. Some studies leave dislocations

in the same position with their original charges.
3Note that 𝑏𝑖 is a function of time for all 𝑖 = 1, ..., 𝑛.
4Here we use the convention of writing 𝑓 (𝑡∗−) ∶= lim𝑡↑𝑡∗ 𝑓 (𝑡) and 𝑓 (𝑡∗+) ∶= lim𝑡↓𝑡∗ 𝑓 (𝑡) for the left and right limits

respectively.
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(iv) (ODE for 𝐱) On (0, 𝑇 )∖𝑆, 𝐱 satisfies the ODE in (𝑃𝑛).
The choice of the set 𝑆 is free, as long as it is finite and contains all annihilation times from point

(𝑖𝑖𝑖). A reasonable choice would be to let 𝑆 be exactly the set of annihilation times; this is referred to
as the minimal choice for 𝑆.

Note the importance of the requirement that (𝐱,𝐛) ∈ 𝑛; it is the only condition ensuring that
dislocation charges are indeed set to 0 if two dislocations of opposite charge end up in the same position
(i.e. upon collision). Condition (iii) ensures that the total charge before and after an annihilation is
equal; in particular, equally many dislocations of both charges are needed to annihilate.

One of the main results achieved by Van Meurs et al. in [10, Theorem 2.4] is the well-posedness
of (𝑃𝑛), along with a range of properties.

Both as illustration and to serve future analysis, we study the above system more closely in a
minimal example of two dislocations. This allows for explicit solutions up to a collision event via
standard ODE theory, and will be useful for comparison later on, when introducing creation.

Example 2.1.2. Let 𝑥01, 𝑥02 ∈ ℝ such that 𝑥01 < 𝑥02, and let 𝑏1, 𝑏2 ∈ {−1, 1}. We solve the following
system:

⎧

⎪

⎨

⎪

⎩

d𝑥1
d𝑡 = 𝑏1𝑏2

𝑥1(𝑡)−𝑥2(𝑡)
d𝑥2
d𝑡 = 𝑏1𝑏2

𝑥2(𝑡)−𝑥1(𝑡)

𝑥1(0) = 𝑥01, 𝑥2(0) = 𝑥02

(2.1)

We do so by re-parametrising; the only quantity of importance is the difference between 𝑥1 and
𝑥2, so we define 𝑟(𝑡) ∶= 𝑥2(𝑡) − 𝑥1(𝑡) and set 𝑟0 ∶= 𝑥01 − 𝑥02. We obtain the following system:

⎧

⎪

⎨

⎪

⎩

d𝑟
d𝑡

=
2𝑏1𝑏2
𝑟(𝑡)

𝑟(0) = 𝑟0
(2.2)

This separable ODE may be solved as follows:
d𝑟
d𝑡

=
2𝑏1𝑏2
𝑟(𝑡)

⟹ ∫

𝑡

0
𝑟(𝜏)d𝑟(𝜏) = 2∫

𝑡

0
𝑏1𝑏2d𝜏

⟹
1
2
𝑟(𝑡)2 = 2𝑏1𝑏2 ⋅ 𝑡 + 𝑐, 𝑐 ∈ ℝ

⟹ 𝑟(𝑡) =
√

2𝑐 + 4𝑏1𝑏2 ⋅ 𝑡

Taking into account the initial condition 𝑟(0) = 𝑟0 > 0 (as 𝑥2 > 𝑥1), it follows that 𝑐 = 𝑟20∕2. We
now discern two cases:
𝑏1 = 𝑏2 ∶ The derived solution becomes 𝑟(𝑡) =

√

𝑟20 − 4𝑡. The two dislocations attract each other,
and 𝑟 is decreasing in time. In particular, with the given initial distance, we find that 𝑡 =
𝑟20∕4 is the first zero of 𝑟, implying that the dislocations collide after 𝑟20∕4 time. The ODE
in 2.2 is no longer well-defined for 𝑟 = 0, so this solution holds on [0, 𝑟20∕4) (but may be
extended continuously to include the right endpoint).

J. Moraal Defining creation in 1D dislocation dynamics 5



𝑏1 = −𝑏2 ∶ We now have 𝑟(𝑡) =
√

𝑟20 + 4𝑡, so 𝑥1 and 𝑥2 repel each other and diverge to −∞ and
+∞ respectively.

Note that d𝑥1
d𝑡

+ d𝑥2
d𝑡

= 0, so 𝑥1 + 𝑥2 is constant. Thus the dislocation trajectories are spatially
symmetric, and the following formulas can be used to recover 𝑥1 and 𝑥2:

𝑥1(𝑡) =
𝑥01 + 𝑥02

2
− 1

2
𝑟(𝑡), 𝑥2(𝑡) =

𝑥01 + 𝑥02
2

+ 1
2
𝑟(𝑡) (2.3)

Intuitively, this follows immediately from (3.1); each action on one dislocation has an equally large
but opposite effect on the other (Newton’s third law); since there are only two dislocations, their
movement is equal but opposite, and the sum (and average) of their positions remains constant.

The two possibilities analysed above are visualised in Figure 2.1, plotting the individual tra-
jectories 𝑥1 and 𝑥2.
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(a) 𝐱0 = (−1, 1), 𝐛0 = (1,−1)
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(b) 𝐱0 = (−0.1, 0.1), 𝐛0 = (−1,−1)
Figure 2.1: Solution trajectories to 2.1 (or (𝑃2)) for differing initial locations and charges.

2.2 Creation Procedure
Before we go further into the definition and properties of creation, we need some notion of what

a creation event is and what requirements it should meet. We base our principles on the theory in
the work of Cleveringa et al., e.g. in [1]5 Here a pair of dislocations of opposite charge (a dipole)
is created at a pre-defined source location if the force experienced in that source point exceeds some
critical force magnitude during a certain period of time. The orientation of the dipole then follows
from the direction (or sign, in 1D) of the force.

The relevant force here is the Peach-Koehler force; similar to the right-hand side of the ODE in
(𝑃𝑛), it represents the total force experienced in a certain position at a certain time; this however can
be evaluated in any point in space, not only the position of a dislocation. We may define it as follows:
Definition 2.2.1 (Peach-Koehler force). Let (𝐱,𝐛) ∶ [0, 𝑇 ] → 𝑛 represent the solution to (𝑃𝑛) for
some given initial condition. We then define PK ∶ ℝ × [0, 𝑇 ] → ℝ as follows:

For any 𝑡 ∈ [0, 𝑇 ], and all 𝑠 ∈ ℝ s.t ∀𝑖∶ 𝑠 ≠ 𝑥𝑖(𝑡), PK(𝑠, 𝑡) ∶=
𝑛
∑

𝑖=1

𝑏𝑖(𝑡)
𝑠 − 𝑥𝑖(𝑡)

5Although the authors study the two-dimensional case in this paper, the same principles still apply in our setting.
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The dependence on time in the right-hand side may not always be made explicit, especially when
we only consider a separate state of the system instead of the evolution over time.

With this definition we can reformulate the creation rule from [1] more precisely:
If at a source with position 𝑠 the magnitude of the Peach-Koehler force exceeds a given
threshold 𝐹𝑛𝑢𝑐 , i.e. |PK(𝑠, 𝑡)| ≥ 𝐹𝑛𝑢𝑐 for a time-interval of length 𝑡𝑛𝑢𝑐 , a dislocation dipole
(𝑥𝑖, 𝑥𝑖+1) is introduced with 𝑏𝑖 = sgn(PK(𝑠, 𝑡)), 𝑏𝑖+1 = −𝑏𝑖.

We add one additional constraint to this description. Even though not explicitly mentioned in the
above, we require that the Peach-Koehler force magnitude stays above the force threshold with the
same sign; i.e., if PK(𝑠, ⋅) jumps between 𝐹𝑛𝑢𝑐 and −𝐹𝑛𝑢𝑐 , this should not be considered staying above
the threshold. Such discontinuities may exist, both because PK as given in Definition 2.2.1 may have
singularities and because the creation of new dislocations may cause it to change instantaneously, thus
resulting in a discontinuity, depending on the creation process.

In [1], if the above condition is met, the dipole is introduced with a predetermined distance between
the two dislocations. This distance is chosen such a way that the forces between the new dipole are in
balance with the forces acting on the dipole from the rest of the system, and are based on experimentally
found material properties. However, this is just one of many possible ways to introduce dislocations.
We deviate from Cleveringa et al. by not fixing a predetermined distance, and additionally study two
different creation procedures. This analysis is postponed to Section 3 and further.

2.3 Formal definition of (𝑃𝐶𝑛)
We now formally define what a solution to (𝑃𝐶𝑛) is, using a similar construction as for solutions

to (𝑃𝑛) in Definition 2.1.1. However, the precise description of a solution with a creation procedure
requires some notion of a solution to add that procedure to. Hence, we first introduce a solution concept
without the actual description of how a creation event takes place. For now we consider this to be a
fixed (but unknown) procedure, define what a solution would be given such a procedure, and later
discuss the details to fit inside this framework.

Before we can introduce such a definition, we need to modify the state space and requirements on
the 𝑏𝑖, and introduce a new concept involved in the creation process. Firstly, we alter our state-space
to not require ordering of charged dislocations:6 This leads to the definition of a new state space:

𝑐
𝑛 ∶=

{

(𝐱,𝐛) ∈ ℝ𝑛 × {−1, 0, 1}𝑛 s.t if 𝑖 ≠ 𝑗 and 𝑏𝑖𝑏𝑗 ≠ 0, then 𝑥𝑖 ≠ 𝑥𝑗
}

.

Moreover, a fundamental difference to (𝑃𝑛) is that now, dislocations can change charge (or ‘𝑏𝑖 can
jump’) more than once: a dislocation that was created can also annihilate again. To characterise this
in terms of the dislocation’s charge, we define the following class of functions:
Definition 2.3.1 (Charge function). Let 𝑏 ∶ [0,∞) → {−1, 0, 1} satisfy the following conditions:

(i) If |𝑏(0)| = 1, then there exists at most one 𝑡∗ > 0 such that lim𝑡↑𝑡∗ 𝑏(𝑡) ≠ lim𝑡↓𝑡∗ 𝑏(𝑡) (“𝑏 jumps at
most once”). If such 𝑡∗ exists, then 𝑏 is right-continuous in 𝑡∗ and 𝑏(𝑡∗) equals 0, i.e., lim𝑡↓𝑡∗ 𝑏(𝑡) =
𝑏(𝑡∗) = 0;

6Creation of new dislocations does not make it impossible to retain ordering, but the mild convenience this might bring
does not weigh up to the effort it takes. Moreover, requiring ordering of charged dislocations is not feasible in numerical
simulations, when the future evolution of the system is usually unknown.
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(ii) If |𝑏(0)| = 0, then there exist at most two distinct 𝑡∗ > 0 such that lim𝑡↑𝑡∗ 𝑏(𝑡) ≠ lim𝑡↓𝑡∗ 𝑏(𝑡). At
the first discontinuity, if it exists, 𝑏 must be left-continuous If a second discontinuity exists, then
this satisfies the same criteria as in point (i).

We then call 𝑏 a charge function, and denote the collection of all such functions by 

This enables us to formulate a solution concept for (𝑃𝐶𝑛), closely following Definition 2.1.1:
Definition 2.3.2 (Solution to (𝑃𝐶𝑛)). Let 𝑇 > 0, 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑛. Furthermore, let
𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 > 0, let 𝐶 ⊂ ℝ be a finite set, and set 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. Enumerating all elements 𝑠𝑖 ∈ 𝐶 ,
additionally define 𝑥0𝑛+2(𝑖⋅𝑘+𝑗)+𝓁 ∶= 𝑠𝑖 for 𝑖 = 0,… , |𝐶| − 1, 𝑗 = 1, ..., 𝑘 and 𝓁 = 0, 1 and 𝑏0𝑛+𝑚 = 0
for 𝑚 = 1,… , |𝐶| ⋅ 𝑘.

Then, setting 𝑁 ∶= 𝑛 + |𝐶| ⋅ 𝑘, the functions (𝐱,𝐛) : [0, 𝑇 ] → (𝑐
𝑁 ) form a solution of (𝑃𝐶𝑛) if

there exist finite subsets 𝑆,  ⊂ (0, 𝑇 ] such that

(i) (Regularity) 𝐱 ∈ 𝐶([0, 𝑇 ]) ∩ 𝐶1([0, 𝑇 ] ⧵ 𝑆), and 𝑏1,… , 𝑏𝑁 ∶ [0, 𝑇 ] → {−1, 0, 1} are charge
functions (𝑏𝑖 ∈ );

(ii) (Initial condition) (𝐱(0),𝐛(0)) = (𝐱0,𝐛0);

(iii) (Annihilation) If 𝑏𝑖 jumps at 𝑡 > 0 and lim𝑠↑𝑡
|

|

𝑏𝑖(𝑠)|| = 1, then 𝑡 ∈ 𝑆 and we call 𝑡 an ‘annihilation
time’. Moreover, for all (𝜏, 𝑦) ∈ 𝑆 ×ℝ,

∑

𝑖∶𝑥𝑖(𝜏)=𝑦

(

(𝑏𝑖(𝜏+) − 𝑏𝑖(𝜏−)
)

= 0

(iv) (Creation event) If 𝑏𝑖 jumps at 𝑡 ∈ [0, 𝑇 ] and 𝑏𝑖(𝑡−) = 0, then there is exactly one other 𝑗 ∈ ℕ
(i.e. 𝑖 ≠ 𝑗) such that 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡) and 𝑏𝑖(𝑡+) = −𝑏𝑗(𝑡+). Then and only then, we say that a
creation event occurs at (𝑥𝑖(𝑡), 𝑡)

(v) (Creation moment) Creation occurs at (𝑠, 𝑡), where 𝑡 ∈ [0, 𝑇 ], if and only if 𝑠 ∈ 𝐶 and the
following conditions both hold:

• for all 𝜏 ∈ [𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡] it holds that PK(𝑠, 𝜏) > 𝐹𝑛𝑢𝑐 , or for all 𝜏 ∈ [𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡] it holds that
PK(𝑠, 𝜏) < −𝐹𝑛𝑢𝑐 , and in both cases, no creation event occurred at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡);7 and

• there is no 𝑡∗ ∈ (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡) for which the previous condition holds.

Moreover, we then have 𝑡 ∈ 𝑠, and the union of 𝑠 over all sources 𝑠 ∈ 𝐶 is contained in 

(vi) (Creation procedure) [To be added depending on precise description]
(vii) (ODE for 𝐱) On (0, 𝑇 )∖(𝑆 ∪  ), 𝐱 satisfies the ODE in (𝑃𝐶𝑛).

Apart from the omission of point (vi), some choices in Definition 2.3.2 are non-trivial and require
motivation. We argue these point by point below.

In condition (iii), right-continuity of 𝑏 and the fact that 𝑏𝑖(𝑡) = 0 both now follow from 𝑏 being a
charge function, contrary to the explicit requirements posed in Definition 2.1.1. Condition (iv) can be
seen as the equivalent of annihilation condition (iii), only then for creation. A difference to annihilation
is that at a creation event, only one dipole is introduced, whereas annihilation could also happen with

7Note that this requirement is automatically not satisfied if 𝑡 − 𝑡𝑛𝑢𝑐 < 0, because PK(𝑠, 𝜏) is not defined for 𝜏 < 0.
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more than two dislocations. Hence, the requirement that the net charge of all dislocations is 0 for
annihilation is replaced by the condition that exactly two dislocations with opposite charges are created.
Furthermore, we need left continuity instead of right, as was the case for annihilation, because |𝑏(⋅)|
being lower semi continuous is a requirement for 𝑏 being a charge function.

The creation condition (v) encodes the requirement formulated in Section 2.2. Intuitively, it re-
quires that at a given source, a creation occurs at time 𝑡 if and only if it is the first time since a previous
creation (or since 𝑡 = 0) at which the force threshold is met during a long enough time-interval. In
fact, the two points can be combined into a single condition; if PK > 0, to ensure 𝑡 meets the given
requirements we may require the following:

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ PK(𝑠, 𝜏) < 𝐹𝑛𝑢𝑐 and no creation occurred at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}.

This ensures that 𝑡− 𝑡𝑛𝑢𝑐 is the last time at which either the threshold was not met or at which creation
occurred at 𝑠, implying that after 𝑡 − 𝑡𝑛𝑢𝑐 , |PK | was above the threshold and no creation occurred. A
similar expression is still needed for PK < 0. For readability, we prefer the formulation as given in
Definition 2.3.2.

Finally, this requirement in part explains the choice for defining dislocations with zero charge at
𝑡 = 0. If |PK(𝑠, 𝑡)| > 𝐹𝑛𝑢𝑐 for all 𝑡 ∈ [0, 𝑇 ], creations occur at regular intervals, namely at times 𝑛 ⋅ 𝑡𝑛𝑢𝑐
for 𝑛 = 1, ..., ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋; more creations cannot occur at a given source within the specified time. This
provides us with a bound on the total number of creation events that can occur in the time-interval
[0, 𝑇 ] at any source; taking the minimal choice for 𝑠, i.e. only the times at which creation occurs at 𝑠,
we have |𝑠| ≤ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. Consequently, given a finite set 𝐶 of sources, the total number of creation
events in a given system during the period of time [0, 𝑇 ] is bounded from above by |𝐶| ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋.

To account for all dislocation pairs that may be created, at each source 𝑠 ∈ 𝐶 , we define 𝑘 ∶=
2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋ dislocations, each with location 𝑠 and initial charge 0. This is what the (somewhat cum-
bersome) definition of initial data (𝑥𝑖, 𝑏𝑖) for 𝑖 = 𝑛+1,… 𝑛+2 ⋅ |𝐶| ⋅𝑘 encodes. Then at each creation
event, a dipole can be introduced by setting the charge of one dislocation to −1 and another to 1. This
way, often far too many dislocations are initialised, since the threshold may only be met in a fraction
of cases. In a theoretical setting where the full solution is known it would also be possible to only
introduce exactly as many dislocations as will eventually be created, but in practice this is usually in-
feasible. Another possibility is to define an alternative state-space from the union over state-spaces of
varying dimension

𝑁
⋃

𝑘=1

{

(𝐱,𝐛) ∈ ℝ𝑘 × {−1, 0, 1}𝑘 ∶ ∀𝑖, 𝑗 = 1,… , 𝑘, 𝑥𝑖 ≠ 𝑥𝑗
}

.

This would also allow for the removal of dislocations from the system, instead of setting their charge
to 0. We choose not to pursue this approach, and keep the number of dislocations fixed.

J. Moraal Defining creation in 1D dislocation dynamics 9



3 Creation Procedures
The main achievement in this section is defining the creation of a dipole from a single source such that
it overcomes the singular interaction and does not immediately annihilate again. In the following sub-
sections, we consider two approaches: either temporarily adjusting the interaction between the newly
created dislocations as in Section 3.1, or introducing the dipole at some non-zero distance apart as in
Section 3.2. Both approaches require slight modifications to the solution concept given in Definition
2.3.2. Only important differences and motivation for certain choices are given here, the reader may
find the full definitions in Appendix A.2.3.

One conformity between the approaches is the principles we apply to choose parameters of the
creation process: these should be chosen in such a way that forces within the created dipole are balanced
by the force exerted by the remainder of dislocations in the system, as Cleveringa et al. also mention
in [1]. We stress here that the force between dislocations should only be adjusted within the created
dipole; interactions with any other dislocation, whether already present in the system or created at the
same time but from a different source, should not be altered.

Our approach for choosing suitable creation process parameters is to first consider a system with
a single creation and a constant external force, replacing the influence of any other dislocations. A
value for the creation parameter leading to an equilibrium in such a simplified setting also seems a
reasonable choice for systems involving more dislocations: this way, it is both possible that the dipole
re-collides or stays apart, depending on the other dislocations (i.e. the creation procedure does not have
a clear tendency toward either option). We therefore choose to make parameters creation-specific; if a
creation event is to occur, the corresponding parameter is chosen according to the force at the source
at that moment.

It may seem wrong to simply adjust a system of equations in order to obtain desired behaviour;
however, creation events do happen in reality, which indicates the necessity to change any system not
accounting for creation. We argue that it is better to alter a system such as (𝑃𝑛) in seemingly arbitrary
and non-physical ways than to leave out an observed effect completely.

3.1 𝛾-creation
We consider an adapted version of (𝑃𝐶𝑛), where we temporarily alter the interactions between

the newly created dislocations within a dipole. All other interactions should be as normally described
by (𝑃𝐶𝑛). To incorporate this, we introduce an additional time-dependent multiplicative factor 𝛾𝑖,𝑗 ∶
[0,∞) → ℝ for each pair of dislocations, adjusting the interaction force within a newly created dipole:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗𝛾𝑖,𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛

with annihilation upon collision
with 𝛾-creation

(𝑃𝐶𝑛-𝛾)

As default, one should see 𝛾𝑖,𝑗 ≡ 1; only if 𝑖, 𝑗 are created as a dipole, it is given by a different function
yet to be specified for a short period of time. There are many possible choices, two of which we study
below. The length of the time-interval during which the exception holds is henceforth denoted 𝑡𝑒𝑥𝑐;
outside of these time-intervals, 𝛾 should equal 1. The precise value of 𝑡𝑒𝑥𝑐 depends on the definition
of 𝛾 , and is derived in the following subsections.

To derive reasonable choices for 𝑡𝑒𝑥𝑐 and to analyse creation procedures in (𝑃𝐶𝑛-𝛾), we first revisit
the example of a simplified system, serving as a framework for further analysis.
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Example 3.1.1. Assume a single creation event to occur at (𝑠, 𝑡) for 𝑡 = 0, and replace the influence
of any other dislocations by a constant external force 𝐹 . The dislocations should be in the same
position at 𝑡 = 0, which causes a singularity in their interaction. Hence, instead of requiring
𝑥1(0) = 𝑥2(0) = 0, take limits 𝑡 ↓ 0 for the initial condition. This leads to the following system
of ODEs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥1
d𝑡

= −1
𝑥1(𝑡) − 𝑥2(𝑡)

⋅ 𝛾(𝑡) + 𝑏1𝐹

d𝑥2
d𝑡

= −1
𝑥2(𝑡) − 𝑥1(𝑡)

⋅ 𝛾(𝑡) + 𝑏2𝐹
for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

lim
𝑡↓0

𝑥1(𝑡) = lim
𝑡↓0

𝑥2(𝑡) = 𝑠

(3.1)

Similar to Example 2.1.2, we define 𝑟(𝑡) ∶= 𝑥1(𝑡) − 𝑥2(𝑡) and rewrite the ODE as (3.2) below.
Depending on the sign of 𝑏1 and 𝑏2, we obtain an additional term of either +2𝐹 or −2𝐹 . For
now we choose the former, with 𝑏1 = −1, 𝑏2 = 1; we will later see that this is without loss of
generality. This yields the following ODE:

⎧

⎪

⎨

⎪

⎩

d𝑟
d𝑡

= −2
𝑟(𝑡)

⋅ 𝛾(𝑡) + 2𝐹 for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

lim𝑡↓0 𝑟(𝑡) = 0
(3.2)

Note that again 𝑥1+𝑥2 is constant, since 𝑏1 = −𝑏2 so the force terms cancel out. This implies that
the dislocation trajectories are again spatially symmetric, and (2.3) can still be used to recover 𝑥1
and 𝑥2.

The goal is to choose 𝑡𝑒𝑥𝑐 in such a way that creation of a dipole with 𝛾 as force exception
function leads to an equilibrium solution of (𝑃𝐶𝑛-𝛾) once the exception time 𝑡𝑒𝑥𝑐 has passed. We
have 𝛾(𝑡) = 1 for 𝑡 ≥ 𝑡𝑒𝑥𝑐 , so setting d𝑟

d𝑡 = 0 for 𝑡 ≥ 𝑡𝑒𝑥𝑐 , we find the following equilibrium:

∀𝑡 ≥ 𝑡𝑒𝑥𝑐 ∶
d𝑟
d𝑡

= 0 ⟹
−2
𝑟(𝑡)

⋅ 𝛾(𝑡) + 2𝐹 = 0 ⟹ 𝑟(𝑡) = 1
𝐹
.

Thus, for a given 𝛾 and 𝐹 , we should choose 𝑡𝑒𝑥𝑐 such that 𝑟(𝑡𝑒𝑥𝑐) = 1∕𝐹 . Unless 𝛾 ≡ 0, the
ODE (3.2) has no general explicit solution for 𝑟, so we continue our analysis in different fashion
depending on the given expression for 𝛾 .

3.1.1 Linear 𝛾
It is reasonable to let multiplication of the dipole interaction by 𝛾 result in a gradual transition

from some adjusted interaction to the ‘true’ interaction as given in (𝑃𝐶𝑛). However, as long as 𝛾 is
positive, the dislocations attract each other, meaning the dislocations would never move apart. Hence,
a sensible choice of 𝛾 would for example be a linear (in time) transition from some repulsive force,
e.g. the opposite of the interaction described by (𝑃𝑛), to the interaction as given. For this transition to
take place during the exception time interval (0, 𝑡𝑒𝑥𝑐), we define 𝛾 ∶ [0,∞) → ℝ as

𝛾(𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

2 ⋅ 𝑡
𝑡𝑒𝑥𝑐

− 1 for 𝑡 ∈ [0, 𝑡𝑒𝑥𝑐)

1 for 𝑡 ≥ 𝑡𝑒𝑥𝑐
(3.3)

Choosing a suitable 𝑡𝑒𝑥𝑐 is not trivial, since (3.1) no longer has a closed-form solution for this 𝛾 .
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Although we do not have an explicit expression, we do have an existence and uniqueness result for 𝑡𝑒𝑥𝑐
given an external force:
Lemma 3.1.2. There exists a unique 𝑡𝑒𝑥𝑐 > 0 such that the creation of a dipole with linear 𝛾 , given by
(3.3), as adaptive force yields an equilibrium solution to (3.1).

We postpone the (rather elaborate) proof to Appendix A.2.2, and here only describe the resulting
creation process. Choosing the 𝑡𝑒𝑥𝑐 described by Lemma 3.1.2 even for a system in which there are
other dislocations, we define the creation procedure for linear 𝛾:
Definition 3.1.3 (Linear 𝛾-creation). If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖 = sgn(PK(𝑠, 𝑡∗)) and
lim𝑡↓𝑡∗ 𝑏𝑖+1 = − sgn(PK(𝑠, 𝑡∗)) for index 𝑖 = 𝑛 + 2(𝑚 ⋅ 𝑘 + 𝑗) corresponding to the 𝑗th creation at
𝑠𝑚 = 𝑠.1 Furthermore, 𝛾𝑖,𝑖+1 = 𝛾𝑖+1,𝑖 = 2𝑡∕𝑡𝑒𝑥𝑐 − 1 for 𝑡 ∈ (𝑡∗, 𝑡∗ + 𝑡𝑒𝑥𝑐], where 𝑡𝑒𝑥𝑐 is the unique
𝑡 > 0 such that in (3.1), for 𝐹 = PK(𝑠, 𝑡∗), it holds that 𝑥′1(𝑡𝑒𝑥𝑐) = 𝑥′2(𝑡𝑒𝑥𝑐) = 0. In all other cases,
𝛾𝑗,𝑘(𝑡) = 1.

The requirements on 𝑏𝑖, 𝑏𝑖+1, defining the charge the dislocations are assigned, are taken from
the description in Section 2.2. Formally it does not matter whether 𝑏𝑖(𝑡∗+) = 1 or −1 as long as
𝑏𝑖(𝑡∗+) = −𝑏𝑖+1(𝑡∗+); the dislocations are created in the exact same position, so there is no ordering.
However, for consistency and with numerical applications in mind, we choose to adhere to the sense
of orientation.

Note that the requirement that 𝛾𝑗,𝑘(𝑡) = 1 means that the interaction is only adapted within the
newly created pair of dislocations; in particular, if another creation event takes place within the force
exception time interval (𝑡∗, 𝑡∗ + 𝑡𝑒𝑥𝑐], the interaction from dipole to dipole is as usual and only the
interaction within the dipoles is temporarily adapted. Moreover, note that with this definition, we have
lim𝑡↓𝑡∗ 𝑥𝑖(𝑡) = lim𝑡↓𝑡∗ 𝑥𝑗(𝑡) = 𝑠 if dipole 𝑖, 𝑗 is created at time 𝑡∗ from source 𝑠.
3.1.2 Zero-𝛾

Another possibility is setting 𝛾(𝑡) = 0 for 𝑡 ∈ [0, 𝜀) for some 𝜀 > 0. The external force then moves
𝑥1 and 𝑥2 apart. A benefit of this approach is that the interaction in (3.1) is no longer singular, which
means we can truly start with the initial condition 𝑥1(0) = 𝑥2(0) = 0. For 𝑡 ≥ 𝜀, we could either let 𝛾
transition gradually to 1 as above, or we could set 𝑡𝑒𝑥𝑐 = 𝜀 and use the usual interaction for 𝑡 ≥ 𝑡𝑒𝑥𝑐 .
For now, we analyse the latter, as the former has similarities to the analysis for linear 𝛾 and introduces
another degree of freedom. Thus, for 𝑡𝑒𝑥𝑐 > 0 we define 𝛾 as follows:

𝛾 ∶ [0,∞) → ℝ, 𝛾(𝑡) ∶= 1{𝑡≥𝑡𝑒𝑥𝑐}.

With this exception in mind, we define the creation process where interactions within a created
dipole are temporarily set to 0:
Definition 3.1.4 (Zero 𝛾-creation). If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖 = sgn(PK(𝑠, 𝑡∗)) and
lim𝑡↓𝑡∗ 𝑏𝑖+1 = − sgn(PK(𝑠, 𝑡∗)) for index 𝑖 = 𝑛+2(𝑚 ⋅𝑘+𝑗) corresponding to the 𝑗th creation at 𝑠𝑚 = 𝑠.
Furthermore, 𝛾𝑖,𝑖+1 = 𝛾𝑖+1,𝑖 = 0 for 𝑡 ∈ (𝑡∗, 𝑡∗+ 𝑡𝑒𝑥𝑐], where 𝑡𝑒𝑥𝑐 = 1∕(2 PK(𝑠, 𝑡∗))2. In all other cases,
𝛾𝑗,𝑘(𝑡) = 1.

The time-derivatives of the dislocation trajectories 𝑥𝑖, 𝑥𝑖+1 are discontinuous at 𝑡𝑒𝑥𝑐 because 𝛾𝑖,𝑖+1
jumps there, and thus the trajectories are not smooth. Hence, in the full solution definition for this
creation process, next to creation and annihilation times we also exclude the end of every exception

1Recall that 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋, where 𝑡𝑛𝑢𝑐 > 0 is a fixed system constant.
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period in the smoothness condition (A.2.5, condition (𝑖)) by requiring 𝑡∗ + 𝑡𝑒𝑥𝑐 to be in a finite set
𝐸 ⊂ ℝ for each creation event.

Another differences to linear 𝛾-creation is the fact that we have an explicit formula for 𝑡𝑒𝑥𝑐 . This
choice is motivated by the following result:
Lemma 3.1.5. Given 𝐹 > 0, setting 𝑡𝑒𝑥𝑐 = 1∕(2 PK(𝑠, 𝑡∗))2 and 𝛾(𝑡) = 1{𝑡≥𝑡𝑒𝑥𝑐} for 𝑡 ≥ 0 yields an
equilibrium solution to (3.1).
Proof. Consider two dislocations of opposite charge with positions 𝑥1(0) = 𝑥2(0) = 0 at time 0, and
set 𝑟(𝑡) ∶= 𝑥2(𝑡) − 𝑥1(𝑡). Furthermore let 𝐹 > 0, 𝑡𝑒𝑥𝑐 = 1∕(2 PK(𝑠, 𝑡∗))2 and 𝛾(𝑡) = 1{𝑡≥𝑡𝑒𝑥𝑐}. Since
𝛾(0) = 0 we may take 𝑟(0) = 0 as initial condition, and from (3.2) obtain the following ODE:

{ d𝑟
d𝑡

= −2
𝑟(𝑡)

⋅ 𝛾(𝑡) + 2𝐹 for 𝑡 > 0

𝑟(0) = 0.
(3.4)

Since 𝛾(𝑡) = 0 for 0 ≤ 𝑡 < 𝑡𝑒𝑥𝑐 , the first term drops out and we are left with a constant right-hand side:
⎧

⎪

⎨

⎪

⎩

d𝑟
d𝑡

= 2𝐹

𝑟(0) = 0
⟹

{

𝑟(𝑡) = 2𝐹 ⋅ 𝑡 + 𝐶, 𝐶 ∈ ℝ
𝑟(0) = 0

⟹ 𝑟(𝑡) = 2𝐹 ⋅ 𝑡 for 0 ≤ 𝑡 < 𝑡𝑒𝑥𝑐 .

Now by substitution of our choice of 𝑡𝑒𝑥𝑐 , we find 𝑟(𝑡𝑒𝑥𝑐) = 2𝐹 ⋅ 𝑡𝑒𝑥𝑐 = 2𝐹 ⋅ 1
(2𝐹 )2 = 1

2𝐹 . For 𝑡 ≥ 𝑡𝑒𝑥𝑐
we have 𝛾(𝑡) = 1, so

d𝑟
d𝑡

= −1
𝑟(𝑡)

+ 2𝐹 = −1
1∕2𝐹

+ 2𝐹 = 0 for 𝑡 ≥ 𝑡𝑒𝑥𝑐 .

Thus, choosing 𝑡𝑒𝑥𝑐 = 1∕(2𝐹 )2 leads to an equilibrium solution for (3.6). Recovering trajectories 𝑥1, 𝑥2
from 𝑟 using (2.3), this also yields an equilibrium solution for (3.1), which proves the result.

3.2 Distance creation
We now consider the creation of a dipole at some nucleation distance 𝐿𝑛𝑢𝑐 > 0. A benefit of

this procedure is that the creation itself has no singular interaction, and that interactive forces between
dislocations do not need to be adjusted in some artificial way. This approach is not uncommon in
literature, especially in numerical simulation but also in theoretical studies, as for example in [1].
Distance creation is defined as follows:
Definition 3.2.1 (Nucleation distance creation). If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖(𝑡) =
sgn(PK(𝑠, 𝑡∗)) and lim𝑡↓𝑡∗ 𝑏𝑖+1(𝑡) = − sgn(PK(𝑠, 𝑡∗)) for the index 𝑖 = 𝑛 + 2(𝑚 ⋅ 𝑘 + 𝑗) corresponding
to the 𝑗th creation at 𝑠𝑚 = 𝑠. Furthermore for 𝐿𝑛𝑢𝑐 = 1∕PK(𝑠, 𝑡∗), we have 𝑥𝑖(𝑡∗+) = 𝑠 −𝐿𝑛𝑢𝑐∕2 and
𝑥𝑖+1(𝑡∗+) = 𝑠 + 𝐿𝑛𝑢𝑐∕2.

The system (𝑃𝐶𝑛) remains unchanged, and there is only a minor change to the solution concept
as given in Definition 2.3.2. We relax the regularity condition, so that dislocation trajectories are no
longer required to be continuous at creation times. We do so to facilitate the creation of dislocations at
any chosen distance around a source, without having to define all dislocations that are yet to be created
at their specific position. Aside from these changes, the solution concept from Definition 2.3.2 is still
valid. The adapted conditions may be found in Definition A.2.6.

The choice of 𝐿𝑛𝑢𝑐 in Definition 3.2.1 is again a consequence of an equilibrium result:
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Lemma 3.2.2. Given 𝐹 > 0, setting 𝐿𝑛𝑢𝑐 = 1∕𝐹 yields an equilibrium solution to the following system
of ODEs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥1
d𝑡

= −1
𝑥1(𝑡) − 𝑥2(𝑡)

+ 𝑏1𝐹

d𝑥2
d𝑡

= −1
𝑥2(𝑡) − 𝑥1(𝑡)

+ 𝑏2𝐹
for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

𝑥1(0) = −1
2
𝐿𝑛𝑢𝑐 , 𝑥2(0) =

1
2
𝐿𝑛𝑢𝑐

(3.5)

Proof. Let 𝐹 > 0 be given, and set 𝐿𝑛𝑢𝑐 ∶= 1∕𝐹 . Similar to before, we can reparametrise (again
assuming for now that 𝑏1 = −1, 𝑏2 = 1) as follows:

⎧

⎪

⎨

⎪

⎩

d𝑟
d𝑡

= −2
𝑟(𝑡)

+ 2𝐹 for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

𝑟(0) = 𝐿𝑛𝑢𝑐

(3.6)

Then substitution of 𝐿𝑛𝑢𝑐 = 1∕𝐹 yields
d𝑟
d𝑡
|

|

|

|𝑡=0
= −2

𝐿𝑛𝑢𝑐
+ 2𝐹 = −2

1∕𝐹
+ 2𝐹 = 0.

Since 𝑟′(0) = 0, we find stationary solution 𝑟 ≡ 1∕2𝐹 , and with that stationary solutions 𝑥1 ≡
−1

2𝐿𝑛𝑢𝑐 , 𝑥2(0) ≡
1
2𝐿𝑛𝑢𝑐 .

Again, note that the assumptions 𝑏1 = −1, 𝑏2 = 1 and 𝐹 > 0 were both without loss of generality;
if 𝐹 < 0, then the dipole is created with charges 𝑏1 = 1, 𝑏2 = −1 and (3.6) has an equilibrium at
𝑟 = −1∕2𝐹 > 0.

This creation method is the only one also found in literature, and is used by Cleveringa et al. in
[1]. There, 𝐿𝑛𝑢𝑐 is fixed for the entire system, and is given by 𝐸𝑏∕(4𝜋(1 − 𝜈2)𝜏𝑛𝑢𝑐) where 𝐸, 𝑏 and 𝜈
are system constants and 𝜏𝑛𝑢𝑐𝑏 is the Peach-Koehler threshold (which we denote by 𝐹𝑛𝑢𝑐). Because we
choose 𝐿𝑛𝑢𝑐 per creation, it is possible that the Peach-Koehler force at a creation event is much larger,
and hence that the nucleation distance is several orders of magnitude smaller than in [1].

Note that in Definition 3.2.1 the interaction between dislocations is not adapted, contrary to 𝛾-
creation. Also, the way in which dislocations are placed at sources in Definition 2.3.2 and A.2.6, this
creation procedure results in discontinuities in the trajectories of created dislocations. Knowing the
entire evolution of the system we could artificially ‘move’ the trajectories to the correct starting position
belonging to a certain creation at a later point: if creation of some pair 𝑖, 𝑖 + 1 happens at time 𝑡∗ and
position 𝑥∗ with distance 𝐿𝑛𝑢𝑐 we could define 𝑥𝑖 = 𝑥∗ − (𝑡∕𝑡∗) ⋅𝐿𝑛𝑢𝑐∕2 and 𝑥𝑖 = 𝑥∗ + (𝑡∕𝑡∗) ⋅𝐿𝑛𝑢𝑐∕2
for 𝑡 ≤ 𝑡∗.

However, this is rather cumbersome, and one may question the value continuity of 𝑥𝑖 if 𝑏𝑖 = 0.
With that in mind, we choose to initialise all dislocations with initial charge 0 at an arbitrary location
(the construction from Definition 2.1.1 for example), and modify the solution definition to only require
continuity of 𝑥𝑖 if 𝑏𝑖 ≠ 0. Even more, dislocation positions can only change if their charge is non-zero,
leading to the adapted regularity condition 𝐱 ∈ 𝐶([0, 𝑇 ]⧵ ) in Definition A.2.6. In practical situations
(e.g. numerical simulation) this is clearly preferable, since usually information on future states of the
system is not available.
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4 Analysis of creation processes
4.1 Long-range effects

We now compare the long-range influence of different creation processes. Deriving an exact rep-
resentation is not always possible, so in this section we resort to multipole expansion. The idea behind
multipole expansion is to view the long-range effect of a set of dislocations as if it were caused by a
single object. Here, ‘multipole’ refers to the way this object is decomposed; similar to the approxim-
ation of a function via Taylor series, a set of charged particles (dislocations) can be approximated by
adding terms for total charge, dipole moment (orientation), quadrupole moment and so on. Continuing
this expansion leads to an exact representation of all dislocations and charges, but more often the series
is truncated to obtain an estimate. We use this to obtain an approximation of certain influences of dif-
ferent creation procedures on the rest of the system, from expressions that are easier to analyse than
exact representations. The main result, showing that such an approach is reasonable, is the following:
Lemma 4.1.1 (Multipole approximation of Peach-Koehler force). Let 𝐱,𝐛 ∈ 𝑐

𝑁 be the state of (𝑃𝐶𝑛)
at some time 𝑡 ≥ 0. Then for |𝑅| > ‖𝐱‖∞, the following approximation holds:

PK(𝑅, 𝑡) =
𝓁
∑

𝑗=0

𝐵𝑗

𝑅𝑗+1
+ 𝑂

(

‖𝐱‖𝓁+1∞

|𝑅|𝓁+2

)

as
‖𝐱‖∞
𝑅

→ 0, (4.1)

where 𝐵𝑘(𝑡) ∶=
∑𝑛

𝑖=1 𝑏𝑖(𝑡)𝑥𝑖(𝑡)
𝑘. We denote the series expansion up to order 𝓁 without the error term

by PK𝓁.

This expansion may be interpreted as follows. The first term can be considered to represent all
dislocations by a monopole; it is simply the sum over all charges, 𝐵0 ∶=

∑𝑛
𝑖=1 𝑏𝑖. The second term

represents the dipole influence, giving a sense of orientation: 𝐵1 ∶=
∑𝑛

𝑖=1 𝑏𝑖𝑥𝑖. Generalising this
notion, the 𝑘th term is also called a 2𝑘-pole. We now prove Lemma 4.1.1.
Proof. Take (𝐱,𝐛) ∈ 𝑐

𝑛 and 𝓁 ∈ ℕ, and let 𝑅 ∈ ℝ such that |𝑅| > ‖𝐱‖∞. Now because |𝑥𝑖| ≤
‖𝐱‖∞ < 𝑅, we have ‖𝐱‖∞ ∕𝑅 < 1 and thus |𝑥𝑖∕𝑅| < 1 for all 𝑖 = 1, ..., 𝑛. Thus, the harmonic series
∑∞

𝑗=0(𝑥𝑖∕𝑅)
𝑗 converges to 1∕(1 − 𝑥𝑖∕𝑅) (this can also be derived by Taylor expansion). Even more,

the series is absolutely convergent, which means we may interchange the order of summation (e.g. by
Fubini’s theorem) in (∗):

PK(𝑅) =
𝑛
∑

𝑖=1

𝑏𝑖
𝑅 − 𝑥𝑖

= 1
𝑅

𝑛
∑

𝑖=1

𝑏𝑖
1 − 𝑥𝑖

𝑅

= 1
𝑅

𝑛
∑

𝑖=1
𝑏𝑖

∞
∑

𝑗=0

(𝑥𝑖
𝑅

)𝑗

(∗)
= 1

𝑅

∞
∑

𝑗=0

𝑛
∑

𝑖=1
𝑏𝑖
(𝑥𝑖
𝑅

)𝑗

=
∞
∑

𝑗=0

1
𝑅𝑗+1

𝑛
∑

𝑖=1
𝑏𝑖𝑥

𝑗
𝑖

=
∞
∑

𝑗=0

𝐵𝑗

𝑅𝑗+1
.
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Here the final step is substitution of 𝐵𝑘, proving the expression for the series expansion. Next we
derive the error term. Truncating the final expression after 𝓁 +1 terms, we obtain the following error:

|

|

PK(𝑅) − PK𝓁(𝑅)|| =
|

|

|

|

|

|

∞
∑

𝑗=0

𝐵𝑗

𝑅𝑗+1
−

𝓁
∑

𝑗=0

𝐵𝑗

𝑅𝑗+1

|

|

|

|

|

|

=
|

|

|

|

|

|

∞
∑

𝑗=𝓁+1

𝐵𝑗

𝑅𝑗+1

|

|

|

|

|

|

≤
∞
∑

𝑗=𝓁+1

|

|

|

|

|

𝐵𝑗

𝑅𝑗+1

|

|

|

|

|

=
∞
∑

𝑗=𝓁+1

|

|

|

|

|

|

∑𝑛
𝑖=1 𝑏𝑖𝑥

𝑗
𝑖

𝑅𝑗+1

|

|

|

|

|

|

≤
∞
∑

𝑗=𝓁+1

∑𝑛
𝑖=1 ‖𝐱‖

𝑗
∞

|𝑅|𝑗+1
(|
|

𝑏𝑖|| ≤ 1 for all 𝑖)

=
∞
∑

𝑗=𝓁+1
𝑛 ⋅

‖𝐱‖𝑗∞
|𝑅|𝑗+1

= 𝑛 ⋅
‖𝐱‖𝓁+1∞

|𝑅|𝓁+2
⋅

∞
∑

𝑗=0

‖𝐱‖𝑗∞
|𝑅|𝑗

= 𝑛 ⋅
‖𝐱‖𝓁+1∞

|𝑅|𝓁+2
⋅

1
1 − ‖𝐱‖∞

𝑅

Here we considering the number of dislocations 𝑛 fixed (note that this is also valid in a system with
creation)1. Additionally bounding ‖𝐱‖∞ ∕𝑅 arbitrarily, e.g. taking 𝑅 > 2 ‖𝐱‖∞, we may omit the final
term 1∕(1 − ‖𝐱‖∞ ∕𝑅) < 2 in 𝑂-notation. Thus, we conclude that the magnitude of the error term is
indeed 𝑂(‖𝐱‖𝓁+1∞ ∕𝑅𝓁+2).

Note that there are settings where the error term can become arbitrarily large; e.g. taking 𝑥𝑛 =
1∕𝑛2−𝜀 for arbitrary 𝜀 ∈ (0, 1) and 𝑅𝑛 = 1∕𝑛, then for all 𝑛 > 1, we indeed have 0 < 𝑥𝑛 < 𝑅𝑛
and 𝑥𝑛∕𝑅𝑛 = 1∕𝑛1−𝜀 → 0 as 𝑛 → ∞. However, taking 𝓁 = 0, at the same time we have 𝑥1𝑛∕𝑅

2
𝑛 =

𝑛2∕𝑛2−𝜀 = 𝑛𝜀 → ∞ as 𝑛 → ∞. In general however, we are interested in situations where ‖𝑥‖∞ is
bounded away from 0. Further expanding the series, i.e. taking larger 𝓁, resolves the issue as well.

We now use this expansion method to analyse the long-range effect of different creation procedures.
An important observation is that 𝐵0 is constant throughout the evolution of the system, due to the fact
that both annihilation and creation (i.e. the only moments at which 𝑏𝑖 may jump) require that the left
and right limits of the sum of charges are equal. Thus, when comparing the Peach-Koehler force at
different points in time, the first term of the expansion (4.1) cancels out.

We now state and prove another observation that will make further analysis significantly easier.
Lemma 4.1.2. Let (𝐱,𝐛) be a solution to (𝑃𝐶𝑛) or (𝑃𝐶𝑛-𝛾) on [0, 𝑇 ] for some 𝑇 > 0, and take 𝑅 ∈ ℝ.
Then for all 𝑡 ∈ [0, 𝑇 ] ⧵  (𝑡 is no creation time), if |𝑅| > ‖𝐱(𝑡)‖∞, then PK(𝑅, ⋅) is continuous in 𝑡.

1Only when comparing different system sizes, 𝑛 should not be omitted, and the error term becomes 𝑂(𝑛 ⋅ ‖𝐱‖𝓁∞ ∕𝑅𝓁+1).
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The idea is that from a position outside the system, i.e. at 𝑅 ∈ ℝ with 𝑅 ≥ ‖𝐱‖∞, left and right
limits of the Peach-Koehler force at a certain time are always equal, as long as dislocations are not
created at that time; comparing limits, PK does not ‘see’ dislocations that were already in the system,
regardless of whether they annihilate or continue to exist. The only disturbance can be caused by a
creation event. We now prove the statement:

Proof. Let (𝐱,𝐛), 𝑡 and 𝑅 be given as in the statement of the lemma, in particular such that no creation
event takes place at time 𝑡 (i.e. none of the 𝑏𝑖 jumps from 0 to ±1). Furthermore, let 𝐼 be the set of all
dislocations that annihilate at time 𝑡, and let 𝐽 = {1,… , 𝑛} ⧵ 𝐼 be all other dislocations. This implies
that 𝑏𝑖 are continuous in 𝑡 for 𝑖 ∈ 𝐽 , since no creation or annihilation occurs at time 𝑡 for dislocations
in 𝐽 . For 𝑖 ∈ 𝐼 , all 𝑏𝑖 are right-continuous because they are charge functions.

Furthermore, by definition of solutions to (𝑃𝐶𝑛), all 𝑥𝑖 are continuous, and because |𝑅| > ‖𝐱(𝑡)‖∞,
for 𝑖 = 1,… , 𝑛 it holds that 𝑅 − 𝑥𝑖 ≠ 0. This implies that

PK(𝑅, 𝑡+) − PK(𝑅, 𝑡−) =
𝑛
∑

𝑖=1

𝑏𝑖(𝑡+)
𝑅 − 𝑥𝑖(𝑡+)

−
𝑛
∑

𝑖=1

𝑏𝑖(𝑡−)
𝑅 − 𝑥𝑖(𝑡−)

=
∑

𝑖∈𝐽

[

𝑏𝑖(𝑡+)
𝑅 − 𝑥𝑖(𝑡+)

−
𝑏𝑖(𝑡−)

𝑅 − 𝑥𝑖(𝑡−)

]

+
∑

𝑖∈𝐼

[

𝑏𝑖(𝑡+)
𝑅 − 𝑥𝑖(𝑡+)

−
𝑏𝑖(𝑡−)

𝑅 − 𝑥𝑖(𝑡−)

]

= 0 +
∑

𝑖∈𝐼

[

𝑏𝑖(𝑡+)
𝑅 − 𝑥𝑖(𝑡+)

−
𝑏𝑖(𝑡−)

𝑅 − 𝑥𝑖(𝑡−)

]

(By continuity of 𝑥𝑖 and 𝑏𝑖 for 𝑖 ∈ 𝐽 )

=
∑

𝑖∈𝐼

𝑏𝑖(𝑡+) − 𝑏𝑖(𝑡−)
𝑅 − 𝑥𝑖(𝑡)

(By continuity of 𝑥𝑖)

= 0 (By annihilation rule).

Finally, by right continuity of all 𝑏𝑖 and 𝑥𝑖, we have PK(𝑅, 𝑡) = PK(𝑅, 𝑡+), proving continuity at 𝑡.

A similar result holds for the time-derivative of the Peach-Koehler force, which is given by the
following expression for all 𝑡 at which no 𝑏𝑖 jumps:

d
d𝑡

PK(𝑅, 𝑡) = d
d𝑡

𝑛
∑

𝑖=1

𝑏𝑖(𝑡)
𝑅 − 𝑥𝑖(𝑡)

=
𝑛
∑

𝑖=1

[ d
d𝑡𝑏𝑖(𝑡)

𝑅 − 𝑥𝑖(𝑡)
+ 𝑏𝑖(𝑡)

d
d𝑡

1
𝑅 − 𝑥𝑖(𝑡)

]

=
𝑛
∑

𝑖=1

𝑏𝑖(𝑡) 𝑥′𝑖(𝑡)
(𝑅 − 𝑥𝑖(𝑡))2

.

In the final term, we may substitute the right-hand side of either (𝑃𝐶𝑛) or (𝑃𝐶𝑛-𝛾), depending
on the chosen creation process. The following result however, on time-differentiability of the Peach-
Koehler force, holds in both cases:
Lemma 4.1.3. Consider the same setting as Lemma 4.1.2, and additionally assume no annihilation
occurs at time 𝑡. In case of 𝛾-creation, also assume that 𝛾𝑖,𝑗 are continuous in 𝑡 for all 𝑖, 𝑗 = 1,… , 𝑛.
Then the time-derivative of the Peach-Koehler force, d

d𝜏 PK(𝑅, 𝜏), exists at time 𝑡.
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Proof. Again let (𝐱,𝐛), 𝑡 and 𝑅 be given as in the statement of Lemma 4.1.2, recall that no creation
and no annihilation event takes place at time 𝑡. Thus, all 𝑏𝑖 are continuous in 𝑡.

Furthermore, by definition of solutions to (𝑃𝐶𝑛) and (𝑃𝐶𝑛-𝛾), all 𝑥𝑖 are continuous, and because
|𝑅| > ‖𝐱(𝑡)‖∞, for 𝑖 = 1,… , 𝑛 it holds that 𝑅 − 𝑥𝑖 ≠ 0. For solutions to (𝑃𝑛), this implies that

lim
𝜏↓𝑡

d
d𝜏

PK(𝑅, 𝜏) − lim
𝜏↑𝑡

d
d𝜏

PK(𝑅, 𝜏) = lim
𝜏↓𝑡

𝑛
∑

𝑖=1

𝑏𝑖(𝑡) 𝑥′𝑖(𝑡)
(𝑅 − 𝑥𝑖(𝑡))2

− lim
𝜏↑𝑡

𝑛
∑

𝑖=1

𝑏𝑖(𝑡) 𝑥′𝑖(𝑡)
(𝑅 − 𝑥𝑖(𝑡))2

= lim
𝜏↓𝑡

𝑛
∑

𝑖=1

𝑏𝑖(𝜏)
∑

𝑗≠𝑖
𝑏𝑖(𝜏)𝑏𝑗 (𝜏)
𝑥𝑖(𝜏)−𝑥𝑗 (𝜏)

(𝑅 − 𝑥𝑖(𝜏))2
− lim

𝜏↑𝑡

𝑛
∑

𝑖=1

𝑏𝑖(𝜏)
∑

𝑗≠𝑖
𝑏𝑖(𝜏)𝑏𝑗 (𝜏)
𝑥𝑖(𝜏)−𝑥𝑗 (𝜏)

(𝑅 − 𝑥𝑖(𝜏))2

= lim
𝜏↓𝑡

𝑛
∑

𝑖=1

∑

𝑗≠𝑖
𝑏𝑗 (𝜏)

𝑥𝑖(𝑡)−𝑥𝑗 (𝑡)

(𝑅 − 𝑥𝑖(𝑡))2
− lim

𝜏↑𝑡

𝑛
∑

𝑖=1

∑

𝑗≠𝑖
𝑏𝑗 (𝜏)

𝑥𝑖(𝑡)−𝑥𝑗 (𝑡)

(𝑅 − 𝑥𝑖(𝑡))2
(𝑥𝑖 continuous and 𝑏2𝑖 = 1)

= 0.

For solutions to (𝑃𝐶𝑛-𝛾), by the assumption that 𝛾𝑖,𝑗 are continuous at 𝑡, the same derivation holds.

Note that the continuity requirement for 𝛾 only excludes the end of exception time periods in zero-𝛾
creation; creation moments were already ruled out, and everywhere else, both linear and zero-𝛾 are
continuous.

At annihilation moments, the Peach-Koehler force is not continuous; even more, if some pair 𝑖, 𝑗
annihilates at time 𝑡, the right limit of the time-derivative is infinite. This can be seen in the derivation
above, as we would keep non-zero terms with 𝑥𝑖(𝑡) − 𝑥𝑗(𝑡) in the denominator, while lim𝜏↓𝑡 𝑥𝑖(𝑡) −
𝑥𝑗(𝑡) = 0.

Still, the above results imply that comparing limits of the Peach-Koehler force before and after
creation, we may consider only the contributions from the newly created dislocations, instead of con-
sidering the entire system. When comparing the time-derivative of the Peach-Koehler force we may
do the same, only with the additional assumption that no annihilation event occurs at the same time.
This we will exploit in the next sections.

4.2 On 𝛾-creation

To compare the Peach-Koehler force itself just before and just after creation, we do not need to do
multipole expansion since we know that with 𝛾-creation, all dislocation trajectories remain continuous.
This gives us the following continuity result, which is slightly stronger than Lemma 4.1.2:

Lemma 4.2.1. Let (𝐱,𝐛) be a solution to (𝑃𝐶𝑛-𝛾) on [0, 𝑇 ] for some 𝑇 > 0, and 𝑅 ∈ ℝ. Assume that
the creation of a dipole +,− occurs at (𝑠, 𝑡), and that |𝑅| > ‖𝐱(𝑡)‖∞. Then PK(𝑅, ⋅) is continuous in
𝑡.

Proof. The derivation is as follows, and hinges on the fact that dipoles are created in the same location,
i.e. 𝑥+(𝑡) = 𝑥−(𝑡):
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lim
𝜏↓𝑡

PK(𝑅, 𝜏) − PK(𝑅, 𝑡) = lim
𝜏↓𝑡

[𝑛+2
∑

𝑖=1

𝑏𝑖(𝜏)
𝑅 − 𝑥𝑖(𝜏)

]

−
𝑛+2
∑

𝑖=1

𝑏𝑖(𝑡)
𝑅 − 𝑥𝑖(𝑡)

= lim
𝜏↓𝑡

[

𝑏+(𝜏)
𝑅 − 𝑥+(𝜏)

+
𝑏−(𝜏)

𝑅 − 𝑥−(𝜏)

]

−
𝑏+(𝑡)

𝑅 − 𝑥+(𝑡)
−

𝑏−(𝑡)
𝑅 − 𝑥−(𝑡)

=
𝑏+(𝑡) − 𝑏+(𝑡)
𝑅 − 𝑥+(𝑡)

+
𝑏−(𝑡) − 𝑏−(𝑡)
𝑅 − 𝑥−(𝑡)

(By continuity of 𝑥𝑖)

=
𝑏+(𝑡)

𝑅 − 𝑥+(𝑡)
+

𝑏−(𝑡)
𝑅 − 𝑥−(𝑡)

= 1
𝑅 − 𝑠

− 1
𝑅 − 𝑠

= 0.

Next we consider the time-derivative of PK with 𝛾-creation. We cannot take the derivative in
creation time 𝑡 itself, since 𝑏+ and 𝑏− are discontinuous there. To abbreviate notation, we again use
𝑡− and 𝑡+ for the left and right limits respectively. Moreover, as a consequence of Lemmas 4.1.2 and
4.1.3, we only need to consider the contributions of the created dislocations. To simplify notation,
we assume a single dipole is created at time 𝑡 ≥ 0. Denote the trajectories of the created dislocations
by 𝑥+ and 𝑥−, with respective charges 𝑏+(𝑡+) = 1, 𝑏−(𝑡+) = −1, and 𝑏+(𝜏) = 𝑏−(𝜏) = 0 for 𝜏 ≤ 𝑡.
Considering the first-order expansion of the Peach-Koehler force, we then obtain the following:

d
d𝜏

PK1(𝑅, 𝜏)
|

|

|

|𝑡+
− d

d𝜏
PK1(𝑅, 𝜏)

|

|

|

|𝑡−
=

𝐵′
1(𝑡+) − 𝐵′

1(𝑡−)

𝑅2
=

𝑏+(𝑡+)𝑥′+(𝑡+) + 𝑏−(𝑡+)𝑥′−(𝑡+)
𝑅2

= 1
𝑅2

( 𝑛
∑

𝑗=1

[

𝑏+ ⋅
𝑏+𝑏𝑗𝛾+,𝑗
𝑥+ − 𝑥𝑗

+ 𝑏− ⋅
𝑏−𝑏𝑗𝛾−,𝑗
𝑥− − 𝑥𝑗

]

+ 𝑏+ ⋅
𝑏+𝑏−𝛾+,−
𝑥+ − 𝑥−

+ 𝑏− ⋅
𝑏−𝑏+𝛾−,+
𝑥− − 𝑥+

)

|

|

|

|

|

|𝑡+

(∗)
= 1

𝑅2

( 𝑛
∑

𝑗=1

[ 𝑏𝑗𝛾+,𝑗
𝑥+ − 𝑥𝑗

+
𝑏𝑗𝛾−,𝑗
𝑥− − 𝑥𝑗

]

+
(𝑏− − 𝑏+)𝛾+,−

𝑥+ − 𝑥−

)

|

|

|

|

|

|𝑡+

(4.2)

Here at (∗) we use the fact that for both of our 𝛾-creation methods, we have 𝛾𝑖,𝑗 = 𝛾𝑗,𝑖 for all 𝑖, 𝑗,
and that 𝑏+𝑏2− = 𝑏+ and 𝑏−𝑏2+ = 𝑏− (this also holds if 𝑏± = 0, as both jump simultaneously). We
use this approximation to estimate the influence of 𝛾-creation processes on the time-derivative of the
Peach-Koehler force at 𝑅.

4.2.1 Linear 𝛾
To further evaluate the expression above for linear 𝛾 , we now use several properties of solutions

according to Definition A.2.4: first that 𝑥+(𝑡+) = 𝑥−(𝑡+) = 𝑠 by our assumption that creation occurs
at (𝑠, 𝑡), second that 𝛾+,−(𝑡+) = 𝛾−,+(𝑡+) = −1, and 𝛾𝑖,𝑗(𝑡+) = 1 for all other pairs 𝑖, 𝑗, and finally that
all other charges and trajectories are right-continuous2. Substituting these in Equation (4.2), we obtain
the following:

2All trajectories and all 𝑏𝑖 for which no annihilation occurs at 𝑡 are even continuous, but since we take the right limit we
do not need this.
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d
d𝜏

PK1(𝑅, 𝜏)
|

|

|

|𝑡+
− d

d𝜏
PK1(𝑅, 𝜏)

|

|

|

|𝑡−
= … = 1

𝑅2

( 𝑛
∑

𝑗=1

[ 𝑏𝑗𝛾+,𝑗
𝑥+ − 𝑥𝑗

+
𝑏𝑗𝛾−,𝑗
𝑥− − 𝑥𝑗

]

+
(𝑏− − 𝑏+)𝛾+,−

𝑥+ − 𝑥−

)

|

|

|

|

|

|𝑡+

= 1
𝑅2

( 𝑛
∑

𝑗=1

[ 𝑏𝑗(𝑡+)
𝑥+(𝑡+) − 𝑥𝑗(𝑡+)

+
𝑏𝑗(𝑡+)

𝑥−(𝑡+) − 𝑥𝑗(𝑡+)

]

+
2𝑏−(𝑡+)𝛾+,−(𝑡+)
𝑥+(𝑡+) − 𝑥−(𝑡+)

)

(∗)
= 1

𝑅2

( 𝑛
∑

𝑗=1

2𝑏𝑗(𝑡)
𝑠 − 𝑥𝑗(𝑡)

+ 4
𝑥+(𝑡+) − 𝑥−(𝑡+)

)

= 2
𝑅2

PK(𝑠, 𝑡) + ∞ = ∞.

Here at (∗) in the final term, the limits in the numerator and denominator may be evaluated separately,
as the numerator evaluates to a (finite) non-zero real number whereas the denominator evaluates to 0.

The fact that this limit does not exist should be no surprise: similar to how the time-derivative of
trajectories of annihilating dislocations becomes arbitrarily large before annihilation, creating disloca-
tions with a singular interaction makes their time-derivative infinitely large.

At the end of the exception time however, i.e. at 𝑡 + 𝑡𝑒𝑥𝑐 , lim𝜏↑𝑡+𝑡𝑒𝑥𝑐 𝛾(𝜏) = 𝛾(𝑡 + 𝑡𝑒𝑥𝑐) = 1 by
definition of linear 𝛾 . Thus, by Lemma 4.1.3, d

d𝜏 PK(𝑅, 𝜏) exists and is continuous in 𝜏 = 𝑡.

4.2.2 Zero-𝛾
We conduct a similar analysis, but now for 𝛾(𝜏) = 1{𝜏≥𝑡+𝑡𝑒𝑥𝑐}. Suppose creation of dipole +,−

occurs at (𝑠, 𝑡). Now there are two moments of interest: not only 𝑡, but also 𝑡 + 𝑡𝑒𝑥𝑐 , because 𝛾 jumps
there. Recall from the definition of zero-𝛾 creation (3.1.4) that we have 𝑥+(𝑡+) = 𝑥−(𝑡+) = 𝑠, 𝑏+(𝑡+) =
−𝑏−(𝑡+) and 𝛾𝑖,𝑗(𝑡+) = 0 if 𝑖, 𝑗 = +,− and 1 else. Again we use Equation (4.2) to estimate the time-
derivative of PK at creation time:

d
d𝜏

PK1(𝑅, 𝜏)
|

|

|

|𝑡+
− d

d𝜏
PK1(𝑅, 𝜏)

|

|

|

|𝑡−
= … = 1

𝑅2

( 𝑛
∑

𝑗=1

[ 𝑏𝑗𝛾+,𝑗
𝑥+ − 𝑥𝑗

+
𝑏𝑗𝛾−,𝑗
𝑥− − 𝑥𝑗

]

+
(𝑏− − 𝑏+)𝛾+,−

𝑥+ − 𝑥−

)

|

|

|

|

|

|𝑡+

= 1
𝑅2

( 𝑛
∑

𝑗=1

[ 𝑏𝑗 ⋅ 1
𝑠 − 𝑥𝑗

+
𝑏𝑗 ⋅ 1
𝑠 − 𝑥𝑗

]

+ −2 ⋅ 0
𝑥+ − 𝑥−

)

|

|

|

|

|

|𝑡+

= 1
𝑅2

( 𝑛
∑

𝑗=1

2𝑏𝑗(𝑡)
𝑠 − 𝑥𝑗(𝑡)

)

= 2
𝑅2

PK(𝑠, 𝑡).

Thus, the Peach-Koehler force at 𝑅 is non-smooth at creation moments, as its time-derivative has
a discontinuity with magnitude of order 2 PK(𝑠, 𝑡)∕𝑅2. Moreover, because the force threshold of 𝐹𝑛𝑢𝑐
must be reached for creation to occur, we have |PK(𝑠, 𝑡)| ≥ 𝐹𝑛𝑢𝑐 , so the size of the discontinuity is
bounded from below by 𝐹𝑛𝑢𝑐∕𝑅2. However, the discontinuity is finite, in contrast to linear 𝛾-creation.

We also compare limits at the end of the exception time following the creation, since 𝛾+,− is dis-
continuous there. To abbreviate notation, we assume that creation occurred at 𝑡 = 0 (without loss of
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generality, because the system is invariant to translation of time). Furthermore, we assume that the
newly created dislocations have not yet re-collided (i.e. we assume 𝑥+(𝑡𝑒𝑥𝑐) ≠ 𝑥−(𝑡𝑒𝑥𝑐)), since other-
wise they do not influence the system anymore. Using Lemma 4.1.3 we then obtain the following:

d
d𝑡

PK1(𝑅, 𝑡)
|

|

|

|𝑡𝑒𝑥𝑐+
− d

d𝑡
PK1(𝑅, 𝑡)

|

|

|

|𝑡𝑒𝑥𝑐−
= 1

𝑅2
lim
𝜏↓𝑡𝑒𝑥𝑐

(𝑏− − 𝑏+)𝛾+,−
𝑥+ − 𝑥−

− 1
𝑅2

lim
𝜏↑𝑡𝑒𝑥𝑐

(𝑏− − 𝑏+)𝛾+,−
𝑥+ − 𝑥−

= 1
𝑅2

−2𝛾+,−(𝑡𝑒𝑥𝑐+)
𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)

− 1
𝑅2

−2𝛾+,−(𝑡𝑒𝑥𝑐−)
𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)

= 1
𝑅2

−2 ⋅ 0
𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)

− 1
𝑅2

−2 ⋅ 1
𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)

= 1
𝑅2

2
𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)

.

This implies that the zero-𝛾 creation procedure also gives rise to a discontinuity in the time-
derivative of the Peach-Koehler force at the end of the exception time. The size of this discontinu-
ity is inversely proportional to the distance between the created dislocations. Estimating the distance
between the dislocations at time 𝑡𝑒𝑥𝑐 after their creation by the derivation after Definition 3.1.4, we
would obtain |

|

𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)|| ≈ 1∕2 PK(𝑠, 𝑡) (recall that 𝑡𝑒𝑥𝑐 is chosen such that in an otherwise
empty system, |

|

𝑥+(𝑡𝑒𝑥𝑐) − 𝑥−(𝑡𝑒𝑥𝑐)|| = 1∕2 PK(𝑠, 𝑡), so that zero-𝛾 creation yields an equilibrium solu-
tion). This would imply that the magnitude of the discontinuity scales approximately linearly with the
Peach-Koehler force at the creation moment, namely as 4 PK(𝑠, 𝑡)∕𝑅2. However, this is only a rough
estimate and should not be taken too seriously without further support.

4.3 On distance creation
Suppose a dipole +,− with distance 𝐿 is created at time 𝑡 around 𝑠. Furthermore, assume the

Peach-Koehler force has positive sign3; then 𝑥+(𝑡) = 𝑠 + 𝐿∕2, 𝑥−(𝑡) = 𝑠 − 𝐿∕2 and 𝑏+(𝑡+) =
1, 𝑏−(𝑡+) = −1. The Peach-Koehler force is now discontinuous; to get an estimate, we consider the
second-order multipole expansion according to 4.1.1:

lim
𝜏↓𝑡

PK2(𝑅, 𝜏) − PK2(𝑅, 𝑡) = lim
𝜏↓𝑡

[

𝐵1(𝜏) − 𝐵1(𝑡)
𝑅2

+
𝐵2(𝜏) − 𝐵2(𝑡)

𝑅3

]

= lim
𝜏↓𝑡

[

𝑏+(𝜏)𝑥+(𝜏) + 𝑏−(𝜏)𝑥−(𝜏)
𝑅2

+
𝑏+(𝜏)𝑥+(𝜏)2 + 𝑏−(𝜏)𝑥−(𝜏)2

𝑅3

]

=
(𝑠 + 𝐿

2
) − (𝑠 − 𝐿

2
)

𝑅2
+

(𝑠 + 𝐿
2
)2 − (𝑠 − 𝐿

2
)2

𝑅3

= 𝐿
𝑅2

+ 2𝑠𝐿
𝑅3

=
𝐿(1 + 2 𝑠

𝑅
)

𝑅2
.

Contrary to 𝛾-creation, the location of the source at which creation occurs now affects the result.
As we are only interested in the influence of the creation event and not the (arbitrary) choice of 𝑠 ∈
ℝ, we consider a system where 𝑠 = 0, thus removing one degree of freedom. This can always be

3If the sign of the Peach-Koehler force were negative, the same derivation and conclusions would hold, only with opposite
sign.
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achieved, by translating a given solution so that a creation event occurs at position 0. With 𝑠 = 0,
PK has a discontinuity with magnitude of order 𝐿∕𝑅2. By Definition 3.2.1, 𝐿 = 1∕PK(𝑠, 𝑡), and
|PK(𝑠, 𝑡)| ≥ 𝐹𝑛𝑢𝑐 since otherwise creation does not occur; thus, the size of the discontinuity is bounded
by 1∕(𝑅2 ⋅ 𝐹𝑛𝑢𝑐).

In fact, an exact expression can also be derived in a similar way without using multipole expan-
sion; however, the resulting expression is less clear, and since discontinuities for 𝛾-creation are only
approximated, we choose to compare to the more unambiguous estimate found above. We refer the
interested reader to Appendix A.2.4.

4.4 Summary
A concise summary of the results from this section is presented in Table 4.1, where we denote

PK(𝑠, 𝑡) by 𝐹 . This is by no means precise or rigorous, and only serves to get an overview of the long-
range effects on PK(𝑅, ⋅) and its time-derivative. A careful conclusion would be that (𝑃𝐶𝑛-𝛾) with
zero-𝛾 yields the most well-behaved Peach-Koehler force, and that distance creation is not preferred
from an analytic point of view.

Linear 𝛾 Zero-𝛾 Distance
PK(𝑅, 𝑡) Continuous Continuous 1∕𝐹𝑅2

d
d𝑡
PK(𝑅, 𝑡) at 𝑡 ∞ 2𝐹∕𝑅2 non-existent

d
d𝑡 PK(𝑅, 𝑡) at 𝑡 + 𝑡𝑒𝑥𝑐 Continuous 4𝐹∕𝑅2 (n.a.)

Table 4.1: Approximate discontinuities of PK(𝑅, ⋅) and its derivative for different creation methods,
where 𝐹 = PK(𝑠, 𝑡).
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5 Properties of (𝑃𝐶𝑛)
5.1 Existence & Uniqueness

The natural question to ask next is whether the definitions of solutions to (𝑃𝐶𝑛) and (𝑃𝐶𝑛-𝛾)
facilitate existence and/or uniqueness of solutions. We start off by considering zero-𝛾 creation, in part
due to its similarities to the original system without creation (because 𝛾 only jumps between 0 and
1), and since the Peach-Koehler force enjoys continuity, as opposed to distance creation, and is more
well-behaved than for linear 𝛾-creation. For the full solution concept, see Definition A.2.5.

From [10, Theorem 2.4], we know that for a given initial datum, there exists a unique (up to
relabelling) solution to (𝑃𝑛), and hence also to (𝑃𝐶𝑛) up to the first creation time. Similarly, in between
collision times, as long as the evolution is governed by the ODE from (𝑃𝑛), uniqueness is ensured. Now,
we extend this to (𝑃𝐶𝑛-𝛾) with 𝛾-creation. We first prove that if a solution to (𝑃𝐶𝑛-𝛾) exists, it must
be unique (part of the proof inspired by [10][Theorem 2.4]). To this end, denote by 𝑆𝑛 the set of all
permutations of {1,… , 𝑛}.
Theorem 5.1.1 (Uniqueness of solutions to (𝑃𝐶𝑛-𝛾)). Let 𝑇 > 0, 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑐

𝑛. Further-
more, let 𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 > 0, let 𝐶 ⊂ ℝ be a finite set, and set 𝑘 ∶= 2 ⋅⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. For every 𝑠 ∈ 𝐶 , define 2𝑘
dislocations with 𝑏𝑖 = 0 and 𝑥𝑖 = 𝑠 according to Definition A.2.5. If (𝑃𝐶𝑛-𝛾) has a solution according
to Definition A.2.5, then this solution is unique over 𝑆𝑛.

Proof. Write 𝑁 ∶= 𝑛+ |𝐶| ⋅ 𝑘 and let (𝐱,𝐛), (𝐱̃, 𝐛̃) ∈ 𝑐
𝑁 be two solutions to (𝑃𝐶𝑛-𝛾) with the same

parameters 𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 and source set 𝐶 ⊂ ℝ. We denote the corresponding minimal sets of creation
times by  , ̃ and annihilation times by 𝑆, 𝑆̃; by minimality, these are exactly the sets of times at
which a 𝑏𝑖 jumps from 0 to ±1 or ±1 to 0, respectively, for 𝑖 = 1,… , 𝑛 + 𝑘. Furthermore, denote the
Peach-Koehler force for the two solutions by PK(𝑠, 𝑡) and P̃K(𝑠, 𝑡) respectively.

We additionally define an extended Peach-Koehler force, PK0. For a given 𝑡 ∈ [0, 𝑇 ], set
PK0(𝑠, 𝑡) ∶= PK(𝑠, 𝑡) if (𝑠, 𝑡) is in the domain of PK, and PK0(𝑠, 𝑡) = 0 for all other 𝑠 (i.e. those for
which there exists an 𝑖 s.t. 𝑥𝑖(𝑡) = 𝑠). This extended function is defined on all of ℝ, and in fact does not
change the occurrence of creation compared to PK itself: PK0 only differs from PK if it is evaluated
in 𝑠 ∈ ℝ for which there exists an 𝑖 such that 𝑥𝑖(𝑡) = 𝑠. Should a creation event occur in position
𝑥𝑖(𝑡) = 𝑠, then one of the created dislocations would immediately annihilate with dislocation 𝑖. This
is equivalent to no creation occurring at all. Moreover, since PK itself is not defined in (𝑠, 𝑡), it also
makes no difference that the creation threshold is not met by PK0.

By standard ODE theory, the two solutions must agree up until the first creation or annihilation
event. Therefore, min{𝜏 ∈  ∪ 𝑆} = min{𝜏 ∈ ̃ ∪ 𝑆̃}. More precisely, denoting this first cre-
ation/annihilation moment by 𝑡0, for 𝑡 ∈ [0, 𝑡0) we have 𝐱(𝑡) = 𝐱̃(𝑡) and 𝐛(𝑡) = 𝐛̃(𝑡). Recall that the
evolutions of initial data (𝐱0,𝐛0), (𝐱̃0, 𝐛̃0) are governed by

d𝑥𝑖
d𝑡

= 1
𝑛
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗𝛾𝑖,𝑗
𝑥𝑖 − 𝑥𝑗

.

We consider three (disjunct and exhaustive) cases:
𝑡0 ∈ 𝑆 and 𝑡0 ∉  ∶ No creation has occurred yet, so we have 𝛾𝑖,𝑗|[0,𝑡0) ≡ 1 for all 𝑖, 𝑗. Thus, up to

time 𝑡0, we could equivalently consider (𝑃𝑛). Then from [10, Theorem 2.4] we know that at
𝑡0, the ODEs for 𝐱 and 𝐱̃ are identical up to relabelling, so that again by standard ODE theory,
the solutions (𝐱,𝐛), (𝐱̃, 𝐛̃) are equal on some time-interval [𝑡0, 𝑡0 + 𝜀) not containing the next
creation or annihilation event.
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𝑡0 ∈  and 𝑡0 ∉ 𝑆 ∶ We again have 𝛾𝑖,𝑗|[0,𝑡0) ≡ 1 for all 𝑖, 𝑗, and since 𝑡0 ∉ 𝑆 (and hence 𝑡0 ∉ 𝑆̃), the
ODE is non-singular. Again, solutions (𝐱,𝐛), (𝐱̃, 𝐛̃) are equal on [0, 𝑡0), and thus

PK(𝑠, 𝑡) =
𝑛
∑

𝑖=1

𝑏𝑖(𝑡)
𝑠 − 𝑥𝑖(𝑡)

=
𝑛
∑

𝑖=1

𝑏̃𝑖(𝑡)
𝑠 − 𝑥̃𝑖(𝑡)

= P̃K(𝑠, 𝑡) for all 𝑡 ∈ [0, 𝑡0).

Therefore, 𝑡0 ∈  ⟺ 𝑡0 ∈ ̃ . Analogous to Lemma 4.2.1, it holds that PK0(𝑠, 𝑡) is continuous
in 𝑡, the only difference being that we evaluate the Peach-Koehler force at a point inside the
system, not at 𝑅 ≥ ‖𝐱‖∞; however, the same proof remains valid. Thus, PK0(𝑠, 𝑡0) = P̃K0(𝑠, 𝑡0).
It follows that dipoles are introduced in both solutions at (𝑠, 𝑡0), and moreover both have equal
𝑡𝑒𝑥𝑐 = 𝑡𝑒𝑥𝑐 > 0 since this is fully determined by the magnitude of the Peach-Koehler force
at source location and creation time, both for zero-𝛾 and linear 𝛾 . Thus, both ODEs are again
restarted identically.

𝑡0 ∈  and 𝑡0 ∈ 𝑆 ∶ Creation must occur in (𝐱,𝐛) at some (𝑠, 𝑡). It then follows by continuity of
𝐱, 𝐱̃ and standard ODE theory that creation also occurs in (𝐱̃, 𝐛̃) at (𝑠, 𝑡), and that PK0(𝑠, 𝑡) =
P̃K0(𝑠, 𝑡). Again, analogous to Lemma 4.2.1, it holds that PK0(𝑠, 𝑡) is continuous in 𝑡.
At the same time, no creation has yet occurred and we still have 𝛾𝑖,𝑗|[0,𝑡0) ≡ 1 for all 𝑖, 𝑗. Thus,
all arguments from the first case still hold. In particular, even if annihilation occurs at the same
position as creation, and defining 𝐼 ′ ∶= {𝑖 ∈ ℕ ∶ 𝑥𝑖(𝑡0) = 𝑥}, by the creation and annihilation
conditions in A.2.6, we still have that

∑

𝑖∈𝐼
𝑏̃𝑖(𝑡0+) =

∑

𝑖∈𝐼
𝑏̃𝑖(𝑡0−) =

∑

𝑖∈𝐼
𝑏𝑖(𝑡0−) =

∑

𝑖∈𝐼
𝑏𝑖(𝑡0+).

Moreover, because PK0(𝑠, 𝑡) = P̃K0(𝑠, 𝑡), creation in both solutions occurs with the same cre-
ation parameter 𝑡𝑒𝑥𝑐 = 1∕(2 PK(𝑠, 𝑡))2 > 0.
Therefore again, it follows that at 𝑡0, the ODEs for 𝐱 and 𝐱̃ are identical up to relabelling, and
the solutions (𝐱,𝐛), (𝐱̃, 𝐛̃) are equal on some time-interval [𝑡0, 𝑡0 + 𝜀) not containing the next
creation or annihilation event.

We may repeat these arguments over all other creation and annihilation times, with the possible adap-
tion that there may be 𝑡 ∈ 𝑆 ∪  such that 𝛾𝑖,𝑗(𝑡) = 0 for some dislocation pair 𝑖, 𝑗 that was created at
𝑡∗ < 𝑡. This however does not change the validity of the arguments above. This way, we find 𝑆 = 𝑆̃,
 = ̃ and (𝐱,𝐛) = (𝐱̃, 𝐛̃), all over permutations 𝑆𝑛+𝑘 of indices. This proves uniqueness of any given
solution to (𝑃𝐶𝑛-𝛾).

5.2 Further Properties
For (𝑃𝑛), Van Meurs et al. state properties such as translation and scale invariance. Some of these

still hold, but the addition of creation to the system renders others invalid; hence we also explicitly
mention properties that do not hold for (𝑃𝐶𝑛).
Lemma 5.2.1 (Properties of solutions to (𝑃𝐶𝑛-𝛾)). Suppose (𝐱,𝐛) is a solution to (𝑃𝐶𝑛-𝛾) on [0, 𝑇 ]
for some 𝑇 > 0, 𝐶 ⊂ ℝ and 𝐹𝑛𝑢𝑐 , 𝑡𝑛𝑢𝑐 > 0. Then

(i) for any 𝜆 ∈ ℝ, the translated trajectories (𝐱 + 𝜆 ⋅ 𝟏,𝐛) (where 𝟏 = (1,… , 1) ∈ ℝ𝑛) form a
solution to (𝑃𝐶𝑛-𝛾) with source set 𝐶 + 𝜆 ∶= {𝑐 + 𝜆|𝑐 ∈ 𝐶};
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(ii) the scaled trajectories and charges 𝑡 ↦ (𝛼𝐱(𝑡∕𝛼2)),𝐛(𝑡∕𝛼2) form a solution to (𝑃𝐶𝑛-𝛾) with
source set 𝛼 ⋅ 𝐶 ∶= {𝛼 ⋅ 𝑐|𝑐 ∈ 𝐶}, creation force threshold 𝐹𝑛𝑢𝑐∕𝛼 and time threshold 𝑡𝑛𝑢𝑐∕𝛼2
for all 𝛼 > 0;

(iii) 𝐵0(𝑡) is constant on [0, 𝑇 ], i.e., net charge is conserved;

(iv) the first moment of dislocation trajectories, 𝑀1(𝑡) ∶=
∑

𝑥𝑖(𝑡), is conserved.1

Proof. Let (𝐱,𝐛) be a solution to (𝑃𝐶𝑛-𝛾) on [0, 𝑇 ] for some 𝑇 > 0, with given set of sources 𝐶 , and
𝐹𝑛𝑢𝑐 , 𝑡𝑛𝑢𝑐 > 0. For 𝑆 and  from Definition A.2.5, take the minimal sets containing only annihilation
and creation times respectively.

(i) Translation invariance on [0, 𝑇 ] ⧵ (𝑆 ∪  ) follows from the definition of the ODE in (𝑃𝐶𝑛-𝛾):
for any 𝜆 ∈ ℝ and any 𝑖, we have

d𝑥𝑖
d𝑡

= 1
𝑛
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗𝛾𝑖,𝑗
𝑥𝑖 − 𝑥𝑗

1
𝑛
=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗𝛾𝑖,𝑗
𝑥𝑖 + 𝜆 − 𝑥𝑗 − 𝜆

,

so replacing 𝑥𝑖 by 𝑥𝑖 + 𝜆 does not change the evolution between creation and annihilation mo-
ments. Moreover, if 𝑖, 𝑗 annihilate at (𝑥, 𝑡), their translated counterparts must annihilate at
(𝑥 + 𝜆, 𝑡), so 𝑆 remains unchanged. Now assume a creation event occurs in (𝐱,𝐛) at (𝑠, 𝑡∗)
for some 𝑠 ∈ 𝐶 . This implies that 𝑠 + 𝜆 ∈ 𝐶 + 𝜆. Denote the Peach-Koehler force for solution
(𝐱,𝐛) by PK, and the Peach-Koehler force for (𝐱 + 𝜆 ⋅ 𝟏,𝐛) by PK𝜆. We consider PK𝜆 at an
arbitrary time and position:

PK𝜆(𝑦 + 𝜆, 𝑡) =
𝑛
∑

𝑖=1

𝑏𝑖(𝑡)
𝑦 + 𝜆 − (𝑥𝑖(𝑡) + 𝜆)

=
𝑛
∑

𝑖=1

𝑏𝑖(𝑡)
𝑦 − 𝑥𝑖(𝑡)

= PK(𝑦, 𝑡).

Thus, the creation conditions from A.2.5 are met in the translated solution at (𝑠 + 𝜆, 𝑡) if and
only if creation occurs in the original solution at (𝑠, 𝑡).

(ii) The fact that 𝑡 ↦ (𝛼𝐱(𝑡∕𝛼2),𝐛(𝑡∕𝛼2) is a solution to the ODE in (𝑃𝐶𝑛-𝛾) follows from standard
ODE scaling theory. By the same theory, setting 𝑆𝛼 ∶= {𝑡∕𝛼2|𝑡 ∈ 𝑆} gives the set of all
annihilation times.
We now show that creation events in both solutions also correspond. Assume a creation event
occurs in (𝐱,𝐛) at (𝑠, 𝑡∗) for some 𝑠 ∈ 𝐶; then 𝛼 ⋅ 𝑠 ∈ 𝛼 ⋅𝐶 . Denote the Peach-Koehler force for
solution (𝐱,𝐛) by PK, and the Peach-Koehler force for (𝛼𝐱(𝑡∕𝛼2),𝐛(𝑡∕𝛼2)) by PK𝛼. We consider
PK𝛼 at an arbitrary time and position:

PK𝛼(𝛼 ⋅ 𝑦, 𝑡∕𝛼2) =
𝑛
∑

𝑖=1

𝑏𝑖(𝑡∕𝛼2)
𝛼 ⋅ 𝑦 − 𝛼 ⋅ 𝑥𝑖(𝑡∕𝛼2)

= 1
𝛼

𝑛
∑

𝑖=1

𝑏𝑖(𝑡∕𝛼2)
𝑦 − 𝑥𝑖(𝑡∕𝛼2)

= 1
𝛼
PK(𝑦, 𝑡∕𝛼2).

Thus, |PK𝛼(𝛼 ⋅ 𝑠, 𝑡∕𝛼2)| ≥ 𝐹𝑛𝑢𝑐∕𝛼 if and only if |PK(𝑠, 𝑡∕𝛼2)| ≥ 𝐹𝑛𝑢𝑐 .
Furthermore, writing 𝜏 = 𝑡∕𝛼2, we have |PK𝛼(𝛼 ⋅ 𝑠, 𝜏)| ≥ 𝐹𝑛𝑢𝑐∕𝛼 during time-interval 𝜏 ∈
[𝑡∗∕𝛼2 − 𝑡𝑛𝑢𝑐∕𝛼2, 𝑡∗∕𝛼2] if and only if |PK(𝑠, 𝑡∕𝛼2)| ≥ 𝐹𝑛𝑢𝑐 for 𝑡∕𝛼2 ∈ [𝑡∗∕𝛼2 − 𝑡𝑛𝑢𝑐∕𝛼2, 𝑡∗∕𝛼2],
i.e. for 𝑡 ∈ [𝑡∗ − 𝑡𝑛𝑢𝑐 , 𝑡∗].
Therefore, condition (v) with force and time threshold 𝐹𝑛𝑢𝑐∕𝛼 and 𝑡𝑛𝑢𝑐∕𝛼2 is met by the scaled
solution at (𝑎 ⋅ 𝑠, 𝑡∗∕𝛼2) if and only if creation occurs in (𝐱,𝐛) at (𝑠, 𝑡∗), which proves the state-
ment.

1Note that this includes dislocations with zero charge. The first moment of charged dislocations is not conserved, as
creation or annihilation of two dislocations at position 𝑥 results in a jump in 𝑀1 of size 2𝑥.
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(iii) Conditions (iii) and (iv) in Definition A.2.5 ensure that at all times at which 𝑏𝑖 can jump, net
charge is conserved (as also remarked in Section 4.1); hence, 𝐵0 must be constant on [0, 𝑡].

(iv) Conservation of the first moment of dislocation trajectories follows from the symmetry in the
ODE in (𝑃𝐶𝑛-𝛾); for any 𝑖, 𝑗, we have 𝑏𝑖𝑏𝑗𝛾𝑖,𝑗 = 𝑏𝑗𝑏𝑖𝛾𝑗,𝑖, and 𝑥𝑖 − 𝑥𝑗 = −(𝑥𝑗 − 𝑥𝑖). Thus,
defining 𝑐𝑖𝑗(𝑡) ∶= (𝑏𝑖(𝑡) ⋅ 𝑏𝑗(𝑡) ⋅ 𝛾𝑖,𝑗(𝑡))∕(𝑥𝑖(𝑡) − 𝑥𝑗(𝑡)), we have 𝑐𝑖𝑗(𝑡) = −𝑐𝑗𝑖(𝑡) for all 𝑡 ∈ [0, 𝑇 ].
Now taking the time-derivative of 𝑀1, by linearity of differentiation we obtain

𝑀 ′
1(𝑡) =

𝑛
∑

𝑖=1

d𝑥𝑖
d𝑡

=
𝑛
∑

𝑖=1

∑

𝑗≠𝑖
𝑐𝑖𝑗 =

∑

𝑖,𝑗∶𝑖<𝑗
𝑐𝑖𝑗 +

∑

𝑖,𝑗∶𝑖>𝑗
𝑐𝑖𝑗 =

∑

𝑖,𝑗∶𝑖<𝑗

[

𝑐𝑖𝑗 + 𝑐𝑗𝑖
]

= 0.

Note that this implies conservation of the first moment only of charged dislocations between
creation and annihilation events. The conservation of the first moment of all particles over all
times then follows from the fact that positions of dislocations with zero charge (i.e. before
creation or after annihilation) do not change. Thus at creation and annihilation moments, the
first moment over all dislocations (also with charge 0) is conserved as well.

5.3 Influence of creation on total annihilation time
If the configuration of (𝑃𝑛) is such that all dislocations annihilate in finite time, we conjecture that

the creation of new dipoles can only speed up the annihilation of all dislocations (if dipoles are oriented
according to the description below Definition 2.2.1). For this, we define the total annihilation time:
Definition 5.3.1 (Total annihilation time). Let (𝐱,𝐛) be a solution to (𝑃𝐶𝑛). Then the total annihilation
time, denoted 𝑡𝑎𝑛𝑛 is the smallest time at which all dislocations have charge 0:

𝑡𝑎𝑛𝑛 ∶= inf{𝑡 > 0 ∶ 𝑏𝑖(𝑡) = 0 for 𝑖 = 1, ..., 𝑁}.

If this infimum does not exist, 𝑡𝑎𝑛𝑛 = ∞. If (𝐱,𝐛) is only defined on time-interval [0, 𝑇 ], 𝑡𝑎𝑛𝑛 = ∞ if
there are 𝑖 such that 𝑏𝑖(𝑇 ) ≠ 0.

We now formulate our conjecture more precisely:
Conjecture 5.3.2. Let (𝐱0,𝐛0) ∈ 𝑛 be an initial configuration such that (𝑃𝑛) has a unique solution
on [0, 𝑇 ] and all dislocations annihilate in finite time 𝑡𝑎𝑛𝑛 ≤ 𝑇 . Then we conjecture that starting (𝑃𝐶𝑛)
with the same initial configuration of charged dislocations and a single source at an arbitrary position,
all initial dislocations annihilate in some time 𝑡𝑎𝑛𝑛 with 𝑡𝑎𝑛𝑛 ≤ 𝑡𝑎𝑛𝑛

More preliminary, we first see whether a single ‘artificial’ creation can slow down the total anni-
hilation time:
Conjecture 5.3.3. Let (𝐱0,𝐛0) ∈ 𝑛 be an initial configuration such that (𝑃𝑛) has a unique solution on
[0, 𝑇 ] and all dislocations annihilate in finite time 𝑡𝑎𝑛𝑛 ≤ 𝑇 . Recall that 𝐱 = (𝑥1, ..., 𝑥𝑛) is an ordered
𝑛-dimensional vector. Now we add two dislocations, 𝑥𝛼 and 𝑥𝛽 , with opposite charge (a dipole) to the
initial configuration in such a way that 𝑥𝑖 < 𝑥𝛼 < 𝑥𝛽 < 𝑥𝑖+1 and 𝑏𝑖 = −𝑏𝛼 = 𝑏𝛽 = −𝑏𝑖+1 for some
1 < 𝑖 < 𝑛, to obtain a new initial configuration (𝐱̃0, 𝐛̃0) ∈ 𝑛+2 We then conjecture the following:
following (𝑃𝑛+2), all dislocations annihilate in some time 𝑡𝑎𝑛𝑛 with 𝑡𝑎𝑛𝑛 ≤ 𝑡𝑎𝑛𝑛.

This conjecture is not true, or at least not without further restrictions. This can be seen from the
following (not completely rigorous, but convincing) counterexample:
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Example 5.3.4. Consider the case 𝑛 = 4, with 𝐱0 = (−2,−1, 1, 2) and 𝐛0 = (−,+,−,+). Here
the left and right dislocation pairs each annihilate in approximately (2 − 1)2∕4 = 1∕4 units of
time. This can be seen as follows: for each of the dislocation pairs separately, we have an explicit
solution, as derived in Example 2.1.2; from this we know that dislocations 1 and 2 on their own
would annihilate in (𝑥2 − 𝑥1)2∕4 = 1∕4 time. Combining the two dislocation pairs in one system
affects this time, but only slightly, as the distance between the pairs is significantly larger than the
distance between dislocations within a pair.

Next, we consider the introduction of additional dislocations at 𝑥 = −1+ 𝛿 and 𝑥 = 1− 𝛿 for
some 𝛿 < 1∕2, with respective charges − and +. This yields 𝐱̃0 = (−2,−1,−1 + 𝛿, 1 − 𝛿, 1, 2)
and 𝐛̃0 = (−,+,−,+,−,+). Then by choosing 𝛿 small enough, we can make the dislocation pairs
𝑥2, 𝑥3 and 𝑥4, 𝑥5 annihilate arbitrarily quickly, leaving 𝑥1 and 𝑥6 with distance 𝑟∗ = 4 − 𝜀 apart
for some 𝜀 that can be made arbitrarily small by appropriately choosing 𝛿. There are now only
two dislocations with opposite charge in the system, meaning they annihilate in (𝑟∗)2∕4 ≈ 4 time
(similar to the reasoning above). This suggests that 𝑡𝑎𝑛𝑛(𝐱0,𝐛0) < 𝑡𝑎𝑛𝑛(𝐱0, 𝐛̃0), thus disproving
Conjecture 5.3.3.

Numerical approximations of the solution trajectories to both cases are visualised in Figures
5.1 and 5.2 (note that in the latter, the initial configuration indeed consists of six dislocations; the
annihilation already occurs at small 𝑡 already).
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Figure 5.1: Solution trajectories for
𝐱0 = (−2,−1, 1, 2) and 𝐛0 = (−,+,−,+).
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Figure 5.2: Solution trajectories for
𝐱̃0 = (−2,−1,−1 + 𝛿, 1 − 𝛿, 1, 2) and
𝐛̃0 = (−,+,−,+,−,+) with 𝛿 = 0.15

However, this counterexample to Conjecture 5.3.3 does not necessarily mean that Conjecture 5.3.2
is not true; the given example does not depend on an actual creation procedure, and the dipole is added
to the four-dislocation system with a large distance between the introduced dislocations. It may be that
this situation cannot arise ‘naturally’, when following the creation processes described in Section 3.
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6 Simulation
Numerical simulation of (𝑃𝐶𝑛) serves as a further tool to compare creation methods to each other as
well as to existing research, and enables us to study systems with many dislocations, that often cannot
be solved analytically. However, implementing such a singular system with annihilation and creation
is far from trivial. Hence, in the following sections, we first describe the general implementation of
(𝑃𝐶𝑛), and discuss choices made in the process. We then turn to the implementation of the specific
creation processes, and finally analyse simulation results. Much of the work in this section is on a rather
basic level, and should mostly be seen as an exploration of the limits and possibilities of simulating
with dislocation and annihilation. Our main goal is not to provide exact and reliable results, but rather
to provide a starting point for further development of similar simulations and numerical studies.

The code used in the following section is added in Appendix A.3. For executable scripts, we refer
to https://github.com/jmoraal/MasterThesis. Scripts were written in Python 3.8.3.

6.1 Regularisation

One of the difficulties in simulating (𝑃𝐶𝑛) is that the right-hand side of the ODE is singular. As
computers cannot handle arbitrarily large (or small) numbers, we need to make adaptions so that the
system can still be simulated in a reasonable way. There are two main adaptions: introducing a collision
threshold, and using a regularised interaction function, replacing the right-hand side of the ODE in
(𝑃𝐶𝑛).

To avoid having to compute the ODE near the singularity in the interaction given by (𝑃𝐶𝑛) and en-
suing numerical inaccuracies, when simulating annihilation we introduce a so-called collision threshold.
This is a predefined distance, preferably small, where we consider two dislocations to have the same
position if their distance is less than that threshold. This is frequently used in literature, as for example
by Cleveringa et al. in [1], and its value may be based on known material properties. When consid-
ering annihilation, introducing a collision threshold is also be necessary if the dislocation interaction
is not singular; two dislocations may never obtain the exact same position (possibly depending on the
integration method). For a non-singular interaction however, the choice of the threshold is less critical,
as a bounded interaction decreases the risk of overshooting. In any setting however, choosing a too
large collision threshold may result in the occurrence of annihilation in instances where it should not
take place. Choosing the collision threshold is therefore a delicate matter, and should be studied more
extensively.

Another solution is to adjust (𝑃𝐶𝑛), regularising the interaction force to obtain a non-singular ODE.
In [6], Van Meurs studies the following regularised system for two different bounded and continuous
regularised forces, where 𝛿 > 0 is a regularisation parameter

⎧

⎪

⎨

⎪

⎩

d𝑥𝑖
d𝑡

= 𝑏𝑖
∑

𝑗≠𝑖
𝑏𝑗 ⋅ 𝜙𝛿(𝑥𝑖 − 𝑥𝑗) for 𝑡 > 0

𝑥𝑖(0) = 𝑥0𝑖

for 𝑖 = 1, ..., 𝑛. (6.1)

The interaction force Van Meurs concludes to be most suitable is 𝜙𝛿(𝑟) ∶= 𝑟∕(𝑟2 + 𝛿2), visualised in
Figure 6.1:
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Figure 6.1: Illustration of true force 1∕𝑟 (dashed) and regularised force 𝑟∕(𝑟2 + 𝛿2) (solid). [6]

For 𝛿 → 0, this function converges pointwise to 1∕𝑟, while it is continuous and bounded (and even
differentiable). This makes it particularly suitable for theoretical analysis. However, dislocations at
distance 𝛿 from each other exert a stronger force on each other than dislocations closer by, since 𝜙𝛿 has
a global maximum and minimum at 𝑟 = 𝛿 and −𝛿 respectively. Thus, fixing any 𝛿 > 0, solutions to
(6.1) may be very different from the non-regularised version. In particular, it is possible that a pair of
dislocations would annihilate with regular interaction, but does not with regularised interaction. This

Hence we also consider a regularised interaction force that is not increasing around 0. For 𝛿 > 0,
we define 𝜑𝛿(𝑟) ∶= sgn(𝑟) max{|1∕𝑟|, 1∕𝛿} for 𝑡 ≠ 0, and 𝜑𝛿(0) = 0.

Finally, when using a sufficiently large collision threshold and an adaptive time-step (becoming
smaller when dislocations are closer), it is also possible to simulate to reasonable accuracy without
regularisation.

6.2 Implementation

In general, automatic ODE-solvers are the preferred method to solve systems of differential equa-
tions. In this case however, we cannot use them directly for two reasons. Firstly, because the interaction
is singular, usually causing errors or even termination of such algorithms; this can be circumvented in
various ways, for example by regularisation or a collision threshold. The second difficulty, combining
creation methods with automatic solvers, is more of a challenge. For this reason, and to gain better
insight in the subtleties of simulating a system such as (𝑃𝐶𝑛), we develop a basic ‘manual’ integrator,
which makes it easier to include custom features such as annihilation and creation. This is far from
state-of-the-art from an ODE-solving point of view, but works reasonably well and is much clearer
than the black box-like automatic solvers.

We implement our simulation in Python, combining a functional and object-oriented approach. We
heavily rely on the numpy module for fast computations with large arrays, but use no other packages.
Especially large computations are done using numpy, which functions as an interface to C++ and thus
enables fast operations on large arrays; speed-up compared to regular implementation in python is
not rarely by a factor 100, as described e.g. in [4]. However, the module is less adequate for objects
with custom features, such as creation events. We define these as classes, which causes a significant
overhead computation time in Python and is therefore slow. However, relative to the total amount of
computation, the number of operations is small enough (compared to e.g. the distance computation
for all dislocations in line 17) that the effect on runtime is not restrictive. Our simulation algorithm
is described by the following pseudocode; the corresponding file is 1DDislocationsCreation.py,
and may be found in Appendix A.3.1.
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Algorithm 1 Dislocation Simulation with Creation and Annihilation
1: function DISLOC-SIM(𝑛, 𝑚 ∈ ℕ, 𝛿, 𝑡𝑒𝑥𝑐 , 𝑇 > 0, 𝛾 ∶ ℝ+ → ℝ)
2: Initialise 𝐱 ∈ [0, 1]𝑛 randomly ⊳ Dislocation positions
3: Initialise 𝐛 ∈ {−1, 1}𝑛 randomly s.t. ⌊𝑛∕2⌋ indices have 𝑏𝑖 = 1 ⊳ Dislocation charges
4: Initialise 𝐬 ∈ [0, 𝐿]𝑚 evenly spaced on [0, 1] ⊳ Source locations
5: 𝑡 ← 0
6: while 𝑡 < 𝑇 do
7: for all sources 𝑠 ∈ 𝑆 do: ⊳ Creation procedure
8: Compute Peach-Koehler forces 𝑃𝐾(𝑠, 𝑡)
9: if |PK[𝑠]| > 𝐹𝑛𝑢𝑐 then Increment above-threshold time counter for 𝑠 by dt

10: else: Reset counter to 0
11:
12: if Counter at 𝑠 reached 𝑡𝑛𝑢𝑐 then ⊳ Iff PK at 𝑠 was above 𝐹𝑛𝑢𝑐 long enough
13: Create dipole at 𝑠 (with or without distance 𝐿𝑛𝑢𝑐);
14: Assign charge (−1, 1) or (1,−1) depending on the sign of the PK force
15: Set counter for time since creation for each new dislocation
16:
17: Compute pairwise difference 𝐷 between all dislocation positions 𝐱 ⊳ Main interactions
18: 𝐿 ← all pairs 𝑖, 𝑗 with 𝑖 < 𝑗, 𝐷𝑖,𝑗 smaller than collision threshold and 𝑏𝑖 = −𝑏𝑗 ≠ 0
19: for all pairs (𝑖, 𝑗) in 𝐿 do: ⊳ Annihilation
20: if 𝑖 and 𝑗 have not annihilated yet then
21: Set 𝑏𝑖 = 𝑏𝑗 = 0
22: Compute (regularised) pairwise interaction between all dislocations from 𝐷, 𝐛 and 𝛿
23: if 𝛾-creations occurred less than 𝑡𝑒𝑥𝑐 ago then ⊳ Force exception
24: Multiply interactions between new dislocations by 𝛾(time since creation)
25: Increment all time-since-creation counters by dt
26: if time-since-creation > 𝑡𝑒𝑥𝑐 then no longer see dislocation as recently created
27: Sum all interactions to obtain update per dislocation
28: Pick dt such that dt ⋅ ‖

‖

d2𝐱‖
‖

is small
29: 𝐱 ← 𝐱 + updates ⋅ dt
30: Save 𝐱 to trajectories and dt to timesteps
31: 𝑡 ← 𝑡 + dt
32: return trajectories, timesteps

Here in line 28, d2𝐱 denotes the component-wise second time-derivative of 𝐱. ‖⋅‖ may represent
any vector norm, since 𝐱(𝑡) ∈ ℝ𝑛 so all norms are equivalent. We use the supremum-norm, because it
is most important that time-steps are small if one particular derivative is rapidly changing (as e.g. at
an annihilation event).

The way annihilation is implemented in lines 19-21 may seem restrictive, but is in fact consistent
with the annihilation rule in (𝑃𝐶𝑛). Although collisions with more than two dislocations are not im-
plemented as such, iterating over all dislocation pairs with opposite charge has the same effect. In [10],
Van Meurs et al. show that multiple-dislocation collisions can only occur when dislocations (ordered
by position) have alternating sign. Furthermore, if the number of colliding dislocations is odd, then
the net charge of all dislocations involved in the annihilation must be +1 or −1. Then all disloca-
tions except one, with charge +1 or −1 respectively, annihilate. Because solutions are invariant under
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relabelling of dislocations, it does not matter which dislocation this is.
6.2.1 Linear 𝛾

It seems that with linear 𝛾 creation, for each 𝐹 > 0, there exists a unique 𝑡𝑒𝑥𝑐 (and with that a
specific 𝛾) such that creating a dipole according to (3.1) leads to a stationary solution of that equation.
We can deduce these from the zeros of 𝑅𝑐𝑟𝑖𝑡: using a root-finding algorithm, in ODEPhaseplot.py
(Appendix A.3.3) we determine the corresponding force for a range of exception times1. This results
in the following (one-to-one) curve:
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Figure 6.2: Numerical approximations of the zeros of (A.3) for varying values of 𝑡𝑒𝑥𝑐 and linear 𝛾 .

We recognise similarity to a polynomial in 1∕(𝑡𝑒𝑥𝑐 − 𝑑) in the data, i.e. with 𝑥 and 𝑦-axis inter-
changed in Figure 6.2. The following third-order polynomial is fit to numerically computed data-points
using a least-squares method:

𝑓 (𝑥) = 𝑎
𝑥 − 𝑑

+ 𝑏
(𝑥 − 𝑑)2

+ 𝑐
(𝑥 − 𝑑)3

(6.2)

We can now use 𝑓 to find an approximation of the zero of 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) in implementation. To
determine the 𝑡𝑒𝑥𝑐 corresponding to a given force, we invert (6.2). Denoting 𝑓−1(𝑥) by 𝑦, this yields
the following on intervals on which 𝑓 is bijective:

𝑓 (𝑥) = 𝑎
𝑥 − 𝑑

+ 𝑏
(𝑥 − 𝑑)2

+ 𝑐
(𝑥 − 𝑑)3

⟹ 𝑥 = 𝑎
𝑦 − 𝑑

+ 𝑏
(𝑦 − 𝑑)2

+ 𝑐
(𝑦 − 𝑑)3

⟹ 𝑥(𝑦 − 𝑑)3 = 𝑎(𝑦 − 𝑑)2 + 𝑏(𝑦 − 𝑑) + 𝑐

1Although finding the exception time to a given force would be more intuitive, this was easier from the side of imple-
mentation.
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Thus, if 𝜆 is the root of the polynomial −𝑥𝜆3+𝑎𝜆2+𝑏𝜆+𝑐, then we have 𝑓−1(𝑥) = 𝜆+𝑑. Uniqueness
of such a root is ensured in regions where 𝑓 is bijective, which is the case here.

To obtain an explicit expression, we numerically searched roots for 100 values of 𝑡𝑒𝑥𝑐 between 0.37
and 1.5, and removed 5 outliers resulting from numerical inaccuracies. We fit the data to (6.2) using
the least-squares method. This results in the fitted function (recall that the fit is for 𝐹 as a function of
𝑡𝑒𝑥𝑐 , i.e. with axes in Figure 6.3 interchanged):

𝑓fit(𝑡) =
0.328

𝑡 − 0.311
− 0.0234

(𝑡 − 0.311)2
+ 0.00128

(𝑡 − 0.311)3
.

Both the data and 𝑓fit are visualised in Figure 6.3:
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Figure 6.3: Numerical approximations of the zeros of (A.3) with linear 𝛾 for varying values of 𝑡𝑒𝑥𝑐
(blue), and fitted function (orange)

We then implement the choice of 𝑡𝑒𝑥𝑐 depending on 𝐹 using Cardano’s explicit formula for roots
of third-degree polynomials, avoiding much slower (and possibly error-prone numerical root-finding
algorithms.

Note here that there is an asymptote in 𝑡 above 0; regardless the choice of 𝐹 , the corresponding
𝑅𝑐𝑟𝑖𝑡 such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) = 0 is greater than approximately 0.311. Whether this is a fundamental
system constant with more meaning remains to be seen.
6.2.2 Automatic ODE-solver with annihilation

When only interested in annihilation and not creation of dislocations, then automatic ODE-solvers
can in fact be used. Given an ODE such as d𝑦∕d𝑡 = 𝑓 (𝑡, 𝑦), most well-known ODE solvers in Python2
take in 𝑓 , a time-domain and an initial value, and return the approximated value of the solution at a
range of points in time. There is no access to intermediate results, so changes in parameters cannot
simply be conditioned on the state of the approximated ODE solution outside the solver, as we did in

2We use solve_ivp from the package scipy.integrate.
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Algorithm 1. However, if 𝑓 calls on some global parameter, then every time 𝑓 is evaluated by the
solver, it can change this global parameter. This change then remains in place for the next iteration of
the solver, thus effectively changing the function parameters.

In our example, this entails including an annihilation condition in the function describing the ODE,
d𝐱∕d𝑡. The only things required to implement the annihilation condition are the positions and charges
of the dislocations at the current timestep. Positions are available through the solver itself, and charges
can be passed as a global variable. An example of such an implementation for (𝑃𝑛) may be found in
the script 1DautoSolver.py, or Appendix A.3.2.

It is possible that creation can also be added in a similar way. However, this is more complicated
since implementing the creation thresholds requires knowledge of more than one state of the system.
Further investigating this possibility falls beyond the scope of our work.

6.3 Results
As mentioned at the beginning of this section, obtaining numerical results is not the main goal in

this work. Still, there are some outcomes we would like to remark upon.
6.3.1 Survival rate

First, for all three creation methods, we estimate how many of the created pairs of dipoles eventually
do not re-collide. To do so, for each of the creation procedures we run the simulation described in
Algorithm 1 100 times for different initial values, each with 20 initial dislocations and 20 sources. The
dislocation positions are initiated with uniformly random positions on [0, 1], and random charges such
that the net charge is 0. The source locations are evenly spaced on the interval [0, 1]. Comparing the
creation and annihilation events, for every iteration we compute the fraction of created dipoles that
do not re-collide again out of all dipoles that were created; we call this the survival rate. The mean,
standard deviation and the resulting 95-% confidence interval for the mean are given in Table 6.1:

Linear 𝛾 Zero-𝛾 Distance
Sample mean 0.5317 0.5039 0.69

Standard deviation 0.0330 0.0132 0.11
95-% CI for mean [0.525, 0.538] [0.501, 0.506] [0.6684, 0.7116]

Table 6.1: Statistics of the survival rate over 100 runs with 20 initial dislocations and 20 sources.

We would expect half of all dipoles to re-collide, and the other half to survive, depending on the
influence of other dislocations; we therefore expect the survival rate to be 0.5. This follows from
our definition of all three creation procedures in Section 3, in such a way that they form equilibrium
solutions in an otherwise empty system with a constant force. From the results in Table 6.1 we see that
both 𝛾-creation methods perform close to this expectation. Zero-𝛾 yields a survival rate slightly closer
to 0.5 than linear 𝛾; this may be a consequence of the fact that we have an explicit formula for choosing
𝑡𝑒𝑥𝑐 for the former, whereas determining the former took several steps of numerical approximation.

The deviation of the mean survival rate for distance creation may be caused by the use of a collision
threshold. If the Peach-Koehler force at a creation event is large, then by the parameter choice 𝐿𝑛𝑢𝑐 =
1∕𝐹 a dipole is created at a small distance. If this is smaller than the collision threshold, the dipole
may immediately re-annihilate. Avoiding this may be subject to further research.
6.3.2 Examples of solution trajectories

To illustrate the effect of different creation procedures, we simulate the evolution from a specific
initial value from previous section (i.e 𝑛 = 20, |𝐶| = 20) with the three different creation methods and
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without creation, until all dislocations have annihilated. We take 𝐹𝑛𝑢𝑐 = 5, 𝑡𝑛𝑢𝑐 = 0.01 and a collision
threshold of 3 ⋅ 10−3.
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Figure 6.4: Simulated trajectories in (𝑡, 𝑥)-plane for identical initial conditions without creation and
with three different creation processes (with different time-scales).

Each of the plots 6.4b-6.4d shows characteristic features of the different creation methods. In
Figure 6.4b, after the creation event at position and time (0, 0.09), the created dipole moves apart at
a near-linear rate due to 𝛾 temporarily being set to 0. At time 𝑡 ≈ 0.015, the exception time is over
and interaction returns to normal; this causes a clear discontinuity in the time-derivative, making the
trajectory non-smooth. Also note that the total annihilation time is greater than without creation, shown
in Figure 6.4a. This implies that, if our implementation is accurate enough, Conjecture 5.3.2 is not
true for zero-𝛾 creation. For linear 𝛾 in Figure 6.4c, the trajectories are smooth aside from annihilation
times. The creation of dipoles occurs with singular derivative, causing dislocations to move apart as
√

𝑟. Note that the behaviour of a dipole immediately after creation is similar to behaviour closely
before annihilation, only with inverted time. Distance creation results in discontinuous trajectories.
The Peach-Koehler force threshold in this simulation is set to 5, which means that discontinuities may
be as large as 𝐿𝑛𝑢𝑐 = 1∕𝐹𝑛𝑢𝑐 = 0.2; this explains the distances between created dislocations.

The simulation is still inaccurate on some points; e.g. in Figure 6.4b, more creation events should
occur at the source with position 0.4. The fact that these do not show may be a consequence of a too
large collision threshold, in combination with the code structure where annihilation removes created
dislocations before they are plotted.
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7 Conclusions & Discussion
Our main goal was to extend existing theory of dislocation dynamics in a single dimension with the
creation of new dipoles. Having developed solution definitions for three different ways of creating
dipoles and proving uniqueness for one of these, we have made a first step towards a consistent theory
including creation. We may conclude that it is possible to introduce new dipoles, although the details
are subtle. In addition, we developed a framework to compare the long-range influence of different
creation processes, and described methods to numerically simulate the developed systems.

Comparing the three creation procedures described in Section 3, we may conclude that the two
𝛾-creation procedures have significant advantages over distance creation. Creation with linear 𝛾 and
zero-𝛾 both have benefits and drawbacks; the former has a singular force at creation moments, the latter
introduces discontinuities in the ODE in (𝑃𝐶𝑛-𝛾). On numerical implementation, zero-𝛾 results in a
creation survival rate slightly closer to the expected 50%. However, this may also be due to numerical
inaccuracies in the (rather complicated) parameter choice for linear 𝛾 , which may be improved further.

Overall, much of our work covers early stages of the development of a new formal system to
adequately represent dislocation dynamics with annihilation and creation. The novelty of this report
is more in the construction of definitions and a theoretical framework to conduct further analysis in,
than in the analysis of properties of (𝑃𝐶𝑛) itself. Hence there is a wide range of open questions and
conjectures, to be studied in further research.

Within our line of work, the next main objective is to prove well-posedness of (𝑃𝐶𝑛), following
uniqueness of solutions in Theorem 5.1.1. Further properties of solutions similar to those stated for (𝑃𝑛)
by Van Meurs et al. in [10, Theorem 2.4] may be derived for (𝑃𝐶𝑛) as well. Comparing these properties
for different creation methods might give better insight into the difference of system behaviour for
various choices. Also, other creation methods than the ones we treat in this report could be of interest.
For example, taking a combination of linear and zero-𝛾 such as 𝛾(𝑡) = 1{𝑡≥𝑡1} ⋅ (𝑡− 𝑡1)∕𝑡2 with 𝑡1+ 𝑡2 =
𝑡𝑒𝑥𝑐 in 𝛾-creation may combine the benefits of linear and zero-𝛾 . A more basic question, also relevant
to numerical simulation, is how to choose system parameters such as 𝐹𝑛𝑢𝑐 and 𝑡𝑛𝑢𝑐 . Ideally, they
can be expressed as fundamental system constants, in which case they can be compared to values
found experimentally. Concerning the simulation, both running time and accuracy can be improved
to conduct more thorough statistical analysis. Concrete suggestions are either implementing a more
advanced integration scheme with an improved adaptive timestep or rewriting the ODE such that an
automatic solver may be used, and speeding up computation by removing annihilated dislocations from
computations. Methods of finding suitable simulation parameters would be valuable too.

Extending the scope, another relevant question is what happens when taking the many-particle
limit 𝑛 → ∞ and the many-source limit |𝐶| → ∞ (it would be reasonable to choose 𝑛 and 𝐶 in the
same regime), as well as formulating the system as Hamilton-Jacobi equation. The results thereof may
pose an important criterion on which to compare different creation processes. Both the Peach-Koehler
force and multipole expansion can be extended to this setting as in Appendix A.2.6. How to generalise
creation procedures to a continuous setting is less trivial. Other possible extensions of the model
we describe are to consider a higher-dimensional domain, adding random noise to the dislocation
movement, or considering a periodic domain to approximate behaviour in an infinite medium with
dislocations throughout.

In conclusion, we have developed a workable model for both theory and implementation of a 1D
dislocation dynamics system with creation and annihilation, which to our knowledge did not yet exist.
Besides value in its own right, with this work we hope to provide a foundation that can be built upon
in further studies, ultimately contributing to the understanding material properties.
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A Appendices
A.1 Notation

We use 𝑓 (𝑡−) ∶= lim𝜏↑𝑡 𝑓 (𝜏) and 𝑓 (𝑡+) ∶= lim𝜏↓𝑡 𝑓 (𝜏) for the left and right limits of 𝑓 in 𝑡
respectively.

Furthermore, throughout our work we adhere to the following notations:
Name Definition/Type Description Reference
 ⊂ (ℝ+) Collection of charge functions 2.3.1
𝐵𝑘

∑𝑛
𝑖=1 𝑏𝑖(𝑡)𝑥𝑖(𝑡)

𝑘 2𝑘-pole term in multipole expansion 4.1.1
𝐛 (𝑏1,… , 𝑏𝑛) ∈ ℝ𝑛 Dislocation charges (Burgers vectors)
𝐶 ⊂ ℝ Finite set of source locations 2.3.2
𝐹𝑛𝑢𝑐 ∈ ℝ+ Creation force threshold (fixed)
𝛾 ℝ+ → ℝ Force exception function in 𝛾-creation 3.1.3 & 3.1.4
𝑘 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋ Maximum number of creations at a source1 2.3.2

𝐿𝑛𝑢𝑐 ∈ ℝ+ Nucleation distance (for distance creation) 3.2.1
𝑛 ∈ ℕ (Initial) number of dislocations
𝑁 𝑛 + |𝐶| ⋅ 𝑘 Total nr. of dislocations in (𝑃𝐶𝑛) (system size)

PK(𝑠, 𝑡)
∑𝑛

𝑖=1
𝑏𝑖(𝑡)

𝑠−𝑥𝑖(𝑡)
Peach-Koehler force 2.2.1

PK𝑘(𝑠, 𝑡)
∑𝓁

𝑗=0
𝐵𝑗
𝑅𝑗+1 Multipole approximation of PK 4.1.1

𝑟(𝑡) 𝑥2(𝑡) − 𝑥1(𝑡) Difference of positions in 2-particle system 2.1.2 & 3.1.1
𝑆 ⊂ ℝ+ Finite set containing annihilation times 2.3.2
 ⊂ ℝ+ Finite set containing creation times 2.3.2
𝑇 ∈ ℝ+ Right boundary of solution time-domain
𝑡𝑛𝑢𝑐 ∈ ℝ+ Creation time threshold (fixed)
𝑡𝑒𝑥𝑐 ∈ ℝ+ Exception time (for 𝛾-creation) 3.1.3 & 3.1.4
𝐱 (𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 Dislocation positions
𝑛

{

(𝐱,𝐛) ∈ ℝ𝑛 × {−1, 0, 1} s.t
(𝑖 > 𝑗 ∧ 𝑏𝑖𝑏𝑗 ≠ 0) ⟹ 𝑥𝑖 > 𝑥𝑗

}

State space of (𝑃𝑛)

𝑐
𝑛

{

(𝐱,𝐛) ∈ ℝ𝑛 × {−1, 0, 1} s.t
(𝑖 ≠ 𝑗 ∧ 𝑏𝑖𝑏𝑗 ≠ 0) ⟹ 𝑥𝑖 ≠ 𝑥𝑗

}

State space of (𝑃𝐶𝑛)

Table A.1: Notations and their description.
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A.2 Postponed details and proofs
A.2.1 ODE time-scaling

As mentioned in Section 2.1, [10] treats a slightly different system of ODEs than we do, multiplying
the interaction by a factor 1∕𝑛:

d𝑥𝑖
d𝑡

= 1
𝑛
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛 (A.1)

The reason for this is that one of the goals of that paper is to study the many-particle limit 𝑛 → ∞ with
mean-field analysis. For us however, an additional factor depending on the size of the system makes
it difficult to compare systems with differing numbers of particles. Hence, the systems we defined do
not include this factor. We now show that the results derived in [10] still apply.

The idea is that a non-zero constant only changes the speed at which the system evolves, not the
interaction behaviour itself. This can be seen at hand of the following example: suppose

d𝑥
d𝑡

= 1
𝑛
𝑓 (𝑥(𝑡), 𝑡).

We now rewrite by substituting 𝑡 = 𝑛 ⋅ 𝑡 (and hence d𝑡
d𝑡 = 1∕𝑛):

1
𝑛
𝑓 (𝑥(𝑡), 𝑡)) = d𝑥

d𝑡
= d𝑥

d𝑡
d𝑡
d𝑡

= 1
𝑛
d𝑥
d𝑡

⟹
d𝑥
d𝑡

= 𝑓 (𝑥(𝑛 ⋅ 𝑡), 𝑛 ⋅ 𝑡)

which corresponds to scaling time in the original equation by 𝑛. In [10] it is also shown that from a
solution to A.1 one may obtain another solution by scale invariance. This ensures that our analysis
may be placed in the same framework as in [10].
A.2.2 Existence of a unique 𝑡𝑒𝑥𝑐 for linear 𝛾

We continue from the end of Example 3.1.1, where we derived the following initial value problem:
⎧

⎪

⎨

⎪

⎩

d𝑟
d𝑡

= −1
𝑟(𝑡)

⋅ 𝛾(𝑡) + 𝐹 for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

𝑟(0) = 0

To further analyse the ODE, we reparametrise by setting 𝑅 ∶= 1
2𝑟

2. Note that this does not limit
us, since we are only interested in the situation where 𝑟 ≥ 0; if we had 𝑟(𝑡) < 0 for some 𝑡, we could
relabel the dislocations and obtain non-negative 𝑟, since the sign of 𝑟 cannot change (i.e. dislocations
cannot cross paths). This yields 𝑟 = √

2𝑅. Then using the chain rule, we can rewrite (3.2) as follows:
d𝑟
d𝑡

= −1
𝑟(𝑡)

⋅ 𝛾(𝑡) + 𝐹

⟺ 𝑟d𝑟
d𝑡

= −𝛾(𝑡) + 𝐹𝑟

⟺
d𝑅
d𝑡

= −𝛾(𝑡) + 𝐹
√

2𝑅

Furthermore, 𝑅 = 0 if and only if 𝑟 = 0, which yields the boundary condition 𝑅(0) = 0. Together, we
find a new ODE system:
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⎧

⎪

⎨

⎪

⎩

d𝑅
d𝑡

= −𝛾(𝑡) + 𝐹
√

2𝑅 for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

𝑅(0) = 0
(A.2)

Note that neither the assumption 𝑏1 = −1, 𝑏2 = 1 nor the requirement 𝐹 > 0 are restrictive in the
argument above. 𝐹 = 0 will never lead to a creation event since no positive threshold is met, and if
𝐹 < 0, then the sign of the dipole is reverted, yielding 𝑏1 = 1, 𝑏2 = −1 and equilibrium of 3.6 at
𝑟 = −1∕2𝐹 . We now consider (A.2) for fixed 𝐹 and 𝑡𝑒𝑥𝑐 , but for different initial values:

0.0 0.5 1.0 1.5 2.0 2.5
t

0.0

0.2

0.4

0.6

0.8

1.0

R

Figure A.1: Plot of (numerical) solutions to (A.2) for different initial values, for linear 𝛾 with 𝑡𝑒𝑥𝑐 =
1∕2 (dotted line) and 𝐹 = 1.

After 𝑡𝑒𝑥𝑐 , a stationary solution exists for 𝑅 ≡ 1∕2𝐹 2. We also see that there is a ‘critical’ initial
value, for 𝑅(0) ≈ 0.2 with the given settings. Starting with smaller 𝑅 leads to the trajectory returning
to 𝑅 = 0 (collision of dislocations), whereas starting at a higher value leaves 𝑅 diverging.

This critical value may be found by solving the ODE from (A.2) backwards in time with final
condition 𝑅(𝑡𝑒𝑥𝑐) =

1
2𝐹 2 , and retrieving 𝑅(0). Following this idea, we define the following function

(where the brackets denote the solution to the given ODE):

𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) ∶=

⎧

⎪

⎨

⎪

⎩

d𝑅
d𝑡

= −𝛾(𝑡) + 𝐹
√

2𝑅

𝑅(𝑡𝑒𝑥𝑐) =
1

2𝐹 2

⎫

⎪

⎬

⎪

⎭

|

|

|

|

|

|

|

|𝑡=0

(A.3)

Well-posedness of this boundary-value problem and hence well-definedness of the function is assumed
for now on some domain 𝐷. This will be discussed later. We do already restrict the domain of the
function to exclude 𝐹 = 0 and 𝑡𝑒𝑥𝑐 = 0, since these may cause singularities in the initial condition or
the definition of 𝛾 respectively.
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The definition in (A.3) can be difficult to analyse and is tedious to implement numerically, since
many ODE solvers only approximate solutions forward in time, i.e., with a given condition for 𝑡 = 0.
Hence, it can be useful to invert time by the substitution 𝑡 = 𝑡𝑒𝑥𝑐 − 𝑡. Thus reformulate this procedure
equivalently as a usual boundary value problem with 𝑅̃(0) = 1

2𝐹 2 . Note that this substitution changes
the sign, which yields the following:

⎧

⎪

⎨

⎪

⎩

d𝑅̃
d𝑡

= 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) − 𝐹
√

2𝑅̃ for 𝑡 ∈ (0, 𝑡𝑒𝑥𝑐)

𝑅̃(0) = 1
2𝐹 2

(A.4)

Now the critical initial value is given by 𝑅̃(𝑡𝑒𝑥𝑐). With this alternative formulation of the ODE,
𝑅𝑐𝑟𝑖𝑡 can also be written as follows:

𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) =

⎧

⎪

⎨

⎪

⎩

d𝑅̃
d𝑡

= 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) − 𝐹
√

2𝑅̃

𝑅̃(0) = 1
2𝐹 2

⎫

⎪

⎬

⎪

⎭

|

|

|

|

|

|

|

|𝑡=𝑡𝑒𝑥𝑐

(A.5)

To give an impression of the behaviour of the function, we plot 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) for varying values of 𝑡𝑒𝑥𝑐:
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Figure A.2: Graphs of (numerical approximations of) (A.3) for varying values of 𝑡𝑒𝑥𝑐 and linear 𝛾 .

We find the following properties:
Lemma A.2.1 (Properties of 𝑅𝑐𝑟𝑖𝑡). For the function 𝑅𝑐𝑟𝑖𝑡 as given in (A.3) with linear 𝛾 as in (3.3),
the following properties hold:

(i) (Well-definedness) 𝑅𝑐𝑟𝑖𝑡 is well-defined on a non-empty and connected subset of the open first
quadrant of the (𝐹 , 𝑡𝑒𝑥𝑐)-plane, (0,∞)×(0,∞), and takes non-negative values. More specifically,
if 𝑅𝑐𝑟𝑖𝑡 is well-defined for some 𝐹 and 𝑡𝑒𝑥𝑐 , it is also well-defined for 𝐹 , 𝑡𝑒𝑥𝑐 such that 0 < 𝐹 < 𝐹
and 0 < 𝑡𝑒𝑥𝑐 < 𝑡𝑒𝑥𝑐 .
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(ii) (Continuity) 𝑅𝑐𝑟𝑖𝑡 is continuous for all 𝑡𝑒𝑥𝑐 > 0 and 𝐹 > 0 for which it is well-defined

(iii) (Monotonicity in 𝐹 ) 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) is monotonically decreasing in 𝐹 for all 𝑡𝑒𝑥𝑐 > 0

(iv) (Monotonicity in 𝑡𝑒𝑥𝑐) 𝑅𝑐𝑟𝑖𝑡(𝐹 , ⋅) is monotonically decreasing in 𝑡𝑒𝑥𝑐 for all 𝐹 > 0.

Proof. Let 𝛾 be given as in Equation (3.3), for an arbitrary 𝑡𝑒𝑥𝑐 > 0 unless specified otherwise.
(i) By standard ODE theory, the ODE in (A.5) is well-posed for any 𝐹 > 0 and 𝑡𝑒𝑥𝑐 > 0 on the

domain [0, 𝑇 ] on which 𝑅̃(𝑡) ≥ 0, proving non-negativity of 𝑅𝑐𝑟𝑖𝑡. Thus, as long as 𝑅̃(𝑡) ≥ 0 for
all 𝑡 ∈ [0, 𝑡𝑒𝑥𝑐], 𝑅𝑐𝑟𝑖𝑡 is well-defined.
We now show there exist 𝐹 , 𝑡𝑒𝑥𝑐 such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) is well-defined, by fixing some 𝐹 , show-
ing the ODE 𝑅 must stay positive on some time-interval, and then choosing 𝑡𝑒𝑥𝑐 such that it falls
within this interval.
Let 𝐹 < 1∕

√

2. Because 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) is continuous for 𝑡 ∈ [0, 𝑡𝑒𝑥𝑐], 𝑟 ↦ 2𝐹
√

2𝑟 is continuous
for 𝑟 ≥ 0 and 𝑅̃(0) > 1 (because of our choice of 𝐹 ), there must be an 𝜀 > 0 such that 𝑅̃ ≥ 1
for all 𝑡 ∈ [0, 𝜀]

Now let 𝑡 ∈ [0, 𝜀]. Then we have√𝑅̃(𝑡) ≤ 𝑅̃(𝑡), and by definition we have 𝛾(𝑡) ≥ −1. Estimating
the ODE from (A.4), we obtain

d𝑅̃
d𝑡

= 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) − 𝐹
√

2𝑅̃ ≥ −1 − 𝐹
√

2𝑅̃ ≥ −1 − 𝐹
√

2 ⋅ 𝑅̃, 𝑡 ∈ [0, 𝜀].

We obtain a linear first-order ODE d𝑅̄∕d𝑡 = −1 −
√

2𝐹𝑅̄, which we solve using standard
methods (e.g. method of integrating factor) to obtain

𝑅̄(𝑡) = 𝑐 ⋅ 𝑒−𝐹
√

2⋅𝑡 − 1

𝐹
√

2
, 𝑐 ∈ ℝ.

With the initial condition 𝑅̄(0) = 1∕(2𝐹 2) from (A.4), we obtain 𝑐 = 1∕(𝐹
√

2) + 1∕(2𝐹 2).
Together with the fact that 𝑡 ≤ 𝑡𝑒𝑥𝑐 , this implies

𝑅̄(𝑡) = 1

𝐹
√

2
⋅

((

1 + 1

𝐹
√

2

)

𝑒−𝐹
√

2⋅𝑡 − 1

)

≥ 1

𝐹
√

2
⋅

((

1 + 1

𝐹
√

2

)

𝑒−𝐹
√

2⋅𝑡𝑒𝑥𝑐 − 1

)

.

Choosing 𝑡𝑒𝑥𝑐 ≤ ln 1∕2 + 1∕(2𝐹
√

2)∕𝐹
√

2 we have
(

1 + 1
𝐹
√

2

)

𝑒−𝐹
√

2⋅𝑡𝑒𝑥𝑐 ≥ 2, which implies
𝑅̄ ≥ 1 on [0, 𝑡𝑒𝑥𝑐], and hence 𝑅̄(𝑡𝑒𝑥𝑐) ≥ 0. Thus, 𝑅𝑐𝑟𝑖𝑡 is well-defined for arguments 𝐹 , 𝑡𝑒𝑥𝑐 .
The initial condition is decreasing in 𝐹 and the expression above is decreasing in 𝑡𝑒𝑥𝑐 . Thus,
taking 𝐹 , 𝑡𝑒𝑥𝑐 such that 0 < 𝐹 < 𝐹 and 0 < 𝑡𝑒𝑥𝑐 < 𝑡𝑒𝑥𝑐 leaves the argument above valid,
implying that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) is well-defined too.

(ii) Continuity of 𝑅𝑐𝑟𝑖𝑡 in both 𝑡𝑒𝑥𝑐 and 𝐹 follows from the well-posedness of the ODE in (A.5), as
this implies continuous dependence on the data.

(iii) (Monotonicity in 𝐹 ) Suppose 𝐹2 > 𝐹1 > 0, and let 𝑡𝑒𝑥𝑐 > 0 be fixed such that 𝑅𝑐𝑟𝑖𝑡(𝐹1, 𝑡𝑒𝑥𝑐)
and 𝑅𝑐𝑟𝑖𝑡(𝐹1, 𝑡𝑒𝑥𝑐) exist. Furthermore, let 𝑅1, 𝑅2 be the solutions to the ODE given in (A.5) for
𝐹 being 𝐹1 and 𝐹2 respectively. The idea of the proof is that solution trajectories cannot cross
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paths, and thus preserve some monotonicity property; we now formalise this. By construction
of 𝑅𝑐𝑟𝑖𝑡, we have

𝑅1(0) =
1

2𝐹 2
1

> 1
2𝐹 2

2

= 𝑅1(0).

We argue by contradiction; assume 𝑅1(𝑡𝑒𝑥𝑐) ≤ 𝑅2(𝑡𝑒𝑥𝑐), i.e. 𝑅𝑐𝑟𝑖𝑡(𝐹1, 𝑡𝑒𝑥𝑐) ≤ 𝑅𝑐𝑟𝑖𝑡(𝐹2, 𝑡𝑒𝑥𝑐).
Then there must be a largest 𝑡0 ∈ (0, 𝑡𝑒𝑥𝑐) such that 𝑅1(𝑡0) = 𝑅2(𝑡0) (e.g. by the intermediate
value theorem; 𝑅1 − 𝑅2 changes sign). Then it follows that

(

𝑅̃1)′ (𝑡0) = 𝛾(𝑡0) − 𝐹1

√

2𝑅̃1(𝑡0) > 𝛾(𝑡0) − 𝐹2

√

2𝑅̃1(𝑡0) =
(

𝑅̃2)′ (𝑡0)

This implies that for some 𝜀 > 0 we have 𝑅1(𝑡0 + 𝜀) > 𝑅2(𝑡0 + 𝜀). Because 𝑡0 is the largest
value for 𝑡 such that 𝑅1(𝑡0) = 𝑅2(𝑡0) and 𝑡0 < 𝑡𝑒𝑥𝑐 , it follows that 𝑅1(𝑡𝑒𝑥𝑐) > 𝑅2(𝑡𝑒𝑥𝑐); but this
contradicts our assumption, thus proving our claim.

(iv) Now let 𝑇2 > 𝑇1 > 0 denote different values for 𝑡𝑒𝑥𝑐 , and fix 𝐹 > 0 such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) and
𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) exist (we now write 𝑇𝑖 instead of 𝑡𝑒𝑥𝑐 𝑖 for clarity). Now denote by 𝑅1 and 𝑅2 the
respective solutions to (A.3) (i.e. not the time-inverted version). First off, note that contrary to
the previous point, 𝛾 depends on the value of 𝑡𝑒𝑥𝑐; we hence denote

𝛾1(𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

2 ⋅ 𝑡
𝑇1

− 1 for 𝑡 ∈ [0, 𝑇1)

1 for 𝑡 ≥ 𝑇1
, 𝛾2(𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

2 ⋅ 𝑡
𝑇2

− 1 for 𝑡 ∈ [0, 𝑇2)

1 for 𝑡 ≥ 𝑇2

Note that 𝑇1 < 𝑇2 implies that 𝛾1(𝑡) > 𝛾2(𝑡) for 0 < 𝑡 < 𝑇2, and that 𝛾1(𝑡) = 𝛾2(𝑡) for 𝑡 = 0 and
𝑡 ≥ 𝑇2. We cannot directly compare the solution trajectories 𝑅1 and 𝑅2, since they are solutions
to the ODE system in (A.3) with different functions 𝛾 . Instead, we scale the time in both systems
by 𝑇𝑖, resulting in the following for 𝑖 = 1, 2:

⎧

⎪

⎨

⎪

⎩

d𝑅
d𝑡

= −𝛾𝑖(𝑡) + 𝐹
√

2𝑅 for 𝑡 ∈ [0, 𝑇𝑖]

𝑅(𝑇𝑖) =
1

2𝐹 2

𝜏 = 𝑡∕𝑇𝑖
⟶

⎧

⎪

⎨

⎪

⎩

d𝑅(𝑇𝑖𝜏(𝑡))
d𝜏

d𝜏
d𝑡

= −𝛾𝑖(𝑇𝑖𝜏(𝑡)) + 𝐹
√

2𝑅(𝑇𝑖𝜏(𝑡)) for 𝑡 ∈ [0, 𝑇𝑖]

𝑅(𝑇𝑖) =
1

2𝐹 2

𝑅̄(𝜏) = 𝑅(𝑇𝑖⋅𝜏)
⟶

⎧

⎪

⎨

⎪

⎩

1
𝑇𝑖

d𝑅̄(𝜏)
d𝜏

= −𝛾(𝜏) + 𝐹
√

2𝑅̄(𝜏) for 𝜏 ∈ [0, 1]

𝑅̄(1) = 1
2𝐹 2

Here 𝛾̄ represents (3.3) with 𝑡𝑒𝑥𝑐 = 1, but the exact description does not matter for our cause;
what is more important is that 𝑅̄1 and 𝑅̄2 now share the same time-span and both contain 𝛾̄
instead of two separate functions.
Also transforming 𝑅1 and 𝑅2, it may be verified that 𝑅̄1(𝜏) = 𝑅1(𝑇1 ⋅ 𝜏) and 𝑅̄2(𝜏) = 𝑅2(𝑇2 ⋅ 𝜏)
are solutions to the new ODE systems. It follows that we still have 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑇𝑖) = 𝑅𝑖(0) = 𝑅̄𝑖(0),
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and of course 𝑅̄1(1) = 𝑅̄2(1) = 1∕2𝐹 2 because of the boundary condition. At any given
𝜏 ∈ (0, 1), if 𝑅̄1(𝜏) ≤ 𝑅̄2(𝜏) it follows that

1
𝑇1

𝑅̄′
1(𝜏) = −𝛾(𝜏) + 𝐹

√

2𝑅̄1(𝜏) ≤ −𝛾(𝜏) + 𝐹
√

2𝑅̄2(𝜏) = 1
𝑇2

𝑅̄′
2(𝜏)

Recall that 𝑇1 < 𝑇2, implying 𝑇1∕𝑇2 < 1. This yields

𝑅̄′
1(𝜏) ≤

𝑇1
𝑇2

𝑅̄′
2(𝜏) < 𝑅̄′

2(𝜏).

Now as 𝑅̄1(1) = 𝑅̄2(1), solving backwards in time we can conclude that 𝑅̄1(1 − 𝑠) > 𝑅̄2(1 − 𝑠)
for all 0 < 𝑠 ≤ 1, implying that

𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑇1) = 𝑅̄1(0) > 𝑅̄2(0) = 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑇2)

which concludes the proof.
Next to the proven properties, we conjecture further behaviour of 𝑅𝑐𝑟𝑖𝑡. Proving or disproving

these falls beyond the scope of our work and is left for further research.
Conjecture A.2.2 (Further properties of 𝑅𝑐𝑟𝑖𝑡). For the function 𝑅𝑐𝑟𝑖𝑡 as given in (A.3) with linear 𝛾
as in (3.3), we conjecture the following properties:

(i) (Limiting behaviour in 𝐹 ) 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) has a singularity at 𝐹 = 0 for all 𝑡𝑒𝑥𝑐 > 0; to be more
precise,

lim
𝐹→0

𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) = ∞ ∀𝑡𝑒𝑥𝑐 > 0 (A.6)
On the other hand, it seems that there exists a constant 𝑐 > 0 such that for any 𝑡𝑒𝑥𝑐 > 𝑐, there
exists a force 𝐹0 > 0 such that 𝑅𝑐𝑟𝑖𝑡(𝐹0, 𝑡𝑒𝑥𝑐) = 0. If 𝑡𝑒𝑥𝑐 < 𝑐, then 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) has no zeroes.

(ii) (Limiting behaviour in 𝑡𝑒𝑥𝑐) For 𝑡𝑒𝑥𝑐 → 0, 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) converges pointwise to a continuous
function supported on ℝ+. For 𝑡𝑒𝑥𝑐 → ∞, the domain of 𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐) narrows towards 0, i.e.,

∀𝜀 > 0 ∃𝑡𝑒𝑥𝑐 s.t. supp(𝑅𝑐𝑟𝑖𝑡(⋅, 𝑡𝑒𝑥𝑐)) ⊂ (0, 𝜀).

If Conjecture A.2.2-(𝑖𝑖) is true, this implies that there is a lower bound 𝑐 > 0 on all exception
times 𝑡𝑒𝑥𝑐 in linear 𝛾-creation as given in 3.1.3. Whether this is indeed the case and whether this 𝑐 is
a fundamental constant for the linear 𝛾 creation process remains to be seen in further research.

With the results proven in Lemma A.2.1, we can prove Lemma 3.1.2, which we restate below:
Lemma A.2.3. For any given 𝐹 > 0 exists a unique 𝑡𝑒𝑥𝑐 > 0 such that the creation of a dipole with
linear 𝛾 , given by (3.3), as adaptive force yields an equilibrium solution to 3.1.

Proof. Let 𝐹 > 0 be given.
Uniqueness: Suppose 𝑇1 and 𝑇2 are such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑇1) = 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑇2) = 0. Then from mono-

tonicity of 𝑅𝑐𝑟𝑖𝑡(𝐹 , ⋅), proven as property (𝑖𝑣) of Lemma A.2.1, it follows that 𝑇1 = 𝑇2.
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Existence: We have already established that there are pairs 𝐹 , 𝑡𝑒𝑥𝑐 > 0 such that 𝑅𝑐𝑟𝑖𝑡 is positive,
i.e., such that in (A.4), 𝑅̃(𝑡𝑒𝑥𝑐) ≥ 0. If we now also show that there are pairs such that 𝑅̃(𝑡) = 0
for 𝑡 ≤ 𝑡𝑒𝑥𝑐 , then by continuous dependence on initial data (also a ‘shooting argument’), then for
every 𝐹 there must be a 𝑡𝑒𝑥𝑐 such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) = 0.
We follow a similar approach as in the proof of well-definedness of 𝑅𝑐𝑟𝑖𝑡, in property (𝑖) of
Lemma A.2.1, only the other way around; we now show there exist 𝐹 , 𝑡𝑒𝑥𝑐 such that in (A.4),
𝑅̃(𝑡) = 0 for some 𝑡 < 𝑡𝑒𝑥𝑐 .
Take 𝐹 > 1∕

√

2 and arbitrary 𝑡𝑒𝑥𝑐 > 0. Then 𝑅̃(0) < 1, and there exists an 𝜀 > 0 such that
𝑅̃(𝑡) < 1 for 𝑡 ∈ [0, 𝜀]. For 𝑡 ∈ [0, 𝜀], it follows that √𝑅̃(𝑡) > 𝑅̃. From (A.4) we then have
d𝑅̃
d𝑡

= 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) − 𝐹
√

2𝑅̃ = 1 − 2 ⋅ 𝑡
𝑡𝑒𝑥𝑐

− 𝐹
√

2𝑅̃ ≤ 1 − 2 ⋅ 𝑡
𝑡𝑒𝑥𝑐

− 𝐹
√

2 ⋅ 𝑅̃, 𝑡 ∈ [0, 𝜀].

Similar to the proof of (𝑖) in Lemma A.2.1, we consider the following linear first-order ODE
(only now, simply estimating 𝛾 < 1 does not give a sharp enough bound), writing 𝐾 ∶= 𝐹

√

2
for brevity:

⎧

⎪

⎨

⎪

⎩

d𝑅̄
d𝑡

= 1 − 2 ⋅ 𝑡
𝑡𝑒𝑥𝑐

−𝐾 ⋅ 𝑅̄ for 𝑡 ∈ [0, 𝑡𝑒𝑥𝑐]

𝑅̄(0) = 1
2𝐹 2 .

We recognise the form d𝑦∕d𝑡 + 𝑝(𝑡)𝑦 = 𝑞(𝑡) with 𝑝(𝑡) ≡ 𝐾 and 𝑞(𝑡) = 𝛾(𝑡𝑒𝑥𝑐 − 𝑡) = 1 − 2𝑡∕𝑡𝑒𝑥𝑐 .
The integrating factor method provides a solution of the following form:

d𝑦
d𝑡

+ 𝑝(𝑡)𝑦 = 𝑞(𝑡) ⟹ 𝑦(𝑡) = 𝑒−𝜇(𝑡) ∫

𝑡

0
𝑒𝜇(𝜏)𝑞(𝜏)d𝜏, where 𝜇(𝑡) ∶= ∫

𝑡

0
𝑝(𝜏)d𝜏.

We have 𝜇(𝑡) = 𝐾 ⋅ 𝑡, so (integrating by parts at (∗) we obtain
𝑅̄(𝑡) = 𝑒−𝜇(𝑡) ∫

𝑡

0
𝑒𝜇(𝜏)𝑞(𝜏)d𝜏

= 𝑒−𝐾⋅𝑡
∫

𝑡

0
𝑒𝐾⋅𝜏

(

1 − 2 𝜏
𝑡𝑒𝑥𝑐

)

d𝜏

(∗)
= 𝑒−𝐾⋅𝑡

(

[

𝑒𝐾⋅𝜏

𝐾
− 2 ⋅ 𝜏 ⋅ 𝑒

𝐾⋅𝜏

𝐾 ⋅ 𝑡𝑒𝑥𝑐

]𝜏=𝑡

𝜏=0
+ 2∫

𝑡

0

𝑒𝐾⋅𝜏

𝑡𝑒𝑥𝑐
d𝜏

)

= 𝑒−𝐾⋅𝑡
(

𝑒𝐾⋅𝑡

𝐾
− 2 ⋅ 𝑡 ⋅ 𝑒𝐾⋅𝑡

𝐾 ⋅ 𝑡𝑒𝑥𝑐
+ 2𝑒

𝐾⋅𝑡

𝑡𝑒𝑥𝑐
+ 𝑐

)

= 1
𝐾

(

1 − 2𝑡 + 2
𝑡𝑒𝑥𝑐

)

+ 𝑐 ⋅ 𝑒−𝐾⋅𝑡

where
𝑐 = 𝑅̄(0) − 1

𝐾
+ 2

𝐾 ⋅ 𝑡𝑒𝑥𝑐
= 1

𝐾2
− 1

𝐾
+ 2

𝐾 ⋅ 𝑡𝑒𝑥𝑐
= 1

𝐾

(

1
𝐾

+ 2
𝑡𝑒𝑥𝑐

− 1
)

.

By our choice of 𝐹 , we have 1∕𝐾 = 1∕𝐹
√

2 < 1. Now choosing 𝑡𝑒𝑥𝑐 small enough, we have
𝑐 > 0, so that 𝑅̄ is decreasing in 𝑡. Furthermore, the linear term (1 − (2𝑡 + 2)∕𝑡𝑒𝑥𝑐)∕𝐾 is
decreasing in 𝑡. Taking 𝑡𝑒𝑥𝑐 small enough there must be some 𝑡 < 𝑡𝑒𝑥𝑐 such that 𝑅̄(𝑡) = 0.
By the above, this implies that there must be a 𝑡𝑒𝑥𝑐 > 0 such that 𝑅𝑐𝑟𝑖𝑡(𝐹 , 𝑡𝑒𝑥𝑐) = 0, proving
existence.
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A.2.3 Full solution definitions
Linear 𝛾

We consider the following system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗𝛾𝑖,𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛

with annihilation upon collision
with 𝛾-creation

(𝑃𝐶𝑛-𝛾)

Then a complete and formal definition of a solution to (𝑃𝐶𝑛-𝛾) is given by the following:
Definition A.2.4 (Solution to linear (𝑃𝐶𝑛-𝛾)). Let 𝑇 > 0, 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑛. Furthermore, let
𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 > 0, let 𝐶 ⊂ ℝ be a finite set, and set 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. Enumerating all elements 𝑠𝑖 ∈ 𝐶 ,
additionally define 𝑥0𝑛+2(𝑖⋅𝑘+𝑗)+𝓁 ∶= 𝑠𝑖 for 𝑖 = 0,… , |𝐶| − 1, 𝑗 = 1, ..., 𝑘 and 𝓁 = 0, 1, and 𝑏0𝑛+𝑚 = 0
for 𝑚 = 1,… , |𝐶| ⋅ 𝑘.

Then, setting 𝑁 ∶= 𝑛+ |𝐶| ⋅ 𝑘, the functions (𝐱,𝐛, 𝛾) : [0, 𝑇 ] → (𝑐
𝑁 ) ×ℝ𝑁×𝑁 form a solution of

(𝑃𝐶𝑛-𝛾) with linear 𝛾-creation if there exist finite subsets 𝑆,  ⊂ (0, 𝑇 ] such that

(i) (Regularity) 𝐱 ∈ 𝐶([0, 𝑇 ]) ∩ 𝐶1([0, 𝑇 ] ⧵ (𝑆 ∪  )), 𝑏1,… , 𝑏𝑛 ∶ [0, 𝑇 ] → {−1, 0, 1} are charge
functions (𝑏𝑖 ∈ ) and 𝛾𝑖𝑗 is bounded for all 𝑖, 𝑗 = 1,… , 𝑁;

(ii) (Initial condition) (𝐱(0),𝐛(0)) = (𝐱0,𝐛0);

(iii) (Annihilation) If 𝑏𝑖 jumps at 𝑡 > 0 and lim𝑠↑𝑡
|

|

𝑏𝑖(𝑠)|| = 1, then 𝑡 ∈ 𝑆. Moreover, for all (𝜏, 𝑦) ∈
𝑆 ×ℝ,

∑

𝑖∶𝑥𝑖(𝜏)=𝑦

(

(𝑏𝑖(𝜏+) − 𝑏𝑖(𝜏−)
)

= 0

(iv) (Creation event) If 𝑏𝑖 jumps at 𝑡 ∈ [0, 𝑇 ] and 𝑏𝑖(𝑡) = 0, then there is exactly one other 𝑗 ∈ ℕ
(i.e. 𝑖 ≠ 𝑗) such that 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡) and 𝑏𝑖(𝑡+) = −𝑏𝑗(𝑡+)

(v) (Creation moment) Creation at 𝑠 ∈ 𝐶 occurs at time 𝑡 ∈ [0, 𝑇 ] if and only if one of the following
condition holds:

• Either

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) < 𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

• Or

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) > −𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

Moreover, we then have 𝑡 ∈ 𝑠, and the union of 𝑠 over all sources 𝑠 ∈ 𝐶 is contained in 

(vi) (Creation procedure) If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖 = sgn(PK(𝑠, 𝑡∗)) and lim𝑡↓𝑡∗ 𝑏𝑖+1 =
− sgn(PK(𝑠, 𝑡∗)) for index 𝑖 = 𝑛 + 2(𝑚 ⋅ 𝑘 + 𝑗) corresponding to the 𝑗th creation at 𝑠𝑚 = 𝑠.2
Furthermore, 𝛾𝑖,𝑖+1 = 2𝑡∕𝑡𝑒𝑥𝑐 − 1 for 𝑡 ∈ (𝑡∗, 𝑡∗ + 𝑡𝑒𝑥𝑐], where 𝑡𝑒𝑥𝑐 is the unique 𝑡 > 0 such that
such that in (3.1), d𝑥1

d𝑡 = d𝑥2
d𝑡 = 0. In all other cases, 𝛾𝑗,𝑘(𝑡) = 1

2Recall that 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋, where 𝑡𝑛𝑢𝑐 > 0 is a fixed system constant.

J. Moraal Defining creation in 1D dislocation dynamics 45



(vii) (ODE for 𝐱) On (0, 𝑇 )∖(𝑆 ∪  ), 𝐱 satisfies the ODE in (𝑃𝐶𝑛).
In Condition (vi), the requirement that in (3.1), d𝑥1

d𝑡
= d𝑥2

d𝑡
= 0 can be replaced by the equivalent

requirement that 𝑅𝑐𝑟𝑖𝑡(PK(𝑠, 𝑡∗), 𝑡𝑒𝑥𝑐) = 0, following the derivation of (A.3).

Zero-𝛾
Again consider (𝑃𝐶𝑛-𝛾), but now with zero-𝛾:

Definition A.2.5 (Solution to zero-(𝑃𝐶𝑛-𝛾)). Let 𝑇 > 0, 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑛. Furthermore, let
𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 > 0, let 𝐶 ⊂ ℝ be a finite set, and set 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. Enumerating all elements 𝑠𝑖 ∈ 𝐶 ,
additionally define 𝑥0𝑛+2(𝑖⋅𝑘+𝑗)+𝓁 ∶= 𝑠𝑖 for 𝑖 = 0,… , |𝐶| − 1, 𝑗 = 1, ..., 𝑘 and 𝓁 = 0, 1, and 𝑏0𝑛+𝑚 = 0
for 𝑚 = 1,… , |𝐶| ⋅ 𝑘.

Then, setting 𝑁 ∶= 𝑛+ |𝐶| ⋅ 𝑘, the functions (𝐱,𝐛, 𝛾) : [0, 𝑇 ] → (𝑐
𝑁 ) ×ℝ𝑁×𝑁 form a solution of

(𝑃𝐶𝑛-𝛾) with zero-𝛾 creation if there exist finite subsets 𝑆,  , 𝐸 ⊂ (0, 𝑇 ] such that

(i) (Regularity) 𝐱 ∈ 𝐶([0, 𝑇 ]) ∩ 𝐶1([0, 𝑇 ] ⧵ (𝑆 ∪  ∪ 𝐸)), 𝑏1,… , 𝑏𝑛 ∶ [0, 𝑇 ] → {−1, 0, 1} are
charge functions (𝑏𝑖 ∈ ) and 𝛾𝑖𝑗 is bounded for all 𝑖, 𝑗 = 1,… , 𝑁;

(ii) (Initial condition) (𝐱(0),𝐛(0)) = (𝐱0,𝐛0);

(iii) (Annihilation) If 𝑏𝑖 jumps at 𝑡 > 0 and lim𝑠↑𝑡
|

|

𝑏𝑖(𝑠)|| = 1, then 𝑡 ∈ 𝑆. Moreover, for all (𝜏, 𝑦) ∈
𝑆 ×ℝ,

∑

𝑖∶𝑥𝑖(𝜏)=𝑦

(

(𝑏𝑖(𝜏+) − 𝑏𝑖(𝜏−)
)

= 0

(iv) (Creation event) If 𝑏𝑖 jumps at 𝑡 ∈ [0, 𝑇 ] and 𝑏𝑖(𝑡) = 0, then there is exactly one other 𝑗 ∈ ℕ
(i.e. 𝑖 ≠ 𝑗) such that 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡) and 𝑏𝑖(𝑡+) = −𝑏𝑗(𝑡+)

(v) (Creation moment) Creation at 𝑠 ∈ 𝐶 occurs at time 𝑡 ∈ [0, 𝑇 ] if and only if one of the following
condition holds:

• Either

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) < 𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

• Or

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) > −𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

Moreover, we then have 𝑡 ∈ 𝑠, and the union of 𝑠 over all sources 𝑠 ∈ 𝐶 is contained in 

(vi) (Creation procedure) If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖 = sgn(PK(𝑠, 𝑡∗)) and lim𝑡↓𝑡∗ 𝑏𝑖+1 =
− sgn(PK(𝑠, 𝑡∗)) for index 𝑖 = 𝑛+ 2(𝑚 ⋅ 𝑘+ 𝑗) corresponding to the 𝑗th creation at 𝑠𝑚 = 𝑠. Fur-
thermore, 𝛾𝑖,𝑖+1 = 𝛾𝑖+1,𝑖 = 0 for 𝑡 ∈ (𝑡∗, 𝑡∗ + 𝑡𝑒𝑥𝑐], where 𝑡𝑒𝑥𝑐 = 1∕(2 PK(𝑠, 𝑡∗))2. In all other
cases, 𝛾𝑗,𝑘(𝑡) = 1. Finally, 𝑡∗ + 𝑡𝑒𝑥𝑐 ∈ 𝐸

(vii) (ODE for 𝐱) On (0, 𝑇 )∖(𝑆 ∪  ), 𝐱 satisfies the ODE in (𝑃𝐶𝑛).

46 Defining creation in 1D dislocation dynamics J. Moraal



Distance creation
Now consider regular system, i.e. without 𝛾:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d𝑥𝑖
d𝑡

=
∑

𝑗≠𝑖

𝑏𝑖𝑏𝑗
𝑥𝑖 − 𝑥𝑗

for 𝑡 ∈ (0, 𝑇 ), 𝑖 = 1, ..., 𝑛

with annihilation upon collision
with distance creation

(𝑃𝐶𝑛-d)

Definition A.2.6 (Solution to 𝑃𝐶𝑛-d). Let 𝑇 > 0, 𝑛 ≥ 2 and (𝐱0,𝐛0) ∈ 𝑛. Furthermore, let
𝑡𝑛𝑢𝑐 , 𝐹𝑛𝑢𝑐 > 0, let 𝐶 ⊂ ℝ be a finite set, and set 𝑘 ∶= 2 ⋅ ⌊𝑇 ∕𝑡𝑛𝑢𝑐⌋. Enumerating all elements 𝑠𝑖 ∈ 𝐶 ,
additionally define 𝑥𝑛+2(𝑖⋅𝑘+𝑗)+𝓁 ∶= 𝑠𝑖 for 𝑖 = 0,… , |𝐶| − 1, 𝑗 = 1, ..., 𝑘 and 𝓁 = 0, 1 and 𝑏𝑛+𝑚 = 0
for 𝑚 = 1,… , |𝐶| ⋅ 𝑘.

Then, setting 𝑁 ∶= 𝑛 + |𝐶| ⋅ 𝑘, the functions (𝐱,𝐛) : [0, 𝑇 ] → (𝑐
𝑁 ) form a solution of (𝑃𝐶𝑛) if

there exist finite subsets 𝑆,  ⊂ (0, 𝑇 ] such that

(i) (Regularity) 𝐱 ∈ 𝐶([0, 𝑇 ] ⧵  ) ∩ 𝐶1([0, 𝑇 ] ⧵ (𝑆 ∪  )), and 𝑏1,… , 𝑏𝑛 ∶ [0, 𝑇 ] → {−1, 0, 1} are
charge functions (𝑏𝑖 ∈ );

(ii) (Initial condition) (𝐱(0),𝐛(0)) = (𝐱0,𝐛0);

(iii) (Annihilation) 𝑏𝑖(𝑡) = 0 (b is right-continuous). If 𝑏𝑖 jumps at 𝑡 > 0 and lim𝑠↑𝑡
|

|

𝑏𝑖(𝑠)|| = 1, then
𝑡 ∈ 𝑆. Moreover, for all (𝜏, 𝑦) ∈ 𝑆 ×ℝ,

∑

𝑖∶𝑥𝑖(𝜏)=𝑦

(

(𝑏𝑖(𝜏+) − 𝑏𝑖(𝜏−)
)

= 0

(iv) (Creation event) If 𝑏𝑖 jumps at 𝑡 ∈ [0, 𝑇 ] and 𝑏𝑖(𝑡) = 0, then there is exactly one other 𝑗 ∈ ℕ
(i.e. 𝑖 ≠ 𝑗) such that 𝑥𝑖(𝑡) = 𝑥𝑗(𝑡) and 𝑏𝑖(𝑡+) = −𝑏𝑗(𝑡+)

(v) (Creation moment) Creation at 𝑠 ∈ 𝐶 occurs at time 𝑡 ∈ [0, 𝑇 ] if and only if one of the following
condition holds:

• Either

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) < 𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

• Or

𝑡 − 𝑡𝑛𝑢𝑐 = sup{𝜏 ≤ 𝑡 ∶ 𝑃𝐾(𝑠, 𝜏) > −𝐹𝑛𝑢𝑐 and no creation at 𝑠 in (𝑡 − 𝑡𝑛𝑢𝑐 , 𝑡)}

Moreover, we then have 𝑡 ∈ 𝑠, and the union of 𝑠 over all sources 𝑠 ∈ 𝐶 is contained in 

(vi) (Creation procedure) If 𝑡∗ ∈ 𝑠 for some 𝑠 ∈ 𝐶 , then lim𝑡↓𝑡∗ 𝑏𝑖 = sgn(PK(𝑠, 𝑡∗)) and lim𝑡↓𝑡∗ 𝑏𝑖+1 =
− sgn(PK(𝑠, 𝑡∗)) for the index 𝑖 = 𝑛 + 2(𝑚 ⋅ 𝑘 + 𝑗) corresponding to the 𝑗th creation at 𝑠𝑚 = 𝑠.
Furthermore, setting 𝐿𝑛𝑢𝑐 ∶= 1∕2 PK(𝑠, 𝑡∗), we have 𝑥𝑖(𝑡∗+) = 𝑠 − 𝐿𝑛𝑢𝑐∕2 and 𝑥𝑖+1(𝑡∗+) =
𝑠 + 𝐿𝑛𝑢𝑐∕2.

(vii) (ODE for 𝐱) On (0, 𝑇 )∖(𝑆 ∪  ), 𝐱 satisfies the ODE in (𝑃𝐶𝑛).
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A.2.4 Discontinuity of the Peach-Koehler force for distance creation
Suppose a dipole +,− with distance 𝐿 is created at time 𝑡 around 𝑠. Furthermore, assume the

Peach-Koehler force has positive sign. Then similar to the proof of Lemma 4.2.1, we obtain

lim
𝜏↓𝑡

PK(𝑅, 𝜏) − PK(𝑅, 𝑡) = lim
𝜏↓𝑡

[𝑛+2
∑

𝑖=1

𝑏𝑖(𝜏)
𝑅 − 𝑥𝑖(𝜏)

]

−
𝑛+2
∑

𝑖=1

𝑏𝑖(𝑡)
𝑅 − 𝑥𝑖(𝑡)

= lim
𝜏↓𝑡

[

𝑏+(𝜏)
𝑅 − 𝑥+(𝜏)

+
𝑏−(𝜏)

𝑅 − 𝑥−(𝜏)

]

−
𝑏+(𝑡)

𝑅 − 𝑥+(𝑡)
−

𝑏−(𝑡)
𝑅 − 𝑥−(𝑡)

=
𝑏+(𝑡)

𝑅 − 𝑥+(𝑡)
+

𝑏−(𝑡)
𝑅 − 𝑥−(𝑡)

= 1
𝑅 − 𝑠 − 𝐿∕2

− 1
𝑅 − 𝑠 + 𝐿∕2

=
(𝑅 − 𝑠 + 𝐿∕2) − (𝑅 − 𝑠 − 𝐿∕2)
(𝑅 − 𝑠 − 𝐿∕2)(𝑅 − 𝑠 + 𝐿∕2)

= 𝐿
(𝑅 − 𝑠)2 − 𝐿2∕4

.

Here from Definition 3.1.4, one may substitute 𝐿 = 1∕PK(𝑠, 𝑡).
A.2.5 Uniqueness of solutions with zero-𝛾 up to first annihilation

In the proof of Theorem 5.1.1, the case 𝑡0 ∈ 𝑆 and 𝑡0 ∉  may be continued as follows:
Proof. Continued. By standard ODE theory, as the system has no discontinuities or singularities on
[0, 𝑡0), solutions (𝐱,𝐛) and (𝐱̃, 𝐛̃) are equal on that interval. Because 𝑡0 ∈ 𝑆, we know there is an
annihilation point (𝑥, 𝑡0) of 𝐱. Furthermore, by continuity we have 𝐱(𝑡0) = 𝐱̃(𝑡0), so (𝑥, 𝑡0) is also an
annihilation point for 𝐱̃, so 𝑡0 ∈ 𝑆̃.

Now let 𝐼 be the set of indices of all (charged) colliding particles, i.e.
𝐼 ∶= {𝑖 ∈ ℕ ∶ 𝑥𝑖(𝑡0) = 𝑥, 𝑏𝑖(𝑡0−) ≠ 0}.

Then by the annihilation condition (point (𝑖𝑖𝑖) in Definition A.2.5), we have that
∑

𝑖∈𝐼
𝑏̃𝑖(𝑡0) =

∑

𝑖∈𝐼
𝑏̃𝑖(𝑡0−) =

∑

𝑖∈𝐼
𝑏𝑖(𝑡0−) =

∑

𝑖∈𝐼
𝑏𝑖(𝑡0),

so the total charge after annihilation is equal for both solutions. Moreover, there is at most one 𝑖 ∈ 𝐼
such that 𝑏𝑖(𝑡0) ≠ 0, since (𝐱,𝐛), (𝐱̃, 𝐛̃) ∈ 𝑐

𝑛 and this implies that for all 𝑗 ≠ 𝑖, we have 𝑥𝑖(𝑡0) =
𝑥𝑗(𝑡0) ⟹ 𝑏𝑖(𝑡0)𝑏𝑗(𝑡0) = 0. Therefore, the multiset (unordered tuple) of 𝑏𝑖(𝑡0) and 𝑏̃𝑖(𝑡0) are equal,
i.e., there exists a permutation 𝜎 ∈ 𝑆𝑛 such that for all 𝑖 ∈ 𝐼 , 𝑏𝑖(𝑡0) = 𝑏̃𝜎(𝑖)(𝑡0).

Therefore at 𝑡0, the ODEs for 𝐱 and 𝐱̃ are identical up to relabelling, so that again by standard ODE
theory, the solutions (𝐱,𝐛), (𝐱̃, 𝐛̃) are equal on some time-interval [𝑡0, 𝑡0 + 𝜀) not containing the next
creation or annihilation event.

Proof continues below Theorem 5.1.1.

A.2.6 Continuous versions of PK and multipole expansion
We can also define a continuous version of the Peach-Koehler force. Let 𝜌 ∶ ℝ × [0,∞) → ℝ+ be

such that for 𝑡 > 0, 𝜌(⋅, 𝑡) is charge density, i.e. ∫ 𝜌(𝑥, 𝑡)d𝑥 = 1. Then Definition 2.2.1 can be adapted
to

PK(𝑥, 𝑡) ∶= ∫
𝜌(𝜏)
𝑥 − 𝜏

d𝜏
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Note that for the continuous version of the Peach-Koehler force, there is also a form of multipole
expansion; in this setting, we assume that 𝜌(𝑥) = 0 for |𝑥| > 𝑅 for some 𝑟 > 0 with 𝑟 < 𝑅. Then

PK(𝑅) = ∫ℝ

𝜌(𝑥)
𝑅 − 𝑥

d𝑥

= 1
𝑅 ∫ℝ

𝜌(𝑥)
1 − 𝑥

𝑅

d𝑥

= 1
𝑅 ∫ℝ

𝜌(𝑥)
∞
∑

𝑗=0

( 𝑥
𝑅

)𝑗
d𝑥

=
∞
∑

𝑗=0

1
𝑅𝑗+1 ∫ℝ

𝜌(𝑥)𝑥𝑗d𝑥

Here the final integral is exactly the 𝑗th moment of the distribution with density 𝜌.
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A.3 Simulation code
A.3.1 Manual solver with annihilation and creation

This concerns the file 1DDislocationsCreation.py. Plots from Section 6.3.2 can be recreated
by uncommenting the indicated lines (i.e. setting N,M = 20,20 and creaProc = ’lin’, ’zero’ or
’dist’.
import numpy as np
import matplotlib.pyplot as plt
import time as timer
from scipy.optimize import root

#%% INITIALISATION

### Simulation settings
simTime = 0.12 # Total simulation time
dt = 0.001 # Timestep for discretisation (or maximum, if adaptive)
minTimestep = 1e-7 # Minimum size of timestep (for adaptive)
adaptiveTime = True # Whether to use adaptive timestep in integrator
reg = 'cutoff' # Regularisation; either 'eps', 'V1', 'cutoff' or 'none'
eps = 0.01 # Regularisation parameter (for all three methods)
randomness = False # Whether to add random noise to dislocation positions
sigma = 0.01 # Standard dev. of noise (volatility)
withAnnihilation = True # Whether dislocations disappear from system after annihilation
collTres = 3e-3 # Collision threshold
stress = 0 # External force (also called 'F')
withCreation = False # Whether to include creation
creaProc = 'zero' # Creation procedure; either 'lin', 'zero' or 'dist'
Fnuc = 5 # Threshold for magnitude of Peach-Koehler force
tnuc = 0.01 # Threshold for duration of PK force magnitude before creation
domain = (0,1) # Interval where initial dislocations and sources are placed

# # For Figure 6.4a, uncomment following lines:
# withCreation = False # Whether to include creation
# N, M = 20, 20 # Number of initial dislocations and sources respectively

# # For Figure 6.4b, uncomment following lines:
# withCreation = True # Whether to include creation
# N, M = 20, 20
# creaProc = 'lin'

# # For Figure 6.4c, uncomment following lines:
# withCreation = True # Whether to include creation
# N, M = 20, 20
# creaProc = 'zero'

# # For Figure 6.4d, uncomment following lines:
# withCreation = True # Whether to include creation
# N, M = 20, 20
# creaProc = 'dist'

def setExample(N):
"""
Initialises positions and charges of given nr of dislocations
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Parameters
----------
N : int

number of dislocations to initialise. 0,1,2,5 gives fixed examples,
other N give randomised settings with equally many +/- dislocations.

Returns
-------
None (sets global variables).

"""
global initialPositions, initialCharges, initialNrParticles

if N == 0: ### Empty example; requires some adaptions in code below
# (e.g. turn off 'no dislocations left' break)
initialPositions = np.array([np.nan, np.nan])
initialCharges = np.array([1, -1])

elif N == 1: ### Example 1:
initialPositions = np.array([0.5])
initialCharges = np.array([1])

elif N == 2: ### Example 2:
initialPositions = np.array([0.3, 0.75])
initialCharges = np.array([1, -1])

elif N == 5: ### Example 3:
initialPositions = np.array([0.02, 0.2, 0.8, 0.85, 1])
initialCharges = np.array([-1, -1, 1, 1, -1]) # Particle charges

elif N == -1: # Additional comparison case (randomly generated but fixed):
initialPositions = np.array([0.00727305, 0.04039581, 0.25157344, 0.2757077, 0.28350536,

0.36315111, 0.60467167, 0.68111491, 0.72468363, 0.7442808 ])
initialCharges = np.array([-1., 1., -1., -1., 1., 1., 1., -1., 1., -1.])

elif N == 20: # Additional comparison case (randomly generated but fixed):
initialPositions = np.array([0.90041661, 0.09512205, 0.93625452, 0.67799578, 0.49170662,

0.1327828 , 0.17790777, 0.76411685, 0.97124885, 0.22572291,
0.4294073 , 0.87120555, 0.60016304, 0.97865076, 0.52582236,
0.64176168, 0.10342922, 0.26874082, 0.6207242 , 0.95723599])

initialCharges = np.array([-1., 1., 1., 1., -1., -1., -1.,
-1., -1., -1., 1., -1., 1., 1.,
1., -1., -1., 1., 1., 1.])

else: ### Given nr of particles, and option
initialPositions = np.random.uniform(size = N)
initialCharges = np.ones(N)
neg = np.random.choice(range(N),N//2, replace=False) #pick floor(N/2) indices at random
initialCharges[neg] = -1 # Set half of charges to -1, rest remains 1
# note: different from completely random charges, which would be the following:
# initialCharges = np.random.choice((-1,1),nrParticles)
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# Dependent paramaters (deducable from the ones defined above):
initialNrParticles = len(initialPositions)

def setSources(M):
"""
Initialises positions and charges of given nr of sources

Parameters
----------
M : int

number of sources to initialise (except -1). -1,1 gives fixed examples,
-1 serving as fixed reference case with 5 non-evenly distributed sources.
Other values give N sources evenly distributed on interval [0,1]

Returns
-------
None (sets global variables).

"""
global nrSources, sourceLocs, nrBackgrSrc, backgrSrc
# Initialise sourceLocs for creation:

if M == -1:
# sourceLocs = np.array([0.21, 0.3, 0.45, 0.75, 0.8]) # Irregularly spaced sources
sourceLocs = np.array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])

elif M == 1:
sourceLocs = np.array([0.55])

else: # Evenly distribute given nr of sources
sourceLocs = np.linspace(0, 1, M)

nrSources = len(sourceLocs)

setExample(N)
if withCreation:

setSources(M)

# %% DEFINITIONS
def pairwiseDistance(x1, x2 = None):

""" Compute distances between given positions

Computes distances between all atoms, optionally for
closest copies taking boundaries into account.

INPUT: np array of coordinates (single or multiple dimensions)
OUTPUT: array of difference vectors and one of distances

between all coordinates
"""
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if x2 is None:
x2 = x1

diff = x1 - x2[:,np.newaxis] # Difference vectors

dist = np.abs(diff) # Compute length of difference vectors

return diff, dist

def interaction(diff,dist,b, regularisation = 'eps'):
"""
Compute array of pairwise particle interactions for given
array of particle coordinates and charges

Parameters
----------
diff : 2D numpy array (nxn)

pairwise differences between all particle positions.
dist : 2D numpy array (nxn)

pairwise distances between all particle positions.
b : 1D numpy array (n)

charges of dislocations.
regularisation : 'eps', 'V1', 'cutoff' or 'none', optional

interaction regularisation method. The default is 'eps'.

Returns
-------
interactions : 2D numpy array (nxn)

representing force pairs of particles exert on each other.

"""
# Set distance from particle to itself to (arbitrary) non-zero value to
# avoid div by 0; arbitrary, since this term cancels out anyway
np.fill_diagonal(dist, 1)
chargeArray = b * b[:,np.newaxis] # Create matrix (b_i b_j)_ij

if regularisation == 'eps':
distCorrected = (dist**2 + eps**2)

else:
distCorrected = dist**2 # Square to normalise difference vector

# interactions = -(1/diff) * chargeArray # Only in 1D; else need diff/dist

# Calculate matrix b_i b_j / (x_i - x_j):
interactions = -(diff / distCorrected) * chargeArray
interactions = np.nan_to_num(interactions) # Set NaNs to 0

if regularisation == 'V1':
interactions[dist < eps] = diff/eps**2

if regularisation == 'cutoff': # Set values outside [-c,c] to closest boundary
interactions = np.clip(interactions, -1/eps, 1/eps)

return interactions
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def PeachKoehler(sourceLocs, x, b, stress, regularisation = 'eps'):
"""Computes Peach-Koehler force for each source, possibly for regularised interaction

(Sources are typically fixed equidistant grid points) """

x = np.nan_to_num(x) #sets NaNs to 0
diff, dist = pairwiseDistance(x, x2 = sourceLocs)

if regularisation == 'eps':
distCorrected = (dist**2 + eps**2)

else:
distCorrected = dist**2

interactions = (diff / distCorrected) * b[np.newaxis,:] + stress
# (Stress according to final expression in meeting notes of 211213)
interactions = np.nan_to_num(interactions) # Set NaNs to 0

f = np.sum(interactions, axis = 1) # Per source, sum contributions over all dislocs

return f

def texcToForce(t):
""" Given force exception time, computes corresponding force yielding equilibrium"""
params = [0.283465, -0.013909, 0.000511, 0.325376]
a,b,c,d = params

return a/(t-d) + b/(t-d)**2 + c/(t-d)**3

def poly3(x, a,b,c,d):
""" Computes third-degree polynomial in x with coefficients a,b,c,d """
return a * x**3 + b* x**2 + c * x + d

def forceTotexcSlow(F):
""" Given force, computes corresponding exception time yielding equilibrium

using root-finding algorithm. """
params = [0.283465, -0.013909, 0.000511, 0.325376]
a,b,c,d = params

sol = root(poly3, 1/F, args=(-F,a,b,c))

return sol.x + d

def forceTotexcFast(PK):
""" Given force, computes corresponding exception time yielding equilibrium

using explicit formula for root of a 3rd-degree polynomial. """
params = [0.283465, -0.013909, 0.000511, 0.325376]
a,b,c,d = params
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x = np.abs(PK)

A = -2* a**3 - 9 *a* b* x - 27* c* x**2
B = -a**2 - 3* b* x
C = (3 *x * (A + np.sqrt(A**2 + 4* B**3))**(1/3))

rt = (2**(1/3) * B)/C - C/(3* 2**(1/3) *x) + (a + 3* d* x)/(3* x)

return rt

class Source:
""" Represents a creation source and tracks creation thresholds.

Attributes:
pos: float,

position of source
tAboveThreshold: float (positive)

tracks how long threshold is reached

Methods:
updateThresTime: updates threshold time depending on

whether force threshold is reached
"""

def __init__(self, loc):
""" Initialises source at position loc and time 0 (via Source(loc)) """

self.loc = loc
self.tAboveThreshold = 0

def updateThresTime(self, PK, dt):
"""Given force and timestep, either increments threshold or sets to 0 """
if (np.abs(PK) > Fnuc):

self.tAboveThreshold += dt
if self.tAboveThreshold >= tnuc:

self.tAboveThreshold = 0
return True

else:
self.tAboveThreshold = 0

return False

class Creation:
""" Single creation event (and exception time in case of gamma-creation)

Attributes:
loc: float

location at which creation occurred
PKAtCrea: float

Peach-Koehler force at creation moment and location
creaTime: float (positive)

time at which creation occurred
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idx: integer
index in position array of first created dislocation (from pair)

inProgress: boolean
indicating whether creation process is still in progress,
i.e. whether force exception should still hold

"""

def __init__(self, loc, PK, t, idx):
""" Initialisation of creation event at given parameters"""

self.loc = loc
self.PKAtCrea = PK
self.creaTime = t
self.idx = idx
self.inProgress = True

def createDipole(self):
""" Creation of dislocations and definition of creation parameters

according to set creation procedure. """

if creaProc == 'lin':
self.texc = forceTotexcFast(self.PKAtCrea) # Choose fnct giving texc here

locs = np.array([self.loc - 0.5*collTres, self.loc + 0.5*collTres])

elif creaProc == 'zero':
self.texc = 1/(2*np.abs(self.PKAtCrea))**2
locs = np.array([self.loc - 0.5*collTres, self.loc + 0.5*collTres])

elif creaProc == 'dist':
self.Lnuc = 1/(np.abs(self.PKAtCrea))
locs = np.array([self.loc - 0.5*self.Lnuc, self.loc + 0.5*self.Lnuc])

charges = np.array([1,-1])*np.sign(self.PKAtCrea)

return locs, charges

def forceAdjustment(self, t):
""" Compute factor with which interaction between created pair is

multiplied to adjust forces """

if creaProc == 'lin':
forceFact = (2*(t - self.creaTime)/self.texc - 1)

elif creaProc == 'zero':
forceFact = 0

return forceFact

def exceptionCheck(self, t):
""" Check whether exception still applies to created pair """

if (creaProc == 'lin') or (creaProc == 'zero'):
if t > self.creaTime + self.texc:
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self.inProgress = False
elif creaProc == 'dist':

self.inProgress = False

class Annihilation:
""" Describes annihilation event

Attributes:
annTime: float (positive)

time at which annihilation event occurred
dislocs: tuple of integers

indices of dislocations involved in annihilation/collision
"""
# Note: currently, this does not need to be a class. However, extensions
# with greater functionality may be desirable

def __init__(self, annTime, dislocs):
self.annTime = annTime
self.dislocs = dislocs

# %% SIMULATION

### Precomputation
t = 0
stepSizes = []
times = [0]
maxUpdate = 0 # To store for computing adaptive timestep
maxTimestep = dt

trajectories = initialPositions[None,:] # Change shape into (1,len)
x = np.copy(initialPositions)
b = np.copy(initialCharges)
# ('copy' to create new array; otherwise, is just a
# reference and changes if initialCharges changes)

annihilations = [] # To keep track of annihilation events (only for later analysis)

if withCreation: # Initialise sources and store classes in list
sources = [Source(x) for x in sourceLocs] # Initialise source classes and store in list
creations = [] # List of all creations (for analysis afterwards)
currentCreations = [] # List to keep track of creations for which exception holds

simStartTime = timer.time() # To measure simulation computation time

### Simulation loop
while t < simTime:

# Creation:
if withCreation: # Check creation moment condition:

PK = PeachKoehler(sourceLocs, x, b, stress)

locs = []
charges = []

for i,src in enumerate(sources):
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thresReached = src.updateThresTime(PK[i], dt)
# (Sources updated, boolean indicates whether threshold is reached)
if thresReached: # If threshold is reached, initiate creation procedure:

# Initialise Creation:
newCrea = Creation(src.loc, PK[i], t, len(x) + 2*len(creations))
creations.append(newCrea) # Append to list of all creations
currentCreations.append(newCrea) # Append to list of current creations
# Obtain corresponding dipole locations and charges:
locs, charges = Creation.createDipole(newCrea)
x = np.append(x, locs) # Add new dipole to position vector
b = np.append(b, charges) # Add new dipole to charge vector

# Store charges of new For correct plot colours
initialCharges = np.append(initialCharges, charges)
# extend _entire_ position array (over all timesteps) with NaNs.
trajectories = np.append(trajectories,

np.zeros((len(trajectories), len(locs)))*np.nan,
axis = 1) #

# Check whether creations still have exception:
for crea in currentCreations:

crea.exceptionCheck(t)

# Remove Creations that have no force exception (anymore) from list:
currentCreations = [crea for crea in currentCreations if crea.inProgress]

# Compute main forces/interaction:
diff, dist = pairwiseDistance(x)

if withAnnihilation: # Make dislocs annihilate when necessary
#(before computing interactions, s.t. annihilated
# dislocs indeed do not influence the system anymore)

tempDist = np.nan_to_num(dist, nan = 1000) + 1000*np.tril(np.ones((len(x),len(x))))
# Set nans and non-above-diagonal entries to arbitrary large number, so
# that effectively all entries on and below diagonal are disregarded below

chargeArray = b * b[:,np.newaxis] # Create matrix (b_i b_j)_ij
collPart1, collPart2 = np.where((tempDist < collTres) * (chargeArray == -1))
# Identifies pairs with opposite charge closer than collTres together
#('*' works as and-operator for 0/1 booleans). Format: ([parts A], [parts B]).

# Go through list sequentially, annihilating not-yet-annihilated dislocs.
for i in range(len(collPart1)):

i1 = collPart1[i]
i2 = collPart2[i]
if b[i1] != 0 and b[i2] != 0:

b[i1] = 0
b[i2] = 0
x[i1] = np.nan
x[i2] = np.nan

interactions = interaction(diff,dist,b, regularisation = reg)

58 Defining creation in 1D dislocation dynamics J. Moraal



# Adjust forces between newly created dislocations
# (keeping track of time since each creation separately)
if withCreation:

for crea in currentCreations: # only contains pairs with force exception
j = crea.idx
interactions[j : j + 2, j : j + 2] *= crea.forceAdjustment(t)

## Main update step:
updates = np.nansum(interactions,axis = 1) # Treats NaNs as zero

if adaptiveTime:
# rudimentary adaptive timestep; always between (minTimestep, dt)
# dt = np.clip(0.001/np.max(np.abs(updates)), minTimestep, maxTimestep)

# better: also always between (minTimestep, dt)
newMaxUpdate = np.max(np.abs(updates)) # For computing adaptive timestep
approxD2 = (newMaxUpdate - maxUpdate)/dt # Estimate 2nd derivative
dt = np.clip(1/approxD2, minTimestep, maxTimestep)
stepSizes.append(dt)
maxUpdate = newMaxUpdate # Interchange to store for next iteration

x_new = x + updates * dt
# (Alternative file available with built-in ODE-solver, without creation)

if randomness:
random = sigma * np.random.normal(size = len(x)) # Random part of update
x_new += random * np.sqrt(dt)

# Store all positions for visualisation:
trajectories = np.append(trajectories, x_new[None,:], axis = 0)

x = x_new
t += dt
times.append(t)

# Stop simulation if all dislocations have annihilated:
# (in this case PK=0, so no creations can occur anymore either)
if np.isnan(x_new).all():

print('No dislocations left')
break # Breaks from outer 'while'-loop

if((10*t/simTime) % 1 < 2*dt):
print(f"{t:.5f} / {simTime}")

#Compute and print copmutation time for simulation
duration = timer.time() - simStartTime
print("Simulation duration was ", int(duration/3600), 'hours, ',
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int((duration%3600)/60), " minutes and ",
int(duration%60), "seconds")

# %% VISUALISATION

#1D plot:
def plot1D(bInitial, trajectories, t, log = False):

global pos, x_temp
plt.clf() # Clears current figure

trajectories = np.ndarray.squeeze(trajectories)
colorDict = {1:'red', 0:'grey', -1:'blue'}

nrPoints, nrTrajectories = np.shape(trajectories)

y = t
plt.ylim((0,1.1*t[-1]))

if log: # Plot with time on log-scale
t[0] = t[1]/2 # So that first timestep is clearly visible in plot.

# Not quite truthful, but also not quite wrong.
plt.yscale('log')
plt.ylim((t[0],t[-1]))

for i in range(nrTrajectories):
x_current = trajectories[:,i]
y_current = y

plt.plot(x_current, y_current, c = colorDict.get(bInitial[i]))
# Set colour of created dislocations according to charge they
# eventually get (not 0, which they begin with)

def printSummary():
global nrRecollided, annDislocs, creaDislocs, overlap
if withCreation:

print("Total nr of Creations: ", len(creations))
print("Total nr of Annihilations: ", len(annihilations))
if t < simTime:

print("Total annihilation time: ", t)
else:

print("Total annihilation time: not reached")

if withCreation:
if len(creations) > 0:

# See how many created dipoles recollided:
annDislocs = np.zeros((len(annihilations),2))
creaDislocs = np.zeros((len(creations),2))
nrRecollided = 0
for i,ann in enumerate(annihilations):

annDislocs[i,:] = np.sort(ann.dislocs) #sort on lower index first to ease comparison below

for i,crea in enumerate(creations):
creaDislocs[i,:] = np.array([crea.idx, crea.idx + 1])
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# Create list of pairs that were created, but also annihilated
overlap = [pair for pair in creaDislocs if pair in annDislocs]

nrRecollided = len(overlap)
fracSurvived = 1-nrRecollided/len(creations)

print(len(creations), " creations, ",
len(creations) - nrRecollided, " survived. (i.e. ",
100*fracSurvived, "%)")

if withCreation:
return len(annihilations), len(creations), nrRecollided, fracSurvived

else:
return len(annihilations)

plot1D(initialCharges, trajectories, times, log = False)
printSummary()

J. Moraal Defining creation in 1D dislocation dynamics 61



A.3.2 Automatic solver with annihilation
This concerns the file 1DautoSolver.py, and is referred to in Section 6.2.2 as the implementation

using a black-box automatic ODE solver.
import numpy as np
import matplotlib.pyplot as plt
import time as timer
from scipy.integrate import solve_ivp

# %% Simulation settings
simTime = 0.1 # Total simulation time
reg = 'none' # Regularisation technique; for now either 'eps' or 'cutoff'
eps = 0.01 # To avoid singular force making computation instable.
boxLength = 1 # Domain width for initial coniguration
annihilation = True # Simulate with/without annihilation upon collision
collTres = 1e-4 # Collision threshold

def setExample(N, boxLen = 1):
'''
Sets initial configuration (location and charge) as global parameters
for 3 minimal examples (N = 0,1,2) or any given number of dislocations (N > 2)

'''
global boxLength, initialPositions, b, creations, domain, initialNrParticles

boxLength = boxLen

if N == 0: ### Example 0:
initialPositions = np.array([-0.1, 0.1])
b = np.array([1, 1])

elif N == 1: ### Example 1:
initialPositions = np.array([0.21, 0.7, 0.8])
b = np.array([-1, 1, 1])

elif N == 2: ### Example 2:
initialPositions = np.array([0.02, 0.2, 0.8, 0.85, 1])
b = np.array([-1, -1, 1, 1, -1]) # Particle charges

elif N == 4:
initialPositions = np.array([-2,-1,1,2])
b = np.array([-1, 1, -1, 1])

elif N == 6:
initialPositions = np.array([-2,-1,-0.7, 0.7,1,2])
b = np.array([-1, 1,-1, 1, -1, 1])

else: ### Example 3: Arbitrary number of particles
initialPositions = np.random.uniform(size = N, low = 0, high = boxLength)
#charges:
b = np.ones(N)
neg = np.random.choice(range(N),N//2, replace=False)
b[neg] = -1

# Dependent paramaters (deducable from the ones defined above):
initialNrParticles = len(initialPositions)
domain = (0,boxLength)

setExample(50, boxLen = boxLength)
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# To plot:
bInitial = np.copy(b)
annTimes = np.zeros(len(b))

# %% FUNCTIONS

def pairwiseDistance(x1, PBCs = True, x2 = None):
""" Compute distances between all given coordinates,
optionally with PBCs and optionally to a second given set of coordinates

INPUT: array of coordinates (single or multiple dimensions)
(opt) boolean PBCs, whether to use periodic boundary conditions
(opt) second coordinates array, computes pairwise distance between

OUTPUT: array of difference vectors and one of distances
between all coordinates

"""

if x2 is None:
x2 = x1

diff = x1 - x2[:,np.newaxis] # Difference vectors
if PBCs: # Calculate difference vector to closest copy of particle

diff = diff - np.floor(0.5 + diff/boxLength)*boxLength

dist = np.abs(diff) # Length of difference vectors (in 1D)

return diff, dist

def f(t,x, regularisation = 'eps', PBCs = False):
""" Compute discrete gradient flow for given array of coordinates
according to Equation (9.1) from vMeurs15

uses global parameters b (charges), eps, and
updates global parameters b and annTimes

t is dummy argument used by ODE solver"""
global b2
diff, dist = pairwiseDistance(x, PBCs = PBCs)
# Set distance from particle to itself to (arbitrary) non-zero value to
# avoid div by 0; arbitrary, since this term cancels out anyway
np.fill_diagonal(dist, 1)
chargeArray = b * b[:,np.newaxis] # Create matrix b_i b_j

if regularisation == 'eps':
distCorrected = (dist**2 + eps**2)

else:
distCorrected = dist**2

interactions = -(diff / distCorrected) * chargeArray #len(b) is nr of particles
interactions = np.nan_to_num(interactions) # Set NaNs to 0

if regularisation == 'V1':
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interactions[dist < eps] = diff/eps**2

if regularisation == 'cutoff': # Set all values outside [-c,c] to closest boundary
interactions = np.clip(interactions, -1/eps, 1/eps)

updates = np.nansum(interactions,axis = 1)

if annihilation:
collPart1, collPart2 = np.where((dist < collTres) * (chargeArray == -1))
# Identifies pairs with opposite charge closer than collTres together
#('*' works as 'and' for 0/1 booleans). Format: ([parts A], [parts B]).

bOld = np.copy(b) #to compare below, seeing whether annihilation happened

# Go through list sequentially, annihilating not-yet-annihilated dislocs.
for i in range(len(collPart1)):

i1 = collPart1[i]
i2 = collPart2[i]
if b[i1] != 0 and b[i2] != 0 and i1 != i2:

b[i1] = 0
b[i2] = 0

annTimes[bOld != b] = t #save for plotting

return updates

# %% SIMULATION

simStartTime = timer.time() # To measure simulation computation time

### Simulation:
sol = solve_ivp(f, [0, simTime], initialPositions, method = 'BDF', max_step = 0.01)
# (BDF is best for problems that may be stiff)

duration = timer.time() - simStartTime
print("Simulation duration was ", int(duration/3600), 'hours, ',

int((duration%3600)/60), " minutes and ",
int(duration%60), "seconds")

# %% VISUALISATION:

def plotODESol(solution, charges, log = False, annihilationTimes = None):
''' Given a solution from solve_ivp, plots trajectories according to given charges.
Optional:
- plot on log-scale if log = True
- stop plotting if all dislocations annihilated

'''

plt.clf()
t = sol.t
x = np.transpose(sol.y)
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colorDict = {1:'red', 0:'grey', -1:'blue'}
nrParticles = len(x[0])
plt.ylim((0,t[-1]))
plt.xlim((np.min(x[np.isfinite(x)]),np.max(x[np.isfinite(x)])))
if log:

t[0] = t[1]/2 #So that first timestep is clearly visible (avoid log(0))
plt.yscale('log')
plt.ylim((1e-6,t[-1]))

for i in range(nrParticles) :
if annihilationTimes is None:

t_current = t
x_current = x[:,i]

else: # Only plot trajectories up to annihilation
t_current = t[t < annTimes[i]]
x_current = x[:len(t_current),i]

x_new = x_current
t_new = t_current

plt.plot(x_new, t_new, c = colorDict.get(charges[i]))

plt.show()

if annihilation:
plotODESol(sol, bInitial, log = False, annihilationTimes=annTimes)

else:
plotODESol(sol, bInitial, log = False)
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A.3.3 Analysis of 𝑅𝑐𝑟𝑖𝑡
This concerns the file ODEPhaseplot.py. The figures in this report concerning the analysis of

Linear 𝛾 can be reproduced by executing the corresponding (commented) lines in the final section of
the code.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from scipy.optimize import fsolve
from scipy.optimize import root
from scipy.optimize import curve_fit

F = 1
texc = 0.5
rmin = 0
rmax = 1.0
tmax = 2.5

#%% (Adapted) Creation ODE and 'creation exception function' gamma:
def gamma(t, texc = texc):

return min(2*t/texc - 1, 1)
# if t < texc:
# return 2*t/texc - 1
# else:
# return 1

def f(t, R, gamma = gamma, F = F, texc = texc):
# np.abs(R) yields non-physical negative solutions for R (idea of starting
# at negative distance); prevents errors. This is accounted for later on
return -gamma(t, texc = texc) + F*np.sqrt(2*np.abs(R))

#%% Plots:

### Plot inherent boundaries and system constants
def plotFeatures():

plt.clf()
plt.vlines(texc, rmin, 10*rmax, linestyles = 'dotted') #vertical line at t = texc

#"level set" of points with derivative 0
def separation(t):

return 0.5*((gamma(t))/F)**2

ts = np.linspace(0.5*texc, tmax, 100)
ys = np.zeros(100)

for i in range(100):
ys[i] = separation(ts[i])

def fprime(t, R, texc = texc):
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""" plots the 'critical solution', above which R
diverges and below which R goes to 0: """
return -f(texc - t, R, texc = texc)

def critical(F, texc, plot = False):
""" given F, texc, finds initial condition yielding equilibrium solution """
global critR, thres

thres = np.reshape(1/(2*F**2), (1,))
# (Reshape is technicality, to account both for F given as 'c' or '[c]')

boundSol2 = solve_ivp(fprime, [0, texc], thres,
method = 'BDF', max_step = 5e-2)

critR = boundSol2.y[0][-1]

if plot:
boundSol1 = solve_ivp(f, [texc, tmax], [np.squeeze(thres)],

method = 'BDF', max_step = 5e-2)
plt.plot(boundSol1.t,np.squeeze(boundSol1.y), color = 'black')
# 'invert' ODE because we solve backwards to t=0:
plt.plot(texc - boundSol2.t,np.squeeze(boundSol2.y), color = 'black')

print(f"Critical initial condition: R = {critR}" )

return critR

def plotSols():
"""Print range of solution trajectories """
for R0 in np.array([0, 0.5, 0.9, 1.1, 1.5, 2, 3])*critR:

sol = solve_ivp(f, [0,tmax], [R0], method = 'BDF', max_step = 5e-2)
#set maximum timestep, else solver 'gets arrogant' and inaccurate
plt.plot(sol.t,np.squeeze(sol.y))

def plotPhaseVF():
""" Plot phase-space vector field"""
rlim = max(rmax, 2.5*thres)
ts = np.linspace(0, tmax, 20)
rs = np.linspace(0, rlim, 20)
T, R = np.meshgrid(ts, rs)

u, v = np.zeros(T.shape), np.zeros(R.shape)
NI, NJ = T.shape

for i in range(NI):
for j in range(NJ):

der = f(T[i, j],R[i, j]) #derivative value according to ODE
u[i,j] = T[i,j]
v[i,j] = der
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plt.quiver(T, R, u, v, alpha = 0.5) # in form (x coords, y coords, x dir, y dir)

plt.xlabel('$t$')
plt.ylabel('$R$')
plt.ylim([rmin, rmax])
plt.xlim([0,tmax])

def plotAll():
""" Execute all plot-functions above """
plotFeatures()
critical(F, texc, plot = True)
plotSols()
plotPhaseVF()

#%% More critical-value analysis: critical initial value for R, varying F and texc

def initialCrit(Fmin, Fmax, N, tmin, tmax, M, plot = True):
""" For range of forces and times, plots IC yielding equilibrium solution """
plt.clf() # Clears current figure

Fs = np.linspace(Fmin, Fmax, N)
ts = np.linspace(tmin, tmax, M)
crits = np.zeros((M,N))
for j in range(M):

texc = ts[j]
for i in range(N):

crits[j,i] = critical(Fs[i], texc)

Rs = crits[j,:]
Rs[Rs < 0] = np.nan #remove negative values (so solver works more easily)
plt.plot(Fs, Rs, label = "$t_{exc}$ =" + f" {ts[j]:.2f}")
# (only round (:.2f) in case linspace is coarse)

plt.hlines(0, 0, Fmax)
plt.xlabel('$F$')
plt.ylabel('$R_{crit}$')
plt.xlim([Fmin, Fmax])

plt.legend()

# describe(crits)

def plotRcrit():
Fmin = 0.2
Fmax = 10
N = 100

tmin = 0.2
tmax = 1
M = 5
initialCrit(Fmin, Fmax, N, tmin, tmax, M) # Critical R for varying F, texc
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#%% One level deeper: for each texc, pick F s.t. Rcrit = 0. (bad computation time...)

def FzeroSolver(ts, method):
""" For each texc, attempts to find F s.t. Rcrit = 0 """

M = len(ts)
Fzeros = np.zeros(M)
reachedSol = np.zeros(M, dtype = int)

for j in range(M):
texc = ts[j]
if method == 'fsolve':

x, infodict, ier, msg = fsolve(critical, 1/texc,
full_output = True, args = (texc,))

Fzeros[j] = x

reachedSol[j] = (ier == 1)

if method == 'root':
sol = root(critical, 1/texc, method = 'broyden1', args = texc)
Fzeros[j] = sol.x
reachedSol[j] = sol.success # Store whether root-finder was succesful

print(f"Step {j} out of {M}, succesful: {reachedSol[j]}")

plt.clf()
tsProper = ts[reachedSol == 1]
FzerosProper = Fzeros[reachedSol == 1]
plt.plot(tsProper, FzerosProper)

plt.xlabel('$t_{exc}$')
plt.ylabel('$F$')

return tsProper, FzerosProper

def plotRcritZeros():
tmin = 0.35
tmax = 1.5
M = 100
ts = np.linspace(tmin, tmax, M) #evenly distributed
method = 'root' #very slow, but seems accurate
# method = 'fsolve' # fast but error-prone

# For given t, find F s.t. Rcrit = 0:
tsProper, FzerosProper = FzeroSolver(ts, method)

return tsProper, FzerosProper

def modelFunc(x, d,e,f,k):
""" Function to fit to FzeroSolver """
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return d/(x-k) + e/(x-k)**2 + f/(x-k)**3

def fitFunction(F,t):
""" Fit and plot approximation of FzeroSolver """

# Fit data to modelFunc:
params, _ = curve_fit(modelFunc, t, F, p0 = (1,1,1,0.3)) # p0 is first guess

print("Optimal parameters: ", params)
a,b,c,d = params
print(f"Optimal function: f(x) = {a}/(x-{d}) + {b}/(x-{d})**2 + {c}/(x-{d})**3")
print(f"Rounded: f(x) = {a:.3f}/(x-{d:.3f}) \

+ {b:.3f}/(x-{d:.3f})**2 + {c:.3f}/(x-{d:.3f})**3")

# Plot original and fitted function:
tSol = np.linspace(0.37, 1.5, 1000)
FSol = modelFunc(tSol, a,b,c,d)

plt.clf()
plt.plot(FSol, tSol, label = "Fitted", color = 'orange', zorder = 0)
plt.plot(F, t, label="Original", zorder = 1)
plt.xlabel('$F$')
plt.ylabel('$t_{exc}$')
plt.legend()

#%% Executables (reproducing report):

## Plot phase-space and range of solutions:
plotAll() # Phase-space, trajectories & vector field

## Plot Rcrit:
# plotRcrit()

## Find and plot zeros of Rcrit:
# t, F = plotRcritZeros()

## Fit solution to curve of given form: [execute below arrays]

# Solving is slow, so may take following data instead of plotRcritZeros():

F = np.array([4.52249233, 3.25458218, 2.66708927, 2.30421261,
2.05243906, 1.86080379, 1.71050999, 1.58773009, 1.48501998,
1.39732073, 1.32130856, 1.25497266, 1.19522794, 1.14207018,
1.09396342, 1.05035073, 1.01065947, 0.97400351, 0.94019942,
0.90895822, 0.87986711, 0.8529585 , 0.82745218, 0.80383456,
0.78152787, 0.76045845, 0.74060595, 0.72184348, 0.70408308,
0.68725822, 0.67118846, 0.65595032, 0.64140218, 0.62749767,
0.61426562, 0.60162896, 0.5894524 , 0.5778138 , 0.56663221,
0.55590293, 0.54561666, 0.53566809, 0.52610706, 0.51692251,
0.50805281, 0.49946465, 0.49118272, 0.48316996, 0.47545857,
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0.46797684, 0.46075236, 0.45371297, 0.4469083 , 0.44031849,
0.43393784, 0.42771814, 0.42166954, 0.4158048 , 0.41011023,
0.40458888, 0.39918341, 0.39394864, 0.38883055, 0.38386148,
0.37903058, 0.37429789, 0.36969419, 0.36520798, 0.36084195,
0.35656104, 0.35238137, 0.34830612, 0.34432858, 0.34045044,
0.33664585, 0.33292527, 0.32929026, 0.32575529, 0.32227046,
0.31886116, 0.31553138, 0.31227159, 0.30909019, 0.30595748,
0.30288957, 0.29988414, 0.29694334, 0.29406616, 0.29123311,
0.28845638, 0.28573354, 0.28307541, 0.28045133, 0.27787487,
0.27534974])

t = np.array([0.37323232, 0.38484848, 0.39646465, 0.40808081,
0.41969697, 0.43131313, 0.44292929, 0.45454545, 0.46616162,
0.47777778, 0.48939394, 0.5010101 , 0.51262626, 0.52424242,
0.53585859, 0.54747475, 0.55909091, 0.57070707, 0.58232323,
0.59393939, 0.60555556, 0.61717172, 0.62878788, 0.64040404,
0.6520202 , 0.66363636, 0.67525253, 0.68686869, 0.69848485,
0.71010101, 0.72171717, 0.73333333, 0.74494949, 0.75656566,
0.76818182, 0.77979798, 0.79141414, 0.8030303 , 0.81464646,
0.82626263, 0.83787879, 0.84949495, 0.86111111, 0.87272727,
0.88434343, 0.8959596 , 0.90757576, 0.91919192, 0.93080808,
0.94242424, 0.9540404 , 0.96565657, 0.97727273, 0.98888889,
1.00050505, 1.01212121, 1.02373737, 1.03535354, 1.0469697 ,
1.05858586, 1.07020202, 1.08181818, 1.09343434, 1.10505051,
1.11666667, 1.12828283, 1.13989899, 1.15151515, 1.16313131,
1.17474747, 1.18636364, 1.1979798 , 1.20959596, 1.22121212,
1.23282828, 1.24444444, 1.25606061, 1.26767677, 1.27929293,
1.29090909, 1.30252525, 1.31414141, 1.32575758, 1.33737374,
1.3489899 , 1.36060606, 1.37222222, 1.38383838, 1.39545455,
1.40707071, 1.41868687, 1.43030303, 1.44191919, 1.45353535,
1.46515152])

# fitFunction(F,t)
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An incomplete list of points of improvement for this thesis:
• Report - general

– analysis of simulation is very brief
– Plots in report lack labels on axes
– Plots are not well-chosen, as they show not too varying behaviour and some need too much

analysis/explanation
– Requirement that ∀𝑠 ∈ 𝐶 ∶ |𝑅| > |𝑠| is not emphasised in multipole analysis
– Row labels in Table 4.1 are bad

• Definition
– initialisation of particles that are never created is redundant, and explicit indexing not pre-

ferred
• Theoretical results

– Repeating argument in 5.1.1 is non-rigorous
– What if annihilation happens at same moment creation occurs in Theorem 5.1.1?

• Simulation
– Forward-Euler may be replaced by any (better) forward integration scheme
– choice of timestep is not yet great
– Simulation loop order is now creation-annihilation-store positions, meaning created and

immediately annihilating dislocations are not plotted
– simulation not sufficiently tested for errors
– Counting of surviving dipoles has suspicious results; survival rate may be wrong...
– There is no particle ordering in simulation. This could solve many issues
– black-box automatic ODE solver with adapting global variables is ‘nasty’
– Restarting system and removing non-charged dislocations could speed up simulation
– More general remark: we actually deviate from the exact definition by not initialising all
𝑁 dislocations. Instead, we are closer to the alternative state-space mentioned at the end
of Section 2.3, except that we do not remove dislocations upon annihilation (yet)

Fixed mistakes:
• in Table 4.1, results of columns ‘zero’ and ‘linear’ were swapped
• Code recreating plots can now be run more easily
• there was still an erroneous 1∕𝑛 in (𝑃𝐶𝑛-𝛾), Section3.1
• ‘with creation’ in (𝑃𝐶𝑛) was too vague, now specified to Frank-Read (but is this better? Still

have to describe this!)
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• In Table 4.1, mixed 𝐹𝑛𝑢𝑐 and PK.
• Main goal ((𝑃𝐶𝑛)) was imprecise, stating ‘with creation’; now specifically mentions Frank-Read

sources
• Particles/dislocations were used interchangeably; maybe not wrong, but confusing

Possible questions:
• How do 𝐹𝑛𝑢𝑐 , 𝑡𝑛𝑢𝑐 , system size (both domain and number of particles) relate?
• Why is |𝑏| lsc, and not continuous in a different way? First, because otherwise at a creation

and/or annihilation moment, one might have 𝑥𝑖 = 𝑥𝑗 and 𝑏𝑖 ≠ 0, 𝑏𝑗 ≠ 0; this is not in 𝑛 nor
𝑐

𝑛. This, in turn, is because otherwise there is no necessity
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