
 Eindhoven University of Technology

MASTER

Online Anomaly Detection on Streaming Log Data Using Hierarchical Temporal Memory

Mohanavelu, Senthil Kumar

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/9a248021-64e0-40d3-a242-209aff27f122

Department of Mathematics and Computer Science
Data Mining Group

Online Anomaly Detection on Streaming Log Data
Using Hierarchical Temporal Memory

Master thesis

Author

Senthil Kumar Mohanavelu

Graduation supervisor

Dr. Mykola Pechenizkiy

Graduation co-supervisor

Dr. Stiven Schwanz Dias

September 28, 2022

i

Abstract

Complex software systems generate large amounts of data in the form of log
messages with millions of messages generated each hour from a single software
system. As systems grow larger and more complex, so does the information gen-
erated by such systems. Moreover, changes and updates in software introduce
newer additional log messages along with with changes to existing messages. In
a way, log messages constantly evolve and change over time with every single
update or patch to the software.

Detecting anomalies in log messages can help prevent unexpected down-
time, security threats and abnormal behaviour ensuring high availability and
reliability of the software to end users. This is extremely important from a
business perspective as every enterprise or company uses distributed software
services in one way or another. An unexpected downtime might lead not only
to financial losses but also to customer dissatisfaction.

While several log anomaly detection models exist, they do not satisfy all the
requirements that are needed from a continuously learning, adaptive, and online
anomaly detection model. In this thesis, the possibility of using a continuous
online learning model, the Hierarchical Temporal Memory (HTM) model, is
investigated. Several different approaches to feature extraction and encoding
are presented and evaluated in the context of the HTM model. Results indicate
that the proposed solution is capable of anomaly detection on the publicly
available Hadoop Distributed File System (HDFS) log dataset. The thesis
summarizes the benefits of using a HTM model while comparing its drawbacks
against existing state-of-the-art deep learning models.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Literature review . 2

1.3.1 Supervised methods . 2
1.3.2 Semi-Supervised . 3
1.3.3 Unsupervised methods. 4
1.3.4 Summary . 4

1.4 Thesis approach . 5
1.5 Outline of the thesis . 6

2 Theoretical Background 7
2.1 Hierarchical Temporal Memory . 7

2.1.1 Spatial Pooler . 8
2.1.2 Temporal Pooler . 9

2.2 Sparse Distributed Representations 11
2.2.1 Properties of SDRs . 11
2.2.2 Encoding . 12

2.3 Autoencoders . 14
2.4 Dimensionality reduction . 15

3 Problem Statement 17

4 Solution Approach 19
4.1 Parsing - Spell . 20
4.2 Feature extraction . 24

4.2.1 Sentence Embeddings . 25
4.2.2 Dimensionality . 26
4.2.3 Categorical IDF . 26

4.3 Encoding . 27
4.3.1 Scalar Encoders . 28
4.3.2 K-D Trees . 29
4.3.3 Fly-hash encoder . 29
4.3.4 K-Sparse Autoencoders . 31

4.4 Real-time Anomaly detection . 31

5 Results and Evaluation 33

ii

CONTENTS iii

5.1 Dataset . 33
5.2 Metrics . 33

5.2.1 Precision, recall and F1 . 34
5.2.2 Anomaly Score . 35
5.2.3 Moving average precision . 36

5.3 Experimental Methodology . 36
5.4 RQ1 - How do different feature extraction methods compare? 36

5.4.1 Experimental Setup . 37
5.4.2 Results . 38

5.5 RQ2 - Does the encoding method impact the performance of Anomaly
detection? . 40
5.5.1 Experimental Setup . 40
5.5.2 Results . 41

5.6 RQ3 - Is the HTM model suitable for anomaly detection on log data? 43
5.6.1 Additional challenge . 43
5.6.2 Performance on other datasets 44
5.6.3 Ability to adapt to different tasks 45
5.6.4 Online learning . 47
5.6.5 Benchmark performance . 49

6 Conclusion 53
6.1 Summary of the results . 53
6.2 Summary of the main contributions 54
6.3 Future work . 55

A Parameters of the HTM model 57

Bibliography 58

List of Figures 62

List of Tables 63

Chapter 1

Introduction

1.1 Motivation

Analysis of logs opens the door to detecting anomalies and diagnosing systems.
Complex software systems and large businesses generate over 10 million log messages
every hour from thousands of systems [3]. It is vital to analyze these log messages
on the go to detect anomalies and issues in order to prevent failure and ensure high
availability and reliability of machines. The high velocity and volume of log data
render it impossible for an expert to manually analyze every single log message.
Log messages are also not local to a single machine, complex software systems are
often made up of multiple servers and nodes each generating logs in parallel. It is
extremely difficult if not infeasible for a single developer to view and investigate this
high volume of log data as it is being generated. Furthermore, with every addition
of a new server or node, a new software, and with every new patch or update, new
logs are bound to be introduced to the ecosystem. Automation of log analysis and
anomaly detection can ease the human workload, save manpower and ensure that the
machines are performing to their fullest. From a business perspective, the benefits
are straightforward and multifold. Online anomaly detection not only helps save
costs by identifying anomalous machines and software executions, but also helps
assure the quality of services to the consumers. A consistent and powerful anomaly
detection model will ensure the high availability and reliability of machines for its
users.

Therefore, there is a need for an anomaly detection model that can detect
anomalies in real-time logs as early as possible. Additionally, logs in practical cases
do not contain labels and with the variety as well as the volume of log data it is not
feasible for a developer or an expert to manually label these logs for analysis. Keeping
these requirements in mind, the anomaly detection model needs to be capable of the
following:

1. Unsupervised learning to learn from unlabelled data.

2. Continuous learning to ensure the introduction of new types of log messages
from software updates and patches does not affect the performance of the
model.

1

1.2. Research Questions

3. Perform online anomaly detection on streaming log data.

The following section explores three research questions that aim to develop a
solution to address the points made in this section.

1.2 Research Questions

With this motivation in mind, the broad question is “Is it possible to develop a
robust solution that is capable of detecting anomalies in real-life online streaming
log data using the HTM model?" Taking into account the requirements described in
the previous section, the following research questions are formulated:

1. How do different feature extraction methods affect the performance of the
HTM model?

2. How do different encoding methods affect the performance of the HTM model?

3. Is the HTM model suitable for online anomaly detection on log data?

1.3 Literature review

Several approaches to log anomaly detection exist at the moment. Most approaches
involve parsing logs to extract log templates followed by prediction or classification
of the log templates [32], [31], [30] and [10]. Work under log anomaly detection can
be broadly classified under three different categories: Supervised, Semi-supervised
and Unsupervised.

1.3.1 Supervised methods

Several supervised approaches exist, most of which involve extracting count vectors
by assigning indexes to each log template. Log templates are representative templates
of log messages such that multiple log messages can originate from the same log
template. These templates are assigned IDs and a log count vector is created by
counting the number of occurrences of such templates. Models such as Support Vector
Machines (SVM) [15] and Logistic Regression (LR) make use of log count vectors to
make binary classifications on whether a log is anomalous or normal. Decision Trees
have also proven to be quite good at detecting anomalies reaching precision and F1

scores of upto 0.99 and 0.98 [4]. However, supervised approaches such as these require
large amounts of labelled data and are severely affected by noise in the training
data such as mislabelled logs. Furthermore, the models fail to utilize the semantic
information of the log messages and solely rely on log indexes and count vectors. Most
of the information contained in the logs is not utilized during the model classifications.

Deep learning techniques such as Convolutional Neural Networks (CNN), an
neural network architecture primarily used in image recognition, has recently been
adapted to solve anomaly detection in logs based on its capability to detect spatial
local patterns [18]. Here, log templates are encoded as integers and grouped together

2

1.3. Literature review

to form log sequences based on a common identifier for log sequences. The integer log
sequences are then padded with zeros or trimmed to fit the fixed-dimensional input
size of the CNN network. The network makes predictions on each log sequence as
either anomalous or normal. The CNN model specifically reaches high performance
on the benchmark HDFS dataset with a F1 score of 0.98. However, the model
is severely limited to the quality and quantity of the dataset and requires large
amounts of labeled data for the model to be accurate [14]. Additionally, this ap-
proach fails to once again make use of semantic information contained in the messages

LogRobust [32] is another supervised deep learning technique that improves
on earlier supervised deep learning models by incorporating semantic embeddings
through a pre-trained word2vec FastText model for the log templates. The embed-
dings are then weighted using TF-IDF before being passed onto the attention-based
Bidirectional Long Short Term Memory (LSTM) model The model detects anomalies
by making classifications using the LSTM network. LogRobust’s performance is
impressive, with scores of F1 up to 0.99 on the HDFS dataset. However, as the model
performs classifications using an LSTM, it requires large amounts of labeled data
that includes both anomalous and normal data. Furthermore, the model is sensitive
to noise in training data where mislabelled logs hinder the performance of the model
[14]

1.3.2 Semi-Supervised

Deeplog [9] is a semi-supervised deep learning approach that, once again, makes use
of LSTM networks. As in earlier approaches, logs are converted to log templates
and assigned indexes and are then grouped together as log sequences either using an
identifier in the log message or through fixed time windows. The LSTM model is
trained on log data that follows normal execution paths in order for the model to
learn the execution paths of normal tasks. An anomaly is detected by comparing
the sequential prediction of the LSTM with the ground truth message. Deeplog
requires very little training data, and additionally, the authors provide a method
to incrementally update Deeplog over time to ensure that the model adapts to new
unseen log messages. However, the method involves a domain expert manually
labeling false positives as normal messages and updating the weights.

LogAnomaly[22] builds a log anomaly framework that aims to utilize the semantic
meaning of logs. The authors take advantage of language learning models to extract
semantic information from logs by using a word2vec model called template2vec. New
unknown log templates are handled by simply matching the new template to the
closest template vector created during the training stage. While the model performs
really well on the HDFS and BGL datasets, it still requires frequent retraining to
stay up to date. Since new log messages simply match existing vectors, there is a
varying loss of semantic information that hinders its performance.

3

1.3. Literature review

1.3.3 Unsupervised methods.

[30] discusses a Principal Component Analysis (PCA) based method where the
logs are grouped together by identifiers such as session IDs or by sequence IDs.
A message count vector is generated for each sequence by simply counting the
number of log-keys that appear during the session. Each column in the vector
corresponds to a particular log template and the value indicates the number of times
that log template appears in the session. The authors then use PCA to project
the vectors onto a different coordinate system to detect anomalies. This method
produces results with high precision and high recall on the HDFS dataset while
remaining fairly straightforward and simple. However, the method is purely offline
and requires the entire log dataset to detect anomalies. Furthermore, the method
assumes that the logs can be grouped in sequences based on an identifier which
might often not be possible based on the type of logs generated by a computer system.

Invariant mining [17] is an interesting approach to the problem that is based on
program invariants. The approach focuses on finding linear relationships in the log
messages by mining program invariants. Here, log messages are grouped by program
variables, and message count vectors are formed for each log grouping. Once all
possible invariants are extracted from the dataset, an anomaly can be detected by
simply finding a sequence that violates the discovered invariants. The approach
produces results that are comparable to state-of-the-art on Hadoop and CloudDB
datasets. However, finding invariants requires a large enough dataset that contains
historical data. Furthermore, the method is completely offline and cannot be directly
used to detect anomalies for online streaming log data.

LogCluster [16] is another unsupervised approach based on clustering log messages
in which event count vectors are generated from log sequences simply by counting
the number of times a specific log template occurs in a sequence. The event count
vectors are then classified as anomalous or normal using aggloremative heriarchial
clustering techniques.

1.3.4 Summary

Various supervised approaches such as SVM, decision trees, and logistic regression
have been proven to achieve good results on anomaly detection. However, they
require large amounts of training data as well as labels, which are often hard to come
by since labels need to be manually created by a domain expert for log data. Similarly
semi supervised approaches such as Deeplog and LogAnomaly require non anomalous
data for training whereas unsupervised approaches assume that anomalies are sparse
and normal logs constitute the majority of log messages. Unsupervised deep learning
approaches have shown great strides in recent years but most models perform of-
fline anomaly detection and are quite sensitive to unseen data or unseen log sequences.

Deeplog and LogAnomaly produce good results on benchmark datasets while
requiring little data to achieve their best performance and additionally, both models

4

1.4. Thesis approach

provide methods to deal with unseen log messages. However, none of the online
models are capable of continuous online learning as deep learning models such as
CNN and LogRobust need to be retrained on the new data and models such as PCA,
decision trees and SVM need to be refit on the entire dataset. Deeplog provides a
method for online learning but requires the knowledge of a domain expert to label
false positives and requires retraining of the model with the new data.

In short, the performance of existing approaches have been proven to be satis-
factory on stationary datasets. However, most models do not have the capability
of adapting to unseen log messages or online learning and the ones that do such as
Deeplog and LogAnomaly require both constant re-trainings as well as labelled data.
Additionally, at this point in time no existing method is capable of continuous online
learning on log data to perform anomaly detection.

1.4 Thesis approach

In order to solve the problem of anomaly detection in logs as a real world problem,
it is vital to consider the practical challenges involved. The developed solution not
only needs to display high accuracy in detecting anomalies online but also ensure
that the model is able to continuously learn and adapt to updates and patches in the
software system that result in the addition of unknown log messages. For the same
reasons, the thesis explores the idea of employing Hierarchical Temporal Memory
(HTM) model, a model designed to replicate the neocortex, to detect anomalies in
log messages.

HTM has already been proven to produce state-of-the-art results in anomaly
detection of time series data [1]. However, current literature only tackles data that
is either numerical or categorical. This is primarily because the HTM model is only
able to process a very specific type of input: Sparse Distributed Representations
(SDR) which are simply binary arrays that have more than 90% of their bits set to
0. Conversion of scalar and categorical data to SDRs is well defined [26] whereas
translating log messages to SDRs is not explored at the moment. This thesis primarily
focuses on investigating several different feature extraction and encoding methods to
find a suitable way to represent log messages as sparse representations. The work
then shifts towards making use of the HTM model to perform anomaly detection on
a benchmark HDFS dataset.

The work implements over eleven different approaches toward encoding log
messages as SDRs and finds that the combination of sentence embedding and scalar
encoding techniques produces the best results out of all. Another approach of
generating sparse vectors using an autoencoder shows promising results as well.
The HTM model produces results that do not currently beat state-of-the-art in
performance. However, the model is able to reach its best performance learning on
the fly after assimilating very little streaming data.

5

1.5. Outline of the thesis

1.5 Outline of the thesis

Chapter 2 provides background information on the HTM model and SDR represen-
tations, two concepts that dominate the majority of the thesis. The chapter also
introduces well-established concepts including autoencoders and hashing algorithms.
Chapter 3 provides a brief description of the problem statement as well as formalizes
it. Chapter 4 provides the solution methodology and discusses the different encoding
and feature extraction techniques. The following chapter explains the experimen-
tal setup and the corresponding results while trying to answer the three research
questions. Finally, Chapter 6 provides a discussion on the results of the thesis and
possible future work to improve the results from the HTM model.

6

Chapter 2

Theoretical Background

2.1 Hierarchical Temporal Memory

The Hierarchical Temporal Memory (HTM) is a model devised and proposed by Jeff
Hawkins and Numenta in 2011 [11] and is primarily inspired by the Neocortex of
the human brain. The HTM model primarily accepts temporal input in the form
of SDRs and makes a prediction on the next possible data point in the sequence in
the form of an SDR. The model learns temporal relations in the input sequence and
continuously updates its weights with every new input it encounters and with every
prediction. Learning is based on the difference between the predicted output and
the original input that arrives. Through continuous learning, the model adapts to
changes in the incoming data.

The HTM model consists of regions that are arranged in hierarchies where regions
perform the most basic memory and performative tasks. Regions are allowed to
communicate with other regions at the same level as well as with regions higher
and lower in the hierarchy. This concept of regions is borrowed from the biological
understanding of the human brain where the neocortex is classified into different
regions based on where they receive input from and where they send their output.
Figure 2.1 displays the compartmentalization of the human brain and the way
information is processed at different stages in an hierarchical manner.

Figure 2.1: Illustration depiction the biological inspiration of the HTM model from
[20].

7

2.1. Hierarchical Temporal Memory

The following subsections describe two of the major components of the HTM
model: The Spatial Pooler and the Temporal Pooler.

2.1.1 Spatial Pooler

The Spatial Pooler (SP) is the first major part of the HTM model and is thoroughly
described in the paper [5]. The SP learns a one to one mapping of the input SDR
space to another sparse binary representation of minicolumns. An minicolumn can
be thought of as an column of cells in the SP region. The Spatial Pooler consists of
a number of minicolumns where each minicolumn is connected to different bits in
the input space. These synaptic connections are called potential connections and
contain weights called permeance which regulate the establishment and pruning of
of the corresponding connections following a Hebbian learning approach. They are
called potential connections in the sense that they only feedforward the input space
when the permeance of the connection is above a certain threshold, and when it is
under the threshold, no feedforward takes place.

The feedforward value of each synaptic connection of an SP minicolumn is
calculated by multiplying the permeance with the value in the input space. Therefore,
for an SP minicolumn, the feedforward value is the sum of all connection values and
in a way, this measures the number of overlapping bits with a minicolumn. An SP
minicolumn is set to active when the feedforward value is in the top 2% of values.
The permeance of the connections that contribute to the value is strengthened while
the ones that do not contribute is weakened. Through this learning method, similar
input in the input space will fire similar minicolumns in the SP. Figure 2.2 shows an
illustrative example of minicolumns being set to active based on the input space.

8

2.1. Hierarchical Temporal Memory

Figure 2.2: Working of the spatial pooler adapted from [5]

In the figure, the grey area represents the potential pool of input space that a
single SP mini column is connected to. Here, the black lines are connections to active
bits in the input space while the dashed lines are connections to inactive bits. As
discussed earlier, the synaptic connections of the black lines are strengthened while
the connections of the dashed lines are weakened. In the figure, the blue area on the
SP indicates the local inhibition region where only one minicolumn is set to active
based on a winner-take-all rule. Through this inhibition rule of minicolumns, the SP
continues to maintain the required sparsisity.

2.1.2 Temporal Pooler

While the SP produces an encoding that represents the value in the input space, the
Temporal Pooler (TP) is responsible for representing the input along with the context
with which it arrives. It is essential to recall that the SP produces an encoding
that contains the active minicolumns. Each minicolumn is made up of a number of
cells that can be present in three different states - active, inactive, and predictive.
Furthermore, each cell has synaptic connections to other cells in the same region
and each connection once again has its own permeance value. By setting different
cells active within the same minicolumn, the TP is able to represent the same input
based on different contexts. Furthermore, similar to the SP maintaining sparsisity
through local inhibition of minicolumns, the TP uses local inhibition of cells to

9

2.1. Hierarchical Temporal Memory

maintain sparsisity. Figure 2.3 provides an illustration of how the TM works to learn
contextual inputs.

Figure 2.3: Illustration of sequence learning by the Temporal Pooler from [1]

The figure illustrates the learning process and the predictions made by a tem-
poral process for two input sequences ABCD and XBCY containing the common
subsequence BC. Here each column represents a minicolumn, while black dots and
red dots represent active and predictive cells whereas grey dots indicate inactive cells.
The minicolumns are set to active by the SP as explained in the previous subsection
and here, A can be represented by the SDR [0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0]T

and X = [0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0]T . The TM produces output SDRs
where only one cell in a minicolumn is set to active with the rest of the cells set to
inactive. With the help of the figure as an example, the working of the TP can be
summarized through three steps as follows:

1. At the arrival of an input at time instant k the TP checks every active mini-
column and turns “predictive cells” into “active cells”. If no "predictive cells"
exist in an active column as in the case of a new and unseen input, all cells
are set to active and this process is called "bursting". In the figure, the first
rows show the bursting process where the model encounters the two sequences
for the first time. Note that all the cells in a single minicolumn are set to
active since no predictive cells exist at this time instant k. When predicive cells
exist, local inhibition takes place since only the predictive cells of an active
minicolumn are set to active while the rest are set to inactive. In a way, the
predictive cells locally inhibit other cells from firing in the same minicolumn.

2. At the same instant k, the TP iterates through every active cell and feedforwards
the input to connected nearby cells. If the value crosses a threshold, the

10

2.2. Sparse Distributed Representations

connected cells are set to the predictive state ready for the next input at k + 1.
In the figure, red cells indicate predictive cells set at a particular time instance.
The predictive cells are calculated through lateral connections between cells of
different minicolumns. The synaptic connections shown in the figure indicate
the active cells that contribute to the calculation of the predictive cells for the
next time instance. Since these connections are based on the cells active, the
same input can be represented differently for different contexts. In the figure,
B’ and B” fire the same minicolumns in the SP but have completely different
active cells under the same minicolumn and thus, denoting the same input
under two different contexts: AB’C’D’ and XB”C”Y”

3. At the arrival of the next input k+1, the connections for correctly predicted cells
are increased while incorrect predictions lead to the weakening of connections.

Through the concept of predicted cells, the temporal memory learns to represent
the same input under different concepts. In short, active mini-columns represent the
input value and active cells represent the context of the input.

The output of the TM is a binary sparse array with active bits representing active
cells of the mini columns. In the default algorithm, the HTM model consists of 2048
mini columns with 32 cells each. This results in a binary array of size 65536.

2.2 Sparse Distributed Representations

Sparse distributed representations are large binary arrays where a small number
of bits are set to 1 and the remaining majority is set to 0. Sparse representations
resemble the functioning of the neocortex wherein the activations of neurons are
spread out sparsely. The bit values of 1 and 0 can be thought to correspond to
active and inactive neurons, respectively. SDRs have emerged as a way to represent
information in a way similar to that of the human brain. Typically SDRs have
thousands of bits with just around 1% to 2% of the bits set to active. Individual bits
on their own do not represent any specific labels or value but rather convey semantic
meanings. This implies that SDRs representing similar information will hold active
bits in similar locations. Therefore, a high overlap of bits indicates a higher level of
similarity and vice-versa.

2.2.1 Properties of SDRs

SDRs have a few unique properties that make them ideal for various machine learning
tasks.

1. SDRs display high capacity: The capacity of an SDR can be calculated by
counting the number of unique combinations possible with the arrangement of
1 and 0 bits. For an SDR of size n with a fixed number w of 1 bit, this can be
calculated as w combinations from n as folllows:(

n
w

)
=

n!

w!(n− w)!
.

11

2.2. Sparse Distributed Representations

For the standard SDR size of n = 1024 and w = 40, the number of possible
combinations amounts to 1.46 ·1072. This allows for plenty of different values to
be encoded in an SDR of just 1024 bits. By adjusting the size n and controlling
the sparsity through w, the capacity can further be increased or decreased to
accommodate all possible values of the input space.

2. SDRs are not prone to noisy data: Similarity in the case of SDRs is calculated
through an overlap score and not traditional methods such as Euclidean distance
or Hamming distance. The overlap score is the count of overlapping 1 bit
between the two arrays and can be defined as follows:

Let a,b ∈ {0, 1}n denote two sparse binary vectors with at most w active bits,
the overlap score is.

Soverlap =

n∑
i=1

[a[i] ∧ b[i]] , (2.1)

where the Iverson bracket which takes as an argument any logical proposition
Ψ is defined as

[Ψ] =

{
1, if Ψ is true
0, otherwise.

For two vectors, this is exactly the same as using the AND operator. Two
SDRs are said to be exact matches if all their bits match. By using a threshold
in conjunction with the overlap score, the sensitivity towards noise can be
adjusted. While this may introduce false positives, note that the error bound
climbs very slowly. For example for n = 2048 and w = 40, even with the
addition of 14 noise bits, the error rate is less than 1024.

3. SDRs allow for the representation of multiple values: A combination of values
or patterns can be represented by simply performing the UNION operation
over multiple SDRs. With sufficient sparsity, multiple SDRs can be combined
without much loss of information or error. For example, two SDRs a and b
and be fused into SDR c such that, ∀i ∈ {1, . . . , n}, c[i] = a[i] ∨ b[i].

4. SDRs are computationally efficient: The sparseness and the binary values of the
SDR allow for easy computation required for various tasks. AND and UNION
operations are fairly simple and calculating the overlap score and matching
SDRs is also undemanding.

2.2.2 Encoding

The HTM model only processes information in the form of SDRs and in order to make
use of the HTM model for classification and prediction, it is necessary to first encode
the input data into an SDR. The paper [26] discusses several different strategies to
encode various types of data ranging from single-valued integers to GPS coordinates.
When encoding data to SDRs the following properties should be ensured.

1. Similar datapoints should result in similar SDRs or in other words, two similar
data points should be encoded as SDRs with a high overlapping score. For

12

2.2. Sparse Distributed Representations

example, two similar SDRs a and b will need to have a high Soverlap as described
in Equation 2.1

2. The encoding from the input space to the SDR space needs to be bijective i.e.
I ←→ S and should always result in SDRs of the same dimensions or size n.

3. The encoded SDRs needs to have the same sparsity or in other words, the same
proportion of active bits w to toal number of bits n for every data point.

For an example of a simple numerical encoder, SDRs can be generated by assigning
bits to overlapping ranges of numbers. Consider a SDR of size n = 20 and w = 3
with the range of values being [0, 23]. The first bit is set to active for values ranging
from [0, 3], the second bit is set active for ranges [1, 4], and so on. Figure 2.4 displays
a SDR of size n = 20 and w = 3 representing the number 7.

Figure 2.4: Illustration of a simple numerical encoder.

Another example of a categorical encoding is shown in Figure 2.5. Here, the first
5 bits are assigned to the label “Dog” and the last 5 bits are assigned to the label
“Cat”.

Figure 2.5: Simple SDR encoding for two disjoint categories.

Note that in order to encode categories, it is not necessary to have disjoint
sequences of active bits. In order to encode the days of the week, one can simply
assign an integer to each day [1, 7] and use the numerical encoder.

13

2.3. Autoencoders

Figure 2.6: A simple SDR encoding for days of the week [26].

2.3 Autoencoders

Autoencoders are artificial neural networks that encode the data from the input
space into a hidden latent space and reconstruct the original data by decoding the
data in the latent space [2]. Formally, the autoencoder consists of two primary
neural networks – an encoder and a decoder. The encoder tries to learn useful
representations of the input space by converting an input vector in the input space
to a higher or lower dimensional vector in the latent space whereas the decoder
reconstructs the original input vector from the latent space representation. Formally,
the encoder E encodes the input vector x to a latent space representation z where
z = E(x) and the decoder D tries to reconstruct the input from the latent variable
such that x′ = D(z) where x′ is the reconstructed input. Figure 2.7 provides an
illustration of a traditional auto encoder structure.

Figure 2.7: Schematic representation of the encoder-decoder architecture

The parameters of the auto encoder are optimized by comparing the reconstructed
vector with the original vector by often considering the squared error loss function:

14

2.4. Dimensionality reduction

L
(
x,D

(
E(x)

))
= ∥x′ − x̄∥22

where E(x) and D(E(x)) denote the encoder and decoder outputs and x and x′

represent the original and reconstructed input.
Autoencoders have been shown to be very useful in the case of dimensionality

reduction by using an encoder to map the higher-dimensional input space to a
lower dimensional latent space [13]. Another variation of autoencoders is the sparse
autoencoder where sparsisity in the latent space is ensured through regularization.
Sparsisity has been shown to improve the performance of various tasks such as
classification and clustering. Furthermore, sparse encoders have been proven to
aid in performing tasks such as speech recognition [7] and image classification [28].
One such sparse autoencoder is the K-Sparse Autoencoder [19] where in sparsitiy is
maintained by trimming the output in the hidden layers. After the activation layer
in the encoder phase, only the top k activations are allowed to pass through and the
remaining activations are set to 0.

2.4 Dimensionality reduction

Principle Component Analysis (PCA) is a widespread method for reducing
dimensionality. First proposed in [25], PCA is a statistical method that aims to
represent high-dimensional data with dimensions d on a low dimensional space with
principal components m where d > m. PCA essentially involves finding linear
combinations of the d features that can explain the maximum variance. These
linear combinations form the principal components m. It is important to note here
that PCA is a orthogonal transformation and as such the principal components m
have zero correlation between each other. The principal components are calculated
through eigenvalue decomposition of the covariance matrix of the input dataset. The
covariance between two column vectors can be calculated as follows :

Cov(X,Y) =
n∑

i=1

(xi − x̄) (yi − ȳ)

n

where X̄ and Ȳ denote the mean of the respective columns and n is the number of
samples and X and Y are the column vectors in the input space. This results in a
d× d square covariance matrix M. The eigenvalues can then be calculated as:

det(M− λI) = 0

where I is the identity matrix and the roots of the equation provide the eigenvalues.
The eigenvectors corresponding to the m largest eigenvalues are then used to trans-
form the original higher n-dimensional to a lower m dimensionsal space.

Uniform Manifold Approximation and Projection for Dimension Re-
duction (UMAP) is a newer technique for dimensionality reduction that is based in
Riemannian geometry [21]. The theory involves learning the manifold structure of the
high-dimensional data and then approximating a equivalent one in low dimensional

15

2.4. Dimensionality reduction

space. It works through two major steps, the first step involves learning a fuzzy
topological structure of the high-dimensional data. UMAP does this by building a
connected weighted graph containing all the points in the dataset. Density of points
is preserved by ensuring edges belonging to closer points contain higher weights and
vice-versa. With a weighted graph constructed in the high dimensional space, the sec-
ond step is to project the graph while preserving its structure onto the required lower
dimensional space. UMAP ensures that the low dimensional topological structure is
as similar as possible to the original high-dimensional structure. More information
on the working of UMAP can be found in the original paper [21].

16

Chapter 3

Problem Statement

The problem as explained in the previous chapter is focused on detecting anomalies
in system log messages. More formally, let

L = (l1, l2, l3, . . . , ln) (3.1)

be a sequence of log messages such that ∃li ∈ L where 0 ≤ i ≤ n and li is anomalous.
The goal of anomaly detection is to accurately label all such li as anomalous and
the rest as normal. A log message is said to be anomalous if it shows deviation from
normal process flow or any undesirable behavior. Additionally, the model needs to
be capable of online unsupervised learning to ensure adaptability to changes in log
messages with the introduction of software changes or updates.

Let V = (v1,v2,v3, . . . ,vn) be the vector representation of the logs (l1, l2, l3, . . . , ln) ∈
L and let X = (x1,x2, . . . ,xn) be the SDR encoding of the vectors where xj

is the sparse encoding of vj . The HTM model takes in the sequence of SDRs
X = (x1,x2, . . . ,xn−1) to make a prediction for the next log message in the sequence
based on the history of events where the model output x̂n|n−1 is a prediction of the
HTM model. Lastly, the predicton x̂n|n−1 is compared with the ground truth xn to
determine if it is an anomaly or not.

The problem can then be narrowed down to finding a suitable approach to
adapt the HTM model to perform anomaly detection on natural language logs.
This translates to finding an effective method of creating a sparse representation
of the log message data. Let I be the input space of the vector representations
V, then the encodings X = (x1,x2, . . . ,xn) are produced by an encoding function
f : I → {0, 1}m such that

x = f(v;m,w)

where m and w are the size of the SDR and the number of active bits, respectively.
Note that the following must hold for any arbitrary vectors x,x′ ∈ I.

∀x,y ∈ I,dI(x,y) ≥ 0

∀x,y ∈ I,dI(x,y) = dI(y,x)

∀x ∈ I,dI(x,x) = 0

(3.2)

where dI is a distance function over the input space such that I×I → R. Additionally
let a1, a2, . . . , ak where ai ∈ {0, 1} such that 1 ≤ i ≤ k be the elements of a binary

17

array A of length k. Then a counting function C(A) is defined as:

C(A) =

k∑
i=1

[ai = 1]

Let w be the number of active bits in the encoded SDR x, then for an encoding x
produced by f(v,m,w). The following stays true:

C(x) = w.

Finding a suitable encoder for the input space will allow for the training of the HTM
model which can then be used to make predictions on the next log message in order
to detect anomalies.

18

Chapter 4

Solution Approach

This chapter outlines first the HTM-based solution for the problem – online detec-
tion of anomalies in streaming log data and then details the proposed approach
for the log feature extraction and encoding stages of the solution. The working
of the HTM model and its usage has already been covered in Section 2.1. The
following sections explore different feature extraction and encoding strategies and
therefore cover multiple disjoint approaches. However, the HTM model remains the
same irrespective of the different techniques used to encode the log messages as SDRs.

The workflow of the proposed solution can primarily be distributed into four
stages as follows:

1. Parsing - Parsing the logs to retrieve log templates

2. Feature extraction - Extracting valuable features from the log templates

3. Encoding SDRs - Encoding the features in the form of usable SDRs

4. Anomaly detection - Using the predictions of the HTM model to detect anoma-
lies

a) Prediction - Use the HTM model to predict the next log message.

b) Prediction assessment - Compute the prediction error using the predicted
and actual log messages.

c) Anomaly detection - Declare anomalies by thresholding an anomaly score
based on the prediction error.

Figure 4.1 outlines the workflow of the overall solution from raw HDFS logs to
detecting anomalies.

19

4.1. Parsing - Spell

Figure 4.1: Workflow of the proposed solution

The rest of the chapter is split into sections based on the different stages of the
proposed solution.

4.1 Parsing - Spell

The first stage of the proposed solution is parsing the raw HDFS logs. This is
performed through the use of an existing log parser called Spell [8]. Figure 4.2
displays an outline of the parsing stage. The "log templates" are the primary fields
that are extracted from the raw logs.

20

4.1. Parsing - Spell

Figure 4.2: Outline of the parsing sage using Spell.

Spell is an online log parsing algorithm that works on the idea of identifying the
Longest Common Subsequences (LCS) to extract log templates where LCS(L, J)
retrieves the longest common subsequence between L and J . The algorithm works on
the principle that log messages are predefined by the developer in the source code and
are usually of the format of a given template with one or more variables or parameters.

For example, an example log message could be

printf(” Error at line \%d”, lineid)

and possible resulting log messages could include

1. Error at line 131
2. Error at line 21

Here, the log message:

“Error at line <*>”

remains the same irrespective of the line id at which the error occurs while <*>
can be replaced with different line IDs. The underlying aim of Spell is to identify
the structured templates such as the example above that exist in the code. The
algorithm identifies such templates through the idea of LCS which works as follows.

21

4.1. Parsing - Spell

Algorithm 1 Parse log messages L = (l1, l2, . . . , ln) into log templates

Require: Log messages L = (l1, l2, . . . , ln)
1: Initalize empty map LCSmap
2: Let LCS(a, b) be a procedure that returns the longest common subsequence
∈ (a, b)

3: for l ∈ (l1, l2, . . . , ln) do
4: α = 0
5: for m ∈ LCSmap do
6: if α < |LCS(l,m)| then
7: α = |LCS(l,m)|
8: end if
9: if α > τ then

10: Map l to existing template in LCSmap
11: else
12: Create new template in LCSmap
13: end if
14: end for
15: end for

1. An empty map, LCSmap, is first initialized and a threshold τ is set by user
where the threshold determines the the length of LCS required for a new log
template to be generated.

2. Incoming log messages are split into tokens and the tokenized message is
compared to existing templates in the LCSmap.

3. If max (LCS(new,LCSmap)) > τ , then the new log entry is assigned to the
existing log template. If max < τ , the new log entry is stored as a new log
template. If no log templates exist in LCSmap, the message is stored as a new
log template.

The threshold τ is usually set at 0.5 implying that logs with more than half of the
tokens as parameters are not expected. Since the algorithm keeps track of existing
log templates and any new log entry simply needs to be tokenized and compared
with the existing map, the usage of Spell for online log parsing and log template
extractions is extremely easy. The Spell algorithm runs on unstructured log data
resulting in structured log data that includes log templates. All existing logs would
have been generated using one of the log templates discovered by Spell.

Table 4.1 displays raw logs that have been retrieved from the HDFS dataset.

22

4.1. Parsing - Spell

No Raw log

1 081109 203615 148 INFO dfs.DataNode$PacketResponder:
PacketResponder 1 for block blk_38865049064139660 terminating

2 081109 203807 222 INFO dfs.DataNode$PacketResponder:
PacketResponder 0 for block blk_-6952295868487656571 terminating

3
081109 204005 35 INFO dfs.FSNamesystem:
BLOCK* NameSystem.addStoredBlock: blockMap updated:
10.251.73.220:50010 is added to blk_7128370237687728475 size 67108864

4 081109 204015 308 INFO dfs.DataNode$PacketResponder:
PacketResponder 2 for block blk_8229193803249955061 terminating

5 081109 204106 329 INFO dfs.DataNode$PacketResponder:
PacketResponder 2 for block blk_-6670958622368987959 terminating

6 081109 204132 26 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock:
blockMap updated: 10.251.43.115:50010 is added to blk_3050920587428079149 size 67108864

Table 4.1: Raw log messages from the HDFS dataset

The resulting event templates that are extracted by Spell are shown in Table 4.2.
Every single log message in the raw logs must have originated from one of these two
log templates.

Event Id Log Template
E10 PacketResponder <*>for block blk_<*>terminating
E6 BLOCK* NameSystem.addStoredBlock: blockMap updated: <*>:<*>is added to blk_<*>size <*>

Table 4.2: Event templates extracted from the raw logs by Spell on the HDFS dataset

Using Spell to parse the entire HDFS log dataset with over 11M messages results
in just around 50 log templates and they are enough to describe the entire HDFS log
dataset. The section below discusses the different ways features can be extracted from
the log templates. Figure 4.3 displays the occurrences of the various log templates.

23

4.2. Feature extraction

0 10 20 30 40
Log Template

100

101

102

103

104

105

106

Oc
cu

re
nc

es
Log templates and their occurences retrieved by Spell from the HDFS dataset

Figure 4.3: Occurrences of the various log templates retrieved by Spell from the
HDFS dataset.

As evident from the Figure 4.3, the log messages are not equally distributed
across different templates. Therefore, simply considering each template as its own
category with equal weights is not the most ideal approach and methods such as
word embeddings and IDF based weighting will be able to extract more meaningful
information from the message itself. The following sections explore the different
feature extraction techniques as well as the different ways to encode data as SDRs.

4.2 Feature extraction

The previous section explored the use of a log parser to extract multiple different
fields from log messages. For this section, feature extraction primarily concerns itself
with the log templates that were retrieved by the parser. The aim is to extract
meaningful features that are usable by the HTM model to detect anomalies.

One natural approach is to investigate Natural Language Processing (NLP) methods
such as word embeddings and sentence embeddings. Additionally, information
retrieval techniques that are often useful for clustering documents are investigated as
well. Figure 4.4 shows the outline of the feature extraction process at this stage of
the overall solution.

24

4.2. Feature extraction

Figure 4.4: Outline of the feature extraction stage.

4.2.1 Sentence Embeddings

The methods discussed in this section use one or more methods to extract sentence
embeddings from the log messages. Semantic information of the log messages can be
obtained by converting the log templates and the list of parameters from the earlier
log parsing stage into word embeddings.

Numerous word embedding and sentence embedding models exist such as Word2vec
[23], template2vec [22], and transformer models such as Sentence BERT [27]. Word2vec
and similar models encode each word or token into a specific vector irrespective of the
context. This results in words that are spelled alike having the same encoding. For
example, the word “bank” takes different meanings for the following sentences “Loan
from a bank” and “Swim by the river bank”. In the context of logs, the messages are
often full sentences and therefore, capturing accurate semantics and context is crucial.

Sentence BERT [27] a.k.a SBERT, on the other hand, encodes complete sentences
as vectors of fixed dimensions. SBERT captures semantic and context-specific infor-
mation from a sentence by conditioning on both left and right contexts in a sentence

25

4.2. Feature extraction

as described in the original paper. As a result, the same word can be represented
through different embeddings based on the location and context of the word.

There are plenty of pre-trained sentence transformer models that are publicly
available through huggingface 1. For log messages, the pre trained "cli-token-model"
is utilized to convert the cleaned log templates to floating-point vectors with fixed
dimensions of size 768. However, the HTM model handles data in the form of SDRs
as explained in Section 2.1. In order to encode a SDR that contains the entire vector
of length 768, an array of approximately size 102912 would be required by simple
concatenating the bits belonging to SDR representation of each vector component.
The number 102912 can be arrived at by considering that a single numeric value
would ideally require 134 bits according to the Reference [26] discussing encoding
strategies. Therefore, it is vital to reduce the dimensionaility of the word embeddings
while still preserving the semantics and the distribution of the original data. The
following section discusses different possible dimensionality reduction approaches.

4.2.2 Dimensionality

As discussed earlier, the HTM model is only able to handle input in the format of
SDRs. The HTM library contains encoders designed by Numenta based on encoding
techniques discussed in the Reference[26]. The existing encoders are capable of en-
coding multiple different data types including integer values, scalar data, categorical
data, and even spatial data. However, before making use of the scalar encoders, it
is important to understand that the HTM algorithm currently is not effective with
data containing of more than five fields. The algorithm will end up requiring an ex-
tremely large number of data points to accurately learn temporal and spatial patterns.

A possible solution to this is to apply dimensionality reduction methods before
passing the data to the encoders. Numerous methods exist that have been proven to
be accurate at capturing information and meaning from a high-dimensional space
and projecting it onto a low dimensional space. In the proposed approach, two of
the most common methods are analyzed - PCA and UMAP.

4.2.3 Categorical IDF

Term frequency - Inverse document frequency (TF-IDF) is a common technique in
information retrieval used to rank the importance of a word or term in a particular
document belonging to a corpus. The TF-IDF of a term is calculated by combining
two different statistical features. More specifically the TF-IDF is the product of term
frequency (TF) and inverse document frequency (IDF) and is given by

TFIDFt,d = TFt,d × IDFt,d.

The first half of TF-IDF, namely the term frequency simply calculates the fre-
quency of a term occurring in the document. While there are multiple different
augmented methods to calculate the term frequency, the basic version that directly

1https://huggingface.co/

26

4.3. Encoding

counts the number of occurrences and calculates the frequency by finding the propor-
tion of the term occurring to the whole document is used here. The term frequency
can therefore be given by

TFt,d =
total number of occurences of term t in document d

total number of terms in document d
.

The second half of TF-IDF, involves the inverse document frequency which is
calculated by first counting the number of documents containing the specific term
and dividing the number by the total number of documents. The inverse of the value
is the IDF value as the name suggests.

IDFt,D =
total number of documents

total number of documents containing term t
.

In the proposed approach of encoding log messages, log templates are first ex-
tracted and each log template is considered as its own category. Here, the log sequence
is considered to be a document and each categorical log template is considered to be
a term in the document. Now, the IDF is calculated as follows

IDFl,D =
total number of log sequences

total number of log sequences containing log template l
.

In the end this results in two features being extracted:-

• Categorical - Log template

• Scalar - IDF value for each log template

The features are encoded using a combination of a scalar encoder and a categorical
encoder to be converted to SDRs before processing by the HTM model.

4.3 Encoding

This section describes the different encoding methods that are investigated to form
SDRs from the extracted features of the previous section. Figure 4.5 displays the
process at this stage of the overall workflow.

27

4.3. Encoding

Figure 4.5: Outline of the encoding stage

4.3.1 Scalar Encoders

The Scalar encoder[26] is an encoding technique designed by Numenta to encode
numerical and floating-point values. For a fixed size SDR of size n with width w,
the data is split into fixed-size buckets depending on the range of the input data.
The width w indicates the number of "ON" or "1" bits. Each bucket is denoted by
assigned w bits as 1 and therefore a total of (n−w) + 1 buckets can be formed. This
results in an SDR where numbers that fall into buckets that are closer to each other
have more overlapping bits compared to values that fall in buckets that are farther
away.

For example, consider n = 8 , w = 2 and let the input space exist in the range
(1, 24). Figure 4.6 shows the resulting SDRs that are generated through the encoder
when the inputs are integers 2 and 6.

Figure 4.6: Illustrative example displaying how the numbers 2 and 6 are encoded
when n = 8 and w = 2.

Here, it is trivial to note that the numbers 2 and 6 will have one overlapping bit
while the numbers 2 and 8 will have 0 overlapping bits. For the proposed approach

28

4.3. Encoding

the NuPIC 2 library provides an implementation of the Scalar encoder from Numenta.
In the case of encoding multiple values or features that are numeric in nature, an
SDR for each value is calculated and later concatenated to form a single large SDR.

4.3.2 K-D Trees

K-D trees are a way to represent k-dimensional points in an efficient manner that
allows searching for nearest neighbours. The trees are binary and are constructed by
iteratively splitting the hyperplane of each dimension based on the median point.
Each node in the tree splits the points equally along one specific dimension.

As an alternative approach to scalar encoders which simply encode numeric data,
the aim of using K-D Trees is to retain some of the spatial information of the input
data. By capturing information from nearest neighbours, the resulting SDRs of close
points in the higher-dimensional space will be similar while points farther apart will
be dissimilar.

In this approach, K-D trees are constructed by first considering a fixed sample of
data points. Each node of the K-D Tree is assigned to a bit in the SDR. In order
to represent a new point, the closest n neighbors are retrieved from the K-D Tree
and the corresponding bits in the SDR are set to 1. This ensures that the relative
location of a point in K -D space can still be accurately encoded while still preserving
some amount of uncertainty.

The steps involved in the construction are as follows Here, n is the required size

Algorithm 2 Calculate O = (o1,o2, . . . ,om)

Require: 0 < d < m
1: Construct a KDTree using n points
2: Construct array A of size n
3: for i ∈ (1, 2, . . . , n) do
4: Ai ← 0
5: end for
6: Let Nearest(x) be a procedure that returns the index of w nearest neighbours

of x
7: for ind ∈ Nearest(V) do
8: Aind ← 1
9: end for

of the SDR and w is the width or the number of 1 bits in the SDR.

4.3.3 Fly-hash encoder

The algorithm first described in [6] is explored as an alternate means to both encode
higher-dimensional sentence embeddings in a lower-dimensional space as well as
encode the data into a SDR. The algorithm is inspired by fruit flies’ olfactory senses

2https://github.com/numenta/nupic

29

4.3. Encoding

and is similar to locality-sensitive hashing. The proposed approach as described in
[6] projects the input space onto a sparse higher-dimensional space by computing
dot products against sparse binary vectors that are axis-aligned. Figure 4.7 provides
an illustrative example.

Each bit in the sparse higher-dimensional space maps to only a select number of
values in the input space. Since the projection vectors are binary, the dot product
is the sum of all the corresponding values in the input space that map to a specific
higher-dimensional space. The top 5% of the values are set to 1 in the sparse matrix
and the remaining are set to 0. This results in a hashing space where data that is
similar in the input space have similar resulting hashes or in this case similar SDRs.
Algorithm 3 describes the exact working of the proposed encoding technique

Algorithm 3 Calculate O = (o1,o2, . . . ,om)

Require: 0 < d < m
1: Let V ∈ Rd be the feature vectors of the log message
2: Set k as the number of bits to set active and m as the size of the SDR
3: Set p the percentage of connections
4: for i ∈ (1, . . . , d) do
5: for j ∈ (1, . . . ,m) do
6: Mji ← 1 with probability p
7: end for
8: end for
9: O←M×V

10: TopK ← k largest elements ∈ O
11: for i ∈ (1, . . . ,m) do
12: if Oi ∈ TopK then
13: Oi = 1
14: else
15: Oi = 0
16: end if
17: end for

Figure 4.7: Illustrative example of how binary sparse projection works with a higher-
dimensional hashing space.

30

4.4. Real-time Anomaly detection

In Figure 4.7, consider the input feature vector X = (x0, x1, . . . , x6) and the
output sparse vector O = (o0, o1. . . , o10) where every node is mapped to a fixed
number of values in the input feature vector. In this case two every single output
node maps to two nodes in the input space. Therefore, every node in the output space
contains the sum of two differet nodes in the input space. For example, o4 = [x0 + x2]
and o9 = [x3 + x4] as shown in the figure. The nodes corresponding to the largest
sum values are set to 1 and the remaining are set to 0. Since only the top 5% are set
to 1, sparseness of the resulting higher-dimensional array is always maintained.

4.3.4 K-Sparse Autoencoders

As discussed earlier in Section 2.3, K-sparse encoders are based on autoencoders
where only the top k activations are allowed to pass through in the encoder network.
In the implementation of the encoder to encoder SDRs, it is vital that the resulting
SDR is not only sparse but also binary. Therefore, the k-sparse autoencoder is
modified to set the top k activations in the encoder stage to 1 while the remaining
activations are set to 0 resulting in the required SDR.

In the case of the solution approach, sentence embeddings from the feature
extraction stage are converted directly to sparse representations through a k-sparse
autoencoder. The output at the end of the encoder network in the autoencoder
is used as SDRs for the HTM model. The core idea of using an autoencoder is
that the network would be able to learn to represent the high dimensional sentence
embeddings in an SDR format of different sizes and sparsity. The size of the SDR can
be controlled by simply controlling the size of the encoder network and the sparsity
can be controlled simply by the k value of the autoencoder.

4.4 Real-time Anomaly detection

After the feature extraction and the encoding stages the messages are encoded as
binary array representations in the form of SDRs, namely X = (x0,x1,x2, . . . ,xn).
Note that the null hypothesis H0 is that no anomaly exists. Conversely, for hypothesis
H1, ∃xa ∈ X such that xa is anomalous where 0 ≤ a ≤ n.

When the HTM model receives the input xi−1, it makes a prediction x̂i|i−1 for
xi based on the current input. Once the model receives the input i, it calculates
the prediction error Perr and the anomaly likelihood. The prediction error gives
information about the similarity of the predicted SDR and the ground truth SDR
and is given by

Perr = 1−
xi · x̂i|i−1

|xi|
Perr is a scalar value and it is easy to note that the closer the value is to one, the
less similar the two SDRs are or rather they share no similar “1” bits. A value closer
to 0 indicates that the SDRs are almost identical in the placement of their “1” bits.

An anomaly is detected by first computing the prediction error for a new log
message and classifying it as anomalous if the error crosses a pre-determined threshold

31

4.4. Real-time Anomaly detection

τ . In the case of log sequences where multiple logs are grouped together by a single
identifier, the average of anomaly scores over the entire sequence is used for anomaly
detection. Formally, the null and alternate hypothesis are

H0 : xi is normal

H1 : xi is anomalous

where we reject the null hypothesis H0 when Perr > τ and accept the null hypothesis
when Perr ≤ τ

32

Chapter 5

Results and Evaluation

5.1 Dataset

HDFS: The experiments are performed primarily on the HDFS dataset first in-
troduced in [30] by Xu et al. The dataset contains logs retrieved from a Hadoop
Distributed File System running on a private cloud environment resulting in over
11M log lines. Log sequences are associated with block ids with labels of normal or
anomalous being assigned to each block id. The labels were created manually by a
domain expert while following specific rules to assign anomalies.

BGL: The BGL dataset is an open-source log dataset presented in [24] that contains
logs collected from the supercomputer Blue Gene/L. The dataset contains over 4M
log lines with each log line labeled as either anomalous or normal. The dataset does
not follow traces or sequences and therefore, log sequences are generated by applying
a moving time window of 5 minutes. This results in 61840 log sequences, ranging
from 1 − 3645 messages in a single sequence. Furthermore, the dataset contains
repeating logs that are grouped together with anomalous and normal logs appearing
in chunks instead of individually. To make the dataset more suitable for the HTM
model, repeating messages are trimmed so that every consecutive message is different
from the previous one.

Table 5.1 displays the details of the two datasets. Note that anomalies in the
case of HDFS are labelled by blocks where as BGL labels individual log lines as
anomalies.

Datasets # of logs # of anomalies # of log sequences
HDFS 11, 175, 629 16,838 (blocks) 575061
BGL 4, 747, 963 348, 460(logs) -

Table 5.1: HDFS and BGL datasets.

5.2 Metrics

Anomaly detection can be modelled as a binary classification problem wherein each
data point is either classified as anomalous or normal. In order to measure the
performance of the HTM model, standard metrics such as precision, recall, accuracy

33

5.2. Metrics

and F-1 scores are used. To obtain these metrics the following terms are defined:

True positives (TP): Number of true anomalous data points that have been
accurately classified as anomalous by the model.

False positives (FP): Number of data points that have erroneously classified
as anomalous when they are originally non-anomalous points.

True negatives (TN): Number of true non-anomalous data points that have
been correctly classified as non-anomalous by the model.

False negatives (FN): Number of anomalous data points that have been miss
classified as normal by the model.

With TP, FP, TN and FN defined, the next step is to calculate precision, recall
and the F1-score.

5.2.1 Precision, recall and F1

Precision is defined as

P =
TP

TP + FP
.

Intuitively, it can be defined as the model’s ability to accurately predict anomalous
points. This is easy to understand from the definition since P is directly the proportion
of correctly classified anomalies to the total number of anomalies discovered by the
model. A higher precision (close to 1) implies that the model rarely mistakes in
pointing out anomalies whereas a lower score (close to 0) implies the opposite.

Recall is defined as

R =
TP

TP + FN
.

Recall provides information about the proportion of anomalies detected by the
model. A higher recall value implies that the model was able to catch most of the
original anomalies while a lower value implies that the model missed most of the
anomalies existing in the original data. However, it is important to note that a model
classifying every point as anomalous would score very high on recall but poorly on
precision. Therefore, it is important to look at a combination of both metrics before
deciding on the quality of the model.

F1 score - The F1 is defined as a means to combine both the information from
recall as well as precision and is defined as the harmonic mean of the two as follows

F1 =
2 · P ·R
P +R

.

34

5.2. Metrics

5.2.2 Anomaly Score

The HTM model is used to calculate a raw anomaly score st based on the predictions
of the temporal pooler where the score measures the proportion of mini columns that
were incorrectly predicted by the temporal pooler of the model. The idea behind the
formulation is that the HTM model would not be able to make a good prediction for
unseen anomalous data and thus resulting in a majority of the minicolumns being
unpredicted. This would result in a higher score whereas a data point that the HTM
model is able to successfully predict would result in a lower score. The calculation of
the anomaly score is provided as

st =
|At − (Pt−1 ∩At)|

|At|
,

where At is the active bits at the current timestep and Pt−1 is the predicted bits by
the temporal pooler from the previous timestep. Figure 5.1 illustrates an example of
a good prediction and a bad prediction.

Figure 5.1: Illustrative example of predictions by the HTM model.

35

5.3. Experimental Methodology

From the figure, it is easy to notice that a good prediction involves most of the
active cells being correctly predicted indicating significant overlap where as a bad
prediction implies the opposite.

5.2.3 Moving average precision

A moving window over log sequences is used to calculate the average precision as a
measure of the performance of the model over time. Given a series of log sequences
SL = (L1,L2, . . . ,Ln), the moving average precision at log sequence Li for a window
of size m is the average precision of the model for the series (Li−m,Li−m+1, . . . ,Li).
Note that each log sequence L = (l1, l2, l3, . . . , lk) is a sequence of log messages.

5.3 Experimental Methodology

In order to answer the research questions first proposed in Section 1.2, four different
experiments are performed and inferences are drawn from the results. The following
sections outline the experimental methodology as well as discuss the results from
the experiments. The rest of the chapter is organized into sections based on the
research question. Each section constructs an experiment to answer one research
question followed by the results of the experiment while providing a short discussion
elaborating on the inferences made from the results.

The experiments were run on a cloud instance with a Xeon® E5-2699 v4 cpu,
32GB of memory and 1x Tesla V100 GPU. The HTM model was built using the
htm.core libary1 which is a reimplementation of the NuPIC library2. The parameters
of the HTM model used in the experiments can be found in Appendix A.

5.4 RQ1 - How do different feature extraction methods
compare?

In Section 4 two different feature extraction methods were proposed: 1) Sentence
Embeddings 2) Categorical IDF. The purpose of the experiment described in this
section is to investigate the viability of both feature extraction methods for the
purpose of anomaly detection by the HTM model. In order to test their viability, two
HTM models are trained for anomaly detection: one that uses sentence embeddings
and one that uses IDF weighted log key encodings. Additionally, in order to further
analyze the impact of IDF weighting, a simple HTM model is trained that simply
encodes different log templates as categorical datal. The performance of the three
HTM models in terms of precision, recall, and F1 score is compared to decide the
most optimal feature extraction technique in the context of an HTM model.

1https://github.com/htm-community/htm.core
2https://nupic.docs.numenta.org/

36

5.4. RQ1 - How do different feature extraction methods compare?

5.4.1 Experimental Setup

IDF-Categorical: Log templates are extracted through the parser and arranged
in log sequences based on block ids of the HDFS dataset. The IDF values for each
log temmplate are calculated by using a 10% training sample using the TF-IDF
vectorizer from sklearn library 3. Log templates are mapped to IDF values while IDF
values of new log templates discovered during online training are set to 0. Here, it is
important to note that the HTM processes two input fields. The log key is encoded
as categorical ‘EventId’ using a scalar encoder while the IDF value is encoded as a
real value using a scalar encoder. Table 5.2 displays the parameters of the encoders.

Params EventId IDF
fieldname event idf
maxval 55 15

minval 0 0

n 600 130

type ScalarEncoder ScalarEncoder
w 21 21

Table 5.2: Parameters of the encoders for IDF-Categorical

Categorical: In addition to IDF-Categorical, a trivial approach of simply
encoding log templates as category is compared against the other feature extraction
techniques. Here, log templates are categorically encoded as SDRs using the built in
encoders from NuPIC.

Sentence embeddings: Logs are processed to retrieve log templates which are
then used to extract features through sentence embeddings. A pretrained SBERT
model from huggingface 4 is used to encode each log message into a vector of size 768.
The embedding is then reduced to a lower-dimensional input space (4 dimensions)
through a dimensionality reduction method. The 4-dimensional vector is then encoded
as an SDR using scalar encoders from NuPIC. Table 5.3 shows the details of the
scalar encoders.

Params PC1 PC2 PC3 PC4
fieldname PCA_1 PCA_1 PCA_1 PCA_1
maxval 17 17 17 17
minval −12 −12 −12 −12
n 250 250 250 250

type ScalarEncoder ScalarEncoder ScalarEncoder ScalarEncoder
w 21 21 21 21

Table 5.3: Parameters of the encoders for sentence embeddings

The choice of a dimensionality reduction method might impact the results and
therefore, two of the most common and versatile methods(PCA and UMAP) are
investigated to answer the sub-research question:

3https://scikit-learn.org/
4https://huggingface.co/sentence-transformers

37

5.4. RQ1 - How do different feature extraction methods compare?

• Does the choice of a dimensionality reduction method impact the performance
of anomaly detection?

Dimensionality reduction through PCA and UMAP is implemented using the
sklearn 5 library that is publicly available. The model parameters remain the same
and both the methods reduce the 784 vector sentence embedding to 4 dimensions.

5.4.2 Results

Figure 5.2 displays the bar plot visualizing the performance of both the dimensionality
reduction techniques.

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

0.19

0.37

0.25

0.94

0.48

0.64

HTM performance - different dimensionality reduction methods
UMAP
PCA

Figure 5.2: Performance of the HTM model using dimensionality reduction techniques
based on PCA and UMAP.

From the figure, it is clear that the PCA performs significantly better than the
UMAP. This could be explained by the way both techniques construct the lower-
dimensional space. UMAP tries to find a mapping from a higher-dimensional space
to a lower-dimensional space while preserving distance similarities where as PCA
produces principal components that are orthogonal to one another. In other words,
the 4-dimensional vector generated by PCA contains information in orthogonal axes
while the mapping performed by UMAP might still contain related or overlapping
information between mapped components. The HTM model when encoding as SDRs

5https://scikit-learn.org/

38

5.4. RQ1 - How do different feature extraction methods compare?

considers each dimension to be separate and can not learn relational information.
The different dimensions are encoded into a single SDR which is then processed as a
whole by the HTM model and as such, the HTM model is not able to explore any
relational information between the components or dimensions. Therefore, the HTM
model performs poorly in the case of UMAP compared to PCA.

Figure 5.3 displays the bar plot visualizing the performance of the three feature
extraction techniques.

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

0.63

0.50
0.55

0.75

0.51

0.60

0.94

0.48

0.64

HTM performance - different feature extraction methods
Categorical
IDF-Categorical
Sentence Embeddings

Figure 5.3: Comparision of HTM performance based on IDF-Categorical and Sentence
embedding feature extraction techniques.

From Figure 5.3, it is evident that the sentence embedding technique clearly
outperforms the IDF-based technique for anomaly detection. The difference in per-
formance is most noticeable in the measurement of precision. The IDF-based method
is only able to extract the relevance of a log key and none of the semantics of the
message itself while the sentence embedding technique captures semantic information
of the log message. By capturing semantic information, the sentence embedding
technique is able to identify anomalies more accurately and thus lowering the amount
of false positives (FP). In the case of IDF-Categorical and Categorical methods, the
resulting SDRs at the HTM model are likely to have little to no overlapping bits.
However, in the case of sentence embeddings, two similar log messages are likely to
have overlapping bits. Therefore, when an unseen message is processed, the HTM
model in the case of categorical and IDF-Categorical is more likely to produce a
higher anomaly score. Whereas, the overlapping bits help the HTM model to relate

39

5.5. RQ2 - Does the encoding method impact the performance of Anomaly detection?

the unseen log message to previously seen messages.

Additionally, the recall of all the three feature extraction techniques are similar
at around 0.48 for sentence embeddings upto 0.51 for IDF-Categorical. This implies
the following:

1. Around 50% of the anomalies are identifiable by all three feature extraction
techniques.

2. The difference in performance across precision and F1 score can be primarily
explained by the resulting overlapping bits under different techniques.

With the above results in mind, it is clear that different feature extraction
methods produce different results. The combination of sentence embeddings and
PCA clearly outperforms the other feature extraction that are proposed.

5.5 RQ2 - Does the encoding method impact the
performance of Anomaly detection?

The previous research question focused on the feature extraction stage of the pro-
posed solutions. This section focuses on the next stage - encoding the features to
SDRs. The experiment in this section implements 4 different encoding methods to
investigate the impact of performance that an encoding method may or may not
have on the HTM model.

5.5.1 Experimental Setup

The setup includes the HTM model trained using SDRs generated by four different
encoding methods: Scalar, K-d trees, FHE, and K - Sparse Autoencoders. Figure
5.4 provides an outline of how the different encoders process the input.

Figure 5.4: Pipeline of the different encoders

Scalar encoding: The sentence embeddings are first reduced to 4 dimen-
sions through PCA which are then encoded as SDRs using the implementation
provided by NuPIC. In this approach, each principal component has its own scalar

40

5.5. RQ2 - Does the encoding method impact the performance of Anomaly detection?

encoder resulting in 4 different SDRs each of size n = 256 and sparsity w = 16. The
SDRs are then concatenated to form one single large SDR of size n = 1024 and w = 64

K-d trees: The K-d tree is constructed by using a sample of 1024 points from
the input space of log embeddings. Each node in the K-d tree is assigned its own bit
location in the resulting SDR and when an incoming log message is processed and
its lower-dimensional embedding is extracted, the nearest 64 nodes in the K-d tree
are retrieved and the bits mapped to the 64 nearest nodes on the SDR are set to 1.
This results in an SDR of size n = 1024 and w = 21 that can then be processed by
the HTM model’s spatial pooler.

Fly hash encoder: Similar to previous methods, sentence embeddings of
the log templates are retrieved by using a pre-trained sentence transformer. The
embeddings of dimension 768 are then projected onto a sparsely distributed matrix
using the fly hash algorithm as described in Section 4.3.3. The resulting SDR is of size
n = 1024 with w = 64 and the HTM model is trained using a PassThroughEncoder.

Autoencoders: Here, a K-sparse autoencoder is first trained on sentence
embeddings retrieved from 10% of the dataset to learn the encoding space. The
K-sparse autoencoder converts the high-dimensional 768 sentence vector to a sparse
representation of size 1024. The hyper-parameter of the autoencoder k is set to 21
and therefore, the encoding layer results in a binary sparse representation of size
n = 1024 with w = 64 of its bits activated. This encoding is directly used as an SDR
input to the HTM model through a PassThroughEncoder.

5.5.2 Results

Figure 5.5 plots the performance of the HTM model for different encoding methods
used in the proposed solution.

41

5.5. RQ2 - Does the encoding method impact the performance of Anomaly detection?

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

0.98

0.18

0.31

0.94

0.48

0.64
0.69

0.39

0.50
0.46

0.43 0.45

Encoding methods with n = 1024, w - 64
KD
Scalar
Auto
FHE

Figure 5.5: Bar plot of the performance of the HTM model for different encoding
methods.

The bar chart indicates differences in performance between the different encoding
methods. The scalar encoding produces the best F1 score at 0.64 out of all the
encoding methods with the highest recall at 0.48 and the second highest precision
at 0.94. FHE and Autoencoders produce similar results across recall and F1 scores
while the precision of Autoencoders is significantly higher than that of the FHE
encoding. The K-d tree approach results in near perfect precision at 0.99. However,
the recall is the lowest at 0.18.

Both K-d tree and scalar encodings produces the least amount of false positives
(FP) which can be inferred from their high precision values. This can be explained by
the fact both these encoding methods make use of PCA to reduce dimensions of the
sentence embeddings. Additionally, both methods have a clearer control over the num-
ber of overlapping bits. Similar PCA values are bound to result in larger number of
overlapping bits between the SDRs. However, the K-d tree approach seems to produce
a large number of false negatives as well. This could be explained by the way the ap-
proach constructs the K-d tree. The constructed tree has a large number of duplicate
nodes as the number of unique log templates is much lower than the number of leaves.

The FHE and the K-sparse autoencoder approach directly convert the sentence
embeddings to SDRs. This allows for lesser control over overlapping bits for similar
values. While both the approaches have been shown to preserve distance similarities

42

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

to an extent, they perform poorly in the case of the HTM model for this particular
problem of log anomaly detection. The FHE approach is unsurprising as the algorithm
has previously been shown to produce poor results in converting word embeddings
to sparse vectors [6].

In short, it is clear that the choice of an encoding approach can drastically affect
the performance of the model in anomaly detection. The scalar encoding approach
produces the best possible result in terms of F1 score while FHE and autoencoders lag
behind with similar results. The poor performance of FHE and autoencoders could
also be the direct result of using log templates instead of log messages. FHE and
autoencoders might be more capable in identifying subtle similarities and difference
in log messages that are now lost due to the grouping of several different log messages
to a single common log template. Finally, the results of the K-d tree approach are
still inconclusive as it is unclear how the K-d tree might perform with a larger number
of unique nodes.

5.6 RQ3 - Is the HTM model suitable for anomaly
detection on log data?

This section designs three different experiments to explain the viability of the HTM
model for anomaly detection from a business and practical perspective. More
importantly, the experiments evaluate the model based on its ability to perform
anomaly detection while ensuring its ability to adapt to evolving data on the go. The
following subsection looks into one of the challenges that was encountered repeatedly
while performing the experiments in this chapter. The remaining subsections continue
to evaluate the performance of the HTM model for anomaly detection.

5.6.1 Additional challenge

One of the challenges that were encountered during the experiments was the pro-
cessing speed of the HTM model. The model’s recall time grows linearly with large
datasets when online learning. To verify this, the speed of the model is investigated
by plotting the time it takes to process each log message. For this experiment, the
HTM model is used to perform anomaly detection on the HDFS dataset using the
encoding method based on auto encoders. The choice for this particular encoding
method is because the resulting SDRs are of size 2048 which remains the default
value of a number of mini columns in the spatial pooler of the HTM model. The
same experiment could have been performed using the K-d tree or FHE encoding
method to arrive at the same results.

Since the logs are processed in sequences or blocks, the time taken for the SP,
the spatial pooler module responsible for learning a mapping of the input data and
the TM, the sequence learning module to process one log message or rather one SDR
is calculated and plotted in Figure 5.6

43

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Figure 5.6: Average time taken per log message plotted over the first 5000 blocks
with SDRs of size 2048.

From the figure, it is evident as the HTM model continuously trains over time,
the processing speed of the model drastically reduces. The first block has an average
processing time of around 0.02 seconds per message while block 5000 has an average
time of 0.15 per log message. For reference, the time required to process the remaining
570061 blocks at a speed of 0.15 seconds is around 712 hours. Furthermore, this
duration is calculated considering the average time required to be constant. Keeping
practical aspects in mind, the rest of the experiments are performed on a sample
dataset of the HDFS with around the first 100k log messages.

5.6.2 Performance on other datasets

The goal of this experiment is to evaluate the performance of the model on a signifi-
cantly different dataset without standard log sequences. Since the HTM model is
based on learning sequences that are temporal, the model is expected to perform
poorly on datasets that do not follow sequences. To verify this, the dataset of
BGL is chosen containing logs retreived from 128k processors of the BlueGene/L
supercomputer. The dataset does not contain any standard log sequences that can
be separated by block ids or instance ids. Instead, log sequences are generated by
using a moving window model where each window size is determined by duration.

Experimental Setup: Features are extracted through sentence embeddings
and PCA and encoded using scalar encoders which, as shown earlier, is the best
possible configuration. The performance of the HTM model is measured using the
same metrics of precision, recall, and F1 score.

Results As expected, the performance of the HTM model is extremely poor with
the BGL dataset shown in Figure 5.7 compared to the performance of the model on
the HDFS dataset.

44

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

0.15

0.40

0.21

0.94

0.48

0.64

HTM performance - different datasets
BGL
HDFS

Figure 5.7: Performance of the model on the BGL and HDFS datasets.

The poor performance on the BGL dataset could be explained by the nature of
the dataset. Since BGL contains no established log sequences or traces, the HTM
struggles to learn sequences. With no fixed traces, logs appear randomly with no
relation between two consecutive logs. This interferes with the sequence learning
process of the HTM and leads to poorer results. However, there is still a possibility
for an alternative explanation that the feature extraction techniques fail to capture
representative features in the BGL dataset.

5.6.3 Ability to adapt to different tasks

These experiments investigate the model’s ability to quickly adapt to different datasets
or tasks and its ability to learn to predict anomalies in significantly different data.

Experimental setup: A custom dataset is created by combining logs of the
HDFS dataset and the BGL datset. The first 3970 log sequences or blocks are from
the HDFS dataset followed by 1414 log sequences from the BGL dataset and a final
3970 log sequences from the HDFS dataset. Figure 5.8 provides an illustration of
the arrangement of the custom dataset. As earlier, features are extracted through
sentence embeddings, reduced through PCA and encoded using scalar encoders.

45

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Figure 5.8: Visual representation of the arrangement of the custom dataset

By constructing such a dataset, the results of the experiment would allow for the
following to be verifiable:

1. Does the model trained on task 2 perform better on task 3 indicating the
possibility of transfer learning?

2. Does the model experience catastrophic forgetting from task 1 to task 3?

Sentence embeddings for the log messages of the custom dataset are extracted
and reduced to 4 dimensions through PCA before using scalar encoders to encode
the vectors as SDRS. The parameters of the encoders are the same as in Table 5.3.

Results: Figure 5.9 plots the average precision for the entire custom dataset.
As expected, the model performs poorly during the BGL phase and performs much
better for both the HDFS phases. It is also noticeable that the model quickly adapts
to each dataset, reaching peak performance in around 20− 30 log sequences.

Start of task 2

0 2000 4000 6000 8000
Log sequence number

0.0

0.2

0.4

0.6

0.8

1.0
Start of task 3

Pr
ec
is
io
n

Performance on the custom dataset

Figure 5.9: Average precision over time of the HTM model over the custom dataset.

In order to better understand if the model retains any information learned during
the training of the first 3790 HDFS blocks, the performance of the model trained
under three different circumstances is evaluated. The three different conditions are:

1. A model trained on the HDFS-BGL dataset.

2. A model solely trained on the full first 3790 HDFS blocks.

3. A previously untrained model.

46

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Untrained
Trained on different tasks
Trained on the same task

0 500 1000 1500 2000 2500 3000 3500 4000
Log sequence number

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
is
io
n

Average precision for different tasks

Figure 5.10: Comparison of average precision for HTM model trained in three
different ways

The average precision is shown in Figure 5.10. The performance of the model
trained on the HDFS model is as expected with high scores of precision. However,
the model previously trained on the HDFS-BGL dataset and a completely untrained
model display similar levels of precision throughout. This implies the following

1. While the model is able to adapt to new data very quickly, it does not possess
any effective capabilities of transfer learning. This can be inferred from the
untrained model performing similarly to the model trained on the HDFS-BGL
dataset.

2. The model experiences catastrophic forgetting similar to artificial neural net-
works, it does not retain any information learned from training on the first
3790 HDFS blocks.

The above two conclusions answer the sub questions posed earlier in this sub-
section and with the results above it is safe to say that the HTM model is capable of
quickly adapting to different tasks or datasets. However, experimental results suggest
that the model does not retain any usable information from its earlier training and
is incapable of transfer learning in this particular scenario studied in this thesis.

5.6.4 Online learning

It is vital for a log anomaly detection model to learn from new data in a continuous
online manner as with every software update or patch, there is a chance of new
log messages being introduced. In this section, the ability of the HTM to learn
continously from streaming log data is evaluated by considering two models perform-
ing anomaly detection on the HDFS dataset with online learning disabled in one
HTM model and with online learning enabled in the other HTM model. With online
learning disabled, the HTM model does not grow new synapses or connections to
other cells and does not update the permeance values of its existing connections. It

47

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

simply makes predictions to calculate the anomaly score.

Experimental setup: Two HTM models, one with online learning enabled and
the other trained on 10% of the dataset while providing inference on the remaining
90% of the dataset are used to perform anomaly detection on the HDFS dataset. As
earlier, the performance is evaluated by comparing the precision, recall and F1 score
of the models.

Results: The performance of the two models is displayed as a bar graph in
Figure 5.11. As expected, the model with online learning enabled performs better
than the one without online learning.

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

Va
lu

e

0.94

0.48

0.64

0.74

0.43

0.55

HTM performance - online learning enabled/disabled
Online learning enabled
Online learning disabled

Figure 5.11: Performance of HTM model with online learning and with online learning
disabled

To better understand the results, the average precision is calculated and plotted
as well in the Figure 5.12

48

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

With online learning
Without online learning

0 1000 2000 3000 4000 5000 6000 7000 8000
0.0

0.2

0.4

0.6

0.8

1.0

Average precision over the past 1000 log sequences

Log sequence

Figure 5.12: Precision over time for an HTM model with online learning enabled and
with online learning disabled

From the figure, it is clear that after the initial 10% training data, the online
model continuously outperforms the model with online learning disabled. Online
learning helps the Spatial Pooler region of the HTM model to lean to map new
unseen log messages as SDRs suitable for the Temporal Pooler while the Temporal
Pooler learns new log sequences that may appear and even existing log messages
that may appear in newer and different contexts.

5.6.5 Benchmark performance

To ensure that the HTM model is capable of perforning anomaly detection on real
world data, it is essential to understand how well the HTM model fares against
existing solutions. Here, the performance of several existing solutions are compared
against the performance of the HTM model. In the case of the HDFS dataset,
Loglizer[12] provides a framework that includes implementations of several popular
log anomaly solutions. Table 5.4 displays the benchmark results of several supervised
and a few unsupervised approaches to anomaly detection along with the results
obtained from the HTM model.

49

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Method Precision Recall F1 Score
Decision Tree 0.998 0.998 0.998
LR 0.955 0.911 0.933
SVM 0.959 0.970 0.965
One-Class SVM 0.995 0.222 0.363
Isolation Forest 0.830 0.776 0.802
HTM 0.943 0.484 0.640
PCA 0.490 0.610 0.582
IM 0.833 0.980 0.915
LogAnomaly 0.970 0.940 0.960
Deeplog 0.963 0.952 0.957

Table 5.4: Benchmark results of various existing models on the HDFS dataset.

Methods such as SVM [15] and Decision trees [4] are supervised approaches and
since the HTM model is an unsupervised continously learning model, it is fair to
compare the model with other existing unsupervised models. Benchmark results of
other models are retrieved from their respective papers [22], [9], [17].

Figure 5.13 compares the results of the HTM model with other unsupervised
models on the HDFS dataset. The bar graph clearly shows the superiority of deep
learning models such as LogAnomaly and Deeplog which significantly outperform
other existing models. However, despite being trained on a subset of the HDFS
dataset, the precision of the HTM model at 0.94 is comparable to the LogAnomaly’s
and Deeplog’s precision of 0.97 and 0.96 respectively. Furthermore, the HTM model
outperforms the PCA based anomaly detection method across all three metrics.

50

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

Precision

Recall
F1-score

Metric

0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

0.83

0.98

0.91
0.97

0.94 0.96

0.49

0.61
0.58

0.96 0.95 0.950.94

0.48

0.64

Performance of different unsupervised models

IM

PCA

HTM

LA

DL

Figure 5.13: Comparison of the HTM model against existing unsupervised solutions.
Note that Deeplog and LogAnomaly have been abbreviated to ’DL’ and ’LA’ respec-
tively in the legend.

The results indicate that the HTM model performs better than earlier approaches
to log anomaly detection such as PCA but lags behind current state of the art deep
learning methods. However, it is also important to take into account HTM’s online
detection and learning ability. Deeplog is the only other model that claims to be
capable of online learning and detection.

Impact on practical applications: The third research question evaluates a
variety of different requirements that one might require from a log anomaly detection
model from a business perspective. The HTM model is quick to adapt to different
data and requires very little training data. Furthermore, the HTM has shown to be
capable of continuous online learning and does not require constant periodic retrain-
ing that is often required for other online deep learning models. Furthermore, the
HTM model is unsupervised and requires very little computational power compared
to other models.

However, the HTM model requires that the data adhere to strict conditions in
order to detect anomalies as shown by its poor performance on the BGL dataset.
Repeating log data as well as undefined log sequences are major issues that the
HTM model can not handle. Additionally, the HTM model requires that the data be
converted to SDRs before being processed by the HTM model, whereas the existing

51

5.6. RQ3 - Is the HTM model suitable for anomaly detection on log data?

literature lacks an effective way of converting multivariate data with large number of
dimensions into SDRs. These additional constraints might not be feasible in a real
life scenario where the distribution of the log data as well as the stability of the data
are things that can not be measured before hand. Lastly, the current implementation
of the HTM model 6 is not very efficient either, as training for long periods of time
reduces the processing speed of the model.

6https://numenta.com/htm-implementations/

52

Chapter 6

Conclusion

This section provides a thorough discussion on the results of the experiments, any
major contributions of the thesis and provides an overview of the possible directions
to take when considering future work.

6.1 Summary of the results

The thesis successfully implements an HTM solution to the classic log anomaly
detection problem. The first research question is answered by investigating mul-
tiple feature extraction techniques. Experimental results indicate the superiority
of sentence embeddings over other categorical approaches with the HTM model
trained using sentence embeddings reaching F1 scores of 0.64 on the HDFS dataset
whereas the categorical approaches trail behind at 0.60 and 0.55. Using PCA to
perform dimensionality reduction produces the best results for anomaly detection
with precision, recall and F1 scores of 0.94, 0.48 and 0.64, respectively, while usage
of UMAP results in much poorer scores at 0.19, 0.37 and 0.25.

The experiment comparing four unique methods to encode SDRs provides answers
for the second research question trying to find the most suitable approach to encoding
log messages as SDRs. Scalar encoders have proven to be the most optimal with
the highest F1 at 0.64 and the second highest precision value at 0.94. The K-d tree
approach of encoding messages manages to reach the highest levels of precision at
0.98 but consequently, its performance on recall is rather low at 0.18 rendering scalar
encoders to be the most optimal. The performance of autoencoders and FHE are
mediocre with F1 scores of 0.50 and 0.45 respectively.

Finally, a series of tests conducted on the HTM’s capabilities help answer the
final research question dealing with the feasibility of the HTM model for log anomaly
detection. Results from tests conducted on the HTM’s online learning capabilities,
transfer learning and adaptability to different tasks indicate that the HTM is capable
of online learning resulting in an increase in performance as well as being adaptable
to different tasks or changing datasets. The HTM model with online learning enabled
produces precision, recall and F1 scores of 0.94, 0.48 and 0.64, respectively, whereas
the model with online learning disabled results in much lower scores at 0.74, 0.43 and

53

6.2. Summary of the main contributions

0.55. However, the performance does not translate to other benchmarking datasets
such as the BGL dataset which lack log traces or sequences. The HTM model results
in a much lower F1 score of 0.21 for the BGL dataset.

In the context of application, the HTM model performs significantly better than
other unsupervised approaches such as PCA but still lags behind current state-of-the-
art models such as Deeplog. Additionally, the tedious amount of assumption on the
data distribution that are required for the HTM model to perform well may hinder the
implementation of the model for practical applications that deal with log messages.
While the HTM has the advantage of being unsupervised and online, requiring little
training data and almost no retraining, deep learning models such as Deeplog and
LogAnomaly significantly outperform the HTM model and are capable of online
learning. The major drawback of such deep learning models is their requirement for
periodic retraining to ensure the model stays up to date in case the data distribution
is non-stationary.

6.2 Summary of the main contributions

The thesis proposes a novel method to adapt the HTM model for the purpose of log
message anomaly detection. The proposed methodology follows the different stages
in log anomaly detection and provides contributions with strong affinity toward the
HTM model in the following ways:

1. Firstly, two novel feature extraction methods, one utilizing sentence embeddings
extracted using a transformer model and another using categorical templates
weighed by IDF values are proposed and verified as suitable feature extraction
techniques. The performance of the HTM on log anomaly detection shown in
Figure 5.3 displays the method of sentence embeddings reaching an F1 score of
0.64, recall of 0.48 and high precision of 0.94. The IDF - Categorical technique
proves to be an improvement over the existing trivial categorical method with
an F1 score of 0.60 compared to 0.55, the F1 score of the categorical approach.
While both these approaches perform better than the trivial approach, the
sentence embeddings technique with the highest F1 score at 0.64 is the optimal
method for log anomaly detection.

2. Secondly, the thesis proposes four unique approaches to encoding SDRs and
evaluates their performance on log anomaly detection. The novel encoding
methods include a K-d tree approach, autoencoders, the Fly-hash algorithm
and a trivial scalar encoder.

The four encoders result in the varying performance of the HTM model as
evidenced by the results in Figure 5.5. The Scalar encoding performs the best
out of the four with the highest F1 score at 0.64 and is the most suited for
log anomaly detection. However, the K-d Tree approach provides the highest
precision score at 0.98 but also results in the lowest recall score at 0.18. The
low F1 scores of K-d tree at 0.31 and the remaining encoders of FHE and
autoencoder at 0.50 and 0.45, respectively, render them unsuitable for log
anomaly detection. However, owing to their ability to transform data to SDRs,

54

6.3. Future work

they might be interesting for future work regarding downstream tasks such as
clustering or classification.

3. Finally, the work investigates the different capabilities of the HTM model and
evaluates the model against existing state-of-the-art anomaly detection models.
Several tests are performed on various features of the HTM ranging from its
ability to perform continuous unsupervised online learning, transfer learning
and its ability to adapt to different tasks to its processing speed. Furthermore,
the thesis evaluates the viability of the HTM model in a real-life business
situation by comparing its performance across datasets and under various
scenarios that the model might encounter in a production environment.

Figure 5.7 shows the HTM performing rather poorly with the BGL dataset
with an F1 score of just 0.21 implying that the HTM model cannot directly
perform log anomaly detection on all datasets. Additionally, the processing
speed of the HTM gradually decreases with increasing data as seen in Figure
5.6. With these drawbacks in mind and comparing the performance of the
HTM model to SOTA in Table 5.4, the current HTM model is not the best
suited for log anomaly detection in a production environment. However, it
is important to note that the HTM is the only model capable of continuous
online learning and, as evidenced in Figure 5.11, the HTM model’s performance
drastically improves with online learning enabled.

In short, the work provides two different feature extraction techniques, four
unique ways to encode SDRs and a complete and thorough investigation into the
capabilities of the HTM model for the task of interest: Online Anomaly Detection
on streamed log messages.

6.3 Future work

There are three possible primary areas where future work could aid in the develop-
ment and improvement of the proposed solution to the anomaly detection problem.
The first is to focus on feature extraction part of analyzing log data. Currently,
information is abstracted through the use of log templates solely. Information on pro-
cess Ids, log parameters such as instance Ids and machine Ids are simply abstracted.
Instead, through an appropriate method of feature encoding, these additional features
might help improve the performance of the HTM model. Additionally, improvements
to the existing sentence embeddings could be made through training a transformer
model on a custom corpus relating to the log dataset.

The second area is the representation of the data as SDRs including investigating
alternative methods for encoding the data as SDRs. At present, the four different
approaches that are explored in the thesis are general purpose encoders designed to be
able to encode any scalar or categorical data. An encoding approach that is primarily
focused on encoding word or sentence embeddings might provide a more effective
representational SDR for the spatial pooler of the HTM model. A starting point
would be to implement an encoder following the semantic folding technique described
in Cortical.Io’s white paper [29] as it could provide greater degree of accuracy in

55

6.3. Future work

preserving distances globally and locally in the word embedding space.

The final area of interest is the HTM model itself where improvements could
be made to the implementation of the model to better adapt the model to machine
learning problems. The current implementation of the model strictly assumes
temporal distribution of the data in addition to assuming the data to be in the form
of fixed sequences. Additionally, the HTM model is unable to handle more than four
or five features due to the size of the SDRs. Therefore, using an ensemble model
with a combination of a traditional Long Short Term Memory (LSTM) and an HTM
model might help alleviate some of the weaknesses of the HTM model.

56

Appendix A

Parameters of the HTM model

Parameters Value
boostStrength 2.0

columnCount (2048)

localAreaDensity 0.04

potentialPct 0.85

potentialRadius 2363
synPermActiveInc 0.04

synPermConnected 0.139999999999

synPermInactiveDec 0.006

activationThreshold 17
cellsPerColumn 16
initialPerm 0.21

maxSegmentsPerCell 128
maxSynapsesPerSegment 64
minThreshold 10
newSynapseCount 32
permanenceDec $0.1
permanenceInc 0.1

Table A.1: Parameter values of the HTM model used in the experiments.

57

Bibliography

[1] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised real-time anomaly
detection for streaming data,” Neurocomputing, vol. 262, pp. 134–147, 2017,
online Real-Time Learning Strategies for Data Streams. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217309864

[2] P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML Workshop on Unsupervised and Transfer Learning,
ser. Proceedings of Machine Learning Research, I. Guyon, G. Dror,
V. Lemaire, G. Taylor, and D. Silver, Eds., vol. 27. Bellevue,
Washington, USA: PMLR, 02 Jul 2012, pp. 37–49. [Online]. Available:
https://proceedings.mlr.press/v27/baldi12a.html

[3] W. Cao, X. Feng, B. Liang, T. Zhang, Y. Gao, Y. Zhang, and F. Li, “Logstore:
A cloud-native and multi-tenant log database,” 06 2021, pp. 2464–2476.

[4] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure diagnosis
using decision trees,” in International Conference on Autonomic Computing,
2004. Proceedings., 2004, pp. 36–43.

[5] Y. Cui, S. Ahmad, and J. Hawkins, “The htm spatial pooler – a neocortical
algorithm for online sparse distributed coding,” bioRxiv, 2017. [Online].
Available: https://www.biorxiv.org/content/early/2017/02/16/085035

[6] S. Dasgupta, C. F. Stevens, and S. Navlakha, “A neural algorithm for a
fundamental computing problem,” Science, vol. 358, no. 6364, pp. 793–796, 2017.
[Online]. Available: https://www.science.org/doi/abs/10.1126/science.aam9868

[7] J. Deng, Z. Zhang, E. Marchi, and B. Schuller, “Sparse autoencoder-based
feature transfer learning for speech emotion recognition,” in 2013 Humaine
Association Conference on Affective Computing and Intelligent Interaction, 2013,
pp. 511–516.

[8] M. Du and F. Li, “Spell: Online streaming parsing of large unstructured system
logs,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 11,
pp. 2213–2227, 2019.

[9] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” 10 2017, pp. 1285–1298.

58

https://www.sciencedirect.com/science/article/pii/S0925231217309864
https://proceedings.mlr.press/v27/baldi12a.html
https://www.biorxiv.org/content/early/2017/02/16/085035
https://www.science.org/doi/abs/10.1126/science.aam9868

Bibliography

[10] H. Guo, S. Yuan, and X. Wu, “Logbert: Log anomaly detection via bert,” in
2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp.
1–8.

[11] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, “Biological and machine
intelligence (bami),” 2016, initial online release 0.4. [Online]. Available:
https://numenta.com/resources/biological-and-machine-intelligence/

[12] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in 27th IEEE International Symposium on
Software Reliability Engineering, ISSRE 2016, Ottawa, ON, Canada, October
23-27, 2016. IEEE Computer Society, 2016, pp. 207–218. [Online]. Available:
https://doi.org/10.1109/ISSRE.2016.21

[13] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.1127647

[14] V.-H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: How far are we?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1356–1367. [Online]. Available:
https://doi.org/10.1145/3510003.3510155

[15] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm blue-
gene/l event logs,” 11 2007, pp. 583 – 588.

[16] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in Proceedings of the 38th
International Conference on Software Engineering Companion, ser. ICSE ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p. 102–111.
[Online]. Available: https://doi.org/10.1145/2889160.2889232

[17] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants from console
logs for system problem detection,” 01 2010.

[18] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data system logs
using convolutional neural network,” in 2018 IEEE 16th Intl Conf on Dependable,
Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and
Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), 2018,
pp. 151–158.

[19] A. Makhzani and B. Frey, “k-sparse autoencoders,” 12 2013.

[20] M. Manassi, B. Sayim, and M. H. Herzog, “When crowding of crowding leads to
uncrowding,” Journal of Vision, vol. 13, no. 13, pp. 10–10, 11 2013. [Online].
Available: https://doi.org/10.1167/13.13.10

59

https://numenta.com/resources/biological-and-machine-intelligence/
https://doi.org/10.1109/ISSRE.2016.21
https://www.science.org/doi/abs/10.1126/science.1127647
https://doi.org/10.1145/3510003.3510155
https://doi.org/10.1145/2889160.2889232
https://doi.org/10.1167/13.13.10

Bibliography

[21] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” 2018. [Online].
Available: https://arxiv.org/abs/1802.03426

[22] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao,
P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of sequential and
quantitative anomalies in unstructured logs,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, 7 2019,
pp. 4739–4745. [Online]. Available: https://doi.org/10.24963/ijcai.2019/658

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2013. [Online].
Available: http://arxiv.org/abs/1301.3781

[24] A. Oliner and J. Stearley, “What supercomputers say: A study of five system logs,”
in 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07), 2007, pp. 575–584.

[25] K. Pearson, “LIII. On lines and planes of closest fit to systems of points in space,”
Nov. 1901. [Online]. Available: https://doi.org/10.1080/14786440109462720

[26] S. Purdy, “Encoding data for htm systems,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.05925

[27] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese
bert-networks,” 2019. [Online]. Available: https://arxiv.org/abs/1908.10084

[28] C. Tao, H. Pan, Y. Li, and Z. Zou, “Unsupervised spectral–spatial feature learning
with stacked sparse autoencoder for hyperspectral imagery classification,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 12, pp. 2438–2442, 2015.

[29] F. D. S. Webber, “Semantic folding theory-white paper,” 2015.

[30] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, ser. SOSP ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p. 117–132.
[Online]. Available: https://doi.org/10.1145/1629575.1629587

[31] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Semi-supervised log-based anomaly detection via probabilistic label estimation,”
in 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1448–1460.

[32] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on

60

https://arxiv.org/abs/1802.03426
https://doi.org/10.24963/ijcai.2019/658
http://arxiv.org/abs/1301.3781
https://doi.org/10.1080/14786440109462720
https://arxiv.org/abs/1602.05925
https://arxiv.org/abs/1908.10084
https://doi.org/10.1145/1629575.1629587

Bibliography

European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 807–817. [Online]. Available:
https://doi.org/10.1145/3338906.3338931

61

https://doi.org/10.1145/3338906.3338931

List of Figures

2.1 Illustration depiction the biological inspiration of the HTM model from [20]. 7
2.2 Working of the spatial pooler adapted from [5] 9
2.3 Illustration of sequence learning by the Temporal Pooler from [1] 10
2.4 Illustration of a simple numerical encoder. 13
2.5 Simple SDR encoding for two disjoint categories. 13
2.6 A simple SDR encoding for days of the week [26]. 14
2.7 Schematic representation of the encoder-decoder architecture 14

4.1 Workflow of the proposed solution . 20
4.2 Outline of the parsing sage using Spell. 21
4.3 Occurrences of the various log templates retrieved by Spell from the HDFS

dataset. 24
4.4 Outline of the feature extraction stage. 25
4.5 Outline of the encoding stage . 28
4.6 Illustrative example displaying how the numbers 2 and 6 are encoded

when n = 8 and w = 2. 28
4.7 Illustrative example of how binary sparse projection works with a higher-

dimensional hashing space. 30

5.1 Illustrative example of predictions by the HTM model. 35
5.2 Performance of the HTM model using dimensionality reduction techniques

based on PCA and UMAP. 38
5.3 Comparision of HTM performance based on IDF-Categorical and Sentence

embedding feature extraction techniques. 39
5.4 Pipeline of the different encoders . 40
5.5 Bar plot of the performance of the HTM model for different encoding

methods. 42
5.6 Average time taken per log message plotted over the first 5000 blocks

with SDRs of size 2048. 44
5.7 Performance of the model on the BGL and HDFS datasets. 45
5.8 Visual representation of the arrangement of the custom dataset 46
5.9 Average precision over time of the HTM model over the custom dataset. 46
5.10 Comparison of average precision for HTM model trained in three different

ways . 47
5.11 Performance of HTM model with online learning and with online learning

disabled . 48

62

5.12 Precision over time for an HTM model with online learning enabled and
with online learning disabled . 49

5.13 Comparison of the HTM model against existing unsupervised solutions.
Note that Deeplog and LogAnomaly have been abbreviated to ’DL’ and
’LA’ respectively in the legend. 51

List of Tables

4.1 Raw log messages from the HDFS dataset 23
4.2 Event templates extracted from the raw logs by Spell on the HDFS dataset 23

5.1 HDFS and BGL datasets. 33
5.2 Parameters of the encoders for IDF-Categorical 37
5.3 Parameters of the encoders for sentence embeddings 37
5.4 Benchmark results of various existing models on the HDFS dataset. . . . 50

A.1 Parameter values of the HTM model used in the experiments. 57

63

	Introduction
	Motivation
	Research Questions
	Literature review
	Supervised methods
	Semi-Supervised
	Unsupervised methods.
	Summary

	Thesis approach
	Outline of the thesis

	Theoretical Background
	Hierarchical Temporal Memory
	Spatial Pooler
	Temporal Pooler

	Sparse Distributed Representations
	Properties of SDRs
	Encoding

	Autoencoders
	Dimensionality reduction

	Problem Statement
	Solution Approach
	Parsing - Spell
	Feature extraction
	Sentence Embeddings
	Dimensionality
	Categorical IDF

	Encoding
	Scalar Encoders
	K-D Trees
	Fly-hash encoder
	K-Sparse Autoencoders

	Real-time Anomaly detection

	Results and Evaluation
	Dataset
	Metrics
	Precision, recall and F1
	Anomaly Score
	Moving average precision

	Experimental Methodology
	RQ1 - How do different feature extraction methods compare?
	Experimental Setup
	Results

	RQ2 - Does the encoding method impact the performance of Anomaly detection?
	Experimental Setup
	Results

	RQ3 - Is the HTM model suitable for anomaly detection on log data?
	Additional challenge
	Performance on other datasets
	Ability to adapt to different tasks
	Online learning
	Benchmark performance

	Conclusion
	Summary of the results
	Summary of the main contributions
	Future work

	Parameters of the HTM model
	Bibliography
	List of Figures
	List of Tables

