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Abstract
As performance requirements for both speed and accuracy of high-precision mechanical motion
stages increase, the flexible behavior that they exhibit can no longer be neglected as it appears in
the relevant frequency range for control. Additionally, physical design constraints and classic rigid-
body assumptions often limit the number of available spatially distributed sensors and prevent
those sensors to measure a performance variable directly, forcing it to be inferred instead. Control
techniques that handle this type of inferential problem often require accurate models. The aim
of this research is to provide a methodology for accurately identifying spatio-temporal models of
overactuated systems which have a limited number of sensors available. A modal approach is
pursued that uses prior knowledge to extend the spatial density of available information beyond
what would otherwise be possible given the number of available sensors. This information is later
interpolated using two different approaches that rely on physical system knowledge and prior
knowledge gathered from a finite element analysis, respectively. The resulting spatio-temporal
model can be used to estimate a performance variable anywhere within a defined spatial domain.
Using two experimental setups, the effectiveness of the proposed sensor extension and interpolation
methods is demonstrated.
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Nomenclature

Acronyms

CAD Computer-Aided Design
DOF Degree Of Freedom
FEA Finite Element Analysis
FEM Finite Element Method
FRF Frequency Response Function
GP Gaussian Process
I/O Input/Output
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
LM Levenberg–Marquardt
LMFD Left Matrix Fraction Description
LOOCV Leave One Out Cross Validation
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LTI Linear Time Invariant
MIMO Multiple-Input Multiple-Output
OAT Over-Actuated Test rig
POI Point of interest
SK Sanathanan-Koerner
STPS Smooth Thin Plate Spline
SVD Singular Value Decomposition

Common variables

L Output matrix of a modal model
R Input matrix of a modal model

Operators

∈ In x ∈ Y indicates that x occurs in the elements of Y
∪ Union X ∪ Y indicates a set that contains elements of both X and Y
⊂ Proper subset X ⊂ Y means that X is a subset of Y
| · | Absolute | − x| yields x
E[·] Expected value E[X] is the expected value of a random variable X
argmin Argument of the minimum argminx f(x) yields the value of x for which f(x) is minimal
min Minimum min(X) returns the smallest value in the set X
∆2 Biharmonic ∆2 = (∇2)2, where ∇2 is the partial derivative
← Relation Gy←x indicates a transfer function from x to y
e⃗xy Unit frame e⃗xy indicates a unit length vector in direction y of reference frame x
vec Vectorization vec (X) stacks all data in matrix X columnwise
[·]i Row evaluation [X]i indicates the i-th row of X
[·]j Column evaluation [X]j indicates the j-th column of X
·H Complex Conjugate transpose

[
x1 + y1i x2 + y2i

]H
=

[
x1 − y1i x2 − y2i

]⊤
Ix Identity matrix Ix indicates a x-by-x sized identity matrix

Sets

C The set of complex numbers
R The set of real numbers
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Chapter 1

Introduction
Stringent performance requirements in next-generation precision mechatronic systems require ex-
plicit control of the flexible dynamic behavior. Traditionally, mechatronic systems can be approxi-
mated as a rigid body in the frequency range of interest. However, increasingly stringent demands
regarding throughput and accuracy require the flexible dynamic behavior to be controlled explic-
itly.

Applications that require their flexible dynamics to be accurately controlled include adaptive
optics in ground-based telescopes [1, 2], and wafer scanners in photolithography machines [3].
These devices in particular contain a large surface area of a single body where the out-of-plane
deflection must be controlled with extreme accuracy at a high bandwidth. In case of ground-based
telescopes, this is a large deformable mirror that compensates for atmospheric turbulence. In case
of a wafer scanner, it is the surface of a wafer as it undergoes optical exposure, during which the
wafer is moving at high speeds in the in-plane directions. The wafer and wafer scanner can be seen
as a single body that exhibits flexible behavior and thus the system dynamics vary spatially on it.
This creates an inferential control problem as the location at which the wafer is exposed cannot
be measured directly. The spatial behavior can also no longer be derived from stage geometry,
due to the flexible dynamics in the control bandwidth.

The presence of the flexible dynamics within the control bandwidth require them to be con-
trolled with a large number of spatially distributed actuators, i.e. overactuation. Additionally, a
number of sensors larger than the number of Degrees Of Freedom (DOF) might also be required
to ensure that the control-relevant flexible behavior is observable in the spatial domain. On many
systems including the wafer scanner, it is however not possible or practical to place a large num-
ber of sensors due to spatial constraints or cost considerations [4]. Sensors that do get placed
might also not be at a control-relevant location. Frameworks for handling this type of complex
spatio-temporal control problems include inferential control [5] and robust control [6]. Addition-
ally, feedforward approaches for inferential control problems have also been proposed in [7, 8].
All these methods rely heavily on accurate parametric models of the underlying spatio-temporal
flexible dynamics.

Approaches to identify parametric spatio-temporal models based on non-parametric data are
mentioned in [9], [10] and [11]. The latter is an identification approach that uses the modal-
damped mechanical system model to efficiently and accurately identify modal models [12] with
large input/output (I/O) dimensions. It manages to reduce model complexity compared to a full
Linear Parameter-Varying (LPV) approach [13–15] by using system knowledge i.e. by assuming
that the system to be modeled consists of a single moving body and deformations are small. These
identification methods often rely on a set of auxiliary sensors that are temporarily mounted to
expand the total number of sensors for identification purposes only. This data is then used to
construct a model that can predict the dynamic behavior of a performance variable based on a
limited number of sensors during normal operation. The above-mentioned approach of adding a
calibration step to the identification procedure is not always feasible or practical to implement,
nor is it scalable.

Although several approaches to identify the behavior of flexible systems exist, at present,
a method that allows accurate spatio-temporal identification of an overactuated flexible body
using limited sensors, is not available. The aim of this thesis is to show that by extending the
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modal spatio-temporal identification approach in [11] with prior system knowledge based on the
Betti-Maxwell reciprocal theorem [16], [17, Sec 9.2] it is possible to identify a modal LPV model
using fewer sensors. A key insight that the reciprocal theorem provides is a reinterpretation of
the available data in such modal models which allows missing sensor data to be supplemented by
information from the actuators. Additionally, two methods will be shown that extend the spatially
sampled linear time-invariant (LTI) model to an LPV model that can predict a performance
variable anywhere in a relevant spatial domain. The resulting modal model should be able to
capture the complex spatio-temporal behavior of the system, thereby enabling model-based control
of next-generation motion systems. The research challenge that is addressed in this thesis is thus:

Develop a method that exploits prior knowledge of overactuated mechanical systems and
enables using fewer sensors whilst still accurately identifying the flexible dynamics in
a control-relevant model.

Three main sub-questions can be derived based on this challenge, namely:

Q1 How can prior mechanical system knowledge be used to increase the spatial resolution
of identified models where only a limited set of sensors is available?

Q2 How can a spatially sampled model be extended to provide an estimate of the flexible
dynamics anywhere in a spatial domain?

Q3 To what extent is model accuracy affected by potential approaches that deal with a
limited sensor set, compared to when a large sensor set is available instead?

The main contributions of this thesis are now listed, note that some contain sub-contributions as
well. Here, contributions C1.1, C1.2 and C2 relate to sub-questions Q1, Q2 and Q3, respectively.

C1 Define a systematic approach for identifying spatio-temporal models of mechanical sys-
tems by exploiting prior mechanical system knowledge.

C1.1 Formulate a method to combine information from the input and output ma-
trices of an identified modal model to extend mode shape information and
thus provide more densely sampled mode shape data than would otherwise be
possible given the number of sensors available.

C1.1.1 Provide insight into the physical meaning of the input and output
matrices of a modal model.

C1.1.2 Formulate an approach to combine information from these input and
output matrices.

C1.1.3 Provide insight into rigid-body mode shape blending.
C1.1.4 Define a method to find optimal locations for placing special collo-

cated sensor and actuator pairs.

C1.2 Define two robust methods for interpolating discretely sampled mode shapes.

C1.2.1 Show mode shape interpolation using the well-known Smooth Thin
Plate Spline algorithm.

C1.2.2 Introduce an interpolation method that uses Gaussian Processes and
prior system knowledge based on FEM simulations.

C2 Experimentally validate the proposed methods for extending mode shape data and in-
terpolation.

1.1 Considered system class

In this research, the considered systems class of next-generation motion systems, that includes
wafer scanners and adaptive optics, is defined by systems where a single flexible body must be
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controlled with a large number of spatially distributed actuators. These systems must have high
stiffness and predominantly exhibit linear dynamics, meaning low friction, low backlash, and be
lightly damped. The performance variable on the flexible body may not coincide with the measured
variables and can change location over time. This body must be overactuated, such that flexible
behavior can be identified and controlled. The minimal number of sensors should at least be equal
to the number of unconstrained DOF of the flexible body. It is also assumed that the in-plane
locations at which available sensors and actuators act on the flexible body are constant. The
research will focus on flexible bodies that approximate a thin plate or thin beam i.e. bodies where
one dimension is significantly smaller than the others. The flexible behavior is considered in the
out-of-plane direction of these bodies and the deformations are assumed to be small.

1.2 Thesis outline

The concept of using fewer sensors will be demonstrated on two different experimental setups.
The first one, as discussed in section 2.1 is called the Over-Actuated Test rig (OAT) and it
emulates part of a wafer stage used for photolithography in chip manufacturing. The second setup
is introduced in section 2.2. It is a flexible beam system that is intentionally built to evaluate
new identification and control methods for next-generation motion systems. A method to model
flexible structures will be provided in chapter 3, along with a general overview of the proposed
identification framework. In chapter 4, the method used to retrieve non-parametric measurements
from both setups is discussed and an algorithm that is used to fit a parametric modal model to
available non-parametric data is provided. In section 5.1, the concept of the reciprocal theorem is
applied to modal models and its implications are explained. Contribution C1.1 and its first three
sub-contributions about combining sensor and actuator information are treated in section 5.2.
In section 5.3, the fourth sub-contribution about the placement of collocated pairs is discussed.
Section 5.4 covers contribution C1.2 about mode shape interpolation and in chapter 6 the methods
are experimentally verified, constituting contribution C2.
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Chapter 2

Problem formulation
To test and validate any solution approaches for identifying spatio-temporal models, two bench-
mark setups will first be introduced in this chapter. Both systems are overactuated and exhibit
flexible dynamics in the control-relevant frequency range, which suits the considered system class.
The first setup is the Over-Actuated test rig (OAT) which emulates the short-stroke of a next-
generation wafer stage used for photolithography in chip manufacturing. The second setup is the
flexible beam system. Contrary to the 2-dimensional spatial domain of the OAT, which relates to
out-of-plane deflection, the flexible beam system only has a 1-dimensional spatial domain. In some
cases, this makes visualizing and interpreting modal information more intuitive. Both setups will
be used to illustrate and verify identification methods. Next, the problem formulation is given.

2.1 The Over-Actuated Test rig

The OAT is a setup created to test new actuator concepts for current 300 mm and next-generation
450 mm wafer stages. The challenge accompanying larger wafer diameters is, apart from accu-
rately positioning in 6-DOF, about identifying and controlling the flexible dynamics related to
out-of-plane deflection at a changing point of interest (POI) during dynamic movements of the
stage. Here, the POI does not coincide with the measured variables, creating an inferential control
problem that requires an accurate spatio-temporal model to be identified.

When large movements and high accuracy are required, the mechanics are often separated
into a long stroke and short stroke, which provide coarse and fine positioning, respectively. The
OAT setup is depicted in Figure 2.1 and provides the mechanics of the short stroke. Here, a large
granite base 7○ sits on top of a three-legged stiff frame, it provides surfaces for the chuck force
frame 6○, the three air mounts 4○, and the scanning sensor slide 9○. The chuck force frame is used
to actuate the chuck or wafer table 5○ in 6-DOF, i.e. all chuck forces are created relative to this
frame. It contains 4 Lorentz actuators to apply forces to the chuck in x-, y-, and Rz-directions,

7
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5

2
3

y

x

z

2

8

10

59
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y

z

Figure 2.1: Over-Actuated Test rig, with 1○ Metrology frame, 2○ Metrology frame reference, 3○
one of four pillars attached to the Metrology frame that contains a linear optical encoder for
measuring the z-position and may contain in-plane capacitive sensors as well. 4○ Air mounts, 5○
wafer table with dummy wafer, also called the Chuck, 6○ Chuck force frame which contains all
actuators that interact with the Chuck, 7○ Granite base frame, 8○ capacitive sensors that measure
the reference surface, 9○ scanning sensor slide, 10○ capacitive sensors that measure wafer deflection.

Graduation Thesis Page 4



TU/e, Department of Mechanical Engineering

0−100−200−300 100 200 300
−300

−200

−100

0

100

200

300

x

y

sy1

sx2

sx1 ax2

ax1

ay1 ay2

act./sens. x [mm] y [mm]
ax1

0 −270.1
ax2

0 270.1
ay1 −270.1 0
ay2

270.1 0
sx1

−300 226.73
sx2

−300 −226.73
sy1

−226 −300

Figure 2.2: Wafer table of the OAT system with locations of actuators (→→) and sensors (→→) in
the x- and y-directions.
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Figure 2.3: Wafer table of the OAT system with locations of actuators (××) and sensors (oo) in the
z-direction.

their locations are schematically shown in Figure 2.2. To offset the mass of the chuck, it also con-
tains four gravity compensators in the corners, establishing a mid-air equilibrium in z-direction.
Lastly, an equally spaced 9 × 9 mounting grid is provided in which voice coil actuators for the
z-direction can be placed. 13 Of such actuators have been mounted in the current setup, their
locations are schematically depicted in Figure 2.3. These actuators facilitate movement in Rx-,
Ry-, and z-directions. The OAT is considered to be a next-generation motion stage since it is
overactuated, i.e. the number of actuators is larger than the number of DOFs that they constrain,
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Figure 2.4: Approximate CAD model of the wafer table. On the left, the top view is displayed,
and on the right the bottom view. Note that some details such as (threaded) mounting holes have
been left out. The critical dimensions of this approximation are consistent with the actual wafer
table as described in [18].

enabling control of flexible behavior. On top of the air mounts 4○, the metrology frame 1○ is
mounted. All sensor measurements are made relative to this frame. The air mounts have a very
low stiffness to prevent disturbances such as ground- or actuator vibrations from influencing the
measurements. They are also electronically controlled to ensure alignment with the base frame.
Attached to the metrology frame are four pillars, one is marked 3○, that each contain an optical
encoder to monitor the z-position of the chuck as well as the Rx- and Ry-rotations. Two pillars
also contain an additional total of three capacitive sensors to measure the in-plane position i.e. x,
y, and Rz. The sensor locations can also be found in figures 2.2, 2.3.

For identifying and verifying the behavior of the flexible dynamics it must be possible to mea-
sure the deflection of the chuck in z-direction at many different locations. Instead of adding
multiple sensors at set locations, a scanning sensor slide 9○ is mounted to the base frame. This
H-bridge style slide can move to many locations on the wafer table and uses multiple capacitive
sensors 8○, 10○ to measure the wafer surface and the Metrology frame reference 2○ simultaneously.
By combining these measurements, any disturbances in z-direction created by the sensor slide are
compensated for. More information about this setup can be found in [18]. The scanning sensor
slide is the ideal tool to verify the quality of identified spatio-temporal models of the OAT. Un-
fortunately, this hardware was not operational at the time of writing this thesis, so an alternative
verification test is later provided.

Figure 2.4 shows the top and bottom view of the chuck. Note that the 9× 9 grid of mounting
locations is visible in the bottom view along with the gravity compensator mounting locations in
each of the four outer corners. A space has also been left for the four in-plane actuators halfway
along the edges of the chuck.

2.2 The flexible beam setup

In this section, a general description will be given of a high-precision motion stage that contains a
flexible body. The system has no inherent use in a production environment but serves as an analog
for many motion systems that exhibit flexible dynamics. It is thus mostly used for evaluating
identification and control strategies. In this work, it will be used to verify modal identification
methods.
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2.2.1 Experimental system
The flexible beam system is depicted schematically in Figure 2.5 and physically in 2.6. The flexible
body is a steel beam that has dimensions 2 × 20 × 500 mm and is suspended by 4 vertical wire
flexures [19] that constrain translation in z-direction and rotation around the x and y axes. An
additional horizontal flexure constrains translation in the x-direction, such that only translation
in y-direction and rotation around the z axis is possible. The system thus has two degrees of
freedom that each correspond to a rigid-body mode shape. Note that the schematic view does not
display any of the wire flexures present in the real system. The constraints are nevertheless similar
for small deflections. As can be seen in Figure 2.6, the setup contains 5 fiber optic displacement
sensors marked as x1, . . . , x5. These sensors observe the distance to the beam. On the opposite
side of the beam, three current-driven voice coil actuators are mounted marked F1, F3, and F5.
Note that each actuator has a collocated sensor with the same index number (·)i. This number
also indicates the normalized physical location of a sensor or actuator. Given that the numbers of
actuators and sensors are larger than the number of DOFs, the system is considered overactuated
and oversensed. This surplus can be used for identifying and controlling the flexible behavior of
the system.

2.2.2 Simulated system
A simulation of the flexible beam system was also made to more efficiently test modal parametric
identification methods. The simulation features two additional actuators F2, and F4 as shown
in Figure 2.5, providing more data for verification purposes. It was created using the Simscape
Multibody toolbox in Matlab Simulink. The toolbox is used to define joints between rigid bodies
and the fixed world. Because the flexible body of the system is only measured at discrete points,
it is modeled as a set of rigid bodies that are connected with revolute joints that have rotational
stiffness and damping. The real system is considered stable as the stiffness of the vertical wire
flexures limits the deflection in y direction when a force is applied. In the simulated model, these
stiffnesses are also implemented. Effects of gravity are disregarded in the simulation.

Figure 2.5: Schematic view of the flexi-
ble beam setup, note that actuators F2

and F4 are not present in the physical
setup shown in Figure 2.6.

Figure 2.6: Experimental flexible beam setup. Here
F1, F3 and F5 mark the locations of three force actua-
tors connected to a beam marked with 1○, x1, . . . , x5

indicate the locations of 5 fiber-optic sensors observ-
ing the distance to the beam. The beam is suspended
by wire flexures on both ends marked with 2○.
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2.3 Problem formulation

Increasingly stringent demands such as a larger wafer diameter, whilst still requiring high per-
formance, are typical for a next-generation motion system such as the OAT. Here, a larger wafer
diameter leads to flexible dynamics within the control bandwidth, which causes position-dependent
behavior. This requires a large number of spatially distributed actuators to control it. In the con-
sidered system class of overactuated next-generation motion systems, which includes the OAT,
however, only a limited number of sensors can be placed due to physical constraints. This ensures
that the POI, i.e. the wafer exposure location, is not at any of the measured locations, creat-
ing an inferential control problem that requires accurate spatio-temporal models to be identified.
Current approaches for identifying the spatial aspect of spatio-temporal models are limited by the
number of sensors available. They might thus yield insufficient spatial resolution and accuracy for
the given system class. The main aim of this thesis is thus to identify accurate spatio-temporal
models of overactuated systems that have a limited sensor set, using prior system knowledge of
mechanical systems. The approach that is pursued will be outlined in the next chapter.
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Chapter 3

Approach to modeling mechanical sys-
tems
In this chapter, a modal modeling method is shown that can capture the rigid-body and flexible
dynamics of mechanical systems in the relevant system class. Next, an identification approach
is formulated that uses this modeling method to identify spatio-temporal models using limited
sensors.

3.1 Modeling flexible structures

In the considered system class, the quantity of interest is the out-of-plane deflection of a thin
flexible body. Moreover, structural deformations in the surrounding system are assumed to be
sufficiently small such that they do not influence the dynamics of the flexible body. Additionally,
the in-plane positions of the actuators are assumed fixed relative to the flexible body. The aim of
modeling this flexible structure is to identify a model that can estimate the out-of-plane deflection
anywhere in the spatial domain of that flexible body, at any moment in time. To this end,
consider the out-of-plane deflection to be z(ϱ, t) ∈ R. Here, ϱ represents the in-plane location in
the domain D ∈ R2, at which the deflection is considered at time t. The spatio-temporal behavior
of the deflection can be captured in a basis function expansion [20] that separates the spatial and
temporal functions

z(ϱ, t) =

nq∑
i=1

wi(ϱ)qi(t). (3.1)

It is not possible in practice to define the spatial contribution wi(ϱ) for the infinite number of
locations in the spatial domain D as this would require infinite sensors. Instead, the deflection in
the entire spatial domain is accurately approximated by a finite set of basis functions. Given that
the system predominantly behaves linearly, the temporal contribution qi(t) of the basis function
expansion, can be described by a set of second-order ordinary differential equations

Mq̈(t) +Dq̇(t) +Kq(t) = Qu(t). (3.2)

Here, the mass matrix M ∈ Rnq×nq , the damping matrix D ∈ Rnq×nq and the stiffness matrix
K ∈ Rnq×nq form the dynamics of the system. The matrix Q ∈ Rnq×na defines how na actuators
affect the system dynamics. To ensure that the spatial data is distinguishable from the temporal
dynamics in the eventual model, a modal modeling approach is pursued. The dynamics in a
modal model are defined by the eigenfrequencies that each have a corresponding damping and
mode shape. These eigenfrequencies can be found by solving the undamped generalized eigenvalue
problem [

K − ω2
iM

]
ϕi = 0, i = 1, . . . , nq. (3.3)

Here, ω2
i represents the squared undamped resonance frequencies and ϕi are the corresponding

eigenvectors. The eigenvector set is defined as Φ =
[
ϕ1 ... ϕnq

]
and the associated mode

shapes are parameterized in the basis W (ϱ) =
[
w1 ... wnq

]
. Importantly nq here represents

the number of modes used to describe the system, which can be limited nm < nq depending on the
desired eventual controller bandwidth. By now applying the transformation q = Φη the following
mass-normalized modal model can be found

Gm(ϱ) :

{
Iη̈(t) +Dmη̇(t) + Ω2η(t) = Ru(t)
z(ϱ, t) = L(ϱ)η(t). (3.4)
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Here Dm = Φ−1M−1DΦ and Ω2 = diag
([

ω2
1 ... ω2

nq

])
. The mode shapes are cap-

tured in the columns of L(ϱ) = W (ϱ)Φ and the fully parameterized input matrix is given by
R = Φ−1M−1Q. Note that L(ϱ) is position-dependent, i.e. it is a function of the scheduling vari-
able ϱ and thus the modal description is linear parameter-varying (LPV). Identifying such a model
is the main aim of this research, but this cannot be achieved directly given that the available identi-
fication data is not continuous in the spatial domain D. To identify the system mode shapes using
available sensors that are positioned at discrete locations, z(ϱ, t) = L(ϱ)η(t) in equation (3.4) is first
replaced with a spatially sampled equivalent: zs(t) = Lη(t) where L ≈

[
L (ϱ1) . . . L

(
ϱnϱ

) ]⊤
with L ∈ Rns×nm . Here, ns is defined as the number of available sensors.

One of the major benefits of the modal parametrization is that the temporal behavior of the
system is fully decoupled in the case of modal damping due to Dm being diagonal. The additional
modeling errors that are incurred by making this assumption are usually small for lightly-damped
systems. A fully decoupled system in the case of the modal model in (3.4) indicates independently
evolving modes.

In practice, the mass-normalized modal model in (3.4) is formed from a more common repre-
sentation of a modal model given by

Ĝm =

nm∑
i=1

Ri

s2 + ζis+ ω2
i

. (3.5)

Here, ζi represents the i-th diagonal element of Dm and Ri ∈ Rns×na are so-called residue ma-
trices [21, 22]. These matrices are over-parameterized as they are formed from a dyadic product
between two modal-participation vectors, i.e. Ri = ϕs,iϕ

⊤
a,i. Here, ϕs,i represents the mode shape

as observed by the sensors, and ϕa,i contains mode shape information sampled at actuator loca-
tions. These residual matrices should thus be rank 1 [23]. Their relation to (3.4) is that ϕs,iϕ

⊤
a,i for

i = 1, . . . , nm contains the same information as is stored in matrices L and R. This key property
is what will later warrant the approach in section 5.2.

The challenge is now to firstly estimate an LTI model that consists of parameters in

θm = vec
([
L⊤ R ω̄2 ζ̄

])
, (3.6)

where ζ̄ represents the diagonal entries of Dm. And secondly, to estimate continuous mode-shapes
L(ϱ) based on the spatially sampled L. Note here that the considered system class has a low
number of sensors and thus a poor spatial resolution. An identification approach that handles this
problem is elaborated on in the next section.

3.2 Identification approach

In this work, a frequency domain approach is pursued and it is conducted in continuous time.
The framework for identifying accurate modal models can be separated into four main blocks as
displayed in the light blue section of figure 3.1. First, a robust multi-sine procedure is employed
to identify non-parametric frequency response functions. The benchmark systems, as described
earlier, require different identification procedures. Namely, open-loop and closed-loop. The pro-
cedures applicable to each of the systems will be provided. Next, a modal parametric model,
of the form (3.4) is fitted to the non-parametric model. A major benefit of this type of model,
when applied to lightly-damped mechanical systems, is that it fully decouples the mode shapes
that are present. This provides some scaling freedom in the fitted model that is exploited next in
order to extend the available sensor set. The resulting gain matching procedure alters the spatial
part of the modal model such that the I/O behavior remains equivalent whilst also now allowing
data from the input matrix to be combined with data from the output matrix, thus producing a
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Figure 3.1: Approach to identifying accurate modal mechanical models of overactuated systems
that have a limited sensor set

larger spatial resolution of pseudo sensors for each mode shape. The last step in the framework
is to interpolate the available sensor data to acquire a model that can provide a sensor estimate
at any relevant location. Two different methods have been investigated to achieve this, namely
interpolation using Gaussian processes and smooth thin plate spline interpolation.

The two setups, as described, will be used throughout the report to illustrate or demonstrate
certain effects that help clarifying the methods used. These will also be used to asses the perfor-
mance of the proposed framework. In general, the approach here is to provide the identification
method with a subset of the available data and then compare model estimates against data that
was left out, as a means of validation. The following chapters will provide more detail about each
step in the approach.
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Chapter 4

Identifying temporal mechanical mod-
els
In this chapter, the approach to identify the temporal part of lightly-damped mechanical systems
will be described. First, non-parametric identification is discussed which is required for the modal
parametric identification that follows.

4.1 Non-parametric identification

To identify a modal parametric model of a flexible mechanical system, first, an accurate non-
parametric estimate must be obtained. The flexible beam system can be identified in open-loop
as it is stable, but the over-actuated test rig must be identified in closed-loop since the rigid-body
modes must be controlled. For all experiments, the identification signals are chosen to be random-
phase periodic multi-sines with a flat amplitude spectrum. An advantage of using periodic signals
is that no windowing is required, hence no bias errors are introduced as mentioned in [24]. They
also lead to more consistent estimates according to [25]. Periodic excitation is beneficial for open-
loop as well as closed-loop identification. In [26] such a periodic signal with normalized amplitude
spectrum of the form

u0(t) =
1√
N

N/2−1∑
k=−N/2+1

Uke
j(2πkf0t+ϕk), with f0 = fs/N = 1/T (4.1)

is introduced. Here, N is the period length, T is the period time, f0 is the frequency grid resolution,
fs is the sampling frequency, Uk is the amplitude and ϕk is the phase of a particular sine-wave which
is chosen as a random variable with a uniform distribution between [0, 2π). This formula closely
resembles the Inverse Discrete Fourier Transform (IDFT), which makes the generation of such a
signal straightforward using the Matlab function IFFT() [27]. A full identification signal consists
of multiple realizations which each contain multiple periods of a periodic excitation. This reduces
disturbing noise as well as stochastic non-linear distortions which yields a smoother measurement.
An identification experiment involves injecting an identification signal at an input of the system
while measuring an output. The eventual FRF G(Ωk) from such an input u(t) to an output y(t)
is computed in the frequency domain as

G(Ωk) =
1

R

R∑
r=1

∑P
p=2 Yp,r(Ωk)∑P
p=2 Up,r(Ωk)

. (4.2)

Figure 4.1: Open loop identification scheme Figure 4.2: Closed loop identification scheme
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Figure 4.3: Non-parametric estimate of the FRF magnitudes of the experimental flexible beam
identification.

Here, P represents the number of consecutive periodic repetitions for every realization r ∈ R.
Note that the first period of every new realization is left out to prevent transient behavior from
influencing the quality of the eventual FRF. Ideally, the number of periods and realizations is as
large as possible since noise will be averaged out more, but this also increases the experiment time
which is defined as texp = P · T ·R [s].

Before an FRF is created, the delays imposed by the identification hardware are first determined
by visual inspection. This delay is then used to compensate the eventual non-parametric FRF
which allows it to be modeled in continuous time.

4.1.1 Open-loop identification
As mentioned, the flexible beam system can be measured in open-loop using the direct approach
[28]. Its corresponding identification scheme is shown in Figure 4.1. Here, unc represents all
system inputs, v is the measurement noise and zs shows the system outputs. A full Multiple-Input
Multiple-Output (MIMO) non-parametric FRF model of the system is obtained by separately
exciting each actuator whilst measuring all sensors. Equation 4.2 along with the gathered I/O
data of each experiment is then used to compute each column of the full system. The identification
parameters, as defined in (4.1), are the same for all experiments and are chosen as follows: A
sampling frequency of 4096 Hz, a period length of 16384 samples, 10 periods and 10 realizations for
a total experiment time of 400 s. Using these settings, a non-parametric identification experiment
is now conducted on the experimental flexible beam system. The magnitude plots of the resulting
FRF estimates are shown in Figure 4.3. Similar measurements have also been conducted in [29].
In the figure, two rigid-body modes can be observed at 2.5 Hz and 5 Hz. These modes do not
occur at 0 Hz since the flexible beam is connected to the fixed world using wire flexures that have
a low parasitic stiffness in the direction of actuation. The first flexible mode occurs around 33 Hz.

4.1.2 Closed-loop identification
The rigid-body modes of the OAT system must be controlled to achieve stability. Therefore all
identification experiments will be executed in closed-loop. The corresponding identification scheme
is shown in Figure 4.2. Note that the approach that will now be discussed is taken from [11] where
the same system is identified. Thus, only a brief overview of this method is provided. In Figure 4.2
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Figure 4.4: Non-parametric FRF magnitudes of the experimental OAT system, courtesy of [31].

a distinction is made between controlled inputs uc and non-controlled inputs unc. uc includes 4
in-plane actuators and 4 out-of-plane actuators. This work aims to identify and control only
the out-of-plane deflection and thus, only the out-of-plane actuators in both groups will provide
excitation signals for identification. Similarly, only sensors in the set zs that measure out-of-plane
deflection will be considered. The 3-point indirect approach [28] is used to construct the system
estimate G̃. The method involves gathering FRF data of the input process sensitivity and input
sensitivity function of each I/O pair. The required closed-loop FRF data is thus

P̃CL (Ωk) =

[
P̃zs←ruc

(Ωk) P̃zs←unc (Ωk)

P̃uc←ruc
(Ωk) P̃uc←unc

(Ωk)

]
. (4.3)

Here P̃y←x(Ωk) indicates the relevant transfer function that can be estimated using (4.2) from
an input x to an output y at a frequency point Ωk. The open-loop FRF can be retrieved by
multiplying the process sensitivity PS by the inverse of the sensitivity S. This must be the matrix
inverse of S and not the element-wise inverse as the latter does not correctly handle interaction
in the system [30]. The equation to compute G̃(Ωk) is thus given by

G̃ (Ωk) =
[
P̃zs←ruc

(Ωk) P̃zs←unc
(Ωk)

] [ P̃uc←ruc
(Ωk) P̃uc←unc

(Ωk)

P̃unc←ruc
(Ωk) P̃unc←unc (Ωk)

]−1
. (4.4)

Note here that P̃unc←ruc
(Ωk) = 0 and P̃unc←unc

(Ωk) = I due to the structure in Figure 4.2. Given
that any system delays have been compensated for, the rest of the control-relevant parametric
identification procedure can be done in continuous time. The resulting non-parametric model of
the experimental system that contains the relevant open-loop FRFs is shown in Figure 4.4. In
the figure, the names of the input and outputs correspond to those mentioned in Figure 2.3. This
system has three rigid-body modes that are all located at 0 Hz since the system has no stiffness
to the fixed world in open-loop. The first flexible mode occurs around 139 Hz.

4.2 Parametric identification method

In this section, the optimization problem and a step-wise overview of the algorithm as formulated
in [11], used to fit a modal model to Frequency Response Function (FRF) data, is provided. For

Graduation Thesis Page 14



TU/e, Department of Mechanical Engineering

brevity, some mathematical details about the exact implementation are left out as they are less
relevant to the current research.

The parameters in the vector θm defined in (3.6) are minimized by a weighted cost function of
the form

θ̂ = argmin
θ

V (θ) =

m∑
k=1

ε (sk, θ)
H
ε (sk, θ) , (4.5)

where
ε (sk, θ) = W (k) vec

(
G̃ (sk)− Ĝ (sk, θ)

)
, (4.6)

with W (k) ∈ Cnsna×nsna being a weighting matrix, s represents the continuous time Laplace
variable such that sk = jωk. The cost is thus defined in continuous time as the weighted square
sum of differences between the FRF data G̃(sk) and Ĝ(sk, θ) which is a (modal) model constructed
from parameters in θ. This is a non-linear least squares optimization problem and thus two iterative
solving algorithms are employed to find a suitable fit. The approach can be summarized in the
following steps.
1) Define the weighting filter W (k). A suitable choice for mechanical systems is to use a Schur
weighting filter which has the inverse magnitude of the function to be identified up to a certain
frequency range of interest. The reasoning behind this is that mechanical systems often have a -2
slope in their FRF graphs, meaning that higher frequency components have smaller magnitudes
and would therefore automatically be weighted less. Additionally, the filter can be customized for
a specific system by, for example, emphasizing the accuracy of certain resonance peaks as those
define the flexible behavior. This is achieved by clipping the minima of the Schur filter.
2) Formulate the Left Matrix Fraction Description (LMFD) [32] that fits the dimensions of the
system to be identified. The LMFD is formulated as

Ĝ(s, θ) = D̂(s, θ)−1N̂(s, θ) with N̂(s, θ) ∈ Rns×na [s] and D̂(s, θ) ∈ Rns×ns [s]. (4.7)

Here, ns and na represent the number of system outputs and inputs, respectively. The two
polynomial matrices are linearly parameterized with respect to θ. This parameterization is required
as the optimization algorithm in the next step is described specifically for this form.
3) Perform a predetermined number of iterations of the Sanathanan-Koerner (SK) algorithm [33]
to reduce the cost function. Then pick the iteration that produced the lowest cost as an initial
estimate for the next step. This algorithm generally does not converge to the optimal solution and
it also does not do so monotonically. However, it does not require an accurate initial estimate of
θ either.
4) Perform a predetermined number of iterations of the Levenberg-Marquart (LM) algorithm [34]
given the initial condition produced by the SK algorithm. Unlike the previous algorithm, LM
iterations generally converge monotonically at a high rate given a good initial estimate. The
sequential use of both algorithms does not guarantee an optimal solution, but will generally yield
good results.
5) Perform a transformation from the current LMFD model to an initial estimate of the modal
model. This model has the form

Ĝm =

nm∑
i=1

Ri

s2 + ζis+ ω2
i

with Ri ∈ Rns×na , (4.8)

and is parameterized by (3.6). In this research, all systems are assumed to be modally damped,
but modal damping is not enforced in the LMFD parameterization, thus the transformation is
not exact. Additionally, the residue matrices Ri for i = 1, . . . , nm are separated into the input
matrix R and the output matrix L using the singular value decomposition (SVD) to arrive at
the discretely sampled version of (3.4). More details about this transformation can be found in
section 5.2.1.
6) Perform a set of LM iterations to reduce the cost function (4.5), but now given the modal
parameterization (4.8) in an attempt to compensate for the non-exact transformation in step 5).
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Chapter 5

Identifying spatio-temporal mechani-
cal models
In this chapter, prior knowledge of mechanical systems will be exploited to extend the modal model,
as identified thus far, such that its spatial resolution increases. This additional information is then
used to more accurately interpolate the mode shapes spatially than would otherwise be possible
given the number of available sensors.

5.1 Prior mechanical system knowledge

As shown in section 3.1, the out-of-plane deflection zs for each mode shape is spatially sampled
at discrete locations over the physical domain of a flexible body. These locations correspond to
physical sensor positions and thus the number of unique mode shapes and their resolution that
can be identified is linked to the available number of sensors. One of the goals of this research is
to use fewer sensors than would normally be required and still obtain an accurate spatio-temporal
model. The Betti-Maxwell reciprocal theorem can be used to reinterpret the available I/O data
which will help to extend the number of available sensors with ’pseudo’ sensors located at actuator
positions. An example of this reciprocal principle is provided in the next section. The concept
of reinterpreting data is often used for damage detection in civil engineering applications where
instead of using a large number of sensors to identify a structure, manual excitation at many
known locations is used while only a small number of sensors are required to register the response,
see e.g. [35–37].

5.1.1 Reciprocal theorem applied to motion systems
Consider a 2-mass-spring-damper system as depicted in Figure 5.1 alongside its MIMO FRFs in
Figure 5.2. This system can be viewed as an isolated subsection of a larger flexible body. Here,
the force F1 acts on point mass m1 whose position is defined relative to the fixed world as x1, the
same holds for the second mass. The actuators and sensors are thus collocated. Having minimal
sensor data available is emulated by only providing access to x1(t), F1(t), and F2(t). Using this

Figure 5.1: 2-mass-spring-damper
model. The force F1 acts on point
mass m1 whose position is defined
relative to the fixed world as x1, the
same holds for the second mass.

Figure 5.2: Bode plot showing a typical theoretical fre-
quency response functions of the model in Figure 5.1,
from inputs F1 and F2 to outputs x1 and x2.
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data and a proper non-parametric identification approach [38], only the top row of FRF plots in
Figure 5.2 can be retrieved. The Betti-Maxwell reciprocal theorem [39] states,

Theorem 1. Consider the system as given by Figure 5.1. If a force F2 applied to m2 causes
deflection x1, then that same force applied to m1 will cause the same deflection at x2.

In case sensors and actuators are collocated, as in the example, the transfer function from
F2 → x1 is equivalent to that from F1 → x2, which is indeed the case as demonstrated in
Figure 5.2. This example also extends to systems that contain some non-collocated actuators.
Indeed, imagine that sensor x2 does not exist, then the same relation through the collocated
pair F1, x1 still applies. The concept of extending the sensor set can thus be applied as long as
there is at least one collocated sensor and actuator pair. In the modal modeling approach, this
interpretation can be used to extend the output matrix L with data from the input matrix R,
allowing to potentially identify more mode shapes. It should be noted however that the modal
model is mass normalized and thus there exists a scaling between modes in the input and output
matrices. Additionally, some conditions apply to the location of the collocated sensor pairs. Both
concepts will be further elaborated upon in section 5.2.

5.2 Actuator and sensor gain matching

In this section, the result of the modal fitting algorithm is interpreted. By recognizing the rela-
tionship between data from the input and output matrices in the model, an approach is proposed
that extends mode shape resolution.

5.2.1 Interpretation of modal participation matrices

As mentioned in section 3.1, the residual matrices Ri are theoretically rank 1. However, the fitting
algorithm, as described in section 4.2, does not enforce this rank condition, but it is re-obtained
afterwards using the singular value decomposition (SVD). This function produces unit-length
direction vectors Ui and V H

i , along with corresponding singular values Si, such that Ri can be
decomposed into UiSiV

H
i . The vectors in Ui and V H

i associated with the largest singular value
in Si are defined to be the output- and input-vectors for that particular mode i in the modal
participation matrices L and R, respectively. To ensure that the gain from input to output of
a particular mode is scaled correctly, the output vectors Ui are multiplied by their maximum
singular values Si. The modal participation matrices are thus defined as,

[L]i = [Ui]
1[Si]

1
1, [R]i = [V H

i ]1, i = 1, . . . , nm, (5.1)

where [X]j denotes the jth column and [X]k denotes the kth row of a matrix X. This method of
separating the residual matrix will generally yield good results when the considered system can
be accurately modeled as a modal-damped mechanical system [11].

The physical interpretation of the modal participation matrices L and R is that they describe
what each mode shape looks like, sampled at the locations of either the sensors or the actuators,
respectively. In the case of a collocated system, these matrices should thus contain similar data
because the physical locations of the actuators are equal to those of the sensors. This theory is
demonstrated in the next section.

5.2.2 Similarities in modal participation matrices

FRF data of the 5-by-5 collocated flexible beam system as discussed in section 2.2.2 will now be
used to demonstrate similarities between L and R. To this end, a modal fit was made on that
system using the algorithm described in section 4.2 to arrive at a modal decomposition of the form
(3.4). Within this section, the following settings have been used for the fitting algorithm.
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Figure 5.3: I/O mode shapes of a simulated collocated 5-by-5 flexible beam system on which a
modal fit was made. Each graph depicts a row of the input matrix R and a column of the output
matrix L that correspond to mode i.

Modal identification settings. The weighting filter W (k) is chosen to be inverse Schur-weighting
with a magnitude cut-off. This ensures all frequencies inside the frequency range of interest are
weighted equally. Due to the −2 slope in the magnitude plots of the system, frequencies out-
side this cut-off are automatically weighted less. Additionally, the minima of this weighting were
clipped to emphasize accuracy around resonant frequencies. The LMFD is identified with 30 it-
erations of the SK-algorithm and refined with 10 iterations of the LM-algorithm. The model is
then transformed to a mechanical model and an additional 10 iterations of the LM-algorithm are
performed to improve the fit of this model further.

The fitted matrices L and R are displayed in Figure 5.3. Here, the columns of L and the rows
of R that correspond to modes i = 1, . . . , nm are each plotted in a separate graph. It is clear
from the figure that the rows of R indeed contain similar mode shape information as the columns
of L apart from a scaling due to [Si]

1
1 in (5.1). Note that there is some dissimilarity for the first

two rigid-body modes i.e. i = 1 and i = 2 due to a slight linear blending between these modes,
the level of which is different for the input and output matrix. In contrast, all flexible modes are
fully decoupled. This similarity between input and output matrices for collocated systems will be
exploited next.

5.2.3 Gain matching using collocated pairs

The separation of the residual matrices Ri into the input and output vectors [R]i and [L]i is
somewhat arbitrary. Indeed, the singular values that have been multiplied by [Ui]

1, could have
been multiplied with [V H

i ]1 instead. Ideally, both the input- and output matrix are scaled in such
a way that they are equivalent when each sensor is collocated with an actuator. This way, systems
that have some collocated sensors and actuators could benefit from improved extrapolation quality
by

• Scaling the input matrix R and the output matrix L using the collocated pairs.

• Extending the output matrix L with mode shape information from the non-collocated inputs
in R.
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This way, the total number of points nz from which mode shape extrapolation is performed can
be calculated as

nz = ns + na − nc, (5.2)

where nc is the number of collocated actuator and sensor pairs. The number of observable points
nz is associated with the number of identifiable mode shapes. In the case of the 5-by-5 flexible
beam system, the 5 sensors are placed such that 5 unique mode shapes can be identified. Though,
this relation does not hold in general as sensor placement also influences mode shape identification
quality. For example, if all sensors are placed close together, then the entire spatial behavior of
the flexible beam cannot be determined accurately without making assumptions about symmetry.
Given that collocated pairs exist in a system, the following formula can be applied to each identified
mode for gain matching the input- and output matrices

Ri ≈ [L]i 1
αi
· αi[R]i, {αi ∈ R|αi > 0}, (5.3)

In case multiple inputs and outputs are collocated, the optimal αi is the value that brings the
data in [L]i and [R]i, that relates to each collocated pair, the closest together. It can be found by
solving the following optimization problem

αi = arg min
αi∈R>0

Vi(αi), Vi =
C(nc)∑

m=C(0)

([L]im
1

αi
− αi[R]mi )2. (5.4)

It should be noted that for αi to have a meaningful value for a particular mode, at least one of
the collocated sensor- and actuator pairs should not be located on a knot of that mode. Failing to
satisfy this requirement will cause αi to be undefined. A closed-form solution to the constrained
non-linear optimization problem (5.4) can be found by setting the derivative of Vi to zero as shown
below
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(5.5)

5.2.4 Retrieving mode shapes from a reduced modal model

The simulation results shown in Figure 5.3 have been created from a 5-by-5 system. Such a system
thus has 5 actuators and 5 sensors for a total of 10 devices. Using the scaling method outlined
(5.3) it should be possible to retrieve the same modal information using only 6 devices with one
collocated pair. This would be computationally cheaper and could reduce system cost. A sec-
ondary simulation will now be shown where only the first 4 out of 5 actuators and only 2 out of 5
sensors are used. As mentioned, the location of the collocated pair should be such that no mode
ever has a knot at its location. Thus, location 2 is used. The other sensor is placed at location
5. Note that sensor and actuator locations for this system have been defined in section 2.2.1.
Figure 5.4 shows the five mode shapes as also featured in Figure 5.3, but now these modes have
been constructed from the aforementioned 2-by-4 system. The red and green markers in each of
the plots indicate whether mode shape information at a particular location was either gathered
from the input matrix R̄ or from the output matrix L̄. The output matrix L originating from the
5-by-5 system as shown in Figure 5.3 is also plotted in each graph for comparison purposes. The
flexible modes, i.e. i = 3, 4, 5, correspond well with their reference mode shapes. However, due
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Figure 5.4: Comparison between the modes in output matrix L, of the 5-by-5 system as also
featured in Figure 5.3, and the the output matrix L̂1 which is constructed from elements in the
input matrix R̄ and output matrix L̄, i.e. L̂1 ⊂ (R̄ ∪ L̄). These matrices belong to an identified
modal model of the flexible beam system, where only the first 4 inputs are available as well as
outputs 2 and 5.

to blending between the rigid-body modes, the first two modes, i.e. i = 1, 2, no longer follow a
straight line as would be expected. It will later be shown that this mismatch between gradients
of the rigid-body modes in L̄ and R̄ does cause the identified frequency response graphs to be
distorted.

5.2.5 Cause of rigid-body mode blending
To elaborate on the effect of rigid-body mode blending, a distinction is made between two effects
that it has on modal identification.

1. An identified rigid-body mode shape does not necessarily purely translate or rotate around
a predefined coordinate system.

2. A rigid-body mode shape identified on a collocated system may have a difference in gradients
between the input matrix R and the output matrix L.

The cause of both effects can be attributed to the fitting method, more specifically the fitting of
the residual matrices Ri as outlined in step 5 of section 4.2. When these residual matrices are
fitted, the rank 1 condition is not enforced meaning it is possible that some information is lost
when the maximum singular value decomposition is used to retrieve the input and output matrices,
as described at the start of section 5.2.1. Moreover, no constraints are placed on the direction
vectors Ui and V H

i themselves, which means that no standard coordinate system is enforced. The
effect of this is demonstrated using a mechanical model of a point mass as shown in Figure 5.5.
Here, the mass is actuated in two orthogonal directions that align with respect to the e⃗0 reference
frame. The corresponding state space model is given by

G =

[
A B
C

]
=

 0 I2
0 0

0
I2
m

I2 0

 , (5.6)

where I2 indicates a size 2 identity matrix. Note that this model is already in modal form.
A corresponding 2 × 2 system of non-parametric FRF data is now generated. When this data is
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Figure 5.5: Schematic model of a point-mass that is measured and actuated in two orthogonal
directions

provided to the unrestricted modal fitting algorithm, it could arbitrarily choose its reference frame
as e⃗1. The input and output matrices would then become

B̂ = BM, Ĉ = M−1C with, M =

[
cos(β) sin(β)
− sin(β) cos(β)

]
, (5.7)

which explains how rigid-body mode blending as described by effect 1 can occur. Note that
both systems would still produce the same FRFs, as they are different modal realizations of the
same system. Due to the non-uniqueness of the modal model and lack of constraints between
the input and output vectors, it would in fact also be possible to have a difference between these
vectors, which explains effect 2. To elaborate further on why this is possible, consider the modal
representation of (5.6) given by

Gm =
R1

s2
+

R2

s2
=

Rrb

s2
⇒

[
1
m 0
0 0

]
s2

+

[
0 0
0 1

m

]
s2

=

[
1
m 0
0 1

m

]
s2

. (5.8)

Here, the rigid-body mode shapes, as represented by the rank one numerators, are separated ac-
cording to the directions of the e⃗0 reference frame. Notice that the denominators are equivalent and
thus it is possible to combine these matrices into a rank 2 matrix, e.g. Rrb. This structure provides
freedom to choose the direction vectors for each mode shape somewhat arbitrarily. As an example,
the input and output vectors that form R1 can also be chosen as R̂1 =

[
1
2γ1 γ1

]⊤ [
γ1 γ1

]
.

A product of two vectors can have a maximum rank of one. To ensure the system response
remains the same, each residual matrix must thus remove one rank from Rrb. To this end, γ1
may be computed by solving det(Rrb − R̂1(γ1)) = 0. The vectors that form the secondary rigid-
body mode R̂2 are now computed by taking the SVD of Rrb − R̂1,γ1

. The resulting structure is
R̂2 =

[
−γ2 γ2

]⊤ [
−γ2 1

2γ2
]
. A numerical example of (5.8) in case m = 1 is provided in

(5.9). It shows that there are multiple ways to define the same rigid-body mode shapes and that
it is indeed possible to have a difference between input and output vectors for each mode shape.

Gm =
R̂1

s2
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R̂2

s2
=

Rrb,m=1

s2
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[
1
3

1
3

2
3

2
3

]
s2

+

[
2
3 − 1

3
− 2

3
1
3

]
s2

=

[
1 0
0 1

]
s2

(5.9)

A more general description that defines the set of possible rigid-body mode shapes based on a
given matrix such as Rrb is given in appendix C. Here, the input and output matrices are assumed
to contain the same information.

Since the number of rigid-body modes in the above-given example is two, they can be described
by just two parameters γ1, γ2, and the structure of one of the modes. Enforcing one or more of the
rigid-body mode shapes, in regard to fitting algorithms, reduces the number of parameters and
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imposes certain constraints. It is potentially inaccurate to impose the same constraints after an
unconstrained fitting algorithm has produced certain input and output vectors, since the desired
structure might not fit the identified residual matrices well, causing the resulting fit to be worse.
In case of the flexible beam system, as described thus far, the two rigid-body modes actually do
not occur at exactly the same 0 Hz frequency since the flexible body is suspended by wire flexures
that are connected to the fixed world. Therefore, rigid-body modes are defined as whole-body ro-
tations or translations rather than in-body deformations. Since mode blending still seems to occur
between the rigid-body modes of the flexible beam system, an approach that imposes constraints
a posteriori is bound to be inaccurate for this system as well.

Flexible modes are not significantly affected by mode shape blending as can be seen in Fig-
ure 5.3. This can be attributed to the fact that the flexible modes are much more distinct and
thus the fitting algorithm is much more likely to find a unique solution for them. The flexible
modes are usually also spaced apart more in the frequency domain, making any mixing between
them significantly less likely.

Directly fitting input and output vectors with certain constraints on their directions cannot
easily be implemented in the current modal modeling framework as some of the algorithms used,
like SK and LM iterations, would become incompatible. In the current research, it is not essential
that the rigid-body mode shapes are defined relative to a given reference frame, but a difference
between the input and output vectors for identified rigid-body modes will cause inaccuracies when
attempting to combine information from both. As such, the next section will provide an ad-hoc
solution to this problem which will be demonstrated on the simulated flexible beam system.

5.2.6 Solution to mode blending
Given that at least two sensors are available, the two rigid-body modes of the 2-DOF flexible
beam system, can be uniquely identified and linearly extrapolated to other locations without the
need for additional information from the input matrix. Note that the sensor locations should be
sufficiently far apart on a real system, such that sensor noise and quantization errors influence the
rigid-body mode shapes the least. Figure 5.6 shows the same graphs as in Figure 5.4, but now
the rigid-body modes are extrapolated based only on the output matrix L̄. As can be seen in the
figure, all modes now correspond to those found in the output matrix of the 5-by-5 system, apart

Figure 5.6: The same description as was given in Figure 5.4 applies here as well, with the exception
that now the rigid-body mode shapes have been linearly extrapolated based only on the data in
L̄ such that [L̂2]

1,2 ⊂ [L̄]1,2.
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Figure 5.7: Bode diagram that shows the transfer functions from the first 4 inputs to all 5 outputs
of the flexible beam simulation. Here, (––) is the FRF data of the simulated system which serves
as a reference, (––) is the FRF of the modal model whose output matrix is shown in Figure 5.4, (––)
is the FRF of the modal model whose output matrix is shown in Figure 5.6.

from a difference in scaling, which is caused by α and is already compensated for with the input
matrix. Two modal systems of the form (3.4) are now constructed. The first one having output
matrix L̂1 from Figure 5.4 and the second having output matrix L̂2 from Figure 5.6. The modal
models are shown in Figure 5.7 along with a reference model. In graphs F4 → x1 and F1 → x4, it
is shown that linearly extrapolating the rigid-body modes based only on the output matrix indeed
creates a better fit compared to when the input matrix is used instead of extrapolation. The same
observation can be made when more closely observing the second mode in graphs: F1 → x3 and
F2 → x3.

In conclusion, a smaller number of sensors and actuators, than would generally be required,
have been used to construct output vectors [L̂2]

i for modes i ∈ 1, . . . , nm. These can now be
combined to form the columns of the spatially sampled output matrix L̂. In section 5.4, two
algorithms are shown that can interpolate this type of matrix to form a continuous estimate for
each mode shape in a spatial domain. This is defined in section 3.1 to be L(ϱ). Note that the
flexible beam system used here, has only 1-DOF in its spatial domain, but the methods discussed
freely extend to systems that have a 2-DOF spatial domain, such as the OAT system.

5.3 Placement of collocated pairs

As mentioned in section 5.2.3, the locations of the collocated sensor and actuator pairs must be
such that for each mode, at least one pair is not located on a nodal line. The largest improvement
in modal extrapolation quality can however be achieved when only one sensor and actuator are
collocated, such that a larger point cloud can be used for extrapolation according to (5.2). This
section will thus focus on finding the optimal location to place a single collocated pair given the
expected mode shapes up to a certain frequency range of interest.

The proposed method will be explained for systems that have a 2D spatial domain such as
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the OAT system, as described in section 2.1. Although, the method easily extends to the 1D case
e.g. the flexible beam system. Note that this method does not determine the optimal locations
for every available sensor and actuator as this is beyond the scope of this research. Additionally,
the location of the actuators is often restricted by physical design choices, making it harder to
formulate a general actuator and sensor placement theorem. However, sensor placement for modal
identification is highly important. As such, methods to determine optimal sensor locations have
been extensively described in [40–46]. Furthermore, when a large number of sensors and actuators
are available in a 2D domain such as the wafer stage system, it is generally best to create an
equally spaced distribution [23]. Although one should be careful to prevent creating a grid that
aligns exactly with the nodal lines of a specific mode shape, as that mode shape will become
unobservable.

5.3.1 Mode shape estimation

Knowing the approximate shapes of different modes in a frequency range of interest a priori will
allow to determine the optimal collocated sensor placement. To this end, the wafer table of the
OAT will be viewed as a rectangle with dimensions 600×600 mm. For such a shape, no closed-form
analytical solution exists for determining the mode shapes in an unconstrained situation [47] i.e.
where the plate is not connected to the fixed world. There are however many solution approaches
that approximate the mode shapes in this case as mentioned in [48, sec. 4.3.15]. The presented
solutions often tend to be quite cumbersome though, and thus a more straightforward approach is
taken, namely a Finite Element Analysis (FEA). This method also allows to determine the mode
shapes for non-uniform 3D objects.

FEA works by discretizing an object into a set of quadratic tetrahedral elements. The physics
of each of those elements is then described in the equations of FEA and combined into a larger
model that can be solved using partial differential equations. To ensure an accurate result, the
element size must be chosen sufficiently small w.r.t. the size of the object that is simulated. An
FEA analysis defines how an object will vibrate at certain resonant frequencies, given physical
geometry and constraints. Damping effects are ignored and no loads are applied. This means
that the absolute out-of-plane displacement amplitude does not have a meaning, only the relative
amplitude between positions in the spatial domain. The FEA solver that is used in this research
is the Matlab Partial Differential Equation Toolbox whose performance was verified against [49].

In case of a rectangular thin plate, the shape of the modes is most affected by the width and
length of the plate. Other parameters such as the thickness and material choice mostly affect
the frequencies at which these modes occur. Given the aforementioned plate dimensions and an
approximate plate height of 20 mm, an FEA simulation is executed assuming the plate material
behaves similarly to aluminum. The first 9 flexible modes are shown in Figure 5.8.

5.3.2 Ideal placement of collocated pairs

The placement of the collocated sensor and actuator pair can be determined by ’overlaying’ the
relevant flexible modes. In this case, the first 3 simulated modes in Figure 5.8 are used. Since
they occur at the lowest frequencies, their contribution is expected to be the largest, and thus
accurate identification is most relevant. The absolute amplitude at which each of these modes
might oscillate given a certain input disturbance, may vary and is unknown but their nodal lines
or Chladni patterns [50] remain the same. The following approach thus provides a method to
determine the largest distance from any nodal lines of evaluated modes, which is defined to be
an optimal collocated pair location. By normalizing the arbitrary amplitude of each mode shape,
they are all weighted equally. Given that the flexible modes are sampled in the domain D(x, y),
the equation for determining the cost at each (x, y) location, based on the out-of-plane deflection
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Figure 5.8: The first 9 mode shapes gathered from a finite element analysis of a flat plate, the
vertical scaling is arbitrary.
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Figure 5.9: Heat map that visualizes proper locations for a collocated sensor and actuator pair as
lighter colors.

zi(x, y) of the selected mode shapes, is

Z(x, y) = min
i∈1,2,3

∣∣∣∣ zi(x, y)

maxx,y∈D |zi(x, y)|

∣∣∣∣ (5.10)

Due to the discrete nature of the FEA solution method, a global solution that approximates the
optimal solution can readily be found by taking the maximum value of Z. Figure 5.9 shows a
heat map where the highest values indicate proper sensor locations. Note that there are multiple
options due to the symmetric nature of the mode shapes.

5.4 Mode shape interpolation

In this section, two methods will be considered for the interpolation of the spatially sampled mode
shapes in L̂ to arrive at a continuous estimate of each mode shape in L(ϱ). Using simulated test
cases, the performance of both methods will be compared to arrive at a recommendation of what
to use for modal identification of the OAT system.
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5.4.1 Smooth Thin Plate Spline interpolation
The wafer table of the OAT system can be viewed as a thin plate flexible body because its
thickness is significantly smaller compared to its width and length. One very common method
of approximating the mechanical bending shapes of such thin plates, based on limited spatially
distributed samples, is Smooth Thin Plate Spline interpolation (STPS). To this end, consider its
cost function given by

min
Ws∈W1

2

nϱ∑
j=1

|Ws (x̄j , ȳj)− z̄j |2 + λU, with U =

∫ ∞
−∞

∫ ∞
−∞

∆2Ws(x, y)dxdy. (5.11)

Without going into too much detail, the goal of this optimization is to find an interpolating spline-
based function Ws given nϱ points {(x̄j , ȳj , z̄j) ∈ R3}. This method is generally well-suited since
the spline functions are partially determined by minimizing the bending energy U in a thin flexible
plate. The other part of this optimization is concerned with reducing the error between a set of
spatially distributed known and estimated plate deflections, which constitutes the left term in
(5.11). A smoothing parameter λ is used to determine the relative importance of following the
available data points and minimizing bending energy. Increasing weight in the latter causes the
splines to be smoother and thus more robust against sensor noise. This method and its applications
have been extensively discussed in [11,51,52] and the formal formulation of this algorithm and its
algebraic solution are given in [53]. For completeness, the same algorithm has been provided in
appendix A along with the algebraic solution.

In the case of interpolating L̂ to L(ϱ) for the OAT system, this algorithm must be executed for
every mode shape, i.e. every column in L̂. It requires the (x, y) locations along with the correspond-
ing k = 1, . . . , nz mode shape samples [l]ik(xk, yk) found in the columns of L̂ ∈ Rnz×nm , as input.
Additionally, the smoothing parameter λ must be provided for each mode shape. In [53, sec. 4] a
method for determining this parameter based on the Leave-One-Out Cross Validation (LOOCV)
is provided which is further elaborated upon in [23].

The concept of LOOCV is to estimate one of the available points [l]im(xm, ym),m ∈ 1, . . . , nz

based on information provided by all other available points [l]ik(xk, yk), k = {1, . . . , nz|k ̸= m}.
The error between this estimated point [l̂]im(xm, ym, λi) and the known point, that was left out, is
stored. By doing this for all points and taking the sum of squared differences, the total LOOCV
cost function becomes

Vcv,i(λi) =

nz∑
m=1

(ϵcv,im)2 with, ϵcv,im = [l]im(xm, ym)− [l̂]im(xm, ym, λi). (5.12)

In case a point m contributes a large value to the cost function, it means that the eventual
interpolated surface is significantly affected by that point. Assuming that all sensors function
and have similar noise levels, it also indicates that there are fewer sensors near by and thus the
estimate at this point could be less robust against sensor noise. To compensate for unequal sensor
spacing, an additional weight cim can be added to the cost function, which is now recognized as
the generalized cross-covariance cost function [54].

Vgcv,i(λi) =

nz∑
m=1

cim(ϵcv,im)2. (5.13)

The concept of this weighting is to reduce the cost of available points that lie further away from
other sensors and to thus rely more on the general surface estimate created by other measurements.
The exact mathematical description of the weighting is omitted here for brevity. The optimal value
for λi can be found by solving the following optimization problem

λ̂i = arg min
λi∈[0,∞)

Vgcv,i(λi). (5.14)
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Figure 5.10: Undersensed example of a complex mode shape where LOOCV will incorrectly choose
the smoothing parameter to be large.

The optimal solution to this problem can be found using the nonlinear solver fmincon.m from
the optimization toolbox in MATLAB. Filling the optimal λ into the thin plate spline estimator
results is a parametric function that can estimate a mode shape over the entire domain of ϱ.

Potential pitfalls concerning the thin plate spline and smoothing algorithms are mostly related
to undersensing. When a limited amount of data is available to identify a complex mode shape,
every point is likely to add significantly to the cost function of (5.13) in case of a low smoothing
value. LOOCV is therefore more likely to conservatively choose a high smoothing value causing an
almost flat surface to be fitted. This is also illustrated in Figure 5.10 for a 1D situation. Analyzing
the figure, in case the point density in the x-direction would have been higher, the estimate errors
would likely be smaller and thus also a smaller λ would be deemed optimal. In other words, when
limited data is available, LOOCV cannot distinguish noise from actual data, because it does not
know what the expected noise level is.

Another cause of error might be inadequate sensor and actuator placements. When e.g. all
sensors and actuators lie on the nodal lines of a particular mode shape, that shape is not observable
and thus a flat plane will once again be fitted. Since no information about any physical properties
of the mode shapes is known a priori to the LOOCV algorithm, it will only work well as long
as the system is not undersensed for the mode shape to be identified. In [53, sec. 4.9] a similar
conclusion is made, it is also mentioned that even with a higher number of data points, it is not
guaranteed that the data is fitted as desired.

5.4.2 Interpolation using Gaussian processes

Gaussian processes (GPs) will now be discussed as a potential alternative to thin plate spline
interpolation. The latter uses the prior knowledge that the bending energy in a thin plate should
always be minimal, but the robustness of the total algorithm is heavily dependent on the number
of available data points. It will be shown how GPs can use a different type of prior knowledge of
mode shapes to arrive at an estimate that has the potential to perform better than STPS.

GPs can be used to estimate unknown functions using available training data. This is called
regression. In case of the OAT, it can be used to estimate a mode shape as a function of (x, y)
position on the wafer stage using available plate deflection data from sensors and actuators. A
GP is a stochastic process i.e. a set of random variables f(x) indexed by x ∈ X , with X ∈ R such
that any finite subset of them still follows a multivariate Gaussian distribution [55,56]. It is fully
defined by its mean function

µ(x) = E[f(x)], (5.15)

and its covariance function which is also referred to as the kernel function

k(x, x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))] with x, x′ ∈ X . (5.16)
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Given this Gaussian distribution, regression on the training data can be performed using
Bayesian inference. This process involves updating a probability distribution over functions, called
the prior, using observed training data, in order to arrive at a conditioned posterior Gaussian
distribution. This distribution now describes an estimate of the underlying function. The type of
functions that are fitted are determined by the prior distribution. Since this has the structure of a
GP, two functions describing the mean as in (5.15) and the variance as in (5.16) must be defined.
The flexible mode shapes of a body are expected to oscillate around a constant plane or axis.
There should thus not be any trend present, therefore the mean function is chosen as µ(x) = 0.
The covariance function will determine the shape of the functions to be fitted depending on a
set of hyper-parameters. A very common choice of covariance function is the squared exponential
kernel given by

kSE(x, x
′) = σ2 exp

(
− (x− x′)2

2l2

)
(5.17)

In general, this class of functions works well for smooth continuously differentiable functions and
can be made to fit a wide variety of them. It is therefore expected to be rich enough to include
mode shapes as well. This function has only two hyper-parameters. The first one is the length-scale
l. It is a measure for the smoothness of the random function f(x). In case of fitting to a periodic
function, this measure should approximately be the length of one period. This hyper-parameter
is given for the entire domain to be fitted. Thus, if the local length scale varies a lot, this function
class might not yield good results. Extrapolation quality often also worsens significantly beyond
approximately l units away from available training data [57]. The second hyper-parameter is the
variance σ2 which determines the average distance between a function and its mean. In (5.17) it is
shown that this is basically a scaling factor. For a comprehensive overview of kernels see [56, Sec.
4.2]. Selecting the two hyper-parameters can be done manually based on engineering insight, but
they can also be found using marginal likelihood optimization [58]. This algorithm marginalizes
the prior over function values based on training data to arrive at optimal hyper-parameters. Note
that this is a non-convex optimization problem and thus a decent initial estimate must still be
provided manually.

The benefit of this entire framework is that a mean and covariance estimate of the conditioned
process can be computed easily. This provides certainty bounds and an expected value of the
unknown function that was fitted over the entire relevant domain. Another benefit is that the
hyper-parameters allow some information about the function to be explicitly encoded beforehand,
which may improve the estimation quality over STPS. Though, this can also be viewed as a down-
side in comparison to STPS, as the process of finding suitable hyper-parameters is non-trivial.
Another potential downside is that the function estimate from GPs is non-parametric. Implemen-
tation on a system might thus require lookup tables or a set of polynomials to be fitted.

5.4.3 Finding suitable hyper-parameters

As already mentioned in section 5.4.1, it is likely that the available number of points to identify
the mode shapes of the OAT system is limited. Should this set be used to compute the hyper-
parameters, the resulting covariance function might not represent the covariance function of the
actual mode shape well at all. The fit through the available points may therefore seem decent
but might not represent the underlying mode shape properly. By using limited prior knowledge
of the OAT system, a modal FEM simulation will now be conducted. The idea is to provide the
marginal likelihood optimization algorithm with high-density mode shape information from this
simulation. The resulting hyper-parameters can then be used to compute a posterior distribution
based on the data points available on the actual setup.

The geometry on which the FEM simulations will be conducted is critical for accurately deter-
mining the length scale l in (5.17). This hyper-parameter has the largest influence on the mean
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estimate of the posterior distribution. The variance σ2 is less critical as this value can later be
scaled with the ratio between the simulated plate deflection and the measured deflection on the
real system. Additionally, this hyper-parameter does not significantly influence the eventual mean
estimate of the posterior distribution, it does however heavily influence the variance. The goal of
the FEM simulation is thus to gather information about the smoothness of the expected mode
shapes.

Since FEM can model any geometry, an obvious choice for the OAT system would be to im-
port the exact geometry of the wafer table which is displayed in Figure 2.4. The figure shows
that square and rectangular holes have been created in the bottom of the wafer table in an effort
to reduce weight whilst maintaining high stiffness. This will cause the wafer table to bend in a
non-homogeneous way. When a marginal likelihood optimization would be executed on a densely
sampled version of an arbitrary mode shape of this FEM model, the length scale l will become
comparatively small. If this length scale is now used on the OAT system, which has a much smaller
data density, the fitting performance will be very poor. In general, relying heavily on a simulated
model might also not warrant a robust approach. A better option might be to use a simplified
physical model, such as the one used in section 5.3.1. By using this homogeneous plate model,
the idea is that only the pure mode shapes are captured, which should contain less information
and might thus be better described by the limited hyper-parameter set. This will also create some
added robustness against potential sensor noise.

Ideally, the above-mentioned method for identifying hyper-parameters a priori is executed for
each mode shape in the FEM model. Yet, here the assumptions are made that 1) all mode shapes
of the real system correspond to those in the simulation and 2) they occur in the same order. The
latter requirement can be relaxed in case some correlation algorithm could be created that can
match available and predicted mode shapes and thus apply suitable hyper-parameters. This is
however a questionable approach since there is no guarantee for assumption 1). The best approach
might therefore be to select only one set of hyper-parameters to fit all mode shapes and base it
on the most complicated shape that is expected.

5.4.4 Performance comparison

In this section, the performance of GP using the accurate and simplified model of the wafer table
will be compared against each other and STPS. To this end, the mode shape that is expected to
be the most complex, inside the frequency range of interest of the OAT system, is simulated using
the accurate and simplified FEM models. The resulting surfaces are colored blue in Figure 5.11.
In the figure, the top row shows the fits of GP in red and STPS in green compared to a mode
shape derived from the accurate FEM model. The bottom row shows the same type of plots, but
now the mode shape reference is derived from the minimal model. Both fitting algorithms are
provided with only 13 sample points whose (x, y) position corresponds to the actuator locations
on the OAT system, see Figure 2.3 for the exact coordinates. Also consider the 2 leftmost plots
in Figure 5.12. Here, the x-axis indicates the number of uniformly distributed points that are
provided to the marginal likelihood optimization algorithm, similar to the number of points above
each plot in Figure 5.11. The resulting hyper-parameters l and σ are displayed on the y-axis.
Subscript a indicates a parameter based on the accurate FEM model and subscript m indicates
a parameter based on the minimal FEM model of the wafer table. Notice that lm ’settles’ at a
larger length scale compared to la. lm also ’settles’ quicker compared to la, which indicates that
more complexity is revealed in the accurate model as the number of sample points increases. Note
also that σm continues to rise after 200 learning points, whilst σa remains somewhat constant.
The result of this effect is found in the rightmost plot of Figure 5.12 where clearly, the normalized
sum of square errors eGP,m continuous to fall as the magnitude of the fitted function increases,
bringing it closer to the reference mode shape. On the contrary, as the number of points used for
learning the GP parameters increases, the error eGP,a only worsens and approaches the error of
STPS. As a side note, both eSTPS,a and eSTPS,m do not have a learning step, instead they are
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Figure 5.11: Comparison plots showing (––) the reference mode shape from FEM, (––) the fitted
surface using STPS and (––) the fitted surface using GPs. Note that both interpolation algorithms
use noiseless mode shape information, sampled in the simulation at the actuator locations of the
OAT see Figure 2.3. In case of STPS, the hyper-parameters are found based on the number
of points mentioned. The top row uses the accurate FEM model and the bottom row uses the
minimal FEM model of the wafer table.

directly provided with the 13 sample points of the reference mode shape and are thus constant
lines in the figure.

The most important takeaway here is: given a limited set of data points for interpolation,
choosing a minimal FEM model to learn the hyper-parameters, rather than a more complex and
accurate one, yields a better estimate of the mode shape, also compared to STPS. In general, both
algorithms can work. In case a good length scale is found, GP can perform better than spline
interpolation. However, finding this value proves to be a non-trivial task. Using FEM simulations,
a decent initial guess can be made, which, in those same simulations, leads to a better estimate
than STPS, but it is yet to be seen whether this translates to good performance on the real system.
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Figure 5.12: Comparison plots that show the hyper-parameters l and σ when using either an
accurate model of the OAT wafer table, indicated by the subscript a or the minimal model,
indicated by m. The rightmost plot compares the normalized sum of squared errors between each
interpolation method and the reference mode shape which is shown in Figure 5.11. Note that both
methods are only given the points that correspond to the actuator locations of the OAT system
as defined in Figure 2.3.

Chapter 6

Experimental results
In this chapter, the methods described to identify an accurate modal model, based on limited non-
parametric FRF data, will be experimentally verified. To this end, a distinction is made between
validating the performance of the sensor extension method using gain matching as discussed in
section 5.2.3 and the performance of interpolation methods as discussed in section 5.4.

6.1 Validation of sensor set extension method

The real flexible beam system, as depicted in Figure 2.6, has three collocated actuator and sensor
pairs. This allows the input and output matrices to be compared after the gain matching step
has been completed. Ideally, these matrices contain the same information for the collocated pairs,
indicating that the method performs well. Similar experiments cannot be conducted on the OAT
system as it does not inherently have multiple collocated sensors and actuators. At least two pairs
would be necessary, as just having one would always lead to an exact solution for αi whilst no
other comparison can be made without interpolation.

6.1.1 Implementation on the flexible beam system

To test the performance of gain matching on the experimental flexible beam system, a non-
parametric identification of the FRF functions of the entire 5 × 3 system has been conducted as
shown in section 4.1.1. Next, a modal model is made that captures the first five mode shapes.
The settings used, that correspond to the algorithm as given in section 4.2 are given below.

Modal identification settings. The weighting filter W (k) is chosen to be inverse Schur-weighting
with a magnitude cut-off at 40dB. This ensures all frequencies inside the frequency range of inter-
est are weighted equally. Due to the −2 slope in the magnitude plots of the system, frequencies
outside this cut-off are automatically weighted less. Additionally, the minima of this weighting
were clipped to emphasize accuracy around resonant frequencies. The LMFD is identified with
100 iterations of the SK-algorithm and refined with 10 iterations of the LM-algorithm. The model
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Figure 6.1: The first five mode shapes that have been identified on the real flexible beam system
using all available devices, i.e. five sensors and three actuators. A comparison between the rows
of the input matrix R̄ and the columns of the output matrix L̄ is shown. Both matrices have been
gain matched using the method described in section 5.2.3.

is then transformed to a mechanical model and an additional 10 iterations of the LM-algorithm
are performed to improve the fit of this model further.

Lastly, the gain matching procedure is applied based on the three collocated pairs. The result-
ing columns of the output matrix L̄ and rows of the input matrix R̄, which each correspond to a
mode shape, are depicted in Figure 6.1. Here, the x-axes indicate the normalized 1D location of
the actuators and sensors on the flexible beam. The first two mode shapes describe the rigid-body
behavior of the flexible beam. Note that the beam is suspended by wire flexures and thus these
modes do have a non-zero resonance frequency and damping. The stiffness of these flexures also
makes the system open-loop stable. Judging from the graphs, the correspondence between the
input and output matrices is decent and similar for all modes. Due to mode shape blending effects
as described in section 5.2.5, the first two modes should be disregarded for this comparison. Any
difference that exists between the data from the input and output matrices may be attributed to
non-linear effects or the individual gains of the sensors and actuators. When using the gain match-
ing approach, the assumption is made that all sensors have the same gain i.e., they all measure in
equivalent units. The same applies to the actuators, a certain current must induce the same force
for every one of them. Another cause of error might be the not globally optimal solution of the
modal fitting algorithm. The fourth mode in the figure does not correspond to any of the mode
shapes that were found in the simulations, there is also no symmetry, yet it does consistently occur.

The goal of the next experiment is to compare the mode shape identification quality, given all
I/O data, against that of hypothetical subsystems where some sensors are left out and replaced by
data from the input matrix. To this end, consider Figure 6.2. The legend in the bottom right of
the figure indicates what sensor set p was used to produce the mode shape information for modes
i ∈ 1 . . . 5. The corresponding resonance frequencies are also mentioned below that in Hertz. The
data from all actuators at locations 1, 3, and 5 is available for all experiments. A red circle (oo)
indicates that a deflection value was taken from the sensor set and a green circle (oo) indicates it
was taken from the actuator set. The first two rigid-body modes do not contain any information
from the actuator set and thus missing points are interpolated. Note that the y-axes are not
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scaled equivalently as is the case in Figure 6.1. The blue line in the figure serves as a reference
for each mode shape. Clearly, the data of the input matrix R̄ is not equivalent to that in L̄, yet
it is highly correlated. Some explanations for this difference have already been provided in the
previous paragraph, but another cause could be the choice of the collocated pair. Particularly,
in case of the purple experiment where p ∈ {1, 2, 4} and a single collocated pair is available at
location 1. For modes 4 and 5 this pair is close to zero and thus gain matching might have limited
performance. Ideally, given these mode shapes, location 4 would have a collocated pair as it is
never close to zero. Unfortunately, there is no actuator at that location.

The magnitude plots that result from the identified mode shapes, colored blue, yellow, and
purple in Figure 6.2, are shown in Figure 6.3. In this magnitude plot, the blue dotted reference
fit follows the non-parametric model best across all FRF plots. Comparing this to the yellow
and purple models, where one and two sensors have been left out respectively, reveals that the fit
quality does decrease. This effect is observed for all rows of FRF plots where a sensor was left out
and replaced by actuator information. For example, take the row of x3 where both the yellow and
purple models are missing a sensor. Up until the first flexible mode at 32.7 Hz, the purple model
is decent. The yellow model performs better and has a good fit until the second flexible mode at
51.9 Hz.

For the flexible beam system, a full-size model that is created using limited sensor data does
perform worse than a model that has all sensors available. Some causes such as sensor or actuator
non-linearity, the fitting algorithm, and the choice of collocated pairs have been suggested as
possible sources of error. In the next section, the gain matching method is used in combination
with interpolation methods to create a modal LPV model of the OAT system. Due to better
quality hardware, the proposed method is expected to perform better.

Figure 6.2: Similar to Figure 6.1, but now, a varying number of sensors have been left out as
indicated by the set p in the legend. For flexible modes, this missing information is provided by
data from the actuator set. The legend also shows the five mode shape resonant frequencies in
Hertz for each of the four experiments according to fi=1|fi=2| . . ..
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6.2 Validation of interpolation methods

The performance of STPS and GP will now be compared against each other by assessing their
overall correlation to the non-parametric FRF data. Given the gain matching approach, interpola-
tion methods are required in case a point of interest has no sensor or actuator close by. During the
validation process, this can be simulated by, for example, leaving out data from a non-collocated
sensor when creating a modal model. Due to the small number of sensors and actuators on the
flexible beam system, leaving out all measurements on one location would significantly worsen the
ability of the system to identify mode shapes. Interpolation quality will therefore also be poor
after the first or second flexible mode. A better alternative would be to experiment on the OAT
system instead, as it has significantly more sensors and actuators which may create a more robust
interpolation estimate for a larger number of mode shapes.

6.2.1 Implementation on the OAT
Although the abundance of sensors and actuators makes the OAT a favorable setup for mode shape
interpolation, it has no exact collocated sensor and actuator pairs as can be confirmed in Figure 2.3.
Each of the four sensors sz1 , . . . , sz4 does however have an actuator located around 100 mm away,
these are az1 , . . . , az4 respectively. In the following experiments, it will be assumed that these
sensor and actuator pairs are collocated in order to estimate αi for the gain matching procedure.
During interpolation, the location and measured deflection of the sensor in each collocated pair
are used. This ensures that the modal fit is accurate at known sensor locations. Due to mode
shape blending, each rigid-body mode is identified using available sensors only. The actuators and
sensors in the z-direction of the wafer table control 3-DOF and thus, at least three sensors are
required to define each of the rigid-body mode shapes. Since four sensors are available, it will now
be attempted to extrapolate data from sensors sz1 , . . . , sz3 and actuators az1 , . . . , az13 to arrive at
an estimate of sensor sz4 . Since this data is known, a performance comparison can be conducted

Figure 6.3: 5×3 Magnitude plot of the flexible beam system showing the non-parametric FRF (––),
the parametric modal model given all available sensors and actuators (––), the parametric modal
model given all actuators and sensors apart from sensor 3 (––), and the modal model given all
actuators but only sensors 1, 2 and 4. (––).
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Figure 6.4: Identified mode shapes of the OAT system. Here, the red (··) and green (··) dots in
the plots represent gain matched sensor data from L̄ and gain matched actuator data from R̄.
The surface plot shows an interpolation made with STPS and the red-toned grid mesh shows an
interpolation made with GPs.

for STPS as well as GP interpolation. The parameteric identification settings have once again
been listed below.

Modal identification settings. The weighting filter W (k) is chosen to be inverse Schur-weighting
with a magnitude cut-off at 80dB. This ensures all frequencies inside the frequency range of inter-
est are weighted equally. Due to the −2 slope in the magnitude plots of the system, frequencies
outside this cut-off are automatically weighted less. Additionally, the minima of this weighting
were clipped to emphasize accuracy around resonant frequencies. Due to large computation time,
the LMFD is identified with only 20 iterations of the SK-algorithm and refined with 10 iterations
of the LM-algorithm. The model is then transformed to a mechanical model and an additional 10
iterations of the LM-algorithm are performed to improve the fit of this model further.

Now, consider Figure 6.4, where both STPS and GP interpolated surfaces are displayed per
mode shape as blue and red-tinted surfaces, respectively. The red dots, in each of the plots, in-
dicate data taken from the output matrix L̄, and the green dots represent data from the input
matrix R̄. Both matrices have been gain matched and can thus be used together to form the
surfaces. The mode shapes are recognizable up to the 9th mode, beyond that, both STPS and
GP no longer make reliable fits due to undersensing. Note that even though the first three modes
were gain matched, the surfaces formed by the actuator set and the sensor set are not the same,
as correctly predicted in section 5.2.3.

In general, STPS interpolation creates a more conservative fit compared to GP. The effect
that this has on the FRF estimates of sensor sz4 is shown in Figure 6.5. In the figure, the blue
(––) colored magnitude represents a modal fit given all sensor data, including sz4 . The orange (––)
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Figure 6.5: Bode diagram showing the magnitude plot from actuator inputs az1 , . . . , az3 to outputs
sz1 , . . . , sz4 . Here, (––) is the non-parametric FRF data of the OAT system which serves as a
reference, (––) is the modal fit on the FRF data given that all data is available, (––) is a fit made
using all actuators but only sensors sz1 , . . . , sz3 . The row of sz4 has been extrapolated using STPS.
Similarly, in (––) sz4 has been extrapolated using GPs.

and yellow (––) colored magnitudes are extrapolated using STPS and GP, respectively, whilst sz4
is not available. Compare these to the black (––) colored non-parametric magnitude to determine
absolute model quality. The interpolation methods are best compared against the blue fit as it
approximates the best possible modal fit given all data. The data displayed in the figure represents
a subset of the entire OAT model. Missing columns corresponding to actuators az4 , . . . , az13 can
be found in appendix B.

Closely observing the row of magnitude plots that correspond to sensor sz4 reveals that the
performance of STPS is slightly better compared to GP. It should be noted here that the hyper-
parameters of the square exponential functions used for GP, are taken directly from simulations
of a simplified wafer table model. Knowing that marginal likelihood optimization on a more accu-
rate model indicated a lower length scale, the currently used length scale was lowered somewhat
arbitrarily by a third. A single FRF plot from az1 to sz4 that shows the resulting fit, in green,
alongside all previously mentioned fits is shown in Figure 6.6. The reduced length scale improves
the interpolation performance and it now surpasses STPS. This shows that GPs have the potential
to outperform STPS but with the current approach of estimating the hyper-parameters, this is
not yet the case for the OAT system. The overall modal model, created using STPS to interpolate
the mode shapes, has decent accuracy until the second flexible mode and can thus help to control
the flexible behavior of the wafer table at unmeasured points of interest.
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Figure 6.6: Bode diagram showing the magnitude plot from actuator input az1 to output sz4 . The
signals correspond to those in Figure 6.5, except for the green (––) signal which represents a fit
using GP where the hyper-parameter l has been reduced by a third.

Chapter 7

Conclusion
The main purpose of this research has been to identify accurate models of the spatio-temporal
behavior of systems that consist of a single flexible body and have a limited number of sensors
available whilst being overactuated. To this end, a modal modeling approach, that is suitable for
systems that have large input/output dimensions and exhibit complex flexible dynamics, is first
introduced. Exploiting prior mechanical system knowledge leads to the key insight that the input
and output matrices of an identified modal model contain similar information for each mode shape
but are sampled at the locations of the actuators and sensors, respectively. Combining information
from both matrices is achieved using a collocated pair of sensors and actuators. The concept here
is that the actuator and sensor gain of this pair should be equal as their locations are equal. A
scaling approach is proposed that enforces this condition.

The location of collocated pairs is determined based on a set of relevant mode shapes that
should be identifiable. The concept here is that the scaling approach becomes undefined as soon
as the gain of a collocated pair approaches zero. Therefore, a FEM-based approach is proposed
that finds areas within the relevant spatial domain where a collocated pair will always measure a
sufficiently large gain.

Given that data from actuators and sensors can be combined, a denser grid of points is avail-
able to describe the underlying mode shapes. Two interpolation methods are used to reveal these
underlying mode shapes given sampled data. The most common method of interpolation, given
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that the flexible body of interest can be modeled as a thin plate, is thin plate spline interpola-
tion. Given a low number of samples though, it is found that this method sometimes does not
follow the available data points due to the smoothing algorithm used. As an alternative, Gaussian
Processes are considered. Here, prior knowledge based on FEM simulations of the same flexible
bodies is used to define the smoothness of the expected mode shapes. Both methods show good
performance, but based on simulation, Gaussian processes can perform better compared to thin
plate spline interpolation.

The effectiveness of the gain matching approach as well as the two interpolation methods have
been experimentally verified on two systems. The performance of gain matching is decent but the
location of the collocated pair must be such that it is not on a nodal point or line of a relevant
mode. This approach also requires actuators to respond linearly and their gains to be equivalent
or exactly known, which may not always be the case. The proposed method of interpolation using
Gaussian Processes is shown to have the potential to outperform Smooth Thin Plate Spline inter-
polation. The current method of finding a suitable length scale using FEM simulations is however
not able to produce optimal values yet, and thus STPS still performs slightly better.

This thesis provides a unified approach for the identification of the spatio-temporal system
behavior of next-generation motion systems. Prior mechanical system knowledge is used to more
accurately estimate the flexible behavior spatially, than previously possible. The effectiveness of
the proposed approach is demonstrated on two benchmark experimental systems.

Graduation Thesis Page 38



TU/e, Department of Mechanical Engineering

Recommendations and future research

In case the approaches mentioned in this thesis are applied to overactuated mechanical systems,
the following advice is provided. The gain of the actuators should either be known or measurable.
Given that the sensors also have a consistent gain, this will ensure the best performance for the
gain matching procedure. In case there is design freedom in actuator and sensor placement in a
particular system, a FEM simulation can be used to determine the optimal locations of the collo-
cated sensor pairs by observing the mode shapes in the relevant frequency range of interest. These
should be placed such that the situation in which all of them measure a low gain for a particular
mode shape is avoided to ensure accuracy. The best and most robust interpolation approach is
currently the thin plate spline method. However, in case a system has, for example, one more
sensor than the number of degrees of freedom, that additional sensor can be used for validation.
In that case, the approach that uses Gaussian Processes can be used. An initial estimate of the
hyper-parameters can be found using the given approach, which can then be optimized by mini-
mizing error between the interpolation estimate and the real value as measured by the validation
sensor.

Future research may concern a method to more accurately find the optimal hyper-parameters
for estimation using Gaussian Processes. The framework of Gaussian Processes provides signif-
icant design freedom which can also be explored more. The kernel that defines the covariance
function can, for example, be tailored more specifically to each mode shape. This way, properties
such as symmetry can be incorporated more effectively.

Currently, the GP framework is only used to estimate the mean of the mode shapes, but it
also produces a variance. Potentially, this can be used in combination with uncertainty estimation
of the non-parametric and parametric identification methods to arrive at an estimate of the total
model uncertainty. Confidence intervals for Thin Plate Spline interpolation have also been dis-
cussed in [53]. It may be possible to estimate the total model uncertainty using this method as well.

The main purpose of this thesis has been to identify accurate models of the spatio-temporal
system behavior. After such a model is obtained, the next step would be to use it for synthesizing
a controller using a model-based approach such as inferential or observer-based control. Imple-
menting this on a system will allow the performance to be compared to more traditional control
approaches.
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Appendix A

Spline interpolation algorithm
In this section, the smooth-thin-plate-spline (STPS) interpolation algorithm from [11] is provided.
The goal of this algorithm is to find an interpolating function Ws ∈ W1

2 given a smoothing
parameter λ ∈ [0,∞] and a set of nϱ points {(x̄j , ȳj , z̄j) ∈ R3} which are spatially distributed
in (x, y) directions. Here, W1

2 defines the set of functions that is continuously differentiable with
square-integrable second derivatives. The cost function to find an optimal Ws is given by,

min
Ws∈W1

2

nϱ∑
j=1

|Ws (x̄j , ȳj)− z̄j |2 + λU, (A.1)

with
U =

∫ ∞
−∞

∫ ∞
−∞

∆2Ws(x, y)dxdy. (A.2)

The functions that minimize (A.1) are given by

Ws(x, y, ϑ) = ϑ0 + xϑx + yϑy +

nϱ∑
j=1

ϑjGj(x, y), (A.3)

Gj(x, y) = r2j ln (rj) , rj =

√
(x̄j − x)

2
+ (ȳj − y)

2
, (A.4)

where Gj(x, y) are so-called green’s functions [59]. The first 3 terms on the right-hand side of
(A.3) represent a set of first-order polynomials that lie in the null space of U . The following three
additional constraints are necessary to ensure this function space remains orthogonal to that of
Gj(x, y).

nϱ∑
j=1

ϑj = 0,

nϱ∑
j=1

ϑj x̄j = 0,

nϱ∑
j=1

ϑj ȳj = 0. (A.5)

Given these constraints and the function space defined by Ws, the solution to (A.1) in matrix
form is given by

ϑ = X−1
[
z̄1 . . . z̄nϱ

01×3
]⊤

, ϑ =
[
ϑ0 ϑx ϑy ϑ1 . . . ϑnϱ

]⊤
, (A.6)

with

X =

[
X0 XG + λI
03×3 X⊤0

]
, X0 =

 1 x̄1 ȳ1
...

1 x̄nϱ
ȳnϱ

 ,

XG =

 G1 (x̄1, ȳ1) . . . Gnϱ
(x̄1, ȳ1)

...
...

G1

(
x̄nϱ , ȳnϱ

)
. . . Gnϱ

(
x̄nϱ , ȳnϱ

)
 .

(A.7)
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Appendix B

Modal fits of OAT system

Figure B.1: Bode diagram showing the magnitude plot from actuator inputs az4 , . . . , az6 to outputs
sz1 , . . . , sz4 . Here, (––) is the non-parametric FRF data of the OAT system which serves as a
reference, (––) is the modal fit on the FRF data given that all data is available, (––) is a fit made
using all actuators but only sensors sz1 , . . . , sz3 . The row of sz4 has been extrapolated using STPS.
Similarly, in (––) sz4 has been extrapolated using GPs.
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Figure B.2: Bode diagram showing the magnitude plot from actuator inputs az7 , . . . , az9 to outputs
sz1 , . . . , sz4 . Here, the plot colors correspond to those of Figure B.1.

Figure B.3: Bode diagram showing the magnitude plot from actuator inputs az10 , . . . , az13 to
outputs sz1 , . . . , sz4 . Here, the plot colors correspond to those of Figure B.1.
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Appendix C

Rigid-body freedom example
In this section, the domain containing all possible input and output vectors to construct a partic-
ular rigid body matrix is shown. It is assumed here that the rigid body matrix is square positive
definite and symmetric due to the vectors that it is constructed from

Rrb ∈ R2×2, Rrb > 0⇔ Rrb = ϕ1ϕ
⊤
1 + ϕ2ϕ

⊤
2 . (C.1)

The matrix Rrb can be arbitrarily separated into a sum of vector products using a singular value
decomposition

Rrb = UΣV ⊤ = UΣU⊤ = Ũ Ũ⊤ = ũ1ũ
⊤
1 + ũ2ũ

⊤
2 . (C.2)

From these vectors, a new set of vectors can be created namely

û1 = α1ũ1 + α2ũ2

û2 = β1ũ1 + β2ũ2.
(C.3)

Such that

R̂rb = û1û
⊤
1 + û2û

⊤
2 ,

R̂rb =
(
α2
1 + β2

1

)
ũ1ũ

⊤
1 + (α1α2 + β1β2)

(
ũ1ũ

⊤
2 + ũ2ũ

⊤
1

)
+

(
α2
2 + β2

2

)
ũ2ũ

⊤
2 .

(C.4)

Since the newly found matrix R̂rb must be equal to the original matrix Rrb, the following conditions
hold

R̂rb = Rrb ⇒

 α2
1 + β2

1 = 1
α1α2 + β1β2 = 0

α2
2 + β2

2 = 1
(C.5)

There are now four variables and three equations, meaning one of them can be chosen freely in
[0, 1]. When α1 is defined to be the free variable, solving the constraints yields four possible
solutions for every value of α1. These solutions have been provided in Table C.1. The possible
vectors û1 and û2 are also displayed over their entire domain in Figure C.1. Here, the red lines
depict the two scalars in û1(α1) and blue depicts û2(α1). The vectors that form Rrb were chosen
arbitrarily to be ϕ1 =

[
1 2

]⊤ and ϕ2 =
[
−1 4

]⊤. The figure shows that given a rigid body
matrix of size 2× 2, it is possible to find a decoupling for which one mode has a true translation.

α2 = −β1β2

α1
β1 =

√
1− α2

1 β1 = −
√
1− α2

1

β2 = α1
û1 = α1ũ1 −

√
1− α2

1ũ2

û2 =
√
1− α2

1ũ1 + α1ũ2

û1 = α1ũ1 +
√
1− α2

1ũ2

û2 = −
√
1− α2

1ũ1 + α1ũ2

β2 = −α1
û1 = α1ũ1 +

√
1− α2

1ũ2

û2 =
√
1− α2

1ũ1 − α1ũ2

û1 = α1ũ1 −
√
1− α2

1ũ2

û2 = −
√
1− α2

1ũ1 − α1ũ2

Table C.1: Displays all possible vector combinations for which it holds that R̂rb = Rrb with
α1 ∈ [0, 1].
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Figure C.1: Displays the four possible solutions for vectors û1 and û2 given the domain of α1. The
red lines indicate the scalars in û1 and the blue lines indicate the scalars in û2. The vertical black
lines indicate a value of α1 for which either û1 or û2 contains equivalent values.
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