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Abstract

To reduce unscheduled production downtime in high-precision mechatronics it is key to detect
faults early within the system. To this end, fault diagnosis systems are crucial, and a design
strategy, specifically tailored to high-precision systems, is presented to detect and localize actuator
and sensor faults. The employed fault diagnosis system builds upon a state-of-the-art nullspace
based paradigm and is validated via experiments on a flexible beam set-up and a high-precision
next generation wafer stage.
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Chapter 1

Introduction

Fault diagnosis is becoming increasingly important in the field of process monitoring due to the
growing demand of systems that require higher performance, safety and reliability [1]. This re-
quires the fault diagnostic systems to execute its functionalities under more complex operation
conditions, which include the identification of faults in machines, the localization of faults in ma-
chines, and the prediction of the remaining life-time of components. Fault diagnostic systems are
therefore one of the key techniques for predictive maintenance. Predictive maintenance allows for
efficient planning of the maintenance operation of the machine tools and reduces the unscheduled
production downtime, which is essential in high-tech precision systems [2].

For decades, research in the field of fault diagnosis has been devoted to model-based fault
diagnosis and data-driven fault diagnosis. Currently, due to advancements in the field of artificial
intelligence, a significant part of research is focused on data-driven fault diagnosis [3]–[5]. However,
the downside of these data-driven methods is that the quality of the algorithm is dependent on
the quality and quantity of the training data, which is not always available [6].

In contrary to the data-driven approach for fault diagnosis, a model-based approach requires
only the availability of the system model. Additionally, the model-based approach gives more
insight into the fault diagnostic system. Numerous model-based approach for fault diagnosis and
their computations have been described in [7], however, the recently developed nullspace-based
fault diagnosis in [8], is the first model-based approach that provides a complete collection of
numerically reliable methods for the synthesis of a fault diagnostic system for large-scale systems.

While the application of the nullspace-based fault diagnosis has been extensively studied in
the aerospace industry [8]–[10], the application to the field of high-tech precision systems is still
limited. These are often multi-input multi-output (MIMO) interconnected systems, in which
accuracy performance is key. Such systems can be represented via linear models, which are possibly
of high order due to flexible dynamics in case of high performance and high degrees of freedom
(DOF) [11]. Hence, the possibility and limitation of the nullspace-based fault diagnosis on these
systems is currently unknown.

Additionally, the model-based fault diagnosis approach requires an accurate model of the sys-
tem plant G. Currently, the models that are obtained in high-tech precision systems, are derived
for modelling and control purposes. However, it is unclear what the requirements for fault dia-
gnosis oriented models are. In particular, in what frequency range is model accuracy required.

Furthermore, with the presence of interconnected submodules in a high-precision system, the
complexity and scale of fault diagnostic systems is increased. Therefore, it is desirable to employ
fault diagnosis on submodule level, to simply the fault localization problem, i.e., to enable to
pinpoint the faulty submodule without modelling the entire system. This introduces new challenges
to the fault diagnostic system.

The outline of this thesis is as follows; Chapter 2 describes the problem formulation. The
theory of the nullspace-based fault diagnosis is described in Chapter 3. Chapter 4 describes the
design freedom and limitations of the nullspace-based approach on high-precision systems. The
model requirements for effective model-based fault diagnosis are given in Chapter 5. Chapter 6 in-
vestigates two case-studies. In the first case-study, the nullspace-based fault diagnosis is employed
to detect and locate multiple actuator and sensor faults injected into high-precision systems. In
the second case-study, the nullspace-based fault diagnosis is employed to cope with interference
between submodules in high-precision systems. Finally, a conclusion and recommendation is given
in Chapter 7.
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Chapter 2

Problem formulation

Consider the nullspace-based fault diagnosis for a closed-loop MIMO system, as depicted in Fig 2.1.
The residual genenator Q processes the known control inputs u and the available measurements y
to generate a residual signal ε. The residual signal indicates the presence or absence of a fault f
and is insensitive to the reference signal r, disturbance signal d and noise signal w. The synthesis
of Q is based on the model of system G, which is composed of the model of the plant Gu, the
disturbance Gd, the noise Gw and the fault Gf . In MIMO systems, the model Gu consists of
large-scale models with complex interconnections.

Remark. The nullspace-based fault diagnosis, mainly focusses on additive faults, such as actuator
and sensor faults.

Fig. 2.1: The configuration of the nullspace-based fault diagnosis in a closed-loop MIMO system,
where Gu contains numerous interaction terms. The filter Q processes the control input u and
measurement y, and outputs the residual ε that indicates whether fault f is present or absent.

The intention of this report is to investigate the use of nullspace-based fault diagnosis for
high-tech precision systems. Since, the nullspace-based approach for fault diagnosis is primar-
ily developed for the aerospace industry, the possibility and limitation of the nullspace-based
approach within high-precision systems need to be defined. Furthermore, the nullspace-based ap-
proach requires an accurate model representation of the system. However, a quantification of this
accuracy is required for effective fault diagnosis. Lastly, validation of this approach is required to
demonstrate its applicability within the industry. Hence, the following three research questions
are posed:

2



CHAPTER 2. PROBLEM FORMULATION 3

1. What is the design freedom and limitation of nullspace-based fault diagnosis tailored to
high-tech precision systems?

2. Where is model accuracy required for the synthesis of effective fault detection filters? In
other words, in what frequency range should modelling errors be avoided?

3. Application of nullspace-based fault diagnosis on full MIMO high-tech positioning systems.

(a) Detection and localization of actuator and sensor faults on a full MIMO application,
e.g., the flexible beam and overactuated test rig (OAT).

(b) Interference decoupling on a full MIMO application for submodule level fault diagnosis.
This is demonstrated on the OAT.

The answers to these questions form important insights, crucial for fault diagnosis system
design for high-tech positioning systems.

Research question (1):

The nullspace-based fault diagnosis synthesis, described in [8], contains a vast amount of synthesis
options. Numerous design examples are demonstrated on systems originating from the aerospace
industry. However, high-tech precision systems differ from aerospace systems in scale and com-
plexity. Hence, the design freedom and limitations of the synthesis should be investigated for
high-tech systems.

Research question (2):

Ideally, a model should be an accurate representation of the true system over the entire frequency
range. However, in practice, the model is an approximation of the real system. Hence, it can
only give a good approximation over a certain range of frequencies. Models used for control
purposes, usually demands high accuracy around the flexible modes to guarantee high performance.
These models are generally obtained via identification techniques, which are able to obtain the
model in an inexpensive, fast and accurate approach [12]. However, it is unclear whether these
identified models designed for control purposes are also suited for fault diagnosis. This might
require a different approach to the system identification procedure. Hence, a clear requirement
for model accuracy for model-based fault diagnosis should be developed. Primarily focusing on
model accuracy in certain frequency ranges.

Research question (3):

The applicability of the nullspace-based approach for fault diagnosis on high-precision systems, is
demonstrated on two common types; suspended and unsuspended. The two experimental setups
that are used for demonstration purposes are; the flexible beam (suspended) and the OAT (un-
suspended), depicted in Fig. 2.2(a) and Fig. 2.2(b), respectively. Both systems have different

(a) (b)

Fig. 2.2: The flexible beam setup (a) and the overactuated test rig (OAT) (b).

3



4 CHAPTER 2. PROBLEM FORMULATION

rigid-body dynamics, which affects the possibility and limitation of the nullspace-based fault dia-
gnosis. A suspended system is connected to the fixed-world, e.g., via a spring, and their bode
diagrams starts with a ’0’-slope. An unsuspended system levitates, which leads to poles present
at the origin. Hence, their bode diagrams starts with a ’-2’-slope. Both experimental setups are
MIMO systems having a vast amount of actuators and sensors. Hence, to detect and localize faults
in these actuators and sensors, a nullspace-based fault diagnosis system is required.

Additionally, the OAT can be used to demonstrate the interference decoupling for submodule
level fault diagnosis. The necessity for this submodule fault diagnosis derives from the state-of-the
art high-precision system, e.g, lithography systems, which are often composed of multiple inter-
connecting submodules, e.g., the TWINSCAN NXT1950i from ASML, depicted in Fig 2.3. The
machine consists of a long stroke short stroke actuation platform to achieve nanometer positioning
performance with high throughput.

Fig. 2.3: The TWINSCAN NXT1950i from ASML with the dual substrate stage [13]. The stage
contains long stroke and short stroke actuators which are connected to the fixed world via a cable
slab.

To power the electromotors in the fast-moving wafer stage, a cable slab is used, which connects
the wafer stage to the rest of the machine. This introduces disturbances via the cable slab, which
can lead to inteference in the fault diagnosis system. Therefore, it is highly important to include
the interference introduced by the cable slab during the synthesis of the fault diagnosis system for
the wafer stage (submodule level). This requires a new adaptation for the nullspace-based fault
diagnosis approach to cope with this cable slab interference dcable, depicted in Fig 2.4.

Fig. 2.4: A closed-loop configuration of a wafer stage, including the interferences from the cable
slab dcable. The fault detection filter Q output the residual ε, that detects faults f while the
disturbance from dcable is present.

4



Chapter 3

Nullspace-based fault diagnosis

In this chapter the nullspace-based fault diagnosis synthesis is described. The chapter starts with
the general fault detection setting. Next, solving the exact fault detection problem is explained
and is further expanded to the approximate fault detection problem which copes with sensor noise.
Eventually, the problem is extended to an isolation problem to localize faults.

3.1 Fault detection setting

Consider the system presentation in Fig 3.1. The representation is in λ since it can be both
presented in continuous and in discrete time, i.e, λ = s and λ = z respectively. The fault detector
filter, highlighted in ( ), is defined as Q(λ) := [Qy(λ) Qu(λ)] and processes the sensor signal y(λ)
and the control input signal u(λ), and outputs the residual signal ε(λ).

Fig. 3.1: Standard open-loop configuration of a fault diagnosis system. The fault detection filter
Q(λ) is highlighted in ( ), which outputs the residual signal ε(λ) that indicates whether fault f(λ)
is present or absent.

The output signal y(λ) can be formulated as

y(λ) = Gu(λ)u(λ) +Gd(λ)d(λ) +Gw(λ)w(λ) +Gf (λ)f(λ), (3.1)

where y(λ) is a p-dimensional vector, control input u(λ) is a mu-dimensional vector, d(λ) is md-
dimensional vector, w(λ) is a mw-dimensional vector and f(λ) is a mf -dimensional vector. There
are no required criteria for the transfer function matrices (TFMs)

[
Gu(λ) Gd(λ) Gf (λ) Gw(λ)

]
,

e.g., (strictly) properness or stability. The residual ε(λ) can be described via the following form

ε(λ) = Q(λ)

[
y(λ)
u(λ)

]
= Qy(λ)y(λ) +Qu(λ)u(λ). (3.2)

5



6 CHAPTER 3. NULLSPACE-BASED FAULT DIAGNOSIS

An important condition is that Qy(λ) and Qu(λ) are proper and stable. Loosely speaking, the
objective of fault detector filter Q(λ) is to output a residual ε(λ) such that

ε(λ) ≈ 0, when f(λ) = 0,

ε(λ) ̸= 0, when f(λ) ̸= 0,
(3.3)

for all disturbance input d(λ) and control input u(λ). By substituting (3.1) into (3.2), the internal
form of the filter can be presented as

ε(λ) = Ru(λ)u(λ) +Rd(λ)d(λ) +Rw(λ)w(λ) +Rf (λ)f(λ), (3.4)

where Ru(λ), Rd(λ), Rw(λ) and Rf (λ) are obtained via

[
Ru(λ) Rd(λ) Rw(λ) Rf (λ)

]
= Q(λ)

[
Gu(λ) Gd(λ) Gw(λ) Gf (λ)

I 0 0 0

]
. (3.5)

Remark. The presented internal form of the filter in (3.4) also applies for closed-loop systems
[14].

The fault detector filter Q(λ) has to satisfy the following conditions; the decoupling conditions
(i, ii), the detection condition for the fault input (iii) and the attenuation condition for the noise
input(iv):

(i) Ru(λ) = 0,

(ii) Rd(λ) = 0,

(iii) Rfj (λ) ̸= 0 j = 1, . . . ,mf ,

(iv) Rw(λ) ≈ 0.

To satisfy each of the conditions, the factorized representation in (3.6) is used

Q(λ) = QK(λ) . . . Q2(λ)Q1(λ), (3.6)

where each Qi(λ) has a functionality in achieving these conditions. The fault detection problem is
divided into the exact fault detection problem (EFDP) or the approximate fault detection problem
(AFDP) and is extended to a fault detection and isolation problem (FDIP), which are described
in the sections 3.2 - 3.4.

3.2 Exact fault detection problem

In the exact fault detection problem (EFDP), a filter Q(λ) has to be synthesized which only
satisfies the conditions i) to iii). Hence, EFDP assumes the noise input is neglectable, i.e., w = 0.
The section describes the mathematical procedures to obtain such a fault detection filter.

3.2.1 Nullspace method

The nullspace method enable the direct decoupling of both the disturbance d and control input
u, and provides minimal order fault detection filters. A left minimal basis matrix Nl(λ) with
dimensions (p−rd)×(p+mu) can be computed, where rd := rank Gd(λ), such that Nl(λ)G(λ) = 0.
Here, G(λ) is defined as

G(λ) =

[
Gu(λ) Gd(λ)
Imu

0

]
. (3.7)

Definition 1. (Rank). The rank of rational matrix G(λ), also denoted as normal rank, is the
maximum linear independent rows over the field of rational functions R(λ) [8]. In continuous-
time, the normal rank of G(s) is the rank of G(s) at all values of s, except for s which cause rank
deficiency [15].

6



CHAPTER 3. NULLSPACE-BASED FAULT DIAGNOSIS 7

Definition 2. (Basis). V (λ) is called a basis of ∨(λ), where V (λ) := {v1(λ), v2(λ), . . . , vk(λ)} ⊂
∨(λ). Hence, ∨(λ) can be constructed with a combination of the rational independent vectors of
V (λ). In other words, vectors of V (λ) are a subset of ∨(λ) and are linearly independent.

Definition 3. (Minimal basis). Denote ni being the greatest degree of the i-th row of the
polynomial basis. Then the order the polynomial basis, nd, is equal the sum of the row degrees
nd =

∑
ni. The minimal basis is where order nd is the least.

The method is first introduced in [16], which uses unreliable polynomial manipulation to com-
pute a minimal polynomial basis Nl(λ). The method is later extended to minimal rational basis
Nl(λ) in [17], [18], which relies on pencil reduction algorithms in [19]. These computations rely
on state space or descriptor systems representation of the rational matrix G(λ) and makes use of
orthogonal similarity transformations, which is numerical more reliable.

The method exploits the simple fact that Nl(λ) is a nullspace basis of G(λ) iff
[
Ml(λ) Nl(λ)

]
is the left nullspace of the system matrix

S(λ) =

[
A− λE B

C D

]
. (3.8)

For proof, see [20]. Then, to compute Nl(λ), an equivalent left nullspace Yl(λ) is first computed
such that Yl(λ)S(λ) = 0. Hence, Nl(λ) is then simply

Nl(λ) = Yl(λ)

[
0
Ip

]
. (3.9)

Nl(λ) can be computed using the pencil reduction methods. First, the orthogonal matrices Q
and Z are determined such that the system matrix S can be transformed in the Kronecker-like
staircase form

S̄(λ) = QS(λ)Z =

Ar − λEr Ar,l − λEr,l

0 Al − λEl

0 Cl

 , (3.10)

where Ar − λEr has full row rank, except for value of λ which reduces the rank of Ar − λEr, and
the pair (Al − λEl, Cl) is observable. By choosing Ȳl(λ) in the form

Ȳl(λ) =
[
0 Cl(Al − λEl)

−1 I
]
, (3.11)

the left nullspace of G(λ) is then computed via

Nl(λ) = Ȳl(λ)Q

[
0
Ip

]
, (3.12)

where the latter part is partitioned such

Q

[
0
Ip

]
=

Br,l

Bl

Dl

 . (3.13)

Hence, the descriptor system representation of Nl(λ) is then obtained via

Nl(λ) = Cl(Al − λEl)
−1Bl +Dl :=

[
Al − λEl Bl

Cl Dl

]
. (3.14)

Remark 1. If the system G(λ) is minimal, then Nl(λ) is a minimal proper rational basis [17].

To determine if the descriptor system G(λ) is minimal, the following five conditions, described
in [8], have to be checked.

7



8 CHAPTER 3. NULLSPACE-BASED FAULT DIAGNOSIS

Theorem 1. A descriptor system G(λ) = C(λE −A)−1B +D of order n is minimal iff

(a) rank
[
A− λE B

]
= n,

(b) rank
[
E B

]
= n,

(c) rank

[
A− λE

C

]
= n,

(d) rank

[
E
C

]
= n,

(e) A ker (E) ⊆ Im(E).

If the conditions (a, b) are satisfied, the system is controllable. The conditions (c, d) defines the
observability of the system. Lastly, if condition (e) is satisfied, then there are no non-dynamics
modes present, i.e, no simple infinite eigenvalues.

In case that the disturbance is absent in G(λ), i.e., Gd(λ) = 0, the left minimal basis Nl(λ) is
simply the full-order Luenberger observer

Nl(λ) =
[
Ip −Gu(λ)

]
. (3.15)

To check if the computed nullspace basis Nl(λ) is a valid as fault detector, the (detectability)
condition iii) has to be satisfied. This means the following condition should hold

Rf (λ) = Nl(λ)

[
Gf (λ)

0

]
̸= 0, (3.16)

where Gf (λ) is the fault TFM. Let Gfj be the j−th fault (column) of Gf (λ). Then a necessary
and sufficient condition for the existence of a solution is the following one (from [16])

Theorem 2. A solution to EFDP exist iff
rank

[
Gd(λ) Gfj (λ)

]
> rank Gd(λ), j = {1, ...,mf}.

Theorem 2 defines if the system in (3.1) is complete fault detectability and the admissibility
property of the fault detector filter.

Definition 4. (Complete fault detectable). The system in (3.1) is complete fault detect-

able if there exist a fault detection filter Q(λ) such that Rfj (λ) = Q(λ)
[
Gfj (λ) 0

]T ̸= 0, j =
{1, . . . ,mf}, i.e., all faults are detectable. The fault detector filter Q(λ) is then called admissible.

Let Ω, be a set of frequencies in which the fault, f , occurs. In case of a persistent fault
at frequency Ω, it is desired that the residual signal ε(λ) does not decay. Therefore, the fault
condition in (3.16) is extended to a strong fault detection condition.

Definition 5. (Strong fault detectable). A fault f is strong detectable at frequency Ω by the fault
detector filter Q(λ), if the corresponding fault-to-residual TFM Rf (λ) has no zeros present at Ω,
i.e., Rf (λ) has a non-zero DC-gain such that Rf (0) ̸= 0.

In continuous-time, a common choice for the fault signal is a step Ω = {0}, i.e., an abrupt
change, or a sinusoidal signal at frequency Ω = wx, i.e., an evolving fault.

Then, one possible approach to build a stable scalar output detector, that satisfies (3.16), is
by building linear combinations of the left minimal nullspace basis such that

N̄l(λ) = h(λ)Nl(λ), (3.17)

where h(λ) is a row vector. Via the combinations of h(λ) all possible fault detectors can be
synthesized.

In case the conditions are fulfilled, the detector(s) are updated via Q1(λ) = Nl(λ), Rf (λ) =

Q1(λ)
[
Gfj (λ) 0

]T
.

8



CHAPTER 3. NULLSPACE-BASED FAULT DIAGNOSIS 9

3.2.2 Achieving least order detector(s)

Let Q1(λ) = Nl(λ). A row vector Q2(λ) has to be computed such that the fault detection filter
Q2(λ)Q1(λ) has the desired number of residuals and has the least McMillan degree. This is desired
to reduce the computational expense of the filter. An important condition is that Q2(λ)Q1(λ) is
admissible, i.e., satisfies the detection condition iii). By employing the minimal dynamic cover
techniques in [21], the least order detector(s) can be obtained.

First, a special form of the controllability staircase algorithm, described in [22], is employed
on the system matrices in (3.14), such that Q2(λ) can be formulated as

Q2(λ) =

[
Al +KCl − λEl K

HCl H

]
, (3.18)

where the matrices (Al, Cl, El) are based on (3.14). Then Q2(λ)Q1(λ) has the form

Q2(λ)Q1(λ) =

[
Al +KCl − λEl Bl +KDl

HCl HDl

]
, (3.19)

where H is a full row rank matrix and K is the output injection matrix. The matrix H is often
randomly chosen, i.e., fixed. Then, the matrix K is determined, such that the fault detection filter
Q2(λ)Q1(λ) has the least possible McMillan degree and satisfies the admissibility condition. To
compute such a matrix K, two nonsingular transformation matrices U and V are computed via the
Type 1 dynamic cover algorithm in [21], such that the system is put into a maximum unobservable
form to cancel the maximum number of poles. In what follows, describes the computation of the
matrix K shortly.

Firstly, the matrices U and V are computed such that

U(Al − λEl)V =

[
Â11 − λÊ11 Â12 − λÊ12

Â21 Â22 − λÊ22

]
, UBl =

[
B̂1

B̂2

]
,

[
hCl

Cl

]
V =

[
0 Ĉ22

Ĉ11 Ĉ12

]
, (3.20)

where the pairs (Â11 − λÊ11, Ĉ11) and (Â22 − λÊ22, Ĉ22) are observable. The matrices Ĉ11 and
Â21 has the following structure [

Â21

Ĉ11

]
=

[
0 A21

0 C11

]
, (3.21)

where C11 has full column rank. By taking

K = U−1

[
0
K2

]
, (3.22)

with K2 satisfying K2C11 +A21 = 0, the part Â21 +K2Ĉ11 is eliminated. Hence, the eigenvalues
in Â11 − λÊ11 are unobservable. By removing these unobservable states, the least order fault
detector filter Q2(λ)Q1(λ) is obtained.

If Q2(λ)Q1(λ) is of least order and satisfies the admissibility condition, the fault detection
filter is updated via Q(λ) = Q2(λ)Q1(λ), Rf (λ) = Q2(λ)Rf (λ).

3.2.3 Enforcing stability and desired dynamics

To synthesize a physically realizable (properness) filter Q(λ) and TFM Rf (λ), a factor Q3(λ) is
employed such that Q3(λ)

[
Q(λ) Rf (λ)

]
are stable and have only poles in a ”good” region. This

region is defined by the engineer.
For the computation of the factor Q3(λ), the left-coprime factorization (LCF) is used. Via the

left co-prime factorization, the filter can be represented as[
Q(λ) Rf (λ)

]
= Q3(λ)

−1
[
Q̄(λ) R̄f (λ)

]
(3.23)

9
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where
[
Q̄(λ) R̄f (λ)

]
and Q3(λ) are stable coprime factors. The stability of both factors im-

plies that
[
Q̄(λ) R̄f (λ)

]
should contain all the RHP-zeros of

[
Q(λ) Rf (λ)

]
and Q3(λ) should

contain all RHP poles of
[
Q(λ) Rf (λ)

]
as RHP-zeros. The coprimeness implies that both

factors should have no common RHP-zeros that could cause pole-zero cancellation when form-
ing Q3(λ)

−1
[
Q̄(λ) R̄f (λ)

]
[15]. Note, that the order of the filter Q(λ) is not increased when

employing LCF and keeps the minimal property.
Assume the following descriptor realization[

Q(λ) Rf (λ)
]
=

[
A− λE B Bf

C D Df

]
, (3.24)

where the poles of
[
Q(λ) Rf (λ)

]
relates to Λ(A−λE). Via the orthogonal matrices Q and Z, the

regular pencil (A−λE) is transformed to a specially ordered generalized real Schur form (GRSF)
(Ā− λĒ) := Q(A− λE)Z such that

Ā− λĒ =

[
A∞ ∗
0 A22 − λE22

]
, (3.25)

whereA∞ contains all simple infinite eigenvalues ofA−λE corresponding to first-order eigenvectors
and

A22 − λE22 =

Ag − λEg ∗ ∗
0 Af,b − λEf,b ∗
0 0 A∞,b − λE∞,b

 , (3.26)

where Ag − λEg contains the stable finite eigenvalues, Af,b − λEf,b contains the unstable finite
eigenvalues and A∞,b − λE∞,b contains the unstable infinite eigenvalues. Then via the algorithm
GRCF orGRCFID in [23], a factor Q3(λ) is computed which relocates all controllable stable/un-
stable and finite/infinite eigenvalues to a stable location and removes all uncontrollable eigenvalues.
Note, numerically instability can occur when the infinity-norm of the partial feedback gains ∥F2∥,
which is used to relocate the unstable eigenvalues, is too large. This can happen when unstable
eigenvalues are too far in the unstable region or are weakly controllable.

In Fig 3.2, the LCF in continuous-time is visualized. The parameter smarg is the threshold
value which defines if a pole (eigenvalue) is ’unstable’, marked with red cross. This ’unstable’ pole
can also be a stable pole close to the origin. The ’unstable’ poles are then relocated to the desired
stable location, given via the parameter sdeg or to the location poles. The parameter sdeg, is a
real negative real value and poles is a pair of complex negative poles, marked with green crosses.

Fig. 3.2: Visualization of the left co-prime factorization. The ’unstable’ poles, indicated with red
crosses, are moved to the position of sdeg, a negative real value, or to the pole locations, indicated
with green crosses. The ’unstable’ poles are defined by the threshold parameter smarg.

After relocating the ’unstable’ poles to the ’good’ region, the filter is updated via
[
Q(λ) Rf (λ)

]
=

Q−1
3 (λ)

[
Q̄(λ) R̄f (λ)

]
.

10
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3.3 Approximate fault detection problem

In the approximate fault detection problem (AFDP), a fault detection filter Q(λ) has to be syn-
thesized, which satisfies the conditions i) to iv). This includes the attenuation of the noise input
ω(λ). However, before the AFDP is solved, the following theorem from [8] is first considered

Theorem 3. The AFDP is solvable iff EFDP is solvable.

If the EFDP is not solvable, the disturbance can be reformulated as noise, i.e., Gw(λ) = Gd(λ).
Hence, the EFDP is then, in most cases, solvable.

The procedure of AFDP is similar to the EFDP procedure, such as computing the left minimal
basis Nl(λ), computing the least order detector(s) and enforcing stabilization/desired dynamics.
However, AFDP has to satisfy an extra admissibility condition and has an attenuation step. The
extra admissibility condition requires Rw(λ) to have full row rank, where

Rw(λ) = Q2(λ)Q1(λ)

[
Gw(λ)

0

]
. (3.27)

The necessity of this admissibility condition is such that the attenuation step, described in the
next subsection, is solvable.

3.3.1 Attenuation of noise

Assuming the fault detector filterQ2(λ)Q1(λ) has the least McMillan degree and both admissibility
conditions are satisfied, then the attenuation step is formulated as a standard H2/H∞-norm
minimization based “controller” synthesis problem [24]. Let γ > 0 be an admissible level for the
effect of the noise signal w(t) on the residual ε and let β be the optimal fault sensitivity level.
Then the minimization goal is to determine a proper and stable Q(λ) such that

β = max
Q(λ)

{∥Q(λ)Rf (λ)∥∞− | ∥Q(λ)Rw(λ)∥∞ ≤ γ}, (3.28)

where ∥Rf (λ)∥∞− is formulated as

∥Rf (λ)∥∞− = min
1≤j≤mf

∥Rf j(λ)∥∞. (3.29)

The authors in [25], [26] introduced a way to solve this optimization problem based on the
∥Rf (λ)∥− index. However, this norm is based on singular values and only works for occasions
when mf ≤ p, i.e., number of faults are equal or less than the number of measurements [8].

To overcome this proble, the ∥Rf (λ)∥∞− index is introduced in [27]. The optimal solution is
based on a special form of coprime factorization, respectively the inner-outer factorization.

Consider G(λ) ∈ RH∞, i.e., stable proper rational TFM, then an inner-outer factorization
exists

G(λ) = Gi(λ)Go(λ) (3.30)

where Gi(λ) is inner, i.e., Gi(λ)
∗Gi(λ) = I. Additionally, Gi(s)

∗ = Gi(−s)T in continuous-time
and Gi(s)

∗ = Gi(1/z)
T in discrete-time. The role of the inner factor is to relocate all the RHP

zeros of G(λ) to Gi(λ). An important property of inner (and simultaneously co-inner) is that
Gi(s) is an all-pass filter. Go(λ) is outer, i.e., full row rank and only having stable zeros.

In [28], the problem is extended to a quasi-outer-inner [29], which is able to cope with systems
having zeros on the boundary of the stability domain. The quasi-outer-inner factorization is
formulated as

Ḡ(λ) = Ḡo(λ)Ḡi(λ), (3.31)

where Ḡi(λ) is still inner. The result is that Ḡo(λ) may now contain zeros which lie on the
boundary of the stability domain.

Consider again the optimization problem (3.28). The importance of Rw(λ) in (3.27) to have
the full row rank property, is due to the full row rank requirement of solving the Ricatti equation

11



12 CHAPTER 3. NULLSPACE-BASED FAULT DIAGNOSIS

(CARE) in the quasi-outer-inner factorization. The full details on the computation can be found
in [29]. Assuming Rw to have full row rank, then the quasi-outer-inner factorization of Rw is

Rw(λ) = Rwo(λ)Rwi(λ). (3.32)

Substituting Rw in (3.28) with the factorization above gives

β = max{∥Q(λ)Rf (λ)∥∞− | ∥Q(λ)Rwo(λ)Rwi(λ)∥∞ ≤ γ}. (3.33)

Using the all-pass inner property of Rwi(λ), i.e., Rwi(λ) = I, simplifies the optimization problem
to

β = max{∥Q(λ)Rf (λ)∥∞− | ∥Q(λ)Rwo(λ)∥∞ ≤ γ}. (3.34)

Then by choosing Q(λ) = Q5(λ)Q4(λ)Q3(λ), where Q3(λ) = Rwo(λ)
−1, the problem is formulated

as
β = max{∥Q5(λ)Q4(λ)Rwo(λ)

−1Rf (λ)∥∞− | ∥Q5(λ)Q4(λ)∥∞ ≤ γ}. (3.35)

In case Rw(λ) has no zeros present in the origin, the optimization problem is simplified by choos-
ing the constant matrices Q4 = I and a scalar matrix Q5 = ΨI, such that the requirements
∥Q5(λ)Q4(λ)∥∞ ≤ γ is satisfied.

If Rw(λ) has zeros present in the origin, then Q3(λ) = Rwo(λ)
−1 could lead to an unstable

filter Q(λ). Via LCF, a factor Q4(λ) is constructed which stabilizes the filter Q(λ) and enforces
the desired dynamics by relocating the unstable poles. Then a constant matrix Q5(λ) = ΨI is
chosen to satisfy ∥Q5(λ)Q4(λ)∥∞ ≤ γ is satisfied.

3.4 Fault detection and isolation problem

The fault detection and isolation problem (FDIP) extends the problem to the localization of faulty
actuators or sensors. It therefore uses a bank of scalar fault detectors. The detectors are shaped
via the binary matrix, S, which has dimensions of q×mf , where q is the number of residuals and
mf the number of faults. This matrix S is chosen, such that the following condition from [8] is
fulfilled:

SRf
= S, with Rf (λ) stable (3.36)

In other words, the TFM Rf (λ) has the same structure as the binary matrix S. To check if the
condition above is solvable, the following theorem from [8] can be used:

Theorem 4. For a given q ×mf binary matrix S, the system in (3.1) is S-fault isolatable iff for
i = 1, . . . , q

rank
[
Gd Ḡ

(i)
d Gfj

]
> rank

[
Gd Ḡ

(i)
d

]
,∀j, Sij ̸= 0, (3.37)

where Ḡ
(i)
d is formed from the columns of Gf for which Sij = 0.

Ideally, the detection of simultaneously faults is desired, called strong isolatable. This requires
the system to be S-fault isolatable with S = Imf

. However, this is not always achievable due to
the lack of sufficient number of measurement or due to the system characteristics.

To enforce Rf (λ) to have the same structure as S, a factor Q̄1(λ) is introduced, such that

Q(λ) = Q̄1(λ)Q1(λ). (3.38)

Then, for every i-th row of S, a fault detector Q̄
(i)
1 (λ) is computed via EFDP or AFDP, such that

j-th fault (column) of |Rfj (λ)| = 0, Sij = 0 and |Rfj (λ)| ̸= 0, Sij = 1. To achieve |Rfj (λ)| = 0,
the column is reformulated as a disturbance input and decoupled via the nullspace methods, i.e.,
Ḡd(λ) = Rfj (λ).

12



Chapter 4

Design freedom and limitation

This chapter described the design freedom and limitation of the nullspace-based fault diagnosis
on high-tech precision systems. Additionally, an overview of the limitation is given.

4.1 Design freedom

To synthesis the fault detector Q(λ), the nullspace-based fault diagnosis has synthesis options
that have to be designed by the engineer. This section, describes the design options which are
considered important for high-precision systems.

4.1.1 Disturbances characterization in motion systems

The disturbances in high-tech precision systems are often assumed to be low-frequent and stochastic.
In conventional control, these disturbances are dealt with by frequency-based PID controllers.
Therefore, disturbance models are not commonly used. Hence, Gd(λ) is assumed to be zero.

4.1.2 Nullspace computations

Considering the assumption that disturbance models are absent, the computation of the left null-
space Nl(λ) is simply the full Luenberger observer. However, when dealing with systems having
poles at Ω = {0}, e.g., an unsuspended system, the use of the Luenberger observer did not prove
to be numerically reliable, since Ru(λ) = 0 was not satisfied.

Therefore, it is recommended to compute the left nullspace via the pencil reduction methods,
described in Chapter 3, which is proven to be numerically more reliable.

4.1.3 Noise characterization in motion systems

In high-tech systems, the noise is often assumed to be either high frequent, or white, i.e., equal
presence of all frequencies over the entire frequency spectrum. Therefore, the noise model Gw(λ)
is modelled as either an all-pass or as a high-pass filter. Considering the inner-outer factorization
in (3.31), the all-pass noise model can be represented by two inner terms, i.e., all-pass filters.
Therefore, this noise model has no effect on the minimization problem in (3.33). Hence, the use
of an all-pass filter as noise model for fault diagnosis is impractical.

4.1.4 Pole instability threshold smarg

In the synthesis, the parameter smarg is available for design. This parameter determines which
poles in Q(λ) are considered ’unstable’. In this case, the term ’unstable’ can also include slow
stable poles. By relocating these poles via the left coprime factorization, the response speed of
Q(λ) is regulated. Increasing smarg relocates more poles and increases the response speed of
Q(λ). However, this may result in numerical issues due to the requirement of a high feedback gain
for a weakly controllable pole.

13



14 CHAPTER 4. DESIGN FREEDOM AND LIMITATION

4.1.5 Pole relocation sdeg

In the synthesis, the parameter sdeg is available for design. This parameter is the negative real-
part pole location to which the ’unstable’ poles in Q(λ) are relocated to. In other words, sdeg
also regulated the speed of the Q(λ). However, if sdeg is a pole location which is hard to reach
for some weakly ’unstable’ controllable poles, a high partial feedback gain is required. This can
result in numerical instabilities.

4.1.6 Minimality

Via the minimality option, the least order detector(s) can be computed via the minimum dynamic
cover technique. However, this technique uses non-orthogonal transformation matrices, which can
introduce numerical issues. Additionally, the strong fault detection property can be lost when
combining the basis vectors, see example in Appendix A.

In case of the availability of sufficient computational power, it is better to use the full order
design instead of the employing minimality. The full order design outputs all the basis vectors
from the left nullspace. Therefore, the full order design could provide better detector candidates,
which maintain the strong fault detection property. It is then up to the engineer, to choose the
basis vectors via the matrix h(λ) in (3.17).

4.2 Limitation on fault isolation

Consider the MIMO parametric model Gu(λ) ∈ R(λ)p×mu , where p is the number of sensors
and mu the number of control inputs. Assuming that the model is obtained from a high-tech
positioning system, it can be denoted as

Gu(λ) = N(λ)/d(λ), (4.1)

where N(λ) is a TFM of numerators and d(λ) is their common denominator. In case that both
actuator and sensor faults have to be detected, the fault TFM Gf (λ) can be written as

Gf (λ) =
[
Gu(λ) Ip

]
. (4.2)

By substituting (4.1) into (4.2) and factoring out d(λ), the fault TFM Gf (λ) can be formulated
as

Gf (λ) =
[
N(λ)/d(λ) Ip

]
=

1

d(s)

[
N(λ) d(λ)

]
, (4.3)

which can be written as

Gf (λ) =
1

d(s)

N11(λ) · · · N1mu(λ) d(λ) · · · 0
...

. . .
...

...
. . .

...
Np1(λ) · · · Npmu(λ) 0 · · · d(λ)

 . (4.4)

Now recall the decoupling and fault detection conditions in the nullspace-based fault diagnosis,
which are [

Ru(λ) Rd(λ)
]
= Q(λ)

[
Gu(λ) Gd(λ)
Imu 0

]
= 0, (4.5)

and

Rf (λ) = Q(λ)

[
Gf (λ)

0

]
̸= 0, (4.6)

where Q(λ) := [Qy(λ) Qu(λ)] is the fault detection filter. Then to decouple the control input u
and disturbance input d in (4.5), the following must hold

Qy(λ)Gu(λ) +Qu(λ)Imu = 0, (4.7)

14



CHAPTER 4. DESIGN FREEDOM AND LIMITATION 15

and

Qy(λ)Gd(λ) = 0. (4.8)

Based on (4.7), the filter part Qu(λ) can be formulated as

Qu(λ) = −Qy(λ)Gu(λ). (4.9)

By substituting (4.9) into (4.6) results in the fault-to-residual TFM

Rf (λ) =
[
Qy(λ) Qu(λ)

] [Gf (λ)
0

]
= Qy(λ)

[
Ip −Gu(λ)

] [Gf (λ)
0

]
= Qy(λ)Gf (λ) ̸= 0. (4.10)

Now assume Gd(λ) = 0. A simple possible solution for the filter Q(λ) that satisfies the condi-
tions (4.5) and (4.6), is by choosing Qy(λ) = Ip, which corresponds to the full Luenberger observer
in (3.15). Substituting this solution for Qy(λ) in (4.10) results in

Rf (λ) = Gf (λ) ̸= 0. (4.11)

Now consider that the detection problem is extended to an isolation problem, i.e., localization of
the faults. Therefore, a binary structure matrix S with dimension q×mf is introduced, where mf

are the number of faults and q the number of residuals. To enforce the fault-to-residual Rf (λ) to
have the same structure as S, the transfer function Q̄y(λ) is introduced such that

Q̄y(λ)Rf (λ) = R̄f (λ), (4.12)

where R̄f (λ) has the same structure as S.

Notation: For the notation of the row vectors of a transfer matrix, a superscript is used, e.g.,

R(s) =

R
1(s)
...

Rp(s)

 =

R11(s) . . . R1mu
(s)

... · · ·
...

Rp1(s) . . . Rpmu
(s)

 . (4.13)

For convenience, a single row of S is considered. This simplifies (4.12) to find a single row vector
Q̄1

y(λ) such that

Q̄1
y(λ)Rf (λ) = R̄1

f (λ). (4.14)

Then recall that Rf (λ) = Gf (λ) in (4.11). Hence, (4.14) can be formulated asQ̄
1
y1
(λ)
...

Q̄1
yp
(λ)


︸ ︷︷ ︸

Q̄1
y(λ)

T

1

d(s)

N11(λ) · · · N1mu
(λ) d(λ) · · · 0

...
. . .

...
...

. . .
...

Np1(λ) · · · Npmu
(λ) 0 · · · d(λ)


︸ ︷︷ ︸

Rf (λ)

=
[
R̄1

1(λ) · · · R̄1
mf

(λ)
]︸ ︷︷ ︸

R̄1
f (λ)

, (4.15)

where the j-th column (fault) of |R̄1
j (λ)| = 0 when S1

j = 0 and |R̄1
j (λ)| ≠ 0, when S1

j = 1. Based
on (4.15), the following constraints can be formulated:

• There exists no solution for the filter part Q̄1
y(λ) if all sensors are decoupled. To satisfy

Q̄1
yi
(λ)d(λ) = 0 ∀i ∈ {1, . . . , p}, results in Q̄1

y(λ) = 0. Hence, Q̄1
y(λ)Rf (λ) = 0, which means

that all the faults are undetectable.

• The detectability and isolability of Q̄1
y(λ), is limited to the linear independency of the numer-

ator TFM N(λ) of Gu(λ). Decoupling a column of N(λ) via Q̄1
y(λ) can result in decoupling

of other columns of N(λ), see example in Appendix B.
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4.3 Overview

For the detection and localization of both actuator and sensor faults, it is desirable to synthesize
a fault detection filter Q(λ) that has the strong fault detectability and isolability property. In
particular, the faults have to be strong fault detectable at Ω = {0}, such that persistent faults do
not decay in the residuals. An overview of possibilities and limitation of the nullspace-based fault
diagnosis for both suspended and unsuspended systems is depicted in Fig 4.1.

Remark. In this section, only mass and mass-spring systems are considered for Gu(s), e.g.,
1
s2

for unsuspended systems or 1
s2+k for suspended systems. Hence, systems with dampers and/or

flexible modes are not considered.

Assumption. The force(s) introduced in the system do not introduce rotation.

Fig. 4.1: The possibility and limitation of the nullspace-based fault diagnosis for the detection
and isolation of actuator and sensor faults on suspended and unsuspended systems. In case of a
footmark, the system has to satisfy linear dependency conditions.

First to observe, is that in a system where only one measurement is available, the filter Q(λ) is
unable to isolate the faults. Since only one measurement is available, the left nullspace basis has
only one vector available, resulting in Rf (λ) having only a single row vector. Hence, there does
not exist a factor Q̄1

y(λ) in (4.14), such that Q̄1
y(λ)Rf (λ) decouples one fault without decoupling

the other fault.
Secondly, the sensor faults in unsuspended system are not always strong fault detectable by

filter Q(λ), see case 6 in Fig 4.1. Recall that an unsuspended system has poles at Ω, i.e., s = 0.
The consequence is that these unstable poles are cancelled by introducing zeros in Q(λ) at Ω,
during the LCF procedure. This results in the loss of strong fault detectability property of Q(λ)
for sensor faults. However, if the rows in the numerator TFM Gu(λ), are linear dependent, then
a nullspace basis with constant values can be obtained that cancel the poles at s = 0, without
introducing zeros in Q(λ) at Ω = {0}. An example is given in Appendix C. The disadvantage of
linear dependency among the rows of Gu(λ), is the limitation of isolability of actuator faults.

Let Gu(λ) ∈ R(λ)2×2 have two columns that are linear dependent. Then the fault TFM Gf (s)
has the property

rank
[
Gf1 Gf2

]
= 1, (4.16)
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CHAPTER 4. DESIGN FREEDOM AND LIMITATION 17

where Gf1 and Gf2 are the actuator faults. To isolate the two actuators faults, one of the actuators
is reformulated as disturbance and then decoupled, e.g., Ḡd = Gf1 . However, this does not satisfy
the condition in Theorem 4 (assuming that Gd = 0). Hence, the actuator faults are not isolatable
in this case. This also applies for the isolability of the actuator and sensor faults in case 8,
see Fig 4.1.

Remark. The loss of isolability of the actuators faults, in the event of strong fault detectability
for sensor faults, does not apply for a system Gu(λ) that contains zeros.
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Chapter 5

Towards fault diagnosis oriented mod-
els

For the model-based fault diagnosis approach, an accurate model is key. This chapter describes
in which frequency range model accuracy is required, such that the models are suitable for fault
diagnosis. In particular, models that are suitable for fault diagnosis in high-tech precision systems.

5.1 Models in high-precision systems

The present state of-the art MIMO high-precision systems are difficult to model via first model
principles due to their complexity. Hence, data-driven techniques, such as system identification,
are developed to obtain accurate models over a certain frequency range. Via the system identific-
ation procedure, a non-parametric frequency response function (FRF) is obtained that accurately
describes the input-output interconnection within the system. Then a parametric model is fitted
on the FRF, as described in [30]. In the coming sections, it is addressed in which frequency range
accurate models are required for effective fault diagnosis.

5.2 Models for fault diagnosis

Consider the closed-loop (MIMO) system, including the nullspace-based fault diagnosis system,
depicted in Fig 5.1. The nullspace-based fault diagnosis uses the approximate models of the plant
Gu, the disturbance Gd, the noise Gw and the fault Gf to synthesis a fault detector Q that outputs
a residual ε. The coming subsections investigate the effect of these approximate models on the
residual ε. Therefore, the transfers from the inputs r, d, w and f to the residual ε are derived. For
simplicity, the continuous-time notation is used. Note, the full derivation of the transfer functions
can be found in Appendix D.

Fig. 5.1: Closed-loop MIMO system including the fault detector filter Q := [Qy Qu] in ( ). The
residual ε indicates the presence or absence of the fault input f .
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5.2.1 Plant model

This subsection, investigates the effect of modelling errors in the approximate model of plant Gu.
Let Gu be the true MIMO system and Ĝu(s) the approximate MIMO model obtained via system
identification. Consider the transfer function from reference r to the residual ε in (5.1)

Tεr = Qy(s)(Gu − Ĝu(s))CS, (5.1)

where C is the controller, Qy(s) is part of the filter Q(s) and S is the sensitivity function
(I + GuC)−1. Observe, that the model error is factorized by the control sensitivity CS, which
attenuates model errors present in the lower and higher frequency regions. To fully decoupled the
reference r from residual ε, the following should hold

Ĝu(s) = Gu, ∀ s, (5.2)

as this results in Tεr = 0. However, in practice this does not hold, resulting in the presence
of reference signals in the residual. Consider the following assumption made for high-precision
systems

Assumption 1. It is assumed that the reference trajectory for position tracking in high-precision
systems has most of the energy at the lower frequencies [31].

A common choice for position tracking in high-precision systems, is a third or fourth order
motion profile where the position profile has a smooth s-curve, depicted in Fig 5.2. Increasing
the order of the motion profile reduces the sudden changes in velocity, which decreases the energy
content at higher frequencies [32]. Thus, considering Assumption 1, most of the energy of reference

Fig. 5.2: Common third or fourth order reference trajectory and its power density function in
motion systems.

r is at the lower frequencies. Hence, to minimize the presence of reference r in residual ε, the
approximate model Ĝu(s) should be accurate in this frequency region.

One way to obtain such a model of Ĝu(s) is by weighting this region of frequencies during
the system identification [33]. The resulting FRF can then be used as input for local parametric
modeling (LPM) [34]. This generates a parametric model Ĝu(s), which can be used for model-
based fault diagnosis.

5.2.2 Disturbance model

This subsection, investigates the effect of modelling errors in the approximate model of Gd. Con-
sider the transfer function from the disturbance input d to residual ε in (5.3)

Tεd = Qy(s)(Gu − Ĝu(s))(−CSGd) +Qy(s)Gd. (5.3)

Observe that the model error in Ĝu(s) also influences the transfer function of Tεd. Depending
on the frequency-spectrum of the disturbance signal d, the approximate model Ĝd(s) should be
accurate in this range of frequencies. In high-tech systems, the disturbance d is often assumed
to be low-frequent and stochastic. Hence, the approximate model Ĝd should be accurate in the
lower-frequencies. However, due to the stochastic property of d, it is impossible for the filter part
Qy(s) to fully decouple d.
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5.2.3 Noise model

This subsection, investigates the effect of modelling errors in the approximate model of Gw. Con-
sider the transfer function from the noise input w to residual ε in (5.4)

Tεw = Qy(s)(Gu − Ĝu(s))(−CSGw) +Qy(s)Gw. (5.4)

The model error in Ĝu(s) is also traced back into the transfer of Tεw. In this case, the noise w(λ)
is assumed to be stochastic and high-frequent in high-precision systems. Hence, the approximate
model Ĝw(s) has to be accurate in the higher frequency-spectrum.

5.2.4 Fault model

This subsection, investigates the effect of modelling errors in the approximate model of Gf . Con-
sider the transfer function from the fault input f to residual ε in (5.5)

Tεf = Qy(s)(Gu − Ĝu(s))(−CSGf ) +Qy(s)Gf . (5.5)

With the assumption that model errors are absent in Ĝu(s), the transfer function is simplified to

Tεf = Qy(s)Gf . (5.6)

In this case, the approximate model Ĝf (s) is not visible in the transfer function. This is due to
the requirement that the residual ε is sensitive to the fault input f , i.e., Tεf ̸= 0. Nevertheless, it

can be assumed that the approximate model Ĝf (s) has to be accurate in the frequency spectrum
of the fault signal f , which depends on the type of fault (abrupt changing or a slow varying fault).

Additionally, modelling errors in Ĝf can result in the loss of the strong fault detectability

property of the filter Q(s) at Ω = {0}. In case that the poles of Ĝf at Ω are modelled incorrectly,
it is possible that the fault input f , introduced via Gf , is not strong fault detectable. This is
caused by the stabilization step in the synthesis, which introduces zeros in Q(s) at Ω to cancel the
unstable poles of Ĝf at Ω, see example below. Hence, for strong fault detectability at Ω = {0}, it
is important that Ĝf (s) is accurate in Ω.

Example: Consider the following system, Gu(s) = 0, Gd(s) = 0, Gw(s) = 0, Ĝf (s) = 1
s2 and

Gf (s) =
1

s2+1 . Here, Ĝf (s) is an approximate model of Gf (s) with a model error at Ω = {0}. For
example, the stable and proper fault detector

Q(s) =
s2

(s+ 1)(s+ 1)
,

achieves

Ru(s) = 0, Rd(s) = 0, Rw(s) = 0, R̂f (s) = Q(s)Ĝf (s) =
1

(s+ 1)(s+ 1)
.

Observe that R̂f (s) has no zeros in Ω. Hence, the fault input f is strong fault detectable by Q(s).
However, employing the synthesized filter Q(s) on the fault model Gf (s), results in

Rf (s) = Q(s)Gf (s) =
s2

s4 + 2s3 + 2s2 + 2s+ 1
.

Observe that Rf (s) has now two zeros at Ω. Hence, in application, the fault input f is not strong
fault detectable by Q(s).
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Chapter 6

Application to high-tech precision
systems

In this chapter, a proof of principle of the nullspace-based fault diagnosis is presented on a sus-
pended system (beam setup) and an unsuspended system (OAT). The first case-study employs
the nullspace-based fault diagnosis to detect actuator and sensor faults on both the beam setup
and OAT. The second case-study employs the nullspace-based fault diagnosis to decouple virtual
cable slab interference present in the OAT.

6.1 Detecting actuator and sensors faults for suspended sys-
tems

6.1.1 Experimental beam setup

The beam setup contains three current-driven voice-coil actuators and five fibreoptic sensors.
The fibreoptic sensors have a resolution of approximately 1 µm, and the system has a sample
frequency of 4096 Hz. In this case-study, the actuators u1, u2 and u3 and the sensors y1, y2 and
y3 are considered, see Fig 6.1.

Fig. 6.1: Schematic top view of the beam setup. The flexible beam has three actuators ( ). Over
the length of the beam, there are three sensors ( ) that measure the deformation of the beam.

To obtain a parametric model for fault diagnosis, a non-parametric model is firstly obtained via
an open-loop multi-sine system identification. Then via parametric fitting, using the Sanathanan-
Koerner and Levenberg-Marquart algorithm, a 10-th order MIMO model Ĝu(s) is obtained, see
Fig 6.2. For control purposes, the system is decoupled via the matrices Tu and Ty, such that
the modal system is Gmod

u = TyGuTu. A decentralized controller is employed, and a third order
setpoint is injected into the rigid loop. The reference for the rigid body has a maximum amplitude
of 0.2 mm.
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Fig. 6.2: The 10-th order model Ĝu(s) ( ) fitted on the measured frequency response function
( ) of the beam setup.

6.1.2 FDI design beam setup

The closed-loop system of the beam setup, including the fault detection and isolation (FDI) filters
Q(s) and the actuator/sensor fault injections, are depicted in Fig 6.3. Note, that the faults are
abrupt changes, i.e., step response, or evolving/varying changes, i.e., ramp or sinusoidal response,
which are injected consecutively.
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Fig. 6.3: On the left side, the closed-loop control scheme of the beam setup including the employed
FDI filters Q and the fault injections. The residuals ε indicate the presence or absence of the
actuator/sensor faults f , which are depicted on the right side.

To detect and localize these 6 faults (3 actuator and 3 sensor faults), a bank of filters Q(s) ∈
R(s)6×6 is synthesized based on the 10-th order model Ĝu(s). Therefore, both the algorithms
EFDIP and AFDIP in [35] are employed, which use the synthesis approach as in Chapter 3,
to synthesize Q(s). The following design parameters are used: Gu(s) = Ĝu(s), Gd(s) = 0,
Gw(s) = 2∗s+0.01732

s+173.3 I3, smarg = -1, sdeg = -3, nullspace = true, minimal = true, SFDI =

S6×6, tol = 1e−6. In addition, a low-pass filter of 1
s+3 is employed on the FDI filters to remove

any undesired direct-feedthrough terms.
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Remark 1. The rank tolerance option in the algorithms is set to 1e−6 to prevent numerical issues.

S6×6 =


0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0

 . (6.1)

The fault-to-response TFMs Rf (s), based on the synthesized Q(s) of both algorithms, are depicted
in Fig 6.4. The fault inputs f1, f2, f3 are the actuator faults u1, u2, u3 and fault inputs f4, f5, f6 are
the sensor faults y1, y2, y3, respectively. Observe that the TFMs of Rf (s) has the same structure
as the binary matrix S.
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Fig. 6.4: The resulting fault-to-residual TFMs Rf (s) of the EFDISYN algorithm ( ) and

AFDISYN algorithm ( ). Both filters are synthesized on the 10-th order model Ĝu(s). Observe
that the AFDISYN algorithm ( ) cuts off the higher-frequencies to attenuate the high-frequent
noise components. The range of frequencies is from 0.01 Hz to 100 Hz.

6.1.3 Result

The residual signals of the employed FDI filters Q(s) are depicted in Fig 6.5. For clarification,
three FDI filters are employed:

1. EFDIP generated filters Qa(s), employed experimental.

2. AFDIP generated filters Qb(s), employed experimental.

3. EFDIP generated filters Qc(s), employed in simulation.

Remark. The generated filters Qc(s) are based on a 6-th order model Ĝu(s) due to stability issues
in simulation. However, for illustration purposes, this difference in order has no effect.
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Fig. 6.5: Comparison of the residual signals of the FDI filters Qa(s), Qb(s) and Qc(s),
( ),( ),( ), respectively. All the residuals are able to detect the injected actuators and sensors
faults ( ). The residual signals are further processed by taking the absolute value and averaging.
Due to model imperfection, the reference r is not fully decoupled and is present in the experimental
employed filters ( ), ( ). Additionally, the noise effect is reduced by employing the AFDISYN
algorithm ( ).

First, it is observed that the residuals εi for i = {1, . . . , 6}, do not respond to the fault fj ,
where i = j. This is enforced via the binary matrix S. In addition, some faults are difficult to
see in the residuals. This is in line with the responses in Fig 6.4, where some fault-to-residual
transfers are below 0dB. However, by zooming in, it can be seen that the faults are still present
in the residuals and non-vanishing, e.g., fault f1 in residual ε4.

Next, it is observed that is the reference r is still present in the residuals of the experiments
( ),( ). Due to model errors in Ĝu(s), the decoupling condition of the control input u is not
fully satisfied by the filters Qa(s) and Qb(s), i.e., Ru(s) ̸= 0. A more accurate model, described
in Chapter 4, can reduce the presence of r in the residuals.

Finally, it is observed in residual ε3 that the influence of sensor noise w on the residuals can
be greatly reduced via Qb(s), which employs the AFDIP algorithm ( ).

6.2 Detecting actuator and sensors faults for unsuspended
systems

6.2.1 Experimental setup

The OAT contains a lightweight motion stage which can positioned in all 6 DOF. The stage is
levitated via four gravitation compensators in the corners and contains 7 sensors of which 4 sensors
measure the z-direction, 2 sensors measure the x-direction and 1 sensor measures the y-direction,
see Fig 6.6 (a). The position in the z-direction is measured in the corners of the stage via linear
incremental encoder with a resolution of 1 nm. The stage is actuated by Lorenz-actuators of which
13 actuate in the z-direction, 2 actuate in the x-direction and 2 actuate in the y-direction, see

24



CHAPTER 6. APPLICATION TO HIGH-TECH PRECISION SYSTEMS 25

Fig 6.6 (b). The system has a sample frequency of 10 kHz and is closed-loop controlled.

(a) (b)

Fig. 6.6: Schematic top view of the OAT. On the left side, the stage of the OAT which is sensed by
2 sensors in the x-direction ( ), 1 sensor in the y-direction ( ) and 4 sensors in the z-direction
( ). on the right side, the stage of the OAT which is actuated by 2 actuators in the x-direction
( ), 2 actuators in the y-direction ( ) and 13 actuators in the z-direction ( ).

For this case-study, the fault diagnosis is limited to the z-direction of the stage, i.e., the
detection of 4 actuators and 4 sensor faults. A closed-loop system identification is performed to
obtain an FRF. A 20-th order approximate model Ĝu(s) is fitted on the FRF to obtain
Ĝu(s) : [u1 u2 u3 u4]

T → [z1 z2 z3 z4]
T , where u1 to u4 are the 4 z-actuator in Fig 6.6(a) and z1

to z4 are the 4 sensors in Fig 6.6(b). The model Ĝu(s) and the FRF are depicted in Fig 6.7.

Fig. 6.7: The 20-th order approximate model Ĝu(s) ( ) fitted on the measured frequency response
function ( ) of the overactuated test rig (OAT). The model is limited to the z-direction (height)
of the OAT.
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For control purposes, the system is again decoupled via the matrices Tu and Ty, such that
the modal system is Gmod

u = TyGuTu. Decentralized controllers are employed to control the 6
DOF and a fourth order setpoint is injected into the rigid loop. The reference has a maximum
amplitude of 100 µm.

6.2.2 FDI design

The closed-loop system of the OAT, including the FDI filters Q(s) and the fault injections, is
depicted in Fig 6.8. The fault inputs f1 to f4 correspond to the actuator faults u1 to u4 respectively.
The fault inputs f5 to f8 correspond to the sensor faults z1 to z4, respectively. For the fault inputs,
a step input is injected, i.e., abrupt changes. A step input of 0.1 N is applied to the actuators
u1 to u4 and a step input of 10 µm is applied to the four sensors z1 to z4. The step inputs are
injected consecutively.

Fig. 6.8: Closed-loop control scheme of the OAT including the employed FDI filters Q(s) and the
injected actuator and sensor faults. The residuals ε indicate the presence or absence of fault f .

To detect and localize these 8 faults (4 actuators and 4 sensors faults), a bank of FDI filters
Q(s) ∈ R(s)8×8 is synthesized based on the 20-th order model Ĝu(s). The EFDIP algorithm is
employed to synthesize Q(s). The employment of the AFDIP algorithm is neglected, due to the
small presence of noise in the setup. The following design parameters are used: Gu(s) = Ĝu(s),
Gd(s) = 0, Gw(s) = 0, smarg = -1, sdeg = -3, nullspace = true, minimal = false, SFDI =
S8×8, HDesign = h, tol = 1e−9. The minimality option is disabled due to the poor performance
of the synthesized filter. Therefore, detectors are hand-pick via the matrix h. In addition, a low-
pass filter of 1

s+3 is employed on the FDI filters to remove any undesired direct-feedthrough terms.

S8×8 =



0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
0 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0


, h =



1 01×19

01×3 1 01×16

01×4 1 01×15

01×6 1 01×13

01×9 1 01×10

01×11 1 01×8

01×15 1 01×4

11×18 1 01×1


. (6.2)

The fault-to-residual TFM Rf (s), is depicted in Fig 6.9. Observe that the sensor faults, f5 to f8,
are not strong detectable at Ω = {0} in all the residuals. This results from the decoupling of one
sensor input.
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Fig. 6.9: The fault-to-residual TFM Rf (s) synthesized via the EFDISYN algorithm ( ). The
faults f1 to f4 correspond to four actuator faults. The faults f5 to f8 correspond to four sensor
faults. The synthesis is based on the 20-th order model Ĝu(s) of the overactuated test rig.

6.2.3 Result

The residual signals of the FDI filters Q(s), generated via the EFDIP algorithm, are depicted in
Fig 6.10. Note, that Q(s) is only employed experimental.

First, observe that the injected actuator faults f1 to f4, between the time steps 0 to 40 seconds,
are visible in all the residuals. The residuals εi for i = {1, . . . , 4} do not respond to the fault fj ,
where i = j, since this is enforced via the binary matrix S.

Second, the injected sensor faults f5 to f8, at the time steps 43, 53, 63 and 73 seconds, are
difficult to distinguish in the residuals. This can also be concluded from the fault-to-residual
response Rf (s) in Fig 6.9, in which the sensor fault inputs have almost an identical magnitude as
the actuator inputs at Ω = {0}. With the substantial difference between the actuator and sensor
fault input, which is 0.1

1e−5 = 1e4, the actuator faults dominate the residual signals.
Third, the presence of the peaks between 40 and 80 seconds, after injecting the sensor faults,

are caused by abrupt changes in the actuators forces. Since, the sensor fault introduces a position
error in one of the sensors, the controller then corrects the change in height by introducing a step
in the actuator forces. Injecting a smaller value for the sensor fault, e.g., with an amplitude of
1 µm, reduces the change in the actuator forces drastically. However, a low magnitude for the
sensor fault magnitude, results in a residual in which the sensor fault is not distinguishable in the
residuals. This is due to the presence of the reference signal, which is then more dominant than
the sensor fault signal. This presence of the reference in the residuals is causes by model errors
present in the approximate model.

Lastly, the isolation of the faults is not fully satisfied, since the residual signals do not cor-
respond with the structure of Rf (s). For example, the sensor fault f5, injected at 43 seconds, is
present in residual ε5, while this fault should be decoupled in fault detector Q5(s), see Fig 6.9.
This is again caused by the model errors present in the approximate model.
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Fig. 6.10: The residual signals of the fault detectors Q(s) employed on the overactuated test rig.
The residual signals are processed by taking the absolute value. The four injected actuator faults
of 0.1 N are visible in the first 40 seconds. The four injected sensor faults of 10 µm, are less visible
in the time range of 40 and 80 seconds, due to the low sensor fault magnitude. Additionally,
isolation is not fully satisfied due to the presence of model errors.

6.3 Real-time interference decoupling

6.3.1 Cable slab behaviour

One of the challenges for employing a fault diagnosis system at a submodule level, is the presence
of interferences and/or interactions in MIMO systems. In this case-study, the effect of interference
in the residuals of the FDI filter Q(s) is investigated. Therefore, a virtual cable slab force fcable
is introduced in the OAT, which is defined as a disturbance force.

To simulate cable slab behaviour in the OAT, a virtual cable slab force is generated which is
contrary to the position reference and introduced to one of the motors. In this case-study, a force
is introduced to actuator z6 in Fig 6.6(a). In Fig 6.11 a schematic side view is shown of the OAT
with the virtual cable slab in ( ).
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Fig. 6.11: The position of the considered sensors and actuators of the overactuated test rig ( ).
The actuator at position ( ) simulates the virtual cable slab force ( ).

6.3.2 FDI design for cable slab detection

Consider the following assumptions:

Assumption 2. It is assumed that the approximate parametric model Ĝu(s) : [u1 u2 u3 u4]
T →

[z1 z2 z3 z4]
T is available. Therefore, a 14-th order OAT model is used.

Assumption 3. It is assumed that the parametric model Gcable(s) : [u6]
T → [z1 z2 z3 z4]

T is
available. This model can be obtained via techniques such as the finite element methods (FEM) or
via shaker excitation. In this case-study, the model is derived from a 14-th order OAT model.

Assumption 4. It is assumed that only the actuators [u1 u2 u3 u4] can be faulty, i.e., Gf (s) =

Ĝu(s).

Assumption 5. It is assumed that Gd(s) = Gcable(s)

Assumption 6. It is assumed that Gw(s) = 0.

A bank of filters Q(s) ∈ R(s)4×8 is synthesized, via the algorithm EFDISYN, to detect the
four actuator faults. The design parameters are: Gu(s) = Ĝu(s), Gd(s) = Gcable(s), Gw(s) = 0,
smarg = -1, sdeg = -3, nullspace = true, minimal = false, SFDI = S4×4. The minimality
option is disabled due to the poor performance of the synthesized filter.

S4×4 =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , h =


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


A low-pass filter of 1

s+3 is employed to Q(s) to remove any undesired direct-feedthrough terms.
Additionally, a second bank of FDI filters is synthesized to visualize the effect of the cable slab
interference. The synthesis has the same design options to generate a bank of FDI filters Q(s),
except for one options: Gd(s) = 0. The corresponding fault-to-residual TFM Rf (s) ∈ R(s)4×4 of
both filters, are depicted in Fig 6.12. Observe that strong fault detectability is lost in the residuals
ε3 and ε4, after decoupling of the cable slab.

The introduced force of the virtual cable slab, i.e., disturbance signal d, has a maximum value
of 0.1 N. The fault injection on the actuators u1 to u4 are step inputs with an amplitude of 0.1 N
and are injected consecutively. The reference of the rigid body has a maximum amplitude of 100
µm.

6.3.3 Result

The residuals of both filters, accumulated from experiments, are shown in Fig 6.13. First, observe
that the interference of the virtual cable slab is drastically reduced by the decoupling of Gcable in
Fig 6.13 (b). However, the cost of this procedure is the loss of the strong detectability property
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Fig. 6.12: The fault-to-residual TFM Rf (s) ( ) of synthesized FDI filters Q(s), including the
decoupling of the virtual cable slab interference in the synthesis. The Rf (s) ( ) of synthesized
FDI filters Q(s), neglecting virtual cable slab interference.

in the filter Q3(s) and Q4(s), as the faults fade away in the residuals ε3 and ε4. This can also
be observed in Fig 6.12, where R3

f (s) and R4
f (s) has zeros present at Ω = {0}. Nevertheless, the

faults are still visible.

0 20 40
0

0.1

0.2

0 20 40
0

0.5

1

0 20 40

Time [s]

0

0.2

0.4

0 20 40

Time [s]

0

0.5

(a)

0 50
0

0.1

0.2

0 50
0

0.1

0.2

0 50

Time [s]

0

0.05

0 50

Time [s]

0

0.01

0.02

(b)

Fig. 6.13: The generated residual signals of the employed FDI filters on the overactuated test rig.
The four actuator faults are difficult to distinguish in (a) since cable slab interference is neglected
during the synthesis. In the residuals on the right side, the actuator faults are clearly visible, since
the cable slab interference is decoupled during the synthesis.
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Chapter 7

Conclusions & Recommendations

7.1 Conclusions

To reduce unscheduled production downtime, fault diagnostic systems are essential in MIMO high-
tech precision machines. This report investigated the employment of the nullspace-based approach
for fault diagnosis, to detect and localize actuator and sensor faults.

The results show that the detection and localization of actuator and sensor faults in high-
precision systems are limited. In particular, the detection and localization of abrupt sensor faults
is restricted in systems which have poles at the origin, i.e., unsuspended systems. Additionally, the
localization of actuator and/or sensor faults is not possible in case of identical dynamics between
inputs-outputs in a MIMO system.

Regarding the model requirements for nullspace-based fault diagnosis, it is important to have an
accurate plant model in the lower frequency region. In case of modelling errors in the approximated
models, the residual of the fault detector contains remnants of other signals than the fault input
f . Experimental results show the presence of undesired reference r, due to modelling errors in the
plant model, which makes it difficult to distinguish the faults.

Experimental results also demonstrated that employing fault diagnosis system on a submodule
level is feasible. By including the interference from another submodule during the synthesis of a
fault detector, it is shown that the effect of the interference signal was greatly reduced.

7.2 Recommendations

As a result of model mismatch, the residual signals in the experiments still had remnants of the
reference. To improve the decoupling of the control input u, a more accurate model of the plant
is required. This would improve the visualization of the faults.

The limitation of the nullspace-based fault diagnosis has been analytically investigated for
simple mass and mass-spring systems. However, the limitation does not cover systems containing
zeros, e.g., mass-spring-damper systems or systems including flexible modes. This introduces new
mathematical challenges to prove whether actuator and/or sensor faults are strong fault detectable
or isolatable.

Lastly, it is demonstrated that interferences between submodules can be greatly reduced on
submodule level. However, in case of interaction between submodules, a different design strategy
for the fault detection filter might be required. For the synthesis of an effective fault diagnosis
system, interaction terms have to be included in the model [14]. These interaction models are
often of high order. Including these interaction models into the synthesis of the fault diagnosis
system, drastically increases the order of the fault detection filter, which is not desirable.
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Appendix A

Example of the loss of strong fault
detectability for sensor faults in un-
suspended systems

Consider the following system

Gu(s) =

[
1
s2 0
0 1

s2

]
, Gd(s) = 0, Gf (s) =

[
1
s2 0 1 0
0 1

s2 0 1

]
, (A.1)

where Gu(s) represents an unsuspended system. Then G(s) is

G(s) =

[
Gu(s)
I2

]
=


1
s2 0
0 1

s2

1 0
0 1

 . (A.2)

The following stable and proper filter Q(s) can be formed to decouple G(s), i.e, Q(s)G(s) = 0

Q(s) =

[
s2

(s+1)(s+2) 0 −1
(s+1)(s+2) 0

0 s2

(s+1)(s+2) 0 −1
(s+1)(s+2)

]
, (A.3)

The resulting fault-to-residual response Rf (s) is then

Rf (s) = Q(s)

[
Gf (s)

0

]
=

[
1

(s+1)(s+2) 0 s2

(s+1)(s+2) 0

0 1
(s+1)(s+2) 0 s2

(s+1)(s+2)

]
. (A.4)

Both R1
f3
(s) and R2

f4
(s) have zeros in Ω due to the s2 numerator. Hence, the sensor faults are not

strong fault detectable by Q(s), i.e., the Q(s) is not Ω-admissible.
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Appendix B

Example of limitation of fault isola-
tion in high-tech precision systems

Consider the MIMO plant Gu(λ) ∈ R(λ)3×3, Gd(λ) = 0 and Gw(λ) = 0. The MIMO plant is
obtained from a high-tech system and can be written as

Gu(λ) = N(λ)/d(λ), (B.1)

where N(λ) is the numerator TFM and d(λ) is the common denominator. Assume that both
actuator and sensor faults have to be detected and isolated. Hence, the fault-to-residual response
is equal to

Rf (λ) = Gf (λ) =
[
Gu(λ) I3

]
=

1

d(λ)

[
N(λ) d(λ)

]
(B.2)

For the binary matrix S, the following structure is chosen

S =
[
0 1 1 1 1 0

]
(B.3)

Hence, the first and last column of Rf are considered as disturbances and are decoupled via the

nullspace method, i.e., Ĝd =
[
R1(λ) R6(λ)

]
. A factor Q̄y(λ) is computed such that

Q̄y(λ)Rf (λ) = R̄f (λ), (B.4)

where R̄f (λ) has the same structure as S. In other words,Q̄y1
(λ)
...

Q̄y3
(λ)


︸ ︷︷ ︸

Q̄y(λ)

T

1

d(s)

N11(λ) · · · N13(λ) d(λ) · · · 0
...

. . .
...

...
. . .

...
N31(λ) · · · N33(λ) 0 · · · d(λ)


︸ ︷︷ ︸

Rf (λ)

=
[
R̄1(λ) · · · R̄6(λ)

]︸ ︷︷ ︸
R̄f (λ)

. (B.5)

Hence, this can be formulated to the following equalities that have to be satisfied:

Q̄y1(λ)N11(λ) + Q̄y2(λ)N21(λ) + Q̄y3(λ)N31(λ) = 0

Q̄y1(λ)N12(λ) + Q̄y2(λ)N22(λ) + Q̄y3(λ)N32(λ) ̸= 0

Q̄y1(λ)N13(λ) + Q̄y2(λ)N23(λ) + Q̄y3(λ)N33(λ) ̸= 0

Q̄y1(λ)d(λ) ̸= 0

Q̄y2(λ)d(λ) ̸= 0

Q̄y3(λ)d(λ) = 0.

Using the fact that Q̄y1(λ) ̸= 0, Q̄y2(λ) ̸= 0, Q̄y3(λ) = 0 and Q̄y1(λ) = −Q̄y2(λ)N21(λ)N11(λ)
−1,

the equations can be further simplified to:[
−Q̄y2(λ)N21(λ)N11(λ)

−1 Q̄y2(λ)
]
=

[
N11(λ)
N21(λ)

]
=

[
0
]

(B.6)
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and [
−Q̄y2

(λ)N21(λ)N11(λ)
−1 Q̄y2

(λ)
]
=

[
N12(λ) N13(λ)
N22(λ) N23(λ)

]
̸=

[
0 0

]
(B.7)

Factoring out Q̄y2
(λ) gives

Q̄y2
(λ)

[
−N21(λ)N11(λ)

−1 I
]
=

[
N11(λ)
N21(λ)

]
=

[
0
]
, (B.8)

and

Q̄y2(λ)
[
−N21(λ)N11(λ)

−1 I
]
=

[
N12(λ) N13(λ)
N22(λ) N23(λ)

]
̸=

[
0 0

]
. (B.9)

Note that (B.8) is satisfied with any value for Q̄y2
(λ). Hence, Q̄y2

(λ) can be any value except 0,
to satisfy (B.9). A filter Q̄y(λ) exists iff there does not exist a α for which[

N12(λ) N13(λ)
N22(λ) N23(λ)

]
= α

[
N11(λ)
N21(λ)

]
, (B.10)

i.e.,

[
N11(λ)
N21(λ)

]
is linear independent of

[
N12(λ) N13(λ)
N22(λ) N23(λ)

]
.
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Appendix C

Example of losing strong fault de-
tection when employing minimality

Consider the following system for an unsuspended SIMO plant:

Gu(s) =

[
1
s2
1
s2

]
, Gd(s) = 0, Gw(s) = 0,

where both actuator and sensor faults have to be detected, i.e., Gf (s) =
[
Gu(s) I2

]
. Then the

left nullspace basis vectors has to be computed such that Q(s)G(s) = 0, where

G(s) =

 1
s2
1
s2

1


The following proper and stable left nullspace basis vectors

Q(s) =

[
s2

(s+1)(s+1)
s2

(s+1)(s+1)
−2

(s+1)(s+1)

1 −1 0

]
,

achieves Q(s)G(s) = 0. Hence, Q(s) contains two left nullspace basis vectors. The corresponding
fault-to-residual TFM is

Rf (s) = Q(s)

[
Gf (s)

0

]
=

[
2

(s+1)(s+1)
s2

(s+1)(s+1)
s2

(s+1)(s+1)

0 1 −1

]
.

Now observe that the actuator fault (first column) is strong detectable at Ω = {0} in the first
row of Rf (s) but not in the second row of Rf (s). Additionally, the sensors faults (second and
third column) are strong detectable in the second row of Rf (s) but not in the first row of Rf (s).
Nevertheless, by using both vectors, both actuator and sensor faults are strong detectable.

However, when employing the minimality options, the following stable left nullspace vector is
created

Q(s) =
[

−s2

(s+1)(s+1)
−s2

(s+1)(s+1)
2

(s+1)(s+1)

]
,

which satisfies Q(s)G(s) = 0. The corresponding fault-to-residual TFM is

Rf (s) = Q(s)

[
Gf (s)

0

]
=

[
−2

(s+1)(s+1)
−s2

(s+1)(s+1)
−s2

(s+1)(s+1)

]
.

Now observe that only the actuator fault (column 1) is strong fault detectable at Ω = {0}. Hence,
sensor faults are no longer strong fault detectable by Q(s).
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Appendix D

Closed-loop transfer functions for
nullspace-based fault diagnosis

A closed-loop configuration of the nullspace-based fault detection and isolation is depicted in
Fig. D.1. The detection filter Q := [Qy Qu] is coloured in gray. The detection filter outputs
a residual ε which indicates the presence of the fault f and is insensitive to the disturbance w,
reference r and disturbance w.

Fig. D.1: Closed-loop configuration with the nullspace-based FDI filter highlighted in ( ).

The control input u is formulated as

u = CSr − CSGff − CSGdd− CSGww (D.1)

where S = (I +GuC)−1 is the sensitivity function, Gu is the nominal model of the plant, C is the
controller, Gf is the TFM of the fault input f , Gd is the TFM of the disturbance input d and Gw

is the TFM of the noise input w. The residual ε is equal to

ε = Quu+Qyy, (D.2)

where the open-loop output y can be defined as

y = Guu+Gff +Gdd+Gww. (D.3)

Substituting (D.3) into (D.2), results in

ε = Quu+Qy(Guu+Gff +Gdd+Gww). (D.4)
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Assume that via system identification, a model Ĝu(s) and Ĝd(s) are obtained, which are an
approximation of the real plant Gu and disturbance Gd, respectively. To decouple the control
input u and disturbance d from the residual ε, the nullspace-based fault diagnosis method in [8],
synthesizes a filter Q(s) such that

[
Qy(s) Qu(s)

] [Ĝu(s) Ĝd(s)
Imu 0

]
= 0, (D.5)

where mu is the number of control inputs. Then, Qu(s) can be written as

Qu(s) = −Qy(s)Ĝu(s). (D.6)

Now substituting Qu(s) in (D.4) with (D.6) gives

ε = −Qy(s)Ĝu(s)u+Qy(s)(Guu+Gff +Gdd+Gww), (D.7)

which can be rewritten to

ε = Qy(s)(Gu − Ĝu(s))u+Qy(s)(Gff +Gdd+Gww). (D.8)

Then by substituting (D.1) into (D.8), results in

ε = Qy(Gu − Ĝu(s))(CSr − CSGff − CSGdd− CSGww)︸ ︷︷ ︸
closed-loop part

+Qy(s)(Gff +Gdd+Gww)︸ ︷︷ ︸
open-loop part

. (D.9)

Notice, that the transfer function can be divided into a closed-loop part and an open-loop part.
In case that no model errors are present in Ĝu(s), i.e., Ĝu(s) = Gu, the closed-loop part is equal
to zero.

To derive the transfer functions Tεr, the other inputs are set to zero, i.e., f = 0, d = 0, w = 0.
Then the transfer function Tεr is equal to

Tεr =
ε

r
= Qy(s)(Gu − Ĝu(s))CS. (D.10)

For the derivation of the transfer functions Tεd, Tεw and Tεf , the approach is used. Hence, the
transfer functions are

Tεf =
ε

f
= Qy(Gu − Ĝu)(−CSGf ) +QyGf , (D.11)

Tεd =
ε

d
= Qy(Gu − Ĝu)(−CSGd) +QyGd, (D.12)

Tεw =
ε

w
= Qy(Gu − Ĝu)(−CSGw) +QyGw. (D.13)
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Appendix E

Example loss of fault isolability due
to row and column independency

Consider the following system

Gu(s) =

[
1
s2

2
s2

2
s2

1
s2

]
, G(s) =


1
s2

2
s2

2
s2

1
s2

1 0
0 1

 , Gf (s) =

[
1
s2

2
s2 1 0

2
s2

1
s2 0 1

]
. (E.1)

Observe that the row and columns of Gu(λ) are independent. Then a stable and proper fault
detector Q(s) has to be computed such that

Q(s)G(s) = 0. (E.2)

Recall that the fault detector can be presented as Q(s) =
[
Qy(s) Qu(s)

]
. Hence,

[
Qy1

Qy2
Qu1

Qu2

] 
1
s2

2
s2

2
s2

1
s2

1 0
0 1

 = 0. (E.3)

However, since Gu(s) has linear independent rows and columns, there does not exist a solution
for Q(s), where Qy(s) only contains constant values. Hence, Qy(s) contains zeros at frequency
Ω = {0} to cancel the unstable poles at Ω of G(s). This causes the fault-to-residual response
Rf (s) to contain zeros in Ω, i.e., faults are not strong fault detectable. The calculation of Rf (s)
are left open for the reader.
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