
 Eindhoven University of Technology

MASTER

Transformer-based Source Code Description Generation
An ensemble learning-based approach

Mantzaris, Antonios

Award date:
2022

Awarding institution:
Royal Institute of Technology

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e8af2fa8-552b-4589-88e4-15eadefff2d7


Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Transformer-based Source Code
Description Generation
An ensemble learning-based approach

ANTONIOS MANTZARIS

Stockholm, Sweden, 2022



Transformer-based Source Code
Description Generation

An ensemble learning-based approach

ANTONIOS MANTZARIS

Master’s Programme, ICT Innovation, 120 credits
Date: June 20, 2022

Supervisors: Amirhossein Layegh, Fatemeh Rahimian
Examiner: Amir H. Payberah

School of Electrical Engineering and Computer Science
Host company: Research Institutes of Sweden, RISE
Swedish title: Transformatorbaserad Generering av Källkodsbeskrivning
Swedish subtitle: En ensemblemodell tillvägagångssätt



© 2022 Antonios Mantzaris



Abstract | i

Abstract
Code comprehension can be significantly benefited from high-level source
code summaries. For the majority of the developers, understanding another
developer’s code or code that was written in the past by them, is a time-
consuming and frustrating task. This is necessary though in software
maintenance or in cases where several people are working on the same
project. A fast, reliable and informative source code description generator
can automate this procedure, which is often avoided by developers. The rise
of Transformers has turned the attention to them leading to the development
of various Transformer-based models that tackle the task of source code
summarization from different perspectives. Most of these models though are
treating each other in a competitive manner when their complementarity could
be proven beneficial. To this end, an ensemble learning-based approach is
followed to explore the feasibility and effectiveness of the collaboration of
more than one powerful Transformer-based models. The used base models
are PLBart and GraphCodeBERT, two models with different focuses, and
the ensemble technique is stacking. The results show that such a model can
improve the performance and informativeness of individual models. However,
it requires changes in the configuration of the respective models, that might
harm them, and also further fine-tuning at the aggregation phase to find the
most suitable base models’ weights and next-token probabilities combination,
for the at the time ensemble. The results also revealed the need for human
evaluation since metrics like BiLingual Evaluation Understudy (BLEU) are
not always representative of the quality of the produced summary. Even if the
outcome is promising, further work should follow, driven by this approach and
based on the limitations that are not resolved in this work, for the development
of a potential State Of The Art (SOTA) model.

Keywords
Natural Language Processing, Code Summarization, Transformers, Text
Generation, Ensemble Learning, BLEU



ii | Abstract



Sammanfattning | iii

Sammanfattning
Mjukvaruunderhåll samt kodförståelse är två områden som märkbart kan
gynnas av källkodssammanfattning på hög nivå. För majoriteten av dagens
utvecklare är det en tidskrävande och frustrerande uppgift att förstå en
annan utvecklares kod.. För majoriteten av utvecklarna är det en tidskrävande
och frustrerande uppgift att förstå en annan utvecklares kod eller kod som
skrivits tidigare an dem. Detta är nödvändigt vid underhåll av programvara
eller när flera personer arbetar med samma projekt. En snabb, pålitlig och
informativ källkodsbeskrivningsgenerator kan automatisera denna procedur,
som ofta undviks av utvecklare. Framväxten av Transformers har riktat
uppmärksamheten mot dem, vilket har lett till utvecklingen av olika
Transformer-baserade modeller som tar sig an uppgiften att sammanfatta
källkod ur olika perspektiv. De flesta av dessa modeller behandlar dock
varandra på ett konkurrenskraftigt sätt när deras komplementaritet kan
bevisas vara mer fördelaktigt. För detta ändamål följs en ensemble-
inlärningsbaserad strategi för att utforska genomförbarheten och effektiviteten
av samarbetet mellan mer än en kraftfull transformatorbaserad modell. De
använda basmodellerna är PLBart och GraphCodeBERT, två modeller med
olika fokus, och ensemblingstekniken staplas. Resultaten visar att en sådan
modell kan förbättra prestanda och informativitet hos enskilda modeller.
Det kräver dock förändringar i konfigurationen av respektive modeller som
kan leda till skada, och även ytterligare finjusteringar i aggregeringsfasen
för att hitta de mest lämpliga basmodellernas vikter och nästa symboliska
sannolikhetskombination för den dåvarande ensemblen. Resultaten visade
också behovet av mänsklig utvärdering eftersom mätvärden som BLEU inte
alltid är representativa för kvaliteten på den producerade sammanfattningen.
Även om resultaten är lovande bör ytterligare arbete följa, drivet av detta
tillvägagångssätt och baserat på de begränsningar som inte är lösta i detta
arbete, för utvecklingen av en potentiell SOTA-modell.

Nyckelord
Naturlig språkbehandling, Kodsammanfattning, Transformatorer, Textgenere-
ring, Ensemble Lärande, BLEU



iv | Sammanfattning



Acknowledgments | v

Acknowledgments
Firstly, I would like to thank my family for their support during all of my
studies, which included not only financial assistance, but many other forms
of support that made this journey possible and also enjoyable. My examiner,
Amir H. Payberah, deserves special recognition for the opportunity he gave
to me to work on this project and his support and guidance, starting with
his courses, and moving to the establishment and final implementation of the
master thesis. As contributing members, I would like to express my gratitude
to RISE and particularly Fatemeh Rahimian, but also to my supervisor from
KTH, Amirhossein Layegh. Finally, many thanks to EIT Digital Master
School and its partners, the Eindhoven University of Technology and KTH
Royal Institute of Technology, for organizing this program and offering top-
class education.

Stockholm, June 2022
Antonios Mantzaris



vi | Acknowledgments



Contents | vii

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . 5
1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Source Code Summarization . . . . . . . . . . . . . . . . . . 7
2.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Self-Attention Mechanism . . . . . . . . . . . . . . . 11
2.4.2 Transformer’s Architecture . . . . . . . . . . . . . . . 12

2.5 Transformer-based Models for Source-code Summarization . . 14
2.5.1 PLBart . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 GraphCodeBERT . . . . . . . . . . . . . . . . . . . . 16

2.6 Text Generation via Deterministic Decoding . . . . . . . . . . 17
2.6.1 Greedy Search . . . . . . . . . . . . . . . . . . . . . 17
2.6.2 Beam Search . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Related Work on Source Code Summarization . . . . . . . . . 21

2.8.1 Statistical Language Models . . . . . . . . . . . . . . 21
2.8.2 Neural Machine Translation . . . . . . . . . . . . . . 22
2.8.3 Information Retrieval-based Models . . . . . . . . . . 28
2.8.4 Non-Conventional Approaches . . . . . . . . . . . . . 30

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



viii | Contents

3 Methods 33
3.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Developed Model . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Ensemble . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 PLBart . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 GraphCodeBERT . . . . . . . . . . . . . . . . . . . . 39

4 Evaluation and Results 45
4.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Data Schema . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Data Pre-processing . . . . . . . . . . . . . . . . . . 48
4.2.3 Data Exploration . . . . . . . . . . . . . . . . . . . . 49

4.3 Evaluation framework . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Major Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 PLBart Results . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 GraphCodeBERT Results . . . . . . . . . . . . . . . 53
4.4.3 Ensemble Models and their Results . . . . . . . . . . 55
4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Discussion 61
5.1 Baseline Models’ Results . . . . . . . . . . . . . . . . . . . . 61
5.2 Ensemble Models . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions and Future work 65
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 73

A Tabularized previous work on Source Code Summarization 87



List of Figures | ix

List of Figures

1.1 Transformer-based Source Code Summarization . . . . . . . . 2

2.1 AST representation of Listing 1 . . . . . . . . . . . . . . . . . 8
2.2 Encoder-Decoder Sequence-to-Sequence Architecture . . . . . 13
2.3 Encoder Block (left), Decoder Block (right) . . . . . . . . . . 15
2.4 GraphCodeBERT overview . . . . . . . . . . . . . . . . . . . 16
2.5 Greedy Search, output sentence: I am a mathematician . . . . 18
2.6 Softmax output of two models for kth word . . . . . . . . . . 20
2.7 Selected token for kth word of average is applied . . . . . . . . 20
2.8 Selected token for kth word of maximum is applied . . . . . . 20
2.9 Selected token for kth word of weighted average is applied

where 2 is the assigned to model 1 weight and 1 is the
respective weight for model 2 . . . . . . . . . . . . . . . . . . 20

2.10 Next word prediction based on conditional probabilities. In
this example there are only four possible choices derived from
the available corpus. . . . . . . . . . . . . . . . . . . . . . . 21

2.11 RNN vs LSTM [67] . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Timeline of source code summarization evolution . . . . . . . 30

3.1 Research Process Lay-Out . . . . . . . . . . . . . . . . . . . 34
3.2 Java snippets’ ”docstring” and ”docstring tokens” columns

that are used as descriptors of the code. . . . . . . . . . . . . 39
3.3 PLBart’s depiction in detail. Comment is not considered

during inference, since it is the goal. . . . . . . . . . . . . . . 40
3.4 GraphCodeBERT’s input after the data flow is obtained from

the code snippet’s AST. . . . . . . . . . . . . . . . . . . . . . 41
3.5 Graph-Guided Masked Attention’s mask matrix (Left) on an

example data flow (Right). . . . . . . . . . . . . . . . . . . . 42
3.6 GraphCodeBERT’s depiction in detail. Comment is not

considered during inference, since it is the goal. . . . . . . . . 44



x | List of Figures

4.1 Random row from CodeSearchNet corpus . . . . . . . . . . . 48
4.2 Dataset partitions on full dataset and per programming language. 49
4.3 Most frequent tokens, not from the used Tokenizer. . . . . . . 50
4.4 First 10 of the testing dataset Java code summaries. At the

left is the produced summary by PLBart and at the right is the
respective ground truth. . . . . . . . . . . . . . . . . . . . . . 53

4.5 GraphCodeBERT’s outputs on Python inputs. . . . . . . . . . 54
4.6 Results of GraphCodeBERT after training on default hyper-

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 First 10 of the testing dataset Java code summaries. At the left

is the produced summary by GraphCode and at the right is the
respective ground truth. . . . . . . . . . . . . . . . . . . . . . 55

4.8 First 10 of the testing dataset Java code summaries with
the mean and max aggregation techniques. The reference
outcomes are illustrated in Figure 4.9 . . . . . . . . . . . . . . 56

4.9 Reference outputs of the first ten code-snippets of our testing
dataset. It is used as reference for all the tested approaches. . . 57

4.10 Summaries produced with the aggregation technique of
weighted mean. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Summaries produced with the aggregation technique of
weighted max. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.12 DoubleEnsemble 4.4.3(Mean/Max) results with weights 1 to
the enhanced GraphCodeBERT and 10 to PLBart. BLEU-4
score: 15.52 . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.13 Summaries of model on a different subset of the testing dataset. 58

6.1 Noisy ground truth. . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Missing important information from the ground truth code’s

comment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Non-English comment. Pre-processing did not exclude all

non-English docstrings from the testing dataset. . . . . . . . . 69



List of Tables | xi

List of Tables

3.1 Examples showing the noising effect of the three used noising
methods. In token replacement, tokens [the] and [modules]
were replaced by the [MASK] token. In token deletion, tokens
[return] and the second [y] were deleted. In token infilling the
span [x,y,z] was replaced by the [MASK] token. . . . . . . . . 37

4.1 Partition of the dataset to train, validation and test sub-sets. . . 46
4.2 Language representation in CodeSearchNet corpus. . . . . . . 47
4.3 Summary of BLEU-4 scores of the tested models and their

ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Summary of BLEU-4 scores of the tested models and their

ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations. . . . . . . . 87

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part2). . . . 88

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part3). . . . 89

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part4). . . . 90

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part5). . . . 91

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part6). . . . 92

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part7). . . . 93

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part8). . . . 94



xii | List of Tables

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part9). . . . 95

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part10). . . 96

A.1 All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part11). . . 97



Listings | xiii

Listings

1 Example code for AST 2.19



xiv | Listings



List of acronyms and abbreviations | xv

List of acronyms and abbreviations

AdaBoost Adaptive Boosting
API Application Programming Interface
AST Abstract Syntax Tree
AWGN Additive White Gaussian Noise

BiLSTM Bidirectional LSTM
BLEU BiLingual Evaluation Understudy
BPE Byte Pair Encoding

CAP Code-AST Prediction
CASS Context Aware Semantics Structure
CNN Convolutional Neural Network
ConvGNN Convolutional Graph Neural Networks

DPR Dense Passage Retriever

EP Edge Prediction

GeLU Gaussian Error Linear Units
GNN Graph Neural Network
GPU Graphics Processing Unit
GRU Gated Reccurrent Unit

IP Identifier Prediction
IR Information Retrieval

KTH KTH Royal Institute of Technology

LSTM Long Short Term Memory

MASS Masked Sequence to Sequence
MCL Multi-modal Contrastive Learning
MLM Masked-Language Modeling
MNG Method Name Generation
MVN Multi-View Network



xvi | List of acronyms and abbreviations

NA Node Alignment
NL Natural Language
NLP Natural Language Processing
NMT Neural Machine Translation
NN Neural Network

OOV Out Of Vocabulary

PD Path Decomposition
PDG Program Dependence Graphs
PL Programming Language
POT Pre-Order Traversal

ReLU Rectified Linear Units
RISE Research Institutes of Sweden
RNN Reccurrent Neural Network
RTD Replace Token Detection

SBT Structure Based Traversal
seq2seq Sequence-to-Sequence
SiT Structure-induced Transformer
SOTA State Of The Art
SPT Simplified Parse Tree
SVM Support Vector Machines

TEP AST Edge Prediction

URL Uniform Resource Locator

XFG ConteXtual Flow Graph



Introduction | 1

Chapter 1

Introduction

Source code summarization refers to the use of natural language to describe a
code snippet. This description can tell users about the code’s functionality,
easing the software maintenance process in which code comprehension is
the most time and energy intensive task [1]. However, such summaries are
frequently missing from the code or are out-of-date. The reason for this
is that summary is the least creative activity a developer has to deal with,
hence it is frequently overlooked or performed haphazardly. The good news
is that this method is automatable. Automated source code summarization
is a popular software engineering research topic wherein machine translation
models translate code snippets into relevant natural language descriptions.
The topic has an increasing interest in the last 10 years with different
approaches developed following the at the time dominant technologies. Like
any automation procedure, source code description generation increases
programmers’ productivity by reducing their workload and giving them more
time to solve more significant problems than code documentation. Thus,
this research may have an impact on all programmers of the world and the
companies that they are involved with.

Producing natural language out of source code is a challenging task. It
differs from standard translation from one natural language to another because
source code and natural language summaries are heterogeneous. They could
present differences in lexical or syntactic level. Moreover, the special structure
of source code, if ignored, can lead to inability of the developed model to learn
its semantics. This is crucial since it can mean the misinterpretation of the
code and hence the production of an irrelevant comment. Issues like that, are
approached by the at the time dominant framework of the more generic field
of research, leading to the increase of attention to the Transformers [2] in our



2 | Introduction

Figure 1.1: Transformer-based Source Code Summarization

days. Many other techniques have been suggested, all of them contributing on
this evolution.

In this master thesis, several approaches related to source code description
and general-purpose code snippets’ representations generation will be
discussed. Moreover, a new Transformer-based approach will be suggested
based on work done so far and their limitations. A Transformer-based model’s
general structure is depicted in Figure 1.1.

1.1 Background
Transformers, initially presented by [2], are sequence-to-sequence neural
network architectures that are built on top of Reccurrent Neural Networks
(RNNs) [3, Chapter 10] inabilities. These inabilities or limitations of RNN-
based architectures are the non-parallelization of computation because of their
sequential format, recursion is expensive and despite the Gated Reccurrent
Units (GRUs)’ and Long Short Term Memorys (LSTMs)’ [4] contribution
on capturing longer range dependencies and avoiding vanishing or exploding
gradients, not all relationships are still captured. To that end, the encoder-
decoder architecture of the Transformers was introduced alongside self-
attention mechanisms that are capable of capturing short and long-range
relationships among the input and target data. This allows the contextual
representation of the data which leads to semantically more accurate code



Introduction | 3

to natural language translations. Due to the complex and bipolar nature of
code, meaning that it provides information both from its text but also structure
and syntax, different and additional to the main transformers’ architecture
techniques have been proposed, mainly trying to incorporate code snippet’s
syntax in the developed model [5, 6]. This is most of the times tackled with
the usage of Abstract Syntax Trees (ASTs) [7] which can provide information
about the code’s syntax, or its variants such as Data Flows [8]. Many
models have been developed following these characteristics and have indicated
positive results. A more thorough mentioning and analysis of them occurs
in 2.8.

Ensemble learning [9] on the other hand, refers to the aggregation of
different models/estimators, with the motive of ”wisdom of the crowd”. This
way diversity is added, helping the avoidance of local optima and overfitting
models. Different models are used in a complementary manner rather than a
competitive one allowing one model to overcome another model’s limitations
and vice-versa. Ensemble learning [10] can be divided into three major
categories based on the dependency of their used models, data usage and
models’ aggregation. These categories are bagging, stacking and boosting,
and for reasons that are explained later, stacking is preferred in the suggested
approach.

1.2 Problem
All the already developed approaches have their positives and negatives.
After a thorough research, the most common limitations are highlighted
and summarized. This way the problem to be investigated and its tackling
methodology are determined.

Statistical, RNN, Convolutional Neural Network (CNN) and Information
Retrieval (IR) based models will not be further investigated because of their
fundamental limitations that are mentioned in their respective sections in 2.8.
Concerning Transformer-based models the main problems noticed go as
follows.

First problem is the quantity of data. Complex Deep Learning architectures
such as the Transformers, can benefit from large amounts of data. However,
most of the existing approaches require a bilingual corpus in the code snippet-
comment pair format which are of limited size. In our case, large scale
datasets consisting of source code snippets could be used for the understanding
and eventual representation of them. Such pre-trained models could provide
useful representations of the syntactically and semantically complex code



4 | Introduction

snippets that could be fine-tuned for several downstream tasks, including the
task of summarization. Such representation models already exist but have
significant limitations. Specifically, they should be trained on Programming
Language (PL) data with PL-related tasks. Additionally, the structure should
be considered and also since the wanted outcome is a generative, the pre-
training tasks should be generative as well.

The second problem is related to the structure capturing of the code.
Many researchers have used ASTs to capture the structure and showed some
improvement compared to the usage of code as plain text. However, [5]
has shown that linearized ASTs incorporated into Transformers bring no
significant improvement to the model as they do with RNN-based models.
This is probably because of the non-sequential functioning of the self-attention
mechanism which is one of the main parts of any Transformer. Instead, they
suggest incorporating structure within the self-attention mechanism. Others
such as [6, 11, 12] have also suggested the usage of matrices as an alternative
of the linearized AST.

Third and final issue is the usage of absolute positional embeddings.
Methods like [13, 14, 15] are using a relative positional attention which is
proven more effective but also efficient. The second and third problem can
be combined into one since their confrontation can be concurrent with the
development of an appropriate mechanism.

1.3 Research Questions
The research questions of this thesis are:

• Can the aforementioned problems be tackled at the same time by
ensembling complementary models?

• What are the necessary steps for using ensemble learning on the task of
source code description generation?

1.4 Goals
All of the problems in 1.2 have been tackled from several approaches but
individually and/or for different tasks. In this thesis, the goal is to develop
a model inspired by previous work, aiming at tackling these. Specifically,
Transformers such as PLBART [16] could be used concerning the first problem



Introduction | 5

for the production of useful source code representations and eventual fine-
tuning on the task of summarization. On the other hand, GraphCodeBERT
[15] uses the code structure through data flows that utilize relative positional
information. Hence, inspired by LeClair’s [17] proposal and encouraged by
[18]’s optimistic results on their experimentation with ensemble models on
a similar task, we aim at combining the newest, most promising and to the
discovered problems-specific models for the creation of a Transformer-based
source code description generation model.

Therefore, the goal of this project is to combine transformer-based models
that are fine-tuned for the task of source code description generation. This has
been divided into the following three sub-goals:

1. Modify the selected models so that their outputs are appropriate for
aggregation.

2. Fine-tune the selected models.

3. Develop an ensembling learning model.

1.5 Research Methodology
The project is using the empirical method. Empirical research is based
on analyses derived from personal experimentation while the analytical
approach is based on mathematical calculations on existing experimental
work. All models including their combination in the final ensemble model are
investigated and tested with the same dataset to provide metrics that would
lead to a valid and robust conclusions. For testing our hypothesis, liberty for
experimentation on different models is required since the exact approach has
not been tested yet by other researchers, thus an analytical approach would not
be suitable.

Specifically, PLBart and GraphCodeBERT are both fine-tuned on the same
dataset. GraphCodeBERT had not been fine-tuned yet for the task of code
summarization. This was accomplished by adding a transformer’s decoder
since GraphCodeBERT’s outcome is just the source code’s representations,
after using a bidirectional encoder [19]. These two models, based on their
structure and pre-training techniques could tackle parts of the problems
described in 1.2. Their complementarity was influential for their combination
via the creation of an ensemble model. Finally, the need for a large amount
of data accompanied by the outcomes of [20] lead to the usage of the stacking
method.



6 | Introduction

1.6 Structure of the thesis
Chapter 2 presents relevant background information about the followed
approach’s main elements but also a thorough investigation on related work
on this area. Chapter 3 presents the methodology used to solve the problem.
It mostly consists of details on the used models. Chapter 4 informs about
the dataset, evaluation metrics and development’s environment but most
importantly presents the major results of the research. This leads to chapter 5
where the results are further analysed and interpreted. Finally, in chapter 6
the outcomes of the project are summarized and presented but also the
limitations, the suggested future work and a reflection on the project from
several perspectives.



Background | 7

Chapter 2

Background

This chapter provides basic background information about source code
summarization. Additionally, this chapter describes transformers, their usage
for code summarization, and eventually ensemble learning. The necessary
details about the theoretical framework but also the specific tools and models
used are elaborated. This is crucial for the facilitation of the readability and
understanding of the project in general, as well as the clarification of the
reasoning behind the decision-making process. The chapter also refers to
related work in the area of investigation providing several alternatives that
have been proposed over the last ten years.

2.1 Source Code Summarization
As described in 1 source code’s interpretation relies on both semantic and
syntactic information [21]. Concerning the first one, the wanted information
can be extracted by breaking the input code into smaller components such as
words, sequences of characters, or just characters. This is called tokenization
and it is described in 2.3. Then, the used model is responsible for finding
relationships among the produced tokens which are preferably of long-range
since in both programming and natural language two words can be not one next
to the other and still have strong a correlation [22]. To this end, architectures
like LSTMs and Transformers have been used, which are able to capture long-
range relationships by utilizing the attention mechanism to produce context-
aware representations of the input. Transformers and Attention are described
in 2.4.2 and 2.4.1 respectively. Concerning the syntax, ASTs are widely used
and many researchers have attempted to incorporate them in transformer-based
models [23, 24, 25, 12, 6, 26, 5, 15]. Derived from ASTs, data flows have been



8 | Background

introduced, representing relationships between AST nodes [27].

2.2 Code Structure
The main way to extract information about the structure of a code snippet is
getting its AST. An AST is a representation of the code in a unique way so that
an AST would correspond to just its code. It is tree-structured where the edges
correspond to the hierarchy of the code. Concerning the nodes, the leaves
are called terminals and represent identifiers whereas the non-leaf nodes are
called non-terminals and represent structures such as loops, expressions and
variable declarations. In this work, data flows are used, therefore for further
information on ASTs someone can refer to [7]. However, we provide a simple
example that can clarify the structure and usability of ASTs and it is split in
the example Code 1 and its produced AST Figure 2.1.

Figure 2.1: AST representation of Listing 1



Background | 9

Listing 1 Example code for AST 2.1
while b != 0:

if a > b:
a := a - b

else:
b := b - a

return a

Data Flow
Data flows are graphs representing the relationships between variables. The
nodes correspond to the variables themselves while the edges indicate the
relationships among them [8]. Data flows are able to extract additional
semantic information out of the code and its structure by exploiting these
relationships. In contrast to the traditional ASTs, data flows are simpler, more
concise and more robust to small syntactical changes in the code that produce
no altered outcomes. The construction of a data flow given a code snippet C
is given in Algorithm 1.

Algorithm 1 Data Flow Algorithm
Input: C = {c1, c2, ..., cn}code snippet

1. Parse code into an AST.
2. Leaves of the AST are the variables/nodes V = {v1, v2, ..., vk} of the

graph.
3. The edges are defined as V = ϵ = (vi, vj), if vj comes from vi.
4. All the directed edges acquired from step3 are forming E =

{ϵ1, ϵ2, ..., ϵl}.
5. G(C) = (V,E).

2.3 Tokenization
Word tokenization is essential in Natural Language Processing (NLP),
hence also in source code summarization. The given text is split
into its components/words in order to form the input of the model.
This would look as follows: inputsentence = “import pandas as pd”,
tokenized sentence = [import, pandas, as, pd]. Before that, the vocabulary



10 | Background

is defined based on the distinct words of a large corpus. The produced
vocabulary consist of the known words that will eventually carry some
semantic information that can be used for any NLP task. However, a common
issue in occasions like this is, facing Out Of Vocabulary (OOV) words. An
example illustrating this issue is the following:
vacabulary = {..., play, playing, ...}. Let “played” not in vocabulary. If
played is within an input sentence, it will be marked as unknown, since it
does not belong in the vocabulary. A method to overcome this issue is
sub-word tokenization where during the construction of the vocabulary, the
words are split into sub-words, “playing” to “play”, “ing”, leading to more
flexible vocabulary that could handle unknown words such as “played”. The
way this is done can vary. Some of the most used techniques are Byte
Pair Encoding (BPE) [28], Byte-level BPE, Unigram [29], WordPiece [30]
and SentencePiece [31]. In this project the SentencePiece method was
used, specifically pre-trained on PLBart using both programming and natural
language.

SentencePiece was mostly chosen because of the Programming Language
part. The reason is that SentencePiece is the only tokenizer which does not
assume that the input words are split by space. This makes it useful for
languages like Chinese, Japanese, Thai or Code for which there had only been
developed only language specific tokenizers so far. To this end, SentencePiece
treats spaces as character and then uses BPE or Unigram.

On BPE the initial vocabulary consist of all of the characters seen in the
corpus. Then, the frequency of all possible symbol pairs is calculated and the
most frequent pair is merged and added in the vocabulary. The same procedure
is repeated until the pre-determined vocabulary size is reached. Then Byte-
level BPE is a variant of BPE where byte-level sequences are used instead of
character-level and is prefered on multi-lingual settings.

Unigram follows a different approach, starting from a large vocabulary
and moving down to a smaller one of size equal to the wanted. This is
accomplished by computing the log-likelihood when a symbol is removed.
The symbols increasing the log-likelihood loss the less are eventually removed.

N∑
i=1

log(
∑

x∈S(xi)

p(x)),

where S(xi) is the set of all possible tokenizations for word xi.

However, Unigram is not used directly but along with WordPiece. WordPiece



Background | 11

works similarly to BPE with the difference that instead of the frequency of a
symbol pair, their likelihood is considered, which is given by the formula :

p(st)

p(s)p(t)
,

where s, t are the symbols to be merged.

2.4 Transformers
A Transformer is deep learning architecture mainly used in the fields of NLP
and Computer Vision [32]. Nowadays, Transformers have taken over RNNs
because of their ability to handle sequential data simultaneously. In this
section the main mechanisms used in a transformer will be elaborated as well
as its architecture, the ways that a code snippet’s structure can be fed in it
and finally some transformer-based models followed by a description of their
decoding mechanisms for the tasks of translation and summarization.

2.4.1 Self-Attention Mechanism
The self-attention mechanism is responsible for finding relationships among
the input tokens to facilitate the production of context-aware representations
of them. These representations are in the format of an embedding which is
the result of a mapping procedure of each token to a smaller m-dimensional
space. Other ways to obtain these embeddings include Word2Vec [33],
GloVe [34] and FastText [35]. In these approaches the embedding of a “word”
is influenced only by its surrounding “words” or is totally independent. This
is why, architectures like RNNs, LSTM, GRU and Transformers are enhanced
with the addition of the attention mechanisms in order to capture information
all along the input text.

Self-attention has three main components; Queries, Keys and Values.
Query corresponds to the at the time input-token while Key corresponds to
other tokens for which the correlation with the Query will be investigated.
Queries and Keys will indicate the matching score between two tokens which
will eventually be used as weight to the Values and consequently the final self-
attention.

Firstly, a query (WQ), key (WK) and value (W V ) weight matrix is
initialized randomly and multiplied to the input text’s token embeddings
matrix T . Let x be the number of distinct tokens within T . Then the output



12 | Background

of the previous multiplication, Query, Key and Value matrices Q,K ∈ ℜx×dk

and V ∈ ℜx×dv respectively, where dk, dv refer to the dimension of the key
and value embedding of the tokens. The calculation of the attention goes as
follows. At the first step we get the dot product Q ·KT to get the similarity
between the words. In step two, the previous dot product is divided by
the squared root of the key’s dimension which helps on getting more stable
gradients. After that, Softmax is applied to normalize the scores between 0 and
1. Finally, to get the Attention Matrix, the dot product of the previous output
and the Value matrix is computed from which it is indicated the influence of
one token to the other. The summarized formula is the following:

Softmax(
Q ·KT

√
dk

)V (2.1)

In order to avoid specific words being dominated by specific others and to
provide more balanced and well-rounded results that defy any possible bias it
is possible to use multiple attention layers simultaneously. For each attention
layer, different sets of Query, Key and Value matrices are taken. They all
follow the aforementioned procedure and produce their respective Attention
Matrix. All the Attention Matrices are eventually concatenated to produce
the final Attention. This is called Multi-head Attention and it is given by the
following formula:

MultiHead Attention = Concatenate(Z1, Z2, ..., Zk)W0, (2.2)

where W0 is a weight matrix, Zi the Attention Matrices and WQ
i , WK

i , W V
i

for i ∈ [1, k] the distinct weight matrices of the k-available attention heads.

2.4.2 Transformer’s Architecture
Transformers belong to the encoder-decoder sequence-to-sequence net-
works [36]. Specifically, it consists of stacked encoders and decoders where
the encoders are responsible for the production of representations of the input
which are eventually fed to the decoders to generate the desired output. As can
be seen in Figure 2.2, the output of each encoder and decoder is passed as input
to the next encoder and decoder respectively. This only differs in the case of
the last encoder and the first decoder of their stacks. The output of the last
encoder is the representation of the input and is fed as input to the decoders.
Concerning the first decoder, it receives as input the produced representation



Background | 13

Figure 2.2: Encoder-Decoder Sequence-to-Sequence Architecture

of the initial input, as implied from the encoders’ side, but also the embedding
of the target during the training phase. The rest decoders, similarly to the
encoders stack, get information both from the produced representations and
their previous decoder.

Positional Encoding

Moving into the details of this architecture, positional encoding that appears
in the source and target input is responsible for providing order information.
Transformers are processing data not sequentially like RNNs but in parallel,
hence without any additional mechanism, the order of the input is lost. The
positional encoding is in the format of a matrix that is summed to the input
matrix which comprises all the input tokens’ embeddings. The suggested
from [2] way to that is Equation 2.3. After this step, the input is ready to be
fed to the first encoder or decoder whose details are the next described subject.

P (pos, 2i) = sin(
pos

1000
2i

dmodel

)

P (pos, 2i+ 1) = cos(
pos

1000
2i

dmodel

)
(2.3)



14 | Background

Encoder

Each encoder consists of a (multi-head) attention, an add and norm layer
and a feedforward network. The attention mechanism and its role have been
described in 2.4.1. The add and norm component then connects the input and
output of each sublayer of an encoder. Its purpose is to “add” the input to the
at the time sublayer and then “normalize” the output values with the scope of
faster learning because of the avoidance of significant changes compared to its
input. Finally, the feedforward layer constitutes two-thirds of a transformer’s
parameters and can capture patterns that will eventually be related to the target
vocabulary [37].

Decoder

The decoders have a similar to the encoders’ architecture and functionality.
However, as mentioned previously in this section, they are taking into
consideration both the target and the encoder’s output. To that end, a decoder’s
block consists of an additional (multi-head) attention. The new attention
mechanism is Masked (Multi-head) attention. As its name indicates, there
are masks used at each step hiding the embeddings of tokens coming from the
target and have not been generated yet. This is necessary in order to bring in
compliance with the generation and training procedures. Practically speaking,
this is happening by changing the values of the masked tokens in the attention
matrix to −∞. The rest components are the same as the ones described in the
encoders’ section.

Both encoder’s and decoder’s architectures are depicted in Figure 2.3

2.5 Transformer-based Models for Source-
code Summarization

Among others, transformers have been also used for the task of source code
summarization. Below, we present two of the transformer-based models that
fit to this project’s objectives and hence used later in our approach. These
models are PLBart and GraphCodeBERT.



Background | 15

Figure 2.3: Encoder Block (left), Decoder Block (right)

2.5.1 PLBart
PLBart is inspired by BART [38] and was introduced by [16] to tackle program
and natural language understanding and generation tasks. The element that
differentiates it from other models is its capability to be pre-trained on
unlabelled data. This allows the learning of representations that are attained
from vast data sources of different data types, in this case source code and
natural language. This learning can be then transferred and used for various
applications. A second characteristic that makes PLBart powerful is related
again to its pre-training but now refers mostly to its architecture. PLBart
is an encoder-decoder sequence-to-sequence model. This means that the
model which is meant to be used for several downstream tasks has an already
pre-trained decoder. Most of the approaches, besides PLBart, that aim the
production of general purpose representations, require an additional decoder
that needs to be trained from scratch. This implies the need of more data and
time for the training of the decoder.

These characteristics are complementary of the ones of GraphCodeBERT
and are going to be described in the next subsection, so this is why the
combination of these two models could be proven beneficial.



16 | Background

Figure 2.4: GraphCodeBERT overview

2.5.2 GraphCodeBERT
Similarly to PLBart, GraphCodeBERT [15] produces general-purpose
representations of the input code and then is fine-tuned properly for the at the
time downstream task. It is another transformer-based model that introduces
some new elements. These elements are mainly related to the structure of
the code and the tasks that the model is pre-trained on. Concerning the
structure of the code, GraphCodeBERT avoids the direct usage of ASTs that
has been proven problematic [5, 12] but suggests the utilization of data flows.
Compared to the ASTs, data flows were proved superior by the creators of
GraphCodeBERT because of their simplicity, since Transformers’ efficiency
decreases as the input length increases. Concerning the second differentiating
element, the model is pre-trained on three tasks, Masked-Language Modeling
(MLM) as in BERT and two new structure-aware tasks, edge prediction
and node alignment. A general observation is that GraphCodeBERT’s main
contribution is the efficient exploitation of the code’s structure both in pre-
training and also fine-tuning and inference. An overview of GraphCodeBERT
is depicted in Figure 2.4



Background | 17

2.6 Text Generation via Deterministic De-
coding

Once the models have been pre-trained and fine-tuned, it is time for them
to generate the output. In code summarization, the final layer of a model is
Softmax layer of the size of the input vocabulary. The softmax function is
responsible for assigning to each of the tokens in the vocabulary probabilities
that correspond to the likeness of the next word being that token. There are
two main ways used in this project and are the Greedy and the Beam Search.
In both occasions, the next word generation procedure comes to an end when
an End-Of-Sentence token is generated. [39]

2.6.1 Greedy Search
Greedy search is the simplest but also naive way to select the next “word” in
a text generation task. At each position of the output sentence, greedy search
will take the “word” with the highest probability. This way it takes the optimal
candidate of the time ignoring the previous or future outputs. It is simple
though, implemented just by adding an argmax function on the softmaxed
output and it has shown decent results with transformers when the output’s
length remains relatively short [40]. An example of the greedy search can be
seen in Figure 2.5.

2.6.2 Beam Search
Beam search [41] on the other hand is inspired by greedy search but builds on
its weaknesses. Instead of taking one token, the optimal of each time, multiple
are considered based on conditional probabilities. Initially, the number of the
tokens to be considered is defined and called beam width. For the prediction
of the N th token the (N − 1)th selections of number equal to the beam width
are taken and their best combinations with the tokens of the vocabulary are
determined based on their conditional probabilities. Once again the top-|beam
width| are selected. The procedure continues like this till an End-Of-Sequence
token is generated. Increasing the beam size can on the one hand improve
accuracy but on the other hand adds computational cost since more choices
need to be considered every time. With this mechanism, local optima can
be avoided since at any time, previously selected tokens can be dropped if
the combination of other selected tokens with upcoming ones produce higher



18 | Background

Figure 2.5: Greedy Search, output sentence: I am a mathematician

probabilities. In case the beam width is selected to be equal to one, then the
beam search is identical to the greedy search.

2.7 Ensemble Learning
Ensemble learning is based on two basic ideas: different models could be
good at different “parts” of data and individual mistakes of could be “averaged
out”. The common ground of both ideas is that eventually several models
are aggregated to produce a single output that aims at getting the most out
of each model and correcting their weaknesses. Ensemble models has shown
great performances in many areas [10] but also some signs of potential in code
summarization specifically [17, 18, 42].

In ensemble models there are three factors to be considered. These are: the
models to be combined, the data to be used for training and the aggregation
technique. In this project the first two factors are pre-determined and there is
some experimentation on the aggregation technique.

Concerning the models, the choices to be made are: what models should
be used and on what degree of dependency. Initially, the models should
be relatively uncorrelated but good enough in order for the ensemble to be
meaningful. Then, the selected models could be dependent or independent
to each other. When the models are dependent, the objective of a model is



Background | 19

to fix the mistakes of the previous model. Such techniques belong to the
general category of boosting [43] and two characteristic examples are Adaptive
Boosting (AdaBoost) [44] and Gradient Boosting [45]. In the first one, models
are obtained by re-weighting the training data at every iteration. Data points
that were misclassified get higher weight so that the ensemble can focus on
them and fix the misclassification. On the other hand, gradient boosting’s
objective at each iteration is to predict the residual error of the ensemble and
try to reduce it. It is an additive model, meaning that the predictions at each
iteration are summed and the base models are most of the times regression
trees.

Moving to the second factor and the data to be used, there are two different
approaches that can be followed. These are bagging and stacking. Bagging
(Bootstrap Aggregating) [46] is the technique where the same model is trained
on different parts of the dataset. This way each sub-model becomes an expert
on their respective sub-set and then their predictions are aggregated to reduce
this overfitting and generalize. The most famous bagging technique is the
Random Forest [47] where randomized trees are aggregated by averaging
their predictions and are usually very accurate. In stacking [48] though,
there are different models, each trained on the entire dataset and at the end
their predictions are aggregated. This approach aims at inducing diversity
and tackling different parts of the same problem from different angles. On
top of that, an additional model can be put to learn how to better combine
the individual predictions. This meta-learner is called stacked generalization
ensemble [49] and is efficient but also expensive.

Finally, concerning the aggregation techniques, in the case of code
summarization, it would happen at the softmax output of each model.
There are several ways to do so, starting from simpler approaches such
as using the average, weighted average or maximum and moving to more
complex ones like employing Support Vector Machines (SVM) [50] or
neural networks [51] that were mentioned before as meta-learners. Simple
examples for the visualization of the aforementioned techniques are provided
in Figures 2.7, 2.8, 2.9 and correspond to the initial values illustrated in
Figure 2.6 (the examples are not realistic but over-simplified for demonstration
purposes).



20 | Background

Figure 2.6: Softmax output of two models for kth word

Figure 2.7: Selected token for kth word of average is applied

Figure 2.8: Selected token for kth word of maximum is applied

Figure 2.9: Selected token for kth word of weighted average is applied where
2 is the assigned to model 1 weight and 1 is the respective weight for model 2



Background | 21

Figure 2.10: Next word prediction based on conditional probabilities. In this
example there are only four possible choices derived from the available corpus.

2.8 Related Work on Source Code Summa-
rization

Three main approaches have been followed for the objective of source code
summarization. These are, statistical language models, IR or template-based
models and Neural Network (NN) based models. Statistical language models
are using statistics for making predictions. IR-based models are exploiting
similar code snippets’ comments. Finally, NN-based models are mostly
following the encoder-decoder architecture and are approaching source-code
summarization as a Neural Machine Translation (NMT) task.

2.8.1 Statistical Language Models
Statistical language models aim the prediction of comment from source code in
a comments completion format. They belong to the n-gram Language Model
family since they are using n-grams and conditional probabilities based on
statistics to predict the next comment token 2.10 [52]. The first issue with this
approach is sparsity. Increasing the size of n-grams (n) makes the problem
even worse. Either case, there is a lack of generalization, this approach’s
capabilities are limited and there are more advanced methods that can generate
more complete and quality documentation.



22 | Background

2.8.2 Neural Machine Translation
The rise of Deep Learning and Neural Networks accompanied by the increase
of available data led the researcher to tackle the previous problems from an
NN perspective.

Convolution-based Models

Several NN architectures have been utilized for the purpose of source code
summarization, starting with convolution-based ones. [53] proposed a
Convolutional Attention Network that produces concise method-like names
out of source code. The convolutional network allows the learning of features
while the attention mechanism is essential for capturing short but also long-
range relations among them. A copy mechanism is also introduced, which
identifies important source code tokens that are out-of-vocabulary and can be
used as are in the summary by utilizing one of the two attention mechanisms.

LSTM-based Models

The previous Convolutional Attention Network produces a method-like name
summary, something that [54] tried to fix by introducing CodeNN. CodeNN
is a Neural Attention Model using the at the time thriving LSTMs [55] for
the formation of the natural language text with attention for the selection of
the content. The issues with this approach are the usage of one-hot encoding
which limits the scalability and flexibility of the model but also the processing
of the code as plain text which omits any structural information.

CodeSum [56] on the other hand, keeps structural information since the
source code is input as AST sequences [7] which are obtained by using the
Structure Based Traversal (SBT). This method though is sensitive to different
programming styles and identifiers. Similar to CodeSum, Code2Seq [57]
does not linearize the AST with a traversal but uses compositional paths over
it. Then a similar encoder-decoder network with attention is used like in all
seq2seq models. All encoder-decoder-based models so far generate the output
sequence from scratch during testing, while the ground truth is missing and
hence the prediction of the next words is based on the previously generated
words. This can lead to sub-optimal decoders due to the exposure bias issue.

Therefore, a new approach is introduced, Hybrid2Seq + Deep Re-
inforcement Learning [58] which contains an AST-based LSTM and an



Background | 23

LSTM for structural and sequential representation of the code respectively,
fused by a hybrid-attention mechanism. Then a pre-trained actor-critic
network is employed for decoding based on the BiLingual Evaluation
Understudy (BLEU) metric reward. This approach has limitations such as the
experimentation only with python, the usage of only BLEU score as a reward
and the absence of human evaluation. [59] exposed another issue with the
aforementioned model and is related to the AST-based LSTM. Specifically,
this LSTM is based on [60]’s tree-LSTM and its inability to handle trees
with nodes containing an arbitrary number of ordered children. This is
why Multi-way Tree-LSTM is suggested as an encoder, in which the AST
sequence is fed to a bidirectional LSTM to utilize interactions among children
and is followed by an attention-based LSTM decoder. The results show no
significant improvement and additionally, the baseline models used are not
the state-of-the-art since CodeNN [54] was proved worse than codeSum [56]
and DeepCom [61], where the latter one was already modified by its authors
to perform better [62].

Ast-attendgru [63] is another robust model that is regularly used as
a baseline model by other researchers. They noticed that without clear
identifiers, the models can not produce good summaries, thus it would be
beneficial to learn the code’s structure independently from its text. Code’s
text is treated as plain text and structure as a modified to the [61]’s AST
in which all words are replaced by the special token 〈OTHER〉, known as
SBT-AO and it focuses only on the structure. This method performs better
when the methods’ names do not clearly state what the methods do but
worse otherwise. Similarly works the Hybrid-DeepCom [62], an expansion of
DeepCom [61], which analyzes source code and its AST sequence obtained by
SBT at the same time. After the encoding, a hybrid attention mechanism fuses
the lexical and syntactic information in order to proceed with the comment
generation. In addition, for handling out-of-vocabulary tokens, the identifiers
are split according to the camel casing naming convention. Recent research
introduces the hierarchical code representation for code summarization [64].
Specifically, the code and its AST are split into statement level and then
into token and subtoken level. A hierarchical Bidirectional LSTM (BiLSTM)
encoder is applied followed by an attention mechanism. Token representations
are aggregated to form the statement representations. Once the hierarchical
encoding is done an attentional decoder (unidirectional LSTM) produces the
probability vectors of the respective code and AST which are eventually
averaged to complete the at the time LSTM step. The informativeness of the
produced summaries is higher than its comparative models but still the longer



24 | Background

the code is the worse the summary gets and it also fails to generate content out
of the given code.

Another interesting approach is CO3 [65] which performs dual learning in
the tasks of code search and code summarization. Dual learning is inspired
by [66] and refers to the in parallel learning of code summarization and
generation tasks. Their hidden states’ similarity is then used for the code
retrieval task purposes.

Figure 2.11: RNN vs LSTM [67]

Transformer-based Models

So far we have only mentioned CNN and RNN-based approaches. However,
CNNs can not capture long-range dependencies and RNNs can not parallelize
the computation because of their sequential computation. Based on these
limitations and thanks to the development of the Transformers, transformer-
based models were introduced.

Firstly, NeuralCodeSum [13] was developed and led the way to other
transformer-based approaches. In addition to the regular self-attention



Background | 25

mechanism, a copy attention mechanism is added to allow word generation
from both the vocabulary and the source code. Furthermore, the positional
encodings are not suitable for source code, hence the relative positional
representation of pair of tokens is used [68], indicating better performance.
ASTs were also tested but rejected because of the increase in the input
sequence size which influences the transformers’ complexity. This paper
showed that transformers can learn the code’s structure and the fact that
the core architecture of Transformers is untouched, gives promising signs
for further research. Then CodeBERT [69] and CuBERT [70] are two
models based on BERT [19] and aim at the generation of general-purpose
representations that can support downstream PL-Natural Language (NL)
tasks. Quality source code embeddings are essential for tasks like code
summarization or code search, as [71] claims by stating that better embeddings
are needed for the full exploitation of their approach. CodeBERT has the same
architecture as RoBERTa [72] but is trained with both bimodal (PL and NL)
and unimodal (PL or NL) data on Standard MLM [73] and Replace Token
Detection (RTD) [74]. CuBERT on the other hand, pre-trains a BERT-large
by treating PL and NL as paired separated sentences. CuBERT was also
used by [75] for producing embeddings carrying the method’s functionality
information. They show that fine-tuning CuBERT in a contrastive manner
can lead to good clustering of code methods, however, this clustering is
restricted to just 5 clusters/functionalities making the approach promising but
not suitable for code summarization. Both CodeBERT and CuBERT showed
interesting results and both mentioned the incorporation of structural code
information as a promising future goal.

CodeTransformer [14] is also referring to the importance of relative
positional self-attention but uses both context and structure (AST) for the
encoding of the source code. They showed that especially in multilingual code
summarization the combination of context and structure is beneficial since in
this case, the structure can be crucial.

Towards this structure-exploitation direction, TranS3 [76] was developed.
It is used for unifying code summarization and code search by utilizing a Deep
Reinforcement Learning Model. The actor-network is an encoder-decoder
network where a tree-transformer is used as the encoder and is based on indent-
based semantics. The results are showing improvement both over RNN-based
or standard Transformer based encoders but the tree-transformer-based one
relies significantly on the quality of the program form but also applies only to
Python code. Another Python-associated method is PyMT5 [77] which treats
source code and natural language the same, shared vocabulary, and tackles the



26 | Background

method prediction and code summarization. However, it performs worse than
TranS3, which is anticipated because of its simplicity and omission of source
code information.

Back to general-purpose code representations, GraphCodeBERT [15],
which is also used in this project, suggests the utilization of data flow
instead of ASTs to capture semantic rather than syntactic information since
programmers do not always follow the naming conventions. The model is
pre-trained on three tasks, MLM as in BERT and two new structure-aware
tasks, edge prediction and node alignment. A comparison is also made with
ASTs, where data flow was proved superior because of its simplicity since
Transformers’ efficiency decreases as the input length increases. More details
about GraphCodeBERT can be seen in 2.5.2. Inspired by GraphCodeBERT,
SynCoBERT [78] introduces Identifier Prediction (IP), AST Edge Prediction
(TEP) and Multi-modal Contrastive Learning (MCL) to exploit identifiers’
symbolic and syntactic information, the edge’s between leaf and non-leaf
syntactic information and avoid the dominance of high-frequency tokens
respectively.

Transformers-based Models with Alternative Incorporations of
Structure

Transformers though lose both computational efficiency and performance
since ASTs are carrying noisy information. Moreover, incorporating a
linearized AST into a Transformer has shown no performance gain because
of the self-attention which acts more like a non-sequential process. These
issues are tackled by [6] by not allowing information exchange among all
nodes. At first, a Pre-Order Traversal (POT) is proposed over SBT and Path
Decomposition (PD) for time efficiency. Then the linearized AST is used
for the creation of two relationship matrices, ancestor-descendant and sibling,
followed by multi-head attention on both and eventual concatenation. This
way ASTs can be encoded and used without causing computational overhead.
SG-Trans [11] uses matrices too. Specifically, token, statement and data flow
(shallower than AST) adjacency matrices followed by their respective self-
attentions and copy attention. An interesting element of this approach is the
Hierarchical Structure-Variant Attention where the distribution of attention
heads is not uniform but lower levels focus more on local structure (tokens,
statements) while higher on the global structure. Similarly, Structure-induced
Transformer (SiT) [12] expands ASTs to Multi-View Networks (MVNs)



Background | 27

such as an abstract tree, control flow and data dependency, then represents
them as adjacency matrices. Structure-induced encoder follows containing
Structure-induced self-attention layers in order to finally be decoded by an
original Transformer encoder. Another issue of ASTs is that they can be
syntactically dense, leading to the memorization of syntax and not the learning
of the semantics. [5] suggests five ways to pass ASTs into Transformers
with the ”sequential relative attention” being the most effective and efficient
because of its structure. Also [26] attempts to pass ASTs to Transformer
by introducing PathTrans, based on root-paths, and TravTrans, a single
AST traversal using pre-order or depth-first search and its variant which
enhances the self-attention mechanism with a path-matrix. TPTrans-α [25]
encodes both relative and absolute paths to capture patterns, relationships
between nodes and program behavior respectively with a bi-directional GRU.
Issues though with JavaScript snippets whose paths were larger indicate
that additional work should follow. Another approach trained for method
name prediction and tries to incorporate trees into Transformers is Meth2Seq
[79]. They exploit Program Dependence Graphss (PDGs) such as control
and data flow graphs for code semantic structure information, Intermediate
Representations (IR) of statements for operational semantic information and
Natural Language Comments for the explicit summarized semantics offered
by developers in order to get hybrid code representations that can be used
for several Programming Language related downstream tasks. Next approach
[24] encodes ASTs via ConvGNN [80] to capture structural information and
then Transformer-XL for semantic information. However, so far the authors
considered only structural information as input something that they aim to
change in the near future. MMTrans [23] also utilizes ConvGNN for capturing
the local semantic information enhanced by the AST’s SBT sequence which
targets the global semantic information.

Another multi-modal (here code sequences, AST) Transformer-based
model, inspired by Hybrid-DeepCom mentioned in the previous paragraph,
is ComFormer [81]. They introduce Byte-BPE for handling the OOV words,
SimSBT a simplified AST traversal and three different approaches to the
encoding phase such as Jointly, Shared and Single encoder. Finally, Beam
search is used for the comment generation. It shows promising results but
the investigated baselines were limited especially concerning the Transformer-
based approaches.



28 | Background

Transformer-based Models with Decoder Pre-Training

Moving to PLBART [16], the second model that was used for this project, it
is a multilingual representation learning model. Its architecture is the same
as BART-base [38] with the addition of an extra normalization layer on top of
both encoder and decoder. Therefore, it is pre-trained with unlabeled data of
both code and natural language on de-noising auto-encoding of different noise
functions such as masking, deletion and infilling. For more information, you
can refer to 2.5.1. SPT-Code [82] is another approach pre-trained on unlabeled
data but just of code in order not to limit the dataset possibilities. In addition,
they introduce pre-training for both the encoder and decoder on code-related
tasks. These tasks are Masked Sequence to Sequence (MASS), Code-AST
Prediction (CAP) and Method Name Generation (MNG) and the input dataset
consist of the code, its AST linearized in a shorter version and its method name
for Natural Language representation.

2.8.3 Information Retrieval-based Models
NMT-based approaches generate mostly frequent words and sometimes lose
readability and informativeness. On the other hand, IR-based models are not
enough by themselves since due to limitations on retrieval corpus, the retrieved
snippet could be not semantically similar. Therefore, a combination of both is
required for the production of good summaries.

Re2Com [83] is one of them and it comprises two modules, Retrieve and
Refine. Retrieve module gets the most similar in the lexical level code snippet
by using BM25 metric [84] and Lucene open-source search engine [85]. The
code, its AST and its similar code accompanied with its comment are input
into the Refine module consisting of four BiLSTM encoders and following
a Sequence-to-Sequence (seq2seq) NN, the comment is generated, based on
the semantic similarity of the code snippets. A non-linear sigmoid function
gives the similarity and according to it, the decoder can pay more attention to
the retrieved information or the input code. Another approach follows named
Rencos [86]. At first, an attentional encoder-decoder model is trained. Then,
given an input, the most similar snippets are returned based on syntactic and
semantic similarity via their ASTs or the embedding produced by the pre-
trained model respectively. Finally, the pre-trained model encodes first and
then decodes the input and the two retrieved snippets simultaneously taking
always into consideration the similarity. The similarities here are calculated
by the Lucene engine and cosine-similarity for syntactic and semantic level
respectively.



Background | 29

Next model is REDCODER [87]. Similarly, a retriever and a generator
are used but in a more complex, compelling way. The retriever, which
is Dense Passage Retriever (DPR) based [88], uses the dot product for
similarity metric on the embeddings obtained from two encoders, specifically
CodeBERT [69] and GraphCodeBERT [15]. Then, the retrieved sequences
are concatenated with the input sequence and fed to PLBART [16] which
makes the final estimation. Hybrid-GNN comes next and aims at the
combination of the benefits of retrieval and generation-based models but
also the dealing with Graph Neural Networks (GNNs)’ inability to capture
global information. Once again similar snippets are retrieved, further encoded
with a BiLSTM follows and an attention-based dynamic graph that captures
global interactions. Both are fed to the Hybrid-GNN for static and dynamic
message passing, eventually concatenated and fed into an attention-based
LSTM decoder. At the limitations of this approach, we could include the non-
semantic nature of the retrieval mechanism, which is also suggested as future
work from the authors.

Then [89], a relatively different IR-based approach, re-uses [83]’s retrieval
method followed by a cross-encoder which concatenates input and retrieved
code and encodes them using CodeBERT [69]. The produced embedding
is fed to a classifier whose output indicates the semantic similarity. If
the retrieved snippet is semantically similar to the input, then its comment
is used, otherwise, DeepCom [61] is used without though passing any
information obtained by IR in order to exclude textually similar results that
would confuse the model. The possible not usage of the NMT model makes
this approach faster but at the same time could lead to semantically similar
documentation but not adjusted to the input code. This could confuse the user
since non-conventional naming is often used. In the same category belongs
EditSum [20]. The difference with the previous suggestions is that it uses
the retrieved snippet’s comment as a prototype which it tries to revise based
on the differences between the input and retrieved snippets. It is better at
predicting low-frequency words but still, the initial retrieval is based on lexical
similarity and the not-so-high usefulness levels indicate potential redundant or
not correct information. The IR-based models presented in this paragraph may
have two issues. They either use lexical similarity at their IR part [83, 89, 90]
or use semantic similarity but in an online code retrieval manner [86, 87] which
makes them expensive.



30 | Background

Figure 2.12: Timeline of source code summarization evolution

2.8.4 Non-Conventional Approaches
In addition, we present some techniques that are not following the standard
NN or IR-based approaches but are worth mentioning.

The first one uses graphs, as they better represent code than any sequence
[80] and specifically Convolutional Graph Neural Networks (ConvGNN) to
encode the AST’s nodes and edges. The efficiency of this method is one of its
differentiation factors since Themisto [91] uses it for its deep learning-based
approach because GNN-based’s inference time was significantly better than
other transformer-based such as BERT, T5, or GPT-3.

The next one is called ContraCode [92] and is a self-supervised contrastive
learning [93] algorithm. Self-supervision allows better generalization while
the contrastive algorithm learns representations by trying to minimize the
distance between similar items and maximize the distance between dissimilar.
It produces useful representations but the improvement compared to the
Transformers is not significant because of the inconsistency in names by the
programmers and the used metrics.

Then, from MISIM [94] we can consider their Context Aware Semantics
Structure (CASS) which is configurable and can tackle previous syntax or
semantic-based code representations’ limitations. Concerning the syntax-
based, such as ASTs, they may lead to the memorization of syntax rather
than the learning of the semantics. Semantic-based representations such as
ConteXtual Flow Graph (XFG) [95] and Simplified Parse Tree (SPT) [96]
have also limitations. XFGs can only be used on compilable code and SPTs
are structurally-driven and hence may capture irrelevant to the code semantics



Background | 31

information.
LeClair [17] proposed treating the different models in a complementary

manner than a competitive one so that the capabilities of all models are
exploited increasing the data source diversity and avoiding overfitting and local
minima. Therefore, some stacking and bagging techniques were researched
emerging with some interesting results.

Inspired by the tree/graph heavy computation consumption and their
inability to work on corrupted or partial code, [97] suggested ADAMO, a
transfer learning-based model. Specifically, the model’s architecture consists
of an encoder and a decoder linked by a Refiner, Additive White Gaussian
Noise (AWGN), that reduces the incoordination between them. It also benefits
from continuous pre-training and intermediate fine-tuning which are only
compatible with sequential data showing that sequential data is still powerful
and further research in that direction could bring significant improvement.

2.9 Summary
Besides the model architecture, many factors can influence a research like this,
thus require further attention. Such factors can be; the quality of the dataset,
dataset-splitting (method or project-wise), identifier splitting, duplication,
programming languages used, the quality of the evaluation metrics but also
human evaluation [98]. However, at the architecture level in which we
are focusing, the aforementioned models were researched and their main
characteristics, as well as drawbacks, are presented in Appendix A.



32 | Background



Methods | 33

Chapter 3

Methods

In this chapter, the followed approach will be elaborated on. This includes a
thorough explanation of the used models as well as a detailed description of
their final implementation. The goal is to clarify the reasoning behind any
decision that was made, provide details that would ensure the validity and
ethical conduct of the work, and also inform the reader about the overview of
the research method used in this thesis.

3.1 Research Process
This research follows the academic and scientific research standards. An
extensive literature review initiated the process of the study of the subject,
the related work and the recent discoveries. This allowed the highlight of
unsolved issues that we tried to tackle with a new approach which was inspired
by this review as well. Then based on our resources, expertise and judgment,
an ensemble technique was chosen, consisting of the stacking of two models,
GraphCodeBERT and PLBart. For their implementation, an appropriate
dataset was selected and pre-processed, both models were adjusted to our
needs and fine-tuned for the task of source code summarization and eventually
combined for the testing of our hypothesis. Multiple aggregation techniques
were tested on the stacking of the models and their contributions are eventually
explained according to the results of the conducted experiments. All these
stages are further described in this chapter.



34 | Methods

Figure 3.1: Research Process Lay-Out

3.2 Developed Model
The goal of this thesis is to examine whether combining two powerful models
that tackle the same problem from different angles can be more beneficial than
using them individually. To this end, an ensemble model was developed with
the technique of stacking. The usage of ensembling learning was inspired
by two factors. First was the interesting research of LeClair [17] who tried
a similar approach but on an introductory and superficial level. Therefore,
it was a nice opportunity to take that research one step further. The second
factor comes out of the discovered problems of previous work. It was noticed
that different models can tackle parts of these problems and hence it was
rational to assume that maybe their combination could tackle all at once. Thus,
the complementary base-models that were fine-tuned on the task of source
code summarization are PLBart and GraphCodeBERT. Their results would
be aggregated to produce the final outcome. Several aggregation techniques
were tested to conclude which one fitted better. Before that though, the
two models should be modified to produce results that are compatible for
aggregation. For clarification of this statement, the initial fine-tuned PLBart
and GraphCodeBERT were producing similar sentences but fundamentally
different in the crucial phase of the probabilities production. An example



Methods | 35

illustrating the following issue is the following. PLBart would return as the
most likely first word the token “Load” whereas the GraphCodeBERT would
return the token “L”. Similar issues had to be dealt with and led to our final
implementation. In this section, these details will be shared and explained for
clarification purposes but also for highlighting potential problems and their
solutions when a similar approach is followed.

3.2.1 Ensemble
The ensemble learning has been described in 2.7. Three main factors were
mentioned there which are the models, the training data and the aggregation
technique. Firstly, stacking was chosen because of the need for a large amount
of data but also because of the objective of the thesis. Previous related works
had focused on tackling specific issues from a specific point of view. However,
ensembling models that are quite different and experts to their “domain”
has shown promising results in other classification tasks [99]. Therefore,
combining different experts developed by other researchers was selected as
our strategy. From this observation, the training dataset and the models to
be used were made clearer. We did not use the entire dataset to fine-tune the
selected models, but this would be the right thing to do if resources and time
are available.

One of the unanswered questions was; which models should be
used? After a thorough examination of the available choices, PLBart and
GraphCodeBERT were selected. PLBart could solve the first problem out
of the three that were mentioned in 1.2 which was related to the quantity of
data. PLBart is pre-trained on both programming and natural language which
are not necessarily presented in pairs. Nowadays, there is a huge amount of
code available online on websites such as Github [100], StackOverflow [101],
Kaggle [102]. Text is available to an even higher degree for obvious reasons.
This allows PLBart to be pre-trained on a huge corpus. At the same time,
PLBart is one of the few models developed for bimodal tasks that would use
an encoder-decoder architecture and are pre-training the decoder as well.

To the best of our knowledge, this is an innovative approach since so far
in cases where transfer learning was involved [103], the pre-trained model
would include an encoder which would produce a general-purpose code
representation and then a decoder, or even more than one decoder-heads,
would be added for the fine-tuning. Another strength of PLBart is the pre-
training tasks. These are generative in this case and combined with the
availability of data and the encoder-decoder architecture, the fine-tuning can



36 | Methods

be accelerated since the model already produces similar to the desired outputs.
The second selected model was GraphCodeBERT. The remaining in 1.2

problems refer to the structure of the code and the way that is implemented in a
transformer-based model. The first element that GraphCodeBERT introduces
is the exploitation of the structure of the code. Most of the models that are
doing so, make use of ASTs. However, as mentioned before, the incorporation
of ASTs into Transformers is problematic because of their extended size when
are linearized. The utilization of Data Flows and Graph-Guided Masked
Attention that are explained in 2.5.2 appear to be solving these issues.

In a task such as summarization, the aggregation is occurring on the output
probabilities. Each model predicts the next token according to the probabilities
that are assigned to each token within the vocabulary. From this, we can
conclude that in order to have a meaningful aggregation, the vocabulary of
all models should be the same and of the same order (e.g., all vocabularies
have size 50005 and token number 134 corresponds the token “the”). Relative
measures have been taken to lead to the final predictions as described and
illustrated in Figures 2.6,2.7,2.8 and 2.9. In this work the mean, weighted
mean, maximum and weighted maximum were tested and their results are
illustrated and discussed in 4.4 and 5 respectively.

3.2.2 PLBart
As mentioned in 2.5.1 PLBART is inspired by Bart, but is adjusted to fit the
PL peculiarities. Specifically, its seq2seq architecture is the same as BART-
base, having six encoder and decoder layers and approximately 140 million
parameters, with the addition of an extra normalization layer on top of both
encoders and decoders. This addition was introduced by [104] and it is claimed
by them that it stabilizes training with half-precision floating point format
(FP16) precision.

Bart

Bart, Bidirectional and Auto-Regressive Transformers, is the origin of PLBart.
Its architecture is the standard sequence-to-sequence Transformers from [2]
with the difference that the Gaussian Error Linear Units (GeLU) activation
functions [105] are preferred over Rectified Linear Units (ReLU). The encoder
is bidirectional like BERT [73] and the decoder is auto-regressive as described
in 2.4.2. Its details are shared with PLBart and hence are elaborated once.



Methods | 37

Pre-training

PLBart is pre-trained on denoising auto-encoding. This means that the model
is trained to fix a text that has been modified with the addition of some noise.
This noise is added artificially with the usage of different noising functions.
In the case of PLBart, the used noising methods are token masking, deletion
and infilling. In token masking, tokens are randomly sampled and replaced
by a mask token. Similarly, in token deletion, instead of token replacement
the token is deleted. Finally, token infilling is like token replacement but
instead of tokens, text spans are sampled and eventually replaced by a mask
token. This type of pre-training allows simultaneous training on both code
and natural language. Their functionality is illustrated in Table 3.1 for easier
understanding. This way, the diversity and availability of data increases.
Diversity-wise, the possibility of training on both code and natural language
because of their shared alphabet and hence tokens, makes the model more
versatile and capable of discovering relationships between different languages.
Availability-wise, since data can be unlabelled, of any format, without the
need of having pairs of code and its description, the available sources become
abundant.

Original VS Noised data
Original Noisy Technique
Load the thorium run-
time modules

Load [MASK]
thorium runtime
[MASK]

Token masking

def getMax
(x , y , z) :
return max (x,
y, z)

def getMax (x
, y , z) : max
(x, , z)

Token deletion

Return the maximum
value given x, y, z

Return the maximum
value given [MASK]

Token infilling

Table 3.1: Examples showing the noising effect of the three used noising
methods. In token replacement, tokens [the] and [modules] were replaced by
the [MASK] token. In token deletion, tokens [return] and the second [y] were
deleted. In token infilling the span [x,y,z] was replaced by the [MASK] token.



38 | Methods

Fine-tuning

After pre-training, PLBart can be used for several code, code-to-natural lan-
guage, or natural language-to-code downstream tasks such as code generation,
code translation, code classification and of course code summarization. To do
so, the creators of PLBart used the fairseq toolkit [106] on top of the pre-
trained model, which allows its users to train their models for translation,
summarization, language modeling and other text generation tasks. For
the fine-tuning, inference and experimentation with PLBart, several pre-
trained models, tokenizers and configurations are available at the huggingface
library [107] and are compatible with Pytorch [108], TensorFlow [109] and
JAX [110].

PLBart Implementation

In this section, the details on the implementation of PLBart and its fine-
tuning are elaborated. PLBart has an encoder-decoder architecture. This
basic architecture is implemented by the huggingface library under the
PLBartModel class. However, it produces the raw hidden-states without
any task-specific head on top. To this end, a linear head is put on top and takes
over the language modeling role. This can be added manually or alternatively
PLBartForConditionalGeneration can be used. An overview of
this is illustrated in Figure 3.3.

Starting from the input data, the code and text are treated the same
because of the lexical similarities that they share. PLBartTokenizer
allows this, since it is pre-trained on both types’ corpora and hence contains
a large collection of tokens from both sides. This tokenizer is based on
SentencePiece whose details are described in 2.3. After data exploration, it
was discovered that many python code snippets were containing at least one
comment. Most of the time, this comment would refer to the functionality of
the at-the-time method. To this end, comments of the format ”’comment”’
and ”””comment””” were deleted before the training. In contrast, java
snippets were clearer than the python ones and hence were used directly,
but the docstrings were containing noise as can be seen in Figure 3.2.
Therefore, similar actions were taken for the java docstrings. Specifically,
the docstring token column was used to bring the collection of the important
to the code description parts into a sentence-like sequence. This highlights the
significance of data exploration and engineering before any training.

For the training of the model, the Trainer API from huggingface is



Methods | 39

Figure 3.2: Java snippets’ ”docstring” and ”docstring tokens” columns that are
used as descriptors of the code.

used. This requires the conversion of any type of data to huggingface’s
Dataset. Once this is done, the tokenized docstring’s tensor is renamed into
“labels” and together with the “input_ids” and “attention_mask” of the given
code constitute the input of the model.

After the training of the model, someone can proceed with the inference.
For this, the “input_ids” and “attention_mask” of the code to be summarized
need to be fed to the trained model. The possible outputs are the summary
or the logits of this input. In our case, the logits are more useful since we
want to manually apply a softmax function on them in order to obtain the
next token probabilities that are supposed to be aggregated with the respective
probabilities of GraphCodeBERT.

3.2.3 GraphCodeBERT
GraphCodeBERT’s input and architecture can be indicated in its name. The
first part of the name indicates the model’s input. The graph refers to the
AST, which is a tree and trees are specific types of graphs. Then, its ending,
BERT, reveals information about its architecture. GraphCodeBERT is based
on BERT [19] whose architecture is the standard Transformer that was initially
introduced in [2]. These, together with the structure-specific pre-training
tasks that were mentioned in 2.5.2 and the final implementation for code
summarization are the subjects of interest in this section.



40 | Methods

Figure 3.3: PLBart’s depiction in detail. Comment is not considered during
inference, since it is the goal.

Model’s input

The input here, instead of being just code or natural language, is pairs of
code and their comments in order to further support bi-modal tasks such as
code summarization. Initially, given the source code C = {c1, c2, ..., cn},
the dataflow G(C) = (V,E) is constructed as described in 2.2. The final
sequence input then is X = {[CLS],W, [SEP ], C, [SEP ], V } where W =

{w1, w2, ..., wc} corresponds to the respective comment and [CLS], [SEP]
refer to the start of sequence and the data type separator respectively. Once
this is done, the input X is converted to vectors H0 which are the result of
the summation of the tokens’ embeddings and their positional embedding.
In occasions where positional information is obtained from a dataflow, we
refer to these positional embeddings as special. This procedure is depicted
in Figure 3.4. A multi-layer transformer is followed, consisting of multi-
head attention layers 2.4.1 and feed-forward networks as described in 2.4.2.
However, incorporating the data flow in this procedure requires specialized
attention to filter out irrelevant signals. This is why Graph-Guided Masked



Methods | 41

Attention is introduced. The desired outcome is to consider relationships
between nodes that have a direct edge linking one to the other. To this end,
a mask matrix is constructed following Equation 3.1. A simple example
illustrating the functionality of this matrix can be seen in Figure 3.5.

Mij =

{
0 check = TRUE

−∞ otherwise (3.1)

where,
check = {qi ∈ {[CLS], [SEP ]} or qi, kj ∈ W ∪ C or (qi, kj) ∈ E ∪ E ′},
qi : query, kj : key,

E ′ = {(vi, cj)/(cj, vi) : vi of data flow is identified by source code token cj}.

The new attention is calculated as in 2.4.1 by modifying Equation 2.1 like
illustrated in Equation 3.2

Softmax(
Q ·KT

√
dk

+M)V (3.2)

Figure 3.4: GraphCodeBERT’s input after the data flow is obtained from the
code snippet’s AST.

Pre-training

GraphCodeBERT is pre-trained on three tasks: MLM, Edge Prediction (EP)
and Node Alignment (NA). MLM is taken from [19]. This task is widely used
for pre-training transformer-based models such as [69, 70, 72]. 15% of the
training data’s tokens are sampled and replaced by a [MASK] token. However,
this is not happening every time but 80% while for 10% the replacement is



42 | Methods

(a) Mask Matrix (b) Dataflow

Figure 3.5: Graph-Guided Masked Attention’s mask matrix (Left) on an
example data flow (Right).

a random token and for the last 10% there is no action taken. The model
then learns to predict these tokens and this way it completes its first stage
of pre-training. The other two tasks are more structure-aware and oriented
since they focus mostly on the produced data flow graph and its elements.
Similarly to the MLM task, in Edge Prediction, 20% of the nodes in V of
data flow G(C) = (V,E) are sampled and then their direct edges are masked
by changing their value in the mask matrix to −∞. Once again, the model
is trained to predict those masked edges. Finally, in Node Alignment the
objective is to predict edges/alignment between the code tokens and the data
flow nodes. This is for the model to be able to align source code tokens to
variables of the data flow and therefore have both “inputs” related instead of
being totally independent. More patterns and information can be extracted
by doing so, contributing this way to more robust representations of code
snippets. The implementation of this training is almost identical to the Edge
Prediction with the only difference being the masking of edges between the
code token and the sampled nodes of the data flow, hence edges belonging to
E ′ instead of E (see Equation 3.1).

GraphCodeBERT Implementation

Once again, specific actions need to be taken for GraphCodeBERT, besides
the standard implementation. It is worth mentioning that GraphCodeBERT



Methods | 43

had not been fine-tuned yet for the task of source code summarization, hence
we could not have reference results or expectations. For consistency purposes,
similar steps are used in both PLBart and GraphCodeBERT.

GraphCodeBERT adds the structure element to our ensemble model.
The differentiation factor from other models that also do that, is that
GraphCodeBERT does not directly utilize ASTs but converts them into data
flows. This way, more semantic information can be extracted by exploiting the
relative position of code tokens. Moreover, data flows are shorter than ASTs,
something that makes them more suitable for a Transformer.

We start by tokenizing the input code and its natural language comment.
As a tokenizer, we are using the PLBartTokenizer which is pre-trained
on PLBart-base model. PLBart is pre-trained on a huge corpus of both
programming and natural language and since the idea was to have a common
tokenizer, this one prevailed. In parallel, the source code is parsed into
AST with the help of tree_sitter [111]. Once the AST is obtained, the
Data Flow is constructed as instructed in 2.2. Then, the tokens, masks
and variable_sequences/position_indexes, acquired from the
tokenizer and the data flow parser respectively, are ready to be fed into the
model. A similar procedure occurs for the natural language part consisting
only of the tokenization part.

GraphCodeBERT is a Bi-directional Encoder that produces transformer-
based representations. We make use of the hugging_face’s pre-trained
model by changing though its configuration, and specifically the vocabulary
size. The new size is 50005, and is selected for being in alignment
with PLBart’s vocabulary. Since GraphCodeBERT is just an encoder, a
transformers’ decoder is put on top of it. This decoder stack consists of six
layers. Then the language modeling head follows which includes two linear
layers, linking the Transformer to the softmax layer that is responsible for the
production of the next token probabilities. This is finally done by a Beam
search 2.6 in the training phase, which is turned into a greedy search in the
inference by changing the beam size into one. As far as the loss function
is concerned, cross-entropy is used once again because of the nature of the
predictions which are probabilistic. An illustration of this procedure can be
seen in Figure 3.6.

For getting the desired summaries from this model, the natural language
input is set to “None”. Besides that, the rest is input to the trained model
which produces the summary. For this project’s scope, we also return the
LogSoftmaxed output. Then eLogSoftmaxed is applied to get the Softmax layer
which is going to be used in the aggregation procedure.



44 | Methods

Figure 3.6: GraphCodeBERT’s depiction in detail. Comment is not
considered during inference, since it is the goal.



Evaluation and Results | 45

Chapter 4

Evaluation and Results

In this chapter, the results of the followed approach are presented. Before
that though, practical details concerning the implementation precede. Such
details are the development environment, the used dataset and the evaluation
metrics. This information aims the full transparency of the work that would
add reliability and validity to it but would also allow the reproducibility of the
results.

4.1 Test environment
The reproduction of everything that was implemented in this thesis is easy
and does not require any environment configuration. To run the given code in
a Google Colab notebook, it is only required to adjust the paths to the dataset to
the respective one of the at the time user. Concerning the versions of libraries
and toolkits that were used, details follow:

• Python: 3.6

• Pytorch: 1.11.0

• Cuda: 11.3

• Transformers: 4.18.0

• hugging_face_hub: 0.5.1

• tokenizers: 0.12.1

• sentencepiece: 0.1.96

• tree_sitter: 0.20.0



46 | Evaluation and Results

Used Hardware
For the training and testing of the models, the utilization of Graphics
Processing Units (GPUs) was necessary. To this end but also because of
personal hardware limitations, Google Colab was used, specifically the PRO-
version. This version was selected because of the faster GPUs, the additional
memory and the longer runtimes. Concerning the GPUs, there is no granted
type, but it varies from KP80 to T4 or P100, where T4 and P100 are only
available in the PRO-version or PRO+ and their sizes are up to 16 GB.

4.2 Dataset
The dataset that was used throughout this Master thesis is provided by [112]
and is known as the CodeSearchNet corpus. This dataset is shared by its
authors and is widely used for bimodal (Programming Language, Natural
Language) tasks such as Code Summarization, Code Search and Code
Generation. It was selected because of its size, diversity and wide usage.
Concerning the size, the initial dataset is approximately 20 GB and 3.5 GB
when it is compressed. It consists of roughly two million rows divided already
into train, validation and test partitions that look like Table 4.1. Diversity-
wise, there are six programming languages represented, including Python,
Java, JavaScript, PHP, Go and Ruby. Their representation is not balanced (see
Table 4.2), but each language is trained and tested separately, hence the relative
conclusions can be isolated to the at the time language. Finally, the fact that is
used to such a degree, with some examples being [69, 14, 15, 25, 16, 82, 78],
shows that it is a dataset compatible for experimentations such ours but
also excludes the dataset-factor in a potential comparison with one of the
aforementioned models.

Partition
Train Validation Test
1880853 100529 89154

Table 4.1: Partition of the dataset to train, validation and test sub-sets.

4.2.1 Data Schema
One of the strengths of PLBart is that it can be pre-trained on unlabelled
code or natural language data. Thanks to the vast availability of programming



Evaluation and Results | 47

Language Distribution
Python Java JavaScript PHP GO Ruby
457461 496688 138625 578118 346365 53279

Table 4.2: Language representation in CodeSearchNet corpus.

and natural language datasets, the acquisition of suitable and sufficient data is
not an issue. However, for the fine-tuning on the task of summarization, the
situation is different, since pairs of code and text are necessary. Therefore, this
dataset is suitable because of its size and schema. Specifically, it consists of
the columns: repo, path, url, code, code tokens, docstring, docstring tokens,
language,and partition. Their functionality is described right afterward and an
example row can be seen in Figure 4.1.

• repo: repository of origin

• path: the path to the original file

• url: Uniform Resource Locator (URL) that leads to the snippet

• code: the code in a string format

• code tokens: tokenized code (differ from the tokens that are finally
used)

• docstring: the docstring/comment of the code if exists

• docstring tokens: tokenized docstring (differ from the tokens that are
finally used)

• language: the programming language

• partition: the partition where this row belongs



48 | Evaluation and Results

Figure 4.1: Random row from CodeSearchNet corpus

4.2.2 Data Pre-processing
Before the data was used, some pre-processing procedures preceded. These
modifications to the initial dataset were aimed at cleaning and preparing it for
the training. The taken strategies were followed in the past by most of the users
of this dataset for this task. In this project, we start with the changes that [69]
suggested, adjusted slightly to our needs. Initially, comments were removed
from the code in order for it to be clean and for us to take advantage of its
syntax and semantics without being influenced by any noise. In some cases,
the code snippets were impossible to parse into ASTs, hence were excluded.
Moreover, rows with non-English “docstring” were not included as well, since
the objective of the model would be the summarization of source code into
English. Finally, some of the “docstrings” were either too short or too long.
By too short we mean that they were consisting of one or two words and most
of the time these were in alignment with the name of the method. On the other
hand, when the “docstring” was too long (longer than 100 words), it was too
noisy and it either did not include useful information about the code or this



Evaluation and Results | 49

information was lost among useless to our goal text. This is why examples
with code-comment pairs where the comment was longer than three words and
shorter than one hundred were only considered. The final dataset is explored
in 4.2.3 for a better understanding of it.

4.2.3 Data Exploration
The final dataset consists of 462125 rows. It is divided into train, validation
and test subsets for the avoidance of data leakage during the training of
the models. The training partition is the biggest one with 417562 rows
while the validation and testing partitions’ rows amount to 24310 and 20253
respectively. The representation of the included programming languages and
their individual partitions can be seen in Figures 4.2. Then the average words
per code snippet and “docstring” are calculated for statistical purposes but also
for the selection of appropriate input and output size. From the code snippet’s
side, the average is 47.53 per snippet and from the natural language’s side the
average is as anticipated smaller, at 9.21 words per comment. Finally, the top
ten most frequent words in the “code” and “docstring” columns can be seen
in Figure 4.3. The most frequent tokens in the code are equality/inequality
symbols, brackets and commands such as “return”, “for” that are used in the
majority of the methods and are common in most programming languages.
The most frequent natural language words include some stop-words and others
such as “param” and “return” that have a strong code-descriptive context.

(a) Language Distribution

(b) Partition per Language

Figure 4.2: Dataset partitions on full dataset and per programming language.



50 | Evaluation and Results

(a) Top10 most frequent
“code” tokens

(b) Top10 most frequent
“docstring” tokens

Figure 4.3: Most frequent tokens, not from the used Tokenizer.

4.3 Evaluation framework
There are many evaluation metrics used in this field of Machine Translation,
starting from standard precision, recall and F1 score over the target sequence
and going to more text generation-specific metrics such as BLEU(-N), CIDEr,
METEOR, RIBES, ROUGE but also human evaluation.

Generic evaluation metrics, such as precision, recall, and F1 score, are not
ideal but were used by [113, 114] and then others like [57] followed in order to
be able to make comparisons between their implementation and previous ones.
Another widely used metric is BLEU and its variants [115]. The final score is
defined from the overlapping n-grams between the generated and the reference
sentence. Moving on, CIDEr [116] was developed for image description
evaluation. It uses TF-IDF values [117] of each n-gram and then utilizes
the average cosine similarity between the candidate and reference sentence
for accounting for both precision and recall. Next is METEOR [118] which
uses word-matching modules between two strings to create a word alignment
that would eventually produce the final score based on the unigram precision
and recall. Then RIBES [119] is a rank-based evaluation metric for machine
translation that takes into consideration the global word order which could
be essential in some specific language-to-language translations. The final
automatic metric is ROUGE-L [120] which is a summary-specific metric that
is based on overlapping tokens, sequences, or token pairs. Finally, since the
automatic metrics are not always representative of the actual quality [121, 122]
a lot of researchers are performing a human evaluation of the results in addition



Evaluation and Results | 51

to the automatic metrics. In the project, the BLEU score was used and this is
why this is the only one further elaborated. The selection of the BLEU score
among the others was mostly because of its wide usage by other researchers
but also its simplicity and interpretability.

Bleu Score
The BLEU score ranges from 0 to 100 and corresponds to the percentage of
similarity between the generated and the reference sentences. There are many
variants of BLEU, all named BLEU-n where n differs each time and refers to
the n-gram precision that is used at the time. This n-gram precision is defined
in Equation 4.1 and the final BLEU score in Equation 4.2 where ωn is the
uniform weight 1/N and BP is the Brevity Penalty. The Brevity Penalty is used
to avoid high scores when a sentence is short or contains a highly repeated n-
gram. However, the BLEU score is made for corpus level evaluations, hence
needs some modifications to be adapted to the sentence level.

These modifications are more and more necessary when the n (of n-gram)
increases. The reason behind this is that it is harder to exactly match large
n-grams in a “small” sentence compared to a “large” corpus. Since the BLEU
score considers all n-gram precisions by using the geometric mean, all of them
should be positive in order not to cancel the rest. The solution is to apply
a smoothing technique. Such techniques are either replacing zeros with a
constant or function generated small positive value or are using the average
of the n-gram match counts from consecutive n-gram lengths (e.g., n-1, n,
n+1) [123].

As can be seen, there are several different implementations of the BLEU
score. The important outcome of this observation is that it should be avoided
by researchers to use others’ BLEU scores for comparison of results since
there is no absolute BLEU implementation. Consequently, when a model
comparison is occurring, all models should be evaluated with the same BLEU
score calculation function.

pN =

∑
C∈Candidates

∑
n−gram∈C countclip(n− gram)∑

C′∈Candidates

∑
n−gram∈C′ countclip(n− gram′)

, (4.1)

where C corresponds to sentence-level and C’ to corpus-level.



52 | Evaluation and Results

BLEU = BP · exp
N∑

n=1

ωn log pn (4.2)

Our implementation of the BLEU-score is a BLEU-4 and is inspired
by [124]. We use the same script for calculating the BLEU-4 score of
all the developed models, including the ensemble and also the individual
ones. Initially, both the reference and predicted sequences are normalized
and brought into an appropriate format for the computation of the final score.
These modifications include the striping of hyphenation, the joining of lines,
making sure that the input sentences are all of string type and the lower-
casing of all the strings. Afterward, the reference and predicted sequences
are additionally edited to get all the information needed out of them for the
BLEU-4 score. Then the references and predictions are mapped and fed to the
smoothed-BLEU-4 score calculator, since it is used for sentence-level texts.

4.4 Major Results
In this section, some representatives of our work results are shared. The
results include samples of the outputs that could be used for clarification and
human evaluation. They also include the BLEU-4 scores of each developed
model. In total, the presented models are PLBart and GraphCodeBERT that
are used as baselines, and additional ensemble models that arise from different
aggregation techniques on these base models.

4.4.1 PLBart Results
PLBart was fine-tuned on a subset of the previously presented dataset. As
mentioned in 4.2.3 the dataset was partitioned into training, validation and
testing. Within these partitions, the dataset was further divided according to
the respective programming language of the at the time code snippet. The
selected programming languages in this work were Python and Java. The
size of the Python-training partition was 1207 examples, validation 68 and
it was tested on 100 instances. Java’s training dataset was consisting of 5779
rows, while validation was limited to 177 and the testing dataset was once
again of size 100. These sizes are smaller than the available data size that was
mentioned in 4.2.3. A sample was preferred for the training of the model to
make it possible with our available resources but also to fit the master thesis’
scheduled time slot.



Evaluation and Results | 53

Concerning the fine-tuning on the Python snippets, PLBart was trained for
20 epochs with a batch size of 8, 500 warm-up steps and a weight decay of 0.01.
In this implementation, weight decay works as an L2 Regularizer and helps the
avoidance of getting an overfitting model. The last cross-entropy, evaluation
loss, was 0.0002 and the model was able to generalize and produce summaries
that reached the BLEU-score of 18.09. However, GraphCodeBERT was not
able to produce useful summaries on Python snippets after the provided,
extensive for our resources, training, therefore PLBart itself could not add any
value to this research and hence no further analysis was needed. Moving to
the Java snippets that were eventually used for the testing of the objectives of
this master thesis, PLBart was trained for 12 epochs with the rest of the hyper-
parameters remaining the same as on the Python snippets. The final training
loss was 0.019 and the respective BLEU-4 score on the testing dataset was
15.49. A sample of PLBart’s output, accompanied by the ground truth of the
input snippets can be seen in Figure 4.4.

(a) PLBart summaries (b) Ground truth summaries

Figure 4.4: First 10 of the testing dataset Java code summaries. At the left
is the produced summary by PLBart and at the right is the respective ground
truth.

4.4.2 GraphCodeBERT Results
As mentioned in 3.2.3, GraphCodeBERT’s configuration changed, to get
the same vocabulary as in PLBart. This made necessary the usage of the
from_config method of hugging face instead of the from_pretrained.
This allows the modification of the GraphCodeBERT’s output and the usage
of its architecture but blocks the transfer of the weights which were updated
after the pre-training on the mentioned tasks. Therefore, GraphCodeBERT
was practically trained from scratch and hence required more steps to reach
the desired performance level. GraphCodeBERT was initially trained on
the Python partition. After more than 100 epochs on either the full Python
partition or a small sample of it, the model was struggling to learn. We assume



54 | Evaluation and Results

that the reason behind it is the structure of Python snippets that may not add
the desired value to the model which was producing the same output for every
input as can be seen in Figure 4.5. Java’s outputs were more promising, thus
Java snippets were the ones that were eventually used for both models and the
ensemble models that they were forming.

Figure 4.5: GraphCodeBERT’s outputs on Python inputs.

The model was initially trained on its default, by its creators, hyper-
parameters. This resulted in an over-fitting model on our relatively small
dataset. As can be seen in Figure 4.6, the model was able to produce almost
the exact summary out of the training code snippets whereas the results were
not so precise concerning the testing data. The BLEU-score at this case was
around 8 to 9.

(a) Produced summaries on testing
dataset (b) Reference summaries from testing

dataset

(c) Produced summaries on training
dataset

(d) Reference summaries from training
dataset

Figure 4.6: Results of GraphCodeBERT after training on default hyper-
parameters.



Evaluation and Results | 55

To prevent over-fitting, the first step was to add more data. A new
training dataset was taken of double the size of the one mentioned in 4.4.1,
so of 11557 code snippets and their docstring. Moreover, hyper-parameter
tuning followed, with the introduction of dropout and L2-regularization. The
specific hyper-parameters that were used for the final model are 0.3 dropout
at GraphCodeBERT (encoder), 0.5 dropout at the TransformerDecoder
(decoder) and weight decay of 0.01 at the optimizer. Once again, weight decay
works as an L2 regularizer. The new GraphCodeBERT was able to generalize
better and hence was preferred over the previous one for the development of
the ensemble model. Its best BLEU-4 score, after 100 epochs, was at 12.05,
closing this way the gap from the 15.49 BLEU-4 score of PLBart. The training
loss had fallen to 0.3. Its output summaries on the same input as PLBart 4.4
can be seen in Figure 4.7.

(a) GraphCodeBERT summaries (b) Ground truth summaries

Figure 4.7: First 10 of the testing dataset Java code summaries. At the left is
the produced summary by GraphCode and at the right is the respective ground
truth.

4.4.3 Ensemble Models and their Results
For making the aggregation of the softmax tensors possible, the respective
produced sentences should have the same size. To this end, the produced
(sentence_length x vocabulary_size)-tensors were padded with zero-tensors
of size equal to the vocabulary_size to obtain sentences of size 128 x
vocabulary_size. After this, the different aggregation techniques followed.
For all of the four aforementioned ensemble techniques, the appropriate to each
occasion aggregation of two sentences was firstly computed and followed by
an argmax-function that would identify the tokens belonging to the vocabulary
with the highest probability to be the next token in the desired summary.
The token-IDs obtained from this argmax-function were eventually decoded
to form the final output. Below we present some interesting results from our
experimentation with this procedure.



56 | Evaluation and Results

Mean/Max

The simplest methods that were initially tested were the mean and maximum
aggregation techniques that are described in 2.7. Their results were almost
identical, achieving the scores of 13.49 and 13.46 respectively. Their produced
summaries can be seen in Figure 4.8. For conciseness purposes we limited the
illustrated results to the first ten of the used testing dataset.

(a) Summaries produced from mean-
aggregation

(b) Summaries produced from max-
aggregation

Figure 4.8: First 10 of the testing dataset Java code summaries with the mean
and max aggregation techniques. The reference outcomes are illustrated in
Figure 4.9

Weighted Mean/Weighted Max

For the weighted mean and max, there were several weights tested, either
leveraging PLBart or GraphCodeBERT’s probabilities. These weights ranged
from one to a hundred but here only the most interesting results are presented.
The BLEU-scores of the following summaries varied from 12.35 to 15.52.
Detailed results can be seen in Tables 4.3 and 4.4. Besides the PLBart and
GraphCodeBERT’s softmax tensors, some of the already aggregated tensors
were also tested since during the experimentation it was noticed that they
were presenting some interesting characteristics that could add value to this
procedure. Specifically, it was tested whether a model that gives more weight
to the seemingly weaker model, here GraphCodeBERT, and enhances its
performance, can be combined again with the other model, to produce an
even better result. The enhanced GraphCodeBERT model’s probabilities, in
this case, are obtained after using the weighted max technique on PLBart and
GraphCodeBERT, with weights one to PLBart and eight to GraphCodeBERT,
aiming this way the dominance of GraphCodeBERT but also the contribution
of PLBart. The new tensor is then the first of the inputs in a weighted
mean aggregation, while the regular PLBart remains the second input. For
clarification purposes, we are going to be referring for the rest of this thesis



Evaluation and Results | 57

to this model as DoubleEnsemble. Illustrations of these results can be seen in
Figures 4.10,4.11,4.12 and 4.13.

Figure 4.9: Reference outputs of the first ten code-snippets of our testing
dataset. It is used as reference for all the tested approaches.

(a) Weighted mean with weight of
PLBart=2 and weight of GraphCode-
BERT=1. BLEU-4 score: 14.65.

(b) Weighted mean with weight of
PLBart=1 and weight of GraphCode-
BERT=2. BLEU-4 score: 12.79.

Figure 4.10: Summaries produced with the aggregation technique of weighted
mean.

(a) Weighted max with weight
of PLBart=10 and weight of
GraphCodeBERT=1. BLEU-4 score:
14.52.

(b) Weighted max with weight
of PLBart=1 and weight of
GraphCodeBERT=8. BLEU-4 score:
12.35.

Figure 4.11: Summaries produced with the aggregation technique of weighted
max.



58 | Evaluation and Results

Figure 4.12: DoubleEnsemble 4.4.3(Mean/Max) results with weights 1 to the
enhanced GraphCodeBERT and 10 to PLBart. BLEU-4 score: 15.52

(a) Produced summaries of
DoubleEnsemble 4.4.3(Mean/Max)

(b) Reference output of this subset of the
testing dataset.

Figure 4.13: Summaries of model on a different subset of the testing dataset.

4.4.4 Summary
Below we present a table summarizing the BLEU-4 scores of the tested
models. However, even if they can give an indication about a model’s
performance, it is advised not to be seen individually but in parallel to the
produced summaries, since the BLEU scores refer to the lexical similarity,
which is not the only objective in our case.

BLEU-4 scores
Aggregation BLEU-4
PLBart 15.49
GraphCodeBERT 12.05
mean (PLBart, GraphCodeBERT) 13.49
max (PLBart, GraphCodeBERT) 13.46
weighted mean (10 x PLBart, GraphCodeBERT) 14.55
weighted mean (2 x PLBart, GraphCodeBERT) 14.65
weighted mean (PLBart, 2 x GraphCodeBERT) 12.79
weighted mean (PLBart, 1.5 x GraphCodeBERT) 12.87

Table 4.3: Summary of BLEU-4 scores of the tested models and their
ensemble.



Evaluation and Results | 59

BLEU-4 scores (continued)
Aggregation BLEU-4
weighted max (10 x PLBart, GraphCodeBERT) 14.52
weighted max (2 x PLBart, GraphCodeBERT) 14.42
weighted max (PLBart, 2 x GraphCodeBERT) 12.56
weighted max (PLBart, 8 x GraphCodeBERT) 12.35
weighted mean ( 50 x PLBart, weighted max (PLBart, 8 x
GraphCodeBERT)) 4.4.3(Mean/Max)

15.30

weighted mean ( 10 x PLBart, weighted max (PLBart, 8 x
GraphCodeBERT)) 4.4.3(Mean/Max)

15.52

weighted mean ( 10 x PLBart, weighted mean (PLBart, 10
x GraphCodeBERT))

15.42

Table 4.4: Summary of BLEU-4 scores of the tested models and their
ensemble.



60 | Evaluation and Results



Discussion | 61

Chapter 5

Discussion

In this chapter, we analyze and interpret the results presented in 4.4. The
conclusions coming from these findings are then presented in the next
chapter 6 accompanied by their limitations and suggestions for future work.

5.1 Baseline Models’ Results
In this thesis, PLBart and GraphCodeBERT are used as the base models of
the final ensemble model but also as the baselines that make the comparison
of the new and previous results possible. The purpose of this is to investigate
whether the combination of these models can produce better results compared
to their individual ones.

PLBart performed better compared to GraphCodeBERT in our imple-
mentation. Its BLEU-4 score was around 15-16 and its summaries were
semantically accurate. On a lexical level, the similarity was not that
significant, which is also illustrated by the relatively low BLEU-score
compared to its original, by its creators, implementation. This could be
because of various reasons. One of them is the used dataset. It was noticed that
in some cases the provided as ground truth comment was not that accurate, but
noisy or too general 6.3. Another factor is the size of the training dataset which
was quite small. The training dataset size together with the non-extensive fine-
tuning of the model led to a slightly over-fitting model that produces though
informative summaries. From Figure 4.4 it can be seen that the over-fittingness
is not strong but exists if we also consider the low training loss. However,
PLBart’s architecture, because of its attention mechanisms, is able to get the
important information out of the code and translate it into natural language,
providing this way more detailed summaries than the ground truth, without



62 | Discussion

losing the overall semantic informativeness.
GraphCodeBERT performed slightly worse than PLBart. This can be

seen in both its BLEU-score and its produced summaries 4.7. Its produced
summaries are even more detailed and specific compared to the ones of
PLBart, but still relate to the ground truth and can capture the functionality
of the at the time code snippet. This is once again because of the not
extensive fine-tuning of the model but in this case, it is more significant due
to the changes that occurred in the configuration of the model. Like we
mentioned in 3.2.3 and 4.4.2 GraphCodeBERT was compromised to make
the aggregation possible. Both the tokenizer and the vocabulary size were
adjusted to the PLBart’s standards. Concerning the tokenizer, the pre-trained
on PLBart tokenizer was used while concerning the vocabulary size, it was
changed to 50005. This way, the produced probabilities of our NMT-models
are in alignment and in position to produce the final summarized sequence.
However, the model had to be trained from scratch since the weights produced
by the GraphCodeBERT’s pre-training could not be transferred. Therefore, the
direct training on the task of code summarization, without the exploitation of
any transfer learning, was more demanding and time-consuming. The model
used in this thesis is not ideal but can capture the main concepts of the code
snippets and provide some additional to the PLBart information.

We would like to clarify that since the objective of this thesis was not
to produce a SOTA model but to test the efficiency of ensemble learning
and show the way towards it for this specific task, the used PLBart and
GraphCodeBERT implementations are not the best we could get. They are
though, sufficient for the purposes of our work since they are of a similar level
of performance and at the same time produce quite different results that would
add their own value in a stacking-based model.

5.2 Ensemble Models
From the results presented in 4.3, several observations can be made referring
to our approach.

At first, the simplest aggregation techniques, such as the mean and max,
produce the less improved or less significant summaries. The BLEU-score
ranges around the mean of the BLEU-scores of the two respective models and
their summaries are relative to that. This means that they take almost equal
information from both the models leading to a mixed summary that could be
confusing. Some sentences 4.8 are cut in half (1st), in some cases one of the
two models prevails (2nd), others combine non-related information from the



Discussion | 63

two models (5th) and there are the occasions where the aggregation is actually
beneficial (6th).

Moving to the more complex aggregations, where weights are put to the
models to increase the influence of the one and decrease the influence of the
other, the results are more promising and clear. In both cases, either where
PLBart or GraphCodeBERT dominate the aggregation, the output summary
is informative, meaningful and more complete. This is because one out of
two models works as the base model that is being enhanced by the other one.
It is obvious that when PLBart is used as a base model, the performance is
better, but this is anticipated because of the better individual performance
of the model compared to GraphCodeBERT. This can be seen both in the
BLEU-scores illustrated in 4.4 but also in the Figures 4.10,4.11. In these
cases where PLBart dominates, the produced summary is an enhanced PLBart
summary with some details added by GraphCodeBERT. In the comparison of
them with the outputs of the PLBart itself 4.4, the resemblance is apparent,
something that makes the distinction of the GraphCodeBERT’s contribution
easier. The BLEU-scores though remain lower than the baseline model.
This is not necessarily bad because of mainly two reasons. Firstly, as
mentioned before, the ground truth comments are not very detailed and hence
a deviation from a general comment would harm the BLEU-score. Secondly,
the BLEU-score itself is focusing on lexical similarity. This similarity is
also influenced by the size interval between the produced and the target
sentence. Therefore, more information, besides the more specific information
that was mentioned before, can also decrease the achieved score. On the
other hand, when GraphCodeBERT dominates, the produced sentences are
focusing on the details of the code snippets, especially when its weight is
significant. In Figure 4.10b, where its given weight is just the double of
PLBart’s, the influence of PLBart is still significant and GraphCodeBERT
is the one that plays the role of the helper. However, in Figure 4.11b
the dominance of GraphCodeBERT is clear. The results, in both cases
where GraphCodeBERT prevails, are of lower BLEU-score because of the
aforementioned deviation from the ground truth but contain information that
could be used in the documentation of a code snippet. Finally, concerning the
aggregation techniques, weighted mean and weighted max, both perform more
or less the same, with a small advantage given to weighted mean.

The final model that was tested, was inspired by the previous observations.
Specifically, the results coming from a GraphCodeBERT-dominated ensemble
model were similar to the original GraphCodeBERT’s results, but were
brought closer to PLBart’s format after its influence. Therefore, the difference



64 | Discussion

between these two models was decreased, but without loosing each other’s
identity and main characteristics. To this end, the enhanced GraphCodeBERT
was also put into the equation in this aggregation procedure. The summaries
produced by the DoubleEnsemble 4.4.3(Mean/Max) show good results both
BLEU-score and human evaluation-wise. BLEU-score-wise, it produced the
highest score among all the ensemble models that were tested (15.52) which
was slightly higher than the maximum score among the baseline models
(15.46). The produced summaries are following the PLBart’s format because
of its weight dominance, but at the same time introduce some new information
provided by GraphCodeBERT. We also present a few summaries on a different
subset of the testing dataset to illustrate the efficiency of this approach 4.13.



Conclusions and Future work | 65

Chapter 6

Conclusions and Future work

This chapter is for presenting the conclusions of this thesis, spotting its
limitations and suggesting ways that other researchers could use to tackle
the same task in future works. At the end we also reflect on the outcomes
from other levels than just answering the addressed research questions such as
contributions on an economical, social, environmental and ethical aspect.

6.1 Conclusions
The goal of this thesis was to test whether the combination of two powerful
models that tackle the same task from different angles, can occur efficiently,
in a complementary manner and eventually produce meaningful, informative
and improved summaries. During this testing, the necessary procedures to be
considered are explored since such an implementation requires consistency
in the outputs that comes out of the configurations of the used base models.
These procedures are thoroughly described in 3.2.1 and 4.4.3 and show that
special attention should be paid since these steps are not trivial.

As far as the performance of an ensemble learning-based model on source
code description generation is concerned, there is no clear advantage in one of
the developed models within our work but indications of promising outcomes
and useful observations that could lead future work in this direction.

In our case, the base models produced significantly different next-token
probabilities and consequently different summaries. They were both capturing
the core idea of the code but eventually, they were focusing on different
parts. This made the simple aggregation techniques, where the same or similar
weights would be assigned to both models, less effective and more confusing.
Such techniques would be fruitful in cases where the outputs of the used



66 | Conclusions and Future work

models do not present significant differences and hence one model could
correct the other model’s deviations by adding its ”opinion” and influencing
this way the final output. LeClair [17] validated this in their work when the
AST-Flat+AST-Flat-FC ensemble was proven superior to others, less similar
to each other models (e.g. Transformer + AST-Flat-FC), after using the simple
mean aggregation. This did not occur in our case, making the models where
one of the two takes the role of the dominant model, more effective. In this
case, the dominant model’s output prevails while the second model contributes
by adding some extra information. This information is mostly added at the
end of the dominant model’s sentence because of our implementation of the
aggregation where we pad the output probabilities tensor with zeros after
the appearance of the end-of-sentence token. However, this is not a certain
outcome since a model might have strong confidence about a token or sequence
of tokens and hence dominate the aggregation even if it is the ”helper” model.
Similarly, the combination of the two models could bring into the spotlight
tokens that did not appear in either of the models’ summaries. An example
illustrating the dominance of the ”helper” model is the first summary of 4.11b
where the part ”pull event” had not appeared in GraphCodeBERT and another
example referring to the appearance of new tokens is the ninth summary of
4.12 where the part ”specified server” had not appeared in neither of the two
model’s outputs. In both cases, these tokens or sequences of tokens, had a
high probability of appearing in that place of the respective sequence but this
probability was not the highest at the time. It could be because of the greedy
search’s limitation that might assign a smaller probability to a token because
of the prior probabilities or just because of the similarity of the appeared and
not appeared tokens.

Another observation that was made after the interpretation of our results,
was the significance of human evaluation. Metrics such as BLEU, offer an
evaluation on the lexical level. However, in source code summarization the
objective is not the production of a specific sequence such as in NL-to-NL
machine translation. BLEU-score provides an indication of the performance
of the developed model but it should be combined with human evaluation to
a certain degree. Moreover, it should be used in a dataset of high-quality
reference summaries, which is not always available. The docstrings that
are used as references in this dataset, are drawn from different projects and
developers and were not meant for the creation of an appropriate dataset in
the first place. This could lead to confusing results, such as in weighted
mean results 4.10a, where the summaries are very similar to PLBart’s 4.4,
but contain some additional information that is not necessarily wrong, yet



Conclusions and Future work | 67

decreases the BLEU-score anyway.
In conclusion, we continued LeClair’s [17] work on ensemble learning for

source code summarization. We tested more complex models and aggregation
techniques than theirs to validate that their results were not incidental and
to explore more ensemble learning aspects. The outcome was that such
ensemble learning-based models can improve both simple and powerful
models. Such procedure though requires attention in order to bring in
alignment the base models’ outputs. Once this is done, extensive weight tuning
should follow. If time is not an issue, a meta-learner could be proven even
more efficient. Besides these, the evaluation of the produced summary should
be a combination of metrics like BLEU, CIDEr, METEOR, RIBES or ROUGE
and human evaluation for a better and more representative interpretation of the
summaries.

6.2 Limitations
The main limitations in this project are related to the available resources and
time. Transformers are already heavy architectures [125] and the transformer-
based models that were used are as well. The pre-training of such a model
would require multiple GPUs to be running continuously for several days
which could exceed the ten days. Therefore, the fine-tuning of a pre-trained
model or the direct usage of one without any pre-training were the only choices
in a transformer-based approach. The size of transformer-based models also
influences our results, since further fine-tuning and experimentation would
most likely lead to better performances. However, the objective of the project
was covered with the available resources, thus these limitations were not
eventually of a damaging level. Another limitation refers to the lack of human
evaluation that would add a different, more complete interpretation of our
results. The BLEU score, as mentioned in 6.1 is not always representative of
the produced summary. It provides information only on a lexical level, which
is not the objective of the developed models. An appropriate human evaluation
would require five to fifteen specialized participants with at least three years
of experience on the at the time programming language that are not part of
the research in any capacity for providing unbiased evaluations. This would
require more time and special attention to the selection of the participants in
order to have informative and reliable feedback from them.



68 | Conclusions and Future work

6.3 Future Work
Several approaches concerning the task of source code description generation
have been reviewed and considered. However, due to limitations on resources
and time, only the most promising, according to our personal judgment, and
also feasible approach was followed and tested. To the best of our knowledge,
ensemble learning for the task of summarization, has been only used by [17].
However, it was tested on simple base models, so its contribution was not
the presentation of a SOTA model, but the validation that ensemble learning
can be also used for this task. The purpose of this thesis is similar and
specifically aims at taking this one step further. Since ensemble learning
looked promising, the objective here was to check if it also works for more
complex and powerful models that can individually tackle this task from
specific perspectives. If so, the next step would be to highlight what are the
aspects that someone should consider when doing that. Therefore, since this
was the focus, some issues were not considered but should be in the future. In
this section, we will focus on these remaining issues that should be addressed
in future work. These issues concern our implementation but also the general
task of code summarization.

Concerning our implementation, the limitations we put on ourselves and
could be easily fixed in future works, refer mostly to the used models. Firstly,
we used pre-trained models provided from the hugging face library [107],
something that limited us in the modification of the models. Personally
developed models could offer some liberty that would also allow the relevant
configuration that would make the models to be combined more compatible
with each other. For example in our case, PLBart and GraphCodeBERT were
pre-trained with different tokenizers and on different vocabularies. The fact
that we modified these on fine-tuning could have decreased the performance
of the respective model. Moving to the used models, there is a lot of room
for improvement in their tuning. In this thesis, the necessary steps that
would allow the aggregation of the models were taken, but no significant
attention was paid to the full exploitation of these models. Well fine-tuned
PLBart and GraphCodeBERT for the task of code summarization could had
lead to a SOTA ensemble model, something that was not examined here.
Specifically for GraphCodeBERT, which was not able to carry the weights
from its pre-training because of its configuration modification 4.4.2, more
data and more epochs accompanied by the necessary hyper-parameter fine-
tuning would be also beneficial. Moreover, concerning the aggregation, more
complex techniques could be tested, and specifically the usage of a meta-



Conclusions and Future work | 69

Figure 6.1: Noisy ground truth.

Figure 6.2: Missing important information from the ground truth code’s
comment.

learner. If resources and time are available, the training of a meta-learner,
which is expensive, could lead to a more robust and reliable predictions’
aggregation. In continuation of this, more than these two models could be
used for testing our hypothesis or similar in the future. The addition of more
models could lead to the discovery of a more appropriate combination of
models but also would provide more information about the performance of
the ensemble model compared to other already developed models that have
shown interesting results. Finally, more languages could be tested or even a
language-agnostic model, since the programming language of the snippet to
be summarized is a significant factor in such problems.

The models though are not the only parts to which more attention can be
paid on. While testing the results, it was discovered that the dataset itself was
not ideal. Specifically, there were code comments that were noisy and would
not provide any information, such as in Figure 6.1, and others that were too
general or that were not deleted in the only English comment filtering, like in
Figures 6.26.3. This decreases the representativeness of the BLEU-scores and
makes the need for human evaluation even higher. Therefore, a more well-
tended dataset could also improve the performance and the interpretability of
the developed models.

As far as the general task of source code summarization is concerned,
there are also alternative approaches that future researchers could follow
to tackle the problems in the existing models that are mentioned in 1.2.
Initially, there could be some fundamental changes in the architecture of
some powerful models. These changes could include a different attention

Figure 6.3: Non-English comment. Pre-processing did not exclude all non-
English docstrings from the testing dataset.



70 | Conclusions and Future work

mechanism. As mentioned in [5] and validated by NeuralCodeSum [2]
and CodeTransformer [14], the usage of relative positional attention has
been proven efficient and effective with transformers. Therefore, also
other, more powerful, transformer-based models that carry additional, useful
characteristics could be pre-trained again with this modification to test this
claim on more advanced models. The size of these models though, makes
this try expensive time and resource-wise. Other ideas that came up after
the literature review are the usage of contrastive learning or reinforcement
learning. The contrastive learning objective could be added to the pre-training
of a model with the scope of obtaining useful, informative code representations
that could be eventually used for any downstream task. ContraCode [92] and
[75] have shown promising results by exploiting similar and dissimilar code
snippets and training their respective models with the objective of minimizing
and maximizing respectively their representations’ distance. Contrastive
learning would be promising because of its non-dependency on extremely
large datasets since similar and dissimilar code snippets can be created out of
the existing data and hence enhance this way the initial dataset. On the other
hand, in Reinforcement Learning, the at the time seq2seq model could act as
the actor while a second critic-network would update the actor according to the
loss induced from the ground truth in an actor-critic network manner. This is
just another way to enhance the learning but does not specifically refer to any of
our discovered problems. However, its robustness and efficiency accompanied
by the increase in computational power make this approach worth trying.

6.4 Reflections
The contributing parties to this project are KTH Royal Institute of Technology
(KTH) and Research Institutes of Sweden (RISE)[126]. There is scientific
interest from both sides but also the outcome of the project could have positive
influence in several levels. On an economic level, a reliable source code
description generator could take that responsibility from a developer and at
the same time produce informative comments that would clarify someone’s
code to another. The fact that the developers are liberated from the task of
commenting sufficiently their code, gives them more time to focus on more
productive tasks that would benefit them but also the company that they are
working for. Additionally, as mentioned in 1, code comprehension takes a
significant amount of time if there is no appropriate documentation [127].
These non-productive working hours are costly and affect organizations
economically. The cost though is not only economical but psychological since



Conclusions and Future work | 71

according to [1, 128] code comprehension can take up to 58% of developers’
time, and this could lead to frustration. So an improvement on that could
also be considered a contribution on a social level because of its effect on
the mental health of a large part of the society. This thesis does not benefit
only the economy or part of the society, but also the environment. The
usage of transfer learning, when possible, can reduce the time required for
a model’s training significantly. This means a limitation on GPU usage
and hence less CO2 emissions [129]. Finally, ethically wise, there was no
human participant or data in our project so there are no concerns about any
human-right violation. Concerning intellectual property rights, the used code
contains parts of others’ work that were always under the MIT License [130].
Moreover, the used Figures were all personal, made with the help of Miro [131]
and diagrams.net [132], besides 2.1 that belongs to the freely-licensed images
of Wikipedia [133].



72 | Conclusions and Future work



References | 73

References

[1] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program
comprehension with source code summarization,” Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering -
ICSE 10, 2010. doi: 10.1145/1810295.1810335 [Pages 1 and 71.]

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008. [Pages 1, 2, 13, 36, 39, and 70.]

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016. [Page 2.]

[4] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014. [Page 2.]

[5] N. Chirkova and S. Troshin, “Empirical study of transformers for
source code,” Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021. doi: 10.1145/3468264.3468611
[Pages 3, 4, 7, 16, 27, and 70.]

[6] Z. Tang, C. Li, J. Ge, X. Shen, Z. Zhu, and B. Luo, “Ast-transformer:
Encoding abstract syntax trees efficiently for code summarization,” in
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 1193–1195. [Pages 3, 4, 7, 26,
and 93.]

[7] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” in Proceedings of the
2005 international workshop on Mining software repositories, 2005,
pp. 1–5. [Pages 3, 8, and 22.]



74 | References

[8] F. E. Allen and J. Cocke, “A program data flow analysis procedure,”
Communications of the ACM, vol. 19, no. 3, p. 137, 1976. [Pages 3
and 9.]

[9] R. Polikar, Ensemble Learning. Boston, MA: Springer US, 2012,
pp. 1–34. ISBN 978-1-4419-9326-7. [Online]. Available: https:
//doi.org/10.1007/978-1-4419-9326-7_1 [Page 3.]

[10] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 8, no. 4, p. e1249, 2018. [Pages 3 and 18.]

[11] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, and X. Xia, “Code structure
guided transformer for source code summarization,” arXiv preprint
arXiv:2104.09340, 2021. [Pages 4, 26, and 93.]

[12] H. Wu, H. Zhao, and M. Zhang, “Code summarization with
structure-induced transformer,” arXiv preprint arXiv:2012.14710,
2020. [Pages 4, 7, 16, 26, and 93.]

[13] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A transformer-
based approach for source code summarization,” Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics,
2020. doi: 10.18653/v1/2020.acl-main.449 [Pages 4, 24, and 90.]

[14] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from
structure and context,” arXiv preprint arXiv:2103.11318, 2021.
[Pages 4, 25, 46, 70, and 92.]

[15] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng,
C. B. Clement, D. Drain, N. Sundaresan, J. Yin, D. Jiang, and
M. Zhou, “Graphcodebert: Pre-training code representations with
data flow,” CoRR, vol. abs/2009.08366, 2020. [Online]. Available:
https://arxiv.org/abs/2009.08366 [Pages 4, 5, 7, 16, 26, 29, 46, and 91.]

[16] W. U. Ahmad, S. Chakraborty, B. Ray, and K. Chang, “Unified
pre-training for program understanding and generation,” CoRR, vol.
abs/2103.06333, 2021. [Online]. Available: https://arxiv.org/abs/2103
.06333 [Pages 4, 15, 28, 29, 46, and 94.]

https://doi.org/10.1007/978-1-4419-9326-7_1
https://doi.org/10.1007/978-1-4419-9326-7_1
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2103.06333
https://arxiv.org/abs/2103.06333


References | 75

[17] A. LeClair, A. Bansal, and C. McMillan, “Ensemble models for neural
source code summarization of subroutines,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2021, pp. 286–297. [Pages 5, 18, 31, 34, 66, 67, 68, and 97.]

[18] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” in 2021 IEEE/ACM
29th International Conference on Program Comprehension (ICPC).
IEEE, 2021, pp. 253–264. [Pages 5 and 18.]

[19] S. Ravichandiran, Getting Started with Google BERT Build and Train
State-Of-the-art Natural Language Processing Models Using BERT.
Packt Publishing, 2021. [Pages 5, 25, 39, and 41.]

[20] J. Li, Y. Li, G. Li, X. Hu, X. Xia, and Z. Jin, “Editsum: A
retrieve-and-edit framework for source code summarization,” in 2021
36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 155–166. [Pages 5, 29, and 96.]

[21] D. A. Schmidt, “Programming language semantics,” ACM Computing
Surveys (CSUR), vol. 28, no. 1, pp. 265–267, 1996. [Page 7.]

[22] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based lstm
for aspect-level sentiment classification,” in Proceedings of the 2016
conference on empirical methods in natural language processing, 2016,
pp. 606–615. [Page 7.]

[23] Z. Yang, J. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and M. Zhang,
“A multi-modal transformer-based code summarization approach for
smart contracts,” in 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC). IEEE, 2021, pp. 1–12. [Pages 7,
27, and 94.]

[24] X. Zhang, S. Yang, L. Duan, Z. Lang, Z. Shi, and L. Sun, “Transformer-
xl with graph neural network for source code summarization,” in 2021
IEEE International Conference on Systems, Man, and Cybernetics
(SMC). IEEE, 2021, pp. 3436–3441. [Pages 7, 27, and 93.]

[25] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, and X. Xia, “Code structure
guided transformer for source code summarization,” arXiv preprint
arXiv:2104.09340, 2021. [Pages 7, 27, 46, and 93.]



76 | References

[26] S. Kim, J. Zhao, Y. Tian, and S. Chandra, “Code prediction by
feeding trees to transformers,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 150–
162. [Pages 7 and 27.]

[27] R. Dutta, Encoding Abstract Syntax Trees (AST) via distance based self-
attention mechanism. University of California, Los Angeles, 2021.
[Page 8.]

[28] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara,
T. Shinohara, and S. Arikawa, “Byte pair encoding: A text compression
scheme that accelerates pattern matching,” 1999. [Page 10.]

[29] T. Kudo, “Subword regularization: Improving neural network
translation models with multiple subword candidates,” arXiv preprint
arXiv:1804.10959, 2018. [Page 10.]

[30] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2012, pp. 5149–5152. [Page 10.]

[31] T. Kudo and J. Richardson, “Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text
processing,” arXiv preprint arXiv:1808.06226, 2018. [Page 10.]

[32] B. Wu, C. Xu, X. Dai, A. Wan, P. Zhang, Z. Yan, M. Tomizuka,
J. Gonzalez, K. Keutzer, and P. Vajda, “Visual transformers: Token-
based image representation and processing for computer vision,” arXiv
preprint arXiv:2006.03677, 2020. [Page 11.]

[33] K. W. Church, “Word2vec,” Natural Language Engineering, vol. 23,
no. 1, pp. 155–162, 2017. [Page 11.]

[34] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543. [Page 11.]

[35] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017. [Page 11.]



References | 77

[36] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014. [Page 12.]

[37] M. Geva, R. Schuster, J. Berant, and O. Levy, “Transformer
feed-forward layers are key-value memories,” arXiv preprint
arXiv:2012.14913, 2020. [Page 14.]

[38] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-
sequence pre-training for natural language generation, translation, and
comprehension,” arXiv preprint arXiv:1910.13461, 2019. [Pages 15
and 28.]

[39] Z. Xie, “Neural text generation: A practical guide,” arXiv preprint
arXiv:1711.09534, 2017. [Page 17.]

[40] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston,
“Neural text generation with unlikelihood training,” arXiv preprint
arXiv:1908.04319, 2019. [Page 17.]

[41] S. Wiseman and A. M. Rush, “Sequence-to-sequence learning as
beam-search optimization,” arXiv preprint arXiv:1606.02960, 2016.
[Page 17.]

[42] E. Garmash and C. Monz, “Ensemble learning for multi-source neural
machine translation,” in Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical
Papers, 2016, pp. 1409–1418. [Page 18.]

[43] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148–156. [Page 19.]

[44] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997. [Page 19.]

[45] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,”
Frontiers in neurorobotics, vol. 7, p. 21, 2013. [Page 19.]

[46] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996. [Page 19.]



78 | References

[47] ——, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001. [Page 19.]

[48] B. Pavlyshenko, “Using stacking approaches for machine learning
models,” in 2018 IEEE Second International Conference on Data
Stream Mining & Processing (DSMP). IEEE, 2018, pp. 255–258.
[Page 19.]

[49] M. P. Sesmero, A. I. Ledezma, and A. Sanchis, “Generating ensembles
of heterogeneous classifiers using stacked generalization,” Wiley
interdisciplinary reviews: data mining and knowledge discovery, vol. 5,
no. 1, pp. 21–34, 2015. [Page 19.]

[50] B. Linghu and B. Sun, “Constructing effective svm ensembles for image
classification,” in 2010 Third International Symposium on Knowledge
Acquisition and Modeling. IEEE, 2010, pp. 80–83. [Page 19.]

[51] P. M. Granitto, P. F. Verdes, and H. A. Ceccatto, “Neural
network ensembles: evaluation of aggregation algorithms,” Artificial
Intelligence, vol. 163, no. 2, pp. 139–162, 2005. [Page 19.]

[52] D. Movshovitz-Attias and W. Cohen, “Natural language models for
predicting programming comments,” vol. 2, 08 2013, pp. 35–40.
[Pages 21 and 87.]

[53] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention
network for extreme summarization of source code,” in Proceedings
of The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 2091–2100. [Online]. Available:
https://proceedings.mlr.press/v48/allamanis16.html [Pages 22 and 87.]

[54] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2016. doi: 10.18653/v1/p16-1195 [Pages 22,
23, and 87.]

[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, pp. 1735–80, 12 1997. doi:
10.1162/neco.1997.9.8.1735 [Page 22.]

https://proceedings.mlr.press/v48/allamanis16.html


References | 79

[56] X. Hu, Y. Wei, G. Li, and Z. Jin, “Codesum: Translate program
language to natural language,” 08 2017. [Pages 22, 23, and 88.]

[57] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” arXiv preprint
arXiv:1808.01400, 2018. [Pages 22, 50, and 88.]

[58] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and
P. S. Yu, “Improving automatic source code summarization via
deep reinforcement learning,” Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, 2018.
doi: 10.1145/3238147.3238206 [Pages 22 and 88.]

[59] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Mat-
sumura, “Automatic source code summarization with extended tree-
lstm,” 2019 International Joint Conference on Neural Networks
(IJCNN), 2019. doi: 10.1109/ijcnn.2019.8851751 [Pages 23 and 88.]

[60] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015. [Page 23.]

[61] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” Proceedings of the 26th Conference on Program
Comprehension, 2018. doi: 10.1145/3196321.3196334 [Pages 23
and 29.]

[62] ——, “Deep code comment generation with hybrid lexical and
syntactical information,” Empirical Software Engineering, vol. 25,
no. 3, pp. 2179–2217, 2020. [Pages 23 and 89.]

[63] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), 2019.
doi: 10.1109/icse.2019.00087 [Pages 23 and 89.]

[64] Z. Zhou, H. Yu, G. Fan, Z. Huang, and X. Yang, “Summarizing source
code with hierarchical code representation,” Information and Software
Technology, vol. 143, p. 106761, 2022. [Pages 23 and 90.]

[65] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang, “Leveraging
code generation to improve code retrieval and summarization via



80 | References

dual learning,” Proceedings of The Web Conference 2020, 2020. doi:
10.1145/3366423.3380295 [Pages 24 and 89.]

[66] Y. Xia, T. Qin, W. Chen, J. Bian, N. Yu, and T.-Y. Liu, “Dual supervised
learning,” in International Conference on Machine Learning. PMLR,
2017, pp. 3789–3798. [Page 24.]

[67] A. H. Payberah, “Recurrent neural networks,” Dec 2021. [Pages ix
and 24.]

[68] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” arXiv preprint arXiv:1803.02155, 2018.
[Page 25.]

[69] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang, and et al., “Codebert: A pre-trained
model for programming and natural languages,” Findings of the
Association for Computational Linguistics: EMNLP 2020, 2020. doi:
10.18653/v1/2020.findings-emnlp.139 [Pages 25, 29, 41, 46, 48,
and 90.]

[70] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 5110–5121. [Online]. Available:
https://proceedings.mlr.press/v119/kanade20a.html [Pages 25, 41,
and 91.]

[71] A. A. Ishtiaq, M. Hasan, M. M. A. Haque, K. S. Mehrab,
T. Muttaqueen, T. Hasan, A. Iqbal, and R. Shahriyar, “Bert2code:
Can pretrained language models be leveraged for code search?”
CoRR, vol. abs/2104.08017, 2021. [Online]. Available: https:
//arxiv.org/abs/2104.08017 [Page 25.]

[72] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized
bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
[Pages 25 and 41.]

[73] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018. [Pages 25 and 36.]

https://proceedings.mlr.press/v119/kanade20a.html
https://arxiv.org/abs/2104.08017
https://arxiv.org/abs/2104.08017


References | 81

[74] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” arXiv
preprint arXiv:2003.10555, 2020. [Page 25.]

[75] M. Hägglund, F. J. Peña, S. Pashami, A. Al-Shishtawy, and A. H.
Payberah, “Coclubert: Clustering machine learning source code,” in
2021 20th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, 2021, pp. 151–158. [Pages 25, 70,
and 91.]

[76] W. Wang, Y. Zhang, Z. Zeng, and G. Xu, “Trans^3: A transformer-
based framework for unifying code summarization and code search,”
CoRR, vol. abs/2003.03238, 2020. [Online]. Available: https:
//arxiv.org/abs/2003.03238 [Pages 25 and 92.]

[77] C. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sun-
daresan, “Pymt5: Multi-mode translation of natural language and
python code with transformers,” Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP),
2020. doi: 10.18653/v1/2020.emnlp-main.728 [Pages 25 and 92.]

[78] X. Wang, Y. Wang, F. Mi, P. Zhou, Y. Wan, X. Liu, L. Li, H. Wu, J. Liu,
and X. Jiang, “Syncobert: Syntax-guided multi-modal contrastive pre-
training for code representation,” arXiv preprint arXiv:2108.04556,
2021. [Pages 26, 46, and 95.]

[79] F. Zhang, B. Chen, R. Li, and X. Peng, “A hybrid code representation
learning approach for predicting method names,” Journal of Systems
and Software, vol. 180, p. 111011, 2021. [Pages 27 and 94.]

[80] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” Proceedings of the 28th
International Conference on Program Comprehension, 2020. doi:
10.1145/3387904.3389268 [Pages 27, 30, and 97.]

[81] G. Yang, X. Chen, J. Cao, S. Xu, Z. Cui, C. Yu, and K. Liu,
“Comformer: Code comment generation via transformer and fusion
method-based hybrid code representation,” in 2021 8th International
Conference on Dependable Systems and Their Applications (DSA).
IEEE, 2021, pp. 30–41. [Pages 27 and 95.]

https://arxiv.org/abs/2003.03238
https://arxiv.org/abs/2003.03238


82 | References

[82] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “Spt-code: Sequence-
to-sequence pre-training for learning the representation of source code,”
arXiv preprint arXiv:2201.01549, 2022. [Pages 28, 46, and 94.]

[83] B. Wei, “Retrieve and refine: Exemplar-based neural comment genera-
tion,” 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2019. doi: 10.1109/ase.2019.00152
[Pages 28, 29, and 95.]

[84] S. Robertson and H. Zaragoza, The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc, 2009. [Page 28.]

[85] “Welcome to apache lucene.” [Online]. Available: https://lucene.apach
e.org/ [Page 28.]

[86] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, 2020. doi:
10.1145/3377811.3380383 [Pages 28, 29, and 95.]

[87] M. R. Parvez, W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang,
“Retrieval augmented code generation and summarization,” Findings
of the Association for Computational Linguistics: EMNLP 2021, 2021.
doi: 10.18653/v1/2021.findings-emnlp.232 [Pages 29 and 96.]

[88] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen,
and W.-t. Yih, “Dense passage retrieval for open-domain question
answering,” arXiv preprint arXiv:2004.04906, 2020. [Page 29.]

[89] Y. Huang, M. Wei, S. Wang, J. Wang, and Q. Wang, “Yet
another combination of IR- and neural-based comment generation,”
CoRR, vol. abs/2107.12938, 2021. [Online]. Available: https:
//arxiv.org/abs/2107.12938 [Pages 29 and 96.]

[90] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Automatic
code summarization via multi-dimensional semantic fusing in GNN,”
CoRR, vol. abs/2006.05405, 2020. [Online]. Available: https:
//arxiv.org/abs/2006.05405 [Pages 29 and 96.]

[91] A. Y. Wang, D. Wang, J. Drozdal, M. Muller, S. Park, J. D. Weisz,
X. Liu, L. Wu, and C. Dugan, “Documentation matters: Human-
centered ai system to assist data science code documentation in

https://lucene.apache.org/
https://lucene.apache.org/
https://arxiv.org/abs/2107.12938
https://arxiv.org/abs/2107.12938
https://arxiv.org/abs/2006.05405
https://arxiv.org/abs/2006.05405


References | 83

computational notebooks,” ACM Transactions on Computer-Human
Interaction, vol. 29, no. 2, pp. 1–33, 2022. [Page 30.]

[92] P. Jain, A. Jain, T. Zhang, P. Abbeel, J. Gonzalez, and I. Stoica,
“Contrastive code representation learning,” Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing,
2021. doi: 10.18653/v1/2021.emnlp-main.482 [Pages 30, 70, and 97.]

[93] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2. IEEE, 2006, pp. 1735–1742. [Page 30.]

[94] F. Ye, S. Zhou, A. Venkat, R. Marcus, N. Tatbul, J. J. Tithi,
P. Petersen, T. G. Mattson, T. Kraska, P. Dubey, V. Sarkar,
and J. Gottschlich, “MISIM: an end-to-end neural code similarity
system,” CoRR, vol. abs/2006.05265, 2020. [Online]. Available:
https://arxiv.org/abs/2006.05265 [Page 30.]

[95] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code
comprehension: A learnable representation of code semantics,” arXiv
preprint arXiv:1806.07336, 2018. [Page 30.]

[96] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code
recommendation via structural code search,” Proceedings of the ACM
on Programming Languages, vol. 3, no. OOPSLA, pp. 1–28, 2019.
[Page 30.]

[97] J. Gu, P. Salza, and H. C. Gall, “Assemble foundation models for
automatic code summarization,” arXiv preprint arXiv:2201.05222,
2022. [Pages 31 and 97.]

[98] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang,
and H. Sun, “Neural code summarization: How far are we?”
CoRR, vol. abs/2107.07112, 2021. [Online]. Available: https:
//arxiv.org/abs/2107.07112 [Page 31.]

[99] L. Rokach, “Ensemble-based classifiers,” Artificial intelligence review,
vol. 33, no. 1, pp. 1–39, 2010. [Page 35.]

[100] “Where the world builds software.” [Online]. Available: https:
//github.com/ [Page 35.]

https://arxiv.org/abs/2006.05265
https://arxiv.org/abs/2107.07112
https://arxiv.org/abs/2107.07112
https://github.com/
https://github.com/


84 | References

[101] “Where developers learn, share, amp; build careers.” [Online].
Available: https://stackoverflow.com/ [Page 35.]

[102] “Your machine learning and data science community.” [Online].
Available: https://www.kaggle.com/ [Page 35.]

[103] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, pp.
1345–1359, 2009. [Page 35.]

[104] Y. Liu, J. Gu, N. Goyal, X. Li, S. Edunov, M. Ghazvininejad,
M. Lewis, and L. Zettlemoyer, “Multilingual denoising pre-training
for neural machine translation,” Transactions of the Association for
Computational Linguistics, vol. 8, pp. 726–742, 2020. [Page 36.]

[105] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
arXiv preprint arXiv:1606.08415, 2016. [Page 36.]

[106] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstrations,
2019. [Page 38.]

[107] “Hugging face – the ai community building the future.” [Online].
Available: https://huggingface.co/ [Pages 38 and 68.]

[108] “Pytorch.” [Online]. Available: https://pytorch.org/ [Page 38.]

[109] “Tensorflow.” [Online]. Available: https://www.tensorflow.org/
[Page 38.]

[110] “Jax quickstart.” [Online]. Available: https://jax.readthedocs.io/en/late
st/notebooks/quickstart.html [Page 38.]

[111] “Introduction.” [Online]. Available: https://tree-sitter.github.io/tree-sit
ter/ [Page 43.]

[112] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019. [Page 46.]

[113] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” arXiv preprint arXiv:1711.00740,
2017. [Page 50.]

https://stackoverflow.com/
https://www.kaggle.com/
https://huggingface.co/
https://pytorch.org/
https://www.tensorflow.org/
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://jax.readthedocs.io/en/latest/notebooks/quickstart.html
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/


References | 85

[114] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” ACM SIGPLAN
Notices, vol. 53, no. 4, pp. 404–419, 2018. [Page 50.]

[115] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of the
40th annual meeting of the Association for Computational Linguistics,
2002, pp. 311–318. [Page 50.]

[116] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “Cider: Consensus-
based image description evaluation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp.
4566–4575. [Page 50.]

[117] A. Aizawa, “An information-theoretic perspective of tf–idf measures,”
Information Processing & Management, vol. 39, no. 1, pp. 45–65, 2003.
[Page 50.]

[118] A. Lavie and A. Agarwal, “Meteor: An automatic metric for mt
evaluation with high levels of correlation with human judgments,” in
Proceedings of the second workshop on statistical machine translation,
2007, pp. 228–231. [Page 50.]

[119] H. Isozaki, T. Hirao, K. Duh, K. Sudoh, and H. Tsukada, “Automatic
evaluation of translation quality for distant language pairs,” in
Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, 2010, pp. 944–952. [Page 50.]

[120] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81. [Page 50.]

[121] J. Mahmud, F. Faisal, R. I. Arnob, A. Anastasopoulos, and K. Moran,
“Code to comment translation: A comparative study on model
effectiveness amp; errors,” Proceedings of the 1st Workshop on Natural
Language Processing for Programming (NLP4Prog 2021), 2021. doi:
10.18653/v1/2021.nlp4prog-1.1 [Page 50.]

[122] A. Stent, M. Marge, and M. Singhai, “Evaluating evaluation methods
for generation in the presence of variation,” in international conference
on intelligent text processing and computational linguistics. Springer,
2005, pp. 341–351. [Page 50.]



86 | References

[123] B. Chen and C. Cherry, “A systematic comparison of smoothing
techniques for sentence-level bleu,” in Proceedings of the ninth
workshop on statistical machine translation, 2014, pp. 362–367.
[Page 51.]

[124] T.-H. Jung, “Commitbert: Commit message generation using
pre-trained programming language model,” arXiv preprint
arXiv:2105.14242, 2021. [Page 52.]

[125] S. Singh and A. Mahmood, “The nlp cookbook: Modern recipes for
transformer based deep learning architectures,” IEEE Access, vol. 9,
pp. 68 675–68 702, 2021. [Page 67.]

[126] “Vi är sveriges forskningsinstitut.” [Online]. Available: https:
//www.ri.se/sv [Page 70.]

[127] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for java methods,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010, pp. 43–52.
[Page 70.]

[128] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2017. [Page 71.]

[129] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau,
“Towards the systematic reporting of the energy and carbon footprints
of machine learning,” Journal of Machine Learning Research, vol. 21,
no. 248, pp. 1–43, 2020. [Page 71.]

[130] “The mit license.” [Online]. Available: https://opensource.org/license
s/MIT [Page 71.]

[131] “The visual collaboration platform for every team: Miro.” [Online].
Available: https://miro.com/ [Page 71.]

[132] “Diagrams.net - free flowchart maker and diagrams online.” [Online].
Available: https://app.diagrams.net/ [Page 71.]

[133] “Free licenses,” Jun 2012. [Online]. Available: https://en.wikipedia.o
rg/wiki/Wikipedia:File_copyright_tags/Free_licenses [Page 71.]

https://www.ri.se/sv
https://www.ri.se/sv
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://miro.com/
https://app.diagrams.net/
https://en.wikipedia.org/wiki/Wikipedia:File_copyright_tags/Free_licenses
https://en.wikipedia.org/wiki/Wikipedia:File_copyright_tags/Free_licenses


Appendix A: Tabularized previous work on Source Code Summarization | 87

Appendix A

Tabularized previous work on
Source Code Summarization

Investigated Models
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
Statistical
Language
Model [52]

Comment
Completion

n-grams and
conditional
probabilities

- - n-grams Java Expensive
(O(expn)),
can not handle
unseen data

Convolutional
Attention
Network [53]

Method-like
Naming

CNN with
attention
and copy
mechanism

- - Sequence of
code-tokens

Java Not a code de-
scription gen-
erator

CodeNN [54] Code Summa-
rization

Encoder-
encoder
LSTM with
attention

Can be used
also for the in-
verse task of
code retrieval

(TRAIN)
Supervised
end-to-end
training with
backprop-
agation,
predicting
next word
conditioned
on the context

One-hot
encoding

C#, SQL LSTM is not
parallelizable,
no structural
information,
one-hot
vector is too
large

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations.



88 | Appendix A: Tabularized previous work on Source Code Summarization

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
CodeSum
[56]

Code Summa-
rization

Encoder-
encoder
LSTM with
attention on
ASTs

- (TRAIN)
Supervised
end-to-end
training with
backprop-
agation,
predicting
next word
conditioned
on the context

AST
sequences
with SBT
linearization

Java, C#, SQL LSTM is not
parallelizable,
sensitive to
identifiers
and different
programming
styles

Code2Seq
[57]

Code Summa-
rization

Encoder-
Decoder
LSTM with
attention
on ASTs
treated as
paths between
terminal
nodes
(identifiers)

- (TRAIN)
Supervised
end-to-end
training with
backprop-
agation,
predicting
next word
conditioned
on the context
(use average
of paths at the
decoder)

Paths and
paths’ nodes
encoding
from ASTs

Java, C# LSTM is not
parallelizable,
the order of
input paths is
random

Hybrid2Seq
+ Deep Re-
inforcement
Learning [58]

Code Summa-
rization

Encoder-
Decoder,
AST-based
LSTM (for
code strucure)
+ LSTM (for
code content)
with Hybrid
attention,
DRL (actor-
critic NN)

- Pre-train
actor network
with standard
supervised
learning with
cross-entropy
and critic
with mean
square loss.
(TRAIN)
Update both
according to
BLEU metric
via gradient
policy

Code and
comment-
token
seqiences,
ASTs

Python LSTM is not
parallelizable,
uses tree-
LSTM which
cannot handle
ASTs (trees)
containing
nodes with
arbitrary
number
of ordered
children,
evaluation
based on
BLEU metric

Extended
Tree-LSTM
[59]

Code Summa-
rization

Encoder-
Decoder,
multi-
way Tree-
LSTM (bi-
directional
LSTM) on
encoding
phase with
attention

- (TRAIN)
regular
seq2seq
training

ASTs and
NL-token
sequences

Java LSTM is not
parallelizable,
not significant
improvement
(indication of
potential
better,
different
approach)

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part2).



Appendix A: Tabularized previous work on Source Code Summarization | 89

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
ast-
attendgru[63]

Code Summa-
rization

Encoder-
Decoder, 2
GRUs (code
structure,
code text
separately),
SBT-AO
(replace all
words from
AST with
OTHER),
2 attention
mechanisms
(text/com-
ment and
ast/comment)

- (TRAIN)
regular
seq2seq
training

ASTs with
SBT-AO, split
dataset by
project not
method

Java LSTM is not
parallelizable,
performs
better
only when
methods’
names do
not clearly
state what the
method does,
no human
evaluation

Hybrid-
DeepCom
[62]

Code Summa-
rization

Encoder-
Decoder, 2
GRUs (code
structure,
code text
separately),
SBT, hybrid-
attention
mechanism
(fuse
lexical and
syntactical
information),
introduced
Beam search
instead of
greedy(decoder)

- (TRAIN)
regular
seq2seq
training

AST by
SBT, split
identifiers in
source code
according to
camel case
(vacabulary
is not enough
otherwise),
code and
comments
parsed into
tokens with
javalang
and NLTK
repsectively

Java LSTM is not
parallelizable,
unknown
word when
identifier is
mentioned in
the comment
(since there
was no
spliting there)

CO3 [65] Code Sum-
marization
and Code
Retrieval

Dual
Learning,
Encoder-
Decoder for
code sum-
marization
and code
generation
(simoultane-
ously), use
hidden states
of both for
code retrieval
task. Source
code, Bi-
LSTM with
sharing of
parameters

- (TRAIN)
regular
seq2seq
training
for the 3
objectives

Code/text-
token
sequences
+ embedding
matrix to
map those
into higher
dimension
vectors

SQL, Python LSTM is not
parallelizable,
no syntax
considered,
python
and SQL
are closer
to natural
language

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part3).



90 | Appendix A: Tabularized previous work on Source Code Summarization

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
HACS [64] Code Summa-

rization
Hierarchical
code repre-
sentation,
Encoder-
Decoder
LSTM

- - Token
sequences,
ASTs

Java The longer
the code the
worse the
summary
(because of
AST), fail to
generate out
of the given
code words,
LSTM-based

NeuralCode
Sum [13]

Code Summa-
rization

Transformers,
copy
mechanism,
relative
position
representation

- - Camel and
snake case
split

Python, Java code as plain
text, standard
transformer
architecture

CodeBERT
[69]

General
purpose code
representa-
tions

Transformers
encoder,
BERT,
RoBERTa-
base

Code search,
code doc-
umentation
generation

MLM (on
bimodal
data),
Replaced
Token
Detection
(on bimodal
and unimodal
data)

WordPiece
(code as plain
text)

Ruby,
JavaScript,
Go, Python,
Java, PHP
(training
and testing)
C# (only on
testing)

No structure
considered
(worse than
Neural-
CodeSUM
because
there is no
decoder and
no relative
positioning),
no
generation-
based pre-
training,
good with
languages
that were
not in the
pre-training
dataset but
not as good
as code2seq
which uses
ASTs, small-
scale pre-
training
dataset

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part4).



Appendix A: Tabularized previous work on Source Code Summarization | 91

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
GraphCode
BERT [15]

General
purpose code
representa-
tions

Transformers
encoder (not
only on code
but on code-
comment
pairs to
facilitate the
learning on
relative tasks)
+ Special
position
embeddings +
Graph-guided
Masked
Attention

Code search,
clone
detection,
code
translation
and code
refinement

MLM, Edge
Prediction,
Node
Alignment

Data flow
graph
(shallower
and gets
semantics
instead of
syntactics
since
programmers
have different
styles

Ruby,
JavaScript,
Go, Python,
Java, PHP

Small-scale
pre-training
dataset, no
generative
pre-training
tasks

CuBERT [70] General
purpose code
representa-
tions

Transformers
encoder,
BERT-base
(on code,
specifically
code-
comment
pairs when
there exist a
comment)

Variable-
misuse
classification,
Wrong binary
operator,
Swapped
operand,
Function-
docstring
mismatch,
Exception
type,
Variable-
misuse
localization
and repair

MLM and
Next Sentence
Prediction

Python
package-
tokenize, split
identifiers
(snake and
camel case)
and strings
on space
and special
characters
(preserve
semantically
meaningful
boundaries of
tokens such
as distinction
between
operators and
operands),
compress
vocabulary
into a
subword
vocabulary

Python No structure
consid-
ered/No code-
based pre-
training, no
generation-
based pre-
training or
fine-tuning,
small-scale
pre-training
dataset

CoCluBERT
[75]

General
purpose code
representa-
tions based on
functionality

CuBERT,
Contrastive
Learning:
Triplet/DR-
C/Unsuper-
vised

Code cluster-
ing

CuBERT Code-token
sequences

Python few func-
tionalities,
method
names are not
always that
informative
about
method’s
functionality;
positive and
negative to
the anchor
method could
confuse the
model

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part5).



92 | Appendix A: Tabularized previous work on Source Code Summarization

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
Code
Transformer
[14]

General
purpose code
representa-
tions

Transformers
encoder,
Context and
Structure,
relative
position,
multilingual

Method name
prediction

Method name
prediction,
without
pretraining in
monolingual
but with
the options
of taking
method name
prediction as
pretraining
task OR
pretraining on
the MLM task

Code token
sequences,
ASTs

Python,
Javascript,
Ruby, Go,
Java

AST used
as is; could
contain noise,
too long for a
Transformer

TranS3 [76] Code Summa-
rization and
Unification
of Summa-
rization with
Search

Deep Rein-
forcement
Learning
where actor
network is a
Transformer
encoder-
decoder. Uses
the generated
comment
to enchance
code search
by enabling
this new
mapping

- - Natural
language
based on
intervals and
code based
on a set of
symbols.
For code
use Tree-
Transformer
encoder
which
incorporates
indent based
semantics
and traverses
the tree with
pre-order
traversal

Python Only indents
considered
structure-
wise which
are not that
informative
for all
languages,
Tree-
transformer
relies a lot
on quality
of program
forms which
enhances
the Python
specification
threat

PyMT5 [77] Docstring
generation
(docstrings
are different
than
comment,
more
technical than
informative)

Transformer
Encoder-
Decoder

- Span Masking
Objective of
T5

AST, ignore
comments
because they
are trivial and
not part of
the normal
language
syntax

Python Python
specific,
AST as is;
increases
transformers’
complexity
and decreases
performance
because of
its size, also
AST can be
syntactically
dense which
can lead to
similarity
systems into
memorizing
syntax than
learning
semantics

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part6).



Appendix A: Tabularized previous work on Source Code Summarization | 93

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
AST-
Transformer
[6]

Code Summa-
rization

Efficient
encoding
of AST for
Transformers
with ancestor-
descendant
and siblings
relation
matrices and
tree-structure
attention

- - AST and Pre-
order traversal

Java, Python AST can be
syntactically
dense which
can lead to
similarity
systems into
memorizing
syntax than
learning
semantics,
also AST may
contain noise

SG-Trans[11] Code Summa-
rization

Transformer
with
structure-
guided self-
attention and
hierarchical
structure
variant
attention

- - Pair-wise
relationships:
(i) token (ii)
statement
(iii) dataflow
(for global
structure)

Java, Python Expensive
and not much
better results
than basic
models

SiT [12] Code Summa-
rization

Tranformer
on multi-view
AST network,
SiAttention

- - AST, control
flow and data
dependencies
as adjacency
matrices

Java, Python Baseline
models
have been
outperfromed
by other
approaches
and here the
improvement
is not that
significant

TPTrans-
α[25]

General
purpose code
representa-
tions

Transformer
using relative
and absolute
path of
tokens across
AST (GRU
encoders
and then
integrated
into self-
attention)

Code Summa-
rization

(TRAIN)
transformer
for method
name
prediction

ASTs by Tree-
Sitter, camel
case split

Python,
Javascript,
Go, Ruby

Large paths
are causing
performance
reduction
(due to AST
size/noise).
Absolute and
relative paths
overlap so
better use just
relative paths

Transformer-
XL [24]

Code Summa-
rization

ASTs’
encoding via
ConvGNN,
fed into
Transformer-
XL (no
decoder
just Soft-
max(linear))

- - ASTs
encoded via
ConvGNN

Java Only
structural
information
as input
(ConvGNN
captures local
semantic
information)

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part7).



94 | Appendix A: Tabularized previous work on Source Code Summarization

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
MMTrans
[23]

Code Summa-
rization

Transformer
on AST
encoded
as SBT
sequence and
ConvGNN

- - SBT, Graph
(adjacency
matrix),
camel and
snake case
split and other
preprocessing

Ethereum
Smart
Contracts

Same as
Transformer-
XL, large
dataset for
smart contract
standards but
limited due to
its (method,
comment)
format

PLBart [16] General
purpose code
and natural
language rep-
resentations

BART_base
(encoder-
decoder)

Code summa-
rization, code
generation,
code
translation,
code
classification

Pre-trained
on unlabeled
code and
natural
language (no
bimodal-
pairs) hence
large-scale
via de-
noising auto-
encoding
(generative
task thanks to
decoder)

code and
text token
sequences

Ruby,
Javascript,
Go, Python,
Java, PHP, C#

No structural
information
and code
and text are
handled the
same

SPT-Code
[82]

General
purpose code
representa-
tions

Encoder
(CodeBERT)
- Decoder
(GraphCode-
BERT)

Code summa-
rization, code
completion,
bug fixing,
code
translation,
code search

Only on code
(no need
of bilingual
corpus/no
limitation)
via Masked
Sequence
to Sequence
(MASS),
Code-AST
Prediction
(CAP),
Method Name
Generation
(MNG)

Lexical
analyzer to
tokenize
source code
and further
editing,
simplified-
SBT traversal
for AST (X-
SBT)

Python,
Javascript,
Go, Ruby,
Java, PHP

No
Classification
pre-training
(only
generation but
still performs
good on
classification
tasks),
simplified-
AST could
still be large

Meth2Seq
[79]

General
purpose code
representa-
tions

Transformer
Encoder-
Decoder
(decoder for
the specific
task)

Method name
prediction

Method name
prediction

control/data
flow, path rep-
resentation,
intermediate
represen-
tations
(what each
statement
does), NL
sequence

Python, Java Has not been
checked
if it can
generalize,
just one
training task,
compared
with no State
Of The Art
(SOTA)
techniques,
not that good
in get-set
methods

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part8).



Appendix A: Tabularized previous work on Source Code Summarization | 95

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
SynCoBERT
[78]

General
purpose code
representa-
tions

Transformer’s
encoder

Natural
language
code search,
code clone
detection,
code defect
detection,
program
translation

Multi-modal
Masked
Language
Modeling
(MMLM),
Identifier
Prediction
(IP), AST
Edge
Prediction
(TEP),
Multi-modal
Contrastive
Learning
(MCL)

NL and
code token
sequences,
AST with
depth-first
traversal

Python,
Javascript,
Ruby, Go,
Java, PHP

Standard
AST, no other
structure
methods
that they are
mentioning in
introduction,
a lot of
elements
taken from
GraphCode-
BERT, no
generative
tasks

ComFormer
[81]

Code Summa-
rization

Transformers,
Multi-Modal
(Jointly,
Shared,
Single
encoder),
Beam Search

- - Byte-BPE,
further
split for
OOV words,
SimSBT

Java linearized
AST directly
into Trans-
former,no
proper
comparisons

Re2Com [83] Code Summa-
rization

IR-based:
Retrive
(BM25,
Lucene),
Refine
(BiLSTM
encoder,
LSTM
decoder
on input
representation
and exemplar)

- - Code token
sequence,
AST traversed
by SBT-AO

Java Lexical
similarity;
semantic
similarity is
considered
afterwards
but just to
determine
whether or on
what degree
the retrieved
information
would be
used, LSTM
(sequential
input and no
long range de-
pendencies)

Rencos [86] Code Summa-
rization

IR-based:
pre-trained
attentional
encoder-
decoder
(LSTM),
syntactic
and semantic
similarity

- - Code token
sequence
(tokenize,
javalang),
AST,
summaries
(NLTK),
snake-camel
case split

Python, Java LSTM-based,
online code
retrieval is
expensive,
non similar
retrieved
snippets
could confuse
the model

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part9).



96 | Appendix A: Tabularized previous work on Source Code Summarization

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
REDCODER
[87]

Code genera-
tion and sum-
mariization

Retrievers
(CodeBERT,
GraphCode-
BERT),
Generator
(PLBART)

- CodeBERT,
Graph-
CodeBERT,
PLBART

Code and
NL token
sequences

Java Online code
retrieval is
expensive,
non similar
retrieved
snippets
could confuse
the model
(there might
be semantic
inconsisten-
cies between
input and
retrieved
code)

Hybrid-GNN
[90]

Code summa-
rization

BiLSTM
(encoder),
Lucene, Edit
distance,
global
attention
based
dynamic
graph +
retrieval
augmented
static graph,
GRU(fusion),
attention-
based LSTM
decoder

- - Code
Property
Graph (AST
with different
type of edges)

C, tested on
Python

Online code
retrieval is
expensive,
non similar
retrieved
snippets
could confuse
the model,
no semantics,
LSTM-based

Dynamic IR-
NN [89]

Code Summa-
rization

Re2Com’s
retriever,
Cross-
encoder
(CodeBERT
for semantic
similarity),
DeepCom

- - Code
sequences,
AST by SBT,
identifier
split, lower
case

Java Lexical
similarity; if
eventually not
used we just
have a simple
DeepCom

EditSum [20] Code Summa-
rization

Jaccard,
BM25,
Lucene,
Bi-LSTM
(encoder),
edit vector
(semantic
similarity
based on
differences
after
attention),
LSTM (edit
vector,
prototype)

- - Code and
NL token
sequences,
camel case-
underscore
split, lower
case

Java Lexical
similarity,
low
usefulness
score;
possible
redundant
or not
completely
correct
information

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part10).



Appendix A: Tabularized previous work on Source Code Summarization | 97

Investigated Models (continued)
Name Goal Technique Fine-tuned for Pre-training Tokenization PL Limitations
ConvGNN
[80]

Code Summa-
rization

seq2seq
encoder-
decoder with
attention,
Conv-GNN
(for encoding
AST), GRU
(for encoding
code token
sequences)

- - Code and
NL token
sequences,
AST by
SrcML
library

Java No global
dependencies,
GRUs are not
parallelizable

ContraCode
[92]

General
purpose code
representa-
tions

Self-
supervised
contrastive
learning;
source-
to-source
compiler
transfoma-
tion(generate
semantically
similar code
on unlabeled
data),
encoders:
BiLSTM and
Transformer

Code clone
detection,
extreme code
summariza-
tion, type
inference

RoBERTa
with MLM
objective;
maximize
the similarity
between
positives
without
collapsing
onto a single
representation
and minimize
between
negatives

AST, transfo-
mations (code
compression,
identifier
modification,
regulariza-
tion)

JavaScript,
TypeScript

Naming
inconsistency
from
programmers
does not allow
ContraCode
to perform
significantly
better than a
transformer
trained from
scratch on
extreme code
summariza-
tion task

Ensemble
[17]

Code Summa-
rization

Bagging and
stacking

- - AST, AST-FC
(FC: uses
other methods
of the file
to facilitate
the learning
of words
out of the
method
itself),
GNN, code
sequences

Java No real con-
trol, a lot of
choices

ADAMO [97] Code Summa-
rization

Transfer
Learning,
CodeBERT,
Refiner
(AWGN),
GTP-2,
continuous
pre-training,
intermediate
fine-tuning

- CodeBERT,
GTP-2, MLM
(continuous
for encoder),
Casual
Language
Modeling
(continuous
for decoder),
Concept
Interpola-
tion/Extrap-
olation/An-
notation
(intermediate
fine-tuning)

Code and
NL token
sequences

Java, Python Refiner’s
influence is
not obvious
even when
it is well
configured,
pre-training
encoder and
decoder does
not perform
better than
pre-training
just decoder

Table A.1: All the investigated in the literature models with their basic
attributes summarized and their main limitations (Part11).



TRITA-EECS-EX- 2022:00

www.kth.se


	Introduction
	Background
	Problem
	Research Questions
	Goals
	Research Methodology
	Structure of the thesis

	Background
	Source Code Summarization
	Code Structure
	Tokenization
	Transformers
	Self-Attention Mechanism
	Transformer's Architecture

	Transformer-based Models for Source-code Summarization
	PLBart
	GraphCodeBERT

	Text Generation via Deterministic Decoding
	Greedy Search
	Beam Search

	Ensemble Learning
	Related Work on Source Code Summarization
	Statistical Language Models
	Neural Machine Translation
	Information Retrieval-based Models
	Non-Conventional Approaches

	Summary

	Methods
	Research Process
	Developed Model
	Ensemble
	PLBart
	GraphCodeBERT


	Evaluation and Results
	Test environment
	Dataset
	Data Schema
	Data Pre-processing
	Data Exploration

	Evaluation framework
	Major Results
	PLBart Results
	GraphCodeBERT Results
	Ensemble Models and their Results
	Summary


	Discussion
	Baseline Models' Results
	Ensemble Models

	Conclusions and Future work
	Conclusions
	Limitations
	Future Work
	Reflections

	References
	Tabularized previous work on Source Code Summarization

