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Abstract

In this thesis, some extremal eigenvalues of graphs in the Hamming and Johnson scheme are
studied, namely the second largest in absolute value and the smallest one. In order to visualize
these eigenvalues, help with the understanding of previous known results and also find some new
results, a visualization tool for the P-matrices of graphs in the Hamming and Johnson scheme
was created. In the first part of this thesis, existing results on this topic from Brouwer, Cioaba,
Thringer and McGinnis [Journal of Combinatorial Theory, series B 133 (2017)] are shared, with
most of their proofs worked out in detail. Next, a new theorem on the second largest eigenvalue in
absolute value of graphs from the Hamming scheme is presented, along with some new observations
and conjectures. Lastly, an application of the smallest eigenvalue to the max-k-cut problem is
discussed, based on a paper by van Dam and Sotirov [Math. Programming 151 (2014)].
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Chapter 1

Introduction and motivation

The Hamming and the Johnson scheme provide two well-known families of graphs in Algebraic
Combinatorics. Hamming graphs were introduced by Richard Hamming in light of error-correcting
codes during his time at Bell Labs [35]. These are graphs that have vectors in Fg as vertices and
where the adjacency of two vertices depends on their Hamming distance. Johnson graphs were
introduced by Selmer Johnson and consider sets instead of coordinates. In a Johnson graph, the
vertices are subsets of fixed size of a set, where the adjacency of two vertices depends on the size
of their intersection.

It is well known that one can derive properties from a graph based on the eigensystem of its
adjacency matrix. Especially the largest, second largest (in absolute value) and smallest eigenvalue
are of interest in many applications, which we will discuss later in this chapter. Since the graphs
we will consider, namely graphs from the Hamming and Johnson scheme, are regular, we know
what their largest eigenvalue is. Indeed, for regular graphs, the largest eigenvalue (also in absolute
value) is equal to the valency of the graph. A proof of this statement can be found in Section 2.2,
Theorem 2.9.

Since we know the largest eigenvalue, which is also the largest in absolute value, this thesis will
focus on finding the smallest eigenvalue and the second largest eigenvalue in absolute value for
graphs from the Hamming and the Johnson scheme. For ease of notation, we will sometimes refer to
the latter as the ‘penabsolute’ eigenvalue, which is a contraction of ‘absolute’ and ‘penultimate’,
as mentioned in [27]. In Sections 2.3 and 2.4, we will see that there exist closed formulas for
calculating the eigenvalues of graphs from the Hamming and Johnson scheme [4]. The challenge is
therefore to find out which of these eigenvalues is the smallest or second largest in absolute value,
without having to calculate all of them.

One might agree that distance-regular graphs and their eigensystems are interesting and useful
objects to study, regardless of their possible applications [28, Ch. 15]. In the paragraphs below,
however, we will provide some additional motivation on why the smallest and penabsolute eigen-
value of the adjacency matrices of distance-regular graphs (or graphs in general) are interesting.

We start with some applications of the smallest eigenvalue of the adjacency matrix. Hoffman
in [14] shows a bound on the independence number a(G) of a regular graph using the smallest
eigenvalue of its adjacency matrix. Moreover, van Dam, Koolen and Tanaka in [28, Prop. 2.11]
provide a bound on the clique number of a distance-regular graph using the same eigenvalue.
Brouwer and Haemers in [5, Cor. 2] provide a condition that determines if distance-regular graphs
(or k-regular k-connected graphs for some k), which are not the Petersen graph, are Hamiltonian,
also using the smallest eigenvalue. In [16], Karloff uses the smallest eigenvalue of J(2d,d, j) for
large enough j to prove that the performance ratio of the Goemans-Williamson max-cut algorithm
is precisely a = % ming<g<r %, where 7 is the well-known mathematical constant. Previously,
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CHAPTER 1. INTRODUCTION AND MOTIVATION

the performance ratio was known to be at least . Lastly, van Dam and Sotirov in [30] use the
largest Laplacian eigenvalue to find new bounds on the max-k-cut problem, with extra results
on walk-regular graphs (which include distance-regular graphs) and graphs from the Hamming
scheme. Some of the latter results will be studied in Chapter 6. Note that for regular graphs,
the largest Laplacian eigenvalue equals the degree minus the smallest eigenvalue of the adjacency
matrix of a graph.

Next, we discuss some applications of the penabsolute eigenvalue of the adjacency matrix. For ease
of notation, denote the absolute value of the penabsolute eigenvalue by |Apen| in this paragraph.
A d-regular graph of n vertices is called an (n,d, \)-graph if |Apen| < A. These graphs have
many interesting applications, see [26] by Sudakov, of which possibly the most well-known one is
the Expander-Mixing Lemma. Moreover, a connected k-regular graph is a Ramanujan graph if
[Apen| < 2vk — 1, which is for instance the case for H(4,2,1). Ramanujan graphs are known to

f3

be great expander graphs, which again have many applications (see [20]).

Since we know that penabsolute eigenvalue of regular graphs is either the smallest or the second
largest eigenvalue, we also state some applications of the second largest eigenvalue of the adjacency
matrix. With this eigenvalue, the algebraic connectivity can easily be calculated for regular graphs,
as the algebraic connectivity equals the second smallest eigenvalue of the Laplacian. This value
indicates how well connected a graph is [17]. Lastly, Koolen, Park and Yu in [18] provide a relation
between the smallest and second largest eigenvalue of the adjacency matrix of a distance-regular
graph, and they provide some properties of these graphs using the second largest eigenvalue.

This thesis is structured as follows. Chapter 2 will go over the required preliminaries regarding
distance-regular graphs, with a special focus on graphs from the Hamming and Johnson scheme,
and some preliminaries on binomial coefficients that will turn out to be very useful. Note that
we expect the reader to have some preliminary knowledge on graph theory and eigensystems of
matrices. In the paragraphs above, some motivation was be provided on why the smallest and
penabsolute eigenvalue of distance-regular graphs (or graphs in general) are interesting. We will
focus on the application to the max-k-cut problem, as shown by van Dam and Sotirov in [30], but
more on this will be told in Section 6. Chapter 4 will discuss several results by Brouwer et. al.
[3] about which are the smallest and penabsolute eigenvalues of graphs from the Hamming and
Johnson scheme. This chapter will also provide extra details that were omitted in the original
proofs from [3]. The most important results in [3] only consider large enough values of j !, which
made us wonder if there was something to say about smaller values of j. The short answer is yes,
as we will see in Chapter 5. Chapter 3 will discuss the new computational tool that is used to
come to conclusions about the values of j and to find new conjectures. In Chapter 6, the main
conclusions of this thesis will be stated.

Lastly, it is important to note that proofs with a * are adaptations from or elaborations on proofs
from their cited resources, whereas poofs without a * are constructed entirely by myself.

IThe meaning of this variable j will be discussed in Sections 2.3 and 2.4.
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Chapter 2

Preliminaries

As noted before, some preliminary knowledge on graph theory and eigensystems of matrices are
required by the reader before they continue with this thesis. The basics on distance-regular graphs,
Hamming graphs and Johnson graphs are given in the next few sections, as well as some useful
lemmas and identities on binomial coefficients, which we will start with.

2.1 Binomial coefficients

Binomial coefficients appear in may areas of mathematics. They are often denoted by (Z), which
for integers k,n with 0 < k < n can be interpreted as the number of ways to choose an unordered
subset of size k from a set of size n. Note that all definitions, lemmas and theorems in this section
come form a book by Nienhuys and van Lint [31], unless stated otherwise. We start with some
definitions.

Definition 2.1 (Falling factorial). Let k,n be integers where n > 0, then

n—1
k=] (k—i)=k(k—1)...(k— (n—1)).
i=0
Using the definition of a falling factorial, we can provide two definitions for a binomial coefficient.
Definition 2.2 (Binomial coefficient). Let k,n be integers, then

n! k

" 0<k< n-
(") =< kl(n—k)! Osksm, _ o Bzl
k 0 else 0 else.

Note that this definition could be extended to complex numbers n, but in this thesis, only integer
values of n are needed so this definition suffices. On the next few pages, we will list some lemmas
on binomial coefficients that will be useful later.

Lemma 2.1 (Pascal’s identity). For integers n,k >0, it holds that (}) = (";1) + (Z:})

Proof. We have

(n; 1) + (Z: D = k!(r(Ln—_llz!k)! T _(?)!_(i)i )

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 3




2.1. BINOMIAL COEFFICIENTS CHAPTER 2. PRELIMINARIES

m=1l-(n—k) (nm-1!k
M=kl k=)
n!

" Kl(n—k)!

-(&)

O
Lemma 2.2. For integers a,b,c, it holds that (¢)(°) = () (}29).
Proof. We have
<a) (b) B alb! _ al (a —c)! _ (a) (a - c)
b) \c bla=bcd(b—c)!  (a=b)le(b—c)(a—c)! c)\b—c/)’
O
Proposition 2.3. For integers a, b, c, it holds that (ﬁ) (Z) = (afc) (b_‘i+c),
Proof. We have
(a)(b) a'b! B b! .(baJrc)!( b >(da+c>
c) \a cla=a)lal(b—a)!  cda—0o)l(b—a)l (b—a+c)! a—c c '
O
Lemma 2.4. Let a,b be integers with a,b > 1. Then (}) = %(}~}).
Proof. We have
(a) B al B ala —1)! _a (a - 1)
b bla—b)! bbo—D((a—1)—(b-1) b\b-1)
O

Lemma 2.5 (Vandermonde identity). For integers n >0 and b > a > 0, it holds that
" /a\ (b—a A
E/J\n—k) \n/)
k=0

Proof. Say there are b people of which a are women and b — a are men. The number of ways to
construct a team of n members from these b people is (g) This is the same as first choosing k&

women and then choosing n — k men, where we sum up over all possible divisions of men and
women, 0 k = 0,...,n. This gives us >, _, (Z) (Z:‘]lq) possible ways to construct our team, so this

sum must be equal to (). Note that the terms with k > a give a zero term on the left hand side,

which does not change the conclusion. O

Lemma 2.6. Let n,k > 0 be integers. We can generalize Definition 2.2 for negative values of n
by writing (3) = (—1)k(”+5_1).

Lemma 2.7. Let n > 1 be an integer. Then > ._(—1)*(}) = 0.

Note that in the following proof, the supporting text for going from line [ to line [ + 1 is put after
line [ + 1. This notation is used throughout the whole thesis.
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CHAPTER 2. PRELIMINARIES 2.2. DISTANCE-REGULAR GRAPHS

Proof. We do this proof by induction on n. For n = 1, we have Z;lg:o(—l)k(}c) =) -
For the inductive step, we have

(o) = 0.

S (y) = (" ) e (p )
k=0 k=0 k=0
Pascal’s identity (Lemma 2.1) applied
B 1nn—l = 1 n—1 10n—1 — )+ n—1
() e () () B ()
shifted the index of the second sum
=0
induction hypothesis applied

2.2 Distance-regular graphs

Distance-regular graphs are regular graphs that have some additional symmetry-related properties.
They were introduced by Norman Biggs around 1974. A special case of distance-regular graphs,
namely the ones with diameter two, are possibly even more well known, as these graphs are
precisely the class of strongly regular graphs [28]. All definitions in this section come from a suvey
by van Dam, Koolen and Tanaka [28], unless stated otherwise. We will start by giving a definition
of a distance-regular graph.

Definition 2.3 (Distance-regular graph). Let G = (V, E) be a simple, connected and undirected
graph with diameter d. Graph G is distance-regular if and only if there exist integers a;,bj;, c; for
j=0,...,d such that for every pair z,y € V with dc(x,y) = 7, all of the following statements hold:

e y has precisely c; neighbors at distance j — 1 from =z,

e y has precisely a; neighbors at distance j from x,

e y has precisely b; neighbors at distance j + 1 from z,
where dg(x,y) indicates the distance between = and y.

By means of example, look at the distance-regular graph in Figure 2.1. If we take x = X and
y =Y, we see that d¢(X,Y) = j = 2. The neighbors of Y at distance j — 1 = 1 from X are
A and B, so we should have co = 2. Vertex Y has no neighbors at distance j = 2 from X,
so we should have a; = 0. Lastly, the neighbor of Y at distance j +1 = 3 from X is F, so
we should have by = 1. Since there is only one pair of vertices at distance two, up to graph
automorphism, we conclude that this holds for all vertices at distance two. We could do this for
distances zero, one and three (which is the diameter) as well, and we get the intersection numbers
Co :O,CLO :O,bo :3,61 = 1,@1 :0,b1 :2,63 :3,(13 =0 and b3 =0.

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme )



2.2. DISTANCE-REGULAR GRAPHS CHAPTER 2. PRELIMINARIES

Figure 2.1: A distance-regular graph.

Next, we will note some (trivial) properties of distance-regular graphs. For every distance-regular
graph G, we have

e ( is regular with valency by, which will also be denoted by k,
® a;+bj+cj=~Fkforevery j=0,...,d,
¢ by=0,c0=0,a90=0and c; = 1.

The array {bg,...,b4q—1;¢1,...,cq} is called the intersection array of a distance-regular graph.
Note that we do not write by and cq since they are always equal to zero, and we do not write the
a; since they can be calculated with the formula a; = k — b; — ¢; = by — b; — ¢;. By putting the
intersection numbers in a matrix, we get the intersection matrix R, which looks like

0 by
c1 ar b
R= c2 Gz ;
ba—1
Cd Qq

where the empty spaces are filled with zeros.
Now let G; = (Vj, E;) be the distance-j graph corresponding to G, that is,
V;=V and E;={(v,y) € V? such that dg(z,y) = j}.
Note that G; is regular, but not necessarily distance-regular. If we define G;(x) for x € V' as the

graph induced on the vertices in V" at distance 1 from z (so at distance j from z in G), we get that
the number of vertices in G,(x) is constant for every = € V. This follows from induction, since

bik;
ko = [Vay@)| =1forevery z € V. and  kiy1 = CZ “fori=0,...,d—1. (2.1)
i+1

The right equality can be derived from the so-called distance-distribution diagram, which is shown
in Figure 2.2.
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CHAPTER 2. PRELIMINARIES 2.2. DISTANCE-REGULAR GRAPHS

Figure 2.2: The distance-distribution diagram.

This means we have |V| = ko + k1 + -+ + kq and by formula (2.1) we have k;y; = Cf’?:;?il.

Furthermore, we know the b; are decreasing and the ¢; are increasing in ¢. This is summarized in
the following lemma.

Lemma 2.8. We have bg > by > --- > by_1 and c1 < cg < --- < ¢q.

Proof. Let §(z,2) =1, §(z,y) =i —1 and 6(x,y) = i for some i. The ¢;_1 neighbors of y that are
at distance i — 2 from z are also at distance i — 1 from x, so ¢;_1 < ¢;. The proof on b; is similar
and is left to the reader. O

We noted that the graphs G; are regular for all j. As mentioned in the Introduction, this means
that the largest eigenvalue, also in absolute value, is equal to the valency of the graph, which is
bg = k. A theorem with proof summarizing this result is provided below.

Theorem 2.9. [23] Let G = (V, E) be a simple, undirected graph. The largest eigenvalue of G
in absolute value equals the mazimum degree if and only if G is reqular. If this is the case, then
the eigenvector corresponding to this eigenvalue is the all-one vector and the largest eigenvalue in
absolute value is also the largest eigenvalue, absolute value omitted.

Proof*. Let V = {1,...,n}. Furthermore, let A be the adjacency matrix of graph G, let das
be the maximum degree and let \,,,. the largest eigenvalue of A in absolute value, where v =
(v1,...,vy) is the eigenvector corresponding to Az First assume G is connected. Let j =

argmax|v;|. With N(j) we denote the vertices in the neighborhood of j. We have
1<i<n

Maal log] = 1(A0);1 = | 37 i < 3 Joil < deg(h) [oj1 < dimas 03],
ENG) | iENG)

S0 |>\mam| < dmam~

Thus, if we assume Aoz = dimaz, we need both deg(j) = dimqr and v; = v; for all i € N(j).
Repeating this argument for all ¢ € N'(j) gives that all neighbors of i also have degree d,q, and
eigenvector entry v;. If we continue to repeat this process until all vertices of G are covered, we
get deg(i) = dpqs and v; = v; for all ¢ € V. This means G is regular and we have (up to a
constant multiple) that v = (1,...,1).

Now assume G is not connected and has m connected components. Let the vertex sets of these
components be V;, such that V = V;U...UV,,, where U indicates a disjoint union. Let j, =

argmax |v;|. By the same argument as before, we need deg(ji) = dmar and vj, = v; for all
1<i<n, i€V
i € N(jg) and 1 < k < m in order to satisfy A\paz = dmaz- Repeating this argument until all
vertices of Vj, are covered for every 1 < k < m gives that G is regular with degree d,,,4,,. Moreover,

we can choose v = (1, ...,1).

On the other hand, if we assume that G is regular, we get deg(i) = dyq. for all ¢ € V. This
means A-(1,..., )T =dyae-(1,...,1)T, 80 dnas is an eigenvalue with corresponding eigenvector
(1,...,1). Together with |Anaz| < dmasr from above, we know that dy,q. is the largest eigenvalue
in absolute value. Note that it also is the largest eigenvalue, absolute value omitted. O

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 7



2.3. HAMMING GRAPHS CHAPTER 2. PRELIMINARIES

Moreover, the multiplicity of the largest eigenvalue is equal to the number of connected components
of the graph [6, Prop. 1.3.7]. We end this section with a remark on the number of distinct
eigenvalues of the adjacency matrix of a distance-regular graph. For a general graph G, the
following lemma holds.

Lemma 2.10. /28, Prop. 2.5] Let G = (V, E) connected with diameter d, and let A\g < -+ < Aa
be the distinct eigenvalues of the adjacency matric A of G. Then d+1 < A+ 1, where A + 1 is
the number of distinct eigenvalues of A.

For distance-regular graphs, the inequality sign changes to an equality sign, and we know the
values of these distinct eigenvalues.

Lemma 2.11. /28, Prop. 2.6 and 2.7] Let G = (V, E) connected and distance-reqular with dia-
meter d, and let \g < --- < Aa be the distinct eigenvalues of the adjacency matrix A of G. Then
d+1=A+1, where A+1 is the number of distinct eigenvalues of A. Moreover, the d+1 distinct
eigenvalues of A are precisely the eigenvalues of the intersection matrix R.

The multiplicities of these eigenvalues in A can be calculated with Biggs’ formula, see [28,
Thm. 2.8].

2.3 Hamming graphs

One well-known family of distance-regular graphs with classical parameters is the family of Ham-
ming graphs. Let ¢ > 2 and d > 1 be integers, and let @ be a set of size q. The Hamming graph,
denoted by H(d,q,1), is the graph with vertex set Q¢ where two vertices x,y share an edge if
their Hamming distance equals one. That is, when the coordinates of x and y differ in exactly
one place. More generally, the Hamming scheme H(d, ¢) can be seen as the collection of graphs
H(d,q,j) with 0 < j < d. These graphs have vertex set Q% where two vertices x, y share an edge if
their Hamming distance equals j. In terms of the previous section, it means that if G = H(d, ¢, 1),
then G; = H(d, q,7). Note that H(d, g, 1) is distance-regular, but by Section 2.2, H(d, ¢, j) might
not be if j # 1.

One example of a Hamming graph is H (3,2, 1), which looks like a cube as can be seen in Figure
2.3 on the left. The same figure displays the Hamming graph H(3,3,1) on the right. Note that
we provide examples for small d and ¢ since |V| = ¢¢, so the number of vertices of graphs from
the Hamming scheme grows rapidly with d and q.

(1,2,2) (2,2,2)

(1,1,2) (2,1,2)

AA}!A(A\
AN
A&{AV \‘A‘{AVA

27| VA}{AVA\‘A‘ |
AN \‘AXAVA\«
N4 N1 \ 7
‘\V:( \v 12X

VA7 AVL
N

| |\
/\V\V\V\V\

(1,2,1) (2:2,1)

(1,1,1) (2,1,1)

Figure 2.3: Left: The Hamming graph H(3,2,1). Image taken from [22]. Middle: The Hamming
graph H(3,3,1). Image taken from [32]. Right: The Hamming graph H (5,4, 1). Image taken from
[37].
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CHAPTER 2. PRELIMINARIES 2.3. HAMMING GRAPHS

Let x be a vertex of H(d,q, j). Since the coordinate of = has d entries, this graph has diameter d.
Furthermore, it is regular of degree k; = (‘;) (¢ —1)7. This is because if we want to go from vertex
x to some vertex that differs exactly j places with x, we need to choose j out of d places in the
coordinate of = to differ, and for each of these places we can choose one of ¢ — 1 values that are
different from the value it had in x.

The intersection array of the Hamming graph H(d, ¢, 1) is also quite intuitive:

Lemma 2.12. [/, Thm. 9.2.1] The intersection numbers of the graph H(d,q,1) are

bj=(d—j)(g—1) and c;=j for 0<j<d.

Proof. Let x,y be vertices with Hamming distance j. To go from y to some vertex with Hamming
distance one to y and j — 1 to z, we choose on of j places in which the coordinate of y differs from
2 and change it to the value it has in z, so ¢; = j.

To go from y to some vertex with Hamming distance one to y and j + 1 to x, we first choose
one of the d — j places in which the coordinate of y matches with . For every place, there are
g — 1 values that are different from the value it had in y. This results in (d — j)(¢ — 1) options, so

bj = (d—J)(g—1). O

Lastly, we write down the formula for the eigenvalues of a graph from the Hamming scheme, as
we will need this later on. For the sake of completeness, we also write down the multiplicity of
every eigenvalue in the next two lemmas. Note that a P-matriz corresponding to a scheme is
the matrix such that its columns correspond to the eigenvalues of the adjacency matrices of the
corresponding graphs in the scheme.

Theorem 2.13 (Eigenvalues of graphs from the Hamming scheme). [1, ITI, Thm 2.3] Let H(d, q)
be a Hamming scheme. Then the eigenmatriz P of H(d,q) has entries P;; = K;(i), where

K;(i) = Ej:(—Dh(q -y (;L) (Jd—_i)

h=0
for 0 <i,j <d. Thus, the eigenvalues of graph H(d,q,j) are the values in column j of P.

Lemma 2.14. [30, p. 229] For 0 < i < d, the multiplicity of the i"* eigenvalue of the graph

H(d,q,j) is given by
d A
m; = <z> (g —1)".

Note that the first column of P equals (1,...,1)T, since K(i) = (—1)%(q — 1)0(3) (do_i) =1 for
all 0 < i < d. Also note that the first row equals (k,...,kq), since K;(0) = (¢ — 1) (‘;) =k
for all values 0 < 5 < d. Lastly, we know from Theorem 2.11 that the eigenvalues in the column
corresponding to j = 1 are all distinct.

As we noted in the Introduction, we wish to find the smallest and penabsolute ' eigenvalue of
the graphs H(d,q,j). In other words, we wish to know, for given d,q, j, the values of i, and
ipen such that K;(imin) < K;(i) for 0 < i < d and |K;(ipen)| > |K;(7)] for 1 < i < d. The
last inequality excludes ¢ = 0, since we have shown in Theorem 2.9 that the valency of a regular
graph (which is k; for H(d,q,j)) is the largest eigenvalue, also in absolute value. Results about
the values of 4., and ipen for given d, ¢ and j are provided in Sections 4.1 and 5.1.

1Recall that by ‘penabsolute’, we mean ‘second largest in absolute value’.

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 9



2.3. HAMMING GRAPHS CHAPTER 2. PRELIMINARIES

Example. Consider the Hamming scheme H(7,3). For the valencies of the distance-j graphs,
we have

d 4 ™ .
k; = (j)(q 1)) = <j)237 so (ko ki,...,kr) = (1,14, 84,280,560, 672, 448, 128).

The intersection array can be calculated with Lemma 2.12:
{bo,. .. ba—1;¢1,...,cq} ={14,12,10,8,6,4,2;1,2,3,4,5,6,7},

and the intersection matrix R is

0 14
1 1 12
2 2 10
3 3 8
R= 4 4 6
5 5 4
6 6 2
T

The eigenvalues of R are {14,11,8,5,2, -1, —4, =7}, all with multiplicity one. The P-matrix of
H(7,3) looks like

1 14 84 280 560 672 448 128]
1 11 48 100 80 —48 —128 —64
1 8 21 10 -40 —48 16 32
p_ |t 5 3 1T -16 24 16 16
1 2 -6 -8 17T 6 -2 8
1 -1 6 10 5 -21 16 —4
1 -4 3 10 -25 24 —11 2
1 -7 21 -35 35 21 7 1]

by Theorem 2.13. Note that the first column is indeed an all-one vector and that the first row is
equal to (ko, ..., kq). Moreover, the second column (so the one that corresponds to j = 1) has all
distinct values, which are precisely the eigenvalues of R.

10 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme
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2.4 Johnson graphs

Another relevant family of distance-regular graphs with classical parameters is the class of Johnson
graphs. Let n,d > 1 be integers. The Johnson graph, denoted by J(n,d, 1), has all d-subsets of
set of size n as its vertices, and two vertices share and edge if they meet in a (d — 1)-set. This
implies that the number of vertices is [V| = (7).

More generally, the Johnson scheme J(n,d) can be seen as the collection of graphs J(n,d,j) for
0 < 7 < d. These graphs have all d-subsets of a set of size n as its vertices, and two vertices share
and edge if they meet in a (d — j)-set. As in the Hamming case, the relation to Section 2.2 is
that if G = J(n,d, 1), then G; = J(n,d, j), and thus J(n,d, j) need not to be distance-regular for
j # 1. Note that the graphs J(n,d, j) and J(n,n—d,j) are isomorphic, so we will assume n > 2d.
If j = d, we call it the Kneser graph K (n,d), so J(n,d,d) = K(n,d).

An example of a Johnson graph is J(5,2,1), which is the complement of the well-known Petersen
graph. This graph is portrayed in Figure 2.4 on the left. The Johnson graph J(4,2,1) is displayed
on the right.

Figure 2.4: Left: The Johnson graph J(5,2,1). Image taken from [33]. Right: The Johnson graph
J(4,2,1). Image taken from [38].

The diameter of J(n,d, j) is min{d,n — d}, which is equal to d since we assumed n > 2d. Fur-
thermore, the graph J(n,d, j) is regular of degree k; = (f) ("j_,d). This is because if we want to go
from some set X to another set at distance j, we first delete j out of d elements in X and then
add j out of n — d elements in X°. This results in a total of (;l) ("j_.d) options, so k; = (;i) ("J_.d).

Like with the graphs from the Hamming scheme, the intersection array of a graph from the Johnson
scheme is quite intuitive:

Lemma 2.15. [/, Thm. 9.1.2] The intersection numbers of the graph J(n,d,1) are
bj=(d—-j)(n—d—j) and c;=j>

Proof. Let X and Y be sets that meet in a (d — j)-set. We have | X|=|Y|=d,|XNY|=d—j
and thus |[X\Y] = |Y\X| = j. To go from Y to some vertex that meets Y in a (d — 1)-set and
X in a (d — (j — 1))-set, we delete one element in Y\ X and add one element in X\Y. There are
[Y\X|-|X\Y|=j? ways to do this, so ¢; = j°.

To go from Y to some vertex that meets Y in a (d — 1)-set and X in a d — (j + 1))-set, we
delete one element in X N'Y and add one element in (X UY)¢. There are |[ X NY| - [(X UY)¢| =
(d—7)-(n—|XNY|—=|X\Y|-|Y\X]|) = (d—j)(n—d—j) ways to do this, so b; = (d—j)(n—d—j). O

Lastly, we provide the formula for the eigenvalues of J(n,d, j) and their multiplicities, as we will
need this later on. For the sake of completeness, we also provide the multiplicity of the eigenvalues.

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 11
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Theorem 2.16 (Eigenvalues of graphs from the Johnson scheme). [1, IIT, Thm. 2.10] Let J(n,d)
be a Johnson scheme. Then the eigenmatriz P of J(n,d) has entries P;j = E;(i), where

J . .
- d—t\[(d—h\(n—d—i+h
Ej(i) =) (=1)7"
wo=3 e (0G0
h=0
for 0 <i,j <d. Thus, the eigenvalues of graph J(n,d,j) are the values in column j of P.
Lemma 2.17. [/, Thm. 9.1.2] For 0 < i < d, the multiplicity of the i eigenvalue of the graph

J(n,d,j) is given by
o (MY _ (™
AN i—1)

Note that, like for the Hamming scheme, the first column of P equals (1,...,1)T, since Ey(i) = 1
for all 0 < ¢ < d. Also note that first row equals (ki,...,kq). The last result becomes trivial
when formula (4.11c) is introduced in Section 4.2. Lastly, we know from Theorem 2.11 that the
eigenvalues in the column corresponding to j = 1 are all distinct.

From Theorem 2.16, we can derive the eigenvalues of Kneser graphs. Recall that Kneser graphs
are graphs from the Johnson scheme where j = d.

Corollary 2.18. [3, Prop. 3.1] The eigenvalues of the Kneser graph are

Pl = (1) (n ;ﬁ - z) (1 <nn—_d2—di>,

Proof*. Recall that the Kneser graph is a graph from the Johnson scheme with j = d. Therefore,

we have
Pl d) = Bull) = Z (1)t (;) (d y h) (n —nd_—2id+ h)

h=0
formula 4.11c applied
(n—d—1
= —]_ g
(=1 ( n—2d )

term for h = 0 is the only nonzero term

:(_1)i<n;f;i).

symmetry applied
O

As for graphs from the Hamming scheme, we wish to know which of the eigenvalues of J(n,d, j)
is the smallest and which is the penabsolute. In other words, we want to find, for given n,d, j,
the values of iy and ipe, such that Ej(im:n) < Ej(i) for 0 <4 < d and |Ej(ipen)| > |E;(7)| for
1 < i < d. The last inequality again excludes i = 0 because of Theorem 2.9. Results about the
values of ¢y, and iy, for given n,d and j are provided in Sections 4.2 and 5.2.

Example. Consider the Johnson scheme J(12,6). For the valency of the distance-j graphs, we

have )
ki = (j) (”J_,d> = (j) . so (ko k1,..., ke) = (1,36,225,400,225, 36, 1).

The intersection array can be calculated with Lemma 2.15:

{bo, ..., ba_1;c1, ... cat = {36,25,16,9,4,1;1,4,9, 16,25, 36},

12 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme
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and the intersection matrix R is

[0 36

4

1 10 25

16

16
18
16

9
16 4
25 10 1

36 0]

The eigenvalues of R are {36,24,14,6,0,—4,—6}, all with multiplicity one. The P-matrix of

J(12,6) looks like

— = = =

Note that the first column is indeed an all-one vector and that the first row is equal to (ko, . .

36
24
14
6
0
—4
—6

225
(0]
5
—15
-9
)
15

400
0
—40
0
16
0
—20

225
—75
)
15
-9
)
15

36
—24
14
—6
0
4
—6

1

-1
1
-1
1

-1

1

k).

Moreover, the second column (so the one that corresponds to j = 1) has all distinct values, which

are precisely the eigenvalues of R.

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme
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Chapter 3

Visualization of P-matrices

When we started reading the paper from Hamming et. al. [3], we noted that the results that are
shared in the paper are quite abstract. The authors of this paper did not include any figures and
very little context to visualize their results, which makes the paper difficult to read. This chapter’s
goal is therefore to create a tool that helps the reader to visualize the P-matrices of Hamming
and Johnson schemes, which in turn helps with the understanding of the results that are studied
in Chapter 4 of this thesis. This tool will also be used to find new results, as will be discussed in
Chapter 5.

The first step in creating this visualization tool is calculating the P-matrix of the desired scheme,
using Theorem 2.13 for the Hamming scheme and Theorem 2.16 for the Johnson scheme. An
example for the Hamming scheme H(5,3) can be seen in Figure 3.1 on the left. Recall that the
columns are indexed by values of j and that the rows are indexed by values of ¢ with 0 <i,5 <d.
Moreover, recall that for this scheme we have d = 5 and ¢ = 3. Next, we are interested in either
the smallest or the penabsolute eigenvalue per column, so we highlight these values, as can be seen
in Figure 3.1 in the center for H(5, 3).

1 10 40 80 80 32 ©123|45
1 7 16 8 -16 -16 0. ... .
g 1 -10 -4 8 %
11 5 -1 8 4| 3ot
1 10 40 80 80 32 1 2 2 8 -7 2 a. ..
17 16 8 -16 -16 1 -5 10 -18 5 -1 Blow.@. .
1 4 1 -106 -4 8
11 -5 -1 8 -4
1 -2 -2 8 -7 2 1 10 40 8 80 32 ©123|45
1 -510 -18 5 -1 2 P @8 : =96 556 6.
1 4 1 18 -4 8 _’%
1 1 -5 -1 8 -4 3@
1 -2 -2 8 -7 2 4 .
1 5 10 18 5 -1 | 50 .

Figure 3.1: A visual representation of the P-matrix of H(5,3). Note that the columns are indexed
by values of j and the rows are indexed by values of 1.

Since we are only interested in the position of the smallest/penabsolute eigenvalue, and since these
eigenvalues can get very large for bigger values of n, d or ¢, it makes sense to replace the entries

14 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme
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20 60 40 5

11 6 =2 = e

e 3 | — %

20 60 40 & 3
11 6 -14 -4 4

1 3 5 -2
/2 6 -4 1

EEEEes
I

[ S ==
N
|
00
(W]
w

-1-3 5 -2 1 20 60 40 & 012134
46 4l 1 00 ¢ =14 24 om. ...
14 B8 6 3| 30 @l
2 1 -3 5 2 3i@. .|. .
1 -4 6 -4 1 4. . .|. .

Figure 3.2: A visual representation of the P-matrix of J(9,4). Note that the columns are indexed
by values of j and the rows are indexed by values of 1.

of the P-matrix by dots. Additionally, we will see in Sections 4.1 and 4.2 that many theorems

assume a bound on j, namely 7 > d — % for Hamming and j > % for Johnson. Therefore
it is convenient to place a black vertical line between columns [d — %1 and [d — %] —1 and

between columns [%] and [%] — 1 for the Hamming and Johnson scheme respectively.
To finish up we add headers, and this produces a nice visual representation of the information
that we need from the desired P-matrix. This can be seen in Figure 3.1 on the right for H (5, 3).
In Figure 3.2, we provide an additional example for the Johnson scheme J(9,4). Recall that for
this scheme we have n =9 and d = 4.

The code used to create this visualization tool can be found in Appendix A. The rest of this thesis
will include several visualizations of the form on the right in Figures 3.1 and 3.2 to help clarify
the theorems shared in this thesis.
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Chapter 4

Existing results

In this chapter, we will discuss results on the smallest and penabsolute eigenvalue of graphs in the
Hamming and Johnson scheme that were shown by Brouwer, Cioaba, Ihringer and McGinnis in
[3]. Most of the lemmas and theorems in [3] are accompanied by a proof, however, these proofs
often give limited details. Therefore, and for the sake of completeness, I will include (elaborated, if
necessary) proofs for all lemmas and theorems in the next two sections. This chapter also contains
some new results, which can be recognized by the lack of citation. We will start with results
on graphs in the Hamming scheme, after which we will discuss results on graphs in the Johnson
scheme.

4.1 The Hamming case

Since this section is rather long, we start with an overview of the most important results that we
will show in this subsection:

e For j >d— %, with the additional condition that j is even or j = d if ¢ = 2, we have that
K (1) is the smallest eigenvalue. (Corollary 4.13 and Theorem 4.14b)

e For g = 2, we have that |K;(1)| is the penabsolute eigenvalue if j # 4. If j = £, then |K;(2)|
is the penabsolute eigenvalue. (Theorem 4.11 and Corollary 4.12)

e For¢g >3 and j >d— %, we have that |K;(1)| is the penabsolute eigenvalue except if
(g,d,j) = (3,4, 3). In the latter case, |K;(3)] is the penabsolute eigenvalue. (Theorem 4.1/a)

To prove these results, we will need a lot of intermediate steps in the form of lemmas, propositions
and corollaries. Recall from Theorem 2.13 that the formula for the eigenvalues of graphs from the

Hamming scheme is
J . .
N h ol d—1
ki = Y0 a0 () (1))
h=0
for 0 < 4,5 < d. This polynomial is also called a Kravchuk or Krawtchouk polynomial, introduced

by Mykhailo Kravchuk in 1929 [34]. There are multiple equivalent ways to write down these
polynomials. Three of them are provided in the following lemma.
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Lemma 4.1 (Equivalence of Kravchuk polynomials). [3, p. 92] The following three expressions
for the Kravchuk polynomials are equivalent:

K1) = Ej:(—l)h(q— 7" (;) (jd__;) (4.1a)

h=0
= ;(—Q)h(q —1)ih (2) (;l - Z) i
zg(_nhqj—h (Jd—;) <d—2+ h>. 1o

Proof. The first expression follows from Theorem 2.13. We start with showing that the third
expression is true.

) =311y (h) (Jd - 2)

S (80 ) ()

R

change of summation
ii Ji=hgh J=U\(d—i
— h J\j—lI
mterchange names of [ and h
S S () ()6
h=0 =0 h j=l=h
Lemma 2.2 applied
ZJ: ek (4 z’“: N (d—i—j+k
ji—k l k—1
=0 1=0
change of variables k =j — h

J . .
o fd—i\[d—j+k
_ _1\k gk
S (o) ()
k=0
Vandermonde identity (Lemma 2.5) applied

Next, we show that the second expression is equivalent to the third. We have
)it d—j+h\/d—i
0 h j—nh

Z h7h<d 2+h)(_1)‘j_h<j—h;ii}:1+z’>

h=0

MQ

>
Sl

Lemma 2.6 applied
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l j—h—=1
h:O
Vandermonde identity (Lemma 2.5) applied

e T@%&”@Qiiﬁ

Lemma 2.6 applied again

-sxere (G G0)

Proposition 2.3 applied

s ()6

interchange names of [ and h

o (S (7)) ()G

change order of summation

ot (3)(G0)

gag.

>
I

MQ

blnomlal formula applied

We start with some properties of Kravchuk polynomials that will be helpful in later proofs.
Lemma 4.2 (Kravchuk symmetry 1). [3, p. 92] Let K;(i) be a Kravchuk polynomial. Then

K;(i) K;(j) '
(@=1i(9)  (@—1()

Proof.

LK@ S~ a " WG
o )
expression (4.1b) applied

)
_i(lgC])h(h()d()i)

h=0 h

Lemma 2.2 applied

:mi}ia‘} (qu>h (;L()Z()il) .

since <;L) (‘;L) =0 for h > min{%, j}
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Similarly, we get

which proves the statement. O

Lemma 4.3 (Kravchuk symmetry 2). /3, p. 92] Let K;(i) be a Kravchuk polynomial. Then
Kaj(i) = (=1)" (g = )T K;(d — ).

Proof. In this proof we write K;(i,d) instead of K;(7) to emphasize the value of d. This will
be useful when applying 1nduct10n on d later on. We first prove the statement for j = 0 and
j =d TForj =0, weget Kg(i) = (=1)%(q — 1)97% and Ko(d — i) = 1, so indeed K,(i) =
(—1)i(q—1)¥"Ky(d —1). For j = d, we get Ko(i) = 1 and K4(d—1) = (—1)?"*(g — 1), so indeed
Ko(i) = (~1)i~4(q — 1)~ Kg(d — i)

Now assume 0 < j < d. For K4_;(i,d) we have

—Jj .
d—i
d] h
Kot = (W55

expression (4.1a) applied

-Zeva-en () (655
28 q—ldﬂ‘-h<2><(d<fz>?;ih>

Pascal’b triangle (Lemma 2.1) applied
(d-1)=(-1)

= Z (=1)"(g -l Hmumh=h (2) ((d ~ Sl— (13?—;) - h)
o ()50

(d=1)—j ; 1)
=K-n-g-n@d=D+=1) >, (-Dq-nr7" (2) ((d(il 1)1_)3' - h)

h=0

g tpen (@D =i (=1 =iy
en=d—goen (0070 ) = (07
=K(g-1)-(-1(i,d = 1) + (¢ = DE(g-1)—;(i,d = 1).

Next, we look at K;(d —i,d):

- =yevra-v( ) 1)

expression (4.1a) applied

(G

" i(—l)h(g ()

h=0

OM~
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Pascal’s triangle (Lemma 2.1) applied
J . )
(d—1)—1i )
=K;((d-1)—i,d—1) - 1)
(@=n=id-n+ - (0T
I (d=1)—i\  [((d—1)—d\
1fh0,then( b1 = 1 =0

—K;((d—1)—i,d—1) + S(—l)(—l)h(q —pl-H= <(d 72) B Z> <(j _ ;) _ h>

h=0
moved the index
=K;((d-1)—i,d—1)—K;_1((d-1) —i,d—1).
Now we use induction to finish the proof. For d = 0 (and thus ¢ = j = 0), we have
Ko(0,0) = (~1)%(g — 1)Ko (0,0) = Ko(0,0).
Using the induction hypothesis K 4_1y_;(i,d — 1) = (=1)" 77 (¢ — 1)@V K;((d— 1) —4,d — 1),
we get that for 0 < i < d we have

Ka-j(i,d) =Kg—1)—(j-1)(i,d = 1) + (¢ = 1) K(4-1)—; (i, d = 1)
previously derived formula applied
=(=1)" 7 g - D)K. ((d - 1) —i,d - 1)
+ (1) (g - D)TTKG((d— 1) —i,d — 1)
induction hypothesis applied
—(—1) g = 1) (K (d = 1) — i, d — 1) — K, ((d — 1) —i,d — 1))
=(-1)" (¢ = D) K;(d — i, d)

previously derived formula applied

and for i = d we have Ky_;(d,d) = (—=1)4~ J(dfj) and K;(0,d) = (g — 1) (?), S0
Kq_j(d,d) = (-1)" (¢ — )" K;(d - d,d).
O

Lemma 4.4 (Kravchuk symmetry 3). /3, p. 94] Let K;(i) be a Kravchuk polynomial. If ¢ = 2,
then A
Kj(d—i) = (=1) K;(i).

Proof. Using expression (4.1a) and rewriting, we get

oGl

Il
Mb
O
/\
\_/'
~
(5
| .
>
~—

§<—1>”(?_2) (+)

change of variable k =j — h
= (—1) K;(9).
O
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Lemma 4.5 (Kravchuk recursive identity). /3, Prop. 2.1] Let K;(i) be a Kravchuk polynomial
and let 1 <i<dand1<j<d. Then

(¢ —=1(d—=)K;(i+1) = (i + (¢ = D(d — i) — ¢j) K; (i) + iK;(i = 1) = 0.

Proof. First, we look at the case j = d. We have K4(i) = (—1)*(¢ — 1)%, so we need to show
(=D (d=)(=)" (g=D)" " = (i+(g=1)(d =) = i) (1) (¢= 1) +i(=1)"(g- )" = 0.

Dividing by (—1)¥(g — 1)?~% on both sides and expanding the brackets gives that this expression
is indeed equal to zero, so we have shown the statement is true for j = d.

Now assume 1 < ¢, j < d. Like before, we write K;(¢,d) instead of K; (i) if we want to emphasize
the value of d. From the binomial formula, we know

(1+$)i:i<2>xh and (1 +x)¢ d— 1,( ) |

h=0 k=0

M

where on the right we did a change of variable k = j — h. Now let [#"]f(z) be the coefficient of
2" in the power series expansion of some function f(z). Then

(2) =[2")(1+2)" and (f ~ ,i) = [/ + @) (4.2)

Furthermore, for polynomials f and g we have

2] (f(2)g(x)) = D _[e"]f () - [/ Mg(x), (4.3)

and for any real constant a we have

a"[z"]f(x) = [2"]f(az). (4.4)

Furthermore, let f(z) = ;" axz® be a polynomial with aj, € R. Then f/(z) = > ;- agkz®!
and
[2*]f' (@) = (k+ Darsr and  [¢*Ff(z) = arpa. (4.5)

We use this notation and these expressions to rewrite K; (i, d) as the coefficient belonging to 27 of
some function in x:

K (i) hzi%(l)h(q ()52
formula (4.1a) used

=Y D"+ @) (g = )T )
formula (4.2) used

11— 2)" [ 7)1+ (¢ — 1))

i M“

hne (4.4) used

=[] (1 =)' (1 + (¢ = D))
line (4.3) used
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We let g; 4(z) = (1 — 2)"(1 + (¢ — 1)z)47%, so that K;(i,d) = [27]g; 4(z). Taking the derivative of
g w.r.t. x, we get
Gha(z) =—i(1 =) 11+ (¢ = D) "+ (1 —2)'(d —i)(g — (1 + (¢ = D)~
=—igi-1,a-1(z) + (d—i)(g — 1) gia—1(),
and thus
[mj]gg,d(x) = —ife?]gi—1,a-1(2) + (d — i)(q — 1)[2"]9i,4-1(2)
G+ DI Jgea(z) =~ lgicr aa(z) + (4~ i)(q — Do goar (2
formula (4.5) used
(J+1)Kj1(i,d) = —iK;(i —1,d — 1)+ (d —i)(¢ — 1)K, (i,d — 1).

Shifting the variable j in the above expression gives

JK;(i,d) = —iK;_1(i—1,d— 1)+ (d—i)(¢g — 1) K;_1(i,d — 1). (4.6)
Furthermore, we have
K;(i,d) = [2/](1 = 2)' (1 + (¢ = D)™
= [/](1 = 2)' (1 + (¢ = Do) (1 + (¢ = )a)
= [27] ((1 —2)' (14 (¢g— D) 4+ (¢ — Dz(1 —2)' (1 + (¢ — 1)x)d7i71)
=[2](1 —2)'(1+ (¢ — D2)" " + (¢ — Da7)z(l —2)"(1 + (¢ — Dz)**
= [@](1—2)’'(1+ (¢ = D)+ (g = D1 = 2) (1 + (¢ = D)=
=K;(i,d—1)+ (¢—1K,;_1(i,d—1)
and
K;(i+1,d) = [27](1 — )" (1 4 (¢ — 1)z)?*!
= Pl =2) (4 (= D))
= ()1~ 2)(1+ (g — Do) — [#9]a(1 —2)'(1 + (g — D)
=1 —2)' (14 (¢— Do) = (1 —2)" (1 + (¢ — D)
= K;j(i,d—=1) = [/ (1 = 2)" (1 + (¢ = D)
= Kj(i,d -1) - Kj,l(i,d -1,
K;(i,d) — K;(i +1,d) = K;(i,d — 1)+ (¢ — 1)K;_1(i,d — 1)
— K;(i,d—1)+ K;_1(i,d—1) (4.7)

=qK,;_1(i,d —1).
Bringing everything together, we get
JEK;(id) = —iK; 1 (i —1,d= 1)+ (d—i)(¢ — ) K;1(i,d — 1),
formula (4.6) used
0=qjK;(i,d) + qiK;1(i = 1,d = 1) — q(d — i)(q¢ — 1) K;—1(i,d — 1),
multiplied with (—q)
0=qjK;(i,d) + i (K;(i — 1,d) — K;(i,d)) — (d —i)(q — 1) (K (i, d) — K;(i + 1,d)),
formula (4.7) used twice
0= (d—)(q— 1) (K; (i + 1,d) — K;(is d)) — (i — ) K50y d) + i (i — 1,d),
0=(q—-1)d—-i)K;(t+1,d)—(i+(qg—1)(d—1i)—qj)K,;(i,d) +iK;(i —1,d).
O

22 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme



CHAPTER 4. EXISTING RESULTS 4.1. THE HAMMING CASE

Next, we start working our way towards the results that were mentioned in the beginning of this
section. Note that the bound j > d — % that appears in these results finds it origin in the
following lemma. Moreover, it is assumed that d > 1 or d > 2 if K;(1) respectively K,(2) are
mentioned in the lemma below, since i < d in K;(4).

Lemma 4.6. [3, Prop. 2.2] Let ¢ > 2 and 0 < j < d. Then

(a) K;(1) <0 if and only if j > d — 4=,
(b) K;(2) = K;(1) if and only if j =0 or j = d — 4L,

(c) K;(2) > K;(1) if and only if j > d — =2

(d) K;(2) = =5 K;(1) if and only if j = (d— 1)(1— L) or j = d,
(e) Ifd— %2 < j <d, then |K;(2)| < |K;(1)].

Proof*. (a) We have d — % < j, which can be rewritten to (¢ — 1)d — ¢j + 1 < 0. Since
Ki(5) =(q—1)(d—j)—j=(¢g—1)d — qj, this means K;(j) <0< d — Q < j. From Lemma
4.2 we know that K (i) and K;(j) have the same sign, so K;(1) < 0 < Kl( j) < 0.

(b) On the one hand, expression (4.1a) gives us

Ks(j) = iH)h(q - (2) (;l - 2>

hz(zq 1? (d;]) ~la=Ditd =)+ @)

= Sl 1= §)d~§~ 1)~ (g~ )~ ) + 3G ~ 1)

Assuming K;(2) = K,;(1), we also have
()
d
()

Lemma 4.2 applied

Ko (j) =K;(2) ;% (g — 1)*7

d
=Kj(1)Q(q — 1)

(5)
assumption K;(2) = K;(1) applied
6 |
=§i§(q - 1)3‘1K1(j)§§§(q —1)*

Lemma 4.2 applied again
1 .
=5(d - D)(q = 1)K1(j)
simplified
1 . .
=5(d=1(g-1) (¢ -1)(d~j)-7).
used expression (4.1a) to calculate K7 (j)

These two expressions for K5(j) are equal if and only if

(a=1)*(d=5)(d=1)=(g=1)*(d=j)j—2(g—D)(d=5)j+i(G—1) = (¢=1)*(d=j)(d—1) = (d—1)(g—1)j,
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so if and only if
J(=la=1*d—j)—2(d=j)lg-1)+(j - 1)+ (d-1)(¢-1)) =0,

so if and only if
j(jg® — dg* + dg — q) = 0.

_d=1

This happens precisely when j =0 and j =d 7

(¢) K1(j) and thus 3(d — 1)(g — 1)K1(j) are linearly decreasing in j. In (b) we derived that
. 1 . . U
K>(j) = 5(g=1)*(d=j)(d—j—1) = (¢ = D(d = 5)i+ 5i( — 1)
1 1

— 3= 0 =)+ (Gla =00 =20 - @05 )i (a1 =1+ g )

thus K5(j) is quadratic in j with a positive leading coefficient. From above, we have that
Ko(j) = 2(d—1)(¢ — 1)K1(j) if and only if K;(2) = K;(1), so if and only if j =0 or j =d — =1

q
by (b). This means that K;(2) > K;(1) if and only if j > d — 4=L.

(d) From (b), we get

Ko() = 5(a— 12— 3)(d—j ~ 1) — (g D)(d ~§)j + 33G — 1.

Assuming K;(2) = =L K;(1), we also have

d
K>(j) =Kj(2)%(q —1)*7
Lemma 4.2 applied
d
= 1) B g1

(5)

assumption K;(2) 71Kj(1) applied

- =
d _ d .
— Yy

(4) (5)

Lemma 4.2 applied again
1 )
=—S(d=1)K1(j)

2
simplified
=~ Sd=1) (g~ 1(d~ )~ j).

These two expressions for K»(j) are equal if and only if
(g—1*d=))d—j—1)=2(¢-1)(d—35)j+i(i —1)=—(d—-1)(g—1)(d—j)+ (d—1)j,

s if and only if

(d=35)((g=1*d~j~1)=2(¢—1)j—j+(d-1)(g—1) =q(d—j)((d~1)(g~1) ~jg) = 0.

This happens when j =dor j = (d—1)(1— %) Because the expression is quadratic in j, we know
there are no more solutions.
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(e) From (a) we have K,;(1) < 0 for d — % < j < d. This means
K2 < [K;(N)] & [K;(2)] < —K;(1).

This is true if both K;(2) > K;(1) and K;(2) < —Kj;(1). The first inequality is true for d — % <
j < d because of (b) and (c). For the second inequality we need Lemma 4.2 again. This gives us

d d
Kz(j)=Kj(2>Q<q—1>2—j and Kl(j)=Kj<1)Q(q—1)1‘j

)
and thus

Ki(2) < K1) & () < —g(d— 1) - DEG)

From (b), we know that K3(j) is quadratic in j with a positive leading coefficient and K (j) is
linear in j. This means that K»(j) + 3(d — 1)K;(j) is quadratic in j with a positive leading
coefficient, so

Kalj) < —3(d=DEi) for (d=1)(1- ) <j<d

and thus in particular for d — %1 < j <d. Because ¢ > 2, this also means

. 1 . d—1 .
K2(J)§—§(d—1)(q—1)K1(J) for d—TSJSd,

which concludes the proof. O

The results of the previous Lemma (except (d)) are visualized in Figure 4.1.
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Ki()

K, (1)

Kj(2)

Figure 4.1: Summary of the results of Lemma 4.6.

Next, we prove three lemmas and a proposition that are necessary for proving Theorem 4.11.

Lemma 4.7. [3, Lemma 2.3] Let K;(i) be a Kravchuk polynomial. Then

00 < -0 (9).

Proof*.

15 (0)] =

S (3) (1))

expression (4.1a) applied

o))

triangle inequality
i . ,
. i\ [(d—1
o £ ()
hz:% h)\j—nh

ﬁjh>dMMn<dz)O

ji—h
o ()

Vandermonde identity (Lemma 2.5) applied [

26 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme



CHAPTER 4. EXISTING RESULTS 4.1. THE HAMMING CASE

Lemma 4.8. [3, adaptation from Lemma 2.4] Let 1 < i < d and d — % <j<d Ifqj <
2(q—1)(d—i+1), then

[ (4 1) < max{|K; (i — D), [K;(0)]}-

Remark. Paper [3] used the constraint ¢j < 2(q — 1)(d — 7) instead of ¢j < 2(¢ —1)(d — i+ 1).
We changed it, since our version is more convenient to use in the proof of Theorem 4.14a.

Proof*. For the sake of convenience, write a = (¢—1)(d—i+1) and M = max{|K;(i—1)|,|K;(?)|}.
We have
(a—(q—1)K;(i+1)=(i—qj+a—(q—1)K; (@) —iK;(i — 1)
Lemma 4.5 applied
la— (g = DIIK;(i+ 1) = — qj +a—q+1)K;(i) —iK;(i —1)]
absolute value taken on both sides
<li—qj +a—q+ U[K;(@)] + | K;(i — 1)
triangle inequality applied
<(li—¢gj+a—qg+1]+i)M.

The conclusion follows if |i —gj+a—qg+ 1|+ <|a— (¢ —1)]. We have
a—(g-1)=(¢-Dd-i+1)=(g-1)=(¢g-1)(d-1)>0

and

) . . d—1 . . .
1—q]—|—a—q—|—1§z—q<d—T)-l-(q—1)(d—1—|—1)—q—|—1:—z(q—2)—1<—z(q—2)§07

so the conclusion follows if
—i+qgj—a+qg—1+i<a—q+1

This happens if ¢j < 2a — 2¢q + 2 < 2a, which was one of the conditions from the lemma at
hand. O

Proposition 4.9. Let 1 < i < d and d — % <j<d Ifqg <2q-1)(d—1i+1), then
[K(2)| < [K;(1)].

Proof. For i = 1 this is obvious, so let ¢ > 2. By Lemma 4.8 and using induction on i, we can
state
K5 (6)] < max{| K (i — 2)|, [K;(i — D[} < ... <max{|K;(1)],[K;(2)]}.

The right hand side is equal to |K;(1)| by Lemma 4.6e. O

Lemma 4.10. [3, Lemma 2.5] Let ¢ =2, j < g and 0 < i < d. Then

NI iy 1
(j1>§;<2g)<jdzg>§<dj )

Proof*. We prove this lemma by induction on d. For the base case d = 2 (and thus j = 0, since
j <4, andi=1) we have

o= (1) > () (Z2) < (0) =2

g=0
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5]

.

because the sum is equal to 1. By the induction hypothesis, which we can apply for ¢ < d — 1 and
g=0
j—1

j<%,wehave
d—2\ _ P\ (d—i=1) _(d-2)
i-1) == \2g)\j-29 )=\ j )
d—2) _ ij i\(d-i-1Y) _(d-2
i=2) " 29)\i—29—-1) = \i—-1)

9=0

Note that for j = 0, the statements are trivially true and note that for g = 2 we have (/) (*5") =
g

‘ : j—2g—1
(%) (d_l_l) = 0, so the sum in the second inequality can be rewritten such that we get

5]

(e (< (1) e

5]

(=5 () ()= (00)

Using the induction hypothesis and Pascal’s formula (Lemma 2.1), we get

-2 -2 L] ) —1—1 L] ) —1—1 -2 -2
Go0)+(25) = ;(w)(dj—zg)+;<2g>(jd—2g—1>§ (7))

-1 Sy —i ~1
<? - 1> = ; <2g) <J’d— 2g> = (d j >

which is what we needed to show. We noted that we can’t use the induction hypothesis if i = d—1,
since the Lemma we want to prove holds for 0 < ¢ < d, so we need to prove this case separately.

For i = d — 1, the claim is
(o) =2 ()0 ) < ()
. < . < N
J—1 29 J—2g J

which is true because the sum equals (dgl) if j is even and (jj) if j is odd. We also noted that

%, since the Lemma we want to prove holds for

7 < g. This case will be shown in the proof of Theorem 4.11a. O

4

[E—

o

g:
we can’t use the induction hypothesis if j =

Theorem 4.11. [3, Thm. 1.2] Let ¢ = 2. Then

(a) if j # 4, then |K;(i)| < |K;(1)] for all 1 <i<d—1,
(b) if j =2, then K;(1) =0 and |K;(i)| < |K;(2)| for all1 <i<d—1.
Proof*. Firstly, note that by Lemmas 4.3 and 4.4, we have
Kq-j(i) = (=1)" 7 K;(d — i) = (=1)'K; (). (4.8)

a) This implies |K4—; ()| = |K;(i)], so we can limit our proof to the case j < §. Using ¢ = 2 an
This implies | K4—; (i K;(i limit our proof to th j < &. Using ¢ = 2 and
expression (4.1a) , we get

K;(1) = é(l)hcl) (j_i) = (dj 1) - <?_ 1) > 0.
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If we then also use Vandermonde’s identity (Lemma 2.5) in the last step, we get
K =3 () (4
(s _
I 4 h)\j—h

()6 - £ (=)

1
M- L

h=0
h even h odd
J . J
i d—1i i d—1
(h> <J’ - h) (h> (J - h)
hh;/gn h=0

This means we have

(520 =25 () () = 2(5)
()= woe() =)

formula derived above applied

)

(o)== wo < ()-(00)

Pascal’s formula (Lemma 2.1) applied

)
—K;(1) < K;(i) < K;(1)
formula derived above applied
)
|5 (4)] < [K;(1)]

we had K;(1) >0

and thus

()= () () () @ worswe a

We first finish the proof of Lemma 4.10. For this, we need to show

~1 Ll —i -1
2(?—1)§ 2;(29>(jd—2g)§ 2<dj )

holds for j = 4=1. This is equivalent to showing |K;(i)| < |K;(1)| holds for j = 9>L. Because of

the symmetry (4.8) derived above, we can show the case j = d'gl instead. In other Words we can
show that \K (1)) < |Kd+1( )| holds. Because of Lemma 4.4, we have |K;(d —i)| = |K ()], so
2

<1<

M\&

we may assume
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If gj < 2(q—1)(d —4+ 1), then Proposition 4.9 gives the desired result. We have ¢ = 2 and
j = 4L and therefore need to show that inequality d+1=gj <2(q—1)(d—i+1) =2(d—i+1)
holds. Since d + 1 < 2(d — i + 1) is equivalent to ¢ < %, we have that the inequality holds by
the assumption 2 < < %, and therefore the statement is true.

Since we finished the proof of Lemma 4.10, we can use equivalence (4.9) to conclude |K;(7)|] <
|K;(1)| holds for all j < £ and thus for all j # & by the expression |Kq_;(i)| = |K;()| stated
above.

(b) First, let us prove this statement for odd i. We had
Kas0) = (“1) K 0).

This means that for j = 4 and odd 4, we get Ka (i) = 0, which implies |K% ()] < |K% (2)| for @
odd and 1 <7 < d — 1. To prove the statement for even ¢, we first look at the case ¢ = 0:

Ky(0) = é(—l)hG) (g : h) B (g)

By Lemma 4.5, we get
(d—i)K%(i—Fl) +iK%(i— 1) =0.

for odd i. By taking i = 2h + 1, we get
(d—2h — 1)Kg(2h+2) + (2h+1)K%(2h) =0,
which gives

[Ks@A+1) 2n+1
Ka(2n)]  d-2h-1

The right hand side is less or equal than 1 for 2h < % —1, s0

d—2
[Ka(2h)] < [K4(2)]  for all 1§h§T.
By Lemma 4.4, we have K%(dfi) = (71)%K%(z), so |Ka(d—1)| = \K%(i)|, S0
d—1
[K4(2h)| < [K4(2)] forall 1<h< 5

In other words, we have |K% ()] < \K% (2)] for all i even and 1 < ¢ < d — 1. This, together with
the conclusion on odd ¢, proves our statement. O

Theorem 4.11 left out some interesting observations, which are summarized in the following pro-

position. Note that we are looking for the penabsolute eigenvalue, which is the second largest
eigenvalue in absolute value that is different from |K;(0)].

Proposition 4.12. Let g = 2. Then

(a) if j # §, then |K;(d —1)| = |K;(1)] < |K;(0)] = |K;(d)],
(b) if j =g, then |K;(d - 2)| = |K;(2)| < |K;(0)] = |K;(d),

(c) if d odd, then |K;(d — 1) = |K;(1)] = |K;(2)| = |K;(d— 2)| for j = 451 and j = L.
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Proof. (a),(b) This follows from Theorem 4.11 and symmetry (4.8), which implies |K4—;(3)| =
1B (4)]-

(c) We have |K;(d—1)| = |K;(1)] and | K;(d—2)| = |K;(2)| by symmetry (4.8) as before. Moreover,
by formula (4.1a) and Pascal’s formula, we have

o= (7)) () (D () (- () (1)
e = (177 2(02) + (023).
e = () () ()
() -2+ ()
=)

For j = % we have

1
o &
w‘ |
Al
)
~~
I
RN
Q

For j = % we have

d—2 d—2 d—2
K‘T(Q):(H)_Q(H)Jf(d—&s)
2 2 2
d—2 d—2 d—2
=laz )72 ez ) T a5
2 2 2
symmetry applied

() (%)

=~ Kaa(1).

Thus, indeed |K;(2)| = |K;(1)] for j = % and j = %. O

Figure 4.2 shows some visualizations of P-matrices for ¢ = 2 and 8 < d < 13 where the highlighted
boxes are the penabsolute eigenvalues per column. We also show a result on the smallest eigenvalue
for the case ¢ = 2.

Corollary 4.13. [3, Cor. 1.3] Let ¢ =2 and j > % Then
(a) K;(1) < K;(i) forall0<i<d-1,
(b) K;(1) < K;(d) if and only if j is even or j =d.
Proof*. (a) Note that j > % and ¢ = 2,80 j # g and j > %. By Theorem 4.11a, we have
|K;(i)] < |K;(1)] for 1<:<d-1.

By Lemma 4.6a, we have K;(1) < 0, so K;(1) < K ( ) < —Kj;(1) and thus K;(1) < K;(i) for
1 <i<d-—1. Additionally, we know K,(0) = ( ) >0, so we also have K;(1) < K;(0).
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(b) First, we look at K;(d). By Lemma 4.4, we have

—(9) joddand j <d,
S(d -1 7 odd and j =d,
K50 = (0,0 = (0 (T = .
J (]) jeven and j < d,
1 j even and j =d.
Now we look at K;(1). We have K;(j) = (¢ —1)d—qj = d—2j. Because d—"; < j < d, this means

1

d

()

We can see that for j even we have K;(1) < K(d) and for j odd and j < d we have K;(1) > K;(d).
The only case left is j odd and j = d. In this case we have K4(d) = —1 and

—d < Ki(j) < —1. Applying Lemma 4.2 gives K;(1) =

<;Z) <K;(1)<-

(;l) (d —2j), so

1
d

d
1\ /d—1 d—1 d—1
Ky(1) = —1)" = - =1
=30 () (2n) = (%) - ()
h=0
We can conclude that K;(1) < K;(d) if and only if j is even or j = d. O
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4
0 ..... .. . B 1I. .I 2: ---------- :
i T 1 1 [P 1 21 ) S e -
28 L], . .. 30 . A0 .
3. . .. 4L 5 5@ 2
8. . . . 56 g 6 . .
58....|.. .8 6 . . 7@ .
6®. . .§. .. & 76 . k- -
;Ll—l—l—l—'-l—l—l—lJ gl' 'I 10: :
..... « s s = = = 11'------ ------I
10 . - .
H(9,2) H(11,2) H(13,2)
91234567 891011 0012:’:£15678910111213
0123456789 oL . . . . . e . . . B eSS aaes =1
om____l ___8 AT T T T T | pguaaeagpeeeen)
T T T T  TTTT | 2:. . . . B .. N c) [ I P
2. . .Aam. . . © 38. . ... .. 18....../]-.....8
38 ... .|....H 18 . .. .. .. 5® - - .- .. |-.....8
am. .. .. ... .8 2 ...... . 675 ..............
5. .../]....8 o9&. .. .. ... .. 778. - ... .]--....5
6. . . ... .u 70 . . . . . .. g ..............
78 . . . B T 8. . ... . o ] HIEEE
] o | 2 -~ i NN | NN
98 . . . . [. . . .4 1ol | | 12f | ]
1ue . . . . . [ - of | P pe—

Figure 4.2: Visualization of the results of Theorem 4.11 and Proposition 4.12. The highlighted
boxes indicate the penabsolute eigenvalues per column. The red fields indicate the results of
Theorem 4.11, the purple fields of Proposition 4.12a, the green fields of Proposition 4.12b and the
orange fields of Proposition 4.12c.
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H(10,2) H(12,2) H(14,2)
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Figure 4.3: Visualization of the results of Corollary 4.13. The highlighted boxes indicate the
smallest eigenvalues per column. The red fields indicate the results of Corollary 4.13.

Figure 4.3 again shows some visualizations of P-matrices for ¢ = 2 and 10 < d < 15, but this
time the smallest eigenvalues per column are highlighted. The red fields indicate the results of
Corollary 4.13. Note that when ¢ = 2, we have d — % = %, to the columns on the right side
of the vertical black line correspond to j > %.
Now consider the case ¢ > 3.

Theorem 4.14. [3, Thm. 1.4] Let ¢ > 3 and d — % <j<d. Then

(a) |K;(i)| < |K;(1)] for alli > 1, unless (q,d,i,7) = (3,4,3,3),
(b) K;(1) < K;(i) for all0 <i <d.

Proof*. (a) This proof is quite long, so we will start with an overview of the structure. First, we
will consider the case ¢ = 2, after which we may assume 7 > 3. Then we will do the cases j = d
and j = d — 1, which is where the exception (g, d,,j) = (3,4, 3,3) will arise. Lastly, we consider
the case d — 91 < j < d — 2 that will be split up into two scenarios: if ¢j < 2(¢ — 1)(d — i + 1)
we can use Lemma 4.8 and otherwise we can use Lemma 4.7 to finish the proof.

The case i = 2 follows immediately from Lemma 4.6e, so we may assume 4 > 3 from now on. For
j =d, we have

Ka)) = 3 (<1)"(a - 1)(h) (jj h) — (C1)ig - 1)

This means |K4(i)] = (¢ — 1) < (¢ — 1)%! = |K4(1)|. For j = d — 1, we have

d—1

Ka1(i) =Y (~1)(g - 1) (;) (d f ;i h>

h=0
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a4 v ()4

=(=1)""Yg— 1" (gi —d),
so |Kgq—1(i)| =(¢ — 1)d7i71|qi —d|.

Since j = d— 1, we know d — q L<j=d-1landthusd—12>gq,s0|K; 1(1)] = (¢—1)2(d—q).

We therefore want to show |gi —d| < (¢ — 1)""1(d — q). If we assume ¢i — d < 0, then we need to
show |qi —d| = d — qi < (¢ —1)*"1(d — q), which is equivalent to

d—qi

<(qg—1)"1
74 <(g-1)

The left hand side is negative for ¢ > 2 and the right hand side is positive for ¢ > 2, so this
inequality holds. This means |Ky_1(7)| < |Kq-1(1)| if gi — d < 0. If this is not the case, then
i —d >0, so we need to show |qi —d| = qi —d < (¢ —1)""1(d — q). We have

lgi—dl=qi—d<qi—1)—1<(¢—1)"""<(¢—1)""(d—q),

where the first and the last inequality follow from d — dT < j=d—1. It is therefore enough to
show the middle inequality, so ¢(i — 1) — 1 < (¢ — 1)~

First assume ¢ = 3. In this case, the inequality is false for « = 3 and true for ¢ = 4. Because it
is true for ¢ = 4, it is also true for ¢ > 4, since the left hand side is linear in ¢ and the right hand
side is exponential in ¢. Now assume ¢ = 4. In this case, the inequality is true for i = 3 and by
the same reasoning as above, it is true for all 4 > 3. This means we can conclude it is true for all
combinations ¢ > 4, i > 3.

The inequality g(i — 1) — 1 < (¢ — 1)*~! therefore holds for all pairs (q,i) with ¢,i > 3 except for
(g,%) = (3,3). For this pair, we therefore need to ask ourselves if the inequality |gi —d| = |9 —d| <
4(d 3) = (¢ —1)""1(d — ¢) does hold.

If d > 9, then we want |9 —d| = d — 9 < 4(d — 3), which is true since d > 1. If d < 9, we want
|9 —d| =9—d < 4(d — 3), which is true for d > 5. This meanb the inequality is false for d < 3
and d = 4. For d < 3 and j = d — 1, the inequality d — T < j doesn’t hold anymore, so this
case can be neglected. For the case d = 4, the aforementioned inequality does hold, which means
(g,d,i,7) = (3,4, 3,3) is an exception in our theorem. We can conclude that |Kd,1(i)| < |Kaq-1(1)]
for all ¢ > 1 unless (¢, d,,7) = (3,4,3,3).

Lastly, we consider the case d — % <j<d—-2 Ifqj<2(g—1)(d—1i+1), we can use Lemma
4.9 to conclude |K;(i)| < |K;(1)|. This leaves us the case gj > 2(¢ —1)(d — i+ 1). For K;(1), we
have

K1) = 3 - ”j_h@ (j - i)

h=0

so |K;(1)| = (¢ — ()( ——q) smced—T<jlsequ1valenttoq—1—7<—é. By

Lemma 4.7, we have |K (1) < (g — 1)~ ( ), so it is enough to show that the inequality

(e () (o)
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holds, which is equivalent to
d<(g—1)""""gj — (¢ - 1)d).

To do this, we will first show that the following inequalities (I), (IT) and (III) hold.

(4>3) I ) ) o
2 2 (-t L (- )F L (-1 L (- 1 (g - (g - D).
Inequality (I) follows from j > d — % >d- % = %d + % > %d. Inequality (II) follows from
qj > 2(qg—1)(d —i+ 1), which givesusd —i+1 < 2(511) = %#j < 34. Inequality (III) follows
from gj — (¢ —1)d =q(j —d) +d > g(-+) +d = 1.

These inequalities imply that it is enough to show d < 2%. This is the case for d > 30. We can
check by computer for the cases with d < 30 whether the following inequality holds:

d < (q—1)7""" " Hgj — (¢ —1)d). (4.10)

In order to do this, we need a bound on g. Recall that dfdf;l < j <d-2,s0 we need df% <d-2
and thus g < % for there to be a feasible j. Thus, we need to check (4.10) for the finitely many
cases with d < 30, ¢ < %. It turns out that this inequality holds for 1 < d < 30, see Appendix
B.1 for the code used to check this. Therefore we can conclude |K;(i)| < |K,(i)| for all ¢ and

d— % < j <d — 2, which finishes the proof.
(b) For i = 0, we have that K,(0) is the valency and thus the largest eigenvalue over all K (), so
K,;(1) < K;(0). For i > 1, we have |K,;(z)| < |K;(1)| from (a) and K;(1) < 0 from Lemma 4.6a.

This gives
K;(1) = =KD < K5() < [K;(1)] = —K;(1),

so K;(1) < K, (i) for i > 1 too. O

Like before, Figures 4.4 and 4.5 visualize the results of Theorem 4.14a and 4.14b, respectively.
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Figure 4.4: Visualization of the results of Theorem 4.14a. The highlighted boxes indicate the
penabsolute eigenvalues per column. The red fields indicate the results of Theorem 4.14a.

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 35



CHAPTER 4. EXISTING RESULTS

4.1. THE HAMMING CASE
H(15,3) H(13,4) H(16,5)
01234567 8 9100112131415 901234567 8 9A0111213 0@1234567891011121311'11516
0 . . . ... | 0. . LTl el . [
e . . ... ... .. I | :E% ............. T I 1L
% ................ e . ... ... . .= .3
ac Lo B e e L Mes . . ... .. .®. ..
S ..o 4. .. bl . . . ... .®. ...
SR D 5. . . L. Gls. .....®.....
7 (© [ I e . .... 8. .. ...
g L oLl 7 [ I ge. .. l®. ...
IR D 5 I < [ - R
0. . oo I 0. . oL
|e . ... .. e e s .. 10 . . . . . ... i% .............
i% ................ 11 ........ 13 -------------
7 D eI w. oL
Eee.o.o. . .. .|..... LB ig .............
H(14,6) H(12,20) H(17,500)
01234567 891011121314 012345678 9101112 0012345678910111213141516]1
0 . . . ... O . . . R .
- H R T T
e L [ e &
"""""" Bes. ... ... .08>..
- . ......8. ..
fls . ... ®. .. fs. ... ...8. .. I Sl
as . .......8.. ... e . .....8. ... s . ... ......®.....
7oLl 6m. . .. .®. . ... s Dl lllel
............ e . . ..., . .. ..
- 8e. ... ... ... e a®
", 2 | Be . ... .®. . ... .....
Mol - 0. . . o He . .. .e®. ... ...
s . Do 1. . . %g .................
woolol Il Lo oot
me.e . . ... ... ... ... ..

Figure 4.5: Visualization of the results of Theorem 4.14b. The highlighted boxes indicate the
smallest eigenvalues per column. The red fields indicate the results of Theorem 4.14b.

With the previous theorem, we have shown all the results that were mentioned in the beginning
of this section. However, [3] mentioned some additional results for large ¢ and some results on
coinciding eigenvalues. For the sake of completeness, we will mention these results here as well.
We start with a short lemma that is needed to prove Lemma 4.16.

Lemma 4.15. Let (a;), be a sequence with ag > a1 > ... > a, > 0 and let S = ap — a1 + az —
az+ -+ (=1)"a,. Then

(a‘) S S ap,

(b) S >ayg— a1, and thus S > 0.

Proof. (a) We have S = ag — (a1 — a2) — (a3 — a4) — -+ — (@p—1 — ay) for n even and S =
ap — (a1 —az) — (ag —aq) — - — (an—2 — ap—1) — a,, for n odd. Every term inside the brackets is

non-negative, so in both cases we have S < ay.

(b) We have S =ag—ay + (a2 —ag) +---+ (ap—1 — ay) for n odd and S = ag — a1 + (a2 — a3) +
o+ (ap—2 — an—1) + a, for n even. Every term inside the brackets is non-negative, so in both
cases we have S > a¢g — aq. Note that this also means S > 0. O

Lemma 4.16. [3, Lemma 2.7] Let ¢ > 1d* + 1. Then

(a) K;(i) >0 fori<d-—j,
(b) K;j(d—j+1) <0,
(c¢) |K;(@)| < |K;j(d—j+1)| fori>d—j+1.
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Proof*. First, we will show that the nonzero terms (g — 1)77"(;) (Jd:,i) decrease monotonically
when h increases, except when h =i+ j — d — 1. For any h, we want to show

(a=17 (;) (gd_;) 2 (=1 (h : 1) (j o 1)'

When h >4, h > jor h<i+j—d—1, we have that (;L) =0or (jd:}i) = 0 and that (hil) =0
d—i

or (jfhfl) = 0, so both sides are equal to zero and the inequality holds. When h =i or h = j,

the right hand side is equal to zero and the left hand side is non-negative, so here the inequality
holds as well. For h =i+ j — d — 1, the inequality is flipped:

0=(a-1) h<i+jd1)<di+l)<(q_l) ' <i+jd>(di>_(q_1) ' (z’ﬂ'd)'

This leaves the case i+ j —d < h < min{i, j}, where we can rewrite the binomial coefficients such
that we can cancel them and we get

(=) +1)d—i—j+h+1)> () —h),
which is equivalent to
hg—1)(h—i—j+d)+(q—1)2h+d—i—j+1)> (2 — (i + j)h +dh) + (ij — dh).
Using ¢ > 2 and h —¢— j +d > 0, it is enough to show
(q—1)(2h+d—i—j+1)>ij— dh.
Using i + j — d < h again, it is enough to show (¢ — 1)(h + 1) > ij — dh. We have assumed

q > 3d® +1, so it is enough to show d*(h + 1) > ij — dh. Using i + j < d + h once again and
(a+b)*

also ab < *—~— for real numbers a, b, we have
g (i+j)? (d+ h)? (d—h)? _d*> 1,
—dh < —dh<——2 —dh=-—"" < — < d*h+1
" =4 =T e e LA U

This means that the terms (¢ — 1)7~" (ZL) (Jd:fl) indeed decrease monotonically when h increases,
except when h = i+ j —d — 1. Thus, when h # i + j —d — 1, we can think of K;(i) =

?L:O(—l)h(q — l)j_h(fl) (jd:}i) as S =ap—a1 +az—az+---+ (—1)"a, from Lemma 4.15 where

an = (¢ —=1)77"(;) ({2)-

(a) Let i« < d — j. The paragraph above implies that we can use Lemma 4.15b to conclude that
the sign of K;(4) is that of its first nonzero term. For ¢ < d — j, the first nonzero term is the term
with h = 0, which is positive, so K;(i) > 0 for i < d — j.

(b) For ¢ > d — j, the first nonzero term is the term with h =i + j — d. Like before, we can use
Lemma 4.15b to conclude that the sign of K (i) is that of its first nonzero term. This means that
for i > d — j, we have K;(i) > 0if i+ j — d is even and K;(i) < 0 if i + j — d is odd. Choosing
i=d—j+1, we have that d —j+1>d—j and that i+ j —d =11is odd, so K;(d—j+1) <O0.

(c) Assume ¢ > 1d? + 1. We want to show |K;(i)| < |K;(d—j+ 1) for i > d —j + 1. For
d = 2, we need to show |K3(i)| < |K2(1)| for ¢ > 1. From expression (4.1a), we can derive
|K2(i)| = (¢ — 1)®7%, which implies the result we wanted to show. This means that from now on,
we can assume d > 3.

Showing |K;(i)| < |Kj(d —j +1)| for i > d — j + 1 is equivalent to showing |K;(d — j + ¢)| <
|K;(d—j+1)| for 2 <e <j. Using lemmas 4.15a and 4.15b we find

K=+ 012 - a0 - -1 -
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(=174 1) (0= 1y )6 - 1)

This last step requires some more explanation. It is true if we can show ¢ > 2+ (d — j)(j — 1).
Looking at the right hand side as a quadratic polynomial in j, we see that it acquires its maximum

at j = 451, which gives that the maximum value of the right hand side is 2+ (%)2 =1d>—1d+2.

For d > 3, the inequality is true because idQ — %d + % < %dQ +1<q.

Using lemmas 4.15a and 4.15b we find

L R TRV (A RACES e A TS

—1V51<dz+6><q—1+j+10—e0

4 o1 fd—7+e
§§Q(q_1)j ' 1( ’ )

Il
—
LS

e

Here, the last step also requires some more explanation. The step is true if we can show (d —
NG—e) < (E+1)(e+1). Usinge>2and ¢ > 2+ (d—j)(j — 1), which we derived above, the
result follows:

(3+1) 402 (§+ 5@ -0) 4125+ @=i)G -1 > @) - e

The two inequalities we have derived for |K;(d — j + 1)| and |K;(d — j + e)| will be essential in
the rest of the proof. First, we will show the case j = e = 2 after which we will use induction to
show the case e > 2,j > 3. For j = e = 2, we want to show

(- 1)2—2—1(d_ ; * 2) <q —1q Z—;f(z - 2)) < %q(q )P (d—241).

This inequality holds if d < ¢, which is the case since g > idz + 1 and by the quadratic formula
d< %d2 + 1 for every d.

Now we will use induction to show the case e > 2,5 > 3. For the base case e = 2,5 > 3, we want
to show

4 o fd—j+2\ 1 - _
gota- 177 (TP < Qata - 0+,

which is equivalent to
) 3
d—j+2<(q-1).

If d = 3, this implies j = 3 and ¢ > %32 + 1, so ¢ > 4 and the inequality holds. For d > 4 we need
to do something else. Note that, because j > 3 and ¢ < idZ + 1, it is enough to show

3

g2
16 -

d—1<

This is true for d = 4, and since we are dealing with a quadratic inequality with positive leading
coefficient, it is true for d > 4. This means we have shown the statement for the base case
e=2,32>3.

Assume now that e, j > 3. We want to show

4 o (d—j+te 1 - ,
gﬂq—UJ 1( ; )<2ﬂq—U]%d—J+U,
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which is equivalent to showing the inequality

d_j+6<d—j+€—1> _ (d_j“Le) <Sg-1r@—j+).

e e—1 e 8
By the induction hypothesis, this inequality is true if

e(¢—1)

> 1.
d—j+e

Because 3 <e < jand g > idQ + 1, we can see that this is true:

e(g—1) S 342

— > 2 >1.
d—j+e~ d —

With this step we have shown |K;(d—j+e)| < |K;(d—j+1)| for all 2 < e < j, which concludes
this proof. O

Next, we show some results on coinciding eigenvalues.

Lemma 4.17. [3, Lemma 2.8] Let ¢ = 2. Then

if 7 is even, then K,;(i) = K;(d — 1),

)

b) if d =2j, then K;(i) =0 for all odd i,
) ifd=2j—1, then K;(2h —1) = K;(2h) for 1 <h <j—1,
)

if d = j, then K;(i) = (=1)* for all i.

Proof. (a) This follows directly from Lemma 4.4.
(b) By lemmas 4.3 and 4.4, we have

Kaj(i) = (=1)" 7 K;(d — i)

I
—~
|
L
=
=
=
=
=

(¢) Using formula 4.1a, we have

=S (1) (1) -2

3
h—0 h=0
Kj(oh—1) = hzi%(_l)h <2hh— 1) <2j - ih) _ Qg(—l)h(%h— 1) <2j ;i; 2h>

(d) We have

O

The following Lemma is an adaptation from Lemma 2.9 in [3], since the lemma in the paper was
missing some cases in (b) and (c), so we added them. More specific, in (b) the cited paper had
h > 3, which we changed to h > 2. In (c), the cited paper had h > 2, which we changed to h > 1.
Furthermore we added the solution d = 2i in (c).
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Lemma 4.18. [3, adaptation from Lemma 2.9] Let ¢ =2 and i,j < 4. Then

(a) K1(i) =0 if and only if d = 2i,

(b) K5(i) =0 if and only if i = (g) and d = h? for some integer h > 2,

(c) K3(i) = 0 if and only if d = 21, ori = @ and d = 3h* + 3h + 2 £ (h+ 1) for some
integer h > 1,

(d) Kan(dh—1) =0 if d = 8h+ 1.

Proof. (a) We have

w0 S () - (1) ()

so Ki(i) = 0 if and only if d — 2i = 0.

(b) We have ) . . . ;
Kali) = hzo(_l)h(;) (;—;) _ (d;z) —i(d —1i) + (;)

This means
Ky(i)=0 & (d—i)(d—i—1)—2i(d—i)+i(i—-1)=0 < (d—2i)2=d.

Since d and i are integers and (d — 2i)? is a square, d should also be a square, so we can write
d = h? for some integer h. This gives us (h? — 2i)? = h?. Because h > 0 and i < ¢ = %2, this
is equivalent to h? — 2i = h, which happens exactly if i = 2h(h — 1) = (%). We need to choose

2
h > 2, since otherwise j = 2 > % = %

(¢) We have

=3 ()5 = (5 ) () = (a0 ()

This means
K3(i)=0 & (d—0)d—i—1)(d—-i—2)4+3i(d—1%)(2i—d)—i(i—1)(i —2)=0.

Solving this equation with a computer gives d = 2i or d = % (3 +4i+ 1+ 24i). We need d and
i to be integers, so looking at the second solution for d we see that 1 4+ 244 should be the square
of some odd number.

We can write 1+ 24i = (2g + 1)? for some integer g, which gives i = £(g? + g). This means g° + g
should be divisible by 6, so divisible by 2 and by 3. It is already divisible by 2: if g is odd, then g2
is odd so g2 + g is even and if g is even, then g? is even so g2 + g is even. We also need g2 + g to
be divisible by 3. If g = 3h for some integer h this is obvious and we get i = W. Ifg=3h+1
then g2+ ¢ = 9h% +9h+2, which is not divisible by 3. Lastly, If g = 3h —1 then g%+ g = 9h? —3h,

which is divisible by 3, and we get ¢ = 9h26_3h. This means ¢ = w for some integer h > 1.

Substituting this expression for i into the expressions for d given above, a computer gives the
results d = 3h%2+3h+ % + (h + %), d=3h?>-3h+ % + (h - %) and d = 2¢ = 3h3 £ 3h. The second
result can be neglected since ¢ > % here. Note that we stated before that the third result d = 2i
holds for any 3.

(d) This proof is omitted here, but can be found in [7, thm 4.6]. O
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Lemma 4.19. [3, Lemma 2.10] Let ¢ > 2 and j = 2. Then K;(i) = K;(h) if and only ifi = h or
i=2d-1)(1-1)+1-h.
Proof*. We can check with a computer that the given solutions are indeed solutions to K;(i) =

K;(h). Because j = 2, we know that K;(¢) is quadratic in 4, so K;(i) = K;(h) has a maximum of
2 solutions for 4, which then must be the ones given in the lemma. O

4.2 The Johnson case

As in the previous section, we start with an overview of the most important results that we will
show in this subsection:

e E;(1) is the smallest eigenvalue if and only if j > d(" d . (Theorem 4.32b)

e For j > dn= d) , |E;(1)] is the penabsolute eigenvalue. (Theorem 4.32a)

We again need several intermediate steps to get to these results. From Theorem 2.16 we know
that the formula for the eigenvalues of graphs from the Johnson scheme is

-5 (D)

for 0 < 4,5 < d. This polynomial is also called an FErberlein polynomial [36], and as with the
Kravchuk polynomials, there are multiple equivalent ways to write them down. An overview is
provided in the following lemma.

Lemma 4.20 (Equivalence of Erberlein polynomials). [3, p. 99] The following three expressions
for the eigenvalues of a graph from the Johnson scheme are equivalent:

()G () (10
(_1)jh<d;i) (j:z> <n—d;i+h> (4.11b)
(-1)~ h(h> (d ; h) <n ;ii ;Z_t h). (4.11c)

Proof. The second follows from Theorem 2.16. We will first show that this is equivalent to the

first expression.
Ej: d—h\(n—d—i+h
= ji—nh h

ZZ ( G060 )

Vandermonde identity (Lemma 2.5) applied

e (N ()0

h=0m=0

E;(i) =

1
= > =
- 109 14
[} [} o
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bymmetry applied

B —h m m h—m
h=0m= 0
Lemma 2.2 applied on the product of the last two binomial coefficients
J . . J .
_ Z (n d z) (d z) Z(_l)j_h<c? h) (d i m)
= m m ) = j—nh h—m

changed the order of summation

(2G5

Lemma 2.6 applied

21 G [y Dol i | v

shifted the index of the inner sum
B ZJ: (n—d—z’) (d—i) (j—m—i—l)
= m m j—m
Vandermonde identity (Lemma 2.5) applied
—Xj: (n—d—i) (d—i) <h_¢_1>
= j—nh j—nh h
change of variable h = j — m applied

-2 (50656

Lemma 2.6 applied

Next, we show that the third expression is equivalent to the first. We have

-5 ()5 ()

S (L)

Vandermonde identity (Lemma 2.5) applied

(e ()N

changed the order of summation

SR ()00

m=0

interchanged the names of h and m and used symmetry

SECE) S (L)

Lemma 2.2 applied
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This means we still need to show
n—d—1 ‘ ) i—h\/n—d—i+m
—1 h — —1)m
() = e (L))

for i +j —d < h < min{i, j}. We do this proof by induction on n — d. First, we check two base
cases, namely (n —d,i,7) = (k,i,k) and (n —d,4,j) = (k,4,0) for any k and any feasible h. For
the first scenario, we need to check

k—i : o (=B (k—i+m
-1 h — _1\t—m )
(o) = e () )
The left hand side is ‘equal to (—=1)* if h = i and equal to 0 if A < i. The right hand side can be
rewritten to (—1)* 30" (=1)™(*-"). This sum is equal to (—1)* for h =i and equal to 0 if h < i

m=0
by Lemma 2.7. For the second scenario, namely (n —d,i,5) = (k,4,0), we need to check

() - gf—l)i—m ).

The left hand side is equal to 1 if h = 0 and equal to 0 else. The right hand side can be rewritten
to (—1)"~ (") (F7F7). Tt is equal to 1 if h = 0 and equal to 0 else.

7

We checked the base cases, so now we can say

! - (i—h\(n—d—i+m : _(i—h\[{(hn—d—1)—i+m
—1)im — —1)imm
PO O | it B D1 el (P i )
: o fi—h\/((n—d—1)—i+m
e (L0 ")
— m (n—d-1)—y
Pascal’s identity (Lemma 2.1) applied
—d—i—1 n—d—1i—1
— () (" -1
( )(j—h—1>+( )< j—h )
induction hypothesis applied
—d—1
= (" .
()

Pascal’s identity (Lemma 2.1) applied

O

Next we will see some properties of the Erberlein polynomials. We write E;(i,n,d) instead of
E

(@) if we want to emphasize the values of n and d.
Lemma 4.21. [3, Prop. 3.2/ Let i,j5 > 1. Then
BiGiyn+2,d+1) = E;(i — 1,n,d) — E;_1(i — 1,n, d).
Proof*. We have
Ej(i,n+2,d+1) = g(—nh (;) (d;iz 1) <" _J‘_l__liJ“ 1)
fo;mula 4.11a used
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()

h=0

B0

Pascal’s identity (Lemma 2.1) applied

= E;(i — 1,n,d) —]i(—l)hc ;L 1) <j_;:11) <nj_dhij 1)

h=0

shifted the index and used (Z 11> =0

= E](’L — 1,Tl,d) 7Ej_1(l' — ].,’Il,d)

Lemma 4.22. [3, Prop. 3.3] If n = 2d, then Eq_;(i) = (—1)'E;(i).

Proof. We want to show Eq_;(i,2d,d) = (—1)'E;(i,2d,d). For the left hand side, by formula

4.11c, we have _
‘ . inli\ (d=h\[(d—i+h
Bay(is2d,d) =) _(-1) h<h)<d—j>< j )

h=0
For the right hand side, by formula 4.11c, we have

st ()5

k=0

Sy ) (T

flipped the index: k=i —h

g ()

applied symmetry

Lemma 4.23. [3, Prop. 8./] Letn=2d+ 1 and j = % and 0 < t < %, Then
E;(2t — 1,n,d) = E;(2t,n,d) = E;(2t — 1,n — 1,d).

Proof. We start with showing that the first and the third expression are equal. By formula 4.11c,

we have -
— 20— 1\ (d—h\ [d—2t+h+2
E.(2t—1,n,d) = -1 Zt—h—l( )( . )( ‘ )
i )= 2D n }
and -
— 20—1\ /d—h\ [d—2t+h+1
E;(2t—1,n—1,d) = -1 2””( )< , )( ‘ )
i )= 2D n P

Using Pascal’s formula (Lemma 2.1) on the rightmost binomial coefficient,

(d—2t+h+2> _ (d—2t+h+1>+<d—2t+h+1>
j j -1 )
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we see that E;(2t —1,n,d) = E;(2t —1,n — 1,d) if and only if

Qtz_l(_n?t—h—l (27 1) (d ; h) (d - 2tj+ h+ 1> o

h=0

This sum has an even number of terms. The terms for h = 0 and h = 2t — 1 cancel each other,
and the same holds for h =1, h=2t —2up to h =t — 1, h = t. In other words, the terms h = k
and h =2t — 1 — k cancel for £k =0,...,¢t — 1. This is because the term with h = k looks like

)

and the term with h = 2t — 1 — k looks like

(—1)2- -1k <2t2_t Ii k) (d - (2tj— 1- k)) (d — 2+ (2tj— 1-k)+ 1)

:(_1)k(2tk—1> (d—2t;|—k:+1) (d;k)

where 2t — k — 1 is even when k is odd and vice versa. Therefore, the sum of all terms equals zero
and thus E;(2t — 1,n,d) = E;(2t — 1,n — 1,d). Note that this result holds for all feasible j.

Next, we show that the second and the third expression are equal. By formula 4.11a, we have

B2t —1,n,d) = zj:(—l)h (2}:) (i:zt) <d ; 2—75;; 1)
ot 1)~ i (t—l)(d—f;—kl)(d;it}—li—l),

s =S () () (5
B

Pascal’s identity (Lemma 2.1) applied

J
2t — 1 d— 2t d—2t+1
:E‘2t—12dd
en-nana =S (N G5

SR

Pascal s identity (Lemma 2.1) applied on the left sum

=F;(2t —1,2d,d) — zj:(—l)h(%h_ 1) <j i;Z_t 1> (d ; Q—t}j 1>

h=0

e (U500

Shlfted the index of the lower sum

and

We have
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J
=E;(2t —1,2d,d) — Z (% 1)<j‘ih2_tl>(dj2_t;r2>.

Pascal’s identity (Lemma 2.1) applied
Since j = % and thus d = 2j — 1, we need to show
J . .
20— 1\ (25— 2t —1\ (2] —2t+1
Z(—l)h< )<‘7 )(] +):0.
Pt h j—h—1 J—h

We can replace the upper bound of the sum with 2t — 1 since the terms with h > j and h > 2t — 1
are equal to zero, so we need to show

%i( b 26— 1\ (2 =2t~ 1Y (2j — 20+ 1) _
h j—h—1 j—nh -
h=0

Like before, the sum has an even number of terms and the terms with h = kand h =2t -1 —k
cancel for k£ is 0,...,t — 1 because the term with h = k looks like

(71),6 2t — 1\ (2 — 2t —1\ (25 —2t+ 1
k j—k—-1 ji—k
and the term with h = 2t — 1 — k looks like
(_1)2t—1—k 2t —1 27 —2t—1 2] —2t+1
20—-1-k)\y—2t—-1-k)—1/)\y—(2t—1—k)
_(_1)2t_1_k 2t — 1\ (25— 2t —1\ (25 —2t+1
N k j—k—1 j—k )

where 2t — 1 — k is even when k is odd and vice versa. Therefore, the sum of these terms equals
zero and thus E;(2t — 1,n,d) = E;(2t — 1,2d,d). O

Now we can start working towards the results that were mentioned in the beginning of this section.
Note that the bound j > (" d) that is assumed in these results comes from the following lemma.
It is assumed that d > 1 or d > 2 if Ej(1) respectively E;(2) are mentioned.

Lemma 4.24. [3, Prop. 3.5] Let j > 0. Then

(a) EJ( )—0 if and only if j = d(n— d);
(b) E;(1) <0 if and only if j > 4=,

(¢) B;(1) = E;(2) if and only if j = “2=2

n—1 ~

(d) E;(1) < E;(2) if and only if j > d(" d),

Proof*. Note that n > 2d > 25 > 2.

=g ()5
SO )
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G k)
G -ms)

This shows immediately that E;(1) = 0 if and only if jn = d(n — d).

(b) The product of the two binomial coefficients in E;(1) is positive, so E;(1) < 0 if and only if
ﬁ > 1, which happens exactly when jn > d(n — d).

(c) Assume j > 2. The case j = 1 will be looked at later. From (a), we got an expression for
E;(1) that we can rewrite to

() ) -t
(I

symmetry applied

e (020) (155 7) == e = 1) = jata = )00 - a - 1).

In a similar way, we write an expression for E;(2):

me- e () (N ()
N e G [ G B G )

(5 a) (7507

fln,d,j) = dj(d=1)(G =1) =2j(d = j)(d=1)(n—d=1) + (d = j)(d —j = 1)(n—d)(n —d = 1).

where

d—2\ (n—d—2
J— 2)( =2
the brackets on both sides of the equality sign. Simplifying this result gives j(n — 1)(n — 2) =

d(n —2)(n —d). For j > 2 and thus n > 2d > 2j > 4, we get the result j = %.

We can then set E;(1) = E;(2), cancel the common factor W( ) and expand

For j =1, we get E1(1) = dn—d? —n and F1(2) = dn—d? —2n+2 after simplification. This gives
that F1(1) = E1(2) is equivalent to —n = —2n+2, so to n = 2. Assuming F; (1) = E1(2), we have
n=2s0d=1, sol—j—% On the other hand, 1fweassumel—M we know d =1,

n = 2 is the only feasible solution. This is because d > 2 would mean n — 1 = d(n d) >2(n— d)

and thus 2d > n + 1, which is a contradiction to the inequality n > 2d. Therefore, 1 = %
implies n = 2 and thus F; (1) = F1(2).

(d) For j = 1, we had E1 (1) = dn—d?—n and F;(2) = dn—d*—2n+2. This means E;(1) < F;(2) if
and only if n < 2, which is not possible since we assumed n > 1. We also have that (n d) <l=yjy

is not possible, so the statement holds for j = 1.

Now assume j > 2. Let C' = W(? g) ("J d2 2) and note that C' > 0. We saw that &F;(1) is
linear in j and & E;(2) is quadratic in j with leading coefficient d(d — 1) +2(d —1)(n —d — 1) +
(n—d)(n—d—1). All terms are positive, so the leading coefficient is positive. Now we know that

& (E;(2) — E;(1)) is quadratic in j with positive leading coefficient.
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From (c), we got that & (E;(2) — E;(1)) has only one zero for j > 1, namely j = d(r?:ld). Also,
E;(2)—E;(1) =1—1=0for j = 0. Since the two zeros of E;(2) — E;(1) are j =0 and j = %
and the leading coefficient of & (E;(2) — E;(1)) is positive, we have that & (F;(2) — E;(1)) > 0 if

and only if j > d(ﬁ:ld), so E;(1) < E;(2) if and only if j > w. O

The results of Lemma 4.24 are summarized in Figure 4.6.

Ei()

d(n—d) d(n —d)
n—=1 d

n

. . J

E;(2)

Figure 4.6: This graph summarizes the results of Lemma 4.23.

Next, we need some preliminary results from probability theory. More specifically, we need tail
inequalities from the hypergeometric distribution since this will provide us with a bound that can
be used in the proof of Lemma 4.26. This distribution with parameters (N, M, k) can be seen as
follows: we have an urn with N balls, of which M are white and N — M are black. Someone is
going to draw k balls from this urn, uniformly and without replacement. The random variable X

is the number of white balls among the k balls that were drawn. For this distribution, we have
N—-M

M
P(X =x) = % and E[X] = ¥ The following lemma summarizes the result we need in
k

order to prove Lemma 4.26.

Lemma 4.25 (Chvétal tail inequalities). [2///9] Let X be a random variable with
X ~ hypergeometric(N, M, k).

Then
P(X > E[X]+tk) <e 2% and P(X <E[X]—tk) < e 2k,

Recall that k; = (’;) ("]_.d) and |V| = (7). Using Lemma 4.25, we get the following:

Lemma 4.26. [3, adaptation from Lemma 5.6] Let I = (@ — V4, @ + \/(j) Then

8
ij > H‘V‘

jel

Remark. The inequality for k; in [3] was not strict, but it is in fact strict.
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Proof*. Let X be a random variable with X ~ hypergeometric(n,n — d,d). From the formulas
provided above, we have

E[X]=@ and P(X:j):(j)((n)j):ﬁ;'_
d

By Lemma 4.25 we have, for any ¢ > 0, the tail inequalities
P(X —E[X]>td) <e 2 and P(E[X]— X >td) <e 27
Substituting ¢t = d~1/2, this gives

P<d(nn_d)_\/g<X<d(n7;d)+\/&)—[P(—td<X—E[X]<td)

=1-P(X —E[X] > td) — P(E[X] — X > td)

2

>1-— 26_2({171/2) d

=1-2¢e?

To conclude the statement, we write

W:ZP(X:Q:P(W—\/Q<X<W+\/&)>8.
JeI

Next, we prove some more propositions and lemmas that we need in order to prove the results
that were mentioned in the beginning of this section.

(n=d)

Proposition 4.27. Let jo = ¢ - dy(n—d

. Then argmax(j)( p ) is equal to |jo| or [jo].
0<j<d

Remark. It is not necessarily true that the argmax is equal to the integer closest to jo. Take

for example d = 13 and n = 100. Then j, ~ 11.3, so jg is closest to |jo|. However, we have
13} (100—-13Y 15 13} (100—13\ 15 d \(n—d d \(n—d

(1) ("17) = 2.18-10'% and (;5) ("], ") ~ 2.31-10'9, s0 (Ljoj)(Ljoj) < ((m)((m)'

On the other hand we can take d = 3 and n = 10. Then jj &~ 2.1, so jp is again closest to [jo|. In

this case, however, we have (3)('%,®) = 63 and (3) ("% ®) = 35, so here (LJ%J) (’f;ojl) > (D’Lfﬂ) (?ﬁi)

Proof. 1t is sufficient to show that for all feasible m > 0, the following two statements hold:

(f;fﬂ) (nfjdd) g (wd+ m> (rj:Hdm) and <L§ij) <nuojd> g (u Jd— m> (U:J—dm>'

Since the proofs of these two statements are very similar, we will only show the first one. We have

(o) (1) (Tl +m) (@~ [jo] = m)! (n— d — [j] —m)!
(o) (r7m) (G012 (d = Tjo])! (n = d = jo])!

([Jo] + k)?
- (d—T[jo] = (k—=1))(n—d—[jo] — (k—1))
[jo]? + 2k[jo] + k2
d(n —d) —nfjo] —n(k —1)+ [jo]? +2(k — )[jo] + (k — 1)

I
b

E
I

I
s

ES
Il
—
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_ ﬁ [jo]* + 2k[jo] + K*
iy (Lo1? + 2k[jo] + £2) + (njo — (n + 2)[jo] — (n+2)k +n+1)

It is therefore enough to show njo — (n + 2)[jo] — (n +2)k +n+ 1 < 0 for all k for the first
statement. We have

njo— (M+2)[jo] —(n+2)k+n+1<-2jp—(n+2)k+n+1< —2j <O0.

The proof of the second statement is left to the reader. O

Recall from Lemma 2.17 that m; = (7) — (,",)-

7 i—1

Proposition 4.28. We have m; > mg for i > 3 except if (n,i) = (8,4), (9,4), (10,5) or (12,6).
Remark. Note that this means we have m; > ms for ¢ > 7.

Proof. We have

m=() ()= (=) ()= (=57) 6)

n(n—1)(n—>5)
6

and thus mgz = . This means we first want to show

()= =y

for i > 7. Using i > 7 and n > 2d > 2i > 14, we get that this inequality holds:

(n) . (n) n(n —1)(n — 2)(n — 3)(n — 4)(n — 5)(n — 6)

1 7 7!
> n(n — 1)(n6— 5)(n —6)
- n(nfl)(nfE))(nfiJrl).
- 6(n—2i+1)

For fixed ¢ and n — oo, we see that this inequality holds as well. Therefore we can check the cases
1 =4,5,6 by hand easily. The cases where the inequality does not hold are (n,i) = (8,4), (9,4),
(10,5) and (12,6). O
L 5 i) = Un=d) ; P <43 ppdn=d) -

emma 4.29. [3, Lemma 8.7] Let jo = == and let jo < j < jo+ 5. If =~ < j < d and
i >3, then | E; (i) < |B;(1)]-

Proof*. This proof consists of five main steps:

1. Showthatj%<1+%ford21()andn273.
0

2. Show that =1 < 3 for d > 10 and n > 73.

J

3. Show that & < 2=3 for d > 10 and n > 73.
k; 6

4. Show that F;(i)? < E;(1)? for d > 10, n > 73 and i > 3.

5. Show that F;(i)* < E;(1)? for n < 73 and i > 3.
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Step 1. Note that % = Wid)z. For there to exist a feasible j, we need (" d) <d-—1. This is
32 ,
true for n < d?> —d + 1, so for n —d < (d — 1)2. We have ]% = ﬁ and
0

0 n? ~3n%(n—d)—2n*  n?(n—3d)

n d2(n—d? d2n-d)3 = d(n—d)>3’

S0 ]% is decreasing in n for n < 3d and increasing in n for n > 3d. For d > 10 and n > 73, this
0

means it is maximal for n as large as possible, so n = d?> — d 4 1. This gives

2T @m—d? = @d-1* | a2d-1)7

n W _ (@ —d+1)? (A1) +d)°

Expanding the numerator of the right hand side gives the following:

(d=1)*+d)* (d—1)* 3 3 d 1 3 d
Pd-1t @& titu-irtu-ne 1+d+(d2+(d1)2+(d1)4)'

The part between the brackets decreases faster in d than . We found by computer that for d = 9,
the part between the brackets is approximately equal to 0 061 and ~ 0.055. For d = 10, the
part between the brackets is approxunately equal to 0.049 and 55 = O 05. Therefore, for d > 10,

the part between the brackets is less than 2d’ so we have % iz < 1 + 3 for d > 10.

Step 2. By formula (2.1) and Lemma 2.15, we have

k‘j_l Cj j2

ki b1 (d—j+D)n—d—j+1)

We want to show kil < 3, which is equivalent to showing

1 2
,j2:7j27(n+2)j+(n+1+d(”*d))>0'

LHS(j) i=d(n—d)—n(j = 1)+ (—1)° - 37° = -

The left hand side, which we will refer to with LHS(j) from now on, is quadratic in j with a
positive leading coefficient. By setting the derivative of LHS(j) w.r.t. j to zero, we find that the
minimum of LHS(j) is attained in j = 3(n + 2). We have

3 1 n? 1 3 3
j R _ R T i E Z 2
go+2 d(n — d) 5 <7 n+2<4(n+ ),

S
w

where the first inequality comes from the fact that d(n — d) is maximal at n = 2d. The line above
implies LH S(j) is decreasing in j for jo < j < jo + % This means it is enough to show

3 1 1\ 1 3\ 2
LHS (jo+>) =njo—n(jo+ = o+ =) —=(jdo+2
S(Jo+2) njo n(]o+2>+<10+2> 3(Jo+2) >0,

where we used njyo = d(n — d). Simplifying, we see that it is enough to show %jg >n+ 1. From

step 1, we got % 2043 50 458 > 6%’%. This means it is enough to show the inequality
8nd 6nd 4+ 9n +6d+9
>n+1= ’
6d+9 6d +9

so it is enough to show 2nd — 9n — 6d — 9 > 0. The derivative of the left hand side w.r.t. n is
equal to 2d — 9, which is positive for d > 10, so this function is increasing in n. Since n > 2d, it is
therefore enough to show 4d? — 24d — 9 > 0, which is true for d > 10. This means we have shown
kjc—;l < 3 for d > 10.
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Step 3. By Lemma 4.26, we know

Z k‘l > 7|V|
l€(jo—Vd,jo++/d)
We have shown in Proposition 4.27 that the maximum of k; is obtained in k;,, where j; is either
Ljo] or [jo]. This means 2v/dk;, > &|V| and thus % < V4. For this j; we have j; < [jo] < j
and j — j1 < jo—j1+ 3 < 2,0 j —j1 <2, which gives j —2 < j; < j.
If j1 = j — 1, we have kj, = k;_1 < 3k; by step 2. If j; = j — 2, we can use formula (2.1) and
Lemma 2.8 to conclude
k‘j_g _ Cj—1 < Cj _ ]{ij_1 <3
k‘j,1 bj,Q - bj,1 kj
so kj, = kj_2 < 9k;. This means that for any possible value of j;, we have k;, < 9k; and thus
% < %\/ﬁ. To prove the statement of step 3, it is enough to show %\/ﬁ < ”Tff) for all n > 2d.
J
Plugging in n > 2d gives us the inequality
9 n _n-5
-l <« ,
4V2~ 6

which is true for n > 11037. For n < 11037, we checked that W‘ < 2 5 for all feasible values

of n,d and j by computer. The code that was used to check thls can be found in appendix B.2.
From this we can conclude that ;= < "&= 3 for d > 10.

Step 4. On the one hand, the sum of the squares of the eigenvalues of some matrix equals the
trace of this matrix squared. For the graph J(n,d, j), this translates to

d
Vik; = miE;(i)?,
1=0

where the right hand side is greater than or equal to miEj(i)2 for any i. Because n > 2d > 20,
we can use Lemma 4.28 to find

; Vlk; 6|V |k,
E‘ 2 < | J = J .
HORE ms n(n—5)(n—1)

On the other hand, we have

sr- () 6 aiza)) - 2) - (5

We can use our knowledge on j to estimate the right hand side:

o _dln—d) din—d)  —jo o Jo
_i< _ — _ >_J0
Jomd = n n—1 -1 (o =7) ~(n-1)%
2
which then gives E;(1)% > (= 5 ryz- This means it suffices to show
k2 ; —
J > 6|Vk; N M < n(n 5)7
(n—1)2 7~ nn—1)(n-5) ki = 6(n—1)

which follows from step 3. We have shown now that E;(i)> < E;(1)? or equivalently |E;(i)| <
|E;(1)| for d > 10 and i > 3.

Step 5. For n < 73, We checked if E;(i)> < E;(1)? for all feasible combinations of (n,d, j, )
by computer. The result used to check this can be found in appendix B.3. It turns out that
Ej(i)2 < Ej(l)2 for n < 73 and i > 3 as well. For d < 9, we know n < d®> —d+ 1 < 73, so all cases
for d < 9 have been checked as well, and thus we can conclude that |E;(i)| < |E;(1)] for all n, d
and 7 > 3. O
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Lemma 4.30. [3, Lemma 3.8] Let (j —1)(n+ 1) > d(n — d). Then
E;(0) + [E; (D] + |E;(1)] < E;j-1(0).

Proof*. We have E;(0) = k; and

0=0)05) (- wa)

=jn j)—1>d(n—d),sojn >dn—d)+(n—j)+1 > d(n—d)
and j > 2. We want to show E;(0) + |E;_1(1)| + |E;(1)| < E;_1(0), which is equivalent to

GO )G G sl G5 ) -amtal= () G20

Dividing by (jfl) (?:f) on both sides and simplifying, this means we need to show

d—j+1 n—d—-j5+1 jn (j—Dn
; ; (”’1 d(nd)’)+‘1 a(n - d)

E

J

—~

Moreover, we have (j—1)(n+1) = jn—(n—
+|E;-

<1

Since jn > d(n —d), we know that the argument of the leftmost absolute value is negative and we
can rewrite our inequality to

n(d—j +.1)(n—d—]+1) o (J—Dn <1
jd(n —d) d(n—d)
If (j — 1)n > d(n — d), we need to show
n(d—j—i-'l)(n—d—]—i-l) 14 (G—1Dn <1,
jd(n —d) d(n —d)
which, after simplification, is equivalent to
2jd(n — d)

(@—j+1)(n—d—j+1)+i([—1) < == —=,

which is again equivalent to
din—d)(n—2j) <n(j—1)(n—2j+1).

We know n(j — 1)(n —2j + 1) = (j — 1)(n® — 2jn + n) and by assumption d(n — d)(n — 2j) <
(G—D(n+1)(n—25) = (j—1)(n®> —2jn+n—2j), so indeed d(n—d)(n—25) < n(j—1)(n—2j+1)
and therefore E;(0) + |E;_1(1)| + |E;(1)] < E;j—1(0) for (j — 1)n > d(n — d).

If (j — 1)n < d(n — d), we need to show

nd—j+1)(n—d—j+1) (G—1n
jin—d) e S

which, after simplification, is equivalent to (d —j + 1)(n —d — j + 1) < j(j — 1), which is again
equivalent to d(n —d) < (j — 1)(n + 1), and this holds by assumption. O

Proposition 4.31. [3, Prop. 3.9] Let d > 1. Then the smallest eigenvalue of K(n,d) is E4(1).
Moreover, E4(1) is the second largest eigenvalue in absolute value.

Proof. Note that j = d for the Kneser graph. From Proposition 2.18, we know
(n—d—1
Ey(i) = (1) .
=0 (")
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The value of i for which E4(i) is smallest is the value of ¢ for which i is odd and (%) is as

large as possible, so i is as small as possible. This happens when ¢ = 1, so E4(1) is the smallest
eigenvalue of K(n,d).

The value of ¢ for which |E4(4)| is largest is the value of ¢ for which ("n:d;di) is as large as possible,
so i is as small as possible. This means |E4(0)| is the largest eigenvalue in absolute value, and

|E4(1)] is the second largest eigenvalue in absolute value. O

Finally, we get to the theorem that shows the results from the beginning of this section.

Theorem 4.32. [3, Thm. 3.10] Let j > 0. Then

(a) [E;(@)| < [E;(1)] for 1 <i<dif j(n—1) 2d(n—d),
(b) E;(1) < E;(t) for all 0 <i < d if and only if j(n — 1) > d(n — d).

Remark. Note from Theorem 2.9 that the valency is the largest eigenvalue, also in absolute value,
so |E;(1)] < |E;(0)] = k;-

Proof*. (a) For i = 2, this theorem holds by Lemmas 4.24c and 4.24d for every d. When d = 1,
we have that j(n — 1) > d(n — d) only holds when j = d = 1, so the theorem holds by Proposition
4.31. When d = 2, we look at the cases j = 1 and j = 2 separately. For j = 1, the inequality
j(n—1) > d(n — d) only holds when n < 3, which is not possible since n > 2d = 4. For j = 2, the
theorem again holds by Proposition 4.31. Since the theorem is trivial for ¢ = 1, we can assume
i,d > 3 from now on.

When j = d, the theorem holds by Proposition 4.31. When d(;l:ld) <5< d(T:L:Bd) and j < d, we
havej>@zjo andj<@+%:jo+%,since
dn—d 3
j<% & nj—3j<dn—d) = nj—3d<dn-d = njf§n<d(n—d).

This means that the theorem holds by Lemma 4.24. We are left with the case j > dln—d)

n—3
which we will show using induction on d. We checked the base case d = 2 already. Now assume

|E;(i)] <|E;(1)] holds for d — 1 and all 4, j, n satisfying the conditions. More specifically, assume
|E;j(i—1,n—2,d—1)| <|E;(1,n—2,d—1)| and |E;_1(i—1,n—2,d—1)| < |E;_1(1,n—2,d—1)|.
This means we have
|E;(i,n,d)| = |E;j(t —1,n—2,d—1)—E;_1(i—1,n—2,d — 1)]
Proposition 4.21 applied
<I|Ej(i—1,n—2,d=1)|+|E;_1(i—1,n—2,d —1)|
triangle inequality applied
<|Ej(1,n—2,d—1)|+|E;j—1(1,n —2,d — 1)|
induction hypothesis applied
<FE;_1(0,n—2,d-1)—FE;(0,n—2,d—1)
Lemma 4.30 applied
<|Ej—1(0,n —2,d —1) — E;(0,n —2,d — 1)
= |Ej(17n>d)|'
Proposition 4.21 applied

Note that we may apply Lemma 4.30 because j(n — 1) > d(n —d) < (j — 1)(n —2)+ 1) >
(d—1)((n—2) — (d —1)). The induction hypothesis can be applied because we have

j(n=2)—1)=jn—-3)>dn—d) >dn—d)—n+1
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=n—-d—-1)(d—1)=(d-1)((n—2) - (d—1)), and
G-D((n=2)-1)=jn—-3)—n+3>dn—d)—n+3>dn—d)—n+1
=n—-d-1)d-1)=d-1)((n—2)—(d—1)).

(b) If E;(1) < Ej;(1) for all 4, then also E;(1) < E;(2), so by propositions 4.24c and 4.24d we have
jn—=1)>d(n—d). If j(n—1) > d(n—d), then jn > d(n —d), so E;(1) < 0 by Proposition 4.24.
This, together with (a) and the fact that E;(0) = (‘j) ("j_,d) > 0 proves the statement. O
Figures 4.7 and 4.8 show some visualizations of P-matrices. The results of Theorem 4.32 are in-

dicated with red fields. Recall that every column on the right of the black vertical line corresponds
d(n—d)

tog > ==~
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Figure 4.7: Visualization of the results of Theorem 4.32a. The highlighted boxes indicate the
penabsolute eigenvalues per column. The blue fields indicate the results of Theorem 4.32.

As we noted in Chapter 1, the smallest eigenvalue of J(2d, d, j) for large enough d was used to show
that the performance ratio of the Goemans-Williamson algorithm for the max-cut problem was
tight. The result that was needed to prove that this ratio is tight is summarized in the following
corollary.

Corollary 4.33. [3, Cor. 8.11] If j > g and n = 2d, then E;(1) is the smallest eigenvalue of

J(2d,d, j) and the second largest in absolute value.

Proof. 1f j > %, then j > % and we have % > % = % for d > 1. The statement then

follows directly from Theorem 4.32. U

We end this section with an additional result from [3] for large n.
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Figure 4.8: Visualization of the results of Theorem 4.32b. The highlighted boxes indicate the
smallest eigenvalues per column. The red fields indicate the results of Theorem 4.32b.

Proposition 4.34. [3, Prop. 3.12] Let d fized and n sufficiently large. Then

(8) By(i) > 0 fori+j <d,
(b) E;(i) has sign (—1)9=4 fori+j > d,

(c) The smallest eigenvalue of J(n,d,j) is E;(d — j+ 1) for every j > 0.

mo=3r ()N

This means that for d fixed and n — oo, we have that the nonzero terms of Fj;(i) decrease
monotonically in absolute value, so the sign of F;(4) is that of its first nonzero term by Lemma
4.15b. Furthermore we have that the first nonzero term of E;(¢) is dominant, meaning it is much
larger in absolute value than the other terms.

Proof*. We have

The middle binomial coefficient is nonzero for ¢ + j —d < h < j. For i + j < d, the first nonzero
term is the term for h = 0, which is (d;i) (”_;l_i). This term is positive, so for n large enough,
E;(i) is positive. For ¢ + j > d, the first nonzero term is the term for h = ¢ + j — d, which is
(—1)i+j_d(i+;_d) ("7977). This term has sign (—1)"7~%, so this will also be the sign of E; (i) for
n large enough.

The smallest eigenvalue of J(n,d, j) will be one with a negative sign, so ¢ + j > d must hold and
i+ j — d must be odd. Note that this means ¢ + j —d > 1. For i + j > d, we have that the first

nonzero term is the term for h =i+ j — d, so

|E;(i—1)] (i—f:—;—d) (j—(?—_liijl'—d)) (j—rzi_—dl_i;——ld))
;)] (i+;’fd) (jf(?;;fd)) (jjl(z'_fj‘_jd))
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the first nonzero term of E;(7) is dominant

_ Gyma ) (05
(i45-0) ("%
(i+j—d)(n—d—i+1)
i(d—i+1)

n—d—i+1
= id—i+1)

i+ 7 —d>1 applied
>1

for d fixed and n large enough,

so |E;(t)| is decreasing in 4. This means |E;(¢)| is largest when ¢ is smallest, so F;(4) is smallest
when 4 is smallest, i+ j > d and i+ j —d is odd. This happens when i =d—j+1, so E;(d—j+1)

is the smallest eigenvalue of J(n,d, j).

O

The result of Proposition 4.34c is shown in Figure 4.9. More on this result, like for what value of
n we have that E;(d — j + 1) is the smallest eigenvalue, can be found in Section 5.2.

J(901,20) J(1038,21) J(1189,22)

01234567 89101112131415161718190 0123456 7 8 91011121314151617182920p1 0123 45678 9101112131415161718192021'22
L2 0 RS I I T R
1: ___________________ e 18 . . . . .. ... ® 1. . . ... ... -
2@ e 3 ®. 28. .. ... ...l ..
3@, .. .. ®.. 3@. ... .. ... ®.]. 3®. ... ... ...
ie. . ...l it D S e, | 2e. oo ool ®. ..
e o @t | se. Ll ®. .. S . . ... .. ..
2 - @F ol eml Il ®. . 68 . . ... ®. ..

O R - 7@, ...l a. ... T@. . ®. . ...

R .. .... s @ a - a......
8@ . . R 3 @, ... O . o i ®. ... ...
om . . ...l ®. . ... [ e tem . ...l @. . ll11!
0@ . ..o ®. ... 11! R &% M. ..ol [
T ®. ...l R &® 71 S [
L@ . @. .. | e, ....... . B ......... Be. ool L
B@. ... L@. . ﬁ= ------- i. ----------- 7T [
14 . . . . . . .. ... ........ 5@ . . ... . """""" 158 . . . . . . . [
5@ ... [ e % T I [
16m . ®. ... - S A 7@ . . ... ®@. . Ll
e . ®. .. (T M R M-+ @ -
18 . . @ . . . . ... ... 198 e 20- . @ e
@@ .ol L D M I R A
208@ . . ... b1 A b7t 1

Figure 4.9: Visualization of some P-matrices of graphs from the Johnson scheme. The highlighted
boxes indicate the smallest eigenvalues per column.
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Chapter 5

New results

It might have occurred to the reader when looking at the figures in Chapter 4, that the visualiza-
tions of the P-matrices of Johnson and Hamming schemes are quite structured, even for smaller
j. By looking at many different of those visualizations, it was possible to come up with new
conjectures regarding the smallest and penabsolute eigenvalue of Johnson and Hamming graphs.
The focus of this chapter lies on penabsolute eigenvalues of Hamming graphs. Note that all results

in this chapter are new.

5.1 The Hamming case

5.1.1 The smallest eigenvalue

We start with some observations on the smallest eigenvalue of graphs from the Hamming scheme
when ¢ = 2. Firstly, we have that for ¢ = 2 and odd j, the value K;(d) is the smallest eigenvalue.

Proposition 5.1. Let ¢ =2 and j odd. Then K;(d) < K;(i) for 0 <1i <d.

Proof. By Lemma 4.4, we have K;(d) = (—1)7K;(0). We know that K;(0) is positive and is the

largest eigenvalue in absolute value, so for odd j, K;(d) must be the smallest eigenvalue.

H(15,2)

8 9101112131415

01234567

H(16,2)

012345678

910111213141516

O

H(17,2)

012345678

91011121314151617

Figure 5.1: Visualization of the results of Proposition 5.1. The highlighted boxes indicate the
smallest eigenvalues per column. The red fields indicate the results of the proposition.
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Figure 5.1 shows the results of Proposition 5.1. Note that the vertical black lines in the figure

are placed between columns [d — %1 and [d — %—‘ — 1, so in the case of ¢ = 2 this means

1< % for all columns on the left of the black vertical line. The figure suggests that for those
values of j, the eigenvalue K(1) is never the smallest. This would mean that the bound j > %
from Corollary 4.13 is tight. Moreover, the figure suggests that for j = (%W — 1, the smallest
eigenvalue is either K;(2) or K;(d), depending on whether j is even or odd. We state these ideas
in the following conjecture and proposition.

Conjecture 5.2. Let q=2. For0 < j < %, K;(1) is not the smallest eigenvalue.

Test cases. This conjecture was tested by computer for 2 < d < 400. The code that was used to
test these cases can be found in Appendix B.4.
For j = [%1 — 1, we prove Conjecture 5.2 and something more.
Proposition 5.3. Let ¢ = 2. Then the bound j > % from Corollary /.13 is tight, or in other
words: K;(1) is not the smallest eigenvalue for j = [“2] — 1. Moreover, for j = [4E1] — 1 it
holds

(a) if j even, then K;(2) is the smallest eigenvalue,

(b) if j is odd, then K;(d) is the smallest eigenvalue.

Proof. (a) If j even and d even, then j = [944}] — 1 = . From Theorem 4.11b and Proposition
4.12b, we know that |K% (2)| is the penabsolute eigenvalue, and from (4.8) we know Kaq (1) = 0 for

odd i. By showing that K4 (2) < 0, we have proven that K 4 (2) is indeed the smallest eigenvalue:

k-0 () (407)

h=0 2
formula (4.1a) applied

d—2 d—2 d—2
=\ a )72 a2 )t aa
2 2 2
d—2 d—2
(") ()
2 2
symmetry applied

d—2

d—2 d—2

:2 d_22 <d2 > _2< d2)
7 T1 2 2

< 0.

2
4.12¢c. From Theorem 4.11a and Proposition 4.12a, we know that |K%(1)| is the penabsolute

If j even and d odd, then j = [92] — 1 = 421, Also, |K%(1)| = |K%(2)\ by Proposition

eigenvalue. By showing K%(Q) < 0 and Kdz;l(l) > 0, we have proven that K% (2) is indeed
the smallest eigenvalue. We have

d—1 d—1
KEWU:(dA)_(wﬂ_J
2 2
__(d——l) B a=1 (d——l)
Tl ) TEle

>0
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and

Ka1(2)

2

d—2 d—2
a1 ) =2 a1y
2 2

_< d—2 >_<d—2
Gt -2 o

symmetry applied

d-3( d-2
=il )
d-3(d-2
“rila)

symmetry applied

< 0.

d—2 )
d—
Gt-2

(b) If j odd, then the statement follows directly from Proposition 5.1. O

We now focus on the case ¢ > 3. Some visualizations of P-matrices from the Hamming scheme

are shown in Figure 5.2.

H(20,3)

912345678 91011121314151617181920

H(19.4)

912345678 91011121314
(]

H(18,5)

91234567 8 91011121314015161718

Figure 5.2: Visualization of some P-matrices of graphs from the Hamming scheme. The highlighted
boxes indicate the smallest eigenvalues per column.

We see that, like in the case ¢ = 2, the bound j7 > d — % in Theorem 4.14b seems to be tight.
This is summarized in the following conjecture.

Conjecture 5.4. Let g > 3. Then the bound j > d— % from Theorem 4.14b is tight. Moreover,
forj <d-— %, K (1) is not the smallest eigenvalue.

Test cases. This conjecture was tested for all pairs (d,q) with 2 < d < 200, 3 < ¢ < 50 and
2 < d <50, 50 < ¢ <500. The code that was used to test these cases can be found in Appendix

B.5.

What can also be seen in Figure 5.2 is that for ¢ relatively small compared to d, the value i for
which K;(i) is the smallest eigenvalue seems to be decreasing for j larger than a certain value,
say V(d,q). For j <V (d,q), K;(d) is the smallest eigenvalue for odd j, just like for the case with

q=2.

For ¢ slightly larger compared to d, we see that the value i for which K (i) is the smallest eigenvalue
seems to be decreasing for all j. This can be seen in Figure 5.3. Of course it is still possible that
the bound j > V(d, q) from before plays a role, but that V(d, q) is close to zero for ¢ large enough

compared to d.

60 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme



CHAPTER 5. NEW RESULTS

5.1. THE HAMMING CASE
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Figure 5.3: Visualization of some P-matrices of graphs from the Hamming scheme. The highlighted
boxes indicate the smallest eigenvalues per column.

For ¢ even larger compared to d, we see that the value ¢ for which K () is the smallest eigenvalue
seems to be strictly decreasing for all j. This would mean that K;(d — j + 1) is the smallest
eigenvalue for all j > 1. This can be seen in Figure 5.4.

H(18,90) H(20,95) H(19,100)

91234567 891011121314151617118 2 91234567 8910111213141516171819)20 ©1234567 8 9101112131415161718[1
D . . e e e e e e e e e e e e e B O .
W . . . . . . . e e e e e e e e e D . . . e s e e e e e e e e e e e il . . . . . .. .. e e e e e e e e
s . .. ... ..........=8 2L e . ... ... .. ... ..., B
= F I b Bls . ... .............®. = R I
s . . ... ... ... a.. AL L e . ... ... ........@8..
- F S @ . @ = I Rl
& [ Rl AT S M | R
s . . .. ... ... .®&..... RO e N | EIRIR R IR
8ls . .. ... ... .®. ... 5 =2 - U S Y
aes . ........+8....... L S D
10 . . . . . e e e e e e e e [ m.oo oL
Me.......®. ... ..... 2e........0.......... e

Ee........ & .........|. @ :Ill@% il
Be: - @B e . ... @, = Y D
B N M - R R, T P
Be. . .&. . ... .. ..>. R S M - R
6. . 8. Lo e . .®. . . ... ... ...
7. . 0o 19 . o oo T
/oL . .- 7 19 . o o e e e e e

Figure 5.4: Visualization of some P-matrices of graphs from the Hamming scheme. The highlighted
boxes indicate the smallest eigenvalues per column.

The smallest value ¢ such that K;(d— j+1) is the smallest eigenvalue for all j > 1 for a particular
value of d is shown in Table 5.1. For example, when d = 8 we have that for n > 12, the value
K;(d—j+1) is the smallest eigenvalue for all j > 1.

d|3 |4 5 6 7 8 9 10 11 12 13 14 15 16

q|3 |4 5 7 9 12 15 18 122 |26 |30 |35 40 45
20125 |26 |27 |28 |29 |30 |40 |50 |60 |70 |80 90 100

g | 70 | 109 | 118 | 127 | 136 | 146 | 156 | 277 | 433 | 623 | 848 | 1107 | 1401 | 1730

Table 5.1: Overview of the minimum value ¢ per value of d for which K;(d — j+ 1) is the smallest
eigenvalue for all j > 1.

5.1.2 The penabsolute eigenvalue

The case ¢ = 2 is fully described in Chapter 4.1, so we focus on ¢ > 3. Figure 5.5 displays

some visualizations of P-matrices of graphs from the Hamming scheme, all with ¢ = 5. It seems
that |K;(1)] is the penabsolute eigenvalue for all j, except for the column just before the black
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vertical line. For this value of j, which is j = [d - %—‘ — 1, we have that sometimes |K;(1)| and
sometimes |K;(2)| is the penabsolute eigenvalue. After looking at many different visualizations
with varying values of d and ¢, we started to believe that for j = [d — ﬂ—‘ — 1, the following

q
holds.

|K;(2)| is the penabsolute eigenvalue < d=0(mod ¢) or d = ¢ — 1 (mod q),
|I;(1)] is the penabsolute eigenvalue < d# 0(mod ¢) and d # ¢ — 1 (mod g).

In fact, Figure 5.5 confirms this belief, as for d = 20 = 0 (mod 5) and d = 19 = 5 — 1 (mod 5)
we have |K;(2)] is the penabsolute eigenvalue in the column just before the black line. For the
other values of d, we have d # 0 (mod 5) and d # 5—1 (mod 5), so here |K;(1)] is the penabsolute
eigenvalue in the column just before the black line.
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Figure 5.5: Visualization of some P-matrices of graphs from the Hamming scheme. The highlighted
boxes indicate the penabsolute eigenvalues per column.

All observations from the paragraphs above can be summarized in the following conjecture:

Conjecture 5.5. Let ¢ >3 and j < d — %. Then

(a) ifd=0(mod q) ord = q—1(mod q), then |K;(1)| > |K;(3)| for1 <i<d, j < fd—%] -1,

and |K;(2)| > |K;(i)| for1 <i<d, j = [d—42] -1,
(b) if d # 0(mod q) and d # g — 1 (mod q), then |K;(1)] > |K;(i)| for 1 <i<d.
The rest of this subsection will be devoted to proving Conjecture 5.5. We start with showing the

relation between |K;(1)| and |K;(2)| for various values of j. For j = [d — %1 — 1 we have the
following.
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Proposition 5.6. Let ¢ > 3 and j = [d — %] — 1. Then

(a) if d=0(mod q) or d =q—1(mod q), then |K;(1)|] < |K;(2)|,
(b) if d # 0(mod q) and d # q — 1 (mod q), then |K;(1)| > |K;(2)].

Proof. Let € {0,...,g — 1} such that d + z = 0 (mod ¢). This means that for z = 0 we have
d = 0(mod q), for z = 1 we have d = ¢ — 1 (mod ¢) and for 2 < 2 < ¢ — 1 we have d # 0 (mod q)
and d # ¢ — 1(mod ¢). Thus, for z = 0 and z = 1 we want to show |K;(1)| < |K,(2)| and for
2 <z < g—1 we want to show |K;(1)| > |K;(2)].

We have K;(1) > 0 by Lemma 4.6a. Therefore, showing |K;(1)] = K;(1) < |K;(2)] is equivalent
to showing either K;(2) > K;(1) or K;(2) < —Kj;(1). Since K;(2) < K;(1) by Lemma 4.6b and
4.6¢, we still need to show K;(2) < —K;(1) for x = 0 and 2 = 1. On the other hand, showing
|K;(1)] = K;(1) > |K;(2)| is equivalent to showing both K;(2) < K;(1) and K,;(2) > —K;(1).
Since K;(2) < K;(1) by Lemma 4.6¢, we still need to show K;(2) > —K,;(1) for 2 <z <¢—1.

From Lemma 4.2, we have

d d
Ky(j) = Kj(Q)Q(q —1)*7 and Ki(j) = Kj(l)Q(q -1t

)

—

and thus 1
K;(2) = -K;(1) & Ka()) < —5(d=-1(g-1)Ki())

and

Using formula (4.1a), we get
K1(j) = (¢ = 1)(d—j) —j and (5.1)

Ka(j) = 0~ 12 =)~ = 1) = (g = )(d = )j + 35G ~ 1) (52)

Next, we determine j in terms of d, ¢ and = such that we can substitute j in the formulas for
K1(j) and K5(j) given above. Recall that d + = 0 (mod ¢). We have

j:{d_dqﬂ_lzd_LMJ_IZd_MmF;ﬂ_l: _dta

q q
Substituting this into the formulas (5.1) for K7(j) and (5.2) for K5(j) gives

d d
+m—d+ +x

Ki(j)=(—-1)-

2K2(j):(q—1)2-d+x (d+x_1) —z(q—1)~d+x (d_dzx)

2(d 2 d 2 d
(o) —qdta)— 2 ;x) Lodta)+ ;x) - :x—Qd(dJr;n)
2(d+z)?  2d(d+ x) B 2(d—|;m)2 +d2_2d(d—|—m) e (d—l—zx)2 +d—|—x
q q q q q q

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 63



5.1. THE HAMMING CASE CHAPTER 5. NEW RESULTS

=d>+ 2z +2? —dg—qr+2d+2x —2d*> —2dx +d*> — d
=224+ 22 —dg —qr +d.

For x =0 and z = 1, we aim to show

1 )
K;(2) < -K;(1) & K2(j) < —5(d = 1)(¢ — DE1(5)
sr?+2r—dg—qr+d<—(d—1)(g— 1)z
o 2?4+ 3z —2qx —dr + dgz —dg+d < 0.

For x = 0, we have 2> + 32z — 2qx —dx +dqxr —dg+d = d —dg < 0. For x = 1, we have
22+ 32 —2qx —dr +dgr —dg+d=1+3 —2q+dg—dg =4 —2q < 0. With these statements
we have proven that |K;(1)| < |K;(2)| if d = 0(mod ¢) or d = ¢ — 1 (mod ¢), so part (a) of the
proposition.

Now consider the case 2 <z < ¢ — 1. We wanted to show

K;(2) > -K;(1) & 2>+ 37 — 29z —dx + dgr —dq+d > 0
e 2?4+ (3-2¢+ (¢ — 1)d)x + (d — dg) > 0.

The coefficient of z is positive for d > 2, since
3-2+(q—1)d>3-2¢+2(q—1)=1>0,
so (3 —2q+ (¢ —1)d) > 2(3 — 2g + (¢ — 1)d) Thus, for d > 4, we have

2+ (3-2¢+(g—1Dd)xz+ (d—dq) >4+ (3—2¢+ (¢ —1)d)2 + (d — dqg)
=10—4g+qd—d
=6+d(g—1)—4g+4
=6+ (d—4)(¢g—1)
> 0.

We look at the cases d = 2 and d = 3 separately. Write K (i, d) to emphasize the value of d. For
d=2, we want d =2 # 0 (mod ¢) and d =2 # ¢ — 1 (mod q), so ¢ # 2 and ¢ # 3, so ¢ > 4. Also,

we have g1 )
:{d—_W—1:{2—W—1:1.
q q

By formula (4.1a) we have K1(1,2) = ¢ — 2 and K1(2,2) = —2, so indeed |K7(1,2)| > |K1(2,2)]
for ¢ > 4. For d = 3, we want d :37é (mod ¢) and d = 3 # ¢ — 1 (mod q), so ¢ # 3 and q # 4,

so q > 5. Also, we have
—1 2
j:{d—d-‘—lz[S—-‘—lzz
q q

By formula (4.1a) we have K»(1,3) = ¢® — 4q + 3 and K»(2,3) = —2¢ + 3. For ¢ > 5, this means
|K2(1,3)] = ¢®> — 4¢ + 3 and |K2(2,3)| = 2¢ — 3. Since

@ —49g+3-2¢+3=¢>—6q+6=(q—3+V3)(¢g—3—3)

and 3 + /3 &~ 4.732, we have indeed |K>(1,3)| > |K2(2,3)| for ¢ > 5. This concludes the proof of
part (b) of the proposition. O

For j <d— % — 1, we have the following.

Proposition 5.7. Let ¢ > 2 and j < d — % —1. Then |K;(2)|] < |K;(1)].
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Proof. By Lemma 4.6a, we know K;(1) > 0. Therefore we need to show |K;(2)| < K;(1), which
is equivalent to showing both K;(2) < K;(1) and K;(2) > —K;(1). The first inequality follows
from Lemma 4.6c. To show the second inequality, we first note that by Lemma 4.3, we have

d d
Kz(j)=Kj(2)Q(q—1)2’j and Kl(j)=Kj(1)Q(q—1)1’j-

d d
(j) (])
This means K;(2) > —K;(1) is equlvalent to showing K»(j) > —3(d — 1)(g — 1) K1 (j). Note that
it also means that K1(j) > 0. By Lemma 4.6d, we have
. 1 . , 1 .
Kali) = () = 3= DE) & j=(@-1)(1-1) orj=d

Note that (

Lemma 4.6b, that Kg( j) is quadratlc in j with positive leading coefficient and K7(j) is linear in
j. This means K;(2) > —1(d — 1)K1(j) for j < d — Q — 1. Since ¢ > 2 and K;(j) > 0, this
implies K;(2) > —1(d — 1)(g — 1)K (j) and thus K;(2 ) > —K;(1). Together with the inequality
K;(2) < K;(1) we have shown before, this gives | K ( )| < |K; ( )] O

/_\

) — 1. We have shown before, for example in the proof of

Next, we present some intermediate results that we will need to complete the proof of Conjecture
5.5.

Proposition 5.8. Letl <i<d. Ifi < %j when i+ (g—1)(d—i)—qj > 0 orif qj < 2(q—1)(d—1)
when i+ (¢ —1)(d — i) — ¢j < 0, then

[ (i + 1] < max{|K; (i = 1], [K; (@)}

Proof. Let M = max{|K;(: — 1)|, |K;(¢)|}. We have

(q=D(d-i)K;(i+1)=(+(q—1)(d—i) —qj)K;(i) —iK;(i — 1), so
Lemma 4.5 applied
(g = 1)(d = )||K; (i + D] <[i + (¢ — )(d — i) — qj||K;(@)] + i K; (i = )], s0
triangle inequality applied
(¢ —=1)(d =) K;(i+ D] < (i + (¢ = 1)(d — i) — qj| + ) M

The conclusion follows if |i+(¢—1)(d—i) —qj|+i < (¢g—1)(d—1). If i+ (¢—1)(d—%)—qj > 0, then
it suffices to show ¢ + (¢ — 1)(d — i) — ¢j + i < (¢ — 1)(d — ©), which happens exactly when i < %j.
Ifi+ (¢—1)(d—1i) — qj <0, then it suffices to show —i — (¢ — 1)(d—4) + qj +i < (¢ — 1)(d — i),
which happens exactly when ¢j < 2(¢ — 1)(d — 9). O

For j = [d — %] — 1, we can prove Conjecture 5.5

Lemma 5.9. Letlgigd,qz?)andj:fd—%]—l. Then

(a) if d=0(mod q) or d=q—1(mod q), then |K;(7)| < |K;(2)],
(b) if d # 0(mod q) and d # q — 1 (mod q), then |K;(i)| < |K;(1)].

Proof. Since this proof is rather long, we start with an overview of the steps.

1. Show the statement for 7 < ‘”, i+ (¢g—1)(d—14) —qj > 0 and for ¢j < 2(q — 1)(d — 1),
i+ (¢—1)(d—1%) — qj < 0 using Proposition 5.8,
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2. Show the statement for qj > 2(¢ — 1)(d — @), i + (¢ — 1)(d — i) — qj < 0 by considering the
cases d # 0 (mod ¢), d # ¢ — 1 (mod ¢) and d else separately for d, ¢ large enough,

3. Show that the case i > %j, i+ (qg—1)(d—1) —qj > 0 is not feasible,

4. Check some cases by hand for small d, q.
Note that we may assume ¢ > 3 since the cases + = 1 and ¢ = 2 are either trivial or shown in
Proposition 5.6.

Step 1. If i < %j when i+(¢—1)(d—i)—qj > 0orif ¢j < 2(¢q—1)(d—i) when i+ (¢g—1)(d—i)—qj < 0,
then we can use Proposition 5.8 and induction on i to prove the statement. For ¢ = 1 and ¢ = 2,
the statement follows from Proposition 5.6. For larger i, we have

[ ()| < max{[ K@ = 2)|, [K; (0 = D[} < - < max{[K; ()], [K;(2)]},

and the statement follows from Proposition 5.6

Step 2. Now let i + (g — 1)(d —4) — qj < 0 and gj > 2(¢ — 1)(d — ). We first show i > <=L, From
j= [d—%l — 1, we know j <d—%, $0 qj < dgq—d+1,s0 qj < dg— d. This means

2(q—1)(d—1) <g¢j <dg—d, so
2(g—1)(d—1) <d(g—1), so

§<’i, SO

i 4L
-2

Now we use Lemma 4.7 to finish the proof. As in the proof of Lemma 5.6, let z € {0,...,¢ — 1}
such that d + x = 0 (mod ¢). This means that for z = 0 we have d = 0 (mod q), for x = 1 we have
d=¢q—1(mod ¢q) and for 2 < z < g — 1 we have d # 0 (mod ¢) and d # ¢ — 1 (mod ¢). Thus,
for x = 0 and & = 1 we want to show |K;(i)| < |K;(2)] and for 2 < z < ¢ — 1 we want to show
|K;(i)| < |K;(1)]. Moreover, we have

j:[d_d—l—‘_lzd_{d—kx—(x—l—l)J_lzd_d—Fx_’_
q q q

[x—l—l—‘_l:d_d—kx
q q

and thus ¢ — 1 — 4 = £ > 0.

z
d

First, let 2 < x < ¢—1. Then, using Lemma 4.7, we want to show | K; ()| < (qfl)d’i(‘;) < |K;(1)].

By formula (4.1a), we have

|K;(1)] = (¢~ 1)j_1(j> ‘q— 1 ng" =(q— 1)j_1(j> (q— 1— Zj) 7

thus it is sufficient to show

a-0 () <a- () (a-1-9),

d< (q¢—1)""4(dg — d — gj).

which is equivalent to

Using j =d — ‘”T”” and thus ¢j = gd — d — =, we have

dte g

(¢— 1) Ydg — d — qj) = x(q— 1)" "«
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Moreover, using2§x§q—1andq23andi2%,wehave
Cder d4l d @ d d g-1 1 _d d 1 3 d 3
q 2 g q 2 q q 2 ¢ ¢ 276 2

This means
(¢= 1) dg —d —qj) =a(g— 1)~ " ' =2.287F =283,
which is greater than or equal to d for d > 34.

We can assume d > 3, since the case d = 2 follows from Lemma 5.6, so for 3 < d < 34, we need to

check |K;(i)| < |K;(1)| by hand. To do this, we first need to provide a bound on ¢, as we cannot

check the before mentioned inequality by hand for an infinite number of ¢’s. For d > 4, we have
d+z d+1 d+=x dq+q—2d—2x—2q>4(q—2)—q+2—2q_1 3

1> - —1= >
q 2 q 2q 2q

q

DO |

This means

(q— 1) dg—d—qj) =a(g—1)"7 =2 (¢g—1)2"1,
which is greater than or equal to 34 for ¢ > 323. For d = 3 we have ¢ > d, so x = ¢ — 3, so
i—c”Tz—lz%—M—lzﬂ—w—lzo,sox(q—l)ifd%fl23foras23and

q 2 q
all ¢. For x = 2, we have ¢ = 5. This means we need to check |K;(i)] < |K;(1)| by hand for all

combinations (d, ¢, j,¢) with d # 0 (mod ¢), d # ¢ — 1 (mod ¢), 4 < d < 34 and 3 < ¢ < 323, and
all combinations with (d, q) = (3,5).

Now, let x = 1. We have j = d — % and we want to show |K;(i)| < (¢ — 1)4~ Z( ) < |K;(2)]
using Lemma 4.7. Using formula (4.1a) and the definition of a binomial coefficient, we get

K;(2) = ﬁ(q — 1) (f) ((d—j=1(d=35)g—1*=2i(¢—1)(d—j) +3i( - 1))

- d(cf_l)<q—1>”(j)<(d:1—1) R ] (A IR

o=t (-2 )

a2 ()e -, s
|Kj<2>|—d(d1 (41" Q(j)3+d—q—dq|
1 J 2(d —
:d(d <]> (g—1)(d+1)+2|
— 1 J 2(d —
= a1 (]) ((g—1)(d+1)-2).

Thus, we want to show

a0 (1) < gt 072(%) - @+ -2,

which is equivalent to showing

d(d—1) < (¢ =)™ (g - 1)(d+1) - 2).
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Since (¢ —1)(d+1)—2=(¢—1)d+ q—3 > d(q — 1), this reduces to showing
d— 1 S (q _ 1)i+j—d—1‘

We have d+1 d+1 d+1 d+1 d
i+j_d_12i_i_12i_i_ - Z
2 q 2 3 6

and thus
(q _ 1)i+jfd71 > 2%7%

)

which is greater than or equal to d — 1 for d > 37. Like before, we need to check the cases
3 < d < 37 by hand, for which we need a bound on gq. We have

1 1 1)(g—2 4q — 8 4
itjod1> 3t d+l 4 (@dH+De-2) , 4¢-8 , , 4
2 q 2q 2q q

SO o 4
(q— 14t > (g—1)' 77,

which is greater than or equal to 37 — 1 = 36 for ¢ > 51. This means we need to check |K(i)| <
|K;(2)| by computer for all combinations (d,q,j,i) with d = ¢ — 1(mod ¢), 3 < ¢ < 51 and
3<d<3r.

Lastly, let z = 0. We have j = d — % and we want to show |K;(i)| < (¢ — 1)d’i(’;) < |K;(2)] using
Lemma 4.7 like before. Using formula (4.1a) and the definition of a binomial coefficient, we get

o=t (157) 2w () vy ()
= ﬁ@ - 1>”(;l) ((d—j=1)(d=j)g—1)*=2j(g = D) —j) +i( — 1))
-t ()
(st -9 -3-0)
o = (U 4 (R
1

550 = 70— 07 (9).

(-1 (j) < ﬁ(q -1 (j)

which is equivalent to showing

Thus, we want to show

d—1< (q _ 1)i+jfd71.

We have d+1 d d d 1 d 1
it do1>tT 4 . @2 _4_Z
vt =79 T4 273 276 2
and thus
(-1 > 284,

which is greater than or equal to d — 1 for d > 34. Like before, we need to check the cases
3 < d < 34 by hand, for which we need a bound on gq. We have

. d+1 4 dig—2) 1
1+ Z 5 P 2 5=
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SO 5
(q— 1)~ 4"t > (g—1)' 7,

which is greater than or equal to 34 — 1 = 33 for ¢ > 44. However, since z = 0 and thus
d =0 (mod ¢), we need ¢ < d. This means we need to check |K;(i)| < |K;(2)| by computer for all
combinations (d, ¢, j,4) with d = 0 (mod ¢), 3 < ¢ <34 and 3 <d < 34.

Step 3. The last case we need to consider is i + (¢ — 1)(d —4) —¢qj > 0 and i > 4. Note that

j:dfdfT"”,soforiZSV\fehave

i+(g—1)(d—i)—qj=i+qd—qgi—d+i—qd+d+z
=2i—q+x
<-ilg=2)+q-1
=(g—-2)(1—i)+1
<—2(¢q—-2)+1
<0.

Thus, for j =d — “HTI this case is not feasible.

Step 4. The last step is to check all cases with i + (¢ —1)(d —4) —¢j < 0 and ¢j > 2(¢ — 1)(d — )
that need to be checked by a computer. These cases are:

e 3<d<34,3<¢qg<34ford=0(mod q),

e 3<d<37,3<¢g<5lford=qg—1(mod q), and

e 4<d<34,3<¢q<323and (d,q) = (3,5) for d # 0 (mod q), d # g — 1 (mod q).
The lemma was checked by computer for all pairs (d,q) with 3 < d < 37 and 3 < ¢ < 323,
which covers all pairs that were mentioned above. Appendix B.6 shows the code used to check

these cases. The lemma turns out to be true for these cases, which completes the proof of this
lemma. O

For j < d— % — 1, we split the proof into four cases:

Case 1: ig%jandi—i—(q—l)(d—i)—quo,
Case 2: ¢j <2(¢g—1)(d—i)and i+ (¢ —1)(d—1i)—qj <O,
Case 3: qj >2(q—1)(d—4) and i+ (¢ —1)(d—1) —qj <O,
Case 4: i > % and i+ (¢ — 1)(d — i) —qj > 0.

Cases 1 and 2 can be shown using Proposition 5.8, which we will get back to in the proof of Lemma
5.16. Case 3 is shown in the following lemma.

Lemma 5.10. Let ¢ >3, j <d — 9L — 1 and qj > 2(q — 1)(d —i). Then |K;(i)| < |K;(1)] for
1<i<d.

Proof. We want to use Lemma 4.7 to prove the statement. In the proof of Lemma 5.9, we have
seen that for showing |K; ()| < (¢ — 1)d’i(?) < |K;(1)| it is sufficient to show

d< (q¢—1)""dg — d — gj).

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme 69



5.1. THE HAMMING CASE CHAPTER 5. NEW RESULTS

We first derive a bound on i+ j —d — 1. From ¢j > 2(q — 1)(d — i), we get

2q

-1
i+j>2Ld, SO
q

. q .
i+ ———j>d, so
2(qg—1)

. q2>.
i+|1———)j>d, so
( 2(q—1)
. -2
itj—d—1>-1"°2_

We split up the rest of the proof into two cases, namely j < q—fd and j > q—fd. First, consider
the case j < %d. We have

2
@—d—WZQM—ﬂ—d2q<d>—d=d
Moreover, we have

q—2 . S
—— j—-1>-1, so i+j—d—1>0.
2(¢—1)

i+j—d—1>
Together, this gives
d<dg—d-qj=(q—1)°(dg—d—qj) < (q— 1) (dg - d - gj),
which is what we wanted to show.

Next, consider the case j > %d. We have

o q-2 qg—2 q-—2 (q—2)2
itj—d—1>—1"j—1>-+ = 3 %5 132" g4_1.
2(q—1) 2(¢—1) ¢ 2q(q — 1)

— (a=2)?
Let f(q) = Sa(g—T)" We have
of _ (a=2)B¢-2)
dq 2¢%(q — 1)?
so f is increasing in ¢ for ¢ > 3. This means that f attains its minimum value at the smallest
feasible ¢, which is ¢ = 3. Thus,

>0,

i+jfd—1>f(q)d—12f(3)d—1:1%—1.

Moreover, from j < d— % —1 we get dg—d —qj > q, so it suffices to show the first inequality in

d<3-2171 <q(g—1) < (¢ 1) (dg — d — gj).

The first inequality is true for d > 66, so we need to show that |K;(¢)| < |K;(1)| for 3 < d < 65 by
computer. To do this, we need a bound on ¢. Note that we had dg—d—qj > gand i+j—d—1 > 0,
so it suffices to show the second inequality in

d<65<q=(q—1)"<(¢— 1) (dg—d— qj).

This inequality is trivially true for ¢ > 65, so it suffices to show |K;(i)| < |K;(1)| by computer
for 3 < d,q < 65 and all feasible values of i,j. The code to calculate these cases can be found
in Appendix B.7. It turns out all cases that needed to be checked by computer are true, which
finishes the proof of this lemma. O
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This leaves us case 4, namely 7 > %j when i + (¢ — 1)(d — i) — ¢j > 0. For showing this case, we
first need some intermediate results.

Proposition 5.11. Leti+ (¢q—1)(d—1i)—qj >0, i > '” and g > 4. Then j < 3d —

00|

Proof. We have i + (¢ —1)(d — i) — ¢j > 0 and thus 4 < 1d - Ezj. Moreover, we have i > %j,

thus i > %. Thus, for there to be a feasible i, we need

+ 1 —1
q) + < q d— q j.
2 q—2 q—2
This can be rewritten to 2 3 )
. q— q—

We have
of 4-2q 4—q

g ¢
which is negative for ¢ > 4 since for ¢ > 4 we have

(4—29)d— (4—q)=4d —4—q(2d —1) < 4d — 4 — 4(2d — 1) = —4d < 0.

This means f(q) is decreasing in ¢ and thus takes its largest value at the smallest feasible value
of g, which is ¢ = 4. This means we have j < f(4) < f(q) with f(4) = %d — %. O

Proposition 5.12. Let K;(i) be a Kravchuk polynomial and j > 0. Then

< (Do),
o -0 () (07))

triangle inequality applied on formula (4.1a)

~a-v("]7) i_Q‘“hO(j—h)
s(q—1>j<d;i> (g—1) i()( )

Proof. We have

s () e ((5)-(57)

Vandermonde identity (Lemma 2.5) applied

(@ oa(5)

Now we show a result similar to Proposition 5.12, but where the upper bound is slightly tighter.

O

Proposition 5.13. Let ¢ =3, j > 2 and K;(i) a Kravchuk polynomial. Then

<o)+ (20) + ()
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Proof. We have

o< E() (1)

triangle inequality applied on formula (4.1a)

j RV —~
=2j<d‘-Z’)H-W‘—l(f“")+2j—2<(-)—(‘H
J j—1 J J

Vandermonde identity (Lemma 2.5) applied

() (-5 )(2)
o) () ()

Finally, we prove case 4, namely i > 4 when i + (¢ — 1)(d — i) — ¢j > 0. This case is divided over
two lemmas. The first one considers q > 4 and the second covers the case ¢ = 3.

O

Lemma 5.14. Let ¢ > 4, i+ (¢ —1)(d—i)—qj > 0, i > ¥ and j < d— %L —1. Then
|K;(i)] < |K;(1)] for 1 <i<d.

Proof. Note that we may assume j > 0 since Ky(i) = 1 for all . By formula (4.1a), we have

K01 = -1 () Ja-1- 2] = -0 () <q—1— “).

where the last equality follows from j < d — % —1,s0q—1-— ‘” > 21 5 0. We want to show
|K;(i)] < |K;(1)| using Proposition 5.12. Thus, we want to show the second inequality in

< a-v () +a-a(" ) <@ () (4-1-9) =i

This is equivalent to showing

Note that 7 > %j, SO %j < %, SO

%  (q—2)d—2i _ 2d—2i
_2_7 —9_ T = > >0
q a1 d d =—g =Y

where the second-to-last inequality follows from ¢ > 4.

First, assume j > d — i. Then the left hand side of (5.3) equals zero and the right hand side is
positive, so for j > d — i we have that (5.3) holds. Now assume j < d — i. In this case, we have

()R- 0
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S0 (d;i) is decreasing in i. Since i > ¥ > %l =2 we need i > 3, so (d;i) < (dgg)- This means

it is sufficient to show i—3 d .
- q)

q_z( , )g() (q_z_). 5.4

@-2(" ") < (¢ ; (54)

Using the definition of a binomial coefficient, we can write

() -y ()

This would make it sufficient to show

(d—j)d—j—1)(d—-j—2) qj
d(d —1)(d —2) =1- (q—2)d’ (5:5)
Since ¢ > 4, we have =5 2)d < 20{, so it suffices to show
(d—j)d—j-1d—-j—-2) 2j (d—j)d—j—1)(d—j—2)+2j(d-1)(d-2)
d(d—1)(d—2) Ty T d(d—1)(d—2) =1 (56)
We have

(d—j)(d—3j—1)(d—j—2)+2j(d—1)(d—2) = d* - 3d*> — 3jd* + 2d + 65d + 35%d
—2j — 352 — 72+ 2jd*> — 6jd + 45

and
d(d—1)(d—2) =d> - 3d*> + 2d,

thus it suffices to show
—jd*4+35%d+2j - 352 -7 <0 & f(j)=—j*+3jd-3j+2—-d* <0. (5.7)

We have 5

—f:3d7372j20,

dj
so f is increasing in j. which means it is biggest when j attains its biggest feasible value, which is
smaller or equal than j = %d—% by Proposition 5.11. Therefore it suffices to show f ( d— 7) <0.

We have
2
3.1 3.1 3.1
“d—-)=—(2d—= d—=)d=3(=d—<-)+2—-d*
(50-5) (8 ;) ra(3g)a-s(ge-g)
90 . 151

__72_7 bl
o d 64 d+ 64

Since this is a quadratic function in d with negative leading coefficient which equals zero for
d = —45 + 8v/34 ~ —45 + 46.65, we have that the above equation is negative for d > 2, which
finishes the proof. U

Finally, we get to case 4 for ¢ = 3.

Lemma 5.15. Let ¢ = 3, i+ (¢ —1)(d—1i)—qj > 0, i > %j and j <d—%—1. Then
[K(2)] < [K;(1)] for 1 <i < d.

Proof. The case i = 2 was shown in Proposition 5.7, so assume i > 3. We start with writing down
the assumptions for ¢ = 3. From i+ (¢ —1)(d —i) — qj > 0 we get i < 2d — 35 and from i > % we
get ¢ > # This also means 2d — 35 > %, sod > 9j4—+1 > 2j. Moreover, from j < d — % -1
we get 37 < 2d — 3.
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By formula (4.1a), we have

-3 k-3 6-%).

where the last equality follows from 35 < 2d — 3, so 2 — ‘% > % > 0. Note that we may assume
j > 0 since Ko(i) = 1 for all 4. For the case j = 1 we have |K7(1)| = 2d — 3 and from Proposition
5.12 we have |K;(i)] < d+ (¢ —2)(d — i) = 2d — 4. Since we assumed ¢ > 3, we have

|K1(7)| <2d—i<2d-3=|K(1)],
which proves the statement for j = 1. Thus, from now on we may assume j > 2, ¢ > 3.

We want to show |K;(i)] < |K;(1)| using Proposition 5.13. Thus, we want to show the second
inequality in

sors (1) (1) () () -

This is equivalent to showing

3(d;i>+z‘<§l_i> gg’(d;%)@). (5.8)

For j = 2, the inequality is true. Note that i > 3'22"‘1, so 1 > 4.

3<dz‘>+i<di) _Bdm@—in)

2 1 2
(3(d — 1) — i)(d — )
2
3(d—1)(d—4)
2
 3(d—4)d(d—1)
d 2

(g

3'32"'1 > 33t — 5 from now on.

<

so assume j > 3 and thus ¢ >

First, consider the case j — 1 > d — 4. In this case, the left hand side of (5.8) equals zero and
the right hand side is greater or equal than zero, so for j — 1 > d — i the inequality holds. Now
consider j — 1 =d —i. Recall that we had j > 3 and d > 2j, which gives

PN s s () a1 et <
3( i >+(d ]+1)<j1)—d j+1l<d 1<2(d 1)

< g(d—Zj)(d—l)ZS(d;m@i) < W@

Lastly, for j — 1 < d — 1, so for i < d — j, we want to show the inequality

(571G = b =) () =757 0)

which is equivalent to showing the inequality in

ifldfj*ki(dj—_i)<3(d*2j)(d*i*j+1)7 3(d—2j)(d—i—j+1) 59)
d—k (%) T dBd—i-j+1)+ij)  dB(d—j+1) +i(j—3) :

k=0
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The left hand side LHS(i) of (5.9) is decreasing in ¢. The numerator of the right hand side is
decreasing in 4 and the denominator is increasing in 7, so the right hand side RHS(3) of (5.9) is
also decreasing in 1.

To prove the inequality in (5.9), we want to know which side decreases faster, so we calculate the
following.

. LHS(i) fd— g— : d—i
”HS(’)_LHS(z’H) U Hd—]— T
reai) — RHS() d—i—j+1  3(d—i—j)+(i+1)j
REST) = RHSG+1)  3(d—i—j+1)+ij d—i—j '

We claim r15(7) > rrus(i) for all i. Recall that we have ¢ < d — j.

3j—3 - j—3
3(d—i—j+1) " 3(d—i—j+1)+ij’

J—1 Jj—3
i—i— 1 YT s 0T
d—i—j+1+j-1 >3(d—i—j+1)+ij+j—3

d—i—j+1 3d—i—j+1)+1ij

d—i >3(d—i—j)—|—(z’+1)j
d—i—j+1 3(d—i—j5+1)+ij’
d—1 >(d—z’—j+1)(3(d—z‘fj)+(i+1)j)
d—j—i (d—i—7)3(d—i—j+1)+ij)

roas(i) > rrus(i).

1+

, SO

, SO

We want to show (5.9), thus LHS(4) < RHS(i) for all ¢ > 5. If the base case LHS(5) < RHS(5)
holds, then we can complete the proof of the statement by induction:
LHS(i) RHS(4)
LHS(i+1) " RHS(i+1)

= LHS(i)- RHS(i +1) > RHS(i) - LHS(i + 1)

together with LHS (i) < RHS(i) gives LHS(i + 1) < RHS(i + 1).

Thus, it suffices to show that LHS(5) < RHS(5) holds. We have

(d—j)d—j—1)(d—j—2)d—j—3)(d—j—4)
d(d—1)(d—2)(d—3)(d—4) ’

3(d—2j)(d—j—4)  3(d—2j)(d—j—4)
d(3(d—j —4) + 5j) d(B3d+2j —12)

LHS(5) =

RHS(5) =

thus we want to show

(@d=Dd=j-Dd=j-2(d=j=3) __3{d2)
(d—1)(d—2)(d—3)(d—4) =3d+2j—12°

which is equivalent to showing
3(d— 2j)(d—1)(d - 2)(d - 3)(d — 4) — (3d+2j — 12)(d— j)(d— j—1)(d— j — 2)(d — j —3) > 0.
Expanding the brackets gives that we want to show

(72d — 150d* + 105d® — 30d* + 3d® — 1443 + 300dj — 210d°j + 60d*j — 6d*5)
— (72d — 150d* + 105d* — 30d* + 3d® — 72j + 270dj — 260d>j + 90d®j
—10d*j — 1205* + 205dj> — 90d”j* + 10d°5* — 505° + 30dj* — 5dj* + 25°)
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= —25° + 5dj* 4 (—30d + 50)5% 4 (—10d* 4 90d* — 205d + 120)52
+ (4d* — 30d® 4 50d* + 30d — 72);
> 0.
Dividing by j on both sides and rearranging terms gives that we want to show

(—2j* 4+ 5dj® — 10d%j + 4d*) — (30d — 50)52 + (90d — 205d + 120) — 30d* + 50d> + 30d — 72 > 0.

Before we continue showing above relation, we show another bound on j. We derived before that
7> %, meaning j < 2’—;1 Moreover, we had ¢+ < d — j, thus

2i-1_2d-j)-1 _ . _2d-1
3 = 3 7="5

Jj<
Now let g(j) :== —2j* 4+ 5dj® — 10d®j + 4d*. Using j < £, we have

9 15 25
99 _ 853 4+ 15dj2 — 10d° < —853 + —d* = 10d° = —85° - Zd’ <0,

dj
so g is decreasing in j, meaning that g takes its smallest value at the largest value of j, which is
j= % as we have shown above. Thus, we have
G) > 2d -1\ _ ,(2d-1 4+5d 2d —1 3_10d3 201\ u
I =9\"5")~ 5 5 5
168 1014 102 9 2
= —d'+ —dP+ —=d® - —d - —.

625 + 625 * 625 625 625

Furthermore, let h(j) = —(30d — 50)52 + (90d? — 205d + 120)j. Recall that we have i > 5, so

also d > 5. Thus, we have 30d — 50 > 0 and also 90d? — 205d + 120 > 0 since the discriminant
2052 — 4 -90 - 120 = —1175 is negative and the leading coefficient 90 is positive. Thus, h(j) is
quadratic in j with negative leading coefficient and has a zero at 7 = 0. The maximum value of h
is attained at j*, which is defined as

o _ (000> —205d+120) _ 18d° —41d+24 184 —41d 3 41
ST T T 9B0d—50) | 12420 12¢ 29 12

, %d — % is greater than or equal to % for d > 3, so we have 0 < j < % < j*. This
means that h(j) is increasing in j for 0 < j < L;l, so the minimum value of A(j) in this interval
is attained at j = 0, which gives h(j) > h(0) = 0. Figure 5.6 shows the graph of h(j).

Moreover

h(j)

Figure 5.6: Graph of the function h(j) from the proof of Lemma 5.15.
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Recall that we wanted to show
g(4) + h(j) — 30d> + 50d* + 30d — 72 > 0. (5.10)

We have

168 1014 102 9 2
) + h(j) — 30d® d? d—712> —d*'+ —d®+ —=d* — —d— —
9(7) + h(j) = 30d” +50d° + 30d — 72 > —=d* + <o d’ + = 65 65

—30d® + 50d? + 30d — 72

1
= @(168# — 17736d> + 31352d? + 18741d — 45002),
thus it suffices to show
f(d) = 168d* — 17736d° + 31352d* + 18741d — 45002 > 0. (5.11)

The leading coefficient of f is positive, and by using numeric solving methods on a computer we
find that f(d) has only two real zeros, namely d &~ —1.132 and d ~ 103.763. Thus, the polynomial
f(d) is greater than or equal to zero for d > 104. Figure 5.7 shows the graph of f(d).

Thus, we have finished the proof of Lemma 5.15 for d > 104. We need to check |K;(i)| < |K;(1)]
with ¢ = 3, 3 < d < 103 by computer for all feasible values (¢,j). The code used to do these
computations is shown in Appendix B.8. It turns out this inequality holds for the aforementioned
values of d, q, 7,4, which concludes the proof of this lemma. O

5000
4000
30001
2000

10001

—1000¢

-20001

—30000

40000

=50000

Figure 5.7: Graph of the function f(d) from the proof of Lemma 5.15.

We can now summarize all four cases in the following lemma.

Lemma 5.16. Let ¢ >3 and j < d — % — 1. Then |K;(i)| < |K;1)] for1 <i<d.
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Proof. First, assume i < %j, i+(g—1)(d—i)—qj > 0or qj < 2(q—1)(d—1), i+(q—1)(d—i)—qj < 0.
If either of these cases hold, we can use Proposition 5.8 and induction on ¢ to prove the statement,
like we did in the proof of Lemma 5.9. For i = 1 and i = 2, the statement follows from Proposition

5.7. For larger i, we have
1K (6)] < max{|K;(i — 2)|, [K;(i — D[} < -+ < max{[K;(1)[,[K;(2)[},

and the statement follows from Proposition 5.7.

Now assume ¢j > 2(q —1)(d —i), i+ (¢ —1)(d — i) — qj < 0. This case was shown in Lemma 5.10.
Lastly, assume i > 4, i + (¢ — 1)(d — i) — g¢j > 0. This case was shown in Lemma 5.15 for ¢ = 3
and in Lemma 5.14 for ¢ > 4. O

Lastly, we see that with Lemmas 5.9 and 5.16, we have shown Conjecture 5.5 for all relevant values
of j. Thus, we can now state with full confidence that this conjecture is in fact a theorem.

d—1

Ceonjeecture: Theorem 5.5. Let ¢ > 3 and j < d — - Then

(a) ifd=0(mod q) ord = q—1(mod q), then |K;(1)| > |K;(i)| for1 <i<d, j < fd—%] -1,
and |K;(2)| > |K;(i)] for 1 <i<d, j = [d—42] -1,

(b) if d # 0(mod q) and d # g — 1 (mod q), then |K;(1)] > |K;(i)| for 1 <i<d.

Proof. The theorem follows directly from lemmas 5.9 and 5.16. O
Figure 5.8 shows the results of Theorem 5.5, this time for ¢ = 4 and various values of d.
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Figure 5.8: Visualization of the results of Theorem 5.5. The highlighted boxes indicate the pen-
absolute eigenvalues per column. The red fields indicate the results of the theorem.
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5.2 The Johnson case

5.2.1 The smallest eigenvalue

In Section 5.1, we noted that for graphs from the Hamming scheme, the bound j > d — % seems
to be tight in Corollary 4.13 and Theorem 4.14b. For graphs from the Johnson scheme, we have
already shown in Theorem 4.32b that the bound j > % is tight. This can be seen in Figure
5.9. What can also be seen in that the value of ¢ for which E;(7) is the smallest eigenvalue seems
to be decreasing for j > 0.

Moreover, we see in Figure 5.10 that for ¢ very large compared to d, the value of ¢ for which E;(7)
is the smallest eigenvalue seems to be strictly decreasing for j > 0. This would mean that for n
large enough, we have that E;(d — j + 1) is the smallest eigenvalue for all j > 1, which was noted
already in Proposition 4.34c. Table 5.2 shows the smallest value n such that E;(d — j + 1) is the
smallest eigenvalue for all j > 1 for a particular value of d. For example, when d = 3 we have that
for n > 8, the value E;(d — j + 1) is the smallest eigenvalue for all j > 1.
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Figure 5.9: Visualization of some P-matrices of graphs from the Johnson scheme. The highlighted
boxes indicate the smallest eigenvalues per column.

d |3 4 ) 6 7 8 9 10 15 20 21 22

n |8 14 21 34 50 70 96 129 | 396 | 901 1038 1189

d | 23 24 25 26 27 30 35 40 45 50 75 100

n | 1351 | 1529 | 1724 | 1931 | 2156 | 2935 | 4616 | 6847 | 9694 | 13243 | 44169 | 104113

Table 5.2: Overview of the minimum value n per value of d for which E;(d —j +1) is the smallest
eigenvalue for all j > 1.
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Figure 5.10: Visualization of some P-matrices of graphs from the Johnson scheme. The highlighted
boxes indicate the smallest eigenvalues per column.

5.2.2 The penabsolute eigenvalue

As can be seen in Figure 5.11, the penabsolute eigenvalues of graphs from the Johnson scheme
behave similar to those of graphs from the Hamming scheme (see Figure 5.8 for graphs from the
Hamming scheme). It seems that |E;(1)| is the penabsolute eigenvalue for all j, except for the
column just before the black vertical line.
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Figure 5.11: Visualization of some P-matrices of graphs from the Johnson scheme. The highlighted
boxes indicate the penabsolute eigenvalues per column.

For the column just before the black vertical line, which represents j = [

d(n—d)

P -I — 1 for Johnson,

we have that sometimes |E;(1)| and sometimes |E;(2)| is the penabsolute eigenvalue. However,
in contrast to the Hamming case, we did not manage to predict when |E;(1)| or when |E;(2)| is
the penabsolute eigenvalue for this particular value of j for all n,d. An overview can be found in

80

Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme



CHAPTER 5. NEW RESULTS 5.2. THE JOHNSON CASE

Table 5.3. For n large compared to d however, namely n > d? + d + 1, it seemed that |E;(1)| was

the penabsolute eigenvalue for j = {w—‘ — 1. This can also be seen in Table 5.3. We include

these observations in the following two conjectures.

Conjecture 5.17. For j = [d("i:ld)-‘ — 1, we have that

n

(a) |E;(1)| or|E;(2)| is the penabsolute eigenvalue for 1 <1 <d,

(b) forn > d*+d+ 1, |E;(1)] is the penabsolute eigenvalue for 1 < i < d, and this bound is
tight, meaning that |E;(2)| is the penabsolute eigenvalue for n = d? + d.

Test cases. (a) This conjecture was tested for all pairs (n,d) with 2 < d < 200, 2d < n < 400.
The code that was used to test these cases can be found in Appendix B.9.

(b) We tested whether |E;(2)| is the penabsolute eigenvalue for n = d? +d and 3 < d < 200.
Furthermore, we tested whether |E;(1)] is the penabsolute eigenvalue for d? +d + 1 < n < 10000,
3<d<9andford®>+d+1<n<d? 10 <d <200. The code used to test these cases can be
found in Appendix B.10.

d(n—d)
n—1

Conjecture 5.18. For j < [
1<i<d.

—‘ — 1, we have that |E;(1)| is the penabsolute eigenvalue for

Test cases. This conjecture was tested for all pairs (n,d) with 2 < d < 200, 2d < n < 400. The
code that was used to test these cases can be found in Appendix B.11.
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nld- | 3|4 |5|6|7|8|9|10|11 |12 |13 |14 |15 |16 | 17 | 18 | 19 | 20
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(\S)
(\)

NN DN DN

NN DN DN

NN NN DN
[\
[\
[\

NN DN DN

[\
[\
[\

NN DN DN

[\)
[\)

DO NN DN DN DN
NN DN DN

NN DN DN
[\

NN DN DN

41
42
43
44

[\
[\
[\
[\

DO DN N DN DN DN

[\

NN DNNNNDN
NN DN DN

45
46
47
48
49
50
51
52
53

[\
[\

NN NN

NN DN DN
[\

NN DN DN DN DN
NN DN N DN

e I I s e e e e B ey e e e e e e N s e e e i i i i s e e Y Y e A e e e G T IR IR N
[ I = SIS [ B B B e I Y Y e e e I e e Y I e B e e By By g Y Y e e e L VI I S ST IR IR N

e e Rl B Bl Ml Bl el R e M e e e e R B B B e R e B B S I R IR S IR S TR O O )
R PP PP PR R R RN NN NN NN N NN DN

NN NN NN DN
NN NN NN DN

N NN DD
N NN DN

2

Table 5.3: Columns are values of d and rows are values of n. Note that n > 2d. Entries are 1 if

|E;(1)| is the penabsolute eigenvalue and entries are 2 if |E}(2)| is the penabsolute eigenvalue for

j= {%-‘ — 1. Cells are green if n > d? + d + 1, linking to Conjecture 5.17b.
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Chapter 6

An application to the max-k-cut
problem

In Chapter 1, the paper [30] by van Dam and Sotirov was mentioned as an application of the
relevance of finding the smallest eigenvalue of the adjacency matrix of a graph. This chapter will
discuss [30] in more detail. In [30], van Dam and Sotirov attempt to find better bounds for the
max-k-cut problem using the largest Laplacian eigenvalue of a graph. As L = D — A, where D
is a matrix with the degrees of the vertices on its diagonal and zeros elsewhere, this comes down
to using the smallest eigenvalue of the adjacency matrix of the graph to find better bounds for
the max-k-cut problem. Note that in this thesis so far, we only considered regular graphs where
D = sI for valency s." However, [30] considers general, possibly non-regular graphs except if
stated otherwise.

To understand the use of the largest Laplacian eigenvalue for bounds on the max-k-cut problem,
we first need to define this problem. The input of the max-k-cut problem is a graph G = (V, E)
with |[V| = n and a positive integer 2 < k < n. The question is to partition V into at most k
disjoint parts V = V7 U---U V, such that the total number of edges in between parts is maximal.
Consider for example a bipartite graph G = (V = AU B, E) and k = 2. For this input, the
problem is trivial: just take V3 = A and V5 = B, and all edges of G will be edges in between parts.
However, in general this problem is NP-hard, even for k¥ = 2 [12]. When k = 2, the problem is
sometimes referred to as simply the max-cut problem in the literature.

There are many known applications for the max-k-cut problem. The ones mentioned in [30] are
VLSI design (combining millions of MOS transistors onto a single chip to create an integrated
circuit) [2, 8], frequency planning [11], finding properties of spin glasses [2], digital-analogue con-
verters [21], sports team scheduling [19] and fault test generation [15].

To solve the max-k-cut problem, it is useful to provide a formal problem definition. Let G = (V, E)
with |V| = n. An integer programming formulation for the problem is the following.

(IP1) max %mr@XTLx) (6.1)

st. X1, =1, (6.2)
zy; €{0,1} for 1 <i<mn,1<j<k.

INote that we use s for the valency instead of the previously used k, since k is already taken in ”max-k-cut”.
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We can think of X € {0,1}"*¥ as the incidence matrix of a partition of V', where

1 ¢ isin part j,
Tij =
0 else.

Every vertex should be in precisely one partition, which can be translated to X 1, = 1,, where 1,
is the all-one vector of size k. The objective that we wish to maximize corresponds to the number
of edges in between parts V,,, with 1 < m < k. We have

r (XTLX) = ZlemZm]m il

m=1 [=1

For every part V,,, we look at all vertices [ that are in V, (then z;,, = 1). For these vertices [,
we add up Lj; if vertex j is in the same part as vertex I. We have

n

n
E Iijjl = oy Ly + g Jijle
Jj=1

=1, j#1

= deg(l) + (number of vertices in part m that are neighbors of 1) - (—1)

number of vertices outside part m that are neighbors of [,

thus, the objective that we want to maximize counts the number of vertices in between parts. The
% from (6.1) is there because every edge is counted twice in the above reasoning. Since solving
(IP1) is NP-hard [12], it makes sense to formulate the following semidefinite relaxation of (IP1)

[25]:

(SDP1) max %tr (LY) (6.4)
s.t. diag(Y) =1, (6.5)

kY — J, is PSD, (6.6)

yi; > 0for 1 <4, j<n. (6.7)

This relaxation is the only known SDP relaxation for the max-k-cut problem so far ? that could
be solved when k > 5 and n > 50 [29, p. 3]. Note that .J, is the all-one matrix of size n x n. In
the case that y;; € {0,1} for all 7, j in an optimal partition, we can think of ¥ as ¥ = XX7T, so

1 4,7 are in the same part,
Yij =

0 else.

This is why we need constraint (6.5). Constraint (6.7) is the relaxed form of constraint (6.3). The
reason that we need constraint (6.6) can be found in [25]. Because (SDP1) is a relaxation of (IP1),
we have OPT(SDPl) Z OPT(Ipl).

To derive a new upper bound for the max-k-cut problem using Laplacian eigenvalues, we need
to introduce something called the Lapacian algebra L. This is a matrix *-algebra [10], which is
a set of matrices that is closed under addition, scalar multiplication, matrix multiplication and
taking conjugate transposes. Let 0 = pg < p1 < -+ < Ly = Pmax(L) and Ag < A; < -+- <
Am = Amax(A) be the distinct eigenvalues of L and A respectively, where the first inequality is
not strict to provide for the case that our graph is disconnected. Note that, since our graph is not
necessarily regular, we cannot say Ao = s.

Next, let U; be a matrix whose columns form an orthonormal basis of the eigenspace corresponding
to u;, and let F; = U;UL. We know that (a constant multiple of) an eigenvector corresponding to

2The article [29] where this claim was made was published in 2014, so it would be possible that someone found
a better SDP relaxation somewhere after this article was published.
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o = 0 is the all-one vector, so we take Uy = ﬁ 1., and if the graph is disconnected, the columns

no
of Uy contain all other eigenvectors corresponding to the smallest eigenvalue. The matrices F;
which are called idempotents of £, form a basis of the Laplacian algebra £. Thus, we have
L = ({Fy,...,Fn}). These idempotents have some properties, which are summarized in the
following lemma. Note that 0,, is the all-zero matrix of size n x n.

Lemma 6.1. [30] Let F; be idempotents of the Laplacian algebra for 0 < i < m. Then the
following statements hold.

(a) Yo Fi=1,

(b) it mili =L,

0, else

(c) F3F; = {

(d) Fo=LJ,.

Proof. (a) We have >.1"  F; = >7" U;UT = I if and only if (3", U;Ul) z = z for all z € R".

Let {v1,...,v,} be all eigenvectors of L. Then for all z € R™, there are numbers f,...,0, € R
such that z = Y°7_| f;v;. Therefore

(ij UM?) z= (i UiUiT> angjvj @ igﬂj _
=0 i=0 j=1 =1

If v; is not a column of U;, then Uiij =0, so also Ul-Uiij = 0. If v; is a column of U;, then Uiij
is a unit vector with the one in place k if and only if v; is the kth column of U;, thus U;Ulv; = v;.
This explains the equality sign with a (x) in the equation above.

(b) Let {v1,...,v,} be all eigenvectors of L again. We have Lv; = pyv; if and only if v; is an
eigenvector corresponding to the eigenvector y;. Moreover, we have

(Z mﬂ-) v = wUiUf vy = oy = Lo,
i=0 1=0

by the same reasoning as in the last paragraph of the proof of (a). For all z € R™ there are
numbers (1, ..., #, € R such that z =37, Bjv;. Thus, for all z we have

(ZME‘) z= (Zmﬂ) Zﬁjvg‘ =L Zﬁjvj = Lz,
i=0 i=0 =1 =

thus E:}lo ,ulFl = L.

(c) Let {v1,...,v,} be all eigenvectors of L again. Since these eigenvectors are pairwise orthonor-
I
mal, and the columns of U; consist of the vectors v;, we have ur U; = 0 Z y j,’. Therefore
m 7]
U, 1UT L= j, F, 1=,
FF; = UUTUUT = IR L
Ui0nU; i # . 0, i#j.
2
(d) We have Fy = UpUZ = (ﬁ) 117 =17, 0
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The crux of the new bound on the max-k-cut problem [30, p. 221] lies in the following theorem.
Note that the data matrices of the problem are all matrices that appear in the SDP /TP formulation
of the problem except for the variable matrix. In the case of (SDP1), this would be L and J,
since Y is the variable matrix.

Theorem 6.2. [29] Let (SDP) be a semi-definite optimization problem. If a matriz x-algebra
contains the data matrices of (SDP) and the identity matriz, then the optimization of (SDP) can
be restricted to feasible points in the matrix *-algebra.

Thus, we want to create a semi-definite optimization problem such that our Laplacian algebra
L contains all data-matrices of that problem. The problem (SDP1) that was mentioned before
does not satisfy these conditions, as not all matrices in £ have constant diagonal (think of L for
non-regular matrices) while (6.5) states diag(Y') = 1,,, and matrices in £ can have negative entries
while (6.7) states y;; > 0. Fortunately, we can relax (SDP1) further to a problem that does satisfy
the conditions of Theorem 6.2.

(SDP2) max % tr (LY) (6.8)
st tr(Y) =n, (6.9)
kY — J, is PSD. (6.10)

By Theorem 6.2, we may restrict the optimization of (SDP2) to feasible points in £, which gives
us the following result.

Theorem 6.3. [30] Let G, L, n, k, timax and (SDP2) as defined before. Then

n(k —1)

. me-
ok Pmax (L)

marsppr2) =

Proof*. Because of Theorem 6.2, there exists an optimal solution Y from (SDP2) in £. Thus, since
{Fy,...,Fy} is a basis of £, we may assume there exist ag, ..., a, € Rsuch that Y = >"1" o F}.
Now let {zp,...,2zn—1} be the orthonormal eigenvectors of L. We know that kY — .J,, is PSD, so
for all z; we know

0< z]T(kY —Jn)zj = szYzj - z;franj

m n 2
= k:zJT (Z OziFi> Z5 — <Z ij)
=0 =1

m n 2
= kZOzi (Z]TUz) (ijUi)T — (Z sz>
i=0 1=1

n 2
(%) T
9 b (:707) (70,) — (z )
=1

n 2
= ]ﬂO[j — (Z Zjl,) s
=1

where (x) once again comes from the fact that z;U; = 0 if z; is not a column of U;, and sziT is a
unit vector with a one on place % if and only if z; is the k™ column of U;.

2
For j = 0, we have zy = ﬁln, so by the previous derivation kag — (n %) = kag —n > 0.
This gives
kOéO

k
0<——-1=k—-1-——(n—ap)
n n

86 Finding extremal eigenvalues of graphs from the Hamming and Johnson scheme



CHAPTER 6. AN APPLICATION TO THE MAX-K-CUT PROBLEM

—k—1— S(tr(Y) — agtr(Fp))

1
since Fy = —J,, so tr(Fy) =1
n

=k 1= 503 aute(Fy) — aotr(Fy)

which holds if and only if

For j > 0, we have 0 < ka; — (31, Zjl)2 < ko, so aj > 0. In total, this gives
1
OPT(SDP2) = §tr (LY)

1 m
= itr (zzg ,uioziFi>

used Lemmas 6.1b and 6.1c
1 m
=3 Z wictr(F,
i=0

1
i,uoogotr Fy) + Z wictr(F,

1
5 Mmax Z Q; tI‘

smceuO:()andajZOforj>0
<n(k—1)

* Mmax L).
S = Hmax(L)
O
To summarize the previous results, we write
n(k —1)
OPTnax-k-cut = OPT(1p1) < OPT(spp1y < OPT(gppa) = —on * Pmax (L) (6.11)

Thus, we have found a new upper bound for the max-k-cut problem using the largest Laplacian
eigenvalue of a graph.

The paper of van Dam and Sotirov notes that for some graphs, some of the inequalities in (6.11)
are actually equalities. For two of these mentioned graph types, namely graphs from the Hamming
scheme and walk-regular graphs, we want to highlight some results. First, we look at graphs from
the Hamming scheme:

Theorem 6.4. [30] Let G = H(d,q,j) be a graph from the Hamming scheme and let (SDP1)
and (SDP2) be the above mentioned relazations of the maz-k-cut problem. If K;(1) is the smallest
eigenvalue of the adjacency matriz of G, then OPT spp1y = OPT (spp2)-

For the proof of Theorem 6.4, see [30]. Note that since graphs from the Hamming scheme are

regular and the valency is given by K;(0), we have OPT (gpp1) = OPT (gppg) = "(I;;l) -(K,;(0) —
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K,;(1)) when K;(1) is indeed the smallest eigenvalue. From Corollary 4.13 and Theorem 4.14b,
we know that K (1) is the smallest eigenvalue for j > d — 91, with the additional condition that
j even or j = d when ¢ = 2. We summarize this in the following corollary.

Corollary 6.5. Let G = H(d, q,j) and let (SDP1) and (SDP2) be the above mentioned relazations
of the maz-k-cut problem. Moreover, let j > d — %, with the additional condition that j even or

j =d when g = 2. Then OPT(spp1) = OPT(sppay = “5=1 . (K;(0) — K;(1)).

Proof. Note that d — % = % for ¢ = 2. By Corollary 4.13 and Theorem 4.14b, we have that

K (1) is the smallest eigenvalue for j > d— %, with the additional condition that j even or j = d
when ¢ = 2. O

When k = ¢, we have an extra result:
Theorem 6.6. [30] Let G = H(d,q,j) be a graph from the Hamming scheme and let k = q in
the maz-k-cut problem. If K;(1) is the smallest eigenvalue of the adjacency matriz of G, then

OPTmaz-q—cut = n(qg;l) : (Kj (0) - KJ(I))

Proof*. We already know from (6.11) that for the max-g-cut problem on the graph H(d,q,j), we

have OPT nax-g-cut < %;1) - (K;(0) — K;(1)). Thus, we are done if we manage to find a vertex

partition that results in ”(Zl) - (K;(0) — K;(1)) edges in between parts.

Let V = {1,...,q}% so n = |V| = ¢?. We need to construct a partition V. = V; U---U V, as
follows. Put vertex v € V in part V; if and only if the first coordinate of v equals {. This way, the
number of vertices from some vertex v to a vertex in another part is (jj) (g — 1)~ Moreover,

the number of vertices in a part is ¢*~! and the number of ways to select two out of ¢ parts is ().
Thus, the total number of edges in between parts is

(e o

_n(g—-1) (1(d j 1(d j jo1fd—=1
N A I =)

=n((12;1)<<j)(q1)j((4>(q1)jq(q1)jl<j_i>>)

_nlg-1) . .
= o (K;(0) = K;(1)) .

used formula (4.1b)

<

Example. Consider the graph G = H(3,2,2) with d = 3, ¢ = 2 and j = 2, which can be seen in
Figure 6.1 on the left. We have j > % = 3'5—1 and j even, so from Corollary 4.13 we know that

K;(1) is the smallest eigenvalue. This means that Theorem 6.6 can be applied to the max-2-cut

problem on GG, meaning that if we partition the vertex set V of G in two disjunct parts, namely

V1 and V3, that the maximum number of edges between parts is equal to %;1) (K;(0) — K;(1)).

From Section 2.3 we know that
(d 3
n=|Vl=¢"=2=8 and K;(0)=(q¢—1) (J) =(2- 1)2<2> =3.

Moreover, from formula (4.1a) we know
(d—1 ; d—1 3—-1 3—-1
. — _ i _ _ j—1 _ _ 2 _ _ 2—1 — _
g =a-v/(“ T - (1)) me- (P ) - (52) =
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This means that the maximum number of edges between parts should be

n(g—1)
2q

8(2—1)

(0(0) = K (1) = =

3-(-1))=s.

Following the proof of Theorem 6.6, we divide the vertices based on their first coordinate. All
vertices that have first coordinate 0 are in V; and all vertices that have first coordinate 1 are in
V5. This is shown in Figure 6.1 on the right. The figure also shows that the number of edges in
between parts, which are colored in red, is equal to 8, which was the maximum number of edges
between parts according to Theorem 6.6.

H(3.2,2)

(0,1,1)

(1,0,1)

(0,1,0) (1,0,0)

(0,0,1) (LL1)

Figure 6.1: Left: The graph H(3,2,2). Right: The same graph, but vertices are divided into two
parts. All green vertices are in V; and all blue vertices are in V5. The edges between parts are
colored in red.

Now we move on to another type of graphs where an equality arises in (6.11), namely walk-regular
graphs. These are graphs for which the number of walks of length [ from a vertex to itself does
not depend on the chosen vertex, but only on [ [13]. Note that all distance-regular graphs are
walk-regular, so the statement below also holds for distance-regular graphs. For k = 2, we have
the following statement.

Theorem 6.7. [30] Let G be a walk-regular graph. Then for k = 2 we have OPT spp1y =
OPT(SDPQ)'

For the proof, see [30].

We end this section with another result using the bound derived in Theorem 6.3. Note that the
chromatic number of a graph, denoted by x(G), is the smallest number of colors needed to color
the vertices of a graph such that the colors of any two adjacent vertices are different. If it is
possible to find a partition V- = V; U---U Vi such that OPT ax k-cut = |E|, then this partition
corresponds to a feasible coloring of G using k colors. That is, where there every part V; for
1 <4 < k corresponds to a different color. In this case we have x(G) < k. If it is not possible to
find a k-partition that results in OPTyaxk-cut = |E|, then x(G) > k. Thus, given a graph G(V, E)
and an integer k, we have

if OPThaxk-cut = |E|, then x(G) <k,
if OPTaxk-cut < |E|, then x(G) >k + 1.

Using this reasoning, we get to the following theorem. Recall that n = |V|. Moreover, note that
G in the following theorem is not necessarily regular.
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Theorem 6.8. [30] Let G = (V, E) be a graph with Laplacian matriz L. Then

2|

X(G) > 1+ .
(@) = (D) — 2B

.PT'OOf*. Let k = ’7%—‘ . Then

21E| (k—1)n

k<1 knfimax (L) — 2k|E max (L max(L) < | E|,
< +Wmax(L)72|E‘<:> N fimax (L) |B] < nptmax (L) & 5 Hmax(L) < |E|
thus by (6.11), we have OP T pcut < |B|, and thus x(G) > k+1> 14 ——21F . O

Note that for regular graphs with valency s, we have s = @, L = sI — A and thus

_ 2B

L)=s5— in(A
Mmax( ) S )‘mm( ) n

- )\min(A)'

This means that the bound on the chromatic number can be simplified to

2|E]| g _sm - s
nﬂmaX(L) - 2|E| nAmin(A) )\min (A) ’

X(G) =1+

which corresponds to the well-known Hoffman bound [14] on the chromatic number of a regular
graph.
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Chapter 7

Conclusion

In this thesis, we looked at the eigenvalues of the adjacency matrix of graphs from the Hamming
and the Johnson scheme. Chapter 2 includes expressions for the eigenvalues K;(¢) of graphs from
the Hamming scheme and F;(i) of graphs from the Johnson scheme, which were provided in
Theorems 2.13 and 2.16 respectively. The graphs we consider are all regular and we know that
the eigenvalues K;(0) and E;(0) are equal to the graph valency. Thus, we know from Theorem
2.9 that these eigenvalues are the largest, also in absolute value. The goal of this thesis was to
find out for which ¢ the eigenvalues K(i) and E;(¢) are smallest or penabsolute, without having
to calculate them for all 1 < ¢ < d. Recall that with ‘penabsolute’ we mean ‘second largest in
absolute value’.

The paper [3] contains several theorems on this topic, which were discussed in detail in Chapter
4. Chapter 5 discusses some new results and observations, including a new theorem on the penab-
solute eigenvalue of graphs from the Hamming scheme (Thm. 5.5). The tables on the next page
summarize the most important results that were discussed in Chapters 4 and 5. The second to
last column in the tables mentions the theorems in which the aforementioned result can be found.
Note that the results in red are new conjectures, for which no proof was found in this thesis.
However, these conjectures were thoroughly computationally tested, as can be seen in the test
results after the statement of every conjecture in Chapter 5. The statements in green are new
results that were proven in this thesis. The last column of the two tables on the next page refers
to a figure where the aforementioned result is illustrated using some examples.

It would not have been possible to formulate these new results and observations without the
visualization tool that was discussed in Chapter 3. This tool allowed us to illustrate all relevant
information from the so-called P-matrix of a Hamming or Johnson scheme. Several examples of
these visualizations can be found in Chapters 4 and 5.

Chapter 6 focuses on one of the applications of the results investigated in this thesis, namely
the application to the max-k-cut problem. In particular, we followed the paper [30] to show new
bounds on the max-k-cut problem using the smallest eigenvalue of the adjacency matrix of a graph.
Special attention is given to distance-regular graphs and graphs from the Hamming scheme.
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Figure 7.1: Some P-matrices of Hamming schemes. The highlighted boxes indicate the smallest
eigenvalues per column for 7.1a,b (top, middle) and the penabsolute eigenvalues per column for

7.1c (bottom).
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Figure 7.2: Some P-matrices of Hamming and Johnson schemes. The highlighted boxes indicate

the penabsolute eigenvalues per column for 7.2a,c (top, bottom) and the smallest eigenvalues per
column for 7.2b (middle).
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Appendix A

Code for the calculation and
visualization of P-matrices

For this thesis, I used Wolfram Mathematica to write a package of functions that are useful for
calculating eigenvalues and visualizing P-matrices. Below, I will first list all functions and their
output, after which I will share the code of the package. Note that in the table, {c1,co,...} is
used to indicate a list of integers where 0 < ¢; < d for Hamming and 0 < ¢; < n for Johnson.

Function | Input Output

CalcEigH | d,q,7J,i The eigenvalue K;(i) of the Hamming graph H(d, ¢, j).

CalcEig] | n,d,j,i The eigenvalue E; (i) of the Johnson graph J(n,d, j).

EigH d,q The P-matrix of the Hamming scheme H(d, q).

EigJ] n,d The P-matrix of the Johnson scheme J(n,d).

EigHfx d,q,j List of eigenvalues of H(d,q, j).

EigJfx n,d,j List of eigenvalues of J(n,d, j).

EigHa d,q The P-matrix of H(d,q) where the penabsolute eigenvalue(s)
per column are highlighted.

EigHs d,q The P-matrix of H(d,q) where the smallest eigenvalue(s) per
column are highlighted.

EigJa n,d The P-matrix of J(n,d) where the penabsolute eigenvalue(s)
per column are highlighted.

EigJs n,d The P-matrix of J(n,d) where the smallest eigenvalue(s) per
column are highlighted.

EigHac d,q,{c1,co,...} | Same as EigHa, but row and column headers are added, and a

black vertical line is drawn between columns ¢; and ¢; — 1 for
every ¢; in the input list. This list may be empty.
EigHsc d,q,{c1,co,...} | Same as EigHs, but row and column headers are added, and a
black vertical line is drawn between columns ¢; and ¢; — 1 for
every c¢; in the input list. This list may be empty.
EigJac n,d,{c1,c2,...} | Same as EigJa, but row and column headers are added, and a
black vertical line is drawn between columns ¢; and ¢; — 1 for
every ¢; in the input list. This list may be empty.
EigJsc n,d,{c1,c2,...} | Same as EigJs, but row and column headers are added, and a
black vertical line is drawn between columns c¢; and ¢; — 1 for
every ¢; in the input list. This list may be empty.
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Def jH d,q The ceiling of d — %.
DefjJ n,d The ceiling of %.
HsmX d,q,{c1,ca,...} | Same as EigHsc, but all (highlighted) numbers are replaced

with (highlighted) dots, and the value DefjH[d,q] is automat-
ically added to the input list. The vertical line for Def jH[d,q]
will be drawn in black, while the others will be red.

HabX d,q,{c1,ca,...} | Same as EigHac, but all (highlighted) numbers are replaced
with (highlighted) dots, and the value DefjH[d,q] is automat-
ically added to the input list. The vertical line for Def jH[d,q]
will be drawn in black, while the others will be red.

JsmX n,d,{ci,ca,...} | Same as EigJsc, but all (highlighted) numbers are replaced
with (highlighted) dots, and the value DefjJ[n,d] is automat-
ically added to the input list. The vertical line for Def jJ[n,d]
will be drawn in black, while the others will be red.

JabX n,d,{ci,ca,...} | Same as EigJac, but all (highlighted) numbers are replaced
with (highlighted) dots, and the value DefjJ[n,d] is automat-
ically added to the input list. The vertical line for Def jJ[n,d]
will be drawn in black, while the others will be red.

The objects shown in Figures 3.1 and 3.2 of Chapter 3 were also created using these functions.
The following table gives an overview of the functions used to create these objects.

Figure | Position Function

3.1 left EigH[5,3]

3.1 top middle EigHs[5,3]
3.1 bottom middle | EigHal[5,3]
3.1 top right HsmX [5,3,{}]
3.1 bottom right HabX[5,3,{}]
3.2 left EigJ[9,4]

3.2 top middle EigJs[9,4]
3.2 bottom middle | EigJa[9,4]
3.2 top right JsmX[9,4,{}]
3.2 bottom right JabX[9,4,{}]

Finally, the code where all functions are defined is given below.

BeginPackage ["ThesisPackage CalcEigenvalues™ "]

CalcEigH: :usage="CalcEigH[d,q,j,i]. Calculate specific eigenvalue for Hamming
— graph."

CalcEigJ::usage="CalcEigJ[n,d,j,i]. Calculate specific eigenvalue for Johnson
— graph."

EigH: :usage="EigH[d,q] . Calculate P-matrix for Hamming graph."
EigJ::usage="EigJ[n,d]. Calculate P-matrix for Johnson graph."

EigHfx::usage="EigHfx[d,q,j]. Calculate eigenvalues for H[d,q,j]l."
EigJfx::usage="EigJfx[n,d,j]. Calculate eigenvalues for J[n,d,j]."

EigHa: :usage="EigHal[d,q]. Calculate P-matrix for Hamming graph and highlight the
— second largest in abs value per column."

EigHs::usage="EigHs[d,q]. Calculate P-matrix for Hamming graph and highlight the
— smallest value per column."
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EigJa::usage="EigJa[n,d]. Calculate P-matrix for Johnson graph and highlight the
— second largest in abs value per column."

EigJs::usage="EigJs[n,d]. Calculate P-matrix for Johnson graph and highlight the
— smallest value per column."

EigHac: :usage="EigHac[d,q,{c,c,...}]. Calculate P-matrix for Hamming graph and
— highlight the second largest in abs value per column. Last input is list of
— 1integers for column dividers."

EigHsc::usage="EigHsc[d,q,{c,c,...}]. Calculate P-matrix for Hamming graph and
— highlight the smallest value per column. Last input is list of integers for
— column dividers."

EigJac::usage="EigJac[n,d,{c,c,...}]. Calculate P-matrix for Johnson graph and
— highlight the second largest in abs value per column. Last input is list of
— 1integers for column dividers."

EigJsc::usage="EigJsc[n,d,{c,c,...}]. Calculate P-matrix for Johnson graph and
— highlight the smallest value per column. Last input is list of integers for
— column dividers."

Def jH: :usage="DefjH[d,q]. Ceiling of d-(d-1)/q, for which existing theorems hold
— for Hamming graphs."

DefjJ::usage="DefjJ[n,d]. Ceiling of d(n-d)/(n-1), for which existing theorems
— hold for Johnson graphs."

HsmX: :usage="HsmX[d,q,{c,c,...}]. Calculate P-matrix for Hamming graph and

— highlight the smallest value per column. Numbers are replaced by dots for
— better overview. Last input is list of integers for column dividers."
HabX: :usage="HabX[d,q,{c,c,...}]. Calculate P-matrix for Hamming graph and

— highlight the second largest in abs value per column. Numbers are replaced
— by dots for better overview. Last input is list of integers for column

— dividers."

JsmX: :usage="JsmX[n,d,{c,c,...}]. Calculate P-matrix for Johnson graph and

— highlight the smallest value per column. Numbers are replaced by dots for
— better overview. Last input is list of integers for column dividers."
JabX: :usage="JabX[n,d,{c,c,...}]. Calculate P-matrix for Johnson graph and

— highlight the second largest in abs value per column. Numbers are replaced
— by dots for better overview. Last input is list of integers for column

— dividers."

Begin["Private™ "]
CalcEigH[d_,q_,j_,i_1:=Sum[(-1)"h * (q-1)"(j-h) *
< Binomial[i,h]*Binomial[d-i,j-h],{h,0,j}]

CalcEigJ[n_,d_,j_,i_]:=Sum[(-1) "{i-h}*Binomial [i,h]*
< Binomial[d-h,jl*Binomial [n-d-i+h,n-d-j],{h,0,i}]

EigH[d_,q_]:=(funcEigH[i_,j_]:=CalcEigH[d,q,j,1i];
K=Array[funcEigH,{d+1,d+1},{0,0}];
MatrixForm[K])

EigJ[n_,d_]:=(funcEigJ[i_,j_]:=First[CalcEigJ[n,d,j,i]];
M=Array[funcEigJ,{d+1,d+1},{0,0}];
MatrixForm[M])

EigHfx[d_,q_,j_]:=(funcEigH2[i_] :=CalcEigH[d,q,j,1i];
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APPENDIX A. CODE FOR THE CALCULATION AND VISUALIZATION OF P-MATRICES

L=Array[funcEigH2,d+1,0];
MatrixForm[L])

EigJfx[n_,d_,j_]:=(funcEigJ2[i_]:=First[CalcEigJ[n,d,j,i]1];
L2=Array[funcEigJ2,d+1,0];
MatrixForm[L2])

EigHs[d_,q_] :=(funcEigH[i_,j_]:=CalcEigHl[d,q,j,i];
K=Transpose [Array [funcEigH,{d+1,d+1},{0,0}1];
For[i=1,i<=Length[K], i++,
min = Min[K[[i]]]; (*find minimum of the column i*)
pos = Position[K[[i]],min]; (*give list of position(s) in which this
<~ minimum appears )
K[[i]]=ReplacePart[K[[i]],pos->Highlighted[min, FrameMargins->1,
— ContentPadding->False]]; (xhighlight these positionsx)
1;
MatrixForm[Transpose[K]])

EigHald_,q_]:=(funcEigH[i_, j_]:=CalcEigHl[d,q,j,i];
K=Transpose [Array [funcEigH,{d+1,d+1},{0,0}]1];
For[i=1,i<=Length[K], i++,
If [Length[DeleteDuplicates[Abs[K[[i]]1]]1]!=1, (*first check if all values
— in column are equal in abs valuex)
min = DeleteDuplicates[Sort[Abs[K[[i]11]1]1[[-2]], (*if not, get
< the second largest in abs valuex)
min=Min [Abs [K[[i]1]]
15
posl=Position[K[[i]],-min]; (*give list of position(s) in which this
— value appearsx)
pos2=Position[K[[i]] ,min];
K[[i]l]l=ReplacePart[K[[i]],posl->Highlighted[-min, FrameMargins->1,
— ContentPadding->False, Background->Cyan]]; (*highlight these positions)
K[[i]]=ReplacePart [K[[i]],pos2->Highlighted[min, FrameMargins->1,
— ContentPadding->False, Background->Cyan]];];
MatrixForm[Transpose[K]])

EigJs[n_,d_]:=(funcEigJ[i_,j_]:=First[CalcEigJ[n,d,j,i]];
K=Transpose [Array [funcEigJ,{d+1,d+1},{0,0}1];
For[i=1,i<=Length[K], i++,
min = Min[K[[i]]];
pos = Position[K[[i]],min];
K[[i]l]l=ReplacePart[K[[i]],pos->Highlighted[min, FrameMargins->1,
- ContentPadding->False, Background->Green]];
1;
MatrixForm[Transpose[K]])

EigJa[n_,d_]:=(funcEigJ[i_,j_]:=First[CalcEigJ[n,d,j,i]];
K=Transpose [Array [funcEigJ,{d+1,d+1},{0,0}1];
For[i=1,i<=Length[K], i++,
If [Length[DeleteDuplicates[Abs[K[[1]]]1]]!=1,
min = DeleteDuplicates[Sort[Abs[K[[1]]111][[-2]],
min=Min[Abs[K[[i]11]]
15
posl = Position[K[[i]],-min];
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APPENDIX A. CODE FOR THE CALCULATION AND VISUALIZATION OF P-MATRICES

pos2=Position[K[[i]] ,min];
K[[i]]=ReplacePart[K[[i]],posi->Highlighted[-min, FrameMargins->1,
— ContentPadding->False, Background->Pink]];
K[[i]l]l=ReplacePart[K[[i]],pos2->Highlighted[min, FrameMargins->1,
- ContentPadding->False, Background->Pink]];];
MatrixForm[Transpose[K]])

EigHac[d_,q_,c_]:=(K1=EigHald,q]l [[1]1];
K2=Join[{Range[-1,First[Dimensions[K1]]-1]1},Join[Transpose [{Range[O,

— First[Dimensions[K1]]1-1]3}],K1,2]]; (*add headers to rows and columns*)
Part[K2,1,1]=""; (xleft upper corner of header should be emptyx*)

colsl=c+2; (*add 2 to list of integers for column dividors, because of header and
<> because mathematica is 1-basedx)
cols2=ConstantArray[False,First[Dimensions [K2]+2]]; (*make list of repeated

« "false"x)

cols2[[cols1]]=True; (*change values in this list to true if we want a column

< dividor therex)
Grid[K2,Background->{{LightGray},{LightGray}},Dividers->{cols2}]) (*make headers
— grey and add column dividors*)

EigHscl[d_,q_,c_]:=(K1=EigHs[d,q] [[1]];
K2=Join[{Range[-1,First[Dimensions[K1]]1-1]},Join[Transpose [{Range[O,
« First[Dimensions[K1]]-1]1}],K1,2]1];

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First[Dimensions [K2]+2]];
cols2[[cols1]]=True;
Grid[K2,Background->{{LightGray},{LightGray}},Dividers->{cols2}])

EigJac[n_,d_,c_]:=(K1=EigJa[n,d] [[1]];
K2=Join[{Range[-1,First[Dimensions[K1]]-1]},Join[Transpose [{Range[O,
— First[Dimensions[K1]]1-11}],K1,2]];

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First [Dimensions [K2]+2]];
cols2[[cols1]]=True;
Grid[K2,Background->{{LightGray},{LightGray}},Dividers->{cols2}])

EigJscln_,d_,c_]:=(K1=EigJs[n,d] [[1]1];
K2=Join[{Range[-1,First[Dimensions[K1]]-1]},Join[Transpose [{Range[O,
< First[Dimensions[K1]]-11}],K1,2]1]1;

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First[Dimensions[K2]+2]];
cols2[[cols1]]=True;
Grid[K2,Background->{{LightGray},{LightGray}},Dividers->{cols2}])

DefjH[d_,q_]:=Ceiling[d-(d-1)/q]
DefjJ[n_,d_]:=Ceiling[d (n-d)/(n-1)]
HsmX[d_,q_,c_]:=(X1=EigHs[d,ql [[1]1];

K3=Replace[K1,_?IntegerQ->".",{2,3}]; (*replace all integers in the P-matrix from
— EigHs to dots*)
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K2=Join[{Range[-1,First[Dimensions[K3]]1-1]}, Join[Transpose [{Range[O,

— First[Dimensions[K3]]-1]}],K3,2]]; (xadd headers like in EigHsc*)
Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First[Dimensions[K2]+2]];

cols2[[cols1]]=Red; (*the column dividers from the input will be redx*)
cols2[[DefjH[d,q]l+2]]=True; (*the default divider will be black. +2 because of
— header and 1-based mathematicax)
Grid[K2,Background->{{LightGray},{LightGray}}, Dividers->{cols2}, BaseStyle->10,
— Spacings->{0.1,0}, ItemSize->All])

HabX[d_,q_,c_]:=(Ki=EigHald,ql [[1]];
K3=Replace[K1,_7IntegerQ->".",{2,3}];
K2=Join[{Range[-1,First[Dimensions[K3]]-1]},Join[Transpose [{Range[O,
< First[Dimensions[K3]]1-1]1}],K3,2]1];

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First [Dimensions [K2]+2]];
cols2[[cols1]]=Red;

cols2[[DefjH[d,ql+2]]1=True;
Grid[K2,Background->{{LightGray},{LightGray}}, Dividers->{cols2}, BaseStyle->10,
— Spacings->{0.1,0}, ItemSize->Al11l])

JsmX[n_,d_,c_]:=(K1=EigJs[n,d] [[1]];
K3=Replace[K1,_7IntegerQ->".",{2,3}];
K2=Join[{Range[-1,First[Dimensions[K3]]-1]},Join[Transpose [{Range[O,
. First[Dimensions[K3]]1-11}]1,K3,2]1];

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First [Dimensions [K2]+2]];
cols2[[cols1]]=Red;

cols2[[DefjJ[n,d]+2]]1=True;
Grid[K2,Background->{{LightGray},{LightGray}}, Dividers->{cols2}, BaseStyle->10,
— Spacings->{0.1,0}, ItemSize->All])

JabX[n_,d_,c_]:=(K1=EigJa[n,d] [[1]];
K3=Replace[K1,_7IntegerQ->".",{2,3}];
K2=Join[{Range[-1,First[Dimensions[K3]]1-1]},Join[Transpose [{Range[O,
— First[Dimensions[K3]]1-113}],K3,21];

Part[K2,1,1]="";

colsl=c+2;

cols2=ConstantArray[False,First [Dimensions [K2]+2]];
cols2[[cols1]]=Red;

cols2[[DefjJ[n,d]+2]]1=True;
Grid[K2,Background->{{LightGray},{LightGray}}, Dividers->{cols2}, BaseStyle->10,
— Spacings->{0.1,0}, ItemSize->All])

End[]
EndPackage []
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Appendix B

Code for checking results and
testing conjectures by computer

Like before, the code in this part is written for Wolfram Mathematica.

B.1 Checking cases for Theorem 4.14a

We need to check if |K;(1)| < |K;(4)| under the restrictions 1 < d < 30, 3 < i < d, ¢ > 3,

d—%gj§d—2andqj>2(q—1)(d—i+1). Becauuseweneedd—d;1 < d — 2 for there to

be a feasible 7, we can add an extra restriction ¢ < %. Also, since we need 3 < % for there to

be a feasible ¢, we can restrict d further to d > 7. Lastly, we know j > d — % >T7— (‘fli11> = 5.
2

In the proof of 4.14a we noted that it is enough to show that the inequality
d<(¢—1)7""""gj — (¢ - 1)d)

holds. The following code outputs the number of feasible combinations and a list of all feasible
combinations (g, d, i, 7) for which the aforementioned inequality is false. Note that we don’t check
|K;(1)] < |K;(i)| directly for all combinations, since this code would run significantly slower than
the code below, which can be executed within seconds.

Input
flgo, d_, i_, j_1 :=(@-1D"(G -d+1-1) *x(qg *j - (q - 1)*d);
falseCombinations = {};
nrFeasibleCombinations = 0;
For[d = 7, d < 30, d++,
For[i = 3, i <= d, i++,
For[q = 3, q <= (d - 1)/2, g++,
For[j =5, j<=d - 2, jt++,
If[d - (d - 1)/q <= j && j*q > 2 *(q - D*(d - i + 1),
nrFeasibleCombinations++;
I1f[d > flq, d, i, jl,

AppendTo[ falseCombinations, {"q=", q, "d=", 4, "i=", i, "j=", j}11;
1
1;

1;
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1;
1;
Print["Combinations for which the inequality is false:", falseCombinations,
"\n Nr. of feasible combinations: ", nrFeasibleCombinations];

OQutput

Combinations for which the inequality is false:
{{9=,3,d=,7,1i=,5, j=,5},{9=,3,d=,10,i=,6, j=,7},{9=,3,d=,10,i=,7,j=,7},
{g=,3,d=,13,1i=,8, j=,9},{q=,3,d=,16,1i=,9, j=,11},{qg=,3,d=,19,1i=,11, j=,13},
{q9=,3,d=,22,i=,12,j=,15}}

Nr of feasible combinations: 3881

For the 3881 — 7 = 3894 combinations for which d < (¢—1)7~9t=1(gj — (¢—1)d) holds, we already
know that |K;(1)| < |K;(i)|. For the seven combinations for which d > (¢—1)7=4=1(qj—(q—1)d)
holds, we need to check by computer if the inequality |K;(1)| < |K;(¢)| holds.

g ld |i |j | |K@]| K1) K5 (0)] < K ()?
37 5 |5 |2t 48 True
3106 |7 |24 768 True
31107 |7 |69 768 True
3(13(8 |9 |310 14080 True
30169 |11 ] 1596 | 279552 True
3019( 11|13 |2352 | 5849088 | True
3022|1215 | 64704 | 127008768 | True

The table shows that this is indeed the case.

B.2 Checking cases for Lemma 4.29, step 3

For 73 < n < 11036 and d > 10, we want to check if %‘ < "T*E’ for all feasible values of n,d, j. The

following code outputs the number of feasible combinations and a list of all feasible combinations
(n,d, j) for which the inequality is false.

Input

fln_, d_, j_] := Binomial[n, d]/(Binomial[d, jl*Binomiall[n - d, jl) - (n - 5)/6;
falseCombinations = {};
nrFeasibleCombinations = 0;
For[n = 73, n <= 11036, n++,
For[d = 10, d <= n/2, d++,
jo =d (n - d)/n;
jOCeil = Ceiling[j0];
If [Element[jO + 3/2, Integers], jmax = jO + 3/2 - 1, jmax = Floor[jO + 3/2]];
For[j = jOCeil, j <= jmax, j++,
Iffj >=d (n - /(a - 1) && j < d,
nrFeasibleCombinations++;
If[f[n, d, j] >= 0,AppendTo[falseCombinations, {"n=", n, "d=", d, "j=", j}]
1;
1;
1;
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21

22

23

24

1
1
Print["False combinations:", falseCombinations,
"\n Nr. of feasible combinations: ", nrFeasibleCombinations];

Output

False combinations:{}
Nr. of feasible combinations: 39355058

After checking all 39 355058 feasible cases, we see that there are no combinations for which the
inequality is false. Therefore, we may conclude that |V‘ < 552 5 for 73 < n < 11037 and d > 10.
This computation took a few hours, which is much longer than the average computation time of
the programs in the other appendices.

B.3 Checking cases for Lemma 4.29, step 5

We need to check if E;(i)? < F;(1)? for n < 73 and i > 3 for all feasible values of n,d, j,i. The
value of d can be restricted from below by d > ¢ > 3. Also, we know n > 2d > 2i > 6.

The following code outputs the number of feasible combinations and a list of all feasible combin-
ations (n,d, j,) for which E;(i)? < E;(1)? is false.

Input

gln_, d_, j_, i_] := Sum[(-1)"h Binomial[i, h]*Binomial[d - i, j - h]
*Binomiall[n - d - i, j - hl, {h, 0, j}]1;
falseCombinations = {};
nrFeasibleCombinations = 0;
For[n = 6, n <= 73, n++,
For[d = 3, d <= n/2, d++,
jo =d (n - d)/n;
jOCeil = Ceiling[jO];
If [Element [jO + 3/2, Integers], jmax = jO + 3/2 - 1, jmax = Floor[jO + 3/2]];
For[j = jOCeil, j <= jmax, j++,
If[j>d (n - d)/(n - 1) & j < d,
For[i = 3, i <= d, i++,
nrFeasibleCombinations++;
glsqrt = gln, d, j, 11°2;
If[gln, 4, j, 1172 > gisqrt,
AppendTo[falseCombinations, {"n=", n, "d=", d,
1
1;
1
1;
1;
1
Print["False combinations:", falseCombinations,
"\n Nr. of feasible combinations: ", nrFeasibleCombinations];

Output
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False combinations:{}
Nr. of feasible combinations: 17060

We can see that the list of false combinations is again empty, and therefore we may conclude
E;(i)? < Ej(1)* forn <73 and i > 3.

B.4 Testing Conjecture 5.2

The code to test Conjecture 5.2 can be found below. We tested the conjecture for 2 < d < 400.

Input

dmax = 400;
falseComb = {};
nrComb = 0;
For[d = 2, d <= dmax, d++,
jmax = Ceiling[(d + 1)/2] - 1;
For[j = 1, j <= jmax, j++,
thisj = False;
K1 = CalcEigH[d, 2, j, 11;
For[i = 2, 1 <=4, i++,
If[CalcEigH[d, 2, j, il < K1, thisj = True]l;
nrComb++;
1;
If[thisj == False, AppendTol[falseComb, {"d=", 4, "j=", j}11;
15
1;
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];

Output
nr of combinations tested: 10646700

pairs for which conj is false: {}

We see that the list of pairs for which the conjecture is false is empty, so the conjecture holds for
2 < d < 400.

B.5 Testing Conjecture 5.4

We want to check Conjecture 5.4 for pairs (d, ¢) with 2 < d <200, 3 < ¢ < 50 and 2 < d < 50,
50 < ¢ < 500. The code for the pairs with 2 < d < 200, 3 < ¢ < 50 is the following.

Input
dmax = 200;
gmax = 50;

falseComb = {};
nrComb = 0;
For[d = 2, d <= dmax, d++,
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For[q = 3, q <= gmax, g++,
jmax = Ceiling[d - (d - 1)/q] - 1;
For[j = 1, j <= jmax, j++,
thisj = False;
K1 = CalcEigHld, q, j, 11;
For[i = 2, i <= d, i++,
If[CalcEigH[d, q, j, il < K1, thisj = Truel;
nrComb++;
1;
If[thisj == False, AppendTo[falseComb, {"d=", 4, "j=", j}];
1;
1;
1
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];

Output

nr of combinations tested: 119 551 090
pairs for which conj is false: {}

The code for the pairs 2 < d < 50, 50 < ¢ < 500 is the following.

Input
dmax = 50;
gmax = 500;

falseComb = {};
nrComb = 0;
For[d = 2, d <= dmax, d++,
For[q = 50, q <= gmax, g++,
jmax = Ceiling[d - (d - 1)/q] - 1;
For[j = 1, j <= jmax, j++,
thisj = False;
K1 = CalcEigH[d, q, j, 11;
For[i = 2, i <= d, i++,
If[CalcEigH[d, q, j, il < K1, thisj = Truel;
nrComb++;
1;
If[thisj == False, AppendTo[falseComb, {"d=", d, "j=", j}11;
1;
1;
1;
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];

Output

nr of combinations tested: 18 231 224
pairs for which conj is false: {}

In both cases, the list of pairs for which the conjecture is false is empty, so we may conclude that
the conjecture holds for all above-mentioned pairs (d, q).
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B.6 Checking cases for Lemma 5.9

To finish the proof of Lemma 5.9, it suffices to check this lemma by computer for all pairs (d, q)
with 3 < d <36 and 3 < ¢ < 322. The following code does this.

Input

upperBoundq = 322;
upperBoundd = 36;
falselist = {};
nrTested = 0;
For[q = 3, q <= upperBoundq, g++,
rangeForB = Range[1l, q - 2]; (*if d mod q is 0 or g-1, we have Lemma 5.9a,
<> else 5.9b%*)
For[d = 1, d <= upperBoundd, d++,

j = Ceiling[d - (d - 1)/q] - 1;

trueqd = True;

If [MemberQ[rangeForB, Mod[d, ql], (*if d mod g is not 0 or g-1...%)
EigHil = Abs[CalcEigH[d, q, j, 111; (*...then check with [K_j(1)[*)
For[i = 1, i <= d, i++,

If [Abs[CalcEigH[d, q, j, i]] > EigHil, trueqd = Falsel;
nrTested++;
1,
EigHi2 = Abs[CalcEigH[d, q, j, 211; (*...else check with [K_j(2)[*)
For[i = 1, i <= d, i++,
If[Abs[CalcEigH[d, q, j, il] > EigHi2, trueqd = False];
nrTested++;
1;
1;
If [trueqd == False, AppendTo[falselList, {"d=", d, "g=", q}]];
1;
1;
Print["nr of combinations tested: ", nrTested];
Print["pairs for which lemma is false: ", falseList];

OQutput

nr of combinations tested: 213120
pairs for which lemma is false: {}

We see that the list with pairs (d, ¢) for which the lemma is false is empty, so we can conclude
that the lemma is indeed true for pairs (d, ¢q) with 3 < d <39 and 3 < ¢ < 414.

B.7 Checking cases for Lemma 5.10

To finish the proof of Lemma 5.10, we need to calculate by computer whether |K; (i) < |K;(1)|
for 3<d,q<65,j<d— % —1,qj >2(¢—1)(d—1) and 1 < i <d. The following code checks
these cases.

Input
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dmax = 65;
gmax = 65;
falseComb = {};
nrComb = 0;
For[d = 3, d <= dmax, d++,
For[q = 3, q <= gmax, g++,
jmax = Ceiling[d - (d - 1)/q] - 2;
For[j = 1, j <= jmax, j++,
For[i = 2, i <= d, i++,
If[g*j > 2%x(q - 1*(d - i),
nrComb++;
If[Abs[CalcEigH[d, q, j, i]] > Abs[CalcEigH[d, q, j, 111,
AppendTo[falseComb, {d, q, j, i}1];
1;

1;
Print["nr of combinations tested: ", nrComb];
Print["pairs for which lemma is false: ", falseComb];

Output

nr of combinations tested: 1398102
pairs for which lemma is false: {}

We see that the list of pairs for which the lemma is false is empty, so we can conclude that indeed
|K;(i)] <|K;(1)] for the values mentioned above.

B.8 Checking cases for Lemma 5.15

To finish the proof of Lemma 5.15, we need to calculate by computer whether |K;(i)| < |K;(1)]
for ¢ = 3, 3 < d < 103 and the conditions in the statement of Lemma 5.15. The following
code checks these cases. Note that we check more cases than is necessary, since we don’t require
i+ (g—1)(d—i)—gj>0andi> %.

Input

dmax = 103;
falseComb = {};
nrComb = 0;
q=3;
For[d = 3, d <= dmax, d++,
jmax = Ceiling[d - (d - 1)/q] - 2;
For[j = 1, j <= jmax, j++,
K1 = Abs[CalcEigH[d, q, j, 11]1;
For[i = 3, i <= d, i++,
If[Abs[CalcEigH[d, q, j, i]] > K1,
AppendTo[falseComb, {"d=", 4, "j=", j, "i=", i}1];
nrComb++;

1;
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1;

1
Print["nr of combinations tested: ", nrComb];
Print["pairs for which lemma is false: ", falseComb];

OQutput

nr of combinations tested: 232356
pairs for which lemma is false: {}

We see that the list of pairs for which the lemma is false is empty, so we can conclude that indeed

|K;(i)| <|K;(1)] for the values mentioned above.

B.9 Testing Conjecture 5.17a

We want to test Conjecture 5.17 for all pairs (n,d) with 2 < d < 200, 2d < n < 400. The code

used to check this is the following.

Input

dmax = 200;
nmax = 400;
falseComb = {};
nrComb = O;
For[d = 2, d <= dmax, d++,
For[n = 2%d, n <= nmax, n++,
j = Ceilingld*(n - d)/(n - 1)] - 1;
El = Abs[CalcEigJ[n, 4, j, 111;
E2 = Abs[CalcEigJ[n, d, j, 211;
thisdn = True;
For[i =1, i <= d, i++,
If [Abs[CalcEigJ[n, d, j, i1l > El &&
Abs([CalcEigJ[n, d, j, il] > E2, thisdn = False];
nrComb++;

1;

If[thisdn == False, AppendTo[falseComb, {"n=", n, "d=",

1;
1
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];

OQutput

nr of combinations tested: 2 686 301
pairs for which conj is false: {}

d}1l;

We see that the list of pairs for which the conjecture is false is empty, so the conjecture holds for

2 < d <200, 2d < n < 400.
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B.10 Testing Conjecture 5.17b

W@ah&ﬂykn@wﬁbnlAppmuthmeatbrj::{ﬂﬁgﬁw—1JhepmmbﬁmﬁemgmwwueEeﬁhm

|E;(1)] or |E;(2)]. The code to test whether |E;(2)] is the penabsolute eigenvalue for n = d? + d,
3 < d <200 is the following.

Input

falseComb = {};
nrComb = 0;
For[d = 3, d <= 200, d++,
n=d4a"2 + d;
j = Ceiling[d*(n - d)/(n - 1)1 - 1;
El = Abs[CalcEigJ[n, d, j, 111;
E2 = Abs[CalcEigl[n, d, j, 211;
If[E2 < E1, AppendTo[falseComb, d]];
nrComb++;
1;
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];

Output

nr of combinations tested: 198
pairs for which conj is false: {}

The code to test whether |E;(1)| is the penabsolute eigenvalue for d* +d +1 < n < 10000,
3 < d <10 is the following.

Input

falseComb = {};
nrComb = 0;
For[d = 3, d <= 10, d4++,
nmin = d°2 +d + 1;
For[n = nmin, n <= 10000, n++,
j = Ceilingld*(n - d)/(n - 1)] - 1;
El = Abs[CalcEigJ[n, d, j, 111;
E2 = Abs[CalcEigJ[n, d, j, 211;
If [E2 > E1, AppendTo[falseComb, d]];
nrComb++;
1
1;
Print["nr of combinations tested: ", nrComb];
Print[”pairs for which conj is false: ", falseComb] ;

Output

nr of combinations tested: 79568
pairs for which conj is false: {}

The code to test whether |E;(1)| is the penabsolute eigenvalue for d*+d+1 < n < d3, 10 < d < 200
is the following.
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Input

falseComb = {};
nrComb = 0;
For[d = 10, d <= 200, d++,
nmin = d°2 + d + 1;
nmax = d~3;
For[n = nmin, n <= nmax, n++,
j = Ceilingld*(n - d)/(n - 1)1 - 1;
El = Abs[CalcEigJ[n, d, j, 111;
E2 = Abs[CalcEigl[n, d, j, 21]1;
If[E2 > E1, AppendTo[falseComb, d]];
nrComb++;
1;
1;
Print["nr of combinations tested: ", nrComb];
Print[”pairs for which conj is false: ", falseComb] ;

OQutput

nr of combinations tested: 401301505
pairs for which conj is false: {}

We see that for all three pieces of code, there are no pairs for which the conjecture is false.

B.11 Testing Conjecture 5.18

We want to test Conjecture 5.18 for all pairs (n,d) with 2 < d < 200, 2d < n < 400. The code
used to check this is the following.

Input

dmax = 200;
nmax = 400;
falseComb = {};
nrComb = 0;
For[d = 2, d <= dmax, d++,
For[n = 2%d, n <= nmax, n++,
jmax = Ceiling[d*(n - &)/ - 1] - 1;
For[j = 1, j <= jmax, j++,
thisj = True;
El = Abs[CalcEigJ[n, d, j, 11]1;
For[i = 2, i <= d, i++,
If[Abs[CalcEigJ[n, 4, j, i]] > E1, thisj = False];
nrComb++;
1
If[thisj == False, AppendTo[falseComb, {"n=", n, "d=", d}1];
1
1;
1;
Print["nr of combinations tested: ", nrComb];
Print["pairs for which conj is false: ", falseComb];
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Output

nr of combinations tested: 165 578 229
pairs for which conj is false: {}

We see that the list of pairs for which the conjecture is false is empty, so the conjecture holds for
2 < d <200, 2d < n < 400.
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