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Abstract

Incremental view maintenance (IVM) is the process of materializing query output and maintaining
this output under updates on the input relations of the query, such that only the affected parts of
the output are modified.

Assemble by Anago is software in which datasets are computed by the means of models, which
are comparable to queries, as these also describe how an output relation can be created in terms
of input relations. These models are based on Oracle’s OLAP DML.

Assemble does not have mechanisms for efficiently updating output datasets when alterations
are made to input datasets; if a small update has been made, the output sets can only be updated
by running the entire model, thus for all output cells, even if these will not change. Therefore in
this project we investigated whether Dynamic Yannakakis (DYN), a state-of-the art algorithm for
dynamic query evaluation, is suitable for facilitating IVM for Assemble.

In order to examine this, we created the Artificial Hour Administration (AHA) application and
Availability calculations (AC) model in Assemble. AC consists of a variety of types of sub-models,
such that the most prominent types of sub-models in real models made by Anago are present.
Also AC was made such that the number of sub-models is small, as to ensure that AC was feasible
for this project.

The current version of DYN only facilitates query evaluation for a number of query operators,
moreover no algorithms for computing delta relations were precisely specified. Therefore we ex-
tended DYN, such that each query corresponding to a sub-model in AC could be simulated and
additionally procedures for computing the delta relations of these queries are described.

We show how the efficiency of the extended DYN algorithm compares to the efficiency of
Assemble’s model execution. From these results we have found that the extended DYN algorithm
is significantly more efficient when indeed, as our use case defines, the update size is small and
the total dataset size is big. This is because the number of iterated tuples in DYN depends on the
update size, whereas for Assemble the number of iterated cells depends on the total dataset size.

However we also show that the current version of the extended DYN algorithm is not yet
suitable for Assemble. Namely, for the foreseeable future, data will remain to be stored in an
Oracle database, where its data representation is in terms of data cubes, i.e. multi-dimensional
arrays. This type of data structure is not compatible with the current version of DYN, as it
requires storing datasets in the format of a relation.
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Chapter 1

Introduction

1.1 Background information

1.1.1 Anago

Anago in ’s-Hertogenbosch is a company specialized in creating planning solutions for several
organizations in the public, service and industrial sector [1]. However these solutions are not
bound to planning only; for an organization they can provide any sort of overview or insight based
on data provided by said organization, e.g. forecasts on sales or the company’s turnover.

1.1.2 Assemble

The core of such solutions is Assemble. Assemble is a computer program that is developed, main-
tained and used by Anago. Using Assemble, employees of Anago are able to define models which
compute the desired output datasets. A client of Anago is able to view these output datasets via
an application which’s content is fitted for their needs.

The storage of data, execution of computations and data manipulation in general is not done
within Assemble itself. Rather this role is performed by the Oracle OLAP Data manipulation
language (DML) on an Oracle server. The role of Assemble is that of providing an environment
in which employees are able to define the datasets, in terms of properties such as the data type,
attributes - in the Assemble terminology called dimensions - and models which are used to com-
pute the contents of an output dataset, often in terms of input datasets. An employee can then
choose to distribute the application, meaning that Assemble will then translate these definitions
into commands for the OLAP DML, which the latter will execute and store the resulting data-
structures in an Oracle database.

After the distribution has been performed, an application in the web browser will be able to
retrieve the data from the Oracle database and therefore be visible for the client. However, the
client is not only able to view the data. In contrast, depending on whether a dataset is read-only
or not, one may be able to interact with the dataset, by changing dataset values. Often a client
is able to let the Oracle server compute (updated) versions of the output datasets on demand,
simply by clicking a button or closing a view.

1.2 Project goal

1.2.1 Problem statement

Incremental View Maintenance (IVM) is a technique in which query results, also called views,
are materialized and maintained under database updates by computing and applying only the

Incremental view maintenance for Assemble by Anago 1



CHAPTER 1. INTRODUCTION

incremental changes i.e. computing and modifying only the affected parts of the view, instead of
recomputing the query from scratch.

Assemble currently lacks such functionality, but could greatly benefit from it. Although the
models in Assemble are not defined by the traditional query notation format, for example SQL,
datalog or another language based on relational algebra, they can be seen as such, as both are able
to access input data, manipulate it and create a new dataset. Moreover, the models in Assemble
should be convertable to the relational algebra format.

Then the Assemble models also have resulting datasets which need to be maintained. A way in
which Anago tries to combat this problem is by using dynamic selections. A dynamic selection is a
selection on a dataset which can be changed for each time a sub-model result has to be computed.
Often this selection is set only on updated cells, such that when executing a model it will only
loop over dimension values that correspond to these updated cells.

However, this method may not work for certain models, since it cannot explicitly determine
what output cells need to be updated. Also this method is far from optimal as in order to combat
the previous downside, one is often forced to include extra dimension values in the selection in order
to be certain that all ouput cells that need to be updated are updated. Due to these difficulties
Anago is looking for an efficient IVM method, where this method would determine what cells are
computed without the modeller having to be involved.

1.2.2 Dynamically update datasets in Assemble

In order to adapt Assemble such that datasets can be efficiently updated dynamically, one can
look at the current stage-of-the-art research performed on IVM and search for a result that seems
promising and fitting to Assemble models.

For this project one such result it chosen. Then the goal of this project will be to find out whether
this result is suitable for Assemble models. This is done by creating an adapted implementation
for this result and a specific Assemble model, where the performance of this implementation can
be compared to that of the original Assemble model.

This chosen result is the Dynamic Yannakakis (DYN) algorithm by Idris et al. [8]. The idea
behind this algorithm is to derive from the query a General Join Tree (GJT), which describes a
high-level query plan, where it states the query operations and the (partial) order in which these
take place. Then the algorithm will convert this GJT to a Tree Reduction (T-reduct). This entails
that an initial update procedure is executed, which will first extend the leaves of the GJT with
a relation ρ, each being one of the input relations. Then, in a bottom-up manner, it will also
generate relation ρ at the inner nodes of the tree. After the update procedure has finished, the
tree and the relations in the nodes, by an enumeration procedure is able to produce the output
relation of the original query in an efficient manner.

Afterwards, if there are updates in the input datasets, one can again execute the update pro-
cedure, such that the T-reduct, specifically ρ for each node, is updated in an efficient manner.
Also, the enumeration procedure will now produce the updated output relation.

The DYN algorithm in particular is chosen for this project because:

1. It is competitive with state-of-the-art results on dynamic query evaluation in terms of
memory and time complexity

2. Practicality: on a conceptual level it is rather straightforward, which makes it relatively easy
to implement

1.2.3 Research questions

The main research question that this project will try to answer is:
What does the Dynamic Yannakakis algorithm offer in terms of realizing IVM for Assemble mod-
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els?

This will be broken down in subquestions:

1. What does Dynamic Yannakakis in it’s current state offer?

2. Can we extend Dynamic Yannakakis to facilitate IVM for Assemble models, without nulli-
fying the benefits of the current Dynamic Yannakakis algorithm?

3. Considering the way Assemble is intertwined with the Oracle OLAP DML, would Dynamic
Yannakakis be a practical short-term solution?

For this project we choose to focus on one Assemble application and model, which has been tailor
made for this project. Hence it is far from guaranteed that this model and application covers all
situations. This means that there may be model functionality that is not considered in this project.
This has to be taken into account for the stated questions, in order for the reader to realize, that if
this project is successful in showing that Dynamic Yannakakis works for this model, a full working
implementation that accomplishes IVM for any Assemble model may still be far away. However
the model used in this project is made with the purpose of simulating the most prevalent types
of functionality in general Assemble models. Therefore it should still give a good idea about the
potential of DYN.

Despite this drawbacks of focussing on one application and model, it does offer the following
benefits:

� We can let the sub-models functionality reflect the most prevalent functionality in real As-
semble models

� Certain parts of this project need to be carried out manually, thus limiting the scale improves
feasibility

� The results of the final implementation for this project can be compared more easily to the
Assemble application

1.2.4 Measuring performance

In order to determine the performance of the algorithm, one should therefore find a performance
metric that is fair, in the sense that it is not dependent on factors that lie outside the algorithmic
performance. Therefore taking as a metric the time that the implementation takes for processing
an update, is out of the question.

A fair metric is to determine the number of cells - or an equivalent concept in the implementa-
tion - that needed to be accessed for a certain update, model, input dataset(s) and output dataset.
One can verify that this is a fair metric, since the number of accessed cells could be derived from
the algorithms without needing the implementation of these algorithms. However since verifying
the correctness of the algorithms and determining the number of cells is the most feasible by
making an implementation, this is still the approach that has been followed.

1.2.5 Thesis outline

In the remainder of this chapter a literature analysis will be done. Here we look at the progression
of DYN and relevant work on IVM and dynamic query evalution in general.

Chapter 2: Preliminaries, gives a more in-depth description of the concepts in Assemble, with
the goal that an intuition is given for what the types of submodel functionality are, which need to
be taken into consideration later when DYN is discussed.

In chapter 3: Models and methods, first a description is given of the Artificial Hour Admin-
istration application and availability calculations model, secondly we analyze the behaviour of an
update, and thirdly we look at how AC can be described in terms of relational algebra, in order
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CHAPTER 1. INTRODUCTION

to be suitable for DYN.

Then, in chapter 4: The current state of Dynamic Yannakakis, we take a look at the current
state of DYN. Here we identified what the current version of DYN facilitaties in order to realize
IVM for the AHA application, but also what is still needed for this purpose.

This chapter is followed by chapter 5: Extending Dynamic Yannakakis, in which algorithms and
procedures are given to extend DYN, such that it facilitates the missing functionality. Addition-
ally we show that this extended version is still not suitable for the current needs of Anago, as the
data representation of stored data in an Oracle database does not correspond to the way in which
DYN accesses data that needs to be stored.

Chapter 6: Experiments, compares the efficiency of DYN to that of AC executed in Assemble.
Also it shows that indeed DYN’s delta enumeration procedure’s efficiency does not depend on the
total relation size.

In chapter 7: Conclusion, we answer the research question and sub-questions, give a recom-
mandation for Anago on how they can follow up on the work done in this project, and look at
contributions made by this project to research on dynamic query evalution.

Finally, in chapter 8: Future work, we discuss how the research done during this project can
be continued for both DYN in general and DYN, but also IVM in general, for Assemble.

1.3 Literature analysis

1.3.1 Progress on Dynamic Yannakakis

DYN is based on Yannakakis’ algorithm for computing results of acyclic join queries [13]. Unlike
DYN, the algorithm by Yannakakis is aimed at the static setting.

Idris et al. modified Yannakakis’ algorithm to work in the dynamic setting, thus for computing
acyclic join queries under updates, and published the resulting algorithm Dynamic Yannakakis (in
short DY N , where we refer with DY N to this specific version of the algorithm, unlike DYN) in
2017 [5].

Since, Idris et al. have been expending upon DY N , such that these can be used in more general
cases. Namely, DY N only worked for acyclic join-queries which contain only equivalences in their
join predicates.

Therefore, in 2018 Idris et al. updated DY N , where the results are refered to as GDY N and
IEY N [6]. GDY N can process updates for queries with any join predicate in log-linear time and
enumerate query results with logarithmic delay and IEY N improves on GDY N , such that query
results can be enumerated in constant delay iff each join predicate contains at most one inequality.

Where [6] only sketched why GDY N and IEY N work correctly, in [7] Idris et al. give a formal
proof for the correctness of the algorithms. Additionally a novel algorithm for computing GJT’s
is given and it’s correctness is illustrated.

1.3.2 Related work

Incremental view maintenance

IVM in general has been a widely researched topic in the database domain.
Chirkova et al. conducted a survey on the topic of materialized views [4]. Here materialized

views refer to the results of queries that are materialized and maintained to facilitate access to
base tables. Then the survey focuses on how (e.g. in what data structure) to maintain and use
such views, and how to decide what intermediate results to maintain.

Lee et al. have proposed a method for efficient maintenance of data cubes [11]. More spe-

4 Incremental view maintenance for Assemble by Anago



CHAPTER 1. INTRODUCTION

cifically, for a relation R(a) with dimension set a, then there exists a number of relations that are
aggregations over a subset of dimensions a, which we call views. Then there are 2|a| such views.

Then this method increases efficiency if several of these views need to be computed for such
a relation R. Namely traditional methods require for each view to compute the delta relation,
whereas the method by Lee et al. is a heuristic method where only

(
n

⌈|a|/2⌉
)
delta relations need

to be computed.

Dynamic query evaluation

Also dynamic query evaluation in general has been a widely researched topic in the database
domain. Just as with DYN it is not always the case that a query result is materialized and
incrementally maintained, rather a dynamic datastructure is proposed which allows insertions,
deletions and efiicient enumeration of the output of the query.

Where DYN considers conjunctive, acyclic queries, research also has been done on other type
of queries. Now we will discuss such research results.

Kara et al. investigated the trade-offs in static and dynamic evalution for hierchical queries
[10]. Consider query Q and the set of atoms in Q, atom(Q). Then for a variable x ∈ var(Q),
atom(x) is the set of each A ∈ atom(Q), such that x ∈ A. Then Q is hierchical if for any two
variables x, y ∈ var(Q) we have atom(x) ⊆ atom(y) ∨ atom(x) ⊇ atom(y) ∨ atom(x) ∩ atom(y)
= ∅.

For dynamic evaluation the trade-off made was between preprocessing time, which is time
needed to compute the data structure that represent the query result, update time, which is the
time to update the data structure under updates to the input data, and finally enumeration delay,
which is the time between the retrieval of two tuples in the output relation.

Kara et al. have investigated the problem of incrementally maintaining triangle count queries
under updates [9].

Such a query is opposed to queries considered by DYN cyclic: namely it considers queries in
the form R(a, b) ▷◁ S(b, c) ▷◁ T (c, a). More specifically a count query computes:∑

a∈Dom(A)

∑
b∈Dom(B)

∑
c∈Dom(c) R(a, b) ∗ S(b, c) ∗ T (c, a),

where dom(X) is the set of dimension values for dimension X.

Berkholz et al. investigated dynamic query evaluation for unions of conjunctive queries (UCQs)
[3]. They proposed a data structure which can not only enumerate the query output, but can also
check whether it contains a certain tuple or count the size of it.
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Preliminaries

2.1 A closer look at Assemble

2.1.1 Anago application architecture

The Anago application architecture is shown in figure 2.1 and is accompanied by the following
description. An Anago application can be devided into two parts, namely the Anago Assemble
environment and the Anago (User) application environment. The Assemble environment is used
by modellers as a place to build a so called project. This project is stored into the project database
and can be distributed, such that in the user application environment the application database
is updated, which stores the user application data. Then users can interact with the application
by entering, calculating and viewing data, via the internet browser. From now on we will refer
to the user application (environment) with (user) application and to the Assemble project (and
environement) with Assemble.

Figure 2.1: Anago application architecture

Views

A user application consists of one or more views. A view is a page in which a user is able to
interact with data and contains mainly tables and diagrams, where the former may be editable
and the latter is always read-only. The data displayed in these tables are stored in datasets as
descibed in section 2.1.2.
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Non-editable data may be inserted in the Assemble environment, either manually by the mod-
eller or via a connection, which is a way for the modeller to extract data from another source (for
example a text or excel file), and load them into an Assemble dataset.

2.1.2 Data model

Dimensions

In Assemble data attributes are called dimensions. Each dimension defines a range of values,
called dimension values, which are used for indexing data entries, where the latter are called cells.

A dimension can be flat or hierarchical, where the latter means that a dimension consists of 2
or more levels. Here a dimension value on a level is always mapped to a dimension value on the
level above (except for dimension values on the highest level).

A special case of a dimension is the time dimension. A time dimension contains time values
such as day, week and year. A start and end date can be defined, as well as the time levels. These
levels are days, years and either months, quarters and halfyears or weeks and periods.

Something to point out is that inside Assemble (or the application), levels inside a hierarchical
dimension are not distinguished by a per level name. In contrary, an hierarchical dimension often
has a name that seems to specify only the ’most dominant’ level (’most dominant’ being a bit
arbitrary, but often there is a level which is used the most). However, it does then still apply to
any value in the dimension. As example, a dimension can be called week, which often has next to
level week also level year. Yet, to all dimension values in this dimension, hence also to those of
level year (and period), is refered by dimension name week.

Datacubes and relations

Assemble uses two different kinds of database objects to store data. These are datacubes and
(many to one) relations.

A datacube is defined over zero or more dimensions, where a cell exists for each combination
of values over these dimensions. Then also a datacube’s datatype should be specified, which can
be either an integer, decimal, boolean or text, as well as - although rarely used - short integer or
short decimal.

A relation defines a connection between one or more source dimensions and a target dimension.
From now on, let a datacube or relation with name D and dimension set or source dimension

set respectively x be refered to as D(x). (Or simply D when the dimensions are not relevant.)
Both datacubes and relations have an (boolean) option autofill datacube/relation based on time.

Enabling this has as result that if the user in the application (manually) enters a value x in a cell
of a datacube or relation - for which one of its dimensions is a time dimension - then, assuming
that this cells time dimension value is t and the other dimension values for this cell is defined by
set A, all cells with dimension values A and time dimension values t+ 1...the end date, get value
x as well.

Datasets and selections

Whenever a datacube or relation is to be used, which may either be in a model or a view, a dataset
should be defined. In this dataset a datacube or relation is specified, as well as a selection over
each dimension of a datacube or each source dimension in a relation. For simplicity reasons, we
refer to a dataset with the datacube or relation it is defined by, and additionally by the selection
where this is relevant. For example, we refer to a cell of dataset D(a, b, c) as D(a ’x’, b ’y’, c ’z’),
where x, y and z are dimension values for dimensions a, b and c respectively.

For a dimension d, we say that a selection rule S defines a set of dimension values V ′ over
var(d) - where var(d) is the total set of dimension values of d and V ′ ⊆ var(d) - by writ-
ing S(var(d)) → V ′. A selection rule S is composed of a sequence S1 (method Si)

k such that
S1(V ) (⋄ Si(V ))k → S(V ), k ≥ 0, method ∈ {add, keep, remove} corresponding to set operators
⋄ ∈ {∪,∩, \} respectively. Hence a selection rule consisting of at least rule S1 followed by zero or
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more method-rule pairs. Then each rule (including R1) can either be another sequence of rules
and methods, or a selection rule defined by predicate p.

p can be specified in several manners:

� When the dimension values are defined inside Assemble itself, one or more of these values
can be selected.

� When a dimension is hierarchical, to select one or multiple levels and consequently selecting
the values belonging to this/these level(s).

� A selection can be defined over a relation R, when (one of) the source dimension(s) of R is
d. Then one or multiple values x, x ∈ var(o), o being the target dimension of R, can be
chosen, such that values v ∈ var(d) are selected for which vRx holds.

� A so called dynamic selection S can be defined, refering to the fact that S is based on a
current time period (for example current week or year) or on cells corresponding to user
changed values in the application, such that S(var(d)) changes.

� A relative selection rule s can be only applied to hierarchical levels and can be defined in
terms of another selection rule s′. Then s can be based on the relative hierarchy or position
to s′. For example one can define s′ as selecting the current week, then one can define s
to select the year corresponding to the current week (hence current year), and the 2 years
preceding and 3 years succeeding this current year.

� An expression selection can be applied on d in the following manner: choose a dataset
D(d, x′), x′ being either an empty set or a set with dimensions for which each selection
chosen for D selects only one value. After such dataset is chosen, each dimension value in
d should map to one value in D. Then an operator ◦ ∈ {=, <,≤, >,≥} and value v can be
chosen such that dimension value set V ′ ⊆ var(d) is selected where i ∈ V ′ ⇐⇒ D[i] ◦ v.

Models

A model can be seen as a relation between a number of input datasets and output datasets. It is
defined by a sequence of calculations, each of which refered to as submodel. Each submodel has 0
or more input datasets and based on those determines the values for the output dataset.

A model’s execution is initiated from the application environment; either when opening, sav-
ing or closing a view, by clicking a button or after changing a cell’s value. Then submodels are
executed in the exact order of the sequence. This is important because results of a submodel may
be used by a submodel later in the sequence. Hence for a model M we define a total order on
the submodels in M , such that ∀x,y∈M,x̸=y(x < y ∨ y < x), x < y meaning that submodel x is
executed before submodel y.

Each submodel is either a standard calculation or a free calculation.
A standard calculation is a predefined computation with a fixed number of input datasets. The

following standard calculations are most prevalent:

1. Aggregator - Used to aggregate the values of one dataset to another dataset based on 2 input
datasets, a datacube and a 1-to-1 relation. E.g. for data cube D(a, b, c) and relation R(a,
d) the aggregator calculation will compute a datacube D’(d, b, c).

2. Roll-up - Used for a data cube for which one dimension is hierarchical, where the cube
contains the data on the lower level but not on the level above this level. Then the values of
the data cube corresponding to the lower level will be rolled-up to the higher level. E.g. for
a data cube D(a, b, time), where time consists of the levels month and year. Then if the
cube contains information on every value of a, b and month. The model will compute the
value for each a, b and year by summing over all months corresponding to each year.
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3. Common statistics - Used for calculating common statistical functions. The complete list
of such functions is: sum, average, standard deviation, variance, minimum, maximum count
and average - (minimum + maximum). This sub-model has one input data cube and one
output data cube. The dimensions of the output data cube must be the same as the di-
mensions of the input data cube where at least one dimension has to be left out. Then the
function will compute the statistical function over the dimension(s) that is/are left out.

A free model is defined over an output dataset, 0 or more input datasets and an expression. In
order to control which cells in the output dataset are to be computed, a selection on the output
dataset can be set, but this must be done in the dataset definition. The selections on the input
datasets must be equal to those of the output dataset for corresponding dimensions, even if values
outside the dimension selection are used as input, which is possible because selections on input
datasets do not determine what cells can be used - or are used - for input. The expression is an
instruction based on the Oracle OLAP DML on how the output should be computed. Although
it must adhere to a predefined syntax, the expressions are very flexible. A free model expression
consists of the following components:

� References to the input dataset(s).

� Mathematical operators/precedence symbols - The complete list is: + (addition), - (subtrac-
tion), * (multiplication), / (division), ** (power) and (...) (priority brackets). As example
for data cubes D1(a, b) and D2(a, b), D1 + D2 will compute data cube D3(a, b), where
each cell D3(a ’x’, b ’y’) has value D1(a ’x’, b ’y’) + D2(a ’x’, b ’y’).

� Logical operators - The compute list is: eq (equals), ne (not equals), gt (greater than), ge
(greater or equals), lt (less than), le (less or equals), not, and, or. Can be used in combination
with at least one data cube and returns a boolean. Therefore it is often used in combination
with conditional expressions.

� Conditional expression - Can be created by an if-then-else construction. E.g. consider input
datasets D1(a, b, c), D2(a, b, c), D3(a, b, c) and output dataset D4(a, b, c) and expression:
if D1 gt 3 then D2 else D3,
will fill D4 where a cell D4(a ’x’, b ’y’, c ’z’) will get the value of D2(a ’x’, b ’y’, c ’z’) if
D1(a ’x’, b ’y’, c ’z’) > 2 and else D3(a ’x’, b ’y’, c ’z’).

� Oracle OLAP DML functions. Some examples are max(Expression1, Expression2), min(Expression1,
Expression2) and nafill(x, y). Here Expression1 and Expression2 can be either datasets or
numbers. nafill(x, y) will go over dataset x and each value that is na (not available) will be
replaced by y. A very common usage in Assemble of nafill is with y = 0. The complete list
of functions can be found at the OLAP DML reference [2].
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Models and methods

3.1 Artificial Hour Administration application

The Artificial Hour Administration (AHA) application is an Assemble project and application,
specially made for this research project, which mimics the behaviour of an hour administration
application.

In this section a general description of the AHA application will be given.

3.1.1 Views

The AHA application consists of 2 views.

Availability view

The Availability view consists of 2 parts. The first part contains a table in which an employee
can write education and holiday hours on a weekly basis, where the current and following 3 weeks
are displayed. It is shown in figure 3.1. The dimension on the vertical axis is called the Fact
dimension, having dimension values gross availability, education, holiday and net availability.

Gross availability describes how many hours an employee works without considering time
necessary for holiday and education. Holiday and education describe the amount of hours an
employee uses for holiday and how many hours are spent on education purposes respectively.
These are meant to be updated in this table by the respective employee. Net availability describes
how many hours an employee works when the education and holiday hours are subtracted from
the gross availability. Net availability will be computed by a model.

Finally for each fact and employee the number of hours is also shown for the current year,
which is also computed by a model.

Figure 3.1: Hours per employee per fact per week

The second part of the view contains tables which shows data on a per team basis. It consists of
3 tabs.
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The first tab shows the total number of hours, as well as adjusted hours (which are computed
based on an percentage), per fact, team and week (again the current week plus the 3 following
weeks) and for the current year. This view is partly shown in figure 3.2. Team is a hierarchical
dimension, consisting of levels team, department and total. The hours and adjusted hours are
shown not only on the team level, but also on the department and total level. These are such that
each team belongs to a department, and all departments together make up total.

Figure 3.2: Hours and adjusted hours per team per fact per week

The second tab shows a moving total of the hours per team, fact and week, as displayed by figure
3.3. More specifically; for each team and fact, it shows for a week the sum of the (non-adjusted)
hours, together with the hours of the 4 preceding weeks. Next to this 2 extra facts are added;
% Holiday and % Education, which show the relative moving total of holiday and education
respectively, to the gross availability.

Figure 3.3: Moving total per team per fact per week

The third tab shows the number of employees per team and week, where only the teams on the
team level are shown. A screenshot is shown in figure 3.4.

Configuration view

The Configuration view has as its main purpose to configure information. Figure 3.5 contains a
screenshot of this view. In terms of configuration, the view contains a table for selecting a team
for each employee and week, the gross amount of hours that an employee will work each week and
a so called ’adjustment percentage’ that is defined for each fact and week. Finally there is a table
showing whether a team is empty for each week. This is the only table in this view which the
user cannot alter. Rather the model, described in the next section, determines the content of this
table.
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Figure 3.4: Number of employees per team and week

3.1.2 Availability calculations

The Assemble project contains one model called Availability calculations (AC), containing 14 sub-
models. Figure 3.6 shows the model by means of a directed acyclic graph (DAG).

Each node in the graph either respresents a submodel - more specifically its output dataset -
or an input dataset to a submodel (if it is not an output dataset of another submodel). From now
on note that I will refer to a node as a submodel or dataset when applicable. The datasets that
coincide with blue nodes are datasets to which a user can make changes. Datasets that coincide
with red nodes are ones that the user will see in the view, however this also applies to the blue
nodes, since if a user makes an update to a table this is done inside a view. A distinction that red
nodes do have is that those are output datasets of AC.

Each node contains 3 parts, an upper part used for identification and the type, a middle part
that shows the dimensions, and selections on the output dataset, or just the dataset if the node
is an input dataset. For submodel nodes the bottom part shows the computation; either a free
model’s expression or a description of a standard model’s operation.

The upper part of a node is constructed in the following way. The dataset for each node
is either a relation (not to be confused with a relation as we know it in relational algebra) or
a datacube. Datacube nodes start with an expression << DataType >> where DataType is
the datatype, hence integer, decimal, boolean or text. For relations this datatype can best be
compared to an enumerator over the values of the target dimension, but is not further specified.
Then for each node an identifier is assigned. This is either a number 1-14, if the node coin-
cides with a submodel or an expression ik, k ∈ Z, if the node coincides with an input dataset
only. Finally the datacube or relation is described by stating DC or R respectively, followed by its
Assemble identification number. Then for datacubes a descriptive name of its cells’ values is given.

An edge (d1, d2) indicates that:

1. The datacube/relation defining dataset d1 is used as input to submodel d2

2. d1 < d2, thus submodel d1 is executed before submodel d2

3. It is likely, but by no means certain that values in dataset d1 are used by submodel d2

A dashed arrow is used when the source and target of the edge contains the same datacube/rela-
tion. A solid arrow is used otherwise.

Note that an edge (d1, d2) for submodels d1 and d2, does not define that output dataset d1
is used as input dataset by model d2, where d1 is the specific output dataset of submodel d1. A
first reason why this is not possible is that often there is a mismatch between dataset selections.
Consider edge (m1, m2). Say we there are output datasets D1(a, x1) and D2(b, x2) for submodels
m1 and m2 respectively. Here, a and b are dimension sets with a ∩ b ̸= ∅ and selection predicates
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Figure 3.5: Configuration view

p1 and p2 respectively, where p1 ̸= p2 for at least one dimension in a ∩ b. Then since (m1, m2) is
an edge, D1 would be an input dataset for m2, but this is not possible since there should not be
a mismatch between the selections of input and output datasets in a submodel. Hence D1 cannot
be used as dataset in m2.

Another reason why this extension of the definition does not work is that for a submodel m
with Assemble output dataset d, d can be used as input dataset for m, which would result in an
edge (d, d). Now this is not possible because of definition 2.

AC is designed in such a way that, although 14 submodels is quite a low number, the most
prevalent submodel functionality is present in the model. Concretely, the most prevalent sub-
model functionality includes, but is not limited to, together with the node names in which the
functionality is used in parentheses:

� The datacube/relation or dataset perspective:

– Autofill on the datacube/relation (i2, i3)

– Selection on the output dataset (almost all, but specifically 2)

– Datacube datatypes; integer, decimal, boolean and text (all datacube nodes)

� Standard calculations:

– The roll-up operation (3, 6, 9, 10)

– The common statistics, in this case with the sum and count function (5, 13)

– The aggregator operation, albeit indirect (4 + 5)

� Free calculations:
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– Mathematical operators used to combine values from different datasets (2, 7, 11)

– Conditional expressions, containing logical operators (4, 11, 12, 14)

– Oracle OLAP DML functions, present functions are nafill, movingtotal and any (4, 7,
8, 11, 14)
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Figure 3.6: Availability calculations model
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3.2 Update analysis

3.2.1 General description of analysis

In this section an analysis is performed on the propagation of two updates through AC, where
the behaviour is descibed per update for each sub-model. For each update step two properties are
important:

1. When the step is applied, the output dataset is exactly as it would be when the entire model
would be executed.

2. Executing the step is efficient, meaning that the step has a minimal, or at least low number
of input and updated cells.

For each sub-model a description of the update step is given. The description entails a list of
used variables and how they are used in the update steps. Then an iteration over several ranges
of variables is given, denoting what are the updated cells. Thirdly the update methods are given
in the form <updated cell, update value>. The first of the update methods always uses the same
input datasets as the actual sub-model does, where a selection on the dimension values is put,
such that only the necessary input cells are consulted. The second method does not use the same
input datasets, but rather uses the previous value of the output dataset, the initial update value
(x) and other necessary cells.

The analysis entails statistics on the number of cells that are used as input, and the number of
cells that are updated. For this model, for each sub-model the number of updated cells per method
is the same, namely only the cells that do change. Then the number of input cells is always the
number of update steps, multiplied by the variables in each such step. Note that for both updated
and input cells, these are the minimal number needed where the actual number depends on the
implementation of an update method.

3.2.2 Purpose

The reason this update analysis is performed is not very specific. The initial idea arose from
the motivation for this project; namely propagating updates would be more trivial when deciding
input and output cells for a submodel could be done in an automatic manner. Because then the
update process would entail determining these cells and then apply the calculations on, and using
these cells.

Now determining these cells automatically is not trivial. Perhaps it is managable, but still
then it will not be the main strategy for how this project will attempt to apply updates, since the
algorithms that are investigated do not do this either.

Although not automatical, determining the input and output cells of submodels is managable
manually, at least when the understanding of the specific submodels and dataset (selections) is
large enough. This is the case for the AHA model. Then determining these cells and deriving
update steps may lead to an alternative update strategy, which the resulting algorithm(s) of
this project can be compared to, and be used for testing these. Therefore, next to enhance the
understanding of the model, this analysis does have a concrete goal in being a first step in the
process of creating test algorithms.

3.2.3 Update descriptions

For the first update we consider arbitrary employee a and week wb.y. Here b is the week number
and y the year number, where we make the assumption that the data set contains data for year y
and y + 1, containing len(y) and len(y + 1) weeks respectively. For the second update this is the
same, except for the fact that weeks are refered to by a single integer. This is merely for simplicity
reasons, the actual model still holds weeks in format either wi.j for cells refering to weeks on level
week and k for weeks on level year. The following definitions are assumed in this analysis:
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� Let t be the team corresponding to employee a and week wb.y, as described by relation R001

� Let team D be the department to which team t belongs

� Let team T be the total of all departments

� For a hierarchical dimension value x, that is on level l, l > 0, let set(x) denote the set
containing cells on level l − 1 that correspond to x. For example t ∈ set(D) holds.

For both updates an example is shown. In figures 3.7 and 3.8, the number of updated cells and
input cell per method are shown for both updates. The remaining update descriptions can be
found in the appendix.

Update 1

Update: <DC 001(Employee ’a’, Fact ’holiday’, Week ’wb.y’), x>
This update is applied to datacube 001 Hours per fact per employee per week and changes the cell
at Employee a, Fact Holiday and Week b to integer x.

For the remainder of this update:

� Let x′ be the previous value of DC 001(Employee ’a’, Fact ’holiday’, Week ’wb.y’)

2 - Compute net availability per employee per week
Definitions

� Let c be DC 001(Employee ’a’, Fact ’gross availability’, Week ’wb.y’)

� Let d be DC 001(Employee ’a’, Fact ’education’, Week ’wb.y’)

� Let e be the previous value of DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’)

Update methods

1. · <DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’), c - x - d>

2. · <DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’), e - x + x’>

Analytics

1. Input cells: 3, Updated cells: 1

2. Input cells: 3, Updated cells: 1

Update 2

Update: <R 001(Employee ’a’, Week wb.y), Team ’t’> This update is applied to relation 001
Employee x Week - Team and changes the cell at Employee a and Week wb.y to Team t.

For the remainder of this update:

� Let t′i be the previous value of R 001(Employee ’a’, Week ’i’)

� Let D′i be the department to which t′i belongs

� Let future weeks be { wi.j | (j = y ∧ b+1 ≤ i ≤ len(y))∨ (j = y+1∧ 1 ≤ i ≤ len(y+1))}

� Let future weeks+ be future weeks ∪ wb.y
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Figure 3.7: Statistics on update 1

sub-model ID # updated cells # input cells method 1 # input cells method 2
2 1 3 3
3 2 2 * len(y) 4
4 2 2 3
5 2 2 * |set(t)| 4
6 4 2 * (|set(D)| + |set(T )|) 4
7 6 8 10
8 30 54 32
9 6 6 * len(y) 8
10 6 6 * len(y) 14
11 15 30 32

5 - Sum hours over employees to team (per week)
Definitions

� Let ci,f,j,k be DC 003(Employee ’i’, Fact ’f ’, Team ’j’, Week ’k’)

� Let df,i,j be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods
For fact f ∈ {gross availability, holiday, education, net availability}, week i ∈ future weeks+:

1. · <DC 002(Fact ’f ’, Team ’t’, Week ’i’),
∑

j∈set(t)
cj,f,t,i >

· <DC 002(Fact ’f ’, Team ’t′i’, Week ’i’),
∑

j∈set(t′i)
cj,f,t′i,i >

2. · <DC 002(Fact ’f ’, Team ’t’, Week ’i’), df,t,i + ef,i >

· <DC 002(Fact ’f ’, Team ’t′i’, Week ’i’), df,t′i,i - ef,i >

Analytics

1. Input cells: 4 *
∑

i∈future weeks+
(

∑
j∈set(t)

(1) +
∑

j∈set(t′i)
(1)) ≈ 8 ∗ |future weeks+| ∗ |set(t)|,

Updated cells: 8 * |future weeks+|

2. Input cells: 12 * |future weeks+|, Updated cells: 8 * |future weeks+|

3.2.4 Discussion

Update 1

For this model it was straighforward to come up with methods for propagating the update. By
looking at the sub-models, it was not difficult to extract its functionality in terms of what the
updated cells are, and what computations it would perform, using which input cells.
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Figure 3.8: Statistics on update 2, fw = |future weeks| and fw+ = |future weeks+|

sub-model ID # updated cells #input cells method 1 #input cells method 2
autofill fw 1 -
4 4 * fw+ 8 * fw+ -
5 8 * fw+ 8 * fw+ * |set(t)| 12 * fw+
6 8 * fw+ 8 * fw+ * |set(D)| 12 * fw+
7 16 * fw+ 20 * fw+ 24 * fw+
8 16 * fw+ 16 * fw+ + 64 20* fw+ + 16
9 32 16 * (len(y) + len(y+1)) 48
10 32 32 + 16 * (len(y) + len(y+1)) 32 + 16 * (len(y) + len(y+1))
11 15 30 -
12 2 * fw+ 0 -
13 2 * fw+ fw+ * (|set(t)| + |set(t′)|) 2 * fw+
14 2 * fw+ fw+ * |set(t′)| -

An interesting result of this analysis is that for the 2 update methods there is not a method
that outperforms the other in terms of number of input cells. Depending on the sub-model,
minimizing the actual sub-model performs better than applying x on the output dataset of the
sub-model and vice versa.

An early rule of thumb for this model seems to be that the second method is more efficient
when a function computes a value over a range of dimension values, in the case of this model this
function is often a summation. This is the case in a rollup and summation operation, as can be
noticed by the difference in input cells in sub-models 2, 3, 6 and 9. The reason this happens is
that the first method uses all values in the range of dimension values, where method 2 does not.

This also applies to the moving total operation from sub-model 8, though to a lesser extent,
which is noticed by the smaller factor between the number of input cells between the methods.
This is explainable by the fact that the range of dimension values is smaller; in the summation and
rollup operations the entire range of dimension values was used, where here only a subrange is used.

Another observation is the effect of the moving total operator on the cells that need to be updated
in the model. Before this operator was used, in the week dimension only updates needed to be
performed to cells corresponding to week wb.y (and year y). Then sub-model 8 has the effect
that cells corresponding in the range week wb.y untill wb+4.y in datacube 004 need to be updated.
Moreover, submodel 11 which has this datacube as input, need to update the weeks in this longer
range as well.

This leads to the suggestion that if, for a given dataset, an update affects a range of values
for a dimension (and the same values for other dimensions), then sub-models that depend on this
dataset also need to update the values in this range. Another place where this happens is at
sub-model 2, which updates cells corresponding to value net availability for the Fact dimension in
datacube 001. Then all datasets depending on this dataset need to update cells corresponding to
net availability as well, next to the dimension value holiday, which was updated in the first place.
This phenomenon is henceforth refered to as dimension range propagation.

Update 2

For this update again an attempt was made to find multiple update propagation methods for each
sub-model. This was often succesfull; for each sub-model a method is possible where again the
same operations are simulated that are performed in the actual sub-model, and an alternative
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method for most sub-models could be found as well.
However finding alternative update methods was less intuitive then for Update 1, since for this

method, in contrast to Update 1, it was not the case that a single value was changed that was dir-
ectly used by its successors. Rather, this update changes a value that is almost exclusively used as
dimension value and therefore it can be noticed that values ’transfer’ to this new dimension value.
Concretely: in Update 1 the alternative method always constitutes taking the previous value for
the affected output dataset cells and adding and subtracting x and x′ or vice versa, where for
Update 2, the alternative method constitutes subtracting a set of values from cells selected with
t′i, and adding this set to cells selected with t.

Also in this model dimension range propagation is present; a clear example is that because of
the autofill property of relation 001 for the Week dimension the range future weeks is affected,
this range is propagated through the model.

The differences in performance between method 1 and 2 are similar to those in Update 1 ; when
the sub-model constitutes a sum or rollup, then method 2 often avoids the need for an iteration
over the dimension, or dimension level that is being summed. For Update 2 this does not hold
for rollup operations over the Week dimension, since a large range of values in this dimension is
changed.

Running time analysis

We will analyse the number of cells in terms of n, which is the number of employees in the dataset.
Employees is chosen, since this is the only dimension which is not bounded by a constant, except
for some other dimensions such as the number of teams, however these depend on the number of
employees.

Thus the sizes of sets y, t, t′, fw and fw+ are bounded by a constant. T and D grow linearly
with the number of employees. When looking at the table this means that for both update methods
it holds that the number of updated cells is always (bounded by a) constant. This holds also for
the number of input cells for both method 1 and 2, except for sub model 6, which is linear in the
number of employees.

3.3 Relational algebra and Assemble models

The relational model is the primary data storage model for data-processing applications. It has
this primary position because of its simplicity and independence from underlying data structures
[12].

A relational database consists of a collection of tables also called relations. For the remainder
of this report we will continue using the term relation (not te be confused with a relation in
Assemble), however imagening such a relation as a table is intuitive; namely, a relation consists
of columns, normally refered to as attributes, but we will refer to these as dimensions, and rows
which are refered to as tuples, which are single database records.

A relation is normally refered to by a relation schema, a(dim1, dim2, ...) where a is the name
of the relation and dim1, dim2, ... are the dimensions.

Finally we introduce the notion of relational algebra, consisting of a set of operations that
take one or two relations as input and produce a new relation as their result. Such an expression
are also known as queries. Then operators in the relational algebra, relevant for our project are
selection σ, projection π, (natural) join ▷◁, union ∪, cartesian product × and anti-join ▷.

3.3.1 Motivation

Relational algebra and its query notation is a universally used format in the database research
field. It refers to a dataset as ’relation’, hence for this section this definition of relation applies
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as well. Then the columns will still be refered to as ’dimensions’, but the rows, which were often
called ’cell’, in a relation are called ’tuple’.

Relational algebra is universal in the sense that it serves as a common denominator for query
languages in general; a query in an arbitrary query language can almost always be converted to a
query in relational algebra, and vice versa. Moreover, in the literature either relational algebra or
SQL is used, which can almost always be converted to each other as well.

Indeed DYN also uses relational algebra. Therefore in order to apply DYN translating avail-
ability to queries in the relational algebra format is very useful. Also it may help for identifying
whether an algorithm is applicable to the Assemble submodels. Namely, when a submodel can be
converted, but it requires an operator that is not supported by the algorithm, then it is clear that
this may become a challenge.

3.3.2 Converting submodels to relational algebra

In order to derive the queries that correspond to the submodels, an analysis was performed on the
submodels and datasets by first converting the datasets to relations, as defined by the relational
algebra, and creating example relations of the input data with only a few tuples. Converting
Assemble datasets to relations can be done by the following procedure. An arbitrary datacube
DCy x per datacube dimensions is converted to relation y(datacube dimensions, x) and Assemble
relation Ry source(s) - target is converted to relation y(source(s), target). All submodels have
been converted to relations, after which examples of the relations have been composed that are
such that the behaviour of a submodel can be demonstrated by stating what tuples the submodel
would produce. This process also showed that at a couple of occasions additional relations needed
to be created for deriving values that are not present in the input relations.

In order to illustrate this process, consider submodel:
2 - Compute net availability per employee per week
Then the output relation is: DC001(employee, fact, week, hours)
Example of relation:

Employee Fact Week Hours
Rik gross avail. w12.2022 40
Rik holiday w12.2022 12
Rik education w12.2022 8

Then the following tuple should be inserted into DC001

Employee Fact Week Hours
Rik net avail. w12.2022 20

Since value net avail. for dimension fact is not in the input dataset, we need as additional input
relation Factnet(fact) containing tuple (”net availability”):

Fact
net avail.
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The query then is:

DC0012 ← DC0011∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

(ρa(σfact=grossavail.(DC0011)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011)) ▷◁b.employee=c.employee∧b.week=c.week

ρc(σfact=education(DC0011))×
ρd(Factnet))

These kinds of examples for the other submodels of availability calculations can be found in the
appendix.

The nafill operator

Note that the nafill operator is not taken into consideration yet, where it does have to be taken
care of at some point. One can take the net availability query as example. When considering:

(ρa(σfact=grossavail.(DC0011)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011)) ▷◁b.employee=c.employee∧b.week=c.week

ρc(σfact=education(DC0011))×
ρd(Factnet))

Also note that a tuple for an employee and week will, unwillingly, not be generated when one or
two of tuples with this employee and week and fact : holiday or education is not available.

One strategy to solve this problem is by altering the relation beforehand by inserting missing
tuples according to the nafill function, hence in this case by inserting tuples with Hours value
0, when these are not available. In this example this is viable. This is because for each employee
and week combination a tuple net avail. needs to be computed, hence adding for each such
combination two other tuples only increases the number of added tuples linearly in the number of
net avail. tuples.

The alternative is to alter the query by checking for na values implicitely. For example the
following query computes for the example submodel (assuming that when there is an employee,
then there is a a tuple for each week and fact grossavail.):

HolidayNA′ ← πemployee,week(DC0011)− πemployee,weekσfact=”holiday”(DC0011)

EducationNA′ ← πemployee,week(DC0011)− πemployee,weekσfact=”education”(DC0011)

BothNA← HolidayNA′ ∩ EducationNA′

HolidayNA← HolidayNA′ −BothNA
EducationNA← EducationNA′ −BothNA
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DC0012 ← DC0011∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

(ρa(σfact=grossavail.(DC0011)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011)) ▷◁b.employee=c.employee∧b.week=c.week

ρc(σfact=education(DC0011))×
ρd(Factnet))

∪
πa.employee,c.fact,a.week,hours←(a.hours−b.hours)

(ρa(σfact=grossavail.(DC0011 ▷◁ HolidayNA)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=education(DC0011 ▷◁ HolidayNA))×
ρc(Factnet))

∪
πa.employee,c.fact,a.week,hours←(a.hours−b.hours)

(ρa(σfact=grossavail.(DC0011 ▷◁ EducationNA)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011 ▷◁ EducationNA))×
ρc(Factnet))

∪
πemployee,b.fact,week,hours

(ρa(σfact=grossavail.(DC0011 ▷◁ BothNA))×
ρb(Factnet))

Although possible, rewriting each query - belonging to a submodel with one or more nafill op-
erators - does require some work and also makes these a lot less concise, where each combination
of missing na values requires its own relation that needs to be unified with the output relation.
Since solving the ’na problem’ may be solved in different ways, for now it will be disregarded, but
note that for a complete end product this needs to be taken into account.

Describe output datasets in terms of input sets only

It may be interesting to examine whether the output datasets can be expressed by a query in
terms of input datasets only, hence without defining queries over sub-results. As example take
DC0013. Then when having the following input relations:
DC0010

Employee Fact Week Hours
Rik holiday w12.2022 12
Rik education w12.2022 8
Rik holiday w13.2022 0
Rik education w13.2022 20
Anne holiday w12.2023 0
Anne education w12.2023 0

DC005

Employee Week gross availability
Rik w12.2022 40
Rik w13.2022 40
Anne w12.2023 30

Factgross
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Fact
gross avail.

Factnet

Fact
net avail.

Then the query should produce:

Employee Fact Week Hours
Rik gross avail. w12.2022 40
Rik holiday w12.2022 12
Rik education w12.2022 8
Rik net avail. w12.2022 20
Rik gross avail. w13.2022 40
Rik holiday w13.2022 0
Rik education w13.2022 20
Rik net avail. w13.2022 20
Anne gross avail. w12.2023 30
Anne holiday w12.2023 0
Anne education w12.2023 0
Anne net avail. w12.2023 30
Rik gross avail. 2022 80
Rik holiday 2022 12
Rik education 2022 28
Rik net avail. 2022 40
Anne gross avail. 2023 30
Anne holiday 2023 0
Anne education 2023 0
Anne net avail. 2023 30

First arrises the question whether this relation can be produced from a single query, hence not
a union of multiple queries. This is not possible. One of the reasons why this does not work is
that the Hours dimension is computed in a different manner for tuples with Fact ’net availability’
and Fact ’holiday’ (both having a Week value on the week level). Hence unifying multiple queries
is unavoidable.

Then when attempting to create this result with a unification of queries, it is possible to
produce all tuples with a Week value on the week level, without using sub-results:

DC0010∪
πemployee,fact,week,hours(DC005× Factgross)∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

σb.fact=holiday∧c.fact=education

(ρa(DC005) ▷◁a.employee=b.employee∧a.week=b.week

ρb(DC0010) ▷◁b.employee=c.employee∧b.week=c.week

ρc(DC0010)×
ρd(Factnet))

However, at this point it can be noticed that for computing the tuples with a Week value on the
year level, the query does explicitly need tuples produced by the previous results. Then these
either need to be computed again, or the previous results can be reused. The latter seems to be
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favorable; in terms of time management computing the same tuples twice cannot be more efficient
than only doing this once and since the previous result, assuming that these will not be duplicated,
is contained by the output dataset, computing the tuples again is also not more efficient in terms
of space management.

Total query

The complete list of all queries in availability calculations, one for each submodel is given below.
Note that query results, which are relations themselves, are used by other queries. Hence the
queries together form a DAG G = (V,E), where v ∈ V represents a relation, (which is sometimes
the result of a query), and e = (v1, v2) ∈ E ⇐⇒ relation v1 is used in the query derivation of v2.
Figure 3.9 shows this DAG. Where blue nodes are input relations only and red nodes are output
relations only.

Figure 3.9: Query respresentation of availability calculations

1. DC0011 ← DC0010 ∪ πemployee,fact,week,hours←grossavail.(DC005× Factgross)

2.

DC0012 ← DC0011∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

(ρa(σfact=grossavail.(DC0011)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011)) ▷◁b.employee=c.employee∧b.week=c.week

ρc(σeducation(DC0011))×
ρd(Factnet))

3. DC0013 ← DC0012 ∪ πemployee,week←week.y,fact,hours←(sum(hours))(DC0012)

4. DC0031 ← πemployee,fact,team,week,hours(DC0012 ▷◁ R001)
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5. DC0021 ← πfact,team,week,hours←(sum(hours))(DC0031)

6. DC002′2 ← πfact,team←department,week,hours←(sum(hours))(DC0021 ▷◁ TeamDepartment)
DC0022 ← DC0021∪DC002′2∪πfact,b.team,week,hours←(sum(hours))(DC002

′
2×ρb(Teamtotal))

7. DC0071 ← πfact,team,week,adjusted hours←hours∗(100+percentage)/100(DC0022 ▷◁ DC006)

8. 002withY L← πfact,team,week,hours,length(DC0022 ▷◁DC0022.week.y=Y earlengths.year Y earlengths)
θ ← a.fact = b.fact ∧
a.team = b.team ∧
((a.week.y = b.week.y ∧ a.week.w − b.week.w ≥ 0 ∧ a.week.w − b.week.w < 5) ∨
(a.week.y = b.week.y + 1 ∧ a.week.w + b.length − b.week.w ≥ 0 ∧ a.week.w + b.length −
b.week.w < 5))

DC0041 ← πa.fact,a.team,a.week,hours←(sum(b.hours))(ρa(DC002) ▷◁θ ρb(002withY L))

9. DC0023 ← DC0022 ∪ πfact,team,week←week.y,hours←(sum(hours))(DC0022)

10. DC0072 ← DC0071 ∪ πfact,team,week←week.y,adjusted hours←(sum(hours))(DC0071)

11. DC008←
πa.percentage fact,a.team,a.week,percentage←(a.hours/b.hours)(

ρa((σfact==”holiday”(DC0041) ▷◁ PFHoliday) ∪ (σfact==”education”(DC0041) ▷◁ PFEducation))
▷◁a.team=b.team,a.week=b.week

ρb(σfact=”grossavailability”(DC0041))
)

12. DC010← R001× V aluetrue

13. DC009← πteam,week,count←(count(employee))(DC010)

14. DC011← (TeamWeekCombos▷ πteam,week(DC010))× V aluetrue

Discussion

As can be seen, each submodel has an equivalent query. The join operators that are used are the
cartesian product, natural join and join with a predicate θ. Many queries make use of relation
aliasing, and the set operators union and minus were used. Intersection was not used, but may be
still used and division was not used and is likely also incompatible with the DYN algorithm.

Four extensions needed to be made to the relational algebra that are not standard. These
extensions are to assign to a projected dimension:

1. Algebraic expressions

2. Aggregation functions. Herefore the notation GGBF(x) is used, with F being the aggregation
function, x the aggregated dimension and GGB the group-by expression, consisting of group-
by operator G and comma separated list GB of group-by dimensions. However, we omit the
group-by expression as GB is always equal to the projected dimensions.
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Chapter 4

The current state of Dynamic
Yannakakis

4.1 Overview

In this chapter a summary and discussion of the components and concepts of DYN will be given.
Doing this, the goal is to be able to answer our first research question: ’What does Dynamic
Yannakakis in its current state offer?’. Therefore we will look at what the algorithm offers in
terms of functionality. Also the benefits of the algorithm will be discussed, both in terms of
memory consumption and time complexity, where additionally a look will be given to whether or
not these benefits will apply to our use case. Then at the end we discuss what is still missing in
terms of functionality and will thus be needed to be accommodated for.

4.2 Datastructures and procedures

First we give an overview of the main datastructures and procedures concerning DYN. For now
we will describe these in the way they are given in the papers by Idris et al.

DYN uses two main datastructures. The first one is a General Join Tree (GJT). A GJT T is
a tree (V,E), thus consisting of nodes and edges, which follows a query plan such that it will
be able to calculate the result of a query Q. The second datastructure is the T-reduct. This
is an extension of a GJT, where each node n in the GJT is augmented with a relation ρn. As
the T-reduct contains all information of the GJT, mainly the T-reduct will be discussed from now.

Then there are two procedures that together form the DYN algorithm. The first procedure is
the update procedure which runs when one of the input relations of Q has been changed. The
update procedure then accomplishes that in a bottom-up manner, the updates are propagated. As
a result each n ∈ V , ρn will be updated appriopiately. How this exactly works will be discussed
later.

The second procedure is the enumeration procedure. This runs on demand and will output
the result of Q. This procedure consists of recursive calls of an algorithm enum(n, t), for a node
n and tuple t. It starts in the root of T and for each node n it calls enum(c, tc) on the children c
of n and tuples tc ∈ ρc.

4.3 T-reduct

Now we take a look at T-reducts in more detail. Let out(Q) be the dimensions that are in the
outer projection statement of Q. Each node n has a set of variables var(n), where each variable
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1: πe,f (A) ▷◁ B ▷◁ C
{e}

2: πe,f (A)
{e, f}

4: A
{e, f, w}

3: B ▷◁ C
{e, t}

5: B
{e, t}

6: C
{e, t, p}

Figure 4.1: GJT for query πe,f,t,p (A(e, f, w) ▷◁ B(e, t) ▷◁ C(e, t, p)

in var(n) is associated to one of the dimensions in ρn.

A certain subset of V is called the frontier, denoted as F . Consider subset N of V such that
n ∈ N ⇐⇒ n ∈ F ∨ n is an ancestor of a node in F . Then F is chosen such that n ∈ F ⇐⇒
var(n) ⊆ out(Q). Moreover we have that out(Q) = var(N)

F is chosen as it is, in order to facilitate an efficient enumation procedure. Namely, as explained
in this procedure an Enum() function is recursively called on the children of a node n. However
Enum() will not be called from a node n if n ∈ F . In this way, as we now know that if a node n
has been visited, and since this means that var(n) ⊆ out(Q), the procedure only has to consider
values from dimensions that need to be in the result of Q.

Some other properties hold for nodes in the frontier: if n ∈ N , then if n has a sibling m, this
implies m ∈ N . This defined as the sibling-closed property. Also if a node n is in F then there is
no node which is an ancestor or descendant of n which is also in F .

It is also interesting to look at the role of the individual nodes. The leaves of T correspond
1-to-1 to the input relations of Q. An inner node n in T is as follows:

1. n has one child c: var(n) ⊂ var(c) and the edge (c, n) denotes an aggregation step over
dimension set s = var(c) \ var(n).
This step is mostly used when n ∈ F , such that the enumeration procedure only has to
consider n and not c. This is desirable as we know that, from the way F is constructed, if a
dimension q ∈ s, then q /∈ out(Q).

Also this aggregation step can be used if the query explicitely states that an aggregate needs
to be computed, however the examples of the paper do not state such queries. In contrary,
the Assemble queries may contain such an explicit aggregation step.

2. n has two children c1 and c2. Then n denotes a join step, and thus to an explicit join
operator in Q. In this case it holds that either c1 or c2 we can denote with x, such that it
holds that var(n) ⊆ var(x).

As example, consider query Q = πe,f,t,p (A(e, f, w) ▷◁ B(e, t) ▷◁ C(e, t, p). Figure 4.1 shows
GJT T corresponding to Q. Each node n in T is labeled by an integer i, 1 ≤ i ≤ 6. Also it shows
the query operation it corresponds to, or the relation name if v corresponds to an atomic relation.
Finally it shows var(n).

Then out(T ) = {e, f, t, p} and N = {1, 2, 3, 5, 6} which can be observed by the fact that only
node 4 does not have a grey color. Thus F = {2, 5, 6}. Also notice that leaf nodes 4, 5 and 6
correspond to atomic relations A, B and C respectively and inner nodes 1 and 3 correspond to
join operators in Q. Node 2 does not explicitly correspond to an operator in Q, but is necessary
to ensure that out(Q) = var(N) and T is sibling-closed.
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4.4 Update procedure

Now we look at the update procedure in more detail. The procedure is described by algorithm 1.
Observe that with each node n a relation ∆n is associated, which describes the tuples to be added

Algorithm 1 Update procedure

1: procedure Update(u)
2: for each n ∈ leaves(T ) labeled by r(x) do
3: ∆n ← ur(x)

4: for each n ∈ V \ leaves(T ) do
5: ∆n ← empty relation over var(n)

6: for each n ∈ V do, traversed bottom-up
7: ρn += ∆n

8: if n has a parent p and a sibling m then
9: ∆p += πvar(p)(ρm ▷◁ ∆n)

10: else if n has parent p then
11: ∆p += πvar(p)∆n

and removed from ρn. u holds the updates to the input relations, hence to the leaves in T .
Thus in line 3, if for to a leaf l, labeled by relation r(x), an update needs to be made, then

this update is in u and ∆l will be set to ur(x).
In line 5 for all remaining nodes n, ∆n will be set to an empty relation.

In the second step of the procedure, in a bottom-up manner for each node n, first in line 9
the update will be applied to ρn and afterwards the delta set of the parent is computed.

Again there is a distinction for when a node has one child or when a node has two children.
As we know when a node has two children, this corresponds to a join operation and in the other
case to an aggregation. In the latter case, although it is not very explicit, values necessary for
computing aggregates, namely count of the amount of tuples and sum of the aggregated value,
are maintained. For the former case also the count will be maintained, such that when removing
tuples from some ρp, we know when for a tuple t in ρp there are no longer tuples associated in ρc
for any child c of p, and therefore t can be removed from ρp. Otherwise the count of t will simply
be decremented.

Example

Figure 4.2 shows a T-reduct T before and after an update u has been processed. First note that
each node in the tree has been augmented with a relation, which is the ρ relation. Then for each
tuple there is an extra attribute #, which is not part of the tuple but a piece of information used
for maintaining the tree. More specifically, # denotes the multiplicity for a tuple t ∈ ρn for some
node n, which tells how many other tuples in descendants of n are associated with t, such that it is
known when a tuple is associated with 0 tuples and therefore can be removed from the ρ relation.
For a tuple in a leaf node, # is always 1.

Now we consider the update. Observe that to node B a tuple with week = W12.2022 has
been added, and from node C a tuple with week = W11.2022 has been removed. As consequence
A has two tuples with week = W12.2022, such that the multiplicity of tuple [W11.2022] in ρ1 is
2 * 1 = 2. Additionally B does not have any tuples with week = W11.2022 anymore, thus the
multiplicity of tuple [W12.2022] in ρ1 is 1 * 0 = 0 and the tuple is removed from ρ1.
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Figure 4.2: Update procedure for a tree with a join node as root: before and after.

4.5 Enumeration procedure

Finally we consider the enumeration procedure. This procedure is described by algorithm 2 for T-
reduct T . As described, the enumeration procedure in the paper consists of an initial call Enum()

Algorithm 2 Enumeration procedure

1: function Enum
2: for each t ∈ ρrootT do
3: Enum(rootT , t)

4:

5: function Enum(n, t)
6: if n ∈ F then
7: yield t
8: else if n has one child c then
9: for each t1 ∈ ρc ⋉ t do

10: Enum(c, t1)

11: else
12: for each t1 ∈ ρc1 ⋉ t do
13: for each t2 ∈ ρc2 ⋉ t do
14: for each s1 ∈ Enum(c1, t1) do
15: for each s2 ∈ Enum(c2, t2) do
16: yield (s1 ∪ s2)

In this function, a call Enum(rootT , t) will be made for each tuple t ∈ ρrootT . This puts in motion
a series of recursive calls Enum(n, t) for any arbitrary node n ∈ N and tuple t. In the Enum(n,
t) function there are three cases.

First, if n ∈ F we simply return t.
Else, if n has one child c, the algorithm first find all tuples t1 in ρc that are compatible with t

and then makes a recursive call Enum() with t1 and c as parameters. The result of this call will
then be returned.

Finally, if n has two children c1 and c2, then first all tuples t1 and t2 in ρc1 and ρc2 respectively
that are compatible with t are found, after which the Enum() function will be recursively called
on both c1 and t1, and c2 and t2. The results of these calls s1 and s2 will be unified, which then
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will be yielded.

Note that in Enum(), all tuples in ρrootT will be iterated over. Now if T is according to Q,
then given that T is up-to-date, calling Enum() will return all output tuples of Q.

Example

As example consider figure 4.3. It displays a GJT T and the resulting relation for executing the
enumeration procedure. Observe that although the relation denoted by node 1 and the output
relation on first glance do not seem equal, but actually are.

In this case it was not possible to first join nodes 2 and 4 and afterwards have an aggregation
node as root, such that the relation expression would be exactly the same, since then the out(Q)
= var(N) and sibling-closed property combination could not be both possible for T .

Regarding the enumeration procedure, the algorithm iterates over tuple [W12.2022] in ρ1. This
tuple is compatible with S1 = { [′Rik′,W12.2022], [′Anne′,W12.2022]} ⊂ ρ2 and tuple [W12.2022, 20]
∈ ρ3. Then tuple s1 ∪ [W12.2022, 20] is returned for each s1 ∈ S1.

Figure 4.3: A GJT and its enumeration result.

4.6 Complexity of DYN

As described by the paper, DYN is designed to be efficient both in terms of memory and time
complexity.

The efficiency in terms of memory complexity stems from the fact that DYN offers an alternative
to IVM, mainly by not requiring the user to materialize the output relation and also subresults,
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such that the space required by DYN is O(|db|) opposed to O(|Q(db)|), db being the input data-
base. This can be bad if output Q(db) is substantially larger than input db.

Concerning time complexity, there are two cases:
If T has an edge of which the predicate has multiple inequalities, then the update procedure

of DYN takes O(M * log(M)) time, where M = (|db| + |u|) and the enumeration procedure
enumerates with constant delay, meaning that the time complexity of Enum() is O(Q(|M |)).

Else, thus if there is at most one inequality in each predicate of Q, then the update procedure
takes O(M2 * log(M)) time, and then the enumeration procedure enumerates with a delay of
O(log(|M |)), resulting in a time complexity for Enum() of O(Q(|M |) * log(|M |))

4.7 Cyclic queries

For a query Q to be suitable for DYN, Q has to be acyclic. For example, the triangle query
A(x, y) ▷◁ B(y, z) ▷◁ C(x, z) is cyclic and therefore not suitable for DYN. The reason is that for
such a query there does not exist a GJT T , such that:

� Each inner node n ∈ T has child c such that var(n) ⊆ (var(c)).

� For each variable v ∈ var(T ) it holds that if v ∈ var(n1) ∧ v ∈ var(n2) for two arbitary
nodes n1, n2 ∈ T , then v ∈ var(n3) for any n3 ∈ (n1, n2), where (n1, n2) is the path from
n1 to n2.

Which are properties that both should hold for a GJT.
The AC model does contain such a cyclic query. In section 5.4 we show how this query is split

into two sub-queries, such that these sub-queries are not cyclic and therefore the output relation
of this query can still be maintained. This is achieved by letting the output relation of the first
sub-query’s GJT be an input relation of the second sub-query’s GJT.

Indeed the solution for maintaining output relations of cyclic queries in general, is to split them
into acyclic sub-queries, where each sub-query is converted to one GJT.

4.8 Conclusion

Concluding, we now are able to answer what DYN does offer in its current state. In order to know
how we have to extend DYN, we also discuss what DYN does not offer yet in terms of functionality.

The algorithms described by the paper offer a way of constructing and dynamically maintain-
ing a data structure in O(|db|) space and O(M * log(M)) or O(M2 * log(M)) time, such that
Q can be evaluated by enumerating the data structure with constant delay, or logarithmic delay,
discriminating the cases where Q does not have a predicate with more than one inequality or it
does, respectively.

Q can be any conjunctive query, thus composed of selection, projection and join statements.
Also Q may contain aggregation functions.

4.8.1 What does DYN not offer?

DYN supports T-reduct based on queries with projection, join operators over a predicate. It also
considers aggregations. Although the algorithm is not very explicit about maintaining values that
are important for computing aggregations, these values being sum and count, it does so in an
abstract manner, such that I do not deem it necessary to extend the already stated algorithms for
aggregation nodes.

There are also query operators which are not (adequately) considered, whereas they are part
of the queries derived from the Assemble submodels:
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� Selection: the paper mentions the use of a selection operator but only shows how to simplify
in the case where the selection is performed over the join of two relations, thus it shows that
σθ(A ▷◁γ B), can be simplified to A ▷◁θ∧γ B; the case where there is a selection over only
one atomic relation, thus σθA which cannot be simplified, is not explicitely considered.

� Union: although the procedures facilitating this operator will be fairly trivial, they are not
provided by the paper.

� Aggregation over join: when a query contains both an aggregation function and a join
operator, one may think that a T-reduct with the right query plan can be constructed in
the following manner: the parent of the relations to be joined is a join node and that node’s
parent is an aggregate node. However, this will not work since the aggregated value has to be
maintained, which is not done in the join node. For our queries we need only an aggregation
join over two relations.

� Anti-join: corresponding to the not any statement in Assemble, the paper does not facilitate
algorithms for queries containing relations A and B, for which a tuple in A may not join with
any tuple in B. For our queries we only need to consider the case where var(A) ⊆ var(b).

Next to these query operators, although the existence of enumeration procedures over delta
nodes is surely mentioned and used, the procedure is merely explained as being a slightly modified
version of the regular enumeration procedure. This may be true, however as these modifications
necessary for realizing delta enumeration procedures may be not so trivial, they will be considered
explicitly for our implementation.

Finally we should construct a procedure for updating all output relations corresponding to the
output relations of AC. As this model consists of submodels with output datasets, which then are
used as input datasets for other submodels, we should describe how an update would propagate
through such a connected series of T-reductions. In this way we are able to describe a method
which truely facilitates IVM for AC.
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Extending Dynamic Yannakakis

5.1 Chapter overview

In this chapter we take a look at how the DYN procedures from the paper will be extended, such
that this extended algorithm facilitates the simulation of AC and thus IVM for the AHA output
datasets.

In the first section we consider general alterations, we introduce the notion of an output relation
for an enumeration function, we introduce the concept of delta enumeration and give a general
overview of the IVM method that we implemented.

Secondly we consider the introduced node types and their corresponding algorithms for com-
puting delta relations and output relations via algorithm ComputeDelta and (delta) enumeration
algorithms respectively.

Thirdly we look at how we converted the queries corresponding to AC were converted to
T-reductions.

Finally we give an evaluation for our extension. We consider time complexity, a major draw-
back of the current implementation and feasibility of the current implementation regarding the
actual demands of Anago. Also in this final section we give a conclusion in which we give (pro-
visional) answers to the questions ’Can we extend Dynamic Yannakakis to facilitate IVM for
Assemble models, without nullifying the benefits of the current Dynamic Yannakakis algorithm?’
and ’Considering the way Assemble is intertwined with the Oracle OLAP DML, would Dynamic
Yannakakis be a practical short-term solution?’.

5.2 General alterations and extensions

5.2.1 Reconsidering the update and enumeration functions

Update procedure

Consider algorithm 1. The overall update procedure will be the same, except for the case dis-
tinction in lines 8 up until 11. Assume that in line 6 we iterate over some node n with parent p.
Then this case distinction will be replaced by a call p.ComputeDelta(n). The alterion is shown
in algorithm 3

The reason why ComputeDelta() is called on node p is that each node will have their own
update procedure, depending on its node type. Thus ComputeDelta() is called on parent node p,
such that the implementation of ComputeDelta() is the responsibility of p.

Also observe that node n is given as a parameter to the function. This is necessary because
in line 6 nodes are enumerated over in an arbitrary order. Therefore, since at line 7 we have that
update ∆n is applied to ρn, when calling p.ComputeDelta(n) in this way we can let p know that
n’s update has been applied, such that ComputeDelta will act accordingly. We do not know, if n
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has sibling m, whether ρm has been updated. However we do know that if ∆m is not empty, then
call p.ComputeDelta(m) is made after ρm has been updated.

Algorithm 3 Altered update procedure

1: procedure Update(u)
2: for each n ∈ leaves(T ) labeled by r(x) do
3: ∆n ← ur(x)

4: for each n ∈ V \ leaves(T ) do
5: ∆n ← empty relation over var(n)

6: for each n ∈ V do, traversed bottom-up
7: ρn += ∆n

8: if n has a parent p then
9: p.ComputeDelta(n)

Enumeration procedure

Now we go over the alterations that we made compared to algorithm 2. There are two key
alterations made to the enumeration procedure. As an example the reader may consider algorithm
7, but these alterations apply to any enumeration procedure that is discussed going formward:

1. The node to which t belongs is no longer given as a parameter, additionally there is no
case distinction determining what kind of node n is and acting accordingly. This change is
made because each node is of a certain type with corresponding enumeration functions. As
we later will see, these functions then will be called on the node, rather then having n as
parameter.

2. The input parameter of the functions is no longer a tuple from n, but a tuple from the parent
of n, which is indicated by the fact that this parameter is no longer called t, but tp.

The reason why this is done is because, as we will see, for the delta enumeration procedures
it should be the responsibility of n to which tuples in ∆n tp is joined. Namely most of the
time when adding tuples, tp needs to be joined to ∆+

n and likewise when removing tuples,
tp needs to be joined with ∆−n , but this will not always be the case.

Regarding the second alteration, one may wonder what this means for rootT . Namely moving
the semijoin in such a way implies that also rootT has delta enumeration algorithms with input
parameter tp, but since t has no parent there is no tp. What therefore is the case is that tp for
rootT is always NIL. Then for each delta enumeration procedure we have that it iterates over
t, t ∈ S ⋉ tp, with S being some arbitrary relation. Then since tp = NIL, we have that we iterate
over elements in S ⋉NIL = S, which is exactly what we should have.

5.2.2 Enumeration output

In order to be able to reason about the output of enumeration function calls, we look at what
exactly the enumeration procedure should return. We discuss a concept that is not explicitly dis-
cussed in the paper, but which is very useful when reasoning about the correctness of the (delta)
enumeration algorithms.

The idea behind the enumeration procedure is that it returns some output relation O, called
on a T-reduct T which is according to a query expression Q. Now Q defines the steps to compute
O, however technically we have that Q = O. This is because the steps in the expression also
describes the relation itself. Now we will show that the enumeration procedure indeed returns Q
and therefore O.
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First, to give some intuition why this should be the case, note that a relation R can be recursively
defined in the following manner:

R =r

|(R)
|κ(R)
|RψR

With, as far as the queries from the AHA model are concerned, r being an atomic relation,
κ ∈ {π, σ} and ψ ∈ {×, ▷◁,∪,▷}. Thus a relation is defined recursively in terms of other relations.

Then the query expression corresponding to a node in n in T can be recursively found follow-
ing algorithm 4, in which the query expression for the output of n is constructed:

Algorithm 4 Find the query expressoin corresponding to a node

1: function FindR(n): relation R
2: if n is a leaf then
3: return n.R ▷ n corresponds to an atomic relation R
4: else if n has one child c then
5: return κ(FindR(c)) ▷ n corresponds to an unary query operation κ
6: else
7: return FindR(c1) ψ FindR(c2) ▷ n corresponds to a binary query operation ψ

Definition 1 (Pn) An output relation Pn for a node n, n ∈ T for some T-reduct T is a relation
such that:

� Pn = FindR(n)

� Pn ⋉ t = n.Enum(t)

Thus, following definition 1 each node n ∈ T has output relation Pn, which can be computed by
running n.Enum(NIL).

Additionally following this definition since Q = FindR(rootT ) we have that Q = ProotT . Then,
since the initial call in the enumeration procedure is rootT .Enum(NIL) we have that it will return
ProotT , and therefore Q and O, as we claimed it would do.

5.2.3 Delta enumeration

Next to regular enumeration procedures, which produce output relations, we also need procedures
for changes in output relations. The reason why we want this is as follows: although it is possible
to compute ProotT from scratch by running the regular enumeration procedure, it may be the case
that |Q(M)| >> |Q(∆M )|. In this case, given that Q(∆M ) can be enumerated linearly in respect
to |∆rootT | (which we will investigate in the evaluation and during experiments), we can speed up

the enumeration procedure by a factor k = |Q(M)|
|Q(∆M )| .

Although this concept of delta enumeration is used in the paper, it has not been explicitly stated,
but merely mentioned as being a slightly modified version of the regular enumeration procedure.
For completeness sake and in order to make sure that the alterations we made to the regular
algorithm are clear, we take a look at the delta enumeration procedures.

Now we determine what the delta enumeration procedures should exactly return. Consider query
Q, with T-reduct T , update u and an arbitrary node n. Then by definition 1, we have output
relation Pn. Let Pn then be the relation after u has been applied and P ′n the relation before u
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has been applied. We want to compute changes in Pn relative to P ′n. These need to be both the
set of tuples that were added to P ′n and tuples that were removed from P ′n. Therefore we define
relations P∆+

n
= Pn−P ′n and P∆−

n
= P ′n−Pn respectively. Then indeed we have that t ∈ P∆+

n
⇒

t ∈ Pn ∧ t /∈ P ′n and t ∈ P∆−
n
⇒ t ∈ P ′n ∧ t /∈ Pn.

In order to enumerate over P∆+
n
and P∆−

n
, we introduce n.EnumAdded(t) which returns ∆+

Pn
⋉t

and n.EnumRemoved(t) which returns ∆−Pn
⋉ t. Then as an enumeration procedure starts with a

function call on rootT with tuple NIL, the procedure will indeed enumerate over ∆+
ProotT

⋉NIL

and ∆−ProotT
⋉NIL. Then, since O = ProotT , we indeed enumerate over ∆+

O and ∆−O.

When discussing the delta enumeration procedures for the several types of nodes, the goal is
that an intuition is given why the delta enumeration functions indeed enumerate over the correct
tuple sets. Although this intuition will look like (part of) a proof, we do realize that it is not
a complete correctness proof. Especially often the intuition lacks the proof that any tuple that
should be returned is also returned. However, by giving an intuition in this proof-like-structure
we think it is the most convincing.

5.2.4 Order and nesting of delta enumeration algorithms

Consider a T-reduct T with output relation O. As we see in algorithm 7 the property is lost that
each tuple t that the algorithm iterates over will be in ∆O, as t will only be yielded at certain
conditions. This will not only apply to nodes in the frontier, but for most node types. This has
as consequence that the delta enumeration procedure does not enumerate with constant delay.

However the delta enumeration procedure does enumerate with constant delay over tuples t
that may be in ∆O, let’s call such a tuple a candidate.

Therefore for a call n.EnumF(t), EnumF ∈ {Enum, EnumAdded, EnumRemoved}, if we denote
its running time as T (n.EnumF(t)), then lemma 1 gives some properties on such a call.

Lemma 1 Running time of enumeration functions.

1. T (n.Enum(t)) = |Pn ⋉ t|

2. T (n.EnumAdded(t)) ≥ |∆+
Pn

⋉ t|

3. T (n.EnumRemoved(t)) ≥ |∆−Pn
⋉ t|

Hence, the delta enumeration functions may enumerate over more than only the output tuples.
This we need to keep in mind while discussing the delta enumeration procedures. Namely it has
as a consequence that it may be wise to put two loops that may have been nested next to each
other, or invert the order of the loops in a nested loop. Result wise this will not make a difference,
but concerning running time it may.

Now we give an intuition for the motivation of using a certain ordering in nested enumeration
iterations or unnesting the enumeration calls all together. Here lemma 1 is used.

Consider algorithm 5. From lemma 1 we have that EnumExample1 has a runningtime of
T (c1.EnumAdded(t)) + |P∆+

n
⋉t| * (|Pn⋉t| + |Pn⋉t|), whereas EnumExample2 has a runningtime

of |Pn⋉t| + |Pn⋉t| * (T (c1.EnumAdded(t)) + |P∆+
n
⋉t|). This means that if T (n.EnumAdded(t))

>> |P∆+
n
⋉ t|, then surely EnumExample1 is significantly faster and if they are equal then it does

not matter.
Likewise compare EnumExample3 and EnumExample4. EnumExample3 has runningtime

T (c1.EnumAdded(t)) + |P∆+
n
⋉t| * (T (c2.EnumRemoved(t)) + |P∆−

n
⋉t|), whereas EnumExample4

has runningtime T (c1.EnumAdded(t)) + T (c2.EnumRemoved(t)) + (|P∆+
n
⋉t| * |P∆−

n
⋉t|). Hence

if either T (n.EnumAdded(t)) >> |P∆+
n
⋉ t| or T (n.EnumRemoved(t)) >> |P∆−

n
⋉ t|, then Enu-

mExample3 surely is significantly faster, where otherwise is does not matter much.
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Algorithm 5 Enumerate examples

1: function EnumExample1(t)
2: for each s1 ∈ c1.EnumAdded(t) do
3: for each s2 ∈ c2.Enum(t) do
4: yield s1 · s2
5:

6: function EnumExample2(t)
7: for each s2 ∈ c2.Enum(t) do
8: for each s1 ∈ c1.EnumAdded(t) do
9: yield s1 · s2

10:

11: function EnumExample3(t)
12: for each s1 ∈ c1.EnumAdded(t) do
13: for each s2 ∈ c2.EnumRemoved(t) do
14: yield s1 · s2
15:

16: function EnumExample4(t)
17: S1← c1.EnumAdded(t)
18: S2← c2.EnumRemoved(t)
19: for each s1 ∈ S1 do
20: for each s2 ∈ S2 do
21: yield s1 · s2

5.2.5 General update procedure

At this point we have gone over the general alterations made to the update and enumerate pro-
cedures and the concept of delta enumeration functions. Therefore this is a good moment to give
a general overview of the output relation maintenance procedure.

Therefore consider algorithm 6, which is called on some T-reduct T . The idea is fairly straight-
forward.

In line 2 we first run the update procedure to apply updates on T . In this procedure first we
have that for any relation ρl, leaf l ∈ T , if there is an update ur ∈ u such that r = ρl, then ur is
applied to ρl. Afterwards this update is propagated through T , to bring other sets ρn, ∆

+
n and

∆−n up-to-date for any node n ∈ T .
Secondly, in lines 3 and 4 we run EnumAdded and EnumRemoved respectively, to compute

the updates to OT . Where in line 5 and 6 the added tuples are added to OT and the removed
tuples are removed from OT .

Finally in lines 7 and 8 we add these updates to u, such that other T-reducts for which O is
an input set are able to apply the updates made to O themselves.

Observe that we let each node apply updates to their own leaves. On first glance this may
seem unnecessary. Namely, if for a T-reduct T ′ there is a leaf node l′ ∈ T ′ for which ρl′ = OT ,
then instead of applying the updates from u, which involves iterating over ∆O, one may argue
that we just do a constant time reasignment of ρ′l, by letting ρ′l point to OT .

From a relational point of view this is totally correct, however one should not forget that in
this algorithm any relation corresponding to ρn, ∆

+
n , ∆

−
n or OT , is implented by means of an

index structure Ir, for relation r. Then such an index itself is a relation and implemented by
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means of a hash set. Each tuple/key in Ir points towards a list of tuples in r.
Then, for OT , we have that there may be multiple relations ρl′ such that OT = ρl′ . As var(Iρl′ )

depends on var(pl′), where pl′ is the parent of l′ we have that IOT
cannot be implemented such

that var(IOT
) = var(Iρl′ ) for any such ρl′ .

Hence each such ρl′ needs to go through all tuples in ∆OT
and apply it to Iρl′ itself.

Algorithm 6 Find the relation corresponding to a node

1: function UpdateTreeAndOutput(u)
2: Update(u)
3: P∆+

rootT

← rootT .EnumAdded(NIL)

4: P∆−
rootT

← rootT .EnumRemoved(NIL)

5: OT += P∆+
rootT

6: OT -= P∆−
rootT

7: u+ += P∆+
rootT

8: u− += P∆−
rootT

Then for each T-reduct we run T.UpdateTreeAndOutput(u) on each T , in such an order that if
for T-reducts T1 and T2, T1 ̸= T2 we have that OT1

= ρl for some leaf l ∈ T2 implies that T1 < T2,
meaning that call T1.UpdateTreeAndOutput(u) is made before call T2.UpdateTreeAndOutput(u).

Obviously by this ordering, we may not have cyclic tree pairs (T1, T2), such that OT1 = ρl2 for
some leaf l2 ∈ T2 and OT2

= ρl1 for some leaf l1 ∈ T1.

5.3 Node types and update procedures

5.3.1 Frontier delta enumeration

First we consider the delta enumeration procedures for a node in the frontier. This is not a spe-
cific node type, but rather it applies to some specific node types, if and only if these are in F of
T . When discussing the specific node types we tell if the frontier enumeration procedure applies.
Consider algorithm 7, for some node n and n’s parent p in T-reduct T . Observe that since var(Pn)
= var(n) we have that Pn = ρn.

First we look at function n.EnumAdded(tp). By the definition of output set P∆+
n
⋉ tp, we have

that such a call should yield each tuple t′, t′ ∈ Pn ⋉ tp, t
′ /∈ P ′n ⋉ tp.

Now consider the condition of the if clause in line 4. The algorithm iterates over each tuple
t ∈ ∆+

n ⋉ tp and checks whether t joins with a tuple in ρn, since if this is the true, then t ∈ Pn⋉ tp.
Afterwards the function computes whether t ∈ P ′n ⋉ tp by taking the count value of tn and sub-
tracting ∆t.count, which gives the count value of t′. Then if this value is 0, then we have that
t /∈ P ′n ⋉ tp and t is yielded.

Now look at n.EnumRemoved(tp). Such a call should yield each tuple t′, t′ /∈ Pn ⋉ tp, t
′ ∈ P ′n ⋉ tp.

This function iterates over each tuple t ∈ ∆−n ⋉ tp. As we should have that t /∈ Pn ⋉ tp and
ρn = Pn ⋉ tp the algorithm checks whether t does not join with any tuple in ρn ⋉ tp. Then if this
is the case, if ∆t.count is negative we have that the count value of t′ is positive, hence t ∈ P ′n⋉ tp.
So if the algorithm reaches line 13 indeed t is correctly yielded.
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Algorithm 7 Enumerate frontier node

1: function EnumAdded(tp)
2: for each t ∈ ∆+

n ⋉ tp do
3: tn ← ρn ⋉ t
4: t− ← ∆−n ⋉ t
5: if tn ̸= NIL ∧ tn.count− t.count+ t−.count = 0 then
6: yield t

7:

8: function EnumRemoved(tp)
9: for each t ∈ ∆−n ⋉ tp do

10: tn ← ρn ⋉ t
11: t+ ← ∆+

n ⋉ t
12: if tn = NIL ∧ (t.count− t+.count > 0) then
13: yield t

Example

Consider figure 5.1. It shows a leaf node X, which is a child of some node as denoted by the dotted
line, together with augmented relations ρX , ρ+X and ρ−X ; and relations PX , P∆+

X
and P∆−

X
, which

are the results of algorithms Enum, EnumAdded and EnumRemoved on node X with tuples NIL
respectively.

Observe that, since X is a leaf node, we have that ρX = PX , ρ+X = P∆+
X

and ρ−X = P∆−
X
, and

additionally all tuples in any of these relations have a multiplicity of 1. Then as the enumeration
procedure is called on X ánd X is a leaf, we have that X ∈ F .

The Enum algorithm is equal to the enumeration procedure in the original paper, thus simply
all tuples in ρX are also in PX . Then as [W12.2022, 28, C] /∈ ρ−X , [W12.2022, 28, C] /∈ ρX and
[W12.2022, 10, B] /∈ ρ+X , we have that at lines 5 and 12 of algorithm 7 the conditions hold and
tuples [W12.2022, 28, C] and [W12.2022, 10, B] are in P∆+

X
and P∆−

X
respectively.

Figure 5.1: A frontier leaf node and its enumeration results.
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5.3.2 Join node

The join node corresponds to the type of node from the original paper, in which it is any node
n, such that n has two children. In our extension there are also other node types that have two
children, however the ComputeDelta and (non-delta) enumeration algorithms from the papers do
correspond with those algorithms or cases in the original paper, where n has two children.

Also similarly as in the original paper, a join node may be part of the frontier. In that case
not the upcoming algorithms will be the enumeration procedure, but those specified by algorithm
7.

ComputeDelta

The ComputeDelta function found at algorithm 8 is not so much different as the case starting at
line 8 in algorithm 1. Rather, it is a bit more specific about the way πvar(n)(ρm ▷◁ ∆c) is computed.

Now consider algorithm 8. We should still have that ∆n += πvar(n)(ρm ▷◁ ∆c). However, since
either var(n) ⊆ var(c) or var(n) ⊆ var(m), we have that πvar(n)(ρm ▷◁ ∆c) = πvar(n)(∆c) or
πvar(n)(ρm ▷◁ ∆c) = πvar(n)(ρm ⋉∆c) respectively. Therefore this is exactly what is added to ∆n

at lines 5 and 9 respectively.

Observe that in this algorithm we specified how a count value is propagated. In the case of a
join node, this is merely a maintenance value. (For the curious reader, when ∆n is applied - more
specifically when a tuple from ∆−n is applied and thus this tuple set is removed - the procedure
does not necessarily remove the tuple, but rather decrements the count value. Then, if this count
value decrements past 1, the tuple will be removed.) Therefore we may as well not have specified
this value in this abstract version of the algorithm. Moreover if not necessary, similar maintenance
values will not be specified in algorithm descriptions from here on.

The reason why we chose to specify the value in this case is that it demonstrates the necessity
of iterating over all tuples t2 ∈ ρm ⋉ t1 at line 4, t1 ∈ ∆c. Then what happens is that for each
such t2, t1 is added to ∆n, instead of checking whether |ρm ⋉ t1| > 0 and adding t1 just one time.
This is necessary because the exact count for tuple πvar(n)(t1) needs to be maintained, which can
be only achieved by passing the multiplicity of t1.count and t2.count for each t2.

Algorithm 8 Join node ComputeDelta

1: function ComputeDelta(c)
2: if var(n) ⊆ var(c) then
3: for each t1 ∈ ∆c do
4: for each t2 ∈ ρm ⋉ t1 do
5: ∆n+ = πvar(n)(t1), t1.count ∗ t2.count
6: else
7: for each t1 ∈ ∆c do
8: for each t2 ∈ ρm ⋉ t1 do
9: ∆n+ = πvar(n)(t2), t1.count ∗ t2.count

As the regular Enum function does not differ from the case starting at line 11 of algorithm 2
(apart from the general alterations specified in subsection 5.2.1), we will not consider this algorithm
explicitly.

EnumAdded

Consider algorithm 9. We should have that a call n.EnumAdded(tp) returns ∆
+
Pn

⋉ tp.

Hence it should return each tuple t′:
t′ ∈ Pn ⋉ tp ∧ t′ /∈ P ′n ⋉ tp = t′ ∈ (Pc1 ▷◁ Pc2)⋉ tp ∧ t′ /∈ (P ′c1 ▷◁ P

′
c2)⋉ tp
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Then at line 7 the algorithm yields tuples s1 · s2, (where · is the concatenation symbol):
s1 ∈ c1.EnumAdded(t)

⇒ s1 ∈ ∆+
Pc1

⋉ t
⇒ s1 ∈ Pc1 ⋉ t ∧ s1 /∈ P ′c1 ⋉ t

and
s2 ∈ c2.Enum(t)

⇒ s2 ∈ Pc2 ⋉ t

for all t ∈ ∆+
n ⋉ tp.

Then as we have that both s1 and s2 is compatible with some t and moreover either t ⊆ s1∨t ⊆ s2,
we have that s1 is compatible with s2, which implies that s1 · s2 ∈ (Pc1 ▷◁ Pc2) ⋉ tp. Also
s1 /∈ P ′c1 ⋉ t⇒ s1 · s2 /∈ (P ′c1 ▷◁ P

′
c2)⋉ tp.

Similarly, at line 11 the algorithm yields tuples s1 · s2, such that s1 ∈ Pc1 ⋉ t, s2 ∈ Pc2 ⋉ t ∧ s2 /∈
P ′c2 ⋉ t, for all t ∈ ∆+

n ⋉ tp. This also implies that s1 · s2 /∈ (P ′c1 ▷◁ P
′
c2)⋉ tp.

A tuple t in a join only is added if part of t is added in either child, and we know that if that is
the case that by the ComputeDelta procedure πvar(n)t is added to ∆+

n . For this reason it should

be intuitive that indeed the EnumAdded function adds all tuples to ∆+
Pn

that should be added.

Finally observe that the tuples s1 · s2 at line 6 and 10 may have an intersection, for s1 and
s2 such that s1 ∈ ∆+

Pc1
⋉ t and s2 ∈ ∆+

Pc2
⋉ t. Since the algorithm should yield unique tuples we

check via a hash based method whether s1 · s2 has already been yielded.

Algorithm 9 Join node enumerate added tuples

1: function EnumAdded(tp)
2: for each t ∈ ∆+

n ⋉ tp do
3: alreadySeen← new HashSet
4: for each s1 ∈ c1.EnumAdded(t) do
5: for each s2 ∈ c2.Enum(t) do
6: alreadySeen.Add(s1 · s2)
7: yield s1 · s2
8: for each s2 ∈ c2.EnumAdded(t) do
9: for each s1 ∈ c1.Enum(t) do

10: if s1 · s2 /∈ alreadySeen then
11: yield s1 · s2
12:

EnumRemoved

Consider algorithm 10. We should have that a call n.EnumAdded(tp) returns ∆
−
Pn

⋉ tp.

Hence it should return each tuple t′:
t′ /∈ Pn ⋉ tp ∧ t′ ∈ P ′n ⋉ tp = t′ /∈ (Pc1 ▷◁ Pc2)⋉ tp ∧ t′ ∈ (P ′c1 ▷◁ P

′
c2)⋉ tp

Then at line 3 the algorithm assigns to MJP tuples s1 · s2:
s1 /∈ Pc1 ⋉ t, s1 ∈ P ′c1 ⋉ t, s2 ∈ Pc2 ⋉ t, s2 /∈ P ′c2 ⋉ t. And at line 4 the algorithm assigns to PJM
tuples s1 · s2:
s1 ∈ Pc1 ⋉ t, s1 /∈ P ′c1 ⋉ t, s2 /∈ Pc2 ⋉ t, s2 ∈ P ′c2 ⋉ t.

In line 9 the algorithm yields tuples s1 · s2:
s1 /∈ Pc1 ⋉ t, s1 ∈ P ′c2 ⋉ t, s2 /∈ Pc2 ⋉ t, s2 ∈ P ′c2 ⋉ t. Thus corresponding to when both parts of a
tuple are removed.
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Then at line 13 the algorithm yields tuples s1 · s2:
s1 /∈ Pc1⋉t, s1 ∈ P ′c1⋉t, s2 ∈ Pc2⋉t and s1 ·s2 /∈MJP . From that we may conclude s2 ∈ P ′c2⋉t.
Thus corresponding to the case if part of a tuple is removed from Pc1.

Similarly line 17 yields tuples s1 · s2:
s1 ∈ Pc1 ⋉ t, s2 /∈ Pc2 ⋉ t, s2 ∈ P ′c2 ⋉ t and s1 · s2 /∈ PJM , (or was already yielded). From that
we may conclude s1 ∈ P ′c2⋉t. Thus corresponding to the case if part of a tuple is removed from Pc2.

Thus in lines 9, 13 and 17 the algorithm yields tuples for which it holds that:s1·s2 /∈ (Pc1 ▷◁ Pc2)⋉tp
and s1 · s2 ∈ (P ′c1 ▷◁ P

′
c2)⋉ tp, as should be the case.

Algorithm 10 Join node enumerate removed tuples

1: function EnumRemoved(tp)
2: for each t ∈ ∆−n ⋉ tp do
3: MJP ← MinusJoinPlus(t)
4: PJM ← PlusJoinMinus(t)
5: S1← c1.EnumRemoved(t)
6: S2← c2.EnumRemoved(t)
7: for each s1 ∈ S1 do
8: for each s2 ∈ S2 do
9: yield s1 · s2

10: for each s1 ∈ c1.EnumRemoved(t) do
11: for each s2 ∈ c2.Enum(t) do
12: if s1 · s2 /∈MJP then
13: yield s1 · s2
14: for each s2 ∈ c2.EnumRemoved(t) do
15: for each s1 ∈ c1.Enum(t) do
16: if s1 · s2 /∈ PJM then
17: yield s1 · s2
18:

19: function MinusJoinPlus(t)
20: S1← c1.EnumRemoved(t)
21: S2← c2.EnumAdded(t)
22: for each s1 ∈ S1 do
23: for each s2 ∈ S2 do
24: yield s1 · s2
25:

26: function PlusJoinMinus(t)
27: S1← c1.EnumAdded(t)
28: S2← c2.EnumRemoved(t)
29: for each s1 ∈ S1 do
30: for each s2 ∈ S2 do
31: yield s1 · s2

Example

Consider figure 5.2. It shows join node A and children B and C. Both B and C are in F , where
B is a leaf and C is a join node. Though, we have that since C ∈ F , the enumeration algorithms
associated with C are the frontier enumeration algorithms. For each node n the figure shows ∆+

n

and ∆−n , if this is not an empty relation. Finally it shows PA, P∆+
A
and P∆−

A
.

Note, in our implementation the output relation also contains dimension C.Week, which will
be removed only after enumerating the root node of the T-reduct, but for simplicity reasons we
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will omit this dimension for the output relations in this example.

From regular join enumeration algorithm 2 it should be clear why this indeed returns PA. Now we
look how EnumAdded and EnumRemoved return P∆+

A
and P∆−

A
respectively. We consider three

tuples and see why they are, or are not, returned and verify this.

First, consider tuple [′Rik′,W12.2022]. As [′Rik′,W12.2022] ∈ ρ∆+
B

and [′Rik′,W12.2022] ∈ ρ2,
both with multiplicity 1, we know that [′Rik′,W12.2022] /∈ P ′B where P ′B is the previous version
of PB . Therefore we know that there is no tuple t1plus ∈ PA, such that [′Rik′,W12.2022] ⊂ t1plus,
and therefore we know that [′Rik′,W12.2022, 20] /∈ P ′A. As [′Rik′,W12.2022] is compatible with
tuple [W12.2022, 20], [W12.2022, 20] ∈ PC , we have that indeed [′Rik′,W12.2022, 20] ∈ PA. Con-
cluding, as [′Rik′,W12.2022, 20] ∈ PA and [′Rik′,W12.2022, 20] /∈ P ′A, indeed [′Rik′,W12.2022, 20]
should be in P∆+

A
, as the figure claims it does.

Also we verify that this is the case. EnumAdded iterates over [W12.2022] as [W12.2022] ∈ ∆+
A.

Since [′Rik′,W12.2022] ∈ ρ2 and [′Rik′,W12.2022] /∈ ρ′2, it holds that [′Rik′,W12.2022] ∈ P∆+
B

and therefore is returned by B.EnumerateAdded([W12.2022]). Then as t3 = [W12.2022, 20] ∈ ρ3,
t3 is returned by C.Enum([W12.2022]) and at line 7 [′Rik′,W12.2022, 20] is indeed returned by
A.EnumAdded(NIL).

For [′Rik′,W12.2022, 20] finally observe how it also would be returned at line 11, if it wasn’t
for the check at line 10. We indeed do not want it to be returned at line 11, as we want each tuple
yielded by the algorithm to be unique.

Secondly consider tuple [′Anne′,W12.2022, 20] ∈ PA and observe that it is not in P∆+
A
. This

should indeed be correct because of the following argument.
We have that tuple [W12.2022, 20], [W12.2022, 20] ∈ ρ3 with multiplicity 2 and [W12.2022, 20] ∈

∆+
C with multiplicity 1, impliying that [W12.2022, 20] ∈ ρ′3 and therefore [W12.2022, 20] /∈ P∆+

C
.

This means that, as [′Anne′,W12.2022] ∈ ρ′2, we have that [′Anne′,W12.2022, 20] ∈ P ′A and thus
should not be added again.

Additionally we verify that [′Anne′,W12.2022, 20] is indeed not added viaA.EnumAdded(NIL).
First, [′Anne′,W12.2022] /∈ P∆+

B
as it was not added to ρ2 in this update and therefore is not

iterated over in line 4 of algorithm 9. Secondly we established that [W12.2022, 20] /∈ P∆+
C
, meaning

that it will not be iterated over in line 8.

Thirdly consider tuple [′Rik′,W11.2022, 30] ∈ P∆−
A
. This tuple is indeed correctly removed.

Since [W11.2022, 30] ∈ ∆−C and [W11.2022, 30] /∈ ρ3, we have that [W11.2022, 30] ∈ P∆−
C

and also [W11.2022, 30] ∈ ρ′3. Then [′Rik′,W11.2022] ∈ ρ2, where [′Rik′,W11.2022] /∈ ∆+
B , thus

[′Rik′,W11.2022] ∈ ρ′2. Hence we have that [′Rik′,W11.2022, 30] ∈ P ′A, and as [′Rik′,W11.2022, 30] /∈
PA, indeed it is removed.

Finally let us verify that in algorithm 10 [′Rik′,W11.2022, 30] is removed. As ∆+
B⋉[W11.2022, 30] =

∅ we have P∆+
B
⋉ [W11.2022, 30] = ∅, thus [′Rik′,W11.2022, 30] /∈ PJM . We established that

[W11.2022, 30] ∈ P∆−
C
, thus it is iterated over on line 14. As [′Rik′,W11.2022] ∈ ρ2, [′Rik′,W11.2022] ∈

PB , thus it is iterated over on line 15. Then, as we saw that [′Rik′,W11.2022, 30] /∈ PJM , this
tuple is indeed yielded at line 17.
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Figure 5.2: A join node and its enumeration results.

5.3.3 Aggregation node

The aggregation node corresponds with each node n in the paper for which it holds that n has one
child c. Again similarly as with the join node, for our extension it does not not always hold that if
a node has one child that it is an aggregation node, but the ComputeDelta algorithm corresponds
to the case in the paper where a node has one child.

In our case it will hold that each aggregation node is in the frontier, however note that the
enumeration procedures will not be those of algorithms 7, but algorithms specific to the aggreg-
ation node. The reason each aggregation node is in the frontier is that, by the behaviour of
ComputeDelta and the enumeration algorithms which are soon to be discussed, it is not necessary
to further call enumeration functions on the children as ∆n and ρn hold all information necessary
to compute Pn, P∆+

n
and P∆−

n
.

As the ComputeDelta function is very similar to line 11 of 1, we won’t discuss it, other than
that we want to mention that in case where the aggregation function is count, for each t ∈ ρn
t.count needs to be maintained and in the case where the aggregation function is sum or average,
additionally t.sum needs to be maintained.

Enumeration

Algorithm 11 describes the procedure for enumerating over a aggregation node with a sum function.
We think it should be intuitive how the algorithm would look if a count or average aggregation
function would be used instead.
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Algorithm 11 Enumerate aggregation (sum) node

function Enumerate(tp)
for each t ∈ ρn ⋉ tp do

yield t · t.sum

Delta enumeration

Algorithm 12 describes both the EnumAdded and EnumRemoved functions for an aggregation
node. Again specifically it describes the procedures for a sum node, but nodes corresponding to a
count or average aggregation should be intuitive from the described algorithms.

Observe that instead of iterating over ∆+
n ⋉ tp or ∆−n ⋉ tp both EnumAdded and EnumRemoved

iterate over ∆n ⋉ tp, where ∆n = ∆+
n ∪∆−n . The reason for this is that for a tuple t, t ∈ ∆−n or

t ∈ ∆+
n does not indicate that t does not have to be added again or that t does not have to be

removed respectively. This opposed to for example the join node where at least for adding tuples
to Pn the algorithm only needs to iterate over PDelta+

n
, but not over PDelta−

n
.

This has as consequence that between updating T and executing the delta enumeration pro-
cedures, it is necessary to compute a union of ∆+

n and ∆+
n .

To give some intuition why this is the case, imagine we have relations R(employee, team, hours)
and S(team, hours). Now S is an aggregation over R, where R describes the amount of hours
an employee works per week, and also describes to which team the employee belongs. Then S
describes how many hours per week the employees from each team work in total.

Then when a tuple t is removed from R, this means that for some tuple t′, where t′.team =
t.team we need to remove t′ from S (unless t.hours was 0). This is because t′.sum is not correct
anymore. However we also need to add a new tuple for t′.team with the new sum value, at least
if the new amount of employees for t′ team has not become 0.

EnumAdded

Now we give an intuition why EnumAdded and EnumRemoved are correct.
First consider algorithm 12, function EnumAdded. We should have that a call n.EnumAdded(tp)

returns ∆+
Pn

⋉ tp.

Hence it should return each tuple t′:
t′ ∈ Pn ⋉ tp ∧ t′ ∈ P ′n ⋉ tp ⇒ t′ ∈ P∆−

n
⋉ tp.

Thus it should add tuples that are in the current output set of n and were not in the previous
output set of n, unless they were also deleted.

If the condition in line 4 is true, it follows that there is some tnode ∈ ρn ⋉ tdelta, for which
there is a compatible tuple toutput, toutput ∈ Pn.

Now we should show that if t′output ∈ P ′n ⋉ tp, for some t′output = toutput ⇒ t′output ∈ P∆−
n
⋉ tp.

In this case it follows that as toutput = t′output, we have tnode = t′node and tdelta.count and tdelta.sum
are both 0.

Now we consider EnumRemoved. We know that at line 8 tdelta will be iterated over, as Enum-
Removed just like EnumAdded iterates over ∆n⋉tp. Then tnode will be found in line 9. Afterwards
the sum and count values corresponding to t′node are computed, which are thus the same as those
of tnode. Then this tuple with these values together with the count and/or sum values form t′output,
which is thus toutput, as the delta values are 0. This will be done in lines 13 and 14, as we know
that tnode ̸= NIL. Then as toutput ∈ P ′n we have that the count value cannot be 0 and toutput will
be indeed yielded with the same sum and count values as t′output.
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EnumRemoved

Now we show that a call n.EnumRemoved(tp) returns ∆
−
Pn

⋉ tp. Consider algorithm 12, function
EnumRemoved.

Hence it should return each tuple t′:
t′ ∈ P ′n ⋉ tp ∧ t′ ∈ Pn ⋉ tp ⇒ t′ ∈ P∆+

n
⋉ tp.

Hence it should return each tuple that was in the previous output set and is not in the cur-
rent output set, unless it was also added.

The algorithm iterates over each tuple tdelta ∈ ∆n ⋉ tp. Then it finds a node tnode compat-
ible with tdelta if it is still in ρn, or sets tnode to NIL otherwise. Then using the delta count and
sum, together with the current count and sum value from tnode if it still exists, it computes the
count and sum of t′, t = t′. Then if t′ ∈ P ′n we reach line 19 and tnode together with the previous
aggregation values(s), forming t′output, will be yielded.

Now we have to show that toutput ∈ Pn ⋉ tp for some toutput = t′output ⇒ toutput ∈ P∆+
n
⋉ tp.

Again as toutput ∈ Pn and toutput ∈ Pn there is some tnode ∈ ρn and some t′node ∈ ρ′n, such that
tnode = t′node.

As line 2 iterates over the same set as EnumRemoved, tnode will be found in line 3. Then in
line 5, tnode and its sum value together form toutput and will be yielded. Then since toutput =
t′output, t

′
output is indeed yielded.

Algorithm 12 Delta enumerate aggregation (sum) node

1: function EnumAdded(tp)
2: for each t ∈ ∆n ⋉ tp do
3: tnode ← ρn ⋉ t
4: if tnode ̸= NIL then
5: yield tnode · tnode.sum
6:

7: function EnumRemoved(tp)
8: for each t ∈ ∆n ⋉ tp do
9: tnode ← ρn ⋉ t

10: Declare count
11: Declare sum
12: if tnode ̸= NIL then
13: count← tnode.count− t.count
14: sum← tnode.sum− t.sum
15: else
16: count← −t.count
17: sum← −t.sum
18: if count ̸= 0 then
19: yield tnode · sum

Example

Consider figure 5.3. It shows sum node A and leaf node B, augmented by ρ and ∆ relations, where
∆A = ∆+

A ∪∆−A. Also it shows enumeration results PA, P∆+
A
and P∆−

A
. Observe that ρA ∈ F , as

for us is always the case for aggregation nodes.

First we make some observations.
Consider relation PA and how this indeed is retrieved using algorithm 11. Additionally, from

∆+
B and ∆−B it should be intuitive how, using update algorithm 1, ∆A is constructed. Then, as
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each tuple in PA is also in P∆+
A
, each such tuple was added via EnumAdded. Therefore P ′A is

simply the set of all removed tuples, thus P ′A = P∆−
A
.

Secondly, let’s see what tuples should be added and removed to and from PA. We have that
all tuples in ρB are grouped by dimension Team, where for each Team then the sum of the hours
is computed, resulting in an output relation with a tuple for each Team and the number of total
Hours.

For team Dev1 some tuples are removed and added to ρB , thus for this team a tuple should
be removed and another tuple should be added.

For team Mar1 we have that a tuple is removed from ρB . As there is still a tuple left in
ρB , and therefore a number of hours associated with this team, we have that a tuple should be
removed, but also a tuple should be added.

For team Con1 a tuple was added and not removed, meaning that P ′A did not contain a tuple
for this team. Therefore only a tuple should be added.

Finally we consider the added and removed tuples.

The tuples in P∆+
A

are added via EnumAdded, as shown by lines 1-5 of algorithm 12. The

algorithm goes over all tuples in ∆A and checks whether each such tuple is compatible with a
tuple in ρA. In the case it is, the algorithm yields a tuple with the Team and Σ value. Observe
that for each team ∈ {Dev1,Mar1, Con1} a tuple is returned, as for each team there is a tuple
in ρA.

For teams Dev1 and Con1, as there is a compatible tuple in ∆+
B , it is logical that a tuple

is added. For team Mar1 however, we see that a tuple is added despite ∆+
B not containing a

tuple for this team. As for this team a tuple should be added regardless, this example shows why
EnumAdded for an aggregation node iterates over ∆A instead of only ∆+

A.

The tuples in P∆−
A
were removed from P ′A via EnumRemoved, as shown by lines 7-19 of algorithm

12. The algorithm goes over all tuples in ∆A and checks whether each such tuple was compatible
with a tuple in P ′A, where it computes which tuples were in this relation.

For teams Dev1 and Mar1 the algorithm finds that there used to be compatible tuples in P ′A.
Namely, it computes that there was a tuple for Dev1 with Hours = 54 - 34 = 20 and that there
was a tuple for Mar1 with Hours = 18 - -10 = 28. For team Con1 however, the algorithm finds
that there did not use to be a corresponding tuple in P ′A, as it computes that the count value for
this tuple would be 1 - 1 = 0, where a ρ relation may not contain such tuples. Thus correctly, for
this team no tuple is removed.
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Figure 5.3: A sum node and its enumeration results.

5.3.4 Join-Aggregation node

Now we discuss a new type of node, which is a combination of an aggregation and a join node.
Hence there is a query in the following general form:
πx,F (y)(A ▷◁θ B), for relation A(a), x ⊆ a, relation B(b), y ∈ b and some predicate θ.

Necessity of the join-aggregation node

One might wonder why we cannot use a T-reduct composed of a join node together with an
aggregation node. Therefore let’s reason about this situation.

Assume we have some aggregation node an and join node jn, where an is the parent of jn and
jn has children c1 and c2. Then we have that for each tuple t1 ∈ ρc1 we have to find corresponding
tuples in t2 ∈ ρc2 and maintain a sum and/or count value for all found tuples t2. However the
join node update algorithm does not necessarily propagate these aggregation values as it only will
propagate the multiplicities of t1 and t2. This means that jn does not know the aggregation values
and cannot propagate these to an, which does need them in order to return Pan.

Concluding: joining tuples and propagating the aggregation values needs to be done in one
step, thus by one node.

An alternative is that two T-reductions are used, one which joins tuples from c1 and c2 and
a second one that will then aggregation values. This is possible, however it does need the materi-
alization of an extra output relation.
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Update and Enumeration

The fact that this type of node is a combination of an aggregation node and join node is also
visible when looking at its update and enumeration procedures.

First we look at the update procedure, which is shown at algorithm 13. We should have that,
when looking at the general form of a join-over-aggregation query Q, that T corresponding to Q
has root p and children c1 and c2, corresponding to relations A and B respectively, such that
var(p) ⊆ var(c1).

Consider algorithm 13. Here the ComputeDelta procedure as we can see is very similar to
algorithm 8, only with the extension that the aggregated values are added to the parent tuple.

The latter contains in case the aggregation function is average or sum, the value that needs to
be aggregated over, which is part of tuple t2′ where t2′ ∈ ρc2 or t2′ ∈ ∆−c2.

In case where the aggregation function is count or average it contains a count value: t2′.count.
Note that this count value is different from count value t1′.count ∗ t2′.count, for t1′ ∈ ρc1 or
t1′ ∈ ∆−c1. Also the use of these values are different as t1′.count∗t2′.count is used for maintenance,
whereas t2′.count is part of the aggregated value.

Algorithm 13 Aggregation over Join node

1: function ComputeDelta(c)
2: if var(n) ⊆ var(c) then
3: for each t1 ∈ ∆c do
4: for each t2 ∈ ρm ⋉ t1 do
5: ∆n+ = πvar(n)(t1), t1.count ∗ t2.count, [t2.aggregation values]
6: else
7: for each t1 ∈ ∆c do
8: for each t2 ∈ ρm ⋉ t1 do
9: ∆n+ = πvar(n)(t2), t1.count ∗ t2.count, [t1.aggregation values]

Secondly we consider the enumeration algorithm. Whereas ComputeDelta is (in general) the
ComputeDelta for the join node, the enumeration functions are those of the aggregation node,
which we showed in algorithms 11 and 12.

As these algorithms are identical to the ones of the Join-aggregation node, there is no reason
to discuss them again. However, since the enumeration procedure is that of the aggregation node,
we still would like to explicitly notify the reader that therefore the enumeration functions of the
join-aggregation node, opposed to those of the join node (that are not in the frontier), do not
make enumeration function calls on children. Thus also each join-aggregation node is in F .

Example

Figure 5.4 shows a join-aggregation node A with children B and C. For each node the delta
relations are shown, if these are not empty and the result of enumerating the tree is shown.

First we consider algorithm 13 and how it constructs ∆A. As we denoted earlier, ComputeDelta
for a join-aggregation node is very much like that of a regular join node. The difference is that the
former precisely denotes that the tuple variables that, once a tuple tB ∈ ρB or tB ∈ ∆B is joined
with a tuple tC ∈ ρC or tC ∈ ∆C , that the tuple that is added to ∆A takes the non-aggregated
tuple values from tB and the aggregated values from tC .

Then we consider what tuples should be added and removed to and from PA.
First observe that a tuple with team value Con1 and week value 13 is added to ρB . However,

as this tuple is not compatible with any tuple in ρC , no tuple with these values is added to ∆A.
From ρB a tuple with team value Dev1 and week value 12 is removed. As it was compatible

with tuples in ρ′c a tuple needs to be removed with this team and week value.
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Thirdly we have that a tuple is added to ρC with team value Dev1 and week value 11. This is
compatible with two tuples in ρB . The first tuple is t1 with week value 11. ρ′c ⋉ t1 = ∅, thus for
t1 only a value needs to be added to PA with the same team and week value. The second tuple is
t2 with week value 12. As t2 is removed from ρA only a tuple needs to be removed from PA.

Finally a tuple with team value Con2 and week value 12 was updated in ρC . As the only
compatible tuple in ρB has also values Con2 and 12, the tuple in PA with these values needs to
be updated as well.

Now we verify that via the regular aggregation node enumeration procedures, as seen in algorithm
12, indeed the correct tuples are added and removed.

First it should be intuitive how PA is constructed from ρA. For the delta enumeration proced-
ures consider the tuples in ∆A.

Tuples [Dev1, 11] and [Con2, 12] have compatible tuples in ρA, thus EnumAdded will return
tuples with these tuple values, together with the Σ value as Hours value.

For tuples [Dev1, 12] and [Con2, 12] we have that the count value in EnumRemoved does not
equal 0. Therefore EnumRemoved will return tuples with these tuple values, together with the Σ
value in ρA (if there is a compatible tuple in ρA), minus the Σ value in ∆A.

Figure 5.4: A join-sum node and its enumeration results.
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5.3.5 Selection node

A selection node n always has one child c, for which we have that var(n) = var(c), ρn ⊆ ρc and
Pn ⊆ Pc. More specifically, n is such that ρn = σθ(c).

This node is used when a query contains a subquery σθ(R), where θ is a selection predicate
and R is an atomic relation, such that Pc = R. Note that when R is not an atomic relation but a
join of multiple relations the subquery will be simplified as described in section 4.8.1.

For this reason we were able to adapt the selection node such that it never is necessary to
enumerate c, or its descendants. Therefore the ComputeDelta function, as we soon will see, is
adapted such that the algorithm only needs to enumerate n, if n ∈ N . Thus we have n ∈ N ⇒
n ∈ F .

Moreover, as we have that c corresponds to a atomic relation, c is always a leaf, thus its tuples
have a multiplicity # of 1. Therefore the enumeration function does not differ from the simple
frontier enumeration algorithm described by lines 6 and 7 of algorithm 2. To be precise the regular
and delta enumeration algorithm for the selection node are given by algorithm 15.

After considering the ComputeDelta function as described by algorithm 14, together with al-
gorithms 7 it should be intuitive that indeed πθ(Pc) ⋉ tp, πθ(P∆+

c
) ⋉ tp and πθ(P∆−

c
) ⋉ tp are

returned by n.Enum(tp), n.EnumAdded(tp) and n.EnumRemoved(tp) respectively.

Algorithm 14 Update selection node

function ComputeDelta(c)
θ ← predicate of edge (c, n)
for each t ∈ ∆c do

if θ holds for t then
∆n+ = πvar(n)(t)

Algorithm 15 Enumerate selection node

function Enum(tp)
for each t ∈ ρn do

yield t

function EnumAdded(tp)
for each t ∈ ∆+

n do
yield t

function EnumRemoved(tp)
for each t ∈ ∆−n do

yield t

Example

Consider figure 5.5. It shows a selection node, together with ρ, delta and enumeration output
relations.

The fact that a selection node is always in F , and moreover that B is a leaf, which is the case for
the child of any selection node, makes that Enum, EnumAdded and EnumRemoved only have to
iterate over ρn, ∆

+
n and ∆−n respectively.

These functions do not even have to consider the selection predicate as the ComputeDelta
function will only add tuples to the selection node for which the predicate holds. In the example
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we therefore see that, although relation ∆−B is not empty, ∆−A ı́s empty, as for the tuple in ∆−B the
selection predicate does not hold and therefore did not affect ρ′A nor affects ρA.

Figure 5.5: A selection node and its enumeration results.

5.3.6 Union node

A union node n ∈ T always has children c1 and c2, such that var(Pn) = var(Pc1) = var(Pc2)
(where the variables are either exactly the same or compared in a predicate with the equal oper-
ator). Also n is such that ρn = ρc1 ∪ ρc2, which also implies that var(n) = var(c1) = var(c2).
These properties limit the number of types that c1 or c2 may be. Namely, for any child c ∈ {c1, c2},
we have that = var(n) = var(c) = var(Pn) = var(Pc).

If this would not be the case then there would be a variable x ∈ var(Pn), x /∈ var(c), (as
var(n) ⊆ var(Pn)). But then as x ∈ var(Pc), x ∈ var(dc), where dc is some descendant of c. Thus
we would have that x ∈ var(n) ∧ x /∈ var(c) ∧ x ∈ var(dc), which contradicts the rule that if a
variable q in var(n1) and var(n2), for nodes n1 and n2, then for each node ni on path (n1, n2)
we have that x ∈ var(ni).

Because var(Pn) = var(n), n ∈ F (if n ∈ N) will always hold and the enumeration functions
for the union node will always be the frontier enumeration functions as described by algorithm 7.

This node type is used when a query contains a subquery R1 ∪ R2 for relations R1 and R2,
such that Pc1 = R1 and Pc2 = R2. We assume that R1 ∩ R2 = ∅, as this is the case for the
submodels in AC for which corresponding queries contain union operators.

Then algorithm 16 describes the ComputeDelta function for the union node. It should be in-
tuitive from this algorithm, together with enumeration algorithm 7, we have that:

n.Enum(tp) should return (R1 ∪R2)⋉ tp = (Pc1 ∪ Pc2)⋉ tp, which it does.

n.EnumAdded(tp) should return:
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((R1 ∪R2) − (R1′ ∪R2′))⋉ tp
= ((R1−R1′) ∪ (R2−R2′))⋉ tp ▷ R1 ∩R2 = ∅ ∧R1′ ∩R2′ = ∅
= (P∆+

c1
∪ P∆+

c2
)⋉ tp,

and it does.

Thirdly, similar to the previous argument we have that n.EnumRemoved(tp) should return (P∆−
c1
∪

P∆−
c2
)⋉ tp, and it does.

Algorithm 16 ComputeDelta for a union node

1: function ComputeDelta(c)
2: for each t ∈ ∆c do
3: ∆n+ = t

Example

Consider figure 5.6, which shows a union node A and children B and C, with ρ, delta and output
relations. Observe that n ∈ F and moreover, that any relation has the same set of variables, as is
always the case for ρ, delta and output relations corresponding to a union node and its children.

Then for any tuple in the delta relations of B and C, we see that they are simply propagated
to ∆A by algorithm 16 and to P∆A

by algorithm 7 as we would expect.

5.3.7 Anti-join node

The anti-join node corresponds with a subquery A▷θ B for relations A and B, where t ∈ A▷θ B
⇒ t ∈ A and t is not compatible with any tuple in B, thus t ∈ A▷θ B =⇒ t ∈ A ∧B ⋉θ t = ∅.

However we do not consider A▷θ B for any A and B. Namely we only consider A and B such
that var(A) ⊆ var(B) and ▷θ = ▷, hence it is the natural anti-join. Moreover both A and B have
to be atomic relations. These assumptions allow the algorithm to focus on the case where each
tuple in B is compatible with one tuple in A, which allows the update and enumeration functions
to be a bit more straightforward. Naturally we were able to make this decision for only allowing
this subset of anti-join cases, because the submodels that make use of the anti-join operator only
need this natural anti-join.

We are convinced that it is possible to extend the following enumeration and update procedures
such that they are able to work for any anti-join query, however giving such algorithms is beyond
the scope of this project.

Now we look at some properties of an anti-join node. An anti-join node n has two children
c1 and c2, such that Pc1 = A and Pc2 = B. Since we consider the natural anti-join we have
that var(n) = var(c1) and var(n) ⊆ var(c2). Then, since A is an atomic relation we have that
var(c1) = var(Pc1), which implies that var(n) = var(Pn) and Pn = ρn. Therefore the enumeration
procedure only needs to return ρn, thus n ∈ F .

Also, since A and B are atomic relations, we have ρc1 = Pc1 and ρc2 = Pc2.

Alternatively, an idea was to design the update and enumeration functions such that ρn = ρc1∪ρc2.
Then the idea was to compute Pc1 ▷ Pc2 on the fly during the enumeration procedures, however
this would mean that Enum does not enumerate Pn with constant delay.

The current anti-join enumeration and update procedures differ from the previous procedures
in two ways:

1. Instead of three different versions of the enumeration function there are three different ver-
sions of the ComputeDelta function. The first function version corresponds to running the
update procedure for the first time and is simply called ComputeDelta. Then there are two
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Figure 5.6: A union node and its enumeration results.
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functions ComputeDeltaP lus and ComputeDeltaMinus corresponding to adding tuples to
∆+

n and ∆−n respectively, for an update u. For the ComputeDelta procedures of other node
type, the procedure for adding tuples to ∆+

n and ∆−n did differ, but not as significantly as
ComputeDeltaPlus does differ with ComputeDeltaMinus.

2. There are still 3 different enumeration procedures, however as you can observe in algorithm
17, they differ in the same way that the regular ComputeDelta procedures differ when adding
tuples to either ∆+

n or ∆−n ; namely they iterate over a different set of tuples and return a
different set of tuples.

Two summarize these 2 alterations, we think it accurate to say that the update and enumeration
procedures in some way have switched places. However we think this was necessary, since we did
not find an alternative solution, to ensure that the constant delay property of the regular Enum
function was upholded.

Another thing to observe is that since EnumAdded and EnumRemoved (∆+
n − ∆−n ) ⋉ tparent

and (∆−n −∆+
n )⋉ tparent, respectively, comparable as the aggregation and join-aggregation node

iterates over (∆−n ∪∆+
n )⋉ tparent for the enumeration functions.

Then these cases are similar since also for the anti-join node it holds that between the update
procedure of T and enumerating over n, ∆n needs a preprocessing step in which ∆+

n − ∆−n and
∆−n − ∆+

n are calculated. This can be done in O(|∆+
n | + |∆−n |) time when using a hash-based

solution.

It is necessary to iterate over ∆+
n − ∆−n and ∆−n − ∆+

n , rather than simply ∆+
n and ∆−n re-

spectively. This is because for one node among c1 and c2, it holds that it will call ComputeDelta
on n, before the other node could apply its own update on itself.

Thus as a consequence say that for example a tuple t may be added to ρc1, for which a
compatible tuple is added to ρc2. However as c2 may not have been updated yet, t then may be
added to ∆+

n but t should not be in P∆+
n
. By computing ∆+

n −∆−n and iterating over this relation
in the enumeration procedures, this is ensured.

Algorithm 17 Adding tuples to ∆−output

1: function Enum(tp)
2: for each t ∈ ρn ⋉ tp do
3: yield t

4:

5: function EnumAdded(tp)
6: for each t ∈ (∆+

n −∆−n )⋉ tp do
7: yield t

8:

9: function EnumRemoved(tp)
10: for each t ∈ (∆−n −∆+

n )⋉ tp do
11: yield t

Now we will discuss the ComputeDelta procedures when computing the initial T-reduct, adding
tuples to an existing reduct and removing tuple from a reduct. As always an intuition will be given
why the algorithm is correct. However as this algorithm we thought to be the most tricky of all,
we decided to prove the correctness of this algorithm. This proof can be found in the appendix.

The proof shows both that all tuples that are added via the algorithm should be added, and
tuples that should be added are also added, by mainly considering the ComputeDelta functions,
but also the enumerate functions. Then also observe that for any algorithm we need to consider
the cases where c1 is updated before c2 and vice versa.
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The following algorithm descriptions will sometimes consider multiple of these update-order
cases such that the reader may develop an understanding for the consequences of the order of
updating c1 and c2.

ComputeDelta

First we consider algorithm ComputeDelta which does an initial computation of ∆+
p and ∆−p ,

hence ρp = ∅ when running this algorithm. its description can be found in algorithm 18.

Considering the Enum function from algorithm 17, which is the function that will be executed to
initially materialize Pp. Observe that this function iterates over all t ∈ ρn, where n = p. ρp will
contain all tuples in ∆+

p - ∆−p . Thus we must have that ∆+
p - ∆−p = Pc1 − Pc2. Now observe that

as ρc1 = Pc1 and ρc2 = Pc2, we have that all tuples in t ∈ (ρc1 − ρc2) =⇒ t ∈ (∆+
p −∆−p ). This

implication also holds the other way around, however this sub-proof can be found in the complete
proof in the appendix.

As we know, ComputeDelta(n) will be executed for both n = c1 and n = c2. However which
of c1 and c2 comes first is arbitrary, which means that the algorithm must work for both cases.

If c1 is updated before c2, what will happen is that all tuples in ρc1 are added to ∆+
p and all

tuples in ρc2 that are compatible with a tuple in ρc1 are added to ∆−p .
If c2 is updated before c1, what will happen is that first the update will be applied on ρc2.

Then when executing ComputeDelta with n = c1 only those tuples that are not compatible with
a tuple in ρc2 will be added to ∆+

p .

Thus indeed in both cases we have that t ∈ (ρc1 − ρc2) =⇒ t ∈ (∆+
p −∆−p ).

Algorithm 18 Update anti-join node initially

1: function ComputeDelta(n)
2: if n = c1 then
3: for each t1 ∈ ρc1 do
4: if ρc2 ⋉ t1 = ∅ then
5: ∆+

p + = t1

6: else
7: for each t2 ∈ ρc2 do
8: t1← ρc1 ⋉ t2
9: if t1 ̸= NIL then

10: ∆−p + = t1

ComputeDeltaPlus

Secondly, we consider the algorithm for adding tuples to ∆+
p . This is shown by algorithm 19.

For case n = c1, all tuples are added which were added to ρc1 and are not compatible with a
tuple in ρc2.

For case n = c2, the algorithm iterates over all tuples that were removed from ρc2 and looks
for an compatible tuple t1 in ρc1. t1 surely was not in the anti-join before and therefore also not
in ρp. But as t2 was removed, now t1 may be in the anti-join and therefore would have to be
added to ∆+

p . Therefore it looks whether t1 still has compatible tuples in ρc2 or not.
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Algorithm 19 Adding tuples to ∆+
p , for anti-join node p

1: function ComputeDeltaPlus(n)
2: if n = c1 then
3: for each t ∈ ∆+

c1 do
4: if t /∈ ∆−c1 ∧ ρc2 ⋉ t = ∅ then
5: ∆+

p + = t

6: else
7: for each t2 ∈ ∆−c2 do
8: t1← ρc1 ⋉ t2
9: if t2 /∈ ∆+

c2 ∧ t1 ̸= NIL ∧ ρc2 ⋉ t1 = ∅ then
10: ∆+

p + = t1

ComputeDeltaMinus

Finally, we consider the algorithm for adding tuples to ∆−p , as described by algorithm 20.

For case n = c1, the function iterates over all tuples t1 that are removed from ρc1. Then, if
t1 is not compatible with a tuple in ρc2, in most cases t1 was in the anti-join set and therefore in
ρp and has to be removed and therefore added to ∆−p .

This will at least hold if c1 was updated before c2, because then c2 at this moment still reflects
whether, before update u was added, t1 was compatible with a tuple in ρc2.

If c2 was updated before c1, it might be the case that a tuple t2 was removed from ρc2, such
that t1 was compatible with t2. However in that case, by algorithm 19, t1 was also added to ∆+

p ,
and since EnumRemoved only iterates over ∆−p −∆+

p , t1 will not be found.

For case n = c2. The algorithm goes over the tuples t2 that were added to ρc2 and searches
for each t2 compatible with a tuple t1 in ρc1. Then it computes the number of tuples that t1 was
compatible with in ρ′c2: |ρ′c2⋉ t1|, by taking the current count |ρc2⋉ t1| and subtracting |∆c2⋉ t1|.
If this was 0, t1 was not compatible with any tuple in ρ′c2, thus it probably used to be in the
anti-join set, and has to be removed from ρp.

If c1 was updated before c2, t1 might not have been in ρc1, however in that case, since if
t1 is added to ∆−p , |ρ′c2 ⋉ t1| = 0, thus by algorithm 19, t1 was also added to ∆+

p . Again as
EnumRemoved only iterates over ∆−p −∆+

p , t1 will not be found.

58 Incremental view maintenance for Assemble by Anago



CHAPTER 5. EXTENDING DYNAMIC YANNAKAKIS

Algorithm 20 Adding tuples to ∆−p , for anti-join node p

1: function ComputeDeltaMinus(n)
2: if n = c1 then
3: for each t1 ∈ ∆−c1 do
4: if t1 /∈ ∆+

c1 ∧ ρc2 ⋉ t1 = ∅ then
5: ∆−p + = t1

6: else
7: for each t2 ∈ ∆+

c2 do
8: t1← ρc1 ⋉ t2
9: if t2 /∈ ∆−c2 ∧ t1 ̸= NIL then

10: count← 0
11: for each t2′ ∈ ρc2 ⋉ t1 do
12: count+ = t2′.count

13: for each t2′ ∈ ∆+
c2 ⋉ t1 do

14: count− = t2′.count

15: for each t2′ ∈ ∆−c2 ⋉ t1 do
16: count+ = t2′.count

17: if count == 0 then
18: ∆−p + = t1

Example

Consider figure 5.7. It shows an anti-join node A with children B and C, together with their ρ
and delta relations and output relations of A.As should be the case for an anti-join node, PA =
ρA = ρB ▷B.Week=C.Week∧B.Team=C.Team ρC .

It should clear how PA, P∆+
A
and P∆+

A
are computed by algorithm 17.

Regarding the ComputeDelta functions in algorithms 19 and 20, consider the tuples in the delta
relations of A and B.

First, tuple [Dev1,W11.2022] ∈ ∆+
B is not propagated to ∆+A as it is compatible with a tuple

in ρC .
Secondly, tuple [Dev3,W12.2022] ∈ ∆+

B is compatible with tuple [Dev3,W12.2022, 8] ∈ ρC .
Observe that [Dev3,W12.2022, 8] ∈ ∆+

C . Therefore, if ρB was updated before ρC , [Dev3,W12.2022]
was added to ∆+

A. However if this was the case we have that [Dev3,W12.2022] also was added
to ∆−A. Otherwise [Dev3,W12.2022] was added to neither ∆+

A or ∆−A. Observe that regardless,
[Dev3,W12.2022] /∈ ∆+

A − ∆−A and [Dev3,W12.2022] /∈ ∆−A − ∆+
A. This is what should be the

case as [Dev3,W12.2022] should neither be removed from P ′A, as [Dev3,W12.2022] /∈ P ′A, and
[Dev3,W12.2022] should not be in PA as [Dev3,W12.2022] /∈ ρB − ρC .

Thirdly, tuple [Dev3,W11.2022] ∈ ∆−B is added to ∆−A as it was or is not compatible with any
tuple in ρ′C or ρC respectively, and therefore used to be in ρB ▷ ρC .

Then, tuple [Dev2,W12.2022, 22] ∈ ∆+
C is or was not compatible with any tuple in ρB or ρ′B

respectively, thus no compatible tuple is added to ∆+
A.

∆+
C also contains tuple [Con2,W11.2022, 36]. This tuple is compatible with [Con2,W11.2022],

which did not use to be compatible with any tuple in ρ′C , thus [Con2,W11.2022] is added to ∆−A.
Finally tuple [Con2,W12.2022, 10] ∈ ∆−C is compatible with tuple [Con2,W12.2022], which is

not compatible with any tuple in ρC . Thus [Con2,W12.2022] is added to ∆+
A.
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Figure 5.7: An anti-join node and its enumeration results.

5.4 Conversion procedure of queries to GJTs

As depicted by figure 5.8, the procedure of converting an Assemble sub-model to one or more
T-reducts consists of three sub-procedures. First the sub-model needs to be converted to a query
in the relational algebra format, secondly such a query needs to be converted to a GJT and finally
the GJT is extended to a T-reduct.

For the first sub-procedure there is no algorithm known yet, however the method that we used
for converting the AHA model is described in section 3.3. Finding such an algorithm we consider
future work.

The algorithm for the third procedure on the other hand is given by the paper and did not
need any alterations from an algorithmic point of view.

Finally, the second sub-procedure, thus converting a query to a T-reduct is rather trivial as the
GJT follows the queries operators very closely. To show this we compare an example of a query
and it’s GJT counterpart.

The query shown is the second query of section 3.3.2, namely using a relation DC001, it
computes the net availability of an employee per week, which then will be stored DC001 as well.

Figure 5.8: Sub-model to T-reduct/T-reductions
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The query then is:

DC0012 ← DC0011∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

(ρa(σfact=grossavail.(DC0011)) ▷◁a.employee=b.employee∧a.week=b.week

ρb(σfact=holiday(DC0011)) ▷◁b.employee=c.employee∧b.week=c.week

ρc(σeducation(DC0011))×
ρd(Factnet))

The GJT that describes this query is shown in figure 5.9, together with two extra nodes that are
not part of the GJT itself, but describe operations that need to be performed to derive the output
relation. The first of these operations is the projection step. The second operation is unifying the
enumerated result with the instance of DC001 without the net availability tuples.

The reason why these nodes are not part of the GJT is that those nodes will not be augmented
with relations ρ and ∆. Therefore they are thus also not considered in the update procedure and
will not be called upon by the enumerating procedure, at least not until the very end. Here they
will follow a fixed procedure as these operations always need to be performed at the end, although
sometimes the output relation already is the complete output relation for the model and thus does
not need to be unified with another relation.

However note that the GJT may contain union nodes as we saw in section 5.3.6. As we know
such a node ı́s updated and enumerated.

Observe that the properties for the GJT T can be generated from the query Q itself.

� Each n ∈ T corresponds to a query operator in Q.

� Each leaf node l ∈ T corresponds to an input relation in Q. var(l) corresponds to the
dimensions of the input relation, where the variables have the name of the value name
together with an alias if the relation has an alias in Q.

� Each selection node sn ∈ T and it’s child c share an edge showing an predicate that is the
same as a selection predicate in Q.

� Each join node jn ∈ T has children c1 and c2 and shows a join predicate θ at edge (jn, c2)
that corresponds to a join predicate in Q. The variables of jn are then var(c1) ∩ var(θ).

� The frontier is decided exactly in the way described by the paper. Namely from the frontier
we also know N , which is such that var(N) = out(Q), where out(Q) is the set with the
projected variables of Q. However for certain node-operator types we have that they always
are in the frontier, if they are part of N . These are the select, aggregate and join-aggregate
nodes.

Cyclic queries

It may occur that a sub-model requires multiple T-reductions such that the sub-model’s output
relation can be computed by DYN. We know this is the case if a query is cyclic, for which AC has
one example, namely sub-model 8 which computes the moving total.

This model computes query:

DC001a(fact, team, a.week.w, a.week.y, a.hours) ▷◁DC001b(fact, team, b.week.w, b.week.y, b.hours)
▷◁ Yearlengths(b.week.y, b.length),

for which we can describe the join predicates as superset:
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Figure 5.9: GJT for computing the net availability

62 Incremental view maintenance for Assemble by Anago



CHAPTER 5. EXTENDING DYNAMIC YANNAKAKIS

θ = {{a.fact, b.fact},{a.team, b.team},{a.week.y, b.week.y}, {a.week.w, b.week.w}, {a.week.w,
b.length, b.week.w}, {b.week.y, year}}.

θ consists of variable sets, where for each comparison there is a variable set with the variables in
that comparison.

Then the predicate with variables {a.week.w, b.length, b.week.w} contains a variable from each
input relation, such that we cannot have a GJT such that for each inner node p it has a child c
for which var(p) ⊆ var(c) ánd that if a variable v is in two nodes n1 and n2, then there is a path
from n1 to n2 where each node on this path contains v.

Therefore for this sub-model there are two general join trees, corresponding to two queries, as
we see at section 3.3.2, query 8.

5.5 Evaluation

We now will evaluate the introduced algorithms and the implementation of these and the general
IVM procedure for AC. First we consider the general time complexity for delta enumeration, we
then consider efficiency of applying updates to relations, we look at whether our algorithms and
implemention is feasible for the current state of Assemble and finally we draw conclusions, where
we answer research sub-questions 2 and 3.

5.5.1 Delta enumeration time complexity

For the regular enumeration procedure we know that we iterate the output set with constant delay.
For the delta enumeration procedure this will not be the case as tuples in a delta enumeration
function will only conditionally be yielded, meaning that the time between yielded tuples may
vary. However we may still have that the running time is linear in the size of ∆rootT . Therefore
we will examine the running time of the delta enumration procedure to see whether this is the case.

First we look at the individual n.EnumDelta(tp) call, for a node n ∈ T , made by the enumer-
ation procedure. Each such call starts with an iteration over t ∈ Xn ⋉ tp for some set Xn. Then
let k be the biggest |Xn⋉tp| for any combination of Xn and tp that will be encountered during the
delta enumeration procedure, apart from the one called in the root, as we know there that, as tp is
NIL, |Xn ⋉ tp| = |Xn|. Let x be the amount of tuples iterated over for for a call n.EnumDelta(tp)
Let δ(n) be the depth of a node n, with δ(rootT ) = 0 and d be maxn∈N (δ(n)).

Consider the following cases for an arbitrary node n:

1. n is in the frontier. Then we need to consider the aggregate, anti-join and frontier enumera-
tion procedures. Such a call n.EnumDelta(tp) iterates over O(k) tuples. For each such tuple
there will be an operation in constant time, thus the running time for both EnumAdded and
EnumRemoved is T [n, tp] = x.

2. If n is a union node, the running time for both EnumAdded and EnumRemoved is: T [n, tp]
= x * (T [c1, tp] + T [c2, tp]).

3. Also, n may be a join node. For EnumAdded the running time is T [n, tp] = x * ((T [c1, tp]
+ |P∆+

c1
⋉ tp| * T (c2.Enum(tp))) + (T [c2, tp] + |P∆+

c2
⋉ tp| * T (c1.Enum(tp)))).

4. Finally n may be a join node. Then for EnumRemoved the running time is T [n, tp] = x * (
(T [c1, tp] + T [c2, tp] + |P∆−

c1
⋉ tp| * |P∆+

c2
⋉ tp|)

+ (T [c1, tp] + T [c2, tp] + |P∆+
c1
⋉ tp| * |P∆−

c2
⋉ tp|)

+ (T [c1, tp] + T [c2, tp] + |P∆−
c1
⋉ tp| * |P∆−

c2
⋉ tp|)

+ (T [c1, tp] + |P∆−
c1
⋉ tp| * T (c2.Enum(tp)))
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+ (T [c2, tp] + |P∆−
c2
⋉ tp| * T (c1.Enum(tp))) )

≤ O(x * 5 * (T [c1, tp] + T [c2, tp] + |P∆
+|−
c1

⋉ tp| * |P∆
+|−
c2

⋉ tp|))

Observe that for a n ∈ F the running time is upperbounded by case 1. For a node in N \ F this
upperbound is case 4. Now we should find out the number of calls made at an arbitrary depth.

In the root we make two calls: rootT .EnumAdded(NIL) and rootT .EnumRemoved(NIL).
Then each such call makes (as upperbound) O(10 * |∆rootT |) calls, where each such call in turn
makes O(10 * k) calls. Thus on depth l, l > 0, there are O(10 * |∆rootT | * (10 * k)l−1) calls made
in total.

Then for a tuple in ∆rootT we make O(10 * (10 * k)d−1) ≤ O((10 * k)d) calls, and in general
a call by a node on depth l makes ≤ O((10 * k)d−l) calls in the leaf nodes. This means that
|P

∆
+|−
c

⋉ tp| ≤ O(# of leaf calls from T [c, tp]) = O((10 * k)d−l). Thus |P
∆

+|−
c1

⋉ tp| * |P∆
+|−
c2

⋉ tp|
= O(((10 * k)d−l )2) ≤ O(((10 * k)d)2) = O((10 * k)2d). Hence it follows that each node in N \F
has a cost of O((10 * k)2d).

Thus the running time for a tuple in ∆rootT is:
# of inner call nodes * cost + # of leaf call nodes * cost

≤ (
∑

0≤l≤d−1(O((10 * k)l)) * O((10 * k)2d)) + (O((10 * k)d) * O(1))
≤

∑
0≤l≤d(O((10 * k)l)) * O((10 * k)2d)

= O( (10∗k)
d+1−1

10∗k−1 ) * O((10 * k)2d)

≤ O((10 ∗ k)d+1) * O((10 * k)2d)
= O((10 ∗ k)3d+1)

Now examine this upperbound for one tuple ∆rootT : O((10 ∗ k)3d+1). We have that d in AC
is upperbounded by constant 3. Then if k is also upperbounded by some constant, we should have
that the total running time is |∆rootT | * O((10 ∗ k)3d+1) = |∆rootT | * O(1)O(1) = |∆rootT | * O(1)
= O(|∆rootT |).

Concluding, assuming k is a constant, we have that the running time T [∆rootT , NIL] is linear
in the size of ∆rootT , thus T [∆rootT , NIL] = ∆rootT * c, for some constant c. This will be verified
by experiments.

5.5.2 Inefficiency of applying updates

Our implementation suffers a major inefficiency in respect to applying updates to the ρ relations in
the T-reductions. This apply-update step can be found in algorithm 3 at line 7. This inefficiency
comes from the fact that index In′ , for some relation n′ ∈ {ρn,∆+

n ,∆
−
n }, is designed such that semi-

joins for tuples belonging to the parent node or sibling node of n, can be performed in constant,
or logarithmic time. This is achieved by having that var(In′) = var(p), where var(p) ⊆ var(n).
Then, both adding and removing a tuple t to some ρn, involves searching some tuple t′ ∈ ρn,
t = t′. For adding t we then replace t′ by a tuple with the same values, but count: t.count +
t′.count. Or if t′ does not exist we simply add t. For removing t we subtract t.count from t′.count
and remove t′ if the count is smaller than 1.

Then this search operation must be achieved by using Iρn
, which thus has variables var(p),

such that for each t to be added or removed, we need to iterate through a relation ρ′n ⊆ ρn,
t′ ∈ ρ′n ⇐⇒ πvar(p)(t) = πvar(p)(t

′). Theoretically |ρ′n| = O|ρn|. The biggest size occuring in an
AC T-reduct is the amount of dimension values for dimensions fact, team and week multiplied =
4 * 12 * 52 = 2496, which is in the T-reduct for joining datasets R(fact, team, week.w, week.y,
hours) with S(week.y, length), and adding and removing tuples to R. This can be found in query
8 at section 3.3.2.

In order to improve the running time we modify each index Is in T , with key set K, relation
S and hash function fK(), ∃t∈S ⇒ ∃k∈K ∧ t ∈ fK(k), to index I2s . I

2
s is a double-layered index,

such that I2s consists of: key set K ′ = K, hash function fK′ , S′ = S, key set K2 and hash function
fK2():
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Figure 5.10: Single layered index to double-layered index

∃t∈S ∧ s ∈ fK(k), k ∈ K ⇐⇒ ∃t′∈S′,k′∈K,k2∈K2, t = t′ ∧ k = k′ ∧ k2 ∈ fK′(k′) ∧ s′ = fK2(k2)

This idea is illustrated by figure 5.10. The downside of this double-layered index is that for
each Xn, Xn ∈ {ρn,∆+

n ,∆
−
n } we add an hashset of size O(|Xn|). However it does allow the

algorithm to perform insertions and deletions in O(1) time.

Search operations do also occur in the enumeration procedure. Namely at the delta enumeration
functions of the aggregation node and the frontier node. These may also be affected by the ineffi-
ciency of the single-layered index. However, the way we implemented the algorithms for the AHA
application, is such that they are not affected. Namely, in our T-reduction, aggregation nodes are
always root nodes. For a root it holds that var(rootT ) = var(IrootT ), as rootT does not have a par-
ent. For the frontier enumeration, we did not implement the algorithm shown by algorithm 7, but
instead for a call f.EnumDelta(tp), for f ∈ F and EnumDelta ∈ {EnumAdded,EnumRemoved}
we simply return ∆+

f ⋉ tp and ∆−f ⋉ tp respectively.

We did not implement this double-layered index, meaning that we were not able to verify these
performance results, however since it theotically seems very possible it should therefore potentially
also be in practice. Since then we have that for applying an update ∆, we can do this in O(|∆|)
time, we can compute the potential performance of Dynamic Yannakakis for a node n by replacing
the time that applying an update ∆n to ρn takes by |∆n|.

However since it has not been implemented we should also consider the inefficient running
time, where we can compare the implemented ’inefficient’ version to the potential running time.

5.6 Storing data in the Oracle database

For now we mainly considered the first two research questions, however the third research ques-
tion: ’Considering the way Assemble is intertwined with the Oracle OLAP DML, would Dynamic
Yannakakis be a practical short-term solution?’, may thus for the foreseeable future, be the most
important one.

The term ’practical’ may be a bit vague, but it is ambiguous on purpose as in our case it has
two definitions. The first definition is that Dynamic Yannakakis can be used on demand, without
having to have done significant preparations. Thus, can Dynamic Yannakakis be used in an effi-
cient manner to update output datasets, where we have datasets stored in Oracle, an update u
and a query representation, thus also a GJT, but not a T-reduct? This would be convenient as all
data structures apart from the T-reduct are already being computed or in the case of a GJT, can
be computed once as it is independent of the data, and therefore does not count as a ’significant
preparation’.
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The answer to this question is no, for Dynamic Yannakakis to compute output changes effi-
ciently, T-reductions need to be maintained such that they are up-to-date.

A second definition of ’practical’ is that the Oracle database is used for storing the data, as
for the foreseeable future this will remain the case. Then what would be the implications? We
therefore should define what the data is that Dynamic Yannakakis needs to store.

We have for each T-reduct T , that for each node n relation ρn is maintained and reused. Thus
these ρ relations need to be stored. Also the output relation for each T needs to be stored, but
this was already the case. Finally observe that as for a node n relation ∆n is made empty for each
update, we do not have to store this relation. Additionally this implies that ∆n relations can be
implemented by means of a set of tuples, as it has been up until this point.

Thus a point of great importance is whether datasets in Oracle are suited to be maintained as
ρ relations by Dynamic Yannakakis. These will then replace the indexed relation data structures
that were used. Also note that since the double-layered indices were only necessary for ρ relations,
this idea would not have to be investigated further. We first look how Oracle datasets can be
accessed and altered by Assemble. As we have seen earlier, such datasets consists of cells. Such a
cell is defined and accessed by a set of dimension values.

Then an important question is whether for a tuple, efficiently semi-join operations can be
performed, which we thus use in the ComputeDelta and the enumeration algorithms. Also we
have to know whether updates can be quickly applied, but as a tuple that needs to be applied
simply contains the dimension values of the cell it targets, this should be no problem.

At first glance this should be no problem, assuming that we do not have only the option to
retrieve certain cells for relation R, but multiple cells, where a search tuple t contains values for
a subset of all dimensions, thus var(t) ⊂ var(R). For example, say we want to find all cells in a
data cube with dimensions Employee, Fact and Week, that join with tuple [employee ’Rik’, week
’W06.2022’]. Then we want to be able to retrieve all cells for Employee ’Rik’ and Week ’W06.2022’
for all Fact values, without having to know these values. For now it seems that if and only if this
is the case, then semi-joins can be computed efficiently using this type of dataset.

Hence, it may very well be the case that these Oracle data cubes are suitable to be used as
ρ relations in Dynamic Yannakakis. The fact that such data structures, which look like multi-
dimensional arrays, were not used in the paper, is that they only make sense if for almost every
combination of dimension values, there is a non-na value. This is very often the case for Assemble
datasets, but certainly not in general for each relation, and the paper is aimed at general relations.

There is also a negative implication for using the approach of storing and retrieving data from the
Oracle server, but it is also simply inherent to this approach. Namely, having to retrieve (parts
of) the ρ relations may be time consuming.

In conclusion, finding out whether these Oracle data cubes are suitable as data structures for
relations will need a lot of theoretical, but also practical implications to be considered. Therefore
it is beyond the scope of this project and further research needs to be performed, such that a true
answer to the third research question can be found. The only definitive answer we can give to this
question for now is that, the current version of Dynamic Yannakakis, where relations are always
sets of tuples, is not a short-term practical solution.

5.7 Conclusion

We may conclude that Dynamic Yannakakis can be extended such that:

1. A T-reduct can be composed of types of nodes, which correspond to certain query operators.
Using such a T-reduct DYN can return the output relation corresponding to the query, by
running the update and enumeration procedures corresponding to these nodes.

2. For all node types we also described delta enumeration procedures, (and in the case of the
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anti-join node multiple ComputeDelta procedures), such that updates to the output set of a
T-reduct can be efficiently returned, where enumeration can be done linearly in the size of
the root delta set.

3. There exists a general procedure for propagating updates through a model, where updates
to output relations of queries - which are input relations of other queries - can be used to
efficiently update these input relations.

Therefore we can answer the question: ’Can we extend Dynamic Yannakakis to facilitate IVM for
Assemble models, without nullifying the benefits of the current Dynamic Yannakakis algorithm?’,
with a resounding yes, in theory this is possible. When doing experiments we will verify whether
our implementation, and a version that would apply updates to relations in linear time, indeed is
efficient.

Secondly, we may answer the question ’Considering the way Assemble is intertwined with the
Oracle OLAP DML, would Dynamic Yannakakis be a practical short-term solution?’. This an-
swer is that the current version, where ρ relations are sets of tuples, is not a practical short-term
solution. However if DYN can be adapted, such that it uses the multi-dimensional arrays from
the Oracle database, then it may be a short-term practical solution. However finding out whether
this is the case we consider future work.
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Experiments

The goal of this chapter is to verify the performance results of the extended version of Dynamic
Yannakakis for the Assemble models, which is done by running experiments on our implementation.
In this way we can answer the question ’Can we extend Dynamic Yannakakis to facilitate IVM for
Assemble models, without nulli-fying the benefits of the current Dynamic Yannakakis algorithm?’.
These experiments consist of three smaller experiments. Each experiment should provide an
answer to one of the following questions:

1. Is the performance of Dynamic Yannakakis independent from the input relation size?

2. How does Dynamic Yannakakis compare to Assemble in terms of efficiency?

3. Does the delta enumeration procedure running time grow linearly with the root delta size?

This chapter is structured in the following way: First we explain our methodology, such that it is
clear what it is that we measure and compare. Secondly we show the results of the experiments,
and discuss them, such that we concludingly may give a definitive answer to the second research
question.

At this point, it may be smart to recall our most prominent use case; namely, someone who uses
an Anago application wants to quickly have output datasets after a small update |u| to an input
dataset I is applied. We assume that such an update is quick, if the amount of used cells is small.
A small update size we consider to be less than 10 cells, however we will look at update sizes up
to 150 cells, such that we also can look at how the number of used cells grows with the update size.

Special attention is paid to when the input relations are of a large size |I|, as in that case,
Assemble’s method of computing the output dataset is not very efficient. This inefficiency stems
froms the fact that the amount of used tuples depends on |I| and not on |u|. Therefore, before
comparing DYN to Assemble and showing that it is more efficient than the current implementation
- at least for a large |I| and small |u| - we want to show that for DYN the opposite is true, thus
that the running time depends on |u| and not on |I|.

6.1 Methodology

We now explain how the experiments where conducted.

6.1.1 Input dataset sizes

For several of the following experiments, we differentiate between input relation sizes. Therefore
we should look at what these sizes depends on.
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Now recall that the AHA application contains datasets that are datacubes with dimensions
such as week, employee, team, fact and value hours. Then when we look at this from a relational
point of view, this means that for each combination of the dimensions there is only one hour value.
The dimensions week, team and fact are upperbounded by constants (52 + 1) * 2 = 106, 8 + 3 +
1 = 12 and 4 + 2 = 6 respectively.

Employee is the only dimension that thus is not bounded by some constant. Therefore we
may let the input dataset size grow by letting the amount of employees grow. Then, during the
experiment we define the input relation size by the amount of employees: n ∈ {10, 100, 1000}.

6.1.2 Update definition

We must specify exactly what is an update u, such that we also know what |u| is. We consider
u from the Assemble point of view; namely u consists of cell updates. Here a cell update means
that some cell c in an Assemble dataset had some old value v′, which is changed to another value
v. It is not possible to remove or add cells to an Assemble dataset directly. It is possible, however
we would have to remove or add a dimension value. This has as consequence that if the dataset
is a data cube dc(a, b, c), when adding or removing a dimension value to or from dimension c, we
add or remove a ∗ b cells respectively.

For convenience sake, during experiments we only use updates to cells, which correspond to
pairs of an addition of a tuple and a deletion of a tuple. However in the T-reduct the relation
between an added and deleted tuple corresponding to an updated cell is not known or used by the
algorithm, thus conceptually it does not make a difference that we do not use singular added or
removed tuples.

6.1.3 Counting

In order to understand how we compare the performance of both Assemble and Dynamic Yan-
nakakis we show how we counted the amount of cells and tuples respectively.

Assemble

For Assemble there is no feasible way to count the amount of used cells during running time.
However we have still been able to extract this amount from Assemble. Although we could not
make Assemble log the explicit count of tuples, we were able to make Assemble log the selection
sizes for each dimension for each dataset that was used in executing a sub-model.

Then each sub-model computes its output dataset by iterating over some datasets, where for
each dataset the sub-model iterates over the selected range-combination for the dimensions of the
dataset. Thus say that the sub-model iterates over dataset D with dimensions var(D) = {a, b,
c} with selection sizes x, y and z respectively, then the sub-model for D will iterate over #ID =
x ∗ y ∗ z cells.

For each sub-model we then needed the knowledge over which datasets it iterates. Lets define this
set of datasets with D. We may in this way compute #SM =

∑
D∈D#ID, for each sub-model.

Then by taking the sum of each #SM we know the total amount of iterated, and therefore used
cells for an Assemble model.

This sum of #SM values only applied to a run with a specific amount of employees. However,
each #ID for submodel S, only depends on D’s selection sizes for each dimension in var(D), which
in our model are independent of the amount of updated cells. Therefore we could easily, without
increasing the input datasets sizes and doing additional model executions. We could simply re-
compute #ID for n ∈ {10, 100, 1000}, by substituting the amount corresponding to dimension
employee with n, if employee∈ var(D).
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6.1.4 Dynamic Yannakakis

Now we take a look at how for DYN the amount of tuples is counted. In general, the idea is to
count each tuple that is accessed. This may be for example in an iteration or in a binary search.
We will in two ways count the amount of accessed tuples for DYN.

The first way is by counting all accessed tuples in the current implementation, this current
implementation we will call DYN, as we did before.

The second way is to count the number of tuples in the more optimal case, where for a T-reduct,
on the ρ relations a double-layered index is implemented and the index on the output relation is
altered, such that updates ∆r on ρr can be applied in O(|∆ρr

|) time, instead of O(|∆r| ∗ |ρR|)
time. Then let this theoretical algorithm be called DYN*.

Although we are convinced DYN* is very feasible, since we were not able to implement and
test it in time, we still have to consider DYN as it is the only implemented version for which we
can verify its correctness and performance.

Now we are going to go over a call T .UpdateTreeAndOutput(u) as described by algorithm 6.
It consists of three procedures for which we need to count the amount of accessed tuples.

Apply Update

During the Update procedure - see line 7 of algorithm 3 - and when updating the output dataset in
lines 5 and 6 of algorithm 6, updates are applied on ρn and O respectively. Adding and removing
tuples is implemented by iterating over each t ∈ ∆+

n or t ∈ ∆−n respectively. Then for each such t
we find a list l of tuples by finding a hash bin in Iρn

, where t serves as a key for the hashtable. As
this list is not ordered (unless there is more than one inequalitiy), it iterates one by one through
l, until t′, for which t = t′ has been found. When we add a tuple the count of t′ is increased and
if no such t′ is found t is simply inserted in l. If the algorithm is removing a tuple it will always
find such t′, will decrease its count and if this count then is 0 t′ is removed from l.

In case of DYN, we count each tuple in ∆n and each tuple in l that is iterated over. For DYN*,
we calculate the apply update performance by using the size of ∆n. Then 2 * |∆n| is indeed the
number of accessed tuples, as we assume that in a double layered index finding a tuple t′ for each
t ∈ ∆n accesses two tuples if such t′ is found and one tuple otherwise.

ComputeDelta

For ComputeDelta DYN and DYN* are counted in the same way. As we know, the precise
n.ComputeDelta(c) function depends on the type of node that n is. However, what each such
function shares is that it iterates over t ∈ ∆c. Then for each such t the count is incremented by
1. Then for each such t the algorithm may iterate over another set: S ⋉ t, for some set S.

First the semijoin time is calculated, however the semijoin is implemented such that for Com-
puteDelta it is always a constant time (or logarithmic time in case of ¿ 1 inequalties) operation,
since S is a relation over the sibling of c. Thus no tuples are counted then. For each tuple that
the algorithm iterates over in a semijoin the count is incremented by 1.

Enumeration

For the enumeration procedure the count values for DYN and DYN* are calculated in a similar
way. Each call n.EnumF(tp) iterates over a set each t ∈ Xn ⋉ tp, tp ∈ {ρn,∆+

n ,∆
−
n ,∆n,∆

+
n −

∆−n ,∆
−
n −∆+

n }. Then for each such t we increment the count by 1. If n is in the frontier, which
may hold for an aggregate, join-aggregate and anti-join node, a tuple may be searched for, and
if it is found it is also accessed and therefore needs to be counted. The semi-join operation for
seaching such a tuple will then always be a constant time operation.

Concluding, we have that DYN is the total number of tuples accesssed during enumeration, the
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ComputeDelta function and applying updates. DYN* is the number of tuples accessed during
enumeration and the ComputeDelta function, together with the sum of all delta relation sizes.

6.2 Results and discussion

6.2.1 Independency from input relation size

What we want to find out is whether the efficiency of Dynamic Yannakakis is independent from
the input relation size. Therefore we look whether the number of used tuples grows more quickly
for bigger input relation sizes.

First we look at the performance of our implementation: DYN. Therefore consider figure 6.1.
The data that underlies the graph displayed in this figure - and other figures in this chapter - can
be found in the appendix. Perhaps when we compare n = 10 to bigger sizes n = 100 and n = 1000,
one may have the suggestion that a smaller input size indicates a significantly smaller number of
accessed tuples. However when we compare n = 100 to n = 1000, we see that a smaller input size
does not indicate less accessed tuples. Hence we may conclude that the efficiency of DYN does
not decrease for a larger (input) relation size, and if it does only up to a certain input relation
size.
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Figure 6.1: Comparing DYN performance per input relation size, for small and big update sizes

Secondly, consider figure 6.2 in which we see the performance of DYN*. Here there is even
less doubt that the number of used tuples does not grow with the total (input) relation size; the
efficiency for n = 100 compared to n = 1000 per |u| now seems totally arbitrary and also the line
for n = 10 is really close to those of n = 100 and n = 1000.
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Figure 6.2: Comparing DYN* performance per input relation size, for small and big update sizes

Therefore we may conclude that, unlike Assemble, the order of used tuples for DYN and DYN*
does not depend on the input relation size up until some n = 1000. Moreover, since we do not
observe any growth from some n upwards, we conclude that the order of used tuples is independent
of n in general.

6.2.2 Comparing Dynamic Yannakakis to Assemble

Now we will look at how the efficiency of DYN and DYN* compares to that of Assemble. As the
efficiency of Assemble does depend on the input relation size, we look again at a small, medium
and large input relation size one by one.

First consider figure 6.3. At this point we are able to point out how enormous the difference
is between DYN and DYN*. The difference comes only from the potential implementation of
more efficient indexing, such that ρ and output relations take much less time to be updated with
delta relations. Thus we now also can conclude that for DYN the current running time is dom-
inated by the time for applying updates, as the enumeration and ComputeDelta procedures, are
exactly the same for DYN and DYN*.

Next to this we may observe that for a small |I|: n = 10, we have that the number of accessed
tuples for DYN grows quickly towards that of Assemble. For a medium sized and large |I|, this
number is significantly smaller however. Thus the only case where Dynamic Yannakakis would be
beaten by Assemble is for a small |I| and if the performance of DYN* does not turn out to be
realistic, however even in that case we have that, since |I| is small and Assemble’s performance
depends on |I|, Assemble’s method suffices.
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Figure 6.3: Comparing Assemble, DYN and DYN*, for |u| < 10

As the performances of DYN and DYN* do not depend on |I|, it is not really the question
whether less tuples are accessed, but how many compared to Assemble, and how quickly this
number grows towards that of Assemble. Therefore, for update sizes |u| > 10, we look at the ratio
for both DYN and DYN* to Assemble, for small, large and big |I|.

Consider figure 6.4. For each increase in the order of |I|, we see an increase in the order of
difference in efficiency between Dynamic Yannakakis and Assemble.

First, for n = 10, as DYN already was not more efficient than Assemble for a small |u|, we
will only consider the ratio for DYN*. We see that here around a |u| of 60 that DYN* becomes
as efficient as Assemble.

Secondly, for n = 100, we see that DYN surpasses Assemble in the number of used tuples
around |u| = 30. DYN* however does remain well below the number of used tuples in Assemble.

Finally, for n = 1000, at |u| = 150 DYN uses less than half of the number of tuples compared
to Assemble. At that point the number of accessed tuples in DYN* does not even come close to
a tenth of the accessed cells in Assemble.

These results should not be surprising. Namely, as the number of used tuples for DYN and
DYN* barely grows for an increasing n, whereas for Assemble this grows linearly with n, this
complies with the factor 10 of difference in ratio between n = 100 and n = 1000, as this factor
indeed is 1000 / 100.
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Figure 6.4: Comparing Assemble, DYN and DYN*, for |u| > 10
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6.2.3 Enumeration

Another thing that we want to verify is whether indeed the running time of the delta enumeration
procedure grows linearly with ∆rootT . Therefore for each |u|, we take the sum of |∆rootT | for all
trees T . Let this sum be ∆R. Then additionally we consider the sum of all counted tuples during
the enumeration procedures E =

∑
T [T.Enum].

Then if E grows linearly with ∆R we have that E = O(∆R) and there is some constant c for
which E = O(c) * ∆R ⇒ E

∆R
= O(c).

Consider figure 6.5, it shows two graphs E
∆R

. The left one shows this ratio for 0 < |u| ≤ 150, and

n ∈ {10, 100, 1000}. We see that E
∆R

grows towards some c ≈ 9.6.
However as both T.Enum and ∆R do not directly depend on n, all these lines are roughly the

same. Therefore in the right graph we look at only n = 10, for 30 ≤ |u| ≤ 600. Then we are able
to indeed verify that E

∆R
grows towards some constant c, which in this case is thus approximately

9.6.
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Figure 6.5: Ratio enumeration performance to input relation size per update size
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Chapter 7

Conclusion

Our conclusion will be three-fold. First we will summarize the answers to the sub-research ques-
tions in order to finally answer the question What does the Dynamic Yannakakis algorithm offer
in terms of realizing IVM for Assemble models?. Secondly we give recommendations to Anago,
whether they should pursue Dynamic Yannakakis in order to find a method IVM or whether they
should find their luck elsewhere. Thirdly we will state the contributions we made to the database
research field in general.

7.1 Answering our research question

The state of Dynamic Yannakakis as given by the paper offers an algorithm such that the result
of a query Q can be materialized and maintained efficiently.

Then the second sub-question, namely: ’Can we extend Dynamic Yannakakis to facilitate IVM for
Assemble models, without nullifying the benefits of the current Dynamic Yannakakis algorithm?’
we can answer with: yes we have extended Dynamic Yannakakis such that also a query Q contain-
ing aggregation, a combination of a join and aggregation, union, selection and anti-join operators
can be materialized and also efficiently maintained using delta enumeration procedures. Then
as the sub-models that we saw are convertable to one or more queries, which have as result the
same relation as the sub-model this extended Dynamic Yannakakis algorithm facilitates IVM for
Assemble models.

This is also verified by the results of experiments we conducted, which state that the delta
enumeration procedure is efficient. Also the total update propagation procedure is efficient, which
is the case because the number of tuples used only depends on the update size, rather than the total
input relation size. Then still huge improvements can potentially be made when using a double-
layered index, but for large dataset sizes and small update sizes, the current implementation - thus
using only single-layered indices - is already more efficient than an equivalent Assemble model.

However this we may only conclude if we assume that a T-reduct consists of nodes that are
augmented with relations ρ that are in the relation format and thus are sets of tuples.

We also want to answer the question: ’Considering the way Assemble is intertwined with the Oracle
OLAP DML, would Dynamic Yannakakis be a practical short-term solution?’. Then as Assemble
datasets are stored in Oracle databases, we have that for Dynamic Yannakakis to be a practical
solution, it is not the case that relations ρ are sets of tuples, but rather multi-dimensional arrays.
Additional to the challenges this produces for the described algorithms (especially the semi-join
operations), these datasets also need to be stored and retrieved from an Oracle database. Thus
in order to give a definitive answer to this question further research needs to be performed to see
whether in the case where ρ relations are stored in Oracle databases, Dynamic Yannakakis is still
efficient.
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Concluding we can answer the question What does the Dynamic Yannakakis algorithm offer in
terms of realizing IVM for Assemble models? in the following way: on long term, thus not assum-
ing the limitations incurred by having to store data in an Oracle database Dynamic Yannakakis,
at least for the Assemble model that we considered, facilitates efficient IVM for Assemble models.

In the short term, what it offers really depends on how the algorithm would perform if the
augmented node relations are stored in an Oracle database.

7.2 Recommendations

From the answer on the research questions we can make the following recommendations. We have
that Dynamic Yannakakis potentially does what it needs to do, namely efficiently maintain ma-
terialized output datasets. However whether this will work in practice depends on whether Oracle
datasets can be integrated into Dynamic Yannakakis. Therefore it would be our recommendation
to further investigate whether this is the case.

If this does not turn out to be the case, Dynamic Yannakakis should be given up on for now.
Though, it could be reconsidered if no other satisfying solution for IVM has been found at the
time Anago looks for a successor of the Oracle database for storing their data, where it could be
considered to use a database application that uses relation like data structures for data storage.

If it does seem to be the case the next big problem is that of converting Assemble models into
queries in an automized way. Thus we think investigating this problem should be a high priority
as well.

7.3 Contributions

During this project we made the following contributions to research involving Dynamic Yannakakis:

� We extended Dynamic Yannakakis such that the output of queries containing aggregation,
a combination of join and aggregation, selection, union and anti-join operators can be com-
puted.

� Also we extended Dynamic Yannakakis such that updates to the output set can be computed
efficiently, where the delta enumeration time complexity is linear in the size of ∆rootT for a
T-reduct T , which corresponds to a query Q.
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Chapter 8

Future work

In this final chapter we will discuss how the research in this project can be continued. Here we will
distinguish between general research on Dynamic Yannakakis, IVM using Dynamic Yannakakis in
general and IVM for Assemble specifically. Note that research for Dynamic Yannakakis using IVM
in general may also apply to IVM for Assemble.

8.1 Dynamic Yannakakis in general

For general research on Dynamic Yannakakis, we have that in this project we considered a number
of query operators. These are join, anti-join, aggregation, join and aggregation, selection and
union.

An operator that is missing in this list is the intersection operator. We did not consider this
operator for the simple reason that no queries corresponding to an AC sub-model contained an
intersection. Thus research could be done on extending Dynamic Yannakakis with the notion of
an intersection-node.

Additionally for the anti-join node, it now only evaluates queries A ▷ B, such that var(A) ⊆
var(B). Thus additional research can be performed to alter the ComputeDelta algorithms for the
anti-join node, such that var(A) ⊆ var(B) does not necessarily have to hold.

For general research on using Dynamic Yannakakis facilitating IVM, research can be performed
on how delta updates can be efficiently applied to relations and whether a double-layered index is
a solution for this problem.

Another improvement could be made in having to materialize less output relations, by merging
T-reductions. In general this can be done in the following way. Imagine there is a query Q(A),
where Q has a set of input relations A. Then for each relation R ∈ A, R it either is an atomic
relation Ra or a derived relation Rd, which can be expressed by both an expression stating how
the result can be derived from other relations and the name to which the result of this expression
is saved. Then Q(A) can be rewritten such that each Rd is not represented by the name, but by
the expression. Then this process can recursively be repeated for input relations of each Rd, until
all input relations are atomic relations.

However it is not certain that this query has one corresponding T-reduct. At least one property
that a query can have, such that it does not have a corresponding T-reduct, is that it is cyclic as
we saw with the moving-total query.

In order to thus minimize the number of materialized inbetween relations, research has to be
performed on how a query - consisting of input queries which are derived - can be written out,
before it is cyclic. This will be different for each query, but therefore it may be interesting to
identify properties of queries that are cyclic, and also properties of queries that are not cyclic.

Incremental view maintenance for Assemble by Anago 77



CHAPTER 8. FUTURE WORK

8.2 IVM for Assemble

Assuming that data should be stored in an Oracle database, research should be performed on how
Dynamic Yannakakis can work if the augmented node relations ρ are datasets stored in an Oracle
database, thus like multi-dimensional arrays, instead of the data structure considered during this
project, namely relations with an hash-based index.

Then considering the conversion process of Anago models to T-reducts, an important step
that has to be automized is the conversion of a sub-model to one or more queries. Therefore it
needs to be investigated if such an automatic conversion process is possible and how it would work.

Additionally both in case where Dynamic Yannakakis turns out to be a method that facilitates
IVM for Assemble and in case it does not, it may be worth looking further into the literature on
IVM and dynamic query evaluation.

First of all, since we have that the Assemble’s datasets are data cubes, Lee et al’s work on IVM
for data cubes may be very worth looking into.

However Assemble queries (corresponding to sub-models) and relations (corresponding to data
sets), may share other properties, other than that the relations represent data cubes. Namely
in this project we did not necessarily look for these properties as only a handful of queries were
considered. Therefore it may be worth looking into whether such properties can be derived such
that algorithms, aimed at more specific types of queries that coincide with Assemble sub-models
may be considered. This because Dynamic Yannakakis is aimed at a rather general set of queries,
which we made only more general by allowing additional query operators.

For example, since often sub-model results need to be combined in one data set, it might be
worth looking into dynamic query evaluation for unions over queries.
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Appendix A

Experiment results

no. of changed
cells

0 1 2 3 4 5 6 7 8 9

no. of employees 10 0 24 155 48 270 134 175 188 522 236 589 245 220 284 075 333 516 334 565
100 0 29 759 62 545 168 828 193 690 208 779 318 736 327 226 394 428 477 094
1000 0 31 906 61 055 178 510 201 102 226 910 344 395 366 502 374 133 475 313

Table A.1: Performance DYN |u| <10

no. of changed
cells

15 30 45 60 75 90 105 120 135 150

no. of employees 10 527 577 1 105 540 1 593 178 1 910 979 2 318 899 2 689 300 3 133 009 3 327 351 3 766 365 4 003 401
100 784 430 1 511 640 2 091 033 2 818 383 3 224 515 3 788 466 4 484 111 4 723 099 5 226 534 5 503 234
1000 797 987 1 449 242 2 020 530 2 594 871 3 219 691 3 982 654 4 123 675 5 028 278 5 335 596 5 886 073

Table A.2: Performance DYN |u| >10

no. of changed
cells

0 1 2 3 4 5 6 7 8 9

no. of employees 10 0 2 554 4 868 11 657 11 417 17 678 24 402 24 386 28 765 34 549
100 0 2 506 4 968 13 522 15 245 17 041 25 262 26 354 30 496 36 855
1000 0 2 509 4 908 13 251 15 340 18 843 25 074 27 482 28 332 38 703

Table A.3: Performance DYN* |u| <10

no. of changed
cells

15 30 45 60 75 90 105 120 135 150

no. of employees 10 52 702 113 523 149 820 165 983 196 202 234 611 269 373 290 165 316 246 338 146
100 61 129 113 639 153 199 201 912 235 985 270 804 304 282 318 085 347 965 366 365
1000 62 253 108 781 148 538 183 881 222 044 272 461 287 412 335 071 367 573 381 121

Table A.4: Performance DYN* |u| >10

Incremental view maintenance for Assemble by Anago 81



APPENDIX A. EXPERIMENT RESULTS

Amount of
employees

10 100 1000
197 888 1 490 288 14 414 288

Table A.5: Assemble performance

no. of changed
cells

15 30 45 60 75 90 105 120 135 150

no. of employees 10 2.67 5.59 8.05 9.66 11.72 13.59 15.83 16.81 19.03 20.23
100 0.53 1.01 1.40 1.89 2.16 2.54 3.01 3.17 3.51 3.69
1000 0.06 0.10 0.14 0.18 0.22 0.28 0.29 0.35 0.37 0.41

Table A.6: DYN / Assemble

no. of changed
cells

15 30 45 60 75 90 105 120 135 150

no. of employees 10 0.27 0.57 0.76 0.84 0.99 1.19 1.36 1.47 1.60 1.71
100 0.04 0.08 0.10 0.14 0.16 0.18 0.20 0.21 0.23 0.25
1000 0.004 0.008 0.010 0.013 0.015 0.019 0.020 0.023 0.026 0.026

Table A.7: DYN* / Assemble

no. of changed
cells

15 30 45 60 75 90 105 120 135 150

no. of employees 10 8.26 9.07 9.20 9.16 9.32 9.40 9.42 9.61 9.65 9.65
100 8.80 9.19 9.15 9.32 9.60 9.59 9.52 9.49 9.46 9.46
1000 8.63 8.93 9.08 9.15 9.22 9.49 9.44 9.47 9.65 9.44

Table A.8: Enumeration performance / delta root size

no. of changed
cells

30 60 90 120 150 180 210 240 270 300

ratio 8.89 9.30 9.40 9.42 9.53 9.59 9.51 9.49 9.63 9.58
no. of changed
cells

330 360 390 420 450 480 510 540 570 600

ratio 9.55 9.41 9.50 9.44 9.50 9.44 9.50 9.39 9.43 9.39

Table A.9: Enumeration performance / Delta root size, for n=10 and |u| up until 600
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Appendix B

Correctness proof of anti-join
update and enumeration
procedure

Proof update procedure of minus is correct
To prove:

∆true = ∆result

≡ ∆+
true = ∆+

result

≡ ∆+
true = ∆+

output −∆−output

≡ ∆+
true ⊆ ∆+

output −∆−output ∧∆+
output −∆−output ⊆ ∆+

true

Part 1

∆+
output −∆−output ⊆ ∆+

true

≡ ∀t′ ∈ ∆+
output −∆−output ⇒ t′ ∈ ∆+

true

Take an arbitrary tuple t, t ∈ ∆+
true.

t′ ∈ ∆+
true

≡ t′ ∈ (A−B)

≡ t′ ∈ A ∧B ⋉ t′ = ∅

Thus we should prove that if a tuple t′ is via algorithm 21 added to the result, thus added to
∆+

output and not to ∆−output, then the expression:
t′ ∈ A ∧B ⋉ t′ = ∅,
holds.

Consider the case where a tuple t′ is added to ∆+
p line 5 of algorithm 21. Since t′ ∈ ∆+

A and

∆−A = ∅, t′ ∈ A holds.

Case A is updated after B
Still consider line 5 of algorithm 21. Since B has already been updated and this line is reached,
we have that B ⋉ t′ = ∅. Hence the expression holds regardless of whether or not t′ is added to
∆−p . Case A is updated before B
At line 5 of of algorithm 21, since B at this point has not yet been updated, thus we have from
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line 3 ∅⋉ t′ = emptyset.

Now consider case n = B. We want to prove that if t′ is not added to ∆−p then B ⋉ t′ = ∅.
Assume that B ⋉ t′ ̸= ∅. Then there is a tuple t2 ∈ B ⋉ t′. Since B originally contains no tuples
we therefore also have that t2 ∈ ∆+

B ⋉ t′, and thus t2 ∈ ∆+
B .

In line 7 we therefore would iterate over t2 and since A at this point has been updated, t′ ∈ A
and t2′ joins with t, t′ will be found at line 8. Then, since t′ ̸= NIL at line 10 it will be added to
Delta−p .

Thus it follows from the assumption that B ⋉ t′ ̸= ∅ that t′ will be added to Delta−p . This
implies that if t′ is not added to Delta−p , then B ⋉ t′ = ∅ must hold.

Hence, in both cases A is updated before B and vice versa, if t′ is added to ∆+
p and not to

Delta−p then the expression holds.

Concluding: if t′ ∈ ∆+
p ∧ t′ ∈ ∆−p and therefore also t′ ∈ ∆+

output ∧ t′ ∈ ∆−output, we have that
t′ ∈ A ∧B ⋉ t′ = ∅, which was what we needed to prove.

Part 2

∆+
true ⊆ ∆+

output −∆−output

≡ ∀t ∈ ∆+
true ⇒ t ∈ ∆+

output −∆−output

Take an arbitrary tuple t, t ∈ ∆+
true.

t ∈ ∆+
true

≡ t ∈ (A−B)

≡ t ∈ A ∧B ⋉ t = ∅

Hence we should prove that if for a tuple t, the boolean expression:
t ∈ A ∧B ⋉ t = ∅
holds, then t ∈ ∆+

output and t /∈ ∆−output.

If A is updated before B, then since t /∈ ∅ ∧ t ∈ A, we know that t ∈ ∆+
A. Thus in line 3, t

is found. Then, since B has not been updated and B = ∅ intially line 4 will always return true.
Thus, line 5 will be reached and t is added to ∆+

p .

Then since B ⋉ t = ∅, a t2 ∈ B ⋉ t does not exist which means that t ← A ⋉ t2 will never
happen. Thus in this case t is not added to ∆−p .

If B is updated before A, then still since t /∈ ∅ ∧ t ∈ A, we know that t ∈ ∆+
A. Thus in line

3, t is found. Then since B ⋉ t = ∅, also line 5 will be reached and t is added to ∆+
p .

In case n = B, A has not been updated, and since intially A = ∅, A ⋉ t2 will return NIL
for any t2 and no tuple will be added to ∆−p , thus also not t for which B ⋉ t = ∅ holds.

Thus we have proven that if for a tuple t, it holds that t ∈ A ∧ B ⋉ t = ∅, then t ∈ ∆+
p ∧ t ∈ ∆−p

and therefore also t ∈ ∆+
output ∧ t ∈ ∆−output, which we needed to prove.

Conclusion
We have proven that ∆+

true ⊆ ∆+
output −∆−output and ∆+

output −∆−output ⊆ ∆+
true and therefore we

may conclude that ∆true = ∆result, which we needed to prove.
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Algorithm 21 Update minus node initially

1: function ComputeDelta(n)
2: if n = A then
3: for each t ∈ ∆+

A do
4: if B ⋉ t = ∅ then
5: ∆+

p + = t

6: else
7: for each t2 ∈ ∆+

B do
8: t1← A⋉ t2
9: if t1 ̸= NIL then

10: ∆−p + = πvar(p)(t1)

To prove:

∆true = ∆result

≡ ∆+
true = ∆+

result ∧∆−true = ∆−result

≡ ∆+
true = ∆+

output −∆−output ∧∆−true = ∆−output −∆+
output

≡ ∆+
true ⊆ ∆+

output −∆−output ∧∆+
output −∆−output ⊆ ∆+

true∧
∆−true ⊆ ∆−output −∆+

output ∧∆−output −∆+
output ⊆ ∆−true

Part 1

∆+
output −∆−output ⊆ ∆+

true

≡ ∀t′ ∈ ∆+
output −∆−output ⇒ t′ ∈ ∆+

true

Take an arbitrary tuple t′, t′ ∈ ∆+
true.

t′ ∈ ∆+
true

≡ t′ ∈ (A′ −B′) ∧ t′ /∈ (A−B)

≡ t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅)

Thus we should prove that if a tuple t′ is via algorithm 22 added to the output, thus added to
∆+

output and not to ∆−output (and immediatly deleted), then the expression:
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅),
holds.

Case n = A
Consider algorithm 22, line 5. We will show that if t′ is added to ∆+

p in case n = A and not to
∆−p , then the expression holds.

At this point in the program we know that it holds for t′ that t′ ∈ ∆+
A, t

′ /∈ ∆−A. Then
t′ ∈ ∆+

A ∧ t′ /∈ ∆−A ⇒ t′ ∈ A′. Moreover we can deduce that t′ /∈ A:
For any arbitrary t′ ∈ ∆+

A we know that either: t′ is an addition to A meaning that t′ /∈ A
inherently, or t′ is an updated value. If t′ is an updated value this means that there is a tuple t
such that tRt′ meaning that t is replaced by t′, thus:

� t ∈ ∆−A

� t ∈ A

� t′ ∈ A⇒ t = t′
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Now we prove that t′ /∈ A. Assume that t′ ∈ A, then t = t′. But then since t ∈ ∆−A, t
′ ∈ ∆−A and

we know that t′ /∈ ∆−A, hence we arived to a contradiction and the assumption that t′ ∈ A was
false. Thus indeed t′ /∈ A.

Case A.1 A is updated after B
Since at line 5 in algorithm 22 B was already updated, we know that B′ ⋉ t = ∅. Thus in this
case for t′ the expression holds, regardless of whether t′ was added to ∆−p or not.

Case A.2 A is updated before B
Now we prove that B′ ⋉ t′ = ∅ if t′ is not added to ∆−p and A is updated before B.

First, since at line 5 in algorithm 22 B was not updated, we know that B ⋉ t = ∅

Assume that B′ ⋉ t′ ̸= ∅. Consider line 7 of algorithm 23. We know that B ⋉ t′ = ∅ and
assuming that B′⋉ t′ ̸= ∅, it means that there is a tuple t2 ∈ B′⋉ t, t2 ∈ ∆+

B⋉ t′ and t2 /∈ ∆−B⋉ t′.
Then as t2 ∈ B′ ⋉ t′, t′ = S ⋉ t2 for any relation S, t′ ∈ S. Thus since t′ ∈ A′, t′ = A′ ⋉ t2 holds.
Therefore, since A is updated t′ would be found in line 8. Since t2 /∈ ∆−B ⋉ t and t′ ̸= NIL line 10
is reached.

Then a variable count is intialized to 0. At line 17 count = |B′ ⋉ t′| - |∆+
B ⋉ t′| + |∆+

B ⋉ t′|,
which is equal to |B ⋉ t′|. As |B ⋉ t′| = 0, the final value of count is as well. Since count would
thus be 0, t′ would be added to ∆−p .

Hence it follows that if B′ ⋉ t′ ̸= ∅ then t′ is added to ∆−p . Therefore in the case that t′ is not
added to ∆−p , B

′ ⋉ t′ = ∅. Thus indeed in this case the expression holds.

Concluding: if t′ is added in algorithm 22 line 5 to ∆+
p and not to ∆−p in algorithm 23, then

both if A is updated before B and vice versa, the expression holds.

Case n = B
Consider that a tuple t′ has been added to ∆+

p in line 10 of algorithm 22. We know that since B
has been updated in this case, that B′ ⋉ t′ = ∅.

We also know that there is a t2, such that t′ = A ⋉ t2, t2 /∈ ∆+
B and t2 ∈ ∆−B . t2 /∈ ∆+

B and
t2 ∈ ∆−B means that t2 ∈ B. Since t′ = A⋉ t2 we know that t2 ∈ S⋉ t′ for any relation S, t2 ∈ S,
hence also for B. Therefore t2 ∈ B ⋉ t′ and B ⋉ t′ ̸= ∅.

Case B.1 A is updated after B
We should prove that if t′ is not added to ∆−p , then t

′ ∈ A′. Therefore assume that t′ /∈ A′. Then
since B was updated before and the algorithm found t′ in line 8 of algorithm 22, we know t′ ∈ A.
Thus since t′ /∈ A′ and t′ ∈ A, we know that t′ ∈ ∆−A and t′ /∈ ∆+

A.

Then in case n = A of algorithm 23, following our assumption we have that t′ ∈ ∆−A, thus t
′

will be iterated over in line 3. Then since B already has been updated, B′ ⋉ t′ = ∅ and also
t′ /∈ ∆+

A, t
′ would be added to ∆−p .

Hence, from our assumption that t′ /∈ A′, it follows that t′ ∈ ∆−p . However, t′ /∈ ∆−p , hence
t′ ∈ A′ has to hold.

Case B.2 A is updated before B
Now since A was already updated when in line 10 of algorithm 22 we added t′ to ∆+

A, we have
that t′ ∈ A′ ⋉ t2 for at least one t2, thus t′ ∈ A. Hence in this case the expression holds for any t′

that is added in line 10 to ∆+
A, regardless of whether t

′ was added to ∆−p or not.

Concluding: if t′ is added in 22, line 10 to ∆+
p and not to ∆−p in 23, then both if A is up-

dated before B and vice versa, the expression holds.
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Finally we may conclude that whenever a tuple t′ is added to ∆+
p and not to ∆−p , and con-

sequently - following algorithm EnumerateAdded() - t′ is added to ∆+
output and not to ∆−output,

then the expression:
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅),
holds, which was what we needed to prove.

Part 2

∆−output −∆+
output ⊆ ∆−true

≡ ∀t′ ∈ ∆−output −∆+
output ⇒ t′ ∈ ∆−true

Take an arbitrary tuple t, t ∈ ∆−true.

t ∈ ∆−true

≡ t /∈ (A′ −B′) ∧ t ∈ (A−B)

≡ t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅)

Thus we should prove that if a tuple t is via algorithm 22 or 23 removed from the output, thus
added to ∆−output and not also added to ∆+

output, then the expression:
t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅)
holds.

Case n = A
Consider the case when a tuple t is added to ∆−p in line 5 of algorithm 23. We have that t ∈ ∆−A
and t /∈ ∆+

A. Therefore we may conclude that t ∈ A and t /∈ A′.

Case A.1 A is updated before B
We still consider line 5 of algorithm 23. Since B has not been updated then we know that
B ⋉ t = ∅. Hence in this case, regardless of whether or not t is added to ∆+

p , we know that the
boolean expression holds.

Case A.2 B is updated before A
Again consider line 5 of algorithm 23. Now, since B has already been updated at this point, we
know that B′⋉ t = ∅. In order to proof that B⋉ t = emptyset if t is not added to ∆+

p , we consider
algorithm 22, case n = B.

Assume that B ⋉ t ̸= emptyset. Since B′ ⋉ t = ∅ we have that there would exist a tuple t2,
t2 ∈ ∆−B ⋉ t, t2 /∈ ∆+

B ⋉ t. From t2 ∈ ∆−B ⋉ t it follows that t2 ∈ ∆−B . Also it follows that t2 ∈ S⋉ t
for any relation S, t2 ∈ S. Therefore, since t2 /∈ ∆+

B ⋉ t it follows that t2 /∈ ∆+
B .

Following our assumption, since t2 ∈ ∆−B , t would be found at line 8. Then, since t2 /∈ ∆+
B ,

t ̸= NIL, B is updated and B′ ⋉ t = ∅, t would at line 10 be added to ∆+
p .

Hence, from our assumption that B ⋉ t ̸= ∅, it follows that t will be added to ∆+
p . There-

fore we may conclude that in case t is not added to ∆+
p it must hold that B ⋉ t = ∅. Thus also if

B is updated before A the boolean expression holds.

Concluding: if t is added in algorithm 23 line 5 to ∆−p and is not added to ∆+
p , then both if

A is updated before B and vice versa, the expression holds.

Case n = B
Consider the case when a tuple t1 is added to ∆−p on line 18 of algorithm 23. We have that there

exists a tuple t2, such that t = A ⋉ t2 (A being either A or A′), t2 ∈ ∆+
B and t2 /∈ ∆−B . From

t2 ∈ ∆+
B and t2 /∈ ∆−B it follows that t2 ∈ B′ and t2 /∈ B. Because t2 ∈ B′ and t joins with t2, we

know that B′ ⋉ t ̸= ∅.
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Since we know B has been updated and |B′⋉ t| - |∆+
B ⋉ t| + |∆−B ⋉ t| = |B⋉ t|, we know that

the value of count at line 18 is equal to |B ⋉ t|. Then since line 18 is reached, count = 0, we have
that |B ⋉ t| = 0, hence B ⋉ t = ∅.

Case B.1 A is updated before B
We still consider line 18 of algorithm 23. Then, since A has already been updated, we have that
t = A′ ⋉ t2 and therefore t ∈ A′.

Now consider case n = A of algorithm 22. Assume that t /∈ A. Then, from t ∈ A′ and t /∈ A it
follows that t ∈ ∆+

A and t /∈ ∆−A. Since at this point B has not been updated yet and B ⋉ t = ∅,
we have that line 5 would be reached and t would be added to ∆+

p .

Thus from the assumption that tnotinA it follows that t will be added to ∆+
p . This implies that if

t is not added to ∆+
p then t ∈ A. Thus in case A is updated before B the boolean expression holds.

Case B.2 A is updated after B
From line 8 of algorithm 23. Since A has not yet been updated, we have that t = A ⋉ t2 and
therefore t ∈ A. Thus in this case the expression holds regardless of whether or not t is added to
∆+

p .

Concluding: if t is added in algorithm 23 line 18 to ∆−p and is not added to ∆+
p , then both

if A is updated before B and vice versa, the expression holds.

Finally we may conclude that whenever a tuple t is added to ∆−p and not to ∆+
p , and consequently

- following algorithm EnumerateRemoved() - t is added to ∆−output and not to ∆+
output, then the

expression:
t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅),
holds, which was what we needed to prove.

Part 3

∆+
true ⊆ ∆+

output −∆−output

≡ ∀t′ ∈ ∆+
true ⇒ t′ ∈ ∆+

output −∆−output

Take an arbitrary tuple t′, t′ ∈ ∆+
true.

t′ ∈ ∆+
true

≡ t′ ∈ (A′ −B′) ∧ t′ /∈ (A−B)

≡ t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅)

Hence we must prove that if for a tuple t′ it holds that:
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅),
then t′ is added via algorithm 22 to ∆+

p and not added to ∆−p via algorithm 23.

Case 1
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ t′ /∈ A

Since t′ ∈ A′ and t′ /∈ A, t′ ∈ ∆+
A and t′ /∈ ∆−A hold.

Then if B has been updated, since B′ ⋉ t′ = ∅ line 5 is reached and t′ is added to ∆+
p . Then also

t′ is not added via algorithm 23 to ∆−p , since in case n = A, t′ /∈ ∆−A and in case n = B, t′ /∈ A
hence t′ /∈ A⋉ t2′ for any t2′ ∈ ∆+

B .

If B has not been updated then there may be one or more t2′ /∈ B′ ⋉ t′, but t2′ ∈ B ⋉ t′,
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since t2′ ∈ ∆−B and line 5 will not be reached. But then in case n = A, t′ will be added: t2′ ∈ ∆−B ,
thus line 8 is reached. Then since A is updated, in line 8 t′ is the tuple found by A ⋉ t2′. Then
since t2′ ∈ ∆−B ∧ t2′ /∈ B′, t2′ /∈ ∆+

B holds. Also t′ is not NIL and since B now is updated and
B′ ⋉ t′ = ∅ line 10 is reached and t′ ∈ ∆+

p .

Also now t′ is not added to ∆−p : in case n = A we have established that t′ /∈ ∆−A, so t
′ is

not iterated over. In case n = B, there will be no t2′ such that t′ ∈ At2′, because we know that
sincet2′ /∈ B′⋉ t′ and t2′ ∈ B⋉ t′, surely t2′ /∈ ∆+

B . Thus indeed also in the case that B is updated
after A, t′ ∈ ∆+

p and t′ /∈ ∆−p .

Thus both when A is updated before B and B updated before A we have that t′ ∈ ∆+
p ∧ t′ /∈ ∆−p ,

which we needed to prove.

Case 2
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧B ⋉ t′ ̸= ∅

Then since B′⋉ t′ = ∅∧B⋉ t′ ̸= ∅ we know there is at least one tuple t2′ ∈ B⋉ t′, t2′ /∈ B′⋉ t′ and
therefore t2′ ∈ ∆−B , t2

′ ∈ B and t2′ /∈ B′. Moreover, for any tuple t2′ ∈ B ∈ t′ these conditions
hold.

If A has already been updated or t′ ∈ A, then in case n = B t′ will be found in line 8 since
then t′ = A⋉ t2′. Then since t2′ ∈ B and t2′ /∈ B′, t2′ /∈ ∆+

B . Also t′ is not NIL we know that,
in case n = B, B has been updated and since B′ ⋉ t′ = ∅ we reach line 10 and t′ is added to ∆+

p .

Then t′ should not be added to ∆−p . In case n = A of algorithm 23, since t′ ∈ A′ we know

that t′ /∈ ∆−A and will thus not be iterated over. In case n = B we know that since for any t2′,
t2′ ∈ B and t2′ /∈ B′ that t2 /∈ ∆+

B , thus t
′ is never found in line 8. Hence if A has already ben

updated or t′ ∈ A we have that t′ ∈ ∆+
p and t′ /∈ ∆−p .

If A′ has not been updated yet and t′ /∈ A, then since t′ ∈ A′ we have that t′ ∈ ∆+
A. Hence

t′ is iterated over in line 3 of case n = A. Then since t′ ∈ A′, t /∈ ∆−A holds. Also we know that
since A in this case updates after B and B′⋉t′ = ∅ line 5 will be reached and t′ will be added to ∆+

p .

Also now t′ is not added to ∆−p . In case n = A, since t′ ∈ A′ t′ /∈ ∆−A holds and t′ will not

be iterated over. In case n = B since A has not been updated yet and t′ /∈ A, for no t2 ∈ ∆+
B

t′ = A⋉ t2, hence t′ will not be added to ∆−p .
Thus also if B is updated before A and t′ /∈ A we have that t′ ∈ ∆+

p and t′ /∈ ∆−p .
Hence for any t′, t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧B ⋉ t′ ̸= ∅ it holds that t′ ∈ ∆+

p and t′ /∈ ∆−p , when A
is updated before B and vice versa. This we needed to prove.

Concluding, we have proven that if for a tuple t′ it holds that:
t′ ∈ A′ ∧B′ ⋉ t′ = ∅ ∧ (t′ /∈ A ∨B ⋉ t′ ̸= ∅),
then t′ is added via algorithm 22 to ∆+

p and not added to ∆−p via algorithm 23.

Part 4

∆−true ⊆ ∆−output −∆+
output

≡ ∀t′ ∈ ∆−true ⇒ t′ ∈ ∆−output −∆+
output

Take an arbitrary tuple t ∈ ∆−true.

t ∈ ∆−true

≡ t /∈ (A′ −B′) ∧ t ∈ (A−B)

≡ t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅)
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Hence we must prove that if for a tuple t it holds that:
t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅)
then t is added via algorithm 23 to ∆−p and not to ∆+

p via algorithm 22.

Case 1
t ∈ A ∧B ⋉ t = ∅ ∧ t /∈ A′

Since t ∈ A ∧ t /∈ A′ we know that t ∈ ∆−A. Also since t ∈ A ∧ t /∈ A′, t /∈ ∆+
A holds.

If A is updated before B or B′ ⋉ t = ∅, t is iterated over in case n = A line 3 of algorithm
23 since t ∈ ∆−A. t /∈ ∆+

A holds. Then since B has not yet been updated and B ⋉ t = ∅ or
B′ ⋉ t = ∅, we reach line 5 and t ∈ ∆−p .

Also t is not added to ∆+
p via algorithm 22. In case n = A, since t /∈ ∆+

A, t is not iterated over

in line 3. In case n = B, since B⋉t = ∅ and ∆−B ⊆ B, ∆−B⋉t = ∅. Thus at line 8 t will not be found.

If B has been updated before A and B′ ⋉ t ̸= ∅, then since B′ ⋉ t ̸= ∅ and B ⋉ t = ∅, we
have that there is at least a tuple t2 ∈ ∆+

B ⋉ t, t2 /∈ ∆−B ⋉ t, t2 /∈ B ⋉ t and t2 ∈ B′ ⋉ t. From
t2 /∈ B ⋉ t and t2 ∈ B′ it follows that t2 /∈ B. From t2 ∈ B′ and t2 /∈ B it follows that t2 /∈ ∆−B.
Note that since ∆+

B ⋉ t ⊆ ∆+
B , t2 ∈ ∆+

B . Thus in case of line 7 of algorithm 23, t2 will be iterated
over. Since A is not updated yet and t ∈ A, t will be found in line 8. Then since t2 /∈ ∆−B and
t ̸= NIL, line 10 is reached.

Here a variable count is declared. B ⋉ t = ∅ we assumed and also B′ ⋉ t ̸= ∅. Therefore
for any tuple t2′ ∈ B′ ⋉ t ⇒ t2′ ∈ ∆+

B ⋉ t. Also since B ⋉ t = ∅ we have that for any tuple
t2′ ∈ ∆−B ⋉ t⇒ t2′ ∈ ∆+

B ⋉ t. Then, because ∆−B ∪B′ = ∅ we have |B′ ⋉ t|+ |∆−B ⋉ t| ≤ |∆+
B ⋉ t|.

Vice versa for a tuple t2′ ∈ ∆+
B ⋉ t it holds that (assuming no double tuples in ∆A or ∆B),

t2′ ∈ B′ ⋉ t ∨ t2′ ∈ ∆−B ⋉ t, thus |∆+
B ⋉ t| ≤ |B′ ⋉ t|+ |∆−B ⋉ t|. Hence we may conclude |∆+

B ⋉ t|
= |B′ ⋉ t| + |∆−B ⋉ t|. The final value of count will be |B′ ⋉ t| + |∆−B ⋉ t| - |∆+

B ⋉ t| which will
thus be 0. Therefore indeed t is added to t ∈ ∆−p .

Finally we must show that t /∈ ∆+
p in this case. Consider algorithm 22. In case n = A, t

will be not iterated over since t /∈ ∆+
A. In case n = B, this also holds; since B′ ⋉ t ̸= ∅ and since

B is updated, we know that if there is a tuple t2′ ∈ ∆−B , such that t = A⋉ t2′, then B ⋉ t is false
and t /∈ ∆+p.

Thus also when If B has been updated before A and B′ ⋉ t ̸= ∅ we have that t ∈ ∆−p and
t /∈ ∆+p. Hence, when t ∈ A ∧B ⋉ t = ∅ ∧ t /∈ A′ holds we know t ∈ ∆−p and t /∈ ∆+p, which is
what we needed to prove.

Case 2
t ∈ A ∧B ⋉ t = ∅ ∧B′ ⋉ t ̸= ∅

Since B ⋉ t = ∅ ∧ B′ ⋉ t ̸= ∅ there is at least one tuple t2 ∈ B′ ⋉ t, t2 /∈ B ⋉ t, t2 ∈ ∆+
B ⋉ t,

t2 /∈ ∆−B ⋉ t. Moreover, since t2 ∈ B′ ⋉ t but t2 /∈ B ⋉ t, we know that t2 /∈ B, because if t2 ∈ B
and t2 ∈ B′ ⋉ t then t2 ∈ B ⋉ t, which is not the case. We may also conclude now that since
t2 ∈ B′ and t2 /∈ B that t2 ∈ ∆+

B and t2 /∈ ∆−B hold. For now consider such tuple t2

If A has not been updated yet or t ∈ A′, we can consider case n = B of algorithm 23. Then
if t ∈ A and A has not yet been updated, t = A⋉ t2 thus t is found at line 8. If A has not been
updated but t ∈ A′ t will also be found at line 8.

Then indeed t2 /∈ ∆−B and t is not NIL hence again the algorithm will declare a count for
which after the foreach loops the value will be 0, following the same argument in Case1 of Part4.
Therefore t will be added to ∆−p .
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Also we should prove that t will not be added to ∆+
p . In case n = A of algorithm 22, since

B has been updated and t2 ∈ B′⋉ t, if t ∈ ∆+
A the algorithm will not reach line 5 since B′⋉ t ̸= ∅.

In case n = B we know that line 10 will never be reached, since if t is found at line 8, then
since B has been updated and B′ ⋉ t ̸= ∅, B′ ⋉ t = ∅ is false.

Thus if B is updated before A, t ∈ ∆−p and t /∈ ∆+
p .

If A has been updated before B, and t /∈ A′, then since t ∈ A it follows that t ∈ ∆−A and
t /∈ ∆+

A. Then because A is updated before B and B ⋉ t, line 5 is reached and t will be added to
∆−p .

Then in algorithm 22 in case n = A, t /∈ ∆+
A holds, thus t will not be iterated over and in case

n = B we have that since A is updated and t /∈ A′, t wil not be found in line 8, thus also then t
will not be added to ∆+

p .

Thus also for any t, t ∈ A ∧ B ⋉ t = ∅ ∧ B′ ⋉ t ̸= ∅ it holds that both when A is updated
before B and vice versa, t is added to ∆−p and not to ∆+

p . Thus in any case.

Now we finally may conclude that if for a tuple t it holds that:
t ∈ A ∧B ⋉ t = ∅ ∧ (t /∈ A′ ∨B′ ⋉ t ̸= ∅)
then t is added via algorithm 23 to ∆−p and not to ∆+

p via algorithm 22.

Conclusion
We have now proven that ∆+

true ⊆ ∆−output −∆+
output and ∆+

output −∆−output ⊆ ∆+
true, from which

follows that ∆+
output −∆−output = ∆+

true and moreover ∆output = ∆true, which we needed to prove.

Algorithm 22 Adding tuples to ∆+
output

1: function ComputeDeltaPlus(n)
2: if n = A then
3: for each t ∈ ∆+

A do
4: if t /∈ ∆−A ∧B ⋉ t = ∅ then
5: ∆+

p + = t

6: else
7: for each t2 ∈ ∆−B do
8: t1← A⋉ t2
9: if t2 /∈ ∆+

B ∧ t1 ̸= NIL ∧B ⋉ t1 = ∅ then
10: ∆+

p + = πvar(p)(t1)

11:

12: function EnumAdded(tparent)
13: for each t ∈ (∆+

n −∆−n )⋉ tparent do
14: yield t
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Algorithm 23 Adding tuples to ∆−output

1: function ComputeDeltaMinus(n)
2: if n = A then
3: for each t ∈ ∆−A do
4: if t /∈ ∆+

A ∧B ⋉ t = ∅ then
5: ∆−p + = πvar(p)(t)

6: else
7: for each t2 ∈ ∆+

B do
8: t1← A⋉ t2
9: if t2 /∈ ∆−B ∧ t1 ̸= NIL then

10: count← 0
11: for each t2′ ∈ B ⋉ t1 do
12: count+ = t2′.count

13: for each t2′ ∈ ∆+
B ⋉ t1 do

14: count− = t2′.count

15: for each t2′ ∈ ∆−B ⋉ t1 do
16: count+ = t2′.count

17: if count == 0 then
18: ∆−p + = t1

19:

20: function EnumRemoved(tparent)
21: for each t ∈ (∆−n −∆+

n )⋉ tparent do
22: yield t
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Appendix C

Full update analysis AC model

Update 1

Update: <DC 001(Employee ’a’, Fact ’holiday’, Week ’wb.y’), x>
This update is applied to datacube 001 Hours per fact per employee per week and changes the cell
at Employee a, Fact Holiday and Week b to integer x.
2 - Compute net availability per employee per week
Definitions

� Let c be DC 001(Employee ’a’, Fact ’gross availability’, Week ’wb.y’)

� Let d be DC 001(Employee ’a’, Fact ’education’, Week ’wb.y’)

� Let e be the previous value of DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’)

Update methods

1. · <DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’), c - x - d>

2. · <DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’), e - x + x’>

Analytics

1. Input cells: 3, Updated cells: 1

2. Input cells: 3, Updated cells: 1

3 - Rollup hours per employee over weeks to year
Definitions

� Let ci,f be DC 001(Employee ’a’, Fact ’f ’, Week ’wi,y’)

� Let df be the previous value of DC 001(Employee ’a’, Fact ’f ’, Week ’y’)

Update methods

1. · <DC 001(Employee ’a’, Fact ’holiday’, Week ’y’),
∑

1≤i≤len(y)
ci,holiday >

· <DC 001(Employee ’a’, Fact ’net availability’, Week ’y’),
∑

1≤i≤len(y)
ci,netav.>

2. · <DC 001(Employee ’a’, Fact ’net availability’, Week ’y’), dnetav. - x + x’>

· <DC 001(Employee ’a’, Fact ’holiday’, Week ’y’), dholiday + x - x’>

Analytics
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1. Input cells: 2 * len(y), Updated cells: 2

2. Input cells: 4, Updated cells: 2

4 - Fill in hours where employee and week correspond to team
Definitions

� Let c be DC 001(Employee ’a’, Fact ’net availability’, Week ’wb.y’)

� Let df be the previous value of DC 003(Employee ’a’, Fact ’f ’, Team ’t’, Week ’wb.y’)

Update methods

1. · <DC 003(Employee ’a’, Fact ’net availability’, Team ’t’, Week ’wb.y’), c >

· <DC 003(Employee ’a’, Fact ’holiday’, Team ’t’, Week ’wb.y’), x >

2. · <DC 003(Employee ’a’, Fact ’net availability’, Team ’t’, Week ’wb.y’), dnetav. - x +
x’>

· <DC 003(Employee ’a’, Fact ’holiday’, Team ’t’, Week ’wb.y’), x>

Analytics

1. Input cells: 2, Updated cells: 2

2. Input cells: 3, Updated cells: 2

5 - Sum hours over employees to team (per week)
Definitions

� Let ci,f be DC 003(Employee ’i’, Fact ’f ’, Team ’t’, Week ’wb.y’)

� Let df be the previous value of DC 002(Fact ’f ’, Team ’t’, Week ’wb.y’)

Update methods

1. · <DC 002(Fact ’net availability’, Team ’t’, Week ’wb.y’),
∑

i∈set(t)
ci,netav. >

· <DC 002(Fact ’holiday’, Team ’t’, Week ’wb.y’),
∑

i∈set(t)
ci,holiday >

2. · <DC 002(Fact ’net availability’, Team ’t’, Week ’wb.y’), dnetav. - x + x’>

· <DC 002(Fact ’holiday’, Team ’t’, Week ’wb.y’), dholiday + x - x’>

Analytics

1. Input cells: 2 * |set(t)|, Updated cells: 2

2. Input cells: 4, Updated cells: 2

6 - Rollup hours over team to levels department and total
Definitions

� Let ci,f be DC 002(Fact ’f ’, Team ’i’, Week ’wb.y’)

� Let di,f be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’wb.y’)

Update methods

1. For fact f ∈ {holiday, net availability} and i ∈ {D,T}:
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· <DC 002(Fact ’f ’, Team ’i’, Week ’wb.y’),
∑

j∈set(i)
cj,f >

2. For team i ∈ {D, T}:

· <DC 002(Fact ’net availability’, Team ’i’, Week ’wb.y’), di,netav. - x + x’ >

· <DC 002(Fact ’holiday’, Team ’i’, Week ’wb.y’), di,holiday + x - x’ >

Analytics

1. Input cells: 2 * (|set(D)|+ |set(T )|), Updated cells: 4

2. Input cells: 4, Updated cells: 4

7 - Compute adjusted hours
Definitions

� Let ci,f be DC 002(Fact ’f ’, Team ’i’, Week ’wb.y’)

� Let df be DC 006(Fact ’f ’, Week ’wb.y’)

� Let ei,f be the previous value of <DC 007(Fact ’f ’, Team ’i’, Week ’wb.y’)

Update methods

1. For fact f ∈ {holiday, net availability} and team i ∈ {t,D, T}:

· <DC 007(Fact ’f ’, Team ’i’, Week ’wb.y’), ci,f * (1 + df )>

2. For team i ∈ {t,D, T}:

· <DC 007(Fact ’net availability’, Team ’i’, Week ’wb.y’),
ei,netav. + (-x + x’) * (1 + dnetav.)>

· <DC 007(Fact ’holiday’, Team ’i’, Week ’wb.y’), ei,holiday + (x - x’) * (1 + dholiday)>

Analytics

1. Input cells: 8, Updated cells: 6

2. Input cells: 10, Updated cells: 6

8 - Compute moving total
Definitions

� Let ci,j,f,l be DC 002(Fact ’f ’, Team ’i’, Week ’wj.l’)

� Let di,j,f,l be the previous value of DC 004(Fact ’f ’, Team ’i’, Week ’wj.l’)

For the given definitions it may occur that j > len(l). Therefore let in that case wj.l = wj−len(l),l+1,
ci,j,f,l = ci,j−len(l),f,l+1 and di,j,f,l = di,j−len(l),f,l+1 hold.

Update methods

1. For fact f ∈ {holiday, net availability}, team i ∈ {t,D, T} and j ∈ [b, b+ 4]:

· <DC 004(Fact ’f ’, Team ’i’, Week ’wj.y’),
j∑

k=j−4
ci,k,f,y>

2. For team i ∈ {t,D, T} and j ∈ [b, b+ 4]:
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· <DC 004(Fact ’net availability’, Team ’i’, Week ’wj.y’), di,j,netav.,y − x+ x′>

· <DC 004(Fact ’holiday’, Team ’i’, Week ’wj.y’), di,j,holiday,y + x - x’>

Analytics

1. Input cells: 54, Updated cells: 30

2. Input cells: 32, Updated cells: 30

9 - Rollup hours per team over week to year
Definitions

� Let ci,j,f be DC 002(Fact ’f ’, Team ’i’, Week ’wj,y’)

� Let di,f be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’y’)

Update methods

1. For fact f ∈ {holiday, net availability} and team i ∈ {t,D, T}:

· <DC 001(Fact ’f ’, Team ’i’, Week ’y’),
∑

1≤i≤len(y)
ci,j,f >

2. For team i ∈ {t,D, T}:

· <DC 001(Fact ’net availability’, Team ’i’, Week ’y’), di,netav. - x + x’>

· <DC 001(Fact ’holiday’, Team ’i’, Week ’y’), di,holiday + x - x’>

Analytics

1. Input cells: 6 * len(y), Updated cells: 6

2. Input cells: 8, Updated cells: 6

10 - Rollup adjusted hours per team over week to year
Definitions

� Let ci,j,f be DC 007(Fact ’f ’, Team ’i’, Week ’wj.y’)

� Let di,f be the previous value of DC 007(Fact ’f ’, Team ’i’, Week ’y’)

� Let ei,f be DC 006(Fact ’f ’, Week ’y’)

Update methods

1. For fact f ∈ {holiday, net availability} and team i ∈ {t,D, T}:

· <DC 007(Fact ’f ’, Team ’i’, Week ’y’),
∑

1≤i≤len(y)
ci,j,f >

2. For team i ∈ {t,D, T}:

· <DC 007(Fact ’net availability’, Team ’i’, Week ’y’), di,netav. + (-x + x’) * (1 +
ei,netav.) >

· <DC 007(Fact ’holiday’, Team ’i’, Week ’y’), di,holiday + (x - x’) * (1 + ei,holiday) >

Analytics

1. Input cells: 6 * len(y), Updated cells: 6

2. Input cells: 14, Updated cells: 6
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11 - Compute percentage facts moving total
Definitions

� Let ci,j,f,l be DC 004(Fact ’f ’, Team ’i’, Week ’wj.l’)

� Let di,j,l be the previous value of DC 008(Percentage fact ’%holiday’, Team ’i’, Week ’wj.l’)

For the given definitions it may occur that j > len(l). Therefore let in that case wj.l = wj−len(l),l+1,
ci,j,f,l = ci,j−len(l),f,l+1 and di,j,l = di,j−len(l),l+1 hold.

Update methods

1. For team i ∈ {t,D, T} and j ∈ [b, b+ 4]:

· <DC 008(Percentage fact ’%holiday’, Team ’i’, Week ’wj.y’),
ci,j,holiday,y

ci,j,grossav.,y
>

2. For team i ∈ {t,D, T} and j ∈ [b, b+ 4]:

· <DC 008(Percentage fact ’%holiday’, Team ’i’, Week ’wj.y’), di,j,y + x−x′

ci,j,grossav.,y
>

Analytics

1. Input cells: 30, Updated cells: 15

2. Input cells: 32, Updated cells: 15

Update 2

Update: <R 001(Employee ’a’, Week wb.y), Team ’t’> This update is applied to relation 001
Employee x Week - Team and changes the cell at Employee a and Week wb.y to Team t.

Autofill
As this relation has the property ’Autofill relation based on time’, all cells at Employee a and
from Week b + 1 onwards will be changed to t. Update methods

1. For week i ∈ future weeks

· <R 001(Employee ’a’, Week ’i’), t>

Analytics

1. Input cells: 1, Updated cells: |future weeks|

4 - Fill in hours where employee and week correspond to team
Definitions

� Let ci,f be DC 001(Employee ’a’, Fact ’f ’, week ’i’)

Update methods
For fact f ∈ {gross availability, holiday, education, net availability} and week i ∈ future weeks+:

· <DC 003(Employee ’a’, Fact ’f ’, Team ’t’, Week ’i’), ci,f >

· <DC 003(Employee ’a’, Fact ’f ’, Team ’t′i’, Week ’i’), na>
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Analytics
Input cells: 4 * |future weeks+|, Updated cells: 8 * |future weeks+|

5 - Sum hours over employees to team (per week)
Definitions

� Let ci,f,j,k be DC 003(Employee ’i’, Fact ’f ’, Team ’j’, Week ’k’)

� Let df,i,j be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods
For fact f ∈ {gross availability, holiday, education, net availability}, week i ∈ future weeks+:

1. · <DC 002(Fact ’f ’, Team ’t’, Week ’i’),
∑

j∈set(t)
cj,f,t,i >

· <DC 002(Fact ’f ’, Team ’t′i’, Week ’i’),
∑

j∈set(t′i)
cj,f,t′i,i >

2. · <DC 002(Fact ’f ’, Team ’t’, Week ’i’), df,t,i + ef,i >

· <DC 002(Fact ’f ’, Team ’t′i’, Week ’i’), df,t′i,i - ef,i >

Analytics

1. Input cells: 4 *
∑

i∈future weeks+
(

∑
j∈set(t)

(1) +
∑

j∈set(t′i)
(1)) ≈ 8 ∗ |future weeks+| ∗ |set(t)|,

Updated cells: 8 * |future weeks+|

2. Input cells: 12 * |future weeks+|, Updated cells: 8 * |future weeks+|

6 - Rollup hours over team to level department (total does not change)
Definitions

� Let cf,i,j be DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let df,i,j be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i be DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods

1. For fact f ∈ {gross availability, holiday, education, net availability}, i ∈ {D,D′j} and week
j ∈ future weeks+:

· <DC 002(Fact ’f ’, Team ’i’, Week ’j’),
∑

k∈set(i)
ck,f,j >

2. For fact f ∈ {gross availability, holiday, education, net availability} and week j ∈ future weeks+:

· <DC 002(Fact ’f ’, Team ’D’, Week ’j’), df,D,j + ef,i >

· <DC 002(Fact ’f ’, Team ’D′j’, Week ’j’), df,D′
j ,j

- ef,i >

Analytics

1. Input cells: ≈ 8 * |future weeks+| * |set(D)|, Updated cells: 8 * |future weeks+|

2. Input cells: 12 * |future weeks+|, Updated cells: 8 * |future weeks+|
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7 - Compute adjusted hours
Definitions

� Let cf,i,j be DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let df,j be DC 006(Fact ’f ’, Week ’j’)

� Let ef,i,j be the previous value of <DC 007(Fact ’f ’, Team ’i’, Week ’j’)

� Let gf,i be DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods

1. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D, t′jD′j}
and j ∈ future weeks+:

· <DC 007(Fact ’f ’, Team ’i’, Week ’j’), cf,i,j * (1 + df,j)>

2. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D}, team
k ∈ {t′jD′j} and j ∈ future weeks+:

· <DC 007(Fact ’f ’, Team ’i’, Week ’j’), ef,i,j + gf,i * (1 + df,j)>

· <DC 007(Fact ’f ’, Team ’k’, Week ’j’), ef,k,j - gf,i * (1 + df,j)>

Analytics

1. Input cells: 20 * |future weeks+|, Updated cells: 16 * |future weeks+|

2. Input cells: 24 * |future weeks+|, Updated cells: 16 * |future weeks+|

8 - Compute moving total
Definitions

� Let cf,i,j be DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let df,i,j be the previous value of DC 004(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i be DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods

1. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D, t′jD′j}
and j ∈ future weeks+:

· <DC 004(Fact ’f ’, Team ’i’, Week ’j’),
j∑

k=j−4
cf,i,k>

2. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D}, team
k ∈ {t′jD′j} and j ∈ future weeks+:

· <DC 004(Fact ’f ’, Team ’i’, Week ’j’), df,i,j +
j∑

l=j−4
ef,l>

· <DC 004(Fact ’f ’, Team ’k’, Week ’j’), df,k,j -
j∑

l=j−4
ef,l>

Analytics

1. Input cells: 16 * |future weeks+| + 64, Updated cells: 16 * |future weeks+|
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2. Input cells: 20 * |future weeks+| + 16, Updated cells: 16 * |future weeks+|

9 - Rollup hours per team over week to year
Definitions

� Let cf,i,j,k be DC 002(Fact ’f ’, Team ’i’, Week ’wj.k’)

� Let df,i,j be the previous value of DC 002(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i be DC 001(Employee ’a’, Fact ’f ’, Week ’i’)

Update methods

1. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D, t′j , D′j}
and week j ∈ {y, y + 1}:

· <DC 001(Fact ’f ’, Team ’i’, Week ’j’),
∑

1≤k≤len(j)
cf,i,k,j >

2. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D}, team
l ∈ {t′j , D′j} and week j ∈ {y, y + 1}:

· <DC 001(Fact ’f ’, Team ’i’, Week ’j’), df,i,j + ef,j>

· <DC 001(Fact ’f ’, Team ’l’, Week ’j’), df,l,j - ef,j>

Analytics

1. Input cells: 16 * (len(y) + len(y + 1)), Updated cells: 32

2. Input cells: 48, Updated cells: 32

10 - Rollup adjusted hours per team over week to year
Definitions

� Let cf,i,j,k be DC 007(Fact ’f ’, Team ’i’, Week ’wj.k’)

� Let df,i,j be the previous value of DC 007(Fact ’f ’, Team ’i’, Week ’j’)

� Let ef,i,j be DC 006(Fact ’f ’, Week ’wi.j’)

� Let gf,i,j be DC 001(Employee ’a’, Fact ’f ’, Week ’wi.j’)

Update methods

1. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D, t′j , D′j}
and week j ∈ {y, y + 1}:

· <DC 007(Fact ’f ’, Team ’i’, Week ’j’),
∑

1≤k≤len(j)
cf,i,k,j >

2. For fact f ∈ {gross availability, holiday, education, net availability}, team i ∈ {t,D}, team
l ∈ {t′j , D′j} and week j ∈ {y, y + 1}:

· <DC 007(Fact ’f ’, Team ’i’, Week ’j’), df,i,j +
∑

1≤k≤len(j)
(gf,k,j * (1 + ef,k,j)) >

· <DC 007(Fact ’f ’, Team ’l’, Week ’j’), df,l,j -
∑

1≤k≤len(j)
(gf,k,j * (1 + ef,k,j)) >

Analytics

1. Input cells: 16 * (len(y) + len(y + 1)), Updated cells: 32
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2. Input cells: 32 + 16 * (len(y) + len(y + 1)), Updated cells: 32

11 - Compute percentage facts moving total
Definitions

� Let cf,i,j be DC 004(Fact ’f ’, Team ’i’, Week ’j’)

Update methods

1. For team i ∈ {t,D, t′j , D′j} and j ∈ future weeks:

· <DC 008(Percentage fact ’%holiday’, Team ’i’, Week ’j’),
choliday,i,j

cgrossav.,i,j
>

· <DC 008(Percentage fact ’%education’, Team ’i’, Week ’j’),
ceducation,i,j

cgrossav.,i,j
>

Analytics

1. Input cells: 30, Updated cells: 15

12 - Copy team per employee per week
Update methods

1. For week i ∈ future weeks+:

· <DC 010(Employee ’a’, Team ’t’, Week ’i’), true>

· <DC 010(Employee ’a’, Team ’t′’, Week ’i’), na>

Analytics

1. Input cells: 0, Updated cells: 2 * |future weeks+|

13 - Count amount of employees per team per week
Definitions

� Let ci,j be DC 010(Employee ’a’, Team ’i’, Week ’j’)

� Let di,j be the previous value of DC 009(Team ’i’, Week ’j’)

Update methods

1. For week i ∈ future weeks+, j ∈ {t, t′}:

· <DC 009(Employee ’a’, Team ’j’, Week ’i’),
∑

k∈set(j)
1>

2. For week i ∈ future weeks+:

· <DC 009(Employee ’a’, Team ’t’, Week ’i’), dt,i + 1>

· <DC 009(Employee ’a’, Team ’t′’, Week ’i’), dt′,i - 1>

Analytics

1. Input cells: (|future weeks+| * |set(t)|) + (|future weeks+| * |set(t′)|)
Updated cells: 2 * |future weeks+|

2. Input cells: 2 * |future weeks+|, Updated cells: 2 * |future weeks+|

14 - Determine empty teams per week
Definitions
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� Let ci,j,k be DC 010(Employee ’i’, Team ’j’, Week ’k’)

� Let di,j be the previous value of DC 011(Team ’i’, Week ’j’)

Update methods

1. For week i ∈ future weeks+:

· <DC 009(Employee ’a’, Team ’t’, Week ’i’), na>

· <DC 009(Employee ’a’, Team ’t′’, Week ’i’), (
∑

j∈set(t′)
(1)≥ 1)>

Analytics

1. Input cells: |future weeks+| * |set(t′)|, Updated cells: 2 * |future weeks+|
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Derivations AC sub-models to
queries

D.1 Relational algebra

D.1.1 RM BM

1 - Copy gross availability from DC001 to DC001
Relation to update: DC001(employee, fact, week, hours)
Example of relation:

Employee Week Fact Hours
Rik w12.2022 holiday 12
Rik w12.2022 education 8

Input relation: DC005(employee, week, gross availability)
Example of relation:

Employee Week gross availability
Rik w12.2022 40

Then the following tuple should be inserted into DC001

Employee Week Fact Hours
Rik w12.2022 gross avail. 40

Also consider relation Factgross(fact) containing tuple (”gross availability”):

Fact
gross avail.

The query achieving this insertion is:
DC0011 ← DC0010 ∪ (πemployee,fact,week,hours←grossavail.(DC005× Factgross))

2 - Compute net availability per employee per week
Relation to update: DC001(employee, fact, week, hours)
Example of relation:
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Employee Fact Week Hours
Rik gross avail. w12.2022 40
Rik holiday w12.2022 12
Rik education w12.2022 8

Then the following tuple should be inserted into DC001

Employee Fact Week Hours
Rik net avail. w12.2022 20

Also consider relation Factnet(fact) containing tuple (”net availability”):

Fact
net avail.

The expression achieving this insertion is:

DC0012 ← DC0011∪
πa.employee,d.fact,a.week,hours←(a.hours−b.hours−c.hours)

σa.fact=grossavail.∧b.fact=holiday∧c.fact=education

(ρa(DC0011) ▷◁a.employee=b.employee∧a.week=b.week

ρb(DC0011) ▷◁b.employee=c.employee∧b.week=c.week

ρc(DC0011)×
ρd(Factnet))

3 - Rollup hours per employee over weeks to year
Relation to update: DC001(employee, fact, week, hours)
Example of relation:

Employee Fact Week Hours
Rik holiday w12.2022 12
Rik holiday w13.2022 4
Rik gross avail. w12.2023 8
Anne net avail. w12.2022 20
Anne net avail. w30.2022 40

Then the following tuple should be inserted into DC001

Employee Fact Week Hours
Rik holiday 2022 16
Rik gross avail. 2023 8
Anne net avail. 2022 60

We assume that for a week on the week level the week and year value can be accessed by week.w
and week.y respectively.

The insertion can be achieved with expression:
DC0013 ← DC0012 ∪ πemployee,week←week.y,fact,hours←(Gsum(hours))(DC0012)

Important to note: the query groups by the employee, week and fact dimensions. These are
the same as as the projected dimensions, (except for hours). Since the group by dimensions al-
ways will follow from the projected dimensions, these are ommited before the group by (G) symbol.
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4 - Fill in hours where employee and week correspond to team
Relation to create: DC003(employee, fact, team, week, hours)

Input relation: DC001(employee, fact, week, hours)
Example of relation:

Employee Fact Week Hours
Rik holiday w12.2022 12
Rik holiday w13.2022 4
Rik gross avail. w12.2023 8
Anne net avail. w12.2022 20
Anne net avail. w30.2022 40

Input relation: R001(employee, week, team)
Example of relation:

Employee Week Team
Rik w12.2022 Dev1
Rik w13.2022 Dev1
Rik w12.2023 Dev3
Anne w12.2022 Con1
Anne w30.2022 Con2

Then the following relation should be unified with DC003 :

Employee Fact Team Week Hours
Rik holiday Dev1 w12.2022 12
Rik holiday Dev1 w13.2022 4
Rik gross avail. Dev3 w12.2023 8
Anne net avail. Con1 w12.2022 20
Anne net avail. Con2 w30.2022 40

The expression achieving this unification is:
DC0031 ← πemployee,fact,team,week,hours(DC0012 ▷◁ R001)

5 - Sum hours over employees to team (per week)
Relation to create: DC002(fact, team, week, hours)

Input relation: DC003(employee, fact, team, week, hours)
Example of relation:

Employee Fact Team Week Hours
Rik holiday Con1 w12.2022 12
George holiday Con1 w12.2022 4
Rik education Con2 w13.2022 8
Anne education Dev1 w12.2022 20
Susan gross avail. Dev1 w12.2022 40

Then the following relation should be unified with DC002 :
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Fact Team Week Hours
holiday Con1 w12.2022 16
education Con2 w13.2022 8
education Dev1 w12.2022 20
gross avail. Dev1 w12.2022 40

The unification can be achieved with expression:
DC0021 ← πfact,team,week,hours←(Gsum(hours))(DC0031)

A query representing a sub-model defined by Assemble’s standard Aggregation operation, can
be constructed by following the same structure as the queries of sub-models 4 and 5. Namely, for
relations α(ar1, x), β(ar2, x), γ(y, z) and aggregation function δ where ar1 and ar2 are identical
sets of dimensions, but for 1 dimension in both sets: y ∈ ar1 and z ∈ ar2 and x is the dimension
value to which δ is applied, then β can be computed from α with query:
β ← πar2,x←(Gδ(x))(α ▷◁ γ)

6 - Rollup hours over team to levels department and total
Relation to update: DC002(fact, team, week, hours)
Example of relation:

Fact Team Week Hours
education Con1 w12.2022 16
education Dev3 w12.2022 8
education Dev1 w12.2022 20
gross avail. Dev1 w12.2022 40

Also consider team - department relation TeamDepartment:

Team Department
Dev1 Development
Dev2 Development
Dev3 Development
Con1 Consultancy
Con2 Consultancy
Con3 Consultancy
Con4 Consultancy
Mar1 Marketing
Mar2 Marketing

Teamtotal

Team
total

Then the following relation should be unified with DC002 :

Fact Team Week Hours
education Consultancy w12.2022 16
education Development w12.2022 28
gross avail. Development w12.2022 40
gross avail. Total w12.2022 40
education Total w12.2022 44
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The expression achieving this unification is:
DC002′2 ← πfact,team←department,week,hours←(Gsum(hours))(DC0021 ▷◁ TeamDepartment)
DC0022 ← DC0021∪DC002′2∪πfact,b.team,week,hours←(Gsum(hours))(ρa(DC002

′
2)×ρb(Teamtotal))

7 - Compute adjusted hours
Relation to create: DC007(fact, team, week, adjusted hours)

Input relation: DC002(fact, team, week, hours)
Example of relation:

Fact Team Week Hours
holiday Con1 w12.2022 16
education Dev3 w12.2022 8
education Dev1 w12.2022 20
gross avail. Dev1 w12.2022 40
holiday Consultancy w12.2022 16
education Development w12.2022 28
gross avail. Development w12.2022 40

Input relation: DC006(fact, week, percentage)
Example of relation:

Fact Week Percentage
holiday w12.2022 0
education w12.2022 5
gross avail w12.2022 12

Then the following relation should be unified with DC007 :

Fact Team Week Adjusted Hours
holiday Con1 w12.2022 16.00
education Dev3 w12.2022 8.40
education Dev1 w12.2022 21.00
gross avail. Dev1 w12.2022 44.80
holiday Consultancy w12.2022 16.00
education Development w12.2022 29.40
gross avail. Development w12.2022 44.80

The expression achieving this unification is:
DC0071 ← πfact,team,week,adjusted hours←(1+percentage)/100(DC0022 ▷◁ DC006)

8 - Compute moving total
Relation to create: DC004(fact, team, week, hours)

Input relation: DC002(fact, team, week, hours)
Example of relation:
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Fact Team Week Hours
holiday Dev1 w52.2021 4
holiday Dev1 w1.2022 12
holiday Dev1 w2.2022 4
holiday Dev1 w3.2022 8
holiday Dev1 w4.2022 20
holiday Dev1 w5.2022 40
net avail. Consultancy w14.2022 10
net avail. Consultancy w15.2022 30
net avail. Consultancy w16.2022 10
net avail. Consultancy w17.2022 24
net avail. Consultancy w18.2022 6
net avail. Consultancy w19.2022 8

Then the following relation should be unified with DC004 :

Fact Team Week Hours
holiday Dev1 w52.2021 4
holiday Dev1 w1.2022 16
holiday Dev1 w2.2022 20
holiday Dev1 w3.2022 28
holiday Dev1 w4.2022 48
holiday Dev1 w5.2022 54
net avail. Consultancy w14.2022 10
net avail. Consultancy w15.2022 40
net avail. Consultancy w16.2022 50
net avail. Consultancy w17.2022 74
net avail. Consultancy w18.2022 80
net avail. Consultancy w19.2022 78

Also consider relation Yearlengths(year, length) with example:

Year Length
2021 52
2022 52

The expression achieving this unification is:
002withY L← πfact,team,week,hours,length(DC0022 ▷◁DC0022.week.y=Y earlengths.year Y earlengths)

P ← (a.week − b.week ≥ 0 ∧ a.week − b.week < 5) ∨ (a.year = b.year + 1 ∧ a.week + b.length−
b.week ≥ 0 ∧ a.week + b.length− b.week < 5)
γ1 ← ρa(DC002) ▷◁a.fact=b.fact∧a.team=b.team∧P ρb(002withY L)
DC0041 ← πa.fact,a.team,a.week,hours←(Gsum(hours))(γ1)

9 - Rollup hours per team over week to year
Relation to update: DC002(fact, team, week, hours)
Example of relation:
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Fact Team Week Hours
holiday Con1 w12.2022 16
holiday Con1 w13.2022 8
education Dev3 w12.2022 21
gross avail. Dev1 w12.2022 44
holiday Consultancy w12.2022 16
education Development w12.2022 29
education Development w13.2022 10
net avail. Development w12.2022 44

Then the following relation should be unified with DC002 :

Fact Team Week Hours
holiday Con1 2022 24
education Dev3 2022 21
gross avail. Dev1 2022 44
holiday Consultancy 2022 16
education Development 2022 39
net avail. Development 2022 44

The unification can be achieved with expression:
DC0023 ← DC0022 ∪ πfact,team,week←week.y,hours←(Gsum(hours))(DC0022)

10 - Rollup adjusted hours per team over week to year
Relation to update: DC007(fact, team, week, adjusted hours)
Example of relation:

Fact Team Week Adjusted Hours
holiday Con1 w12.2022 16.00
holiday Con1 w13.2022 8.00
education Dev3 w12.2022 21.00
gross avail. Dev1 w12.2022 44.80
holiday Consultancy w12.2022 16.00
education Development w12.2022 29.40
education Development w13.2022 10.20
net avail. Development w12.2022 44.80

Then the following relation should be unified with DC007 :

Fact Team Week Adjusted Hours
holiday Con1 2022 24.00
education Dev3 2022 21.00
gross avail. Dev1 2022 44.80
holiday Consultancy 2022 16.00
education Development 2022 39.60
net avail. Development 2022 44.80

The unification can be achieved with expression:
DC0072 ← DC0071 ∪ πfact,team,week←week.y,adjusted hours←(Gsum(hours))(DC0071)

11 - Compute percentage facts moving total
Relation to create: DC008(percentage fact, team, week, percentage)
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Input relation: DC004(fact, team, week, hours)
Example of relation:

Fact Team Week Hours
holiday Dev1 w3.2022 28
education Dev1 w3.2022 0
gross avail. Dev1 w3.2022 40
holiday Consultancy w15.2022 5
gross avail. Consultancy w15.2022 40

Then the following relation should be DC008 :

Percentage Fact Team Week Percentage
%holiday Dev1 w3.2022 70.00
%education Dev1 w3.2022 0.00
%holiday Consultancy w15.2022 12.50

Also consider relation FactPercentagefacts(Fact, Percentage Fact) with example:

Fact Percentage Fact
holiday %holiday
education %education

The expression achieving this unification is:
The unification can be achieved with expression:
004withPF ← DC0041 ▷◁ FactPercentagefacts
γ1 ← ρa(004withPF ) ▷◁a.team=b.team,a.week=b.week ρb(DC0041)
DC008← πa.percentage fact,a.team,a.week,percentage←((a.hours/b.hours)∗100)σb.fact=grossavail.(γ1)

12 - Copy team per employee per week
Relation to create: DC010(employee, team, week, value)

Input relation: R001(employee, week, team)
Example of relation:

Employee Week Team
Rik w12.2022 Dev1
Rik w13.2022 Dev1
Rik w12.2023 Dev3
Anne w12.2022 Con1
Anne w30.2022 Con2

Input relation: V aluetrue

Value
true

Then the following relation should be unified with DC010 :
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Employee Team Week Value
Rik Dev1 w12.2022 true
Rik Dev1 w13.2022 true
Rik Dev3 w12.2023 true
Anne Con1 w12.2022 true
Anne Con2 w30.2022 true

In order to not unnecessarily inflate the size of the data set, instead of having a false value in cells
for all employee, team, week combinations that do not coincide, this cell holds an na value. This
is reflected by the data set above, where tuples with such combinations do simply not exist.

The unification can be achieved with expression:
DC010← R001× V aluetrue

13 - Count amount of employees per team per week
Relation to create: DC009(team, week, count)

Input relation: DC010(employee, team, week, value)
Example of relation:

Employee Team Week Value
Rik Dev1 w12.2022 true
Anne Dev1 w12.2022 true
Anne Dev2 w13.2022 true
George Dev3 w12.2023 true
George Dev3 w13.2022 true

Then DC009 should become the following relation:

Team Week Count
Dev1 w12.2022 2
Dev2 w13.2022 1
Dev3 w12.2023 1
Dev3 w13.2022 1

The creation can be achieved with expression:
DC009← πteam,week,count←(Gcount(employee))(DC010)

14 - Determine empty teams per week
Relation to create: DC011(team, week, value)

Input relation: DC010(employee, team, week, value)
Example of relation:

Employee Team Week Value
Rik Dev1 w12.2022 true
Anne Con1 w14.2022 true
Anne Dev2 w13.2022 true
George Dev2 w12.2022 true
George Dev2 w13.2022 true

Input relation: TeamWeekCombos(team, week) Example of relation:
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Team Week
Dev1 w12.2022
Dev1 w13.2022
Dev1 w14.2022
Dev2 w12.2023
Dev2 w13.2022
Dev2 w14.2022
Con1 w12.2022
Con1 w13.2022
Con1 w14.2022

Input relation: V aluetrue

Value
true

Then DC011 should become the following relation:

Team Week Value
Dev1 w13.2022 true
Dev1 w14.2022 true
Dev2 w14.2022 true
Con1 w12.2023 true
Con1 w13.2022 true

The creation can be achieved with expression:
DC011← (TeamWeekCombos− πteam,week(DC010))× V aluetrue
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