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Abstract

Reconfigurable Intelligent Surfaces (RISs) are expected to be a key component in modern
wireless communication systems due to their capability to manipulate signal propagation
for software-defined radio. The deployment of RISs signifies additional adaptions for wire-
less communication applications. In this thesis, we focus on the localization problem in
RIS-enhanced environments.

Many related works tried to calculate the locations of the device of interest (DOI) using
sophisticated communication systems. However, these methods require channel matrices
among the base stations (BSs) and DOIs based on accurate field measurements, which are
rarely available in practice. Even worse, as the number of BSs and DOIs increases, the
fast-growing complexity indicates that these methods could hardly provide reliable local-
ization services. Some studies noticed this problem and designed data-driven methods us-
ing simple fingerprints. Despite their proposed solutions, these methods are only feasible
under an unrealistic assumption that the RIS is deployed only for localization purposes
instead of more important tasks, such as enlarging the signal coverage. Meanwhile, the
model-based and data-driven methods have a common problem that is the RIS codewords
are required for location inference, which would induce considerable communication bur-
dens.

Therefore, we propose a new localization paradigm that a reasonable fingerprint-based
localization system in RIS-enhanced environments should make no particular assump-
tion about the RIS functions and not require RIS codewords for online inference. This
requires the localization model to possess RIS codeword domain generalization capabili-
ties. In this thesis, we address this by extracting codeword-independent representations
of fingerprints by adversarial learning on the RIS codeword domain. Concretely, we adopt
the framework of the domain adversarial neural network and build our system contain-
ing four crucial parts. Firstly, we design a preprocessing step to transform fingerprints
with non-Euclidean features into graphs. Secondly, a graph neural network-based fea-
ture extractor encodes the graphs and outputs the fingerprint representations. Thirdly,
the location estimator composed of a multi-layer perceptron (MLP) provides the estima-
tion using fingerprint representations. Finally, the complex-value MLP-based codeword
discriminator conducts adversarial learning on the RIS codeword domain by returning its
reversed gradients to the feature extractor during backpropagation. Consequently, this
training process guides the feature extractor to generate representations whose distribu-
tions are as similar as possible for different codewords. In this way, our method can extract
codeword-independent representations of fingerprints, which supports accurate online in-
ference without RIS codewords.

We evaluate our solution using the DeepMIMO dataset. Due to the lack of results from
other studies, for fair comparisons, we also define oracle and baseline cases, which are
the theoretical upper and lower bounds of our system, respectively. In all experiments,
the proposed solution performs much closer to the oracle cases rather than the baseline
cases, which demonstrates the effectiveness and robustness of our method.
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Chapter 1

Introduction

Modern wireless communication systems are expected to offer not only better quality of
services (QoS) but also software-defined radio for diverse ubiquitous applications [1]. To
realize these expectations, the (beyond) fifth-generation (5G) mobile telecommunication
systems consider the reconfigurable intelligent surface (RIS) as a crucial component for its
capability to customize the radio frequency (RF) propagation properties, enabling config-
urable wireless networks [2, 3]. Specifically, the RIS contains a two-dimensional array of
discrete elements, whose electromagnetic impedance is individually tunable [4, 5], which
theoretically supports artificial manipulation of signal reflection, diffraction, refraction,
polarization, and absorption [6, 7, 8].

Leveraging higher-frequency RF for faster data rates is generally accepted for modern
communication networks [9, 10], whereas results in more severe signal attenuation when
there is no line-of-sight (LoS) link between the base station (BS) and the device of inter-
est (DOI) due to weaker diffraction abilities [11, 12]. Therefore, among the mentioned RIS
functionalities, controlling the signal reflection properties is the most influential one, since
it prevents excessive received signal strength indicator (RSSI) drop by constructing a RIS-
assisted link to reflect the incoming signal to the direction towards the DOI in non-line-of-
sight (NLoS) areas [13, 14]. RISs achieve this by assigning suitable complex-valued (CV) RIS
codewords to specify the beamforming configurations of all RIS elements [15, 16]. For in-
stance, Figure 1.1 shows that using an appropriate codeword, a RIS-assisted link could be
created, and improve the RSSI of the NLoS DOI2. Therefore, with proper RIS deployment
and codeword specification, various applications in (beyond) 5G networks such as smart
sensing, imaging, and localization [17, 18], benefit from the improvement of the QoS in
NLoS areas, thereby achieving comparable performances as the LoS areas [19, 20].

Such enhancement particularly promotes research on the localization problems in RIS-
enhanced environments, since alternative technologies, such as the well-known Global
Navigation Satellite System (GNSS) [21], usually cannot obtain satisfactory accuracy for all
localization scenarios, especially in NLoS areas [22, 23]. Localization has assumed con-
siderable importance as a foundational application in wireless communication systems,
which supports a series of location-based services, such as navigation [24], smart factories
[25], and virtual reality entertainment [26]. Conventional localization techniques in wire-
less communication networks utilize various auxiliary technologies, such as time of flight
(ToF) [27], RSSI [28], etc., and manage to obtain high-accuracy location estimation in differ-
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DOI1 (LoS)
DOI2 (NLoS)

BS

signal propagation without the RIS 
the RIS-assisted link of DOI2

the blocked direct link of DOI2

a RIS
Obstacles

Figure 1.1: RIS-assisted signal propagation from a BS to a NLoS device in a RIS-enhanced
environment using a codeword that controls the RIS to reflect the impinging signal to DOI2.
Here, both the RSSI and the time of flight (ToF) for DOI2 would increase.

ent scenarios [29]. However, these methods cannot be directly adopted in RIS-enhanced
environments, since the RIS changes the original signal propagation properties, inducing
wrong inference on distances or locations. For example, both the RSSI and the ToF for
DOI2 in Figure 1.1 would increase when the RIS reflects the signal from the BS in the di-
rection of DOI2. Then conventional RSSI-based methods would underestimate the distance
between the BS and DOI2 since the RSSI is inversely proportional to distance according to
signal attenuation models [30]. Whereas conventional ToF-based methods would overes-
timate this distance because the RIS-assisted link is longer than the blocked directed link
in Figure 1.1. Such opposite estimation errors illustrate that the deployment of RIS leads
to irregular estimation errors when using conventional localization technologies, which
require non-trivial adaptations for RIS-enhanced environments.

Therefore, many research works focus on the localization problem in RIS-enhanced mod-
ern wireless communication systems. Some related studies proposed sophisticated com-
munication models, then applied 3D geometric knowledge to either directly calculate DOI
positions or analyze the estimation error bounds [31, 32, 15]. However, all these works
require detailed CV channel gains/matrices among BSs and DOIs based on accurate field
measurements (e.g., ray tracing and wave optics [7]), which are hardly commonly avail-
able in practice. Meanwhile, since multiple-input, multiple-output (MIMO) [33] orthog-
onal frequency-division multiplexing (OFDM) [34] is an accepted paradigm for modern
wireless networks [35], as the number of BSs and DOIs increases, these models have to
consider more and more data links on all sub-carriers between devices. Hence, the fast-
growing complexity of these methods leads to long inference time [36], which severely
limits their usability in real-world deployments. Considering these drawbacks, other solu-
tions measure the RSSI from known BSs for data-driven fingerprint-based localization in
RIS-enhanced environments, as the fingerprints are much easier to access than field mea-
surements [37], and far simpler than CV channel matrices [38, 39]. However, these meth-
ods usually involve cooperation with optimized RIS codewords to provide high-accuracy
localization, which unrealistically assumes that the RIS is solely deployed for localization
rather than more pressing demands in modern high-frequency wireless networks, such as
enlarging the signal coverage, increasing the overall network throughput [7, 40], etc. Even
worse, these types of approaches share a common disadvantage that the CV RIS codewords

2 Codeword-Independent Representation Learning for Localization in Reconfigurable
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are indispensable during location inference, which introduces huge additional communi-
cation burdens to transmit large CV vectors to DOIs.

1.1 Problem statement

The above analysis reveals that a reasonable localization system in a RIS-enhanced en-
vironment should use simple fingerprint data to avoid the complexity issue without any
particular assumptions on the RIS functions for more pragmatic real-world deployments.
Meanwhile, the RIS codewords are expected to be unnecessary for online inference to re-
duce communication costs. To the best of our knowledge, we are the first to propose this
paradigm. However, there are still problems to implement this idea.

Conventional fingerprint-based localization systems perform well since the fingerprints
depend on only relative locations of DOIs and these methods have sufficient generaliza-
tion capabilities to locations with the help of deep neural networks (DNNs) [29]. However,
in RIS-enhanced environments, the fingerprints are affected by not only locations but also
codewords, which means conventional methods could hardly provide high-accuracy pre-
dictions due to the lack of generalization ability to codewords. In our paradigm, when
we lose control of the RIS functions, the RIS codewords could change at any time. There-
fore, the dataset consisting of RSSI measurements for offline training is unlikely to contain
fingerprints corresponding to all possible codewords. Then during online inference, the lo-
calization system will possibly make inferences using fingerprints of unknown codewords,
leading to large estimation errors, because the location estimator only fits the codeword
distribution of the training dataset. In the field of statistical learning, such performance
degradation caused by differently distributed training and test data is known as a domain
generalization (DG) problem [41], where the domain here contains all possible RIS code-
words. Meanwhile, if the DG problem remains unsolved, regardless of the data-driven
techniques used since the localization system is unaware of the codeword distribution for
online inference, the codewords are still essential as auxiliaries to compensate for the per-
formance drops caused by the lack of generalization ability to codewords.

To summarize, although the proposed localization paradigm in RIS-enhanced environ-
ments is more pragmatic than existing solutions, the introduced DG issue makes the local-
ization system impossible to obtain high-accuracy online estimations without relying on
corresponding codewords. Consequently, the location estimator either provides predic-
tions with large errors or causes huge communication loads for codeword transmission.

1.2 Research questions

The analysis in the previous section points out that the barrier to implementing the novel
paradigm is the DG problem. Therefore, the main goal of this thesis is to realize reliable
fingerprint-based localization with codeword domain generalization capabilities in RIS-
enhanced communication systems. To achieve this goal, we further decompose our goal
into several specific research questions (RQs).

RQ1. How RIS codeword domain generalization can be achieved? What are the spe-
cific pros and cons of the candidate DG solutions for our problem?

RQ2. Which DNN architecture is proper to encode the fingerprints, especially in mod-
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ern communication systems usually containing 4G and 5G operating on different fre-
quency bands?

RQ3. How to compare the performance of our solution with respect to the state of
the art, when no related works realize localization systems with codeword domain
generalization capabilities in RIS-enhanced environments?

1.3 Our contribution

To solve the RQs and achieve the main goal of this thesis, we further analyze the DG prob-
lem. In RIS-enhanced environments, the fingerprints are affected by both locations and
codewords, which means a qualified localization system conforming to the new paradigm
is capable to generalize to both factors. Given the widely validated generalization abilities
of conventional DNN-based systems to locations [29, 42, 43, 44], we consider operations on
the codeword domain. Fortunately, the impact of codewords on fingerprints is not mean-
ingless noise interference but depends on how the codewords manipulate signal propaga-
tion. This observation inspires us to learn from this correlation and try to decouple the
dependency of fingerprints on codewords to obtain codeword-independent representa-
tions of fingerprints for localization in RIS-enhanced environments. Such a system will be
able to generate fingerprint representations highly related to locations only, which kills
two birds with one stone, i.e.,

1. solve the RIS codeword domain generalization problem and avoid large estimation
errors for fingerprints of unknown codewords.

2. predict the locations without corresponding codewords during online inference.

We realize this idea by adversarial learning on the codeword domain using the Domain-
Adversarial Neural Network (DANN) [45] framework consisting of three parts: a finger-
print feature extractor, a location estimator, and a codeword discriminator. Specifically,
during the offline training stage, the feature extractor and the location estimator together
behave like conventional fingerprint-based localization systems, i.e., minimizing the loca-
tion estimation error. Simultaneously, the codeword discriminator performs adversarial
learning on codewords by reversal gradients during backpropagation to guide the feature
extractor to generate codeword-independent representations. In this way, the proposed
system would solve the DG problem, thereby fulfilling the main goal of this thesis. Our
contributions are as follows:

1. We analyzed the localization problem in RIS-enhanced networks in depth and pro-
posed a novel paradigm that is more reasonable compared with prior studies, i.e.,
fingerprint-based solutions without additional assumptions on the RIS codewords,
which also support online inference without codewords.

2. In this context, we proposed a localization solution based on codeword-independent
representation learning using the DANN framework to solve the DG problem.

3. Our proposed solution is extensively evaluated by the DeepMIMO dataset [46]. We
designed oracle and baseline cases for comparison, which convincingly demonstrate
that our solution achieves accurate localization even for unknown RIS codewords.
Additional experiments on the system parameters further demonstrate the rational-
ity and robustness of the proposed solution.

4 Codeword-Independent Representation Learning for Localization in Reconfigurable
Intelligent Surface-Enhanced Environments



CHAPTER 1. INTRODUCTION

1.4 Organization
The rest of this thesis is organized as follows. Chapter 2 discusses related works of con-
ventional localization methods and their variants in RIS-enhanced environments. Chap-
ter 3 provides fundamental information of RISs and briefly explains the domain general-
ization problem. Chapter 4 elaborates on the detailed design of the proposed codeword-
independent representation learning-based localization system. In Chapter 5, extensive
experiments and results are presented. Finally, we conclude this thesis in Chapter 6.
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Chapter 2

Related Works

This chapter first discusses conventional localization techniques. Then we focus on the
localization solutions in RIS-enhanced environments.

2.1 Conventional localization techniques

Though GNSSs provide universal localization services, the accuracy and coverage are re-
stricted. For example, even under the open sky, most smartphones can only achieve a
radius error of 4.9 m using Global Positioning System [21]. The accuracy would further
drop in GNSS-denied areas (e.g., indoor) due to signal blockage [47]. Hence, localization is
still an open issue.

Many related works utilize auxiliary technologies to realize localization with high accu-
racy, including ultrasonic [48], ultra-wideband [49], magnetic field [50], visible light com-
munication [51], etc. Despite their compelling performances, all these techniques require
additional installation of dedicated sensors on the areas for localization, which largely
confines their application scopes.

In contrast, the widespread deployment of RF-based communication technologies, such as
WiFi and Bluetooth, shows their potential for localization. A common pipeline for model-
driven RF-based localization methods is first estimating the distances to known transmit-
ters (e.g., BSs, routers), then calculating the locations of DOI using compatible geometry
knowledge, such as triangulation [37, 52]. There are many different solutions to predict
distances. Except for RSSI and ToF mentioned in Chapter 1, popular methods includes
angle of arrival [53], phase of arrival [54], etc. These model-driven methods are straight-
forward to implement, but theoretical signal attenuation models cannot be aware of the
real environmental information, such as the sizes and positions of obstacles [29]. Conse-
quently, these methods fail to achieve desired performances in real-world deployment due
to signal blockage, multi-path propagation, shadowing, [28] etc.

The limitation of model-based methods inspires research on data-driven localization tech-
niques using the most accessible RSSI [55]. Instead of calculating locations directly from
RSSI, data-driven methods first collect fingerprints, i.e., measurements of RSSI from all
transmitters at some reference locations, to construct an offline fingerprint database for
model training. Then for the query fingerprints, the trained model usually provides more
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reliable predictions than model-driven methods, since a well-trained estimation model
is aware of the on-site information, which is implicitly recorded by a good fingerprint
database [56, 57].

The performances of fingerprint-based localization methods depend on both the quality
of the fingerprint datasets and the efficiency of the data models adopted. For the former, a
crucial problem is the localization environments may change over time due to variations
of obstacles and device attrition [58, 59]. As a result, the fingerprint datasets are outdated
and invalid for the current environments. Hence, many studies rely on crowd-sourcing to
update the dataset to optimize the model parameters online for reliable localization ser-
vices [60, 61]. However, the crowd-sourcing fingerprints can be from anyone, including
the imposters who intend to attack the localization systems using falsified data [62]. To
address this issue, Sun et al. [63] proposed a transformer-based [64] adversarial sample
discriminator to identify and filter out the fake fingerprints. Whereas in [65], a genera-
tive adversarial network-based [66] anomaly detection model is designed to distinguish
abnormal unlabeled fingerprints. Besides, some studies noticed that fingerprints of dif-
ferent locations may be similar, inducing large errors for some RSSI samples [38, 67, 68].
Therefore, ViViPlus [58] designed RSSI spatial gradient consisting of the RSSI differences
of selected adjacent locations to reduce the possibility of fingerprint similarity by consid-
ering more ambient data. There are also some studies trying to compress the fingerprints
or the databases for lightweight models, quick responses, and efficient deployment. For
instance, MonoFi [69] proposed a localization system using fingerprints containing only
one RSSI value, and Arya et al. proposed Block-based Weighted Clustering [70] to simplify
the fingerprint databases. These methods all focused on the optimization of fingerprint
datasets for better localization performances.

Except for the improvement of fingerprint dataset quality, many related studies were more
concerned with the data models. Some methods analyzed their application scenarios care-
fully and chose appropriate algorithm frameworks or auxiliary techniques. In [71], an
extreme learning machine [72] is adopted for extremely fast inference speed in real-time
systems. Subedi et al. [73], on the other hand, made full use of smartphones and proposed
a fingerprint-based localization method with the help of inertial sensors. Whereas more
works were concerned with proper machine learning/DNN models to encode fingerprints.
Some related works focused on availability using small fingerprint dataset, and adopt sim-
ple k nearest neighbors (k-NN) or Naive Bayes estimators [74, 75]. Another prior studies
utilized relatively complex models such as support vector machine [76] and multi-layer
perceptron (MLP) [42] to predict the locations. There are also solutions pursuing ultimate
performances by more advanced DNN models. These methods usually involve additional
preprocessing steps for compatibility. For instance, the WiDeep [57] manually generates
noisy data and trains a denoising autoencoder to enhance the robustness of the localization
system to random noise. Ibrahim et al. [43] organized multiple fingerprints as time series
and adopted a convolutional neural network (CNN) model for localization. Chen et al. [77]
proposed a similar method to generate time series but utilized a long short-term memory
(LSTM) [78] model to encode the fingerprints. In [79], extensive experiments on various
recurrent neural networks (RNNs) [80] were conducted, including Naïve RNNs [81], gated
recurrent unit [82], and LSTM.

Although these solutions achieve competitive results, they are still far from ideal per-
formances for data-driven approaches, since the mentioned models are not particularly
designed for fingerprints with non-Euclidean properties [83]. Such lack of concordance
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significantly downgrades the localization accuracy, especially when the fingerprints in-
volve multiple RF technologies or frequency bands [84]. By contrast, graph neural network
(GNN)-based models, which are designed for non-Euclidean data, achieve state-of-the-art
performances in fingerprint-based localization [84, 85, 86]. Hence, in this thesis, we would
extend a heterogeneous GNN-based model first proposed in one of our prior works [84] to
encode the fingerprints, which keeps the heterogeneity of fingerprints measured in mod-
ern communication networks operating on multiple frequency bands. We will provide
further explanation in Chapter 3.2.

2.2 Localization in RIS-enhanced environments

The RIS is capable to manipulate signal propagation, thus all applications relying on wire-
less communication networks need to be updated when the RIS is deployed. Similar to con-
ventional methods, there are both model-driven and data-driven localization techniques
for RIS-enhanced environments.

Model-driven methods usually have specific optimization goals to directly or indirectly fa-
cilitate localization. Wymeersch et al. [87] utilized the Fisher information analysis [88, 89]
to select the best RIS codewords for localization. Elzanaty et al. [31] designed a RIS code-
word optimization scheme to maximize the signal-to-noise ratio at the DOI to facilitate lo-
calization, and provided analysis on the Cramér-Rao lower bound [90] of the localization
error. Despite their contributions, these works are only feasible when the channel gains/-
matrices among BSs, DOIs, and the RIS are known, which requires accurate field measure-
ments (e.g., ray tracing [7]), thereby greatly restricting their applicability. Meanwhile, mod-
ern communication networks usually adopt MIMO antennas using OFDM. Consequently,
as the number of BSs and DOI increases, the complexity of these methods increases fast.
Hence, many studies explicitly restrict the number of devices in the environment. For in-
stance, in the analysis of Wymeersch et al. [87], the number of BSs is set to 1 for simplicity.
Such fast-growing complexity would induce unacceptable time delay during location in-
ference when there is a vast number of requests for localization services.

Unfortunately, most research works on localization in RIS-enhanced environments could
be categorized as model-driven ones. Only a few works noticed the mentioned drawbacks,
utilized fingerprints, and proposed data-driven methods. Zhang et al. [38] designed a code-
word selection method that tries to enlarge the differences of fingerprints of adjacent po-
sitions for high-accuracy localization. They further refined this work and proposed an
integrated localization system in [91] realizing a centimeter-level error. Huang et al. [39]
also picks the best available RIS codeword, but simply for signal strength improvement,
which indirectly enhances localization performance. However, the prerequisite for these
methods is the RIS is deployed solely for localization rather than more important tasks like
enlarging the coverage, increasing the network throughput [40], etc. Such assumptions are
very unlikely to happen in real-world deployments. Even if realized, these data-driven
methods and aforementioned model-driven methods share a common disadvantage in
that they all require RIS codewords for location inference, which results in inescapable
additional communication burdens on the networks to continuously transmit large CV
vectors as requested by DOI. As the number of DOIs grows, the whole localization sys-
tem would eventually collapse and affect the operation of RIS-enhanced communication
systems. Hence, this thesis pursues a localization system in RIS-enhanced environments
that does not require RIS codewords during online inference.

Codeword-Independent Representation Learning for Localization in Reconfigurable
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2.3 Domain generalization
The domain generalization (DG) problems [41] usually occur in deployments of statistical
learning techniques due to distinct distributions of offline training data and online data.
This phenomenon is very common because collecting a training dataset perfectly repre-
senting real-world scenarios is tend to be impossible. Although statistical learning meth-
ods, especially for DNNs, have recognized generalization capabilities, this is only true for
online data of the same distribution as the training data [92]. Even for computer vision
tasks involving millions of images for training, the DG issue still significantly affects on-
line accuracy. The most famous example is [93], where the classification accuracy drops
up to 15% for re-selected online data without adding any new images. Figure 2.1 shows an
example of the DG problem using digits caused by distinct fonts, backgrounds, and colors.
In some studies, the DG problem is also termed as domain shift [94] or out-of-distribution
problem [95, 41].

Figure 2.1: Digits from different datasets. The digits are samples from MNIST [96], MNIST-
M [45], and SVNM [97].

There are many different research topics addressing the DG problem. Multi-task [98] learn-
ing reuses the data representations for training on different related tasks to help the model
to perform better for the original task. However, multi-task learning models obviously
only work for the domains they have already seen, which hardly fully solves the DG prob-
lem. Transfer learning [99, 100] pre-trains the models using data from classes with a large
number of samples, then fine-tunes the model parameters with data from other classes.
This canonical pipeline could be used for solving the DG problem by fine-tuning the mod-
els using data from different domains. The main drawback of transfer learning methods is
they require data from other domains for training, which is not always possible [101], such
as the localization problem in this thesis. Besides, meta-learning techniques [102, 103] are
popular recently as theoretically promising solutions to DG problems. Meta-learning tries
to learn a relatively universal rule on different datasets for different tasks, i.e., learning to
learn [104], which is close to human learning habits. Although meta-learning methods are
attractive for DG problems, the computation time is always extremely long [105]. Mean-
while, their DG performances are sometimes unsatisfactory due to incidental overfitting
on training datasets [105].

Considering the disadvantages of the discussed methods of DG issues, we focus on more
widely adopted solutions here for our localization problem in this thesis. Data augmenta-
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Figure 2.2: The pipeline of representation learning-based solutions solving the DG problem
in this thesis. For the data of the same location with different codewords, feasible solutions
would minimize either the differences in fingerprint representations or the final location
estimations or both of them.

tion [106] aims to generate more data according to the existing training dataset. As a result,
the augmented data is of greater diversity to fulfill DG. However, the manually generated
data should be meaningful for the concerned tasks, otherwise, this process is just creating
noisy data. In our problem, data augmentation only works if we manage to generate fin-
gerprints of unknown codewords, which is impossible when the channel matrices among
BSs, DOIs, and the RIS are unknown. Hence, methods based on data augmentation are
hardly feasible for our problem. In contrast, representation learning [107] methods are
particularly suitable in this thesis. The basic idea of representation learning methods to
solve the DG problems is trying to unify either the data representations or the inference re-
sults, or both of them [41, 108], where the domain labels for training are required. When
the extracted data representations are invariant for different domains, only relevant to
the concerned tasks, domain generalization is achieved. Taking the localization problem
in RIS-enhanced environments as an example illustrated in Figure 2.2, our goal is to make
the fingerprint representations and the estimated locations consistent for fingerprints at
the same locations regardless of the codewords.

In this context, contrastive learning [109] is a straightforward solution. A feasible pipeline
for contrastive learning for our question is first generating fingerprint pairs whose corre-
sponding locations are the same, whereas codewords are different. Then we try to mini-
mize either the contrastive loss [110] between estimated locations or the Kullback–Leibler
divergence [111] between the distributions of fingerprint representations for different
codewords. However, training a high-accuracy regression model preferably traverses data
pairs as much as possible, leading to heavy training overheads [112]. Assuming we have D
domains and N samples for each domain, then there will be 1

2 D2N(N − 1) data pairs avail-
able for training. In comparison, as another effective solution for the DG problems, DANN
[45, 113] only uses DN data points to perform adversarial learning on the domain labels
to generate data representations that are irrelevant to the concerned domain [114, 115].
DANN implements this by reversing the gradient of the domain discriminator during back-
propagation [116]. Although the DANN requires explicit domain labels for training [41],
which limits its versatility, this disadvantage does not hold in this case, since the domain
labels are just the codewords. Therefore, the DANN is the more suitable technique for our
problem. Section 3.3 further provides details of DANN frameworks.

Codeword-Independent Representation Learning for Localization in Reconfigurable
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Chapter 3

Preliminaries

This chapter will first provide fundamental information about RISs, including their work-
ing principles and the method for calculating path loss in RIS-enhanced environments.
Next, we will review our prior work describing the way to transform fingerprints into
graphs. Finally, the training process of DANN frameworks is elaborated.

3.1 Reconfigurable Intelligent Surfaces
This section will first explain how the RISs work. Then we will elaborate on the path loss
calculation in RIS-enhanced environments.

3.1.1 The working principle of RISs
In communication systems equipped with MIMO antennas, the directions of beamforming
depend on the constructive interference of all RF signals from radiators [117]. Figure 3.1
illustrates that the signal directions of two scenarios are different due to different time de-
lays of two radiators. Such time delays manifest as phase shifts on the frequency domain.
Hence, the two radiators together in Figure 3.1 (a) or (b) can be considered as a phase
shifter.

constructive interference constructive interference

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5t5 t4 t3 t2 t1 t5 t4 t3

(a) (b)

Figure 3.1: Different beamforming directions for two radiators with different time delays.
In (a), two radiators emit the same signal at the same time; In (b), two radiators also emit
the same signal, but the left one starts from t3, inducing a different constructive interfer-
ence compared with (a), thereby a left direction signal.
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Figure 3.2: RIS behaviors: anomalous reflection (including specular reflection) and focus-
ing.
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Figure 3.3: Different beamforming directions given different codewords.

RISs are capable to reflect the incident signals in the desired directions, as a RIS contains
a 2D array of such phase shifters whose phases are individually reconfigurable and con-
trolled by assigned impedance [4]. Codewords are CV vectors characterizing phase shifts
of all RIS elements. Given a RIS with M elements, its codeword ψ ∈ CM×1, where for the
element m with a phase shift φ, ψm = e jφ [118]. Codewords determine the RIS behaviors,
which generally include two categories: anomalous reflection and focusing [119, 120], as
shown in Figure 3.2. Concretely, anomalous reflection means that the RIS reflects the im-
pinging signals towards arbitrary directions in parallel, thus also including the common
specular reflection (the angle of incidence equals the angle of reflection). Whereas focus-
ing would converge the reflected signals to one point, which is very effective for a single
DOI, but at the same time means low versatility. Hence, in this thesis, we only consider the
RIS as a pure anomalous reflector, whose function is merely the manipulation of phase
shifts.

In this context, assigning different codewords to the RIS can help obtain different reflec-
tion angles for different devices/functions, as shown in Figure 3.3. Hence, when the code-
words change, shifts in RSSI values occur even for the same locations, which consequently
downgrade the estimation accuracy of conventional RSSI fingerprint-based localization
solutions in RIS-enhanced wireless communication systems.
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Figure 3.4: A sketch map illustrating a RIS manipulating reflection angles in two dimen-
sions.
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Figure 3.5: Shifted RSSI measurements (dB) using four different codewords for the same
area. Each pixel denotes a RSSI value.

3.1.2 RIS codewords

Limited by material and production costs, the number of codewords supported by RIS is
usually restricted [121]. The number of available RIS codewords C depends on the RIS
resolution [122]. For instance, if a RIS supports a phase shift range of 180◦ with a 30◦ res-
olution, then C = (180/30)2 = 36, because the RIS can manipulate reflection angles in two
planes as shown in Figure 3.4. An alternative way to denote the resolution is the number
of bits, i.e., a resolution of b bits means C = 2b [123]. Most current RIS prototypes support
only 1 bit (C = 2) or 2 bits (C = 4) [124, 125], and a few could achieve up to 6 bits (C = 64)
[126].

In subsequent evaluation, we need to generate all possible RIS codewords (codebook) for
experiments given C = C2

l (resolution counted in degrees) and the phase shift range R for
RSSI calculation and domain adversarial learning. We apply the method in [127]. Sup-
pose the RIS contains M = MH ×MV elements. Then for the mH -th (mH ∈ [1, MH]) column of
the Discrete Fourier Transform (DFT)-based codebook [128] CH ∈ CMH×Cl for the horizontal
dimension is

1
p

MH

[1, e− j mH
MH

R·1, e− j mH
MH

R·2, ..., e− j mH
MH

R·(MH−1)]T

Then we can use a similar way to calculate the DFT-based codebook CV ∈ CMV×Cl for the
vertical dimension. Finally, the codebook C =

p

MH MVCH
⊗

CV , where C ∈ CM×C , and
⊗

denotes Kronecker product [129]. Each column in C is a legitimate codeword.

Codewords have a great impact on fingerprints. As shown in Figure 3.5, the RSSI values
are different at the same locations when using different RIS codewords, which means as
long as the fingerprint dataset for offline training does not contain RSSI measurements
corresponding to all possible codewords, the fingerprints for online inference would be
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Figure 3.6: Path loss model in RIS-enhanced environments where the channel matrices H
among the BS, the DOI, and the RIS are known.

of different distribution from the training dataset. We will provide our solution to the
induced DG problem in the next chapter.

3.1.3 RSSI calculation in RIS-enhanced environments

The DeepMIMO dataset [46] for evaluation in this thesis does not provide RSSI values,
thereby we cannot directly build fingerprints for experiments. Hence, this section elab-
orates on the RSSI calculation method in RIS-enhanced environments using channel ma-
trices among BSs, DOI, and the RIS given by the DeepMIMO.

To calculate the RSSI measured by DOI, a common practice is to apply a link budget model,
which describes all power gains and losses during the whole signal transmission process
[130]. In general, the power gains (dB) Gp come from transmitter output power, transmit-
ter/receiver antenna gain, whereas the power losses mainly include transmitter/receiver
losses (dB) Lp and path loss (dB) PL [131]. Then applying a similar link budget model in
[132], we have

RSSI (dB)= Gp − Lp −PL. (3.1)

The values of Gp and Lp are usually given in the device documentation, so the remaining
question is how to calculate PL. First, we assume that the RIS would only affect the phase
shifts, which means there is no loss in the amplitude of the incident signals. Next, our
path loss model works in a MIMO-OFDM system with K sub-carriers, containing a BS with
P antennas, a DOI with Q antennas, and a RIS with M elements. For the sub-carrier k, the
channel matrices of the direct link HDL,k ∈ CQ×P (from the BS to the DOI) and the RIS-assisted
link, including HBR,k ∈ CM×P (from the BS to the RIS) and HRD,k ∈ CQ×M (from the RIS to the
DOI), are provided by the DeepMIMO dataset. Figure 3.6 depicts the scenario we consider
for path loss calculation. According to [133], for all K sub-carriers, the channel matrix of
the direct link HDL ∈ CQ×P is just the sum of all sub-carrier components, i.e.,

HDL =
K
∑

k=1

HDL,k (3.2)

As defined by [127], given the codeword ψ ∈ CM×1, the channel matrix of the RIS-assisted
link HRL ∈ CQ×P over all K sub-carriers is calculated as:

HRL =
K
∑

k=1

HRD,kdiag(ψ)HBR,k, (3.3)
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where diag(ψ) is the diagonal matrix with the entries of ψ on its diagonal. Note that the
codeword ψ is the same for all K sub-carriers. Finally, using the method described in [38,
91], the path loss PL in decibels from the BS to the DOI in this model is

PL(dB)= 10 log10 |HDL +HRL |2 = 20 log10 |HDL +HRL |, (3.4)

where | · |means the complex magnitude. Finally, combining these formulas together, we
can calculate the RSSI of BSs for DOI using the DeepMIMO dataset.

Note that we do not need this RSSI calculation step in real-world deployments, since we
could directly access the RSSI values using user devices, such as mobile phones. We em-
phasize that our fingerprint-based method has no dependencies on accurate field measure-
ments. The experiments in this thesis rely on simulation using the DeepMIMO because RIS
hardware is currently rare to be found. There are only several prototypes all over the
world [124, 125, 126]. Hence, collecting real-world data through experiments is hardly
possible by 2022.

3.2 Fingerprint-graph Transformation

Section 2.1 argued that most data-driven fingerprint-based methods utilize conventional
machine learning techniques or deep learning models, which only work for Euclidean
data whereas ineffective for non-Euclidean data (e.g., fingerprints) [84]. In comparison,
GNNs are particularly designed for non-Euclidean data and have proven to be efficient
for various downstream tasks [134]. Hence, the fingerprints should be first transformed
into graphs to adapt GNN-based models. In our prior work [84], we proposed a two-stage
preprocessing method to achieve this.

We consider an environment with |T | RF technologies, where T = {t1, t2, ...} denotes the set
of all RF types. Then, as illustrated in Figure 3.7, the transformation method is as follows.

Step 1. Abstraction: First, we gather information of all transmitters, including their
types and locations. In the example shown in Figure 3.7, the transmitters are access
points (APs), and T = {t1, t2}, which means there are two types of RF signals. We con-
sider transmitters as vertices in a graph. The green vertex is the DOI, whose location
is unknown. Then we assign the vertex features for transmitters by the combination
of their locations and RSSI. Note that vertices of different types should be considered
per type, which would result in heterogeneous graphs.

We decided to generate heterogeneous graphs for keeping the heterogeneity of the whole
environment. Different RF technologies usually have different propagation laws, which
means that encoding with the same set of model parameters is insufficient. Next, for con-
nectivity, we first make two assumptions to decide the adjacency between vertices.

Assumption I: Edges between vertices denote all possible signal propagations and
interferences.

Assumption II: A transmitter will only affect other transmitters of the same type.

Then we could follow the assumptions and link the nodes.

Step 2. Connection: Considering Assumption I, since the DOI measures RSSI from
all transmitters, there must be edges between the DOI and all transmitters. Note that
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Figure 3.7: The fingerprint-graph transformation method proposed in our prior work [84],
instantiated for |T |= 2 as an example.

Figure 3.8: The architecture of DANN first proposed in [45].

these edges are unidirectional because the DOI is only a measuring device. Assump-
tion II implies that the RSSI from a transmitter measured by the DOI is a combined
result of all transmitters of the same type. Hence, transmitters of the same type will
be fully connected. Since transmitters of the same type will affect each other, the
edges within each sub-graph are bidirectional.

We can also assign edge features by theoretical signal attenuation models. In [84], the Log-
Normal Shadowing Model (LNSM) is adopted [30]. In this way, given an arbitrary finger-
print, this transformation method could generate a corresponding graph for GNN models.
In the next chapter, we would modify this preprocessing method to generate graphs for
fingerprints gathered in RIS-enhanced environments.
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3.3 Domain Adversarial Neural Network
In Section 2.3, we discussed the DG problem and concluded that the DANN framework fits
the problem in this thesis. This section would briefly elaborate on the theory of DANN. Fig-
ure 3.8 illustrates the DANN framework, containing three main parts: a feature extractor, a
domain discriminator (classifier), and a label predictor, which collaborates during offline
training to achieve domain generalization [45] by extracting features that are irreverent to
the concerned domain. Specifically, except for minimizing the errors on the label estima-
tion, the DANN also reverses the gradient with the help of a gradient reversal layer (GRL)
[113]. Concretely, the GRL only works during backpropagation (BP). Its behaviors include
first obtaining the gradient from the first layer of the domain discriminator, reversing the
gradients from the domain discriminator by multiplying a negative number −λ (λ > 0),
and finally passing the reversed gradient to the subsequent layer. Consequently, the fea-
ture extractor would simultaneously consider gradients from both the label predictor to
minimize the estimation errors and the domain discriminator to minimize the divergence
of feature distributions for different domain labels.

There are some additional concerns on the negative constant −λ (λ > 0). During the initial
phase of training, the feature extractor is not well-trained, so at this stage, the reversed
gradient from the GRL should be suppressed, i.e., λ closing to 0. Then, as the training
proceeds, the feature extractor could gradually extract meaningful representation vectors,
thus the importance of adversarial learning on the domain is growing. Therefore, λ should
gradually grow from 0. Supposing p ∈ [0,1] denotes the training progress, then instead of
a fixed λ, we can define a more flexible version λp [113]:

λp =
2

1+ ex p(−γ ∗ p)
− 1,

where we set γ = 10 by default in the following experiments. λp would gradually grow
from 0 to 1 as the training proceeded.

In this way, a well-trained feature extractor can ensure the distributions of the extracted
features over different domains are as similar as possible. In this way, no matter what the
domain labels are, the generated data features are ideally of the same distribution, which
means we manage to solve the DG problem according to the analysis in Section 2.3. In the
next chapter, the building blocks in the DANN framework for our problem are explained
in detail.
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Chapter 4

System Design

In this chapter, the details of our proposed localization solution are given, including the
overall design, the offline training, and online inference pipelines, building blocks, and
their corresponding motivations.

4.1 System overview
In this thesis, the proposed paradigm advises against making any assumptions on the RIS
functions for more pragmatic deployments but leading to codeword domain generaliza-
tion issues. However, conventional fingerprint-based localization systems would suffer
from significant performance drops, because their underlying algorithms depend on an
assumption that is invalid here, i.e., the fingerprints for training and testing are of the
same distribution.

Therefore, we propose our DANN-based solution to solve the DG problem for localization
in RIS-enhanced environments. This section would dive into the details of our proposed
localization system. Section 3.3 mentioned that using DANN, a well-trained feature extrac-
tor can obtain domain-independent data representations. In order words, during online
inference, the domain labels are no longer necessary. Hence, the offline training and on-
line inference pipeline are different in our system. This section will describe these two
phases separately. The structures of the building blocks in the proposed system would be
explained in Section 4.2.

4.1.1 The offline training pipeline
In Section 2.3, we discussed that domain labels are indispensable for DANN model train-
ing. Therefore, except for the fingerprints and the corresponding locations L∗, the domain
labels, i.e., the codewords ψ∗ are also required in the training dataset. Before model train-
ing, our system first transforms the fingerprints into graphs, since recent studies argued
that for non-Euclidean data like fingerprints, graph neural networks could extract more ef-
fective encodings for various downstream tasks than other models designed for Euclidean
data [83, 84]. The specific fingerprint-graph transformation method would be elaborated
on later in Chapter 4.2.1. After we obtain the fingerprint graphs, the training process is
ready.

Codeword-Independent Representation Learning for Localization in Reconfigurable
Intelligent Surface-Enhanced Environments

21



CHAPTER 4. SYSTEM DESIGN

fingerprints

fingerprint-

graph

transformer

feature

extractor

location

estimator

codeword

discriminator

LL 𝐿∗
true 

locations

estimated 

locations
𝐿

LC
𝜓

estimated

codewords 𝜓∗ true 

codewords

gradient

reversal

layer

fingerprint representations

training dataset

fingerprint

graphs

forward propagation backpropagation

Figure 4.1: The framework of our proposed localization system (for offline training).

Figure 4.1 illustrates the whole training pipeline. During the forward propagation, the
feature extractor first encodes the fingerprint graphs and obtains their representation vec-
tors, which would be fed to both the location estimator and the codeword discriminator for
location estimation L̂ and codeword estimation ψ̂, respectively. To measure the errors be-
tween the estimated results and the true labels, we utilize two loss functions separately for
locations and codewords. Concretely, the mean squared error (MSE) [135] measures the lo-
calization errorLL between estimated locations L̂ and true locations L∗, i.e., LL =MSE(L̂, L∗).
Otherwise, measuring the codeword errors is relatively more complex, since the code-
words are complex-valued vectors, whereas conventional loss functions only support real
numbers. Hence, here we adopt the complex-valued version MSE (CV-MSE) for codewords
[136, 137, 138], i.e., given −→c1 =

−→a1 +
−→
b1 i and −→c2 =

−→a2 +
−→
b2 i, where c1, c2 ∈ CN×1,

CV-MSE(−→c1 ,−→c2 ) =
1
N

N
∑

i=1

(|a1[i]− a2[i]|2 + |b1[i]− b2[i]|2).

In this way, we can obtain a real-number loss to describe the estimation error for com-
plex values. Then, for estimated codewords ψ̂ and true codewords ψ∗, the codeword esti-
mation error LC = CV-MSE(ψ̂,ψ∗). The whole forward propagation process is denoted by
green arrows in Figure 4.1. On the other hand, the backpropagation (BP) process is already
discussed in Section 3.3, and denoted by yellow arrows in Figure 4.1.

4.1.2 The online inference pipeline
The feature extractor is theoretically capable to obtain codeword-independent representa-
tions after a proper training process. Hence, thanks to the adversarial learning on the RIS
codeword domain by the DANN framework, during online inference, the codewords are
unnecessary for location estimation, which meets our requirement theoretically. Figure
4.2 depicts the online inference pipeline of the proposed system. Compared with the train-
ing pipeline, the codeword discriminator branch is non-essential, thereby being removed.

22 Codeword-Independent Representation Learning for Localization in Reconfigurable
Intelligent Surface-Enhanced Environments



CHAPTER 4. SYSTEM DESIGN

fingerprints

fingerprint-

graph

transformer

feature

extractor

location

estimator

estimated 

locations
𝐿

fingerprint representations

fingerprint

graphs

Figure 4.2: The online inference pipeline of our proposed system.

4.2 Building blocks

This section focuses on the implementation details of each part of the proposed system as
shown in Figure 4.1.

4.2.1 Fingerprint-graph transformer

We propose an extended version of the fingerprint-graph transformer in our prior work
[84] given in Section 3.2.

We first define the localization scenario. Suppose a communication system operates on
frequencies F = { f1, f2, ...}. For each f ∈ F , there are several BSs B f = {b1

f , b2
f , ...} whose

locations L (·) are known. Besides, the DOI can measure the RSSI for all BSs operating in
all frequencies. Finally, there is a RIS in this system whose function is unknown, whereas
we know its location. Now we could start to build graphs.

We first consider all the BS, the RIS, and the DOI as vertices in a graph. Then we can con-
struct a sub-graph for every f ∈ F as shown in the left part of Figure 4.3, including B f , the
RIS, and the DOI. Note that the DOI and the RIS are shared among sub-graphs. The BSs
working in different f should be categorized as different kinds of vertices, inducing het-
erogeneous graphs when |F | > 1. Actually, the type of RF signals T in Section 3.2 and the
operating frequency F here play the same role, i.e., as discrimination between different
sub-graphs. This is because, for different f , the signal propagation laws are still different,
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𝑓2
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RIS𝑓1

𝑓2

DOI

RIS

sub-graphs

BSs

bidirectional links among BSs

unidirectional RIS-assisted links

unidirectional direct links

Figure 4.3: A fingerprint-graph transformation example for F = { f1, f2}.
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Figure 4.4: The feature extractor for the fingerprint graphs from Figure 4.3.

which also require different sets of model parameters to encode. The vertex features for
every BS b is [RSSIb,L (b)], where RSSIb is the RSSI value of b measured by the DOI. We can
also assign vertex features of the RIS by L (RIS). Obviously, we extend the idea in [84] by
also considering the RIS as vertices in graphs.

Next, we consider the connectivity between vertices. The right part of Figure 4.3 illustrates
the edges among all vertices. Concretely, we adopt the same assumptions in Section 3.2.
Therefore, we fully connect B f within each sub-graph by bidirectional edges. For the direct
links, the edges are unidirectional from BSs to the DOI, as the DOI is a measuring device
here. Similarly, the RIS is also a (nearly) passive device [139], so the RIS-assisted links are
also unidirectional from the BSs to the RIS and from the RIS to the DOI. In this way, these
edges represent all possible signal propagations and interferences in this communication
system. Additionally, for the edges among BSs and edges from BSs to the RIS, we also assign
edge features by LNSM, indicating the theoretical relative strength of signal attenuation in
between.

In this way, given arbitrary fingerprints, we can apply the transformation method to gen-
erate a corresponding heterogeneous graph containing |F | sub-graphs, which is ready to
be fed into the GNN-based feature extractor. The heterogeneous graphs here essentially
correspond to the heterogeneity of communication networks coming from different kinds
of devices, multiple frequency bands of carriers, etc., which requires many sets of model
parameters to encode. Some may argue that this preprocessing method involves locations
of BSs and DOI, which still results in additional communication burdens compared with
transmitting RIS codewords. However, we can easily represent the locations by 3-axis co-
ordinates, which are much simpler than large CV vectors of codewords. Meanwhile, the
locations of BSs and RIS are unlikely to change very often, thus infrequent updates are
sufficient. By contrast, we cannot make sure of how often the codeword changes. Hence,
the extra transmission of locations is almost negligible.

4.2.2 Feature extractor

The fingerprint graphs generated by the transformer are heterogeneous, thereby we need
a heterogeneous GNN-based model to encode these graphs. Specifically, as shown in Figure
4.4, for each sub-graph, we first respectively assign a GraphSAGE [140] model using pooling
aggregators by default to obtain the corresponding sub-graph-wise readout by the mean
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of latent features of all vertices. Then all sub-graph-wise readouts are concatenated to
a vector, which would be fed into a dense layer for the fingerprint representations. We
utilize leaky ReLU [141] as the activation functions for the feature extractors, where the
negative slope coefficient is -0.02 for all the following experiments.

The reason for choosing the GraphSAGE to encode each sub-graph is we can manually set
the aggregation depth for neural message passing [142] and randomly select several paths
among all possible ones to reduce the complexity due to potential numerous vertices (BSs)
and edges (communication links) in our fingerprint graphs [140].

4.2.3 Location estimator
The fingerprint-graph transformer and the feature extractor cooperate to generate finger-
print representations. To further obtain the location estimation, we need to apply the loca-
tion estimator to read out the fingerprint representations. In our system, we simply adopt
a three-layer perceptron as the location estimator activated by the leaky ReLU [141].

4.2.4 Codeword discriminator
In comparison, we cannot similarly apply an MLP for the codeword discriminator, sinceψ∗
are CV vectors, which means that the codeword discriminator should support CV outputs.
Hence, we implement dense layers that accept both real-value (RV) and CV inputs and
outputs CV vectors with the help of the cplxmodule library [143]. In this way, we can build
a CV-MLP for the codeword discriminator. Additionally, the activation function should
also support these CV-adapted layers. Therefore, we utilize the modReLU [144] to activate
the codeword discriminator in our system, which is a variation of the ReLU designed for
pointwise nonlinearity and only manipulates the magnitude of the CV inputs. For c ∈ C,

modReLU(c) = ReLU(|c|+ b)×
c
|c|

where b ∈ R is a bias parameter of the nonlinearity. In other words, b is a threshold to
decide whether to make the activated c equal to zero. We set b = 0.5 by default.

In Section 3.1.1, we discussed that the codewords describe the phase shifts of all RIS el-
ements. Instead of using complex numbers to represent the codewords, we can alterna-
tively use the RV phase shifts of all RIS elements by radians. Then additional modifications
for CV supports are unnecessary for the codeword discriminator. However, the complex
numbers are widely used in signal processing and electrical engineering, as they provide
convenient representations for the phases and amplitudes of periodic signals [145, 146].
Whereas real numbers are not straightforward to represent this information. Hence, us-
ing real numbers to represent codewords would make it difficult for the codeword dis-
criminator to learn from the data and provide reliable adversarial gradients for the DANN
framework [147, 148]. Subsequent experiments in Chapter 5 would demonstrate that the
CV version of our proposed solution performs better than RV version one.
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Chapter 5

Evaluation

This chapter provides the experiment results of our proposed localization system in RIS-
enhanced environments. Our experiments fully rely on the DeepMIMO dataset [46]. We
would first introduce the settings of the DeepMIMO for our evaluation. Next, the perfor-
mances of our proposed system are given, including the experiments on the impacts of
crucial system parameters to demonstrate the robustness of our method.

5.1 Experimental setup

5.1.1 Configurations of the DeepMIMO dataset

For our experiments, we use the dataset generated by the DeepMIMO [46]. The dataset is
a generative dataset based on ray-tracing measurements, which is semi-customizable by
user specifications on the system parameters [46]. Our experiments are fully conducted
in the O1 (Outdoor 1) scenario of the DeepMIMO as shown in Figure 5.1. Concretely, we
are interested in a modern wireless communication network containing both 4G and 5G.
Hence, among all available operating frequency choices in the DeepMIMO, we consider
3.4 GHz, 3.5 GHz (4G LTE Band 42 [149]), and 28 GHz (5G NR FR2 Band n257 [150]). We
activate six BSs in the DeepMIMO simulation tool, where the BS5 plays the role of RIS
using the same method discussed in [127]. We specify the BSs, RIS, and DOI, all equipped
with MIMO antennas. Detailed settings are listed in Table 5.1.

Considering the positions of BSs and obstacles, we specify the test areas of DOI containing
both LoS and NLoS regions for BS18 as shown in Figure 5.2. Taking the testing point (ROW
1268, COL 91) as the center, we can equidistantly expand the boundaries to obtain test

Table 5.1: DeepMIMO settings for our experiments

Operating frequency 3.4 GHz, 3.5 GHz, 28 GHz
Activated BSs 1, 2, 3, 4, 5 (RIS), 18

Antennas of BSs and RIS 4 × 4
Antennas of DOI 2 × 2

Bandwidth 200 MHz
The number of OFDM sub-carriers 512
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Figure 5.1: The O1 scenario in the DeepMIMO [46].
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Figure 5.2: An top-view sketch map of the experimental area using the O1 scenario in the
DeepMIMO.
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areas, where half are LoS whereas the other half are NLoS forBS18. We test the localization
performances in the testing area.

5.1.2 Experimental parameters

With the help of the DeepMIMO dataset, we set up the localization scenario for evaluation.
In this section, we further specify the experimental parameters for the following data gen-
eration. Concretely, we consider the number of codewords C and the size of test areas A.
Additionally, we test the robustness of our localization system by manually adding extra
additive white Gaussian noise (AWGN) N ∼ N (0,σ2) [151] to the calculated RSSI. To sum-
marize, we can use a parameter set {C , A,σ} to describe the experiments.

In Section 3.1.2, we mentioned that most RIS prototypes only support C = 2/4 [124, 125],
several could realize C = 64 [126]. For forward-looking results in this thesis, we set an
initial resolution of 15◦, and R = 180◦ here. Then we have C = 144. Besides, we set A =
51.84 and σ = 0 by default. We will first apply the default experimental parameter set
{C = 144, A = 51.84,σ = 0} for evaluation to check the feasibility of our solution. Then
we respectively change one parameter and keep the other two unchanged to separately
investigate the impact of these three experimental parameters on the proposed solution.

5.1.3 Dataset generation and model implementation

Given the experimental parameters {C , A,σ}, we first apply the formulas in Section 3.1.2
to generate the codebook C using C . Next, we input the setting in Table 5.1 and A to the
DeepMIMO dataset generator by modifying the parameters.m file, which is one of the
supporting scripts provided by the DeepMIMO [46]. Then, after running another script
DeepMIMO_Dataset_Generator.m, we would obtain the channel matrices among BSs,
DOI, and the RIS, and corresponding DOI locations, which are the labels in our problem.
Finally, applying the RSSI calculation pipeline given in Section 3.1.3 using C and σ, we
could calculate the RSSI values, thereby constructing fingerprint datasets for evaluation.
Here, we can simply assume that for all BSs we activate, Gp = 40 dB and Lp = 20 dB.

For the train/test split, we first randomly sample 80% available codewords, then randomly
sample 80% locations in the testing area. Then for a data point, if both its location and
codeword are sampled, it belongs to training datasets. Conversely, if neither its location
nor codeword is sampled, it would be assigned to test datasets. In other words, we test
the estimation model using fingerprints of unknown locations and unknown codewords.
In this way, the test data for online inference challenge the generalization capabilities for
both locations and codewords.

We implemented the proposed system using PyTorch [152] with the help of DGL library
[153] to build graph models for the feature extractor. All the neural network layers contain
64-dimensional latent features. The whole system is trained using Adam optimizer [154]
with an initial learning rate of 0.01.

5.1.4 Oracle and baseline cases for evaluation

One of the RQs in this thesis is to design a reasonable comparison scheme to evaluate our
system, as few previous works have noticed the problem we discussed, much less corre-
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sponding localization performances using the DeepMIMO dataset. Hence, an alternative
evaluation method is required.

The goal of this thesis is to solve the codeword domain generalization problem. Ideally, the
best possible model completely eliminates the negative effects of the DG issue. Hence, we
could simulate this case by manually setting C = 1, which means there is only one possible
RIS codeword. Then there would be no fingerprint shifts because the codeword domains
for both training and testing are always identical. We call this case the oracle case, because
this is the theoretical upper bound of our localization system.

On the other hand, the worst possible model completely fails to decouple the correlation
between fingerprints and corresponding codewords, which is equivalent to applying no
adversarial learning. In this case, for the same location, there will be multiple different
fingerprints corresponding to it due to different RIS codewords. The localization system
will have difficulties learning effective fingerprint representations from such data. We call
this case the baseline case, since this is the theoretical lower bound of the proposed system.

We implemented these two cases in our solution simply by removing the codeword dis-
criminator component because neither of them requires adversarial learning on the code-
words. In the following experiments, all experiments parameters {C , A,σ} in the baseline
case remain the same as the under-test scenario. Whereas for the oracle case, C always
equals 1, so keeping only A and σ the same would be sufficient.

If the performances of our solution are closer to the oracle case rather than the base-
line case, then we tend to conclude that our model has successfully learned codeword-
independent representations of fingerprints. This marks the accomplishment of the main
goal in this thesis, i.e., designing a localization system with RIS codeword domain general-
ization capabilities for modern RIS-enhanced networks.

5.2 Performance evaluation

In this section, we apply the default experimental parameter set {C = 144, A= 51.84,σ = 0}
for evaluation to check the feasibility of our solutions. First, Figure 5.3 visualizes finger-
print shifts in the testing area. RSSI values at the same location can differ by up to 52.1 dB,
which illustrates that the fingerprints are sensitive to codeword change, thereby demon-
strating the feasibility of using the DeepMIMO for our evaluation.

To visualize the location estimation errors, we apply bar charts, where each bar’s middle
line is the mean squared loss (MSE) [135], and its height equals two times the standard

Table 5.2: The localization errors of LoS (orange) and NLoS (blue) areas for the oracle/base-
line cases, and the CV/RV versions of our solution when {C = 144, A= 51.84,σ = 0}

LoS NLoS
MSE Var MSE Var

Oracle case 0.045 0.002 0.047 0.003
Our solution (CV ver.) 0.050 0.007 0.090 0.018
Our solution (RV ver.) 0.125 0.010 0.199 0.013

Baseline case 2.053 0.958 2.956 1.033
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Figure 5.3: Fingerprint shifts (dB) in the testing area for three frequencies. The height
means the maximum RSSI shift at that position when {C = 144, A= 51.84,σ = 0}.
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Figure 5.4: The location estimation errors of both LoS and NLoS areas for the oracle/base-
line cases, and the CV/RV versions of our solution when {C = 144, A = 51.84,σ = 0}. Given
the squared error set e, for each bar, the middle line is mean(e), i.e., MSE, and its height
ranges from MSE-std(e) to MSE+std(e).
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deviation over the squared loss of all concerned testing points. Most of the errors are
within this interval, which could be used to observe the prediction stability of each method.
Besides, the numerical results are also provided in tables.

In Section 4.2.4, we claimed that CV codewords and codeword discriminators perform bet-
ter than the RV version. Hence, both CV and RV versions of the proposed system are con-
sidered here. Then, for the experimental parameter set {C = 144, A = 51.84,σ = 0}, the
results of the oracle/baseline cases and our solution are depicted in Figure 5.4. First, the
location estimation errors of our solution are much closer to the oracle case rather than
to the baseline case, which illustrates the representations extracted by our method accom-
modate different codewords. Therefore, we can conclude that the feature extractor in our
system can obtain codeword-independent representations of fingerprints. Our solution
achieves our main goal, i.e., realizing a localization system with RIS codeword domain gen-
eralization capabilities. Then, compared with the RV version, the desired CV version of our
method obtains smaller errors, which demonstrates our analysis in Section 4.2.4. Finally,
the detailed numerical results are listed in Table 5.2. We manage to obtain centimeter-level
errors, which meets the expectation of the future 6G [10].

5.3 Impact of experimental parameters
In this section, we investigate the impact of experiment parameters on the model perfor-
mance by respectively changing one parameter and keeping another two fixed.

5.3.1 The number of codewords
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Figure 5.5: The location estimation errors of both LoS and NLoS areas for the oracle/base-
line cases and our solution when {C = 144/324/1296, A = 51.84,σ = 0}. Given the squared
error set e, for each bar, the middle line is mean(e), i.e., MSE, and its height ranges from
MSE-std(e) to MSE+std(e). Note that for the oracle case, C always equals to 1 for reference.

The resolution of the RIS in previous experiments is set to 15◦, inducing C = 144, which is
already far more than current RIS prototypes. Here, we further enlarge C for more harsh
scenarios by assuming smaller resolutions, i.e., 10◦ and 5◦, obtaining C = 324 and C = 1296,
respectively. Note that for the oracle case, C always equals 1 for the purpose of benchmark-
ing. Other parameters remain unchanged in this section, i.e., A = 51.84 and σ = 0. Figure
5.5 illustrates the location estimation errors of the oracle/baseline cases and our solution.
As C increases, both the MSE and the standard deviations become larger, as the feature
extractor has to adapt to more codewords at the same time. Nonetheless, the performance
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Table 5.3: The localization errors of LoS (orange) and NLoS (blue) areas for the oracle/base-
line cases and our solution when {C = 144/324/1296, A = 51.84,σ = 0}. Note that for the
oracle case, C always equals to 1 for reference.

Oracle case (C = 1) Our solution Baseline case
LoS NLoS

C
LoS NLoS LoS NLoS

MSE Var MSE Var MSE Var MSE Var MSE Var MSE Var
144 0.050 0.007 0.090 0.018 2.053 0.958 2.956 1.033
324 0.368 0.554 0.394 0.312 3.202 1.692 3.737 1.2960.045 0.002 0.047 0.003

1296 0.843 2.231 1.039 0.845 3.882 0.958 4.342 2.333

Table 5.4: The localization errors of LoS (orange) and NLoS (blue) areas for the oracle/base-
line cases and our solution when {C = 144, A= 51.84/92.16/144.00,σ = 0}.

Oracle case Our solution Baseline case

A [m2]
LoS NLoS LoS NLoS LoS NLoS

MSE Var MSE Var MSE Var MSE Var MSE Var MSE Var
51.84 0.045 0.002 0.047 0.003 0.050 0.007 0.090 0.018 2.053 0.958 2.956 1.033
92.16 0.045 0.002 0.047 0.002 0.113 0.048 0.119 0.056 2.268 1.086 3.002 0.991

144.00 0.046 0.002 0.050 0.003 0.205 0.081 0.236 0.170 2.410 0.879 3.013 1.211

of our solution is still closer to the oracle case than the baseline case. When C = 1296, our
solution even performs better than the baseline case when C = 144. These performances
all demonstrate that our solution maintains its capability of being codeword-independent
when C becomes much larger than current prototypes, which proves the robustness to the
number of available codewords. Table. 5.3 presents the corresponding numerical results.

5.3.2 Size of testing areas
The sizes of the testing area A in previous experiments are all 51.84 m2. In this section, we
set it to A= 51.84/92.16/144.00 and investigate its impact on the system performance. We
keep C = 144 and σ = 0.
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Figure 5.6: The location estimation errors of both LoS and NLoS areas for the oracle/base-
line cases and our solution when {C = 144, A = 51.84/92.16/144.00,σ = 0}. Given the
squared error set e, for each bar, the middle line is mean(e), i.e., MSE, and its height ranges
from MSE-std(e) to MSE+std(e).
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Figure 5.7: The location estimation errors of both LoS and NLoS areas for the oracle/base-
line cases and our solution when {C = 144, A= 51.84,σ = 0/5/10}. Given the squared error
set e, for each bar, the middle line is mean(e), i.e., MSE, and its height ranges from MSE-
std(e) to MSE+std(e).

Table 5.5: The localization errors of LoS (orange) and NLoS (blue) areas for the oracle/base-
line cases and our solution when {C = 144, A= 51.84,σ = 0/5/10}.

Oracle case Our solution Baseline case

σ[dB]
LoS NLoS LoS NLoS LoS NLoS

MSE Var MSE Var MSE Var MSE Var MSE Var MSE Var
0 0.045 0.002 0.047 0.003 0.050 0.007 0.090 0.018 2.053 0.958 2.956 1.033
5 0.353 0.315 0.430 0.298 0.552 0.556 0.858 1.280 3.522 2.118 4.104 2.022

10 0.517 0.402 0.802 0.910 1.279 3.569 1.435 2.994 4.200 2.430 4.881 3.291

Figure 5.6 depicts the performance of the oracle/baseline cases and our solution. The per-
formance of both the oracle and baseline cases almost remain the same as A increase,
whereas the location estimation error of our solution grows faster than the reference cases.
However, this phenomenon is totally reasonable because our solution needs to perform
adversarial learning on more testing points, which means that it becomes harder for the
feature extractor to obtain codeword-independent representations as the number of fin-
gerprints grows. In comparison, both the oracle and baseline cases perform no adversarial
learning, hence their performance remains nearly unchanged. Nevertheless, our solution
still achieves significantly better results than the baseline cases and closer performances
to the oracle cases. Therefore, we conclude that our solution is robust against changes in
the size of the testing areas. All corresponding numerical results are presented in Table.
5.4.

5.3.3 Strength of the AWGN

In this section, we manually add extra AWGN to the calculated RSSI to validate the stability
of our solution. The AWGN here refers to some miscellaneous noises, including fading, and
polarization mismatch [155, 156], which are not discussed in our link budget model and
may be modeled by Gaussian processes [157, 158]. The strength of the AWGN N (dB) is
controlled by the standard deviation σ for N∼N (0,σ2). We investigate the performances
when σ = 0/5/10. We keep C = 144 and A= 51.84.
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Figure 5.7 shows the location estimation errors of the oracle/baseline cases and our so-
lution for different AWGN strength levels. Similarly, our solution performs much better
than the baseline cases and is closer to the performances of the oracle cases. Therefore,
our solution is also robust against extra AWGN, which indicates that the model can main-
tain certain stability of location inference. Note that the extra AWGN here is not caused
by obstacles in the environments, which are already recorded by the channel matrices in
the DeepMIMO dataset, and implicitly represented by the calculated RSSI. We investigate
AWGN here for simulation on the device noises to further refine our results. Numerical
results are presented in Table 5.5.

5.4 Discussion
In this section, we first introduced the DeepMIMO dataset and its settings for our evalu-
ation. We designed oracle and baseline cases for reasonable comparison with our solu-
tion. The method to calculate the RSSI using DeepMIMO was elaborated in detail. In the
first experiments, we compared the performance of oracle/baseline cases and our solution
(both CV and RV versions). We concluded that our solution managed to extract codeword-
independent features. Experiment results show that CV codeword discriminators perform
better than the RV ones, which demonstrates that the CV-MLP is the better choice in our
system. We further investigated the impacts of different experimental parameters, respec-
tively. All comparison results indicated that our solution is robust against the number of
codewords, size of the testing area, and extra AWGN. Our solution in all experiments per-
forms much closer to the oracle cases instead of the baseline cases, which verifies that
our solution achieves the main goal of this thesis, i.e., realizing localization with codeword
domain generalization capability in RIS-enhanced environments.
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Chapter 6

Conclusion

We conclude the thesis in this chapter. Except for a brief summary of this thesis, we also
provide our reflections on the experiments.

6.1 Summary
In this thesis, we first investigated the localization problem in modern RIS-enhanced wire-
less communication networks. Model-driven methods usually rely on sophisticated com-
munication models and set specific optimization goals to realize accurate localization.
However, the complexity of these models grows fast as the number of BSs and DOI in-
crease, which restricts their application scopes. Although several data-driven methods
have realized this problem and performed fingerprint-based localization, they unrealisti-
cally assumed that the RIS is sorely deployed for localization rather than more important
tasks, such as enlarging the signal coverage. Even worse, both model- and data-driven
methods share the same drawbacks that the RIS codewords are required for location in-
ference, which induce huge additional communication burdens.

These observations inspired us to design a localization solution in RIS-enhanced environ-
ments, which can decouple the correlation between fingerprints and codewords. In this
way, regardless of actual RIS functions, the localization system could provide reliable es-
timations without RIS codewords. In other words, the goal of this thesis is to design a
localization solution with the capability of RIS codeword domain generalization. The dis-
cussion on the techniques for domain generalization revealed that we can achieve this by
applying domain adversarial learning on the codewords using the DANN framework [113]
to extract codeword-independent representations of fingerprints.

We proposed a localization solution based on DANN that can adopt RIS codeword changes.
Concretely, we first designed a pre-processing step to transform the fingerprints into graphs
for the heterogeneous GNN-based feature extractor to make full use of the non-Euclidean
features of the fingerprints, especially when they are collected in environments with mul-
tiple operating frequencies. Next, during the offline training stage, the feature extractor
generates the representations of the fingerprint graphs and feeds them into both the MLP-
based location estimator and CV-MLP codeword discriminator for location and codeword
estimation, respectively. Then, the gradients from the codeword discriminator will be
reversed by a gradient reversal layer to perform adversarial learning on the codeword
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domain during backpropagation to ensure the distributions of the representations over
different codewords are as similar as possible. In this way, the feature extractor can theo-
retically extract codeword-independent features for location inference, thereby the code-
words will not be necessary for the online inference stage.

We evaluated our system using the O1 scenario in the DeepMIMO dataset [46]. We de-
fined oracle and baseline cases for a fair comparison with our solution and elaborated the
method to calculate the RSSI using the channel matrices given in the DeepMIMO simulation
tool. Our evaluation results firstly prove that CV codeword discriminators perform better
than the RV ones, which validates our system design. Then we investigated the impacts of
the experiment parameters, including the number of codewords, size of the testing area,
and strength of additional AWGN. All comparison results indicate that our solution per-
forms much closer to the oracle cases rather than the baseline cases, which demonstrates
the robustness of our method against the change of the concerned parameters. Addition-
ally, all these results prove that the proposed solution achieves the goal of this thesis, i.e.,
realizing a localization system in RIS-enhanced environments with the capabilities of RIS
codeword domain generalization.

Here, we explain how our research questions were answered.

RQ1. How RIS codeword domain generalization can be achieved? What are the spe-
cific pros and cons of the candidate DG solutions for our problem?

We adopted the DANN framework to perform adversarial learning on the RIS code-
word domain to obtain codeword-independent representations of the fingerprints to
solve the DG problem. We fully discussed this topic in Section 2.3 and 3.3.

To achieve codeword domain generalization, both contrastive learning and DANN
would be sufficient as discussed in Section 2.3. Contrastive learning needs to gener-
ate more data pairs for training compared with the DANN. Whereas the DANN re-
quires explicit domain labels to perform adversarial learning, but not for contrastive
learning. In our problem, the domain labels are just codewords. Therefore, the disad-
vantage of the DANN is invalid here. Therefore, we utilize the DANN as the solution
in this thesis. All evaluation results shown in Chapter 5 indicate that the proposed
solution using DANN to perform adversarial learning on the codeword domain man-
ages to solve the DG problem since we obtain performances much closer to the oracle
cases rather than baseline cases.

RQ2. Which DNN architecture is proper to encode the fingerprints, especially in mod-
ern communication systems usually containing 4G and 5G operating on different fre-
quency bands?

The GNN-based models perform better than other commonly used data-driven mod-
els, such as k-NN, MLP, and CNN. This is because the fingerprints collected in envi-
ronments with multiple operating frequencies usually show non-Euclidean features,
which could be efficiently utilized by GNN-based models [84]. Hence, we designed a
fingerprint-graph transformation method in Section 4.2.1, and a heterogeneous GNN-
based feature extractor in Section 4.2.2 to make full use of the fingerprints.

RQ3. How to compare the performance of our solution with respect to the state of
the art, when no related works realize localization systems with codeword domain
generalization capabilities in RIS-enhanced environments?
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We defined oracle and baseline cases for fair comparisons in Chapter 5.1.4. Con-
cretely, the oracle case denotes the best possible model we can obtain, i.e, the model
could completely eliminate the RIS codeword domain shift problem. Hence, we al-
ways set the number of codewords to 1 for the oracle cases. In this way, the finger-
prints would not change due to different codewords. The baseline case is the worst
model we may obtain, i.e., the model fails to perform any adversarial learning on the
RIS codeword domain. For both oracle and baseline cases, we can implement them by
removing the codeword discriminator component in our solution because neither of
them needs adversarial learning. Then during the evaluation, except for the number
of codewords for the oracle cases, we always apply the same set of experimental pa-
rameters to the baseline/oracle cases and our solution for comparison. If our solution
performs closer to the oracle cases rather than the baseline cases, we can conclude
that the proposed method achieves RIS codeword domain generalization.

6.2 Reflection
An apparent issue in this thesis is that our evaluation fully relies on simulations using
the DeepMIMO dataset. We could not obtain the RIS hardware, since currently, it is still
under development, even the number of RIS prototypes [124, 125, 126] is small. Hence, in
future works, if a RIS is available, we can design experiments, collect real-world data, and
perform the evaluation. Such results will be more convincing.

Another issue is the number of codewords. Although we set a far larger number of the
codewords compared to the current RIS prototypes [124, 125, 126] and achieved perfor-
mances close to the oracle case, there is still a chance that our model fails to deal with
more codewords when the resolution is extremely small. If it happens, then we may have
to require the codewords for location inference. Nevertheless, considering the fact that
most prototypes only support C = 2/4 [124, 125], we are confident that our solution has
strong practicality in modern wireless communication systems.
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