
 Eindhoven University of Technology

MASTER

ObliqueTreeVis
Visual Analytics for Interpreting Oblique Decision Trees

Liu, Chicheng

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/fd2bd004-c33f-4faf-9cf5-48fd1942ed66

ObliqueTreeVis: Visual
Analytics for Interpreting

Oblique Decision Trees
Master Thesis

Chicheng Liu

Department of Mathematics and Computer Science
Visualization Research Group

Supervisors:
Prof. dr. Anna Vilanova

dr. Dennis Collaris
dr. Sibylle Hess
Linhao Meng

Final version

Eindhoven, October 2022

ii ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Abstract

Due to their ease of interpretation, univariate decision tree induction techniques for classifi-
cation problems, such as CART, C4.5, and ID3, are widely used in machine learning. However,
because these trees use axis-parallel splits, which only look at one attribute of each node,
they tend to get very big, which makes it harder to figure out what the tree means. Oblique
decision tree induction algorithms, which divide the feature space in a multidimensional
hyperplane using oblique splits, usually produce much smaller trees. However, individual
oblique splits are difficult to interpret. In this research, we want to utilize visualization to
improve the interpretability of oblique decision trees and to evaluate the interpretability of
oblique decision trees in the context of visual analysis in comparison to univariate decision
trees.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees iii

iv ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Preface

This thesis is my last project at TU/e and as a student. I’m delighted I spent two years of
my Master’s degree at Eindhoven; it was an interesting and unforgettable experience. I’m
delighted I picked the Visualization Research Group as the origin of my graduation project,
since I learned a great deal there. After completing this capstone, I will transition from
student to visualization development engineer. I will use all I have learnt at TU/e in my new
line of work.

I’d want to thank everyone who helped me with my graduation project. I’d like to start by
thanking my supervisor, Professor Anna Vilanova, for all the help and direction she has given
me. She has provided me with unselfish guidance throughout my graduation project and
has resolved any issues that have arisen. The present shape of my thesis would not exist
without her coaching. Second, I would like to extend my heartfelt appreciation to Dennis
Collaris and Linhao Meng. They have provided me with substantial assistance in both the
creation and design of the visualization system and the writing of the thesis. In addition, I
would like to express my appreciation to Professor Sibylle Hess of the Data Mining Research
Group for agreeing to serve on my examination committee.

I am also deeply grateful to Dr. Alfred Truong. His Ph.D. thesis [32], which summarized
the oblique decision tree in detail, provided significant inspiration for this study.

Finally, I would want to thank my loving parents for their many years of support and trust.
I would also want to thank my friends and classmates who have offered me assistance,
listened to my thoughts, and assisted me in resolving my issues throughout the complex
process of writing my thesis.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees v

vi ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Contents

Contents vii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 3
1.3 Contribution . 3
1.4 Organization of the Report . 3

2 Preliminaries 5
2.1 Classification . 5
2.2 Tree-structured Classification . 6

2.2.1 Tree Construction . 6
2.2.2 Oblique Decision Trees . 7

2.3 Feature Contribution . 9

3 Task Analysis 11

4 Related Work 13
4.1 Visualization for Data Understanding . 13
4.2 Visualization for Model Understanding . 16

4.2.1 Tree-based Visualization . 16
4.2.2 Visualizing Feature Space Split in Decision Nodes 17
4.2.3 Visualizing Tree Interpretation of Decision Paths 19

4.3 Model Explanation . 20

5 Data Processing 23
5.1 Original Data . 23
5.2 Trained Oblique Decision Tree . 23
5.3 Data Manipulation . 24

6 ObliqueTreeVis Visual Design 27
6.1 ObliqueTreeVis Overview . 27
6.2 Oblique Tree View . 28
6.3 Feature View . 31
6.4 Projection View . 34

7 Evaluation 37
7.1 Use Case: Palmer Penguin Species Classification . 37
7.2 Use Case: Horseshoe Crab Species Classification . 38
7.3 User Study . 40

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees vii

CONTENTS

8 Conclusions and Future Work 43
8.1 Conclusions . 43
8.2 Future Work . 43

Bibliography 45

Appendix 47

A User Study Questionnaire 49

B User Study Results 51

viii ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 1

Introduction

1.1 Motivation
Decision trees are a popular machine learning method because they are easy to interpret.
This type of model is used for classification tasks, which assign points to pre-specified cat-
egories called classes. It can be shown via a node-link diagram, as shown in Fig 1.1a. Each
internal node in the node-link diagram represents a test in a feature space. Each test can
be thought of as a function that divides the feature space into sub-spaces. Each link repre-
sents the result of the current parent node test, whereas each leaf node has a class label.
By repeatedly applying the splitting function to the input, decision tree induction methods
generate a top-down decision tree. The optimal choice rule is obtained by applying the split-
ting function to the remaining data at each node. The procedure terminates when all the
training data points are divided into one of the classes. The primary difference between
decision tree algorithms is how the splitting function works.

(a) A traditional decision tree requires more
than one test to achieve the same classifica-
tion of observations.

(b) An oblique decision tree is able to per-
fectly partition these observations.

Figure 1.1: This artificial classification problem can easily be solved with a single oblique
split. However, axis-parallel splits cannot achieve the same purpose with a single split, i.e.
oblique splits can segment data points better, so oblique decision trees are naturally smaller.

There are mainly two kinds of splitting functions. Axis-parallel splits are often applied in
traditional decision trees such as CART and C4.5 [8, 28], while oblique decision trees like OC1
[23] use oblique splits. An axis-parallel split divides on a single feature variable, producing a
hyperplane that is orthogonal to one axis and parallel to all others, as shown in Figure 1.2a.
If the feature is a known quantity, a univariate split for that feature is easy to interpret. How-
ever, since only one feature variable is involved in each splitting function, such an approach
may generate large tree sizes and thus increase the difficulty of understanding.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 1

CHAPTER 1. INTRODUCTION

In contrast, an oblique split partitions on the linear combination of feature variables,
generating an oblique hyperplane. The difference in the visual representation of the deci-
sion tree using different splitting functions can be seen in Figure 1.1. It is worth noting that
for decision trees using axis-parallel split, some trees are larger than others simply because
different classes of observations are not distributed in the same way in the feature space.
This type of problem is not encountered for decision trees using oblique splits. As can be
seen from Fig 1.2b, oblique splits are better able to partition observations; thus, oblique
decision trees naturally use fewer tests.

On the other hand, univariate decision trees require a step-wise approximation of this
rule. Therefore, multivariate split algorithms can achieve similar accuracy to parallel ones
while producing smaller trees. However, while oblique decision trees may be smaller, their
oblique splits are more challenging to interpret.

(a) Axis-parallel Split (b) Bivariate Split

Figure 1.2: Comparison of Axis-parallel Split and Oblique Split in Bivariate Case

The size of the tree and splitting function understanding have a significant impact on the
interpretability of decision trees. The decision tree gets increasingly challenging to under-
stand as the tree grows in size. Similarly, suppose the splitting function is a linear equation
with several feature variables. In that case, it is more difficult to understand than if just
one feature variable is present. Because of the different splitting functions used, traditional
and oblique decision trees have opposite characteristics in terms of internal node count and
interpretability.

Visualization techniques have been demonstrated to be a practical approach for enhanc-
ing the interpretability of classifiers (i.e., machine learning models targeting classification
problems such as decision trees). Both traditional and oblique decision trees are inter-
pretable classifiers and can be considered algorithms that learn from data. For such classifi-
cation systems, visualization and visual analysis techniques have been used in different life
cycles of the systems to enhance their interpretability. For instance, visualization techniques
are applied to explore data during the data engineering stage or graphically represent the
results of univariate decision tree algorithms in the model operation stage [20]. In addition,
there is also work on visualization to support the decision tree in the stage of model de-
velopment [33]. Nevertheless, little work has been done to support understanding oblique
decision trees through visualization.

2 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 1. INTRODUCTION

1.2 Problem Definition
In this research, we want to utilize visualization to improve the interpretability of oblique de-
cision trees and evaluate the interpretability of oblique decision trees in the context of visual
analysis compared to traditional decision trees. To achieve the research goal, we need to ac-
complish several tasks. First, we need visualization techniques to help people understand
the input space. Even though tree structure models are usually considered interpretable,
considering that our target users are domain experts, we should present the whole struc-
ture of the tree model, including decision nodes, leaf nodes, and decision paths. Besides,
since the decision rules in each node of the oblique decision tree are equations consisting of
multiple features, we also need to show the decision boundaries reflected by each rule with
the help of visualization techniques. Also, our system should let users explore the links be-
tween features and decision nodes or decision paths in an interactive way. To help domain
experts build trust in the model and make decisions in their daily work, we need to provide
additional interpretation of the classification results. At the same time, our visual analytics
system should work with traditional decision tree models so that it can be evaluated during
the user study phase.

1.3 Contribution
ObliqueTreeVis is an interactive visualization system designed to assist users in interpret-
ing oblique decision trees from various angles. To achieve a good balance between inter-
pretability and model size, we only choose to focus on oblique trees with bivariate splits.
This decision also enables us to use proven two-dimensional visualization techniques. First,
we make an oblique tree view to show how the tree model is put together as a whole and to
show how the oblique decision tree works. We give a summary view and a detailed view of
the decision nodes. This lets users explore and understand how these nodes decide how to
split up the data. We make a path summary view in each leaf node so that feature-relevance
explanations of the prediction results can help us understand how these paths are split up.
In addition, we build a feature view to show the distribution of different features. This view
shows the user how much each feature contributes to the features of different decision
paths. This helps the user figure out the relationship between the features and the results
of the prediction. In addition, we present a projection view to show the data similarity of the
original data set. This component also allows users to explore interactively across views.
We also let users change the oblique decision tree system by using the control panel view.
This component enables the user to select different data sets and switch between models.
Lastly, we use a user study and a use case to show that users of a visual analytics system
that uses an oblique decision tree as a model can understand the model faster and make
more accurate predictions about classification than users of a visual analytics system that
uses a traditional decision tree as a model. With the same use study and another use case,
we show that ObliqueTreeVis can be used to understand oblique decision trees.

1.4 Organization of the Report
The remainder of the thesis is organized as follows: In Chapter 2, we provide preliminary
knowledge about the problem domain. In Chapter 3, we analyze research problems in de-
tail and sort out the analytical tasks. Next, we present related work for the visualization of
oblique decision trees in Chapter 4. Chapter 5 shows the processing of the data. In Chapter
6, we introduce the design of our visualization. In Chapter 7, we present the evaluation of
our solution. And finally, in Chapter 8, we conclude our work and discuss possible directions
for future research.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 3

CHAPTER 1. INTRODUCTION

4 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 2

Preliminaries

In this chapter, the basic background concepts and models mentioned in this thesis are in-
troduced and explained. In Section 2.1, we begin by quickly introducing the classification
problem as an example of supervised learning, as well as a few common classification prob-
lems. To explain the scope of this study, Section 2.2 discusses decision tree concepts and
illustrates the process of tree development. The content of the introduction to decision
trees and oblique decision trees is largely inspired by Truong [32]. In addition, we present
the computation procedure of a local interpretation method feature contribution used for
decision trees.

2.1 Classification

Given a feature space X and a response space C = {1, ..., k} with k classes, classification is a
task that requires the use of machine learning algorithms that learn how to assign a class
label Ci ∈ C to observation xi ∈ X from the problem domain where i ∈ {1, ..., N}. There are
many different types of classification tasks, including:

Binary Classification: contains two class labels;

Multi-Class Classification: contains more than two class labels;

Multi-Label Classification: contains many class labels, one or more of which may be pre-
dicted for each case.

Due to the fact that the classification algorithms used for binary or multi-level classifi-
cation cannot be directly used for multi-label classification and the focus of this study is
the visual exploration of oblique decision trees, only classification algorithms for binary or
multi-level classification are considered.

A classifier is a function f that sorts unlabeled data into labeled classes, or categories
of information, i.e., Ĉi = f (xi). Practically, people use probabilistic classifiers to generalize
the notion of classifiers: instead of functions, they are conditional distributions Pr(Ci |xi ,T)

over all possible classes in C. T denotes the training set, which is T = {
�

X i
1, ..., X i

p, Ci

�N

i=1
} =

�

xi , Ci

�N

i=1. Therefore, classification can be done through finding the class having the highest
probability, as Equation 2.1 shows to us.

Ĉi = argmax
C

Pr(Ci |xi ,T) (2.1)

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 5

CHAPTER 2. PRELIMINARIES

2.2 Tree-structured Classification

Decision trees are used a lot because they are easy to understand. They are one of the most
popular machine learning models. It can be traced back to a tree-structured classification
method as early as 1959. A British researcher, William Belson, proposed a tree-like classifi-
cation method for matching population samples [4].

In this article, Dr. Belson describes a technique for matching population samples.
This depends on the combination of empirically developed predictors to give the
best available predictive, or matching, composite. The underlying principle is
quite distinct from that inherent in the multiple correlation method.

Before decision trees were formally proposed, tree-structured classifiers were a natu-
ral way to interpret stratified populations and have long been used by practitioners in a
variety of fields. Although creating such classifiers often requires a great deal of thought,
researchers have sought ways to automate this process. It was not until 1984 when Breiman
et al. [8] formally proposed one of the famous decision tree algorithms, CART. In their un-
derstanding of the purpose for which decision trees were created [8, p.7], “An important
criterion for a good classification procedure is that it not only produces accurate classifiers
(within the limits of the data) but that it also provides insight and understanding into the pre-
dictive structure of the data.”, we can also get a glimpse of how important interpretability is
for decision trees.

As an interpretable classifier, decision trees should develop interpretable models with
an easy-to-understand structure. Therefore, in the next sections, we use the CART [8] as an
example to introduce the process of decision tree construction in detail.

2.2.1 Tree Construction

A decision tree is grown as a tree containing a root node, several internal nodes and several
leaf nodes. The leaf nodes correspond to decision outcomes at the bottom1 of a tree. Each
other node corresponds to a test; each node contains observations that are divided into
sub-nodes based on the test results; the root node contains the entire dataset. The path
from the root node to each leaf node corresponds to a sequence of tests. An example of
a typical tree is given in Figure 2.1. Two tests divide the training set observations into two
groups that are well separated from each other.

In order to produce “purer” child nodes at each stage of the tree growth, CART performs
the best partitioning of the instances for each class. This was achieved by applying a so-
called impurity measure that can quantify the “purity” of each node. Common measures are:
information gain, gain ratio, gini index, etc. However, it has long been recognized that it is
difficult to create a decision tree that is both accurate and understandable.

The most severe problem of decision trees with easy-to-understand structures is their
scalability. A decision tree classifier uses internal nodes and branches to show how rules
are combined to decide how to classify a data instance. Thus, humans can trace a specific
classification from a leaf to the root to understand the final prediction. to understand the
predictions of the classifier. As the number of rules or nonlinearity rises, so does the per-
formance of decision trees. Although they are simple to learn and follow at first glance, it
becomes impossible to understand the classifier as a whole when the number of rule nodes
get very large. An example is shown in Figure 2.2.

Therefore, the researchers tried to use oblique splitting to generate decision trees in
order to reduce the size of the generated trees in order to improve the tree interpretability.

1The roots of the tree are at the top of the viewport and grow downward.

6 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 2. PRELIMINARIES

(a) A fitted decision tree using axis-parallel
splits.

(b) The corresponding decision bound-
aries in the feature space specified by the
tree.

Figure 2.1: The above tree is grown from Palmer Penguin Data. The decision tree only
considers two continuous attributes (flipper_length_mm, bill_length_mm). The dataset has
three classes (k = 3). This tree contains two binary tests and generates three leaf nodes.
Since there are only two attributes involved in the classification problem, it is possible to
view the decision boundaries defined by this tree. Due to the use of axis-parallel splits, the
feature space is partitioned into rectangular blocks.

Figure 2.2: A decision tree has too many nodes and its meaning is difficult to understand.

2.2.2 Oblique Decision Trees
In Chapter 1 we have argued that oblique splits can partition the training data set better, so
the oblique tree is naturally smaller. However, the application of oblique splits introduces a
more difficult splitting function to understand. To introduce the properties of the oblique
decision tree, I use the classification of oblique decision trees by Truong [32]. Where there
are q continuous attributes in the data set, different oblique splits are based on:

Full Oblique Split: all q attributes;

Concise Oblique Split: fewer than q attributes.

Concise oblique splits are more interpretable than full oblique splits [6]. For example,
X2 > 0.75X3 is more interpretable than X1 + 0.5X2 − 0.1X3 + X4 < 0. Although a decision
tree with full oblique split can better partition observations, full oblique partitioning is less
interpretable than a concise oblique tree. This stems from the fact that each oblique split
of an oblique decision tree contains information about decision boundaries that is difficult
for people to understand. Such a problem becomes more severe as the number of features
involved in the oblique split increases. Meanwhile, researchers have demonstrated that
decision trees can achieve sufficiently accurate results and generate modest tree sizes when
the number of attributes involved in a single decision node is not greater than two [6, 7]. For
our study, it is reasonable to use decision trees using concise oblique split as a starting point

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 7

CHAPTER 2. PRELIMINARIES

to improve the interpretability of oblique decision trees through visualization techniques.
Next, we consider the problem of finding oblique splits.

We have argued that decision trees applying concise oblique splits are better in terms
of interpretability than those using full oblique splits. We decided to focus our study on the
case when q = 2, considering that it still maintains a decent predictive performance.

amXm + anXn ≤ T (2.2)

When using oblique splits, ideally, the best oblique split is used at each stage of generat-
ing the decision tree, which means that each potential oblique split needs to be considered.
Each node includes a test according to Equation 2.2. To find the optimal oblique split, most
known algorithms employ a deterministic hill climbing algorithm [23, 8, 13]. Among them,
CART with linear combination (CART-LC) proposed by Breiman et al. [8] is the easiest to imple-
ment. Considering the time constraint, this study decides to implement the oblique decision
tree induction algorithm with q = 2 based on CART-LC.

This procedure is initiated by assigning the parameters values that correspond to the
univariate split for attribute Xm. For instance, if the best univariate split for X1 is X1 ≤ 9, then
one should combine X1 and X2 with parameters am = 1 and an = 0, and T = 9 as the start
point of the algorithm.

Considering that the variables included in the test contain ordering information, each
decision node ideally needs to consider q(q− 1) cases as shown in Algorithm 1.

Algorithm 1 Pseudocode for Bivariate split to find the optimal split
1. find best univariate split Xm ≤ T
2. find best bivariate split:

for m= 1 to q do
for n= 1 to q and n ̸= m do

find amXm + anXn ≤ T
end for

end for

The method of finding the optimal split in the univariate split case has been described
in detail in Section 2.2.1, and next we discuss in detail how to find the optimal split in the
oblique split case.

The purpose of this procedure is to optimize a given split sp = amXm + anXn ≤ T by itera-
tively evaluating splits of the form:

sp−δ(Xm + γ)≤ T. (2.3)

For each m ∈ {1, ..., q}, the optimal δmay be determined through calculating

u j =
sp j − T

X j
m + γ

. (2.4)

For j = 1, ..., N , take γ as a constant. It is recommended that this technique be executed
for three distinct γ values, namely −0.25,0, 0.25. Then, δ and γ are derived from the best of
these three scenarios and utilized to update the current split sp to a new split sp′ as follows:

sp′ = a′mXm + anXn (2.5)

where a′m becomes (am −δ) and T ′ = T +δγ.
This process is repeated for the remaining features X2, ..., Xq. When the cycle of updat-

ing the variable coefficients concludes, we focus our attention on this threshold T , leaving
all coefficients fixed and modifying just the threshold T in order to get the best split. We

8 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 2. PRELIMINARIES

cease cycling when the decrease in impurity from one cycle to the next falls below a prede-
termined minimal threshold ε. This approach finds a global minimum for the impurity of
the considered linear splits. However, the algorithm might get locked into a local minimum.

2.3 Feature Contribution

By examining which features are important, we may infer that the model made judgments
based on these features, thus explaining the decision-making process. Feature contribution
metrics have been made so that features can be compared and ranked in a useful way. These
metrics give a feature a single score based on how much it contributed to the outcome. By
determining local feature contributions, we may identify how the features in each decision
path impact the outcomes.

Palczewska et al. [25] proposed a robust calculation of the local feature contribution,
either for discrete or continuous features, in a decision tree model. To describe her method
in detail, first understand the definition of the variable Y n

mean. It is the vector of fractions of
the training instances in a decision node n belonging to class Ck, k ∈ {1,2, ..., K}. wm and wn
denote normalized absolute coefficients of am and an in Equation 2.2. This gives us:

wm =
|am|

|am|+ |an|
; wn =

|an|
|am|+ |an|

. (2.6)

The calculation of local feature contribution is based on the concept of local increments.
A local increment is about the change in the distribution of a particular feature between a
parent node p and a child node c. It is defined as follows:

LI p
f =

wp
f (Y

c
mean − Y p

mean), if the split in the parent
is performed over the
feature f ,

(0, . . . , 0)
︸ ︷︷ ︸

K times

, otherwise.
(2.7)

where the difference is computed coordinate-wise and wp
f is the normalized absolute coeffi-

cient of feature f in decision p. Then, a series of local incremental accumulations on a deci-
sion path becomes a local feature contribution instance under the corresponding class. The
contribution FCi f of a feature f in a tree for an instance i is equal to the total of LI f across
all nodes along the route of i from the root node to a leaf node.

FC f
i =
∑

p∈DPi

LI p
f , (2.8)

where DPi is the set of decision nodes involved in the decision path for instance i. Therefore,
the feature contributions vecetor FCi for an instance i is a 2D vector consisting of contribu-
tions FC f

i of all features f . Finally, Palczewska et al. [25] did an estimation of local feature
contribution under the corresponding class over all the FC f

i . The median in statistics is a
measure of the expected value that is less impacted by outliers than the sample mean. This
attribute of the median may be used to determine a "typical level" of feature contributions
for instances of a certain class. We choose those cases from the training data set (containing
of w occurrences) that are appropriately identified as DC . The following are the ordered con-
tributions for feature f to class k:

FC f ,k
(1) , ..., FC f ,k

(q) , FC f ,k
(q+1), ..., FC f ,k

(w) (2.9)

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 9

CHAPTER 2. PRELIMINARIES

One may independently determine the median contribution of each feature for each class.

FC f ,k =

(

FC f ,k
(q) +FC f ,k

(q+1)

2 , w is even
FC f ,k
(q+1), w is odd

, (2.10)

where FC f ,k is the local feature contribution of feature f for class k.

10 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 3

Task Analysis

In this chapter, we outline the various user tasks for our system. These will serve as design
criteria for the visualization.

In this study, our approach targets many potential domain experts in various fields in-
fluenced by emerging machine learning techniques. As machine learning tools like tree-
structured models are used increasingly in these fields, experts may not know much about
machine learning algorithms. However, they may want to or be required to use them to help
them make decisions at work.

The primary goal of our target users is to fully understand the behaviors of an oblique
decision tree. As discussed in Chapter 1, we explore the idea of incorporating an extra ex-
planatory interface between humans and the oblique decision tree to provide interpretabil-
ity. Oblique decision trees as tree classifiers to solve classification problems can be viewed
as a machine that has extracted the information in the data set and abstracted the informa-
tion as different partition processes. Therefore, understanding the underlying structure of
the data is a prerequisite for gaining model insights.

T1 Gain insight in the underlying structure of the data. In this task, visualization tech-
niques should be applied to help users understand the data. Since oblique decision
trees deal with classification problems, the data involved in visualization are multi-
dimensional data sets with categorical classes. To help the target user understand
the data, we can summarize the statistical features of the data set and provide users
with a statistical understanding. Furthermore, visualization techniques can be used to
present the results of dimensionality reduction to help users understand how the data
is distributed in the input space.

Once the user understands the distribution and characteristics of the data set, they can
formally begin to understand how the model behaves. The next task is to present the struc-
ture of the tree to the user from a global perspective.

T2 Understand the distribution of classes across decision rules. As a rule-based model,
any decision tree can be thought of as a collection of decision rules (i.e. IF-THEN state-
ments). We propose to use the node-link diagram representation to reduce the diffi-
culty of user understanding. With the help of visualization techniques, each decision
rule is presented in the form of a decision path. It is represented by multiple decision
nodes strung together in a link. In this way, users can naturally read the entire tree,
following different data classes to explore decision nodes or decision paths, and find
leaf nodes for specific classes of predictions more efficiently.

To understand which decisions the model makes for particular instances, target users
may want to inspect individual nodes. For traditional decision trees and other rule-based
classifiers such as decision sets, each rule is easy to understand, and the user can read it

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 11

CHAPTER 3. TASK ANALYSIS

without extra tools or mathematical knowledge. However, this is not the case for each deci-
sion node in an oblique decision tree. In an oblique split, linear combinations of attributes
shall be jointly evaluated as rule conditions instead of simple attribute pairs. They are usu-
ally considered more difficult to understand without additional tools. Hence, we propose
the following user task:

T3 Understand how an oblique split works in each decision node. Understanding the
inner workings of each oblique split is equivalent to understanding the decision bound-
aries presented by that decision node in the corresponding feature space. Since our
study limits the oblique decision tree to no more than two features in each oblique
split, traditional two dimensional visualization techniques can be used to show how a
particular decision node in the oblique decision tree works.

However, understanding the inner workings of each decision node is not enough to un-
derstand how the model makes a prediction for a specific instance. To understand why the
model makes a prediction, users can follow the decision path from the root node of the
model to a leaf node. When users are faced with a classification problem, it is necessary to
analyze a decision path or even multiple decision paths. In addition, when domain experts
want to understand the prediction for one particular instance, finding the corresponding
decision path is also important to improve the understanding of the model by the user.

T4 Locate decision paths that contain decisions on a particular feature or that apply
to particular instances of interest. Each decision path is a rule set of multiple oblique
splits. Since there are many paths, it may take the target user a long time to search
through all the decision paths. Visualization techniques can support the user in find-
ing specific decision paths effectively (such as ones that contain particular features or
apply to certain instances). With the help of visualization techniques, users reduce the
time required to find decision paths and can greatly improve their understanding of
the model.

In addition to improving the efficiency of users in finding target decision paths to solve
classification problems, users are often faced with the challenge of understanding the decision-
making process based on a particular classification result. Classification results are pre-
sented as leaf nodes in a tree, which can be easily located by the user from the oblique
decision tree. Immediately after locating the leaf nodes, the corresponding decision paths
can be found by tracing the path from the leaf node back to the root node. To help users
understand which features act in these decision paths and build trust in predictions made
by the model, we propose the following user task:

T5 Identify which features contribute to a particular decision path and the decision
nodes. The decision-making process of the model involves multiple features. To ex-
plain such a decision process, the user needs to understand which features are rele-
vant to the output and how they contribute to such an outcome. Therefore, we need
to provide the user with feature-relevance explanations for different decision paths.
In addition to this, since at most two features may be involved in each oblique split,
we also need to present the contribution of the involved features to a single decision
node.

In this chapter, we discuss the tasks that our study needs to accomplish to improve the
interpretability of oblique decision trees. We start from the understanding of the data by the
user. Then explain that the user needs to understand the working mechanism of decision
nodes inside the oblique decision tree to analyze one or more decision paths. In addition
to this, we emphasize the task of helping the user locate the decision paths involved in
certain features. This helps to improve the efficiency of the user in analyzing the model. It is
also important to help users explain the contribution of features in some specific decision-
making processes.

12 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 4

Related Work

In this chapter, we discuss related work in the areas of visualization that is relevant to our
work.

4.1 Visualization for Data Understanding
Extensive studies have been conducted on the visualization of exploratory data analysis. The
data used in classification problems is multidimensional and has classes. This section dis-
cusses relevant visualization studies used for statistical analysis and dimension reduction.

The box plot is one of the most commonly used methods for presenting statistical prop-
erties of data. Potter et al. [27] present a survey on box plot design. As seen in Figure
4.1, (a) depicts the key features of a box plot. Box plots that include additional information,
such as confidence intervals in (e) and distribution densities in (f-i), provide a more thorough
overview than basic box plots. Nonetheless, the data sets used by categorization algorithms
have gotten more complicated and dimensionally dense. Exploring hundreds of box plots
does not always provide information about the data set.

In helping users to understand data, dimensionality reduction is often used to under-
stand the distribution of data in the input space. Therefore, projections, including principle
component analysis (PCA) [40], multidimensional scaling (MDS) [15], t-distributed stochastic
neighborhood embedding (t-SNE) [34], and uniform manifold approximation and projection
(UMAP) [21], are the most commonly used dimensionality reduction techniques at this stage.
The role of visualization is to present and enhance the results of dimensionality reduction. A
well-known example is the Embedding Projector [30], which embeds human-interpretable
classes (e.g., images with categorical colors) into scatterplots implemented by dimensional-
ity reduction. By browsing the projection map, users can better understand the relationship
between different instances and identify clusters and outliers, as shown in Figure 4.2.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 13

CHAPTER 4. RELATED WORK

Figure 4.1: Variations on the box plot. a) Abbreviated box plot. b) Range plot. c) Box plot.
d) Interquartile plot. e) Variable width and notched box plots expressing sample sizes and
confidence levels. f) Hist plot. g) Vase plot. h) Boxpercentile plot. i) Violin plot. j) Skew and
modality plots. [27]

14 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 4. RELATED WORK

Figure 4.2: A UMAP projection of Mnist data with images.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 15

CHAPTER 4. RELATED WORK

4.2 Visualization for Model Understanding

One of our tasks is to help researchers better understand the characteristics and working
mechanisms of oblique decision trees. For classifiers with a special hierarchical tree-like
structure like oblique decision trees, they use internal nodes and branches to represent their
classification inference as the connection points of rules. Humans can trace specific classifi-
cations from a leaf to the root to understand the predictions. Thus, most of the related work
for understanding tree-structured classifiers focuses on visualizing specific components of
a classifier. There are mainly three aspects: tree-based visualization (see Section 4.2.1); vi-
sualization of feature space splits in decision nodes (see Section 4.2.2); and visualization of
decision tree path interpretation (see Section 4.2.3).

(a) Node-link diagram (b) Treemap

(c) Icicle plot

Figure 4.3: Common tree representations, each showing the same tree in a different way.

4.2.1 Tree-based Visualization

One can visualize decision trees using different visualization techniques, mainly including
node-link diagram [24, 38, 41], icicle plot [20, 37], and treemap [22]. Node-link diagrams are
extensively used to visualize decision trees because they naturally depict tree structures, as
shown in Figure 4.3a. One problem with node-linked diagrams is that they do not work well
for large data sets. In contrast, icicle plots [14] is a more space-efficient technique to depict
decision trees. As shown in Figure 4.3c, nodes are represented by several stacked bars, and
the length of each bar is related to the volume of data that travels through it. Ankerst et
al. [2] employ a pixel-based approach to encode the class distribution of each node. They
use pixels to represent observations and pixel colors to represent data classes, as shown in

16 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 4. RELATED WORK

Figure 4.4. This pixel-based design enables users to determine if each node partitions data
correctly using distinct classes.

Besides, the treemap technique is another visualization scheme used for decision trees.
As shown in Figure 4.3b, they are space efficient, scaling up to thousands of nodes. Muhlbacher
et al. [22] take advantage of the treemap pixel-based architecture to assist users in estimat-
ing the complexity and performance of a decision tree in Figure 4.5. But at the cost of making
the different levels within the tree harder to perceive and distinguish. Because of this flaw,
it is not only hard to see the internal decision nodes of the oblique decision tree, but it is
also hard to show each decision path clearly.

Overall, considering the hierarchical structure of the oblique decision tree and its own
small tree size, the node-link diagram is one of the visualization techniques that can be
borrowed. On the one hand, it can provide enough space to combine with other potential
visualization techniques to present the information of internal decision nodes; on the other
hand, based on its own tree structure, it can clearly present each decision path from the
root node to the leaf node. Such a property assists the user in understanding how specific
predictions are made, which is not possible with the other two options.

Figure 4.4: Icicle tree visualization combined with pixel-based observations and encoding
with colors as data classes proposed by Ankerst et al. [2]

Figure 4.5: Treemap visualization combined with pixel-based observations and encoding
with colors as data classes proposed by Muhlbacher et al. [22]

4.2.2 Visualizing Feature Space Split in Decision Nodes

Although the node-link diagram is a good choice to show the global tree structure and pro-
vide clear decision paths in oblique decision trees, it is difficult for users to understand how
internal decision-making works without the help of other tools. Currently, many decision
tree visualizations have been developed using node-link diagrams to learn how to visualize

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 17

CHAPTER 4. RELATED WORK

the split of feature space for each decision node. Such previous studies have positive impli-
cations for our research. We therefore discuss work on feature-target space visualization in
this section.

Figure 4.6: A typical decision tree visualization with the Iris data proposed by Parr et al. [26]

Parr et al. came up with dtreeviz, a python library with a node-link diagram layout for
decision tree visualization and model interpretation [26]. The decision tree example with
the Iris data set is shown in Figure 4.6. Each decision node presents the class distribution
of the subset of the point on the one hand, and the position of the split point in the class
distribution on the other hand, and thus the class distribution of each of the two subsets
divided by the current decision node. The visual encoding for class distribution is a stacked
histogram. They used stacked bar colors to represent data classes. This visualization has
some nice properties. It not only presents how many classes the current node contains,
but then presents the distribution of these classes using a histogram. Often, the count of
different classes and their distribution are of interest to the user in addition to what classes
are available.

Elzen et al. presented an alternative method to visualize how observations in the cur-
rent decision node are split. When there are more than four or five classes, the stacked
histograms are difficult to read. But streamgraph and horizontal class histogram enable
us to visualize data sets with more classes. Although the streamgraph does not present
the class distribution precisely, the absolute value is displayed inside each color-coded his-
togram bar. Each color represents one of the data classes. Also, the splitpoint in this case is a
draggable interactive part that lets the user see how the split works in different cases while
they are interacting with it. Even though building models is not the focus of our research,
the streamgraph can be used to help visualize feature space.

Truong [32] uses multiple line segments in the scatterplot to present all the splits in the
two-dimensional feature space, as shown in Figure 4.8. With each line segment, the user
can clearly see how the oblique split makes decisions in a two-dimensional feature space.
All the observations are encoded with textual glyphs, colored corresponding to their respec-
tive class in the scatterplot, allowing the user to see the general class distribution and the
effect of each split. But the problem is that the user cannot tell from the associated deci-
sion boundaries which line segment corresponds to the specific oblique split. On the other

18 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 4. RELATED WORK

Figure 4.7: A decision node to visualize the split feature space proposed by Elzen et al. [33]

hand, the user cannot see the order of these oblique splits in the decision path itself, which
makes it harder for the user to understand how the model works. The implications of this
example for this study are that the oblique split is presented as a line segment in a scat-
terplot to help the user understand how the split is worked in a two-dimensional feature
space, and then the technique is introduced to each decision node to present each oblique
split independently rather than as a whole in a scatterplot.

Figure 4.8: An oblique decision tree and associated decision boundaries proposed by Truong
[32]

4.2.3 Visualizing Tree Interpretation of Decision Paths
Based on the hierarchical tree structure of the oblique decision tree itself, it can clearly
present each decision path from the root node to the leaf nodes. The decision path serves
as an important component that helps the user understand how a particular prediction is
obtained by this classifier.

As Figure 4.6 shows, Parr et al. used some techniques to highlight the decision-making
process. They showed an orange arrow in the horizontal feature space for decision nodes
along the path to the leaf predictor node. This makes the decision easy to track; if the orange

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 19

CHAPTER 4. RELATED WORK

wedge is to the left of the black wedge, go left, else go right. Decision nodes that are part
of the decision path are surrounded by boxes with dashed lines, and the edges of their
children are thicker and colored orange. Although the decision path here contains only one
class, when a decision path contains more than one class, the information about the class
flow distribution contained within the decision path is not presented to the user.

Since the node-link diagram is a convenient technique for presenting decision paths in
tree-based visualization, many researchers decided to work on the width and color of the
links to convey node size and class distribution as shown in Figure 4.9. The width of each link
in BaobabView [33] and TreePOD [22] is proportional to the number of observations going
from the parent node to the child node. If the inbound link at a node is dense, then this node
contains many instances. If the inbound link is very thin, there are few instances present.
To display the distribution of classes for a link of two nodes, the broad link is partitioned
into bands, with each band’s color and width according to the class. In terms of other link
details, Baobab has performed better, as seen in Figure 4.9a, where each link is curved to
make each decision route easier to follow while displaying node size and class distribution.

(a) Decision tree layout of BaobabView [33] (b) Decision tree layout of TreePOD [22]

Figure 4.9: Comparison of BaobabView and TreePOD in decision tree layout. Both use the
width of the link to convey the node size and the color of the embedded link to characterize
the class, but the difference is that the former link has the B´ezier curve feature, while the
latter does not.

However, when the oblique decision tree model is deployed, another important challenge
is how to get users to trust the model. Using Explainable AI (XAI) techniques, we discuss how
to assist users in the local interpretation of specific predictions in the next section.

4.3 Model Explanation
Ribeiro et al. [29] proposed a process of explaining specific predictions in LIME. It comprises
feature relevance techniques and visual explanation techniques. As Figure 4.10 shows, the
local explanation is a small list of symptoms with relative weights; these symptoms either
help the prediction (green) or are evidence against the prediction (red). Users usually have a
priori knowledge about the application domain, which they can use to accept (trust) or reject
the prediction if they understand the reasoning behind the prediction in order to monitor
the model. Feature relevance explanation aims to depict the functioning of a classifier by
ranking or measuring the contribution each feature has in the prediction output by the clas-
sifier to be explained.

Many tree ensembles and multiple classifier systems seek to improve model-specific in-

20 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 4. RELATED WORK

terpretability through feature relevance explanation [9, 16, 25, 39, 31]. Breiman [9] was the
first to analyze the feature contribution within tree ensembles. His approach is based on
evaluating Mean Decrease Accuracy (MDA) or Mean Increase Error (MIE) when a variable is
randomly permuted in out-of-bag samples. However, this ranking is too general and simplis-
tic and does not provide a local explanation. Palczewska et al. [25] proposed a local feature
contribution metric. They cleverly use the property of decision trees as hierarchical struc-
tures to calculate the local contribution of features in decision paths by using the difference
in class distribution between parent and child nodes. The details are discussed in Chapter
2.3.

Figure 4.10: Explaining individual predictions. A model predicts that a patient has the flu,
and LIME highlights the symptoms in the patient’s history that led to the prediction. Sneeze
and headache are portrayed as contributing to the "flu" prediction, while "no fatigue" is
evidence against it. With these, a doctor can make an informed decision about whether to
trust the model’s prediction. [29]

The literature we present in this chapter shows that many visualization techniques are
suitable for visualizing certain parts of our tasks. We can use box plots to assist users in
statistical understanding of the data sets. There are several dimensionaliy reduction tech-
niques to show how the input space is distributed. In the field of tree-based visualization,
we see that visualization techniques are mainly based on the presentation of node-link dia-
grams. As for the visualization of the splitting of the feature space for each decision node,
we see that the research focuses on how to present the class distribution of the sub data
set after being split and how the split makes the classification decision. For visualizing the
tree interpretation of each decision path, people use visualization techniques to highlight
a certain decision path in the whole decision tree; they also focus on how to present the
class distribution in each decision path. In addition to this, feature relevance explanation
provides faithful local explanation for specific predictions. In the next chapter, we present
how to combine multiple visualization techniques to accomplish tasks defined in Chapter 3.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 21

CHAPTER 4. RELATED WORK

22 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 5

Data Processing

In Section 4.2.1 we explained why we chose a node-link diagram to present the oblique
decision tree. Moreover, to accomplish tasks (T2-T5) outlined in Chapter 3, we introduce a
certain data structure to communicate the relevant information from the Python backend to
the Javascript frontend. D3, which is the frontend visualization library for this study, accepts
only binary trees as input to generate node-link diagrams. In addition, in order to visualize
each node, we need to prepare the required data to be stored in the binary tree in advance.
In this chapter, we discuss the original data, the trained oblique decision tree, and explain
how we manipulate the results of the trained classifier to generate a binary tree structure
data, to effectively communicate the model information from backend to frontend.

5.1 Original Data
The data sets used to train our oblique decision trees are Palmer Penguin [12], Iris [1, 11],
Wine [36], and Synthetic data 1. All of these are multivariate data sets for classification prob-
lems. Taking Palmer Penguin data set as an example, it contains 7 different attributes, of
which 3 are categorical and 4 are continuous. An example of a row is given in Table 5.1.

Parameter Value
Species Adelie
Island Torgersen
Sex Male
culmen_length_mm 39.1
culmen_depth_mm 18.7
flipper_length_mm 181.0
body_mass_g 3750.0

Table 5.1: An example of a penguin observation.

5.2 Trained Oblique Decision Tree
The oblique decision tree is actually composed of a series of rules. They can be represented
in textual form as Figure 5.1 shows. A decision rule is unique and represents a decision path.
It consists of multiple predicates. A predicate in a decision rule represents a decision node

1This synthetic data set is described in detail in Section 7.2.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 23

CHAPTER 5. DATA PROCESSING

separately. It contains three kinds of information, location of the current node, split distri-
bution after the current split, and the oblique split. For example, lrl denotes the decision
path from the root node to the current decision node. From the root node, it goes to the left
child node, then proceeds to the right child node, and the immediately following left child
node is the location of the current decision node. The split distribution is class distributions
of the left and right subsets after the current split. Most importantly, the oblique split is
represented in mathematical form.

Figure 5.1: A decision node example for Palmer Peguins data.

Figure 5.2: An example of decision path consisting of a set of decision nodes for Palmer
Penguins data.

A trained oblique decision tree consists of decision nodes and predicted outcomes in
leaf nodes, as shown in Figure 5.2. A series of decision rules are strung together based on
the corresponding location information to derive a specific predicted classification result.
To achieve task T2 formulated in Chapter 3, such information can be visualized in the form
of a node-link diagram. In addition to this, to accomplish task T3, we want to generate
data visualization in each decision node. To achieve this, we generate specific data for each
decision node. In the next section, we further introduce data manipulation to assist the
visualization in decision nodes.

5.3 Data Manipulation
To assist users in understanding the inner workings of a single oblique split (task T3), we
visualize the decision boundary in the corresponding feature space reflected by the oblique
split. We record which observations are involved and how they are divided into children
nodes. In addition, considering that task T5 is to help users explain how features contribute
to different decision paths, we compute the feature contribution per class and store it in
each leaf node. It is worth noting that the class distribution in each node is a prerequisite
to obtain feature contribution values, as described in the feature contribution method pre-
sented in Chapter 2.

To obtain the data structure shown in Figure 5.3, data manipulation consists of the fol-
lowing three steps:

1. Build a binary tree. Based on the location information in each decision rule shown in
Figure 5.1, a corresponding binary tree is generated, and when traversing each node,

24 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 5. DATA PROCESSING

1b.Class 2

• subTrainingSet

• split

• leftSubTrainingSet

• rightSubTrainingSet

• featureContribution

• ...

Figure 5.3: An example of target data structure for a leaf node.

the oblique split information of that node is inserted, on the one hand, to facilitate the
subsequent re-classifcation of the data set.

2. Reclassify the data set. Each point in the data set starts from the root node of the
binary tree generated in the previous step and is determined to be divided into left or
right child nodes by the current oblique split based on its feature value. At the same
time, the data point is recorded to the current decision node. The class correspond-
ing to the data point is also recorded and used to count the class distribution of the
decision node.

3. Compute feature contribution values. Finally, based on the class distribution ob-
tained in the previous step, the feature contribution values per class are stored in the
corresponding leaf nodes with the help of the robust calculation of the local feature
contribution proposed by Palczewska et al. [25].

Once we have the data needed for the visualization, we can proceed to the visual design
phase, which is described in Chapter 6.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 25

CHAPTER 5. DATA PROCESSING

26 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 6

ObliqueTreeVis Visual Design

In this chapter we present visualization techniques to facilitate the user tasks mentioned
in Chapter 3. First we describe each of the ObliqueTreeVis [19] components and what tasks
they each accomplish. Then we describe, in detail, the visual encoding of each individual
component and justify our choices.

6.1 ObliqueTreeVis Overview

This section presents an overview of ObliqueTreeVis in which we relate the views to the tasks
we defined in Chapter 3.

Figure 6.1: The interface of ObliqueTreeVis. (A) Control panel component; (B) Projection view
component; (C) Oblique tree view component; (D) Feature view component.

The interface of ObliqueTreeVis is shown in Figure 6.1. To interpret the oblique decision
tree from multiple aspects, we have chosen to place all components on one page. All four
components above are implemented with dynamic linkage to help users understand the
oblique decision tree.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 27

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

Before we elaborate on the visual design of the components, we first recall tasks defined
in Chapter 3:

T1 Gain insight in the underlying structure of the data.

T2 Understand the distribution of classes across decision rules.

T3 Understand how an oblique split works in each decision node.

T4 Locate decision paths involved in particular features and certain instances of interest.

T5 Identify which features contribute to a particular decision path and the decision nodes.

These four tasks can be summarized as exploration from three aspects: Oblique Decision
Tree, Explanation, and Feature. The corresponding three kinds of data, binary tree (Oblique
Decision Tree), feature contribution values (Explanation), and feature space (Feature), are pre-
processed inputs to our visual analytics system. Because all three aspects relate to our tasks,
they guide the visual design of ObliqueTreeVis. The remaining three components address
one to two of the above three aspects, except for component A which provides a summary
of the classification tasks and enables the user to select models for further analysis. Specif-
ically, the projection view (Figure 6.1B) at the bottom left as component B presents the user
with how the data set is distributed in the input space, addressing Feature. The oblique tree
view (Figure 6.1C) in the middle serves as component C to present the user with a tree model
in the form of a node-link diagram, addressing Oblique Decision Tree. Furthermore, compo-
nent C visualizes feature-relevance Explanation in each leaf node. The feature view (Figure
6.1D) on the far right contains not only information about feature contribution but also the
distribution of features per class, addressing Explanation and Feature.

Four tasks can be accomplished with the help of ObliqueTreeVis by practicing different
ways to interact with each of these four components. In the next few sections, we present
the visual design of each component of ObliqueTreeVis. We describe the visual encodings
and interactions of the individual components in detail and justify our choices.

6.2 Oblique Tree View
The oblique tree view (see Figure 6.1C) concerns the visualization of the tree structure to
assist users in understanding the working mechanisms of oblique splits and interpreting
the decision-making process (T2,T3, and T5). There are various ways to visualize the tree
structure. Barlow et al. [3] examined node-link diagrams, treemaps, tree-rings, and icicle
plots with regards to their ease of identifying tree topology, ease of identifying node links,
ease of identifying leaf sizes, and user preference. The icicle plot and node-link diagram
performed the best in this investigation. Considering that we want to allow the user to
understand the mechanisms operating inside each decision node as they read the tree (task
T3), the tree and the data visualization shall be tightly integrated. We need to show the data
visualization on the decision nodes, which is hard to do with icicle plots because the decision
nodes further up the tree get smaller and smaller until they can no longer show the data
visualization in a meaningful way.

Another reason for using node-link diagrams instead of icicle plots is that we get an ad-
ditional component, namely links. Links can present the user with a distribution of classes
along the decision path (task T2). The user understands the whole model by reading and
understanding the decision boundaries made by each decision node and organizing them
into a decision-making process with logical relationships. This requires us to present the dis-
tribution of classes along the decision path to the user with the help of visualization tools. It
represents the size of the subset that the current node contains. The width of each link is de-
termined by the number of instances that pass from the parent node to the child node. For
instance, if the inbound connection of a node is dense, this node includes many instances.

28 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

If the inbound connection is thin, then there are a small number of instances. To display
the class distribution of the links between two nodes, the broad links are divided into many
bands. According to the class, bands are colored and given a comparable scale.

Figure 6.2: Summary view for decision nodes.

The nodes are visualized as rectangles, and the nodes are divided into decision nodes
and leaf nodes. The former contains two sub-views for presenting relevant information to
solve task T3. The latter presents the feature-relevance explanation related to the decision
path for solving task T5. For decision nodes, they contain a summary view (see Figure 6.2)
as well as a detailed view (see Figure 6.3). For leaf nodes, they contain a path summery view
(see Figure 6.5).

The summary view provides the user with the weight of the feature coefficients involved
in the current oblique split. This weighting presents how each involved feature contributes
to the decision boundary. This information is visualized through feature coefficents bar.
The length of each bar depicts the corresponding feature coefficient weight where the bar
with a greater weight is filled with a darker color. feature coefficents bar are linked with the
feature name column (see Figure 6.1) in the feature view to solve task T3. When a specific
feature name is selected in the feature view, the bars in the summary view that are identical
to the selected feature are highlighted. This interaction reduces the time spent by the user
in locating the decision path involving certain features.

In addition, the summary view also provides the user with the class distribution of the
subset after the oblique split, which is visualized in a split class bar. The bars of the his-
togram are colored according to the class. The values are displayed beside the bars and
indicate the actual number of items on the left and right sides of the oblique split. With this
histogram, the user can know exactly the results of the current oblique split on the class
distribution. It helps the user to understand how oblique split works (task T3).

With the help of the summary view, the user not only understands which features act on
the current decision node and the extent of their contribution to the split, but also the effect
of the current decision node on the class distribution of the corresponding subset. However,
the understanding of the decision boundaries requires the help of the detailed view.

The detailed view provides users with a detailed oblique split visualization to solve task
T3. Scatterplot encodes two split features using point marks and both vertical and horizon-
tal spatial position. The class is encoded by adding color to each point mark. Oblique split
is visualized through a solid black line to depict the decision boundary. This visual design re-
duces the extra mathematical knowledge required by the user to read formulas made up of
a combination of features. We enable the user to select points of interest in Scatterplot to

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 29

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

Figure 6.3: Detailed view of the decision nodes containing the oblique split.

gain insight in the underlying structure of the data set. Split class bar is also included in the
detailed view to provide a precise class distribution under the effect of the current oblique
split. When only one feature is involved in a decision node, a stacked feature histogram
and a split line constitute the detailed view, as shown in Figure 6.4.

Figure 6.4: Detailed view of the decision nodes containing the axis-parallel split.

30 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

In addition, stacked feature histogram shows the class distribution of the two subsets
separated by the oblique split. This is meant to help users see the effective distribution
interval of the oblique split in the feature space. The effective distribution interval of the
feature space is presented to the user through the overlapping area of the two histograms.
The bar chart shows the contribution of features to each class, and the direction of each bar
represents whether the contribution is positive or negative. The color of the bar indicates
the corresponding class.

Figure 6.5: Path summary view for leaf nodes.

The path summary view shows a data visualization of the feature contribution values for
each class, which contains features that all contribute to the leaf node results to address task
T5. The bars indicate the contribution value of the feature on each class, and the direction
of the bars refers to whether the corresponding contribution value is positive or negative.
Each bar is filled with color according to the corresponding class.

6.3 Feature View

(a) Stacked histogram for continuous feature
culmen_depth_mm in Palmer Penguin data.

(b) Highlighted stacked histogram for con-
tinuous feature culmen_depth_mm in Palmer
Penguin data after the user selected a subset

Figure 6.6: Stacked histogram as one of the visual designs for continuous feature distribu-
tion visualization.

In the feature view (see Figure 6.1D), the feature name, feature contribution value, and
feature distribution each occupy a separate column to form a feature table. To support
task T1, we use density plots to show the distribution of continuous features and apply bar
charts for categorical features. The stacked histogram was considered in our preliminary vi-
sual design to show the distribution of continuous features, as shown in Figure 6.6a. When
a subset is selected, black-bordered boxes are highlighted bars in the stacked histogram.
Since they are not on the same line, this makes it difficult for the user to visually compare
feature distributions between different classes, as shown in Figure 6.6b. The advantage of
using probability distributions as our display option is that it avoids the obscurity of some

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 31

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

classes in the case of unbalanced data. The visual design using probability distributions
as the presented feature distributions allows the use of an additional density plot of the
selected subset to overlay the original plots without affecting the view of the overall fea-
ture distributions. This also allows the user to clearly compare feature distributions across
classes, as Figure 6.7 shows.

(a) Density plot for continuous feature culmen
depth in Palmer Penguin data.

(b) Highlighted density plot for continuous
feature culmen depth in Palmer Penguin data
after the user selected a subset

Figure 6.7: Density plot as one of the visual designs for continuous feature distribution vi-
sualization.

When a subset is selected, the probability distribution of the subset is overlaid on the
original plot with a lower opacity degree. For categorical features as shown in Figure 6.8, a
new bar is overlaid on the original chart, while the original bar is pulled up for transparency
and the width of the new bar is shortened to achieve visual contrast.

(a) Bar chart for categorical feature dream is-
land in Palmer Penguin data.

(b) Highlighted bar chart for categorical fea-
ture dream island in Palmer Penguin data af-
ter the user selected a subset

Figure 6.8: Bar chart as one of the visual designs for categorical feature distribution visual-
ization.

To support task T5, the feature view also presents feature-relevance explanations in the
middle column of the feature table. Feature contribution values per class are visualized in
rect plots (see Figure 6.9) to assist users in comparing explanations cross features. Each cell
summarizes the feature contribution values of different decision paths for the correspond-
ing feature. The cell is empty if the selected tree classifier does not use the feature.

In our study, we use local feature contribution values as feature-relevance explanation
(Section 2.3) proposed by Palczewska et al. [25]. Feature contribution values are computed
per instance. Instances have the same feature contribution values if they all go through
the same decision path. This allows each decision path in the whole tree classifier to have
an independent feature contribution value. However, the number of decision paths in a
classifier can be as low as a few or as many as several dozens, so it is difficult to present the
feature contribution value to the user with the help of statistical analysis-type visualization
tools.

As Figure 6.9a shows, each rectangle represent a feature contribution value for the cor-
responding class, feature, and decision path. The size of each rectangle represents how

32 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

(a) Rect plot of feature contribution visualiza-
tion for continuous feature culmen length in
Palmer Penguin data.

(b) Highlighted rect plot of feature contribu-
tion visualization for continuous feature cul-
men length in Palmer Penguin data after the
user selected a subset

Figure 6.9: Rect plot as one of the visual designs for feature contribution visualization.

many instances go through the corresponding decision path. The position of each rect-
angle on the x-axis represents its corresponding feature contribution value. Such a visual
design helps the user to clearly see how the corresponding features act on the whole tree
classifier. In addition, when a subset is selected, the feature contribution value that has an
impact on the instances in the subset is highlighted, and the rest of the rectangles are made
more transparent to provide visual contrast in the Figure 6.9b shown.

In addition, with such an aligned layout, we decide to place the x-axis in the header of
the column as shown in Figure 6.9a. On the one hand this avoids duplicate presentation of
the x-axis in each cell, and on the other hand the uniform x-scale helps the user compare
the contribution of different features to the tree classifier. Since such a visual design only
provides an approximate value to the user, for each rectangle, we add a hover effect on each
rectangle. As shown in Figure 6.9b, when a rectangle is hovered over by the cursor, the x-
axis in the header above appears with the corresponding exact feature contribution value
to the user.

Apart from feature contribution visualization, another concern is which features are more
important. This requires us to rank feature contribution values. Since there is no unique way
to compute this ranking, we decide to use average absolute feature contribution value as
the metric to sort feature cells. The user can click on the downward-flipping triangle in the
header to sort the feature cells as Figure 6.9a shown.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 33

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

Figure 6.10: Highlighted decision path in the oblique tree view.

6.4 Projection View
The projection view applies t-Distributed Stochastic Neighbor Embedding (t-SNE) [35] with
Euclidean distance to map the feature space into two dimensions. Instances are shown as
point marks colored according to their classes. The projection view assists in exploring data
similarity, addressing task T1.

When a subset is selected in the projection view, its corresponding decision path is high-
lighted in the oblique tree view as shown in Figure 6.10. Nodes not related to the highlighted
decision path are made more transparent, and secondly, the links of the highlighted deci-
sion path are also re-rendered, and the width of the new links is scaled based on the number
of instances of the selected subset. Meanwhile, those features involved in the decision path
of the selected subset are highlighted in the feature view, as shown in Figure 6.11. There-

34 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

Figure 6.11: Highlighted feature rows in the feature view.

fore, the projection view helps the user to build a bridge between the oblique tree view and
the feature view regarding the decision path. This allows the user to select the subset of
interest and then explore the feature characteristics and feature-relevance explanation of
the decision path under the dynamic interaction of the three major views.

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 35

CHAPTER 6. OBLIQUETREEVIS VISUAL DESIGN

36 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 7

Evaluation

In this chapter, we present two use cases and a quantitative user study to demonstrate how
ObliqueTreeVis effectively helps users understand the behavior of an oblique decision tree
in the context of visual analysis in comparison to traditional decision trees.

7.1 Use Case: Palmer Penguin Species Classification
In this use case, we demonstrated how ObliqueTreeVis helps people understand an oblique
decision tree. Palmer Penguin Data comprises various measurements of 333 penguins. The
task is to classify the different penguin species, which are Adelie, Gentoo, and Chinstap.
Each data instance contains eight features: weight, culmen length, culmen depth, filpper
length, sex, and island of residence (three features processed with one-hot encoding).

In this case, we show how to use ObliqueTreeVis to investigate which features are critical
for a certain prediction and how these features contribute to the corresponding prediction.
First, we focus on investigating features that are critical to Gentoo penguins, addressing
task T5. First of all, through the oblique tree view, we can clearly see that the classification
result of the current two decision paths is the Gentoo penguin species, as shown in Figure
7.1A. Next, we consult the path summary view (see Figure 7.1B) in the leaf node of the two
decision paths and find out that the features with the highest contribution are flipper length
and culmen length (T4). To further understand why these two features are critical to the pre-
diction of Gentoo penguins, we next look at the decision boundary involving these features.
Therefore, we use the feature selection in the feature view (see Figure 7.1C) to quickly locate
decision nodes that involve these features. Take flipper length as an example. It successfully
divides 118 penguins of Gentoo species in the root node of the tree under the joint effect
of culmen depth. By observing the summary view of the decision node as shown in Figure
7.1D, we can find that the filpper length does contribute to the main partition effect in the
oblique split, which can be seen from the feature coefficient bars (T3). Secondly, through
the stacked feature histogram corresponding to the flipper length in the detailed view (see
Figure 7.1E), the current oblique decision tree tells us that Gentoo penguins have longer
flippers than the other two species. (T1).

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 37

CHAPTER 7. EVALUATION

Figure 7.1: Using ObliqueTreeVis to interpret oblique decision trees with Palmer Penguin
Data: (A) One highlighted decision path in the oblique tree view when the Bivariate Decision
Tree model is selected. (B) Flipper length contributes the most in the path summary view. (C)
Select filpper length in the feature view. Decision nodes involving the selected feature are
highlighted. (D) Investigate the highlighted decision node in the summary view. (E) Analyze
splitpoint feature distribution from the stacked feature histogram in the detailed view.

7.2 Use Case: Horseshoe Crab Species Classification
In this use case, we use an artificially synthesized data set to evaluate the interpretability of
oblique decision trees and traditional decision trees in the context of visual analytics.

Horseshoe Crab Data. This is a data set for classification problems of an artificially cre-
ated fictional species, the horseshoe crab. The data set contains five continuous features,
namely, temperature, weight, tail length, altitude, and age. It contains three species, Ro-
tund, Gigas, and Trident horseshoe crabs. Through matrix operations, the original isotropic
data set becomes anisotropically distributed. This results in positive or negative correlations
between the five features. In addition, the fifth feature, age, is added to the feature space
as noise, which obeys a Gaussian distribution and is a redundant feature. This data set con-
tains 764 instances, of which the distribution of classes (Rotund, Gigas, and Trident) is 156,
187, and 421.

Comparing the interpretability between oblique decision trees and traditional de-
cision trees. At the beginning, we trained the data set using oblique decision trees and
decision trees, respectively. The pruning algorithm is not used in either model. The final
oblique decision tree generated a tree with 3 levels of depth and a total of 4 decision nodes
(internal nodes that are not leaf nodes). In contrast, the traditional decision tree CART pro-
duced a tree with a depth of 6 levels and a staggering 32 decision nodes, as Figure 7.2 shows.
From these two sets of data, it can be seen that the oblique decision tree generates smaller
tree sizes when there is a significant correlation between the features. Then, we followed
the structure of the tree model to explore decision nodes and decision paths. When explor-
ing the oblique decision tree model, we only needed to look at the detailed view in the root
node alone to understand the characteristics of the data set in terms of temperature and tail
length (the tail length of horseshoe crab is shorter when the living environment is warmer),

38 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 7. EVALUATION

(a) An example of a traditional decision tree, trained with Horseshoe Crab Data.

(b) An example of an oblique decision tree, trained with
Horseshoe Crab Data.

Figure 7.2: Comparison of two decision tree models trained from Horseshoe Crab Data. The
oblique decision tree produces a tree with a depth of 3 levels and a total of 4 decision nodes.
In contrast, the traditional decision tree CART produced a tree with a depth of 6 levels and
32 decision nodes.

and the combination of these two features is able to classify three different species of horse-
shoe crab. However, when we explored the traditional decision tree, to get insight in the un-

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 39

CHAPTER 7. EVALUATION

derlying structure of the data conveyed by the model, we were required to explore several
decision nodes. Before we can make valid conclusions on the relationship between altitude
and temperature, we must investigate the whole left side of the decision tree. Under the
combined influence of the two features, temperature and altitude, the traditional decision
tree was able to classify the species Gigas and Trident. However, the traditional decision tree
was unable to provide more specific information, including a positive correlation between
these two features. This tells us that oblique decision trees have better interpretability in
the context of visual analytics compared to traditional decision trees.

7.3 User Study
To illustrate how ObliqueTreeVis assists users in comprehending the behavior of an oblique
decision tree in the context of visual analysis as compared to traditional decision trees, we
perform a two-section online quantitative study [18]. Detailed user study questions can be
found in Appendix A. With the help of ObliqueTreeVis, questions are made to find out how
well ObliqueTreeVis helps users understand oblique decision trees and how easy it is to un-
derstand oblique decision trees compared to traditional decision trees. In two sections, we
ask participants to answer relevant questions. After participants complete all the questions,
we ask them to complete a questionnaire to understand user preferences and directions for
improvement.

Study Design. According to research, age, past experience, and education may operate
as moderators that confound individual impacts on experimental results [5]. We recruited
10 master students studying data science. These students all have the basic understanding
of machine learning related knowledge.

The research consists of three phases. Each participant receives a 10-minute lesson to
begin. In the second stage, respondents are first asked to answer a list of questions to solve
tasks (T2,T4), in section I. Respondents are then asked to answer a list of problem-solving
questions to solve tasks (T3,T5), and the questions are used to evaluate the interpretabil-
ity of oblique decision trees and traditional decision trees with the assistance of the visual
analysis system. In the experiment, half of the respondents are told to use the decision tree
to answer the questions in Section II, and the other half are told to use the oblique decision
tree to answer the Section II questions. In the formal user study, we use Horseshoe Crab
Data and ObliqueTreeVis to interpret a traditional and oblique decision tree.

After the second part of the user study is done, we ask participants to fill out a three-
question questionnaire to see how well ObliqueTree works and to get user feedback on
ObliqueTreeVis. As Table 7.3 shows, some of the questions are designed using a 5-point
Likert scale, ranging from strongly disagree (1) to strongly agree (5). Some of the questions
are descriptive questions.

Question Task
List all the leaf nodes of the prediction class i? [T2]
Which of the following decision paths has feature x involved? [T4]

Table 7.1: Questions of section I in the quantitative experiment.

Questions in Section I. Two questions (see Table 7.1) are created to validate the ability
of respondents to accomplish tasks (T2,T4) using ObliqueTreeVis in section I.

Questions in Section II. There is little consensus on what constitutes interpretability
in machine learning and how to evaluate it for a benchmark. Lakkaraju et al. argued that

1Comparison denotes the research of evaluating the interpretability of oblique decision trees and traditional
decision trees with the assistance of the visual analysis system.

40 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

CHAPTER 7. EVALUATION

Question Task
Which class would the model most likely predict for instance j? [T3,T5,Comparison1]
For the introduced instance j, what features are involved in
making the prediction? [T3,T5,Comparison]

For the introduced instance j, is feature Xu contributing more
than feature X v? [T3,T5,Comparison]

Table 7.2: Questions of section II in the quantitative experiment.

if humans can understand the decision boundary of a model by looking at the rules, we
call a rule-based model an interpretable model [17]. Considering that our model is mainly
oriented towards domain experts to help them make task-oriented decisions in their daily
work, we can assess the interpretability of the model by analyzing how accurately users un-
derstand the decision boundaries conveyed by the model. Moreover, both our third and
fifth tasks (T3,T5) are directly related to the user understanding of the decision boundary
conveyed by the model. Therefore, we design three questions examining the understand-
ing of the decision boundary depicted by the model in section II. These three questions are
classification-oriented questions, as shown in Table 7.2. The first question requires users
to follow decision paths in the model to solve a classification problem. The second ques-
tion examines whether the respondent can correctly identify which features act on a certain
prediction. Also, the third question checks how well the respondent understands feature-
relevance explanations for a certain decision path. We prepare two different data instances
to be classified for the respondents in section II. In each case, respondents were asked to
answer these three questions.

Question: System Usability Result
Do you find this visualization useful for understanding the behavior
of an oblique decision tree 4.50/5

Do you think this visualization easy to use? 3.80/5
Please evaluate the ease of use of the different components of the system.
Oblique Tree View 4.40/5
Feature View 3.80/5
Projection View 3.50/5

Table 7.3: Post-experiment questionnaire.

Measures. For the aforementioned questions, we assess them in three aspects. The
first is the accuracy of the answer by the respondent. Because each question is made to be
objective and have the best answer, accuracy gives us an objective measure of how well the
respondent understands the different tasks. The second perspective used for evaluation is
the time spent. This is because for domain experts, the ability to answer questions quickly
is critical in their work. Moreover, the dimensions previously proposed by Doshi-Velez et
al. to evaluate the interpretability of task-oriented machine learning models include time
constraints. [10]. The third thing each question looks at is how sure the respondent is about
his or her answer. Confidence is measured on a scale of 1 to 5 (Totally Not Confident =
1, ..., Very Confident= 5).

Results. Table 7.4 presents the results of the user study. Detailed user study results can
be found in Appendix B. The average time that respondents took to complete questions in
section I is 210.2 seconds. The accuracy of the performed tasks is about 78 % in section I.
The average level of confidence in the answers they gave ranges between confident (4) and

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 41

CHAPTER 7. EVALUATION

totally confident (5). All the respondents answered the required questions correctly and
confidently most of the time. Combined with the experiment results (see Table 7.4) given by
respondents using oblique decision trees in section II, this suggests that the basic usability
of our approach is validated.

For the results in section II, we found that the accuracy was higher when respondents
were dealing with the oblique decision tree, compared to the case of the decision tree in sec-
tion II. For respondents using Decision Tree, the most common mistakes they made were:
(1) ignoring some features involved in a particular data instance prediction; and (2) giving
the wrong feature importance explanation for a particular data instance prediction. By inter-
viewing the respondents who answered incorrectly, they gave the explanation that although
they could accurately predict the data instance by the decision tree model, they were prone
to forget some predicates due to the long decision path. In addition to that, when they
wanted to analyze the feature-relevance explanations for the predicted results, they tended
to get the wrong leaf nodes. Because there were many leaf nodes that gave the same result,
they could easily locate the wrong leaf node. Although there were also one or two incorrect
results for respondents using the oblique decision tree, they were mostly able to avoid the
mentioned situations. Respondents explained that they were able to find the correspond-
ing decision path very quickly. Moreover, they could answer the questions with confidence
based on the feature-relevance explanations given by the path summary view in the leaf
node.

The average time taken to complete questions in section II based on the oblique decision
tree is roughly 70% of the time taken to complete the same questions in section II based on
the decision tree. In addition, answers based on the oblique decision tree had about 20%
higher confidence compared to the answers based on the decision tree. This indicates that
respondents find it easier to understand decision rules based on the oblique decision tree.

Section Metric ODT DT

section I
Accuracy
Time Spent
Confidence

0.78
210.2

4.25
—

section II: instance A
Accuracy
Time Spent
Confidence

0.87
315.0

4.07

0.67
418.6

3.47

section II: instance B
Accuracy
Time Spent
Confidence

0.91
236.4

3.93

0.67
354.6

3.07

Table 7.4: Results of the user study. Section I evaluated how ObliqueTreeVis accomplished
task T2 and T4. Section II accessed how ObliqueTreeVis accomplished task T3 and T5, and
compared interpretability of Oblique Decision Trees (ODT) and Decision Trees (DT).

In the post-experiment questionnaire section, most participants valued the effectiveness
of ObliqueTreeVis in helping them understand oblique decision trees and how to make spe-
cific predictions. In particular, they appreciated the usefulness of Oblique Tree View. For
the Oblique Tree View, one respondent commented that he liked that this view "helped him
present decision boundaries within a single split, which a textual data equation could not
provide"; and that he was able to "interactively explore data points of interest through the
scatterplot". But one respondent mentioned that he wanted to "explore the projection view
under certain features involved" in the process of user study. However, ObliqueTreeVis does
not currently satisfy his needs.

42 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Chapter 8

Conclusions and Future Work

The key findings are presented in this chapter. The limits of ObliqueTreeVis and future re-
search are then discussed.

8.1 Conclusions
This study aims to develop a visual analytics system to enhance the interpretability of oblique
decision trees and evaluate the interpretability of oblique decision trees vs. traditional de-
cision trees in the context of visual analysis. To achieve the research goal, we first give an
overview of tree-structured methods and then analyze the situations of our domain experts.
This arrives at five user tasks (T1-T5). Based on the given tasks, we offer relevant research. In
the related work, we analyze the effectiveness of these methods and different visualization
techniques, serving as the inspiration for our visual design choices.

We focus on oblique trees with bivariate splits to achieve a good balance between in-
terpretability and model size. This decision also enables us to use proven two-dimensional
visualization techniques. To help users understand the distribution of classes across deci-
sion rules, we build an oblique tree view to show the global structure of the tree model. To
reveal the primary working mechanism of the oblique decision tree, we present a summary
view and a detailed view of the decision nodes. These two views allow users to explore and
understand the partitioning logic of these nodes. To understand the partitioning logic for
each decision path, we create a path summary view in each leaf node to support feature-
relevance explanations of the prediction results. Furthermore, we build a feature view to
show the distribution of different features. This view also provides the user with a global
view of how much each feature contributes to the features of different decision paths, fur-
ther helping to establish the relationship between the features and the prediction results.
To show the similarity of the original data set, we provide a projection view. This also allows
users to explore interactively across views.

In our evaluation, we provide two use cases and a user study. Through a use case and
a user study, we preliminarily validate the effectiveness of the visual analytics system, Obli-
queTreeVis. In addition, we demonstrate that users of a visual analytics system using a
bivariate decision tree can interpret the model faster and give more accurate classification
predictions than a visual analytics system using a traditional decision tree as a model.

8.2 Future Work
Below, we discuss the future work of this visual analytics system.

Scalability of the Visualization. While the current implementation of ObliqueTreeVis
can visualize tree models with more than 100 decision nodes, its interpretability has only

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 43

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

been validated on tree models with fewer than 40 decision nodes. It is unclear whether
users can still gain an overall understanding of more complex tree models. In the future,
we may consider using pruning algorithms to reduce the size of the tree model.

Scalability of the Bivariate Decision Tree Induction Method. The oblique decision tree
induction algorithm currently used in the study only supports a maximum number of three
classes. On the one hand, this affects the usefulness of ObliqueTreeVis; on the other hand, it
is not possible to assess whether the number of classes has an impact on the interpretability
of the current visual analytics system. Therefore, the next priority is to make the oblique
decision tree induction algorithm support data sets with a larger number of classes.

Number of Features in Each Split. Our study builds on the fact that there are readily
available traditional two-dimensional visualization techniques to depict the decision bound-
aries of bivariate splits. This comes at the cost of compromising the model in terms of per-
formance. Instead of using new visualization techniques to describe the hyperplane of an
oblique split, we can also consider using algorithms to summarize a complex oblique split.
For example, can we express a linear combination of two features with a newly created fea-
ture? This gives us the opportunity to describe high-dimensional decision boundaries in a
new feature space with the help of visualization techniques. At the same time, we use other
methods to help users interpret the meaning of each new feature.

44 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Bibliography

[1] Edgar Anderson. The species problem in iris. Annals of the Missouri Botanical Garden,
23(3):457–509, 1936. 23

[2] Mihael Ankerst, Martin Ester, and Hans-Peter Kriegel. Towards an effective cooperation
of the user and the computer for classification. In KDD ’00, 2000. 16, 17

[3] Todd Barlow and Padraic Neville. A comparison of 2-d visualizations of hierarchies. In
Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01), INFO-
VIS ’01, page 131, USA, 2001. IEEE Computer Society. 28

[4] William A Belson. Matching and prediction on the principle of biological classification.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 8(2):65–75, 1959. 6

[5] Izak Benbasat and Ronald N. Taylor. Behavioral aspects of information processing for
the design of management information systems. IEEE Transactions on Systems, Man,
and Cybernetics, 12:439–450, 1982. 40

[6] Jan C Bioch, Onno van der Meer, and Rob Potharst. Bivariate decision trees. In Euro-
pean Symposium on Principles of Data Mining and Knowledge Discovery, pages 232–242.
Springer, 1997. 7

[7] Ferdinand Bollwein and Stephan Westphal. A branch & bound algorithm to determine
optimal bivariate splits for oblique decision tree induction. Appl. Intell., 51:7552–7572,
2021. 7

[8] Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classification and
Regression Trees. Chapman and Hall/CRC, 1984. 1, 6, 8

[9] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification
and regression trees. Routledge, 2017. 21

[10] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine
learning. arXiv: Machine Learning, 2017. 41

[11] Rory A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Human Genetics, 7:179–188, 1936. 23

[12] Kristen B. Gorman, Tony D. Williams, and William R. Fraser. Ecological sexual dimor-
phism and environmental variability within a community of antarctic penguins (genus
pygoscelis). PLoS ONE, 9, 2014. 23

[13] David Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision trees. In
IJCAI, volume 1993, pages 1002–1007. Citeseer, 1993. 8

[14] Joseph B. Kruskal and James M. Landwehr. Icicle plots: Better displays for hierarchical
clustering. The American Statistician, 37:162–168, 1983. 16

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 45

BIBLIOGRAPHY

[15] Joseph B Kruskal and Myron Wish. Multidimensional scaling. Number 11. Sage, 1978.
13

[16] Victor E Kuz’min, Pavel G Polishchuk, Anatoly G Artemenko, and Sergey A Andronati.
Interpretation of qsar models based on random forest methods. Molecular informatics,
30(6-7):593–603, 2011. 21

[17] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable decision
sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1675–
1684, 2016. 41

[18] Chicheng Liu. oblique-tree-user-study. https://github.com/TbabmBarry/
oblique-tree-user-study, 2022. 40

[19] Chicheng Liu. Obliquetreevis: Oblique decision tree visualization. https://github.
com/TbabmBarry/ObliqueTreeVis, 2022. 27

[20] Yan Liu and Gavriel Salvendy. Design and evaluation of visualization support to facilitate
decision trees classification. Int. J. Hum. Comput. Stud., 65:95–110, 2007. 2, 16

[21] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approxi-
mation and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
13

[22] Thomas Mühlbacher, Lorenz Linhardt, Torsten Möller, and Harald Piringer. Treepod:
Sensitivity-aware selection of pareto-optimal decision trees. IEEE Transactions on Visu-
alization and Computer Graphics, 24:174–183, 2018. 16, 17, 20

[23] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg. A system for induction of
oblique decision trees. J. Artif. Int. Res., 2(1):1–32, aug 1994. 1, 8

[24] Trong Dung Nguyen, Tu Bao Ho, and Hiroshi Shimodaira. Interactive visualization in
mining large decision trees. In Proceedings of the 4th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, Current Issues and New Applications, PADKK ’00, page
345–348, Berlin, Heidelberg, 2000. Springer-Verlag. 16

[25] Anna Palczewska, Jan Palczewski, Richard Marchese Robinson, and Daniel Neagu. In-
terpreting random forest classification models using a feature contribution method.
ArXiv, abs/1312.1121, 2013. 9, 21, 25, 32

[26] Terence Parr, Tudor Lapusan, and Prince Grover. Decision tree visualization. https:
//github.com/parrt/dtreeviz, 2022. 18

[27] Kristin Potter, Joe Kniss, Richard Riesenfeld, and Chris R. Johnson. Visualizing Summary
Statistics and Uncertainty. Computer Graphics Forum, 2010. 13, 14

[28] J. Ross Quinlan. Improved use of continuous attributes in c4.5. J. Artif. Intell. Res., 4:77–
90, 1996. 1

[29] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?":
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’16, page 1135–1144,
New York, NY, USA, 2016. Association for Computing Machinery. 20, 21

[30] Daniel Smilkov, Nikhil Thorat, Charles Nicholson, Emily Reif, Fernanda B. Viégas, and
Martin Wattenberg. Embedding projector: Interactive visualization and interpretation
of embeddings. ArXiv, abs/1611.05469, 2016. 13

46 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

https://github.com/TbabmBarry/oblique-tree-user-study
https://github.com/TbabmBarry/oblique-tree-user-study
https://github.com/TbabmBarry/ObliqueTreeVis
https://github.com/TbabmBarry/ObliqueTreeVis
https://github.com/parrt/dtreeviz
https://github.com/parrt/dtreeviz

BIBLIOGRAPHY

[31] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable
predictions of tree-based ensembles via actionable feature tweaking. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, page 465–474, New York, NY, USA, 2017. Association for Computing Machin-
ery. 21

[32] Alfred Kar Yin Truong. Fast growing and interpretable oblique trees via logistic regres-
sion models. 2009. v, 5, 7, 18, 19

[33] Stef van den Elzen and Jarke J. van Wijk. Baobabview: Interactive construction and
analysis of decision trees. 2011 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 151–160, 2011. 2, 19, 20

[34] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008. 13

[35] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9:2579–2605, 2008. 34

[36] B. G. M. Vandeginste. Parvus: An extendable package of programs for data exploration,
classification and correlation, m. forina, r. leardi, c. armanino and s. lanteri, elsevier,
amsterdam, 1988, price: Us $645 isbn 0-444-43012-1. Journal of Chemometrics, 4, 1990.
23

[37] Jun Wang, Bei Yu, and Les Gasser. Concept tree based clustering visualization with
shaded similarity matrices. 2002 IEEE International Conference on Data Mining, 2002.
Proceedings., pages 697–700, 2002. 16

[38] Malcolm Ware, Eibe Frank, Geoffrey Holmes, Mark Hall, and Ian H. Witten. Inter-
active machine learning: Letting users build classifiers. Int. J. Hum.-Comput. Stud.,
56(3):281–292, mar 2002. 16

[39] Soeren H Welling, Hanne HF Refsgaard, Per B Brockhoff, and Line H Clemmensen. For-
est floor visualizations of random forests. arXiv preprint arXiv:1605.09196, 2016. 21

[40] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemo-
metrics and intelligent laboratory systems, 2(1-3):37–52, 1987. 13

[41] Jianting Zhang, Le Gruenwald, and Michael Gertz. Vdm-rs: A visual data min-
ing system for exploring and classifying remotely sensed images. Comput. Geosci.,
35(9):1827–1836, sep 2009. 16

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 47

BIBLIOGRAPHY

48 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

Appendix A

User Study Questionnaire

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 49

Appendix B

User Study Results

user id
section two - instance a

q1 q2 q3 accuracy confidence time spent (s)accuracy confidence accuracy confidence accuracy confidence
c4ca4238a0b923820dcc509a6f75849b 1 4 0.75 4 0 2 0.583 3.333 249

dd41c6da7897cd248698870811d89ed6 1 4 1 4 1 4 1 4 410
71c1e8a22dbe10daae0743e628bb991c 1 5 0.5 4 1 3 0.833 4 441
c6f057b86584942e415435ffb1fa93d4 1 5 1 5 1 5 1 5 124
c81e728d9d4c2f636f067f89cc14862c 1 4 0.75 4 1 4 0.917 4 351

Average 0.87 4.07 315

ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees 51

APPENDIX B. USER STUDY RESULTS

user id
section two - instance b

q1 q2 q3 accuracy confidence time spent (s)accuracy confidence accuracy confidence accuracy confidence
c4ca4238a0b923820dcc509a6f75849b 1 4 0.667 3 1 3 0.889 3.333 225

dd41c6da7897cd248698870811d89ed6 1 4 1 4 1 4 1 4 391
71c1e8a22dbe10daae0743e628bb991c 0 4 1 4 1 3 0.667 3.667 231
c6f057b86584942e415435ffb1fa93d4 1 4 1 5 1 4 1 4.333 114
c81e728d9d4c2f636f067f89cc14862c 1 5 1 4 1 4 1 4.333 221

Average 0.91 3.93 236.4

user id
section two - instance a

q1 q2 q3 accuracy confidence time spent (s)accuracy confidence accuracy confidence accuracy confidence
99891000461f5b4e63817d95ab5749c4 0 3 0 3 1 4 0,333 3,333 468
d229a067f09c9a27d0f40eb02e91462c 1 4 1 4 1 3 1 3,667 483
eccbc87e4b5ce2fe28308fd9f2a7baf3 1 4 1 4 0 3 0,667 3,667 432

ec76ac6c764e20643208b88d111e3b24 1 4 0 4 1 4 0,667 4 404
381ea59648fd3e1fa64a05d567b43726 1 2 0 3 1 3 0,667 2,667 306

Average 0,67 3,47 418,6

user id
section two - instance b

q1 q2 q3 accuracy confidence time spent (s)accuracy confidence accuracy confidence accuracy confidence
99891000461f5b4e63817d95ab5749c4 1 3 0 2 0 3 0,333 2,667 580
d229a067f09c9a27d0f40eb02e91462c 1 4 1 4 1 2 1 3,333 180
eccbc87e4b5ce2fe28308fd9f2a7baf3 1 4 1 4 0 0 0,667 2,667 277

ec76ac6c764e20643208b88d111e3b24 0 4 1 4 1 3 0,667 3,667 364
381ea59648fd3e1fa64a05d567b43726 1 3 1 3 0 3 0,667 3 372

Average 0,67 3,07 354,6

user id
section one

q1 q2 accuracy confidence time spentaccuracy confidence accuracy confidence
c4ca4238a0b923820dcc509a6f75849b 1 5 0,5 5 0,75 5 261

dd41c6da7897cd248698870811d89ed6 1 4 0 3 0,5 3,5 174
71c1e8a22dbe10daae0743e628bb991c 1 5 1 4 1 4,5 120
c6f057b86584942e415435ffb1fa93d4 1 5 1 5 1 5 75
c81e728d9d4c2f636f067f89cc14862c 1 4 1 5 1 4,5 133

99891000461f5b4e63817d95ab5749c4 1 4 0 2 0,5 3 272
d229a067f09c9a27d0f40eb02e91462c 0 3 1 4 0,5 3,5 343
eccbc87e4b5ce2fe28308fd9f2a7baf3 1 5 1 5 1 5 153

ec76ac6c764e20643208b88d111e3b24 1 5 1 5 1 5 348
381ea59648fd3e1fa64a05d567b43726 0 3 1 4 0,5 3,5 223

Average 0,78 4,25 210,2

user id visualization interpretability visualization usability components usability
oblique tree view projection viewc4ca4238a0b923820dcc509a6f75849b 5 3 5 5

dd41c6da7897cd248698870811d89ed6 4 4 4 4 4
71c1e8a22dbe10daae0743e628bb991c 5 3 5 5 3
c6f057b86584942e415435ffb1fa93d4 5 4 4 4 3
c81e728d9d4c2f636f067f89cc14862c 5 4 4 4 3
eccbc87e4b5ce2fe28308fd9f2a7baf3 4 5 5 2 2

ec76ac6c764e20643208b88d111e3b24 4 4 4 3 3
d229a067f09c9a27d0f40eb02e91462c 5 4 5 3 4
99891000461f5b4e63817d95ab5749c4 4 4 4 5 5
381ea59648fd3e1fa64a05d567b43726 4 3 4 3 3

Average 4,50 3,80 4,40 3,80 3,50

52 ObliqueTreeVis: Visual Analytics for Interpreting Oblique Decision Trees

	Contents
	Introduction
	Motivation
	Problem Definition
	Contribution
	Organization of the Report

	Preliminaries
	Classification
	Tree-structured Classification
	Tree Construction
	Oblique Decision Trees

	Feature Contribution

	Task Analysis
	Related Work
	Visualization for Data Understanding
	Visualization for Model Understanding
	Tree-based Visualization
	Visualizing Feature Space Split in Decision Nodes
	Visualizing Tree Interpretation of Decision Paths

	Model Explanation

	Data Processing
	Original Data
	Trained Oblique Decision Tree
	Data Manipulation

	ObliqueTreeVis Visual Design
	ObliqueTreeVis Overview
	Oblique Tree View
	Feature View
	Projection View

	Evaluation
	Use Case: Palmer Penguin Species Classification
	Use Case: Horseshoe Crab Species Classification
	User Study

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix
	User Study Questionnaire
	User Study Results

