
 Eindhoven University of Technology

MASTER

BC-FL k-means
A Consortium Blockchain for Federated Clustering

Leeuw, W.V.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0ad42707-ed58-4e59-ae4b-7f2251f8ac24


BC-FL k-means: A Consortium
Blockchain for Federated Clustering

Master’s Thesis

W.V. Leeuw

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Supervisors:

dr. ir. M. Alishahi,
dr. ir. N. Zannone

Assessment Committee:
dr. ir. M. Alishahi,
dr. ir. N. Zannone,
dr. ir. T. Ozcelebi

Eindhoven, June 2022



BC-FL k-means: A Consortium Blockchain for Federated
Clustering

W.V. Leeuw
ABSTRACT
Research in privacy-preserving collaborative learning has seen
great strides in the past years. With the introduction of federated
learning, models can be trained locally on devices to subsequently
share updates with a central server so that no raw data is required
to be shared. In turn, the central server aggregates the updates to
build a global model. However, traditional federated learning suffers
from shortcomings such as requiring trust in a central server and
thus having a single point of failure. Moreover, unsupervised learn-
ing has historically been underrepresented in federated learning
research. This research presents a novel process to train cluster-
ing models collaboratively without compromising accuracy while
accommodating privacy and security in a decentralized manner.
To decentralize collaborative learning and remove the single point
of failure, a consensus is instead built collaboratively to facilitate
the federated learning task. We present a committee-based con-
sensus method designed for blockchain-based federated learning
that is more scalable than common consensus protocols used in
blockchains. We present a prototype based on the aforementioned
ideas and show that its performance is comparable with centralized
𝑘-means through the use of a reputation system, regardless of the
distribution of data among devices.

1 INTRODUCTION
Machine learning has seen improvements throughout the past years,
increasing the quality of models and their potential application
areas. As such, many organizations are increasingly using machine
learning models to perform tasks for (exploratory) data analysis
using their local data for training purposes. Being able to use many
organizations’ data to train machine learning models improves
model quality [35]. Due to privacy concerns, such collaborative
training of models has not yet been fruitful, especially in light
of the General Data Protection Regulation (GDPR) [4]. With the
introduction of federated learning, however, models can be trained
collaboratively while maintaining data security and privacy. To do
this, each device participating in the collaborative learning trains
its local model and shares its updates with a central server [39].
The central server then aggregates the received updates to train a
global model, which is then commonly shared with all participating
devices. Thus, federated learning is a solution that aims to remove
the necessity to share raw data between organizations. Issues and
concerns still remain, however, as federated learning may still leak
information from the local updates, suffers from connectivity issues
and is susceptible to attacks due to its centralized nature [30].

Traditional federated learning suffers from several shortcomings.
These shortcomings include:

(1) being required to trust a central server,
(2) having a single point of failure in a central parameter server,
(3) having limited traceability as historical models are lost, and

(4) having been insufficiently applied to the setting of unsuper-
vised learning.

Using a blockchain to facilitate decentralized federated learning
can alleviate the first three shortcomings. Blockchains decentralize
the collaborative learning process as no single entity is responsible
for the global update. Consequently, the requirement of a central
parameter server is removed. Moreover, blockchains provide full
traceability of learning rounds as each participant maintains a
local ledger [12]. Lastly, as unsupervised learning in the setting of
federated learning has not been researched thoroughly, we present
𝑘-means clustering for federated learning.

The contribution of this research is thus two-fold: we present a
blockchain-based federated learning system and use this system to
apply our federated 𝑘-means clustering. We investigate the advan-
tages, as well as disadvantages of using a blockchain in federated
learning, pertaining to scalability, security, resilience, and traceabil-
ity. Moreover, as blockchains have historically lacked in terms of
communication and computation costs, possible ways to remedy
this and thus improve the scalability of blockchain-based federated
learning systems are investigated.

1.1 Research Questions
This section describes the research questions which are used as
a starting point for the work done in this thesis. The research
questions pertain both to the adaptation of a 𝑘-means clustering
algorithm for federated learning as well as the usage of blockchain
in federated learning systems. The questions are revisited in Section
8.

Q1 How can blockchains be adapted to be better suitable to the
setting of federated learning?

Q2 What are the (dis-)advantages of using a blockchain in fed-
erated learning in terms of scalability, quality, security, re-
silience, traceability, and privacy?

Q3 How can 𝑘-means clustering be adopted in (blockchain-
based) federated learning?

Research question Q1 aims to find adaptations of the blockchain
architecture to increase the scalability regarding throughput and
the number of participating devices.

Research questionQ2 aims to look at both the advantages as well
as disadvantages of using blockchains to facilitate decentralized
federated learning in terms of scalability, quality, security, resilience
to attacks, traceability, and privacy.

Research question Q3 is posed as the typical application in fed-
erated learning is supervised learning. Unsupervised learning tech-
niques, such as 𝑘-means clustering, have not been sufficiently re-
searched within federated learning.

1.2 Contribution
This research presents 𝑘-means clustering for blockchain-based
federated learning. We show both how 𝑘-means clustering models



can be trained in federated learning generally and how blockchains
may help facilitate federated learning.

We designed a blockchain-based federated learning framework
to perform 𝑘-means clustering, with current problems in mind that
were put forward in the existing research on blockchain-based fed-
erated learning systems. For research question Q1, we investigated
how some of these common problems can be remedied and present
our design in Section 4.

To answer research questionQ2, we assessed the aforementioned
system in terms of security, traceability, resilience to attacks, and
privacy preservation. This is done in both Section 5 and Section
7. Moreover, we implemented a prototype serving as a proof-of-
concept to assess the scalability and the model quality by executing
several simulations.

Finally, for research question Q3, we first identified how 𝑘-
means clustering can be adopted to federated learning. Moreover,
we looked at attacks that are commonly carried out in federated
learning and analyzed them in the context of federated 𝑘-means
clustering.

1.3 Structure
The remainder of this report is structured as follows: Section 2
provides the required background information on unsupervised
learning, federated learning, and blockchains. Section 3 presents
the problem in more detail and also describes the motivation be-
hind designing a blockchain-based federated learning system for
𝑘-means clustering. Section 4 details the design of the proposed
blockchain-based federated learning system. Section 5 presents a se-
curity analysis judging from the proposed design. Section 6 briefly
describes the prototype that was built and the decisions that were
made in its implementation. Section 7 puts forward a performance
analysis of the proposed system. Section 8 presents the lessons
learned in this research, referring back to the research questions.
Section 9 discusses related work, including other blockchain-based
federated learning frameworks as well as solutions explored within
traditional federated learning. Lastly, the report concludes with a
summary of the most important findings and directions for future
research in Section 10.

2 PRELIMINARIES
This work builds on existing knowledge in the fields of unsuper-
vised learning, federated learning, and blockchains. These concepts
are shortly introduced in this chapter to provide the required un-
derstanding. Section 2.1 introduces unsupervised learning. Section
2.2 presents federated learning, both intuitively as well as formally,
applied specifically to 𝑘-means clustering. Lastly, Section 2.3 intro-
duces the concepts of blockchain that are relevant for this research.

2.1 Unsupervised Learning
Unsupervised learning aims to recognize patterns or structures in
unlabeled data and is often referred to as a form of exploratory data
analysis. It is fundamentally different from supervised learning that
involves labeled data being used to train a model to, for instance,
predict the label of a future record with respect to its features.
Semi-supervised learning uses both labeled and unlabeled data to
train machine learning models. Unsupervised learning includes

Notation Description
𝑑 ∈ D Any device with no specified role.
𝑁𝑑 The total number of devices.
𝑙 ∈ L A device that performs a learning task.
𝑗 ∈ J A participant being considered for or performing a

committee-related task.
𝑐 ∈ C A committee member.
𝑆 The sets into which data points are partitioned by k-means,

indexed by 𝑖 .
𝑡𝑟𝑎𝑖𝑛𝑑 Private training set of device 𝑑 .
𝑀𝑙

𝑡 Locally updated model of device 𝑙 at round 𝑡 .
𝑤𝑙
𝑡 The parameters of the local model at device 𝑙 at round 𝑡 .

𝑢𝑙𝑡 The local update at device 𝑙 at round 𝑡 .
𝐺𝑡 Global model constructed at the end of round 𝑡 .
𝑤𝐺
𝑡 The parameters of the global model at round 𝑡 .

𝑢𝐺𝑡 The global update at round 𝑡 , obtained after aggregation.
𝐶 (𝑙𝑡 ) The contribution value of a device 𝑙 at round 𝑡 .
𝑅 ( 𝑗) The reputation value of participant 𝑗 ,

denoted in the form (𝑠 𝑗 , 𝑓𝑗 ) .
\𝑐𝑜𝑛𝑡𝑟 The threshold for𝐶 (𝑙𝑡 ) at which point device 𝑙 is excluded.
\𝑅 The threshold on the ratio of 𝑓𝑗 to 𝑠 𝑗 at which point 𝑗 is

excluded.
𝑆𝐶 (𝐴, 𝐵) The cosine similarity between vectors 𝐴 and 𝐵.
\𝐶 The threshold on the cosine similarity for the exclusion of

aggregates.
Table 1: List of notations and their definitions.

many different types of models, but this research focuses first and
foremost on 𝑘-means clustering.

2.1.1 𝑘-means clustering. Clustering is a well-known unsupervised
learning task often employed to recognize patterns in datasets. For-
mally, given a dataset of observations 𝑥1, 𝑥2, ..., 𝑥𝑛 where each obser-
vation is a 𝑑-dimensional real vector, 𝑘-means clustering attempts
to partition the dataset into 𝑘 ≤ 𝑛 sets 𝑆 = {𝑆1, 𝑆2, ..., 𝑆𝑘 }, typically
minimizing the within-cluster sum of squares (WCSS) [45].

𝑘-means clustering aims to find centroids such that the WCSS
is minimized. In other words, the centroids converge to a posi-
tion where the distances between the points and its corresponding
centroid are minimized. This learning objective can be formalized
as:

𝑎𝑟𝑔𝑚𝑖𝑛𝑆

𝑘∑︁
𝑖=1

∑︁
𝑥 ∈𝑆𝑖
| |𝑥 − `𝑖 | |2, (1)

where `𝑖 is the mean of the points in the set 𝑆𝑖 .

2.2 Federated Learning
Historically, collaborative learning of models, where multiple par-
ties work together to train a collective model, has been done by
sharing data with a central server which was then tasked with the
training of a collective model. The motivation for the development
of federated learning is that directly sharing data poses security and
privacy risks even if done using techniques to preserve privacy [39].
Rather than sharing data, federated learning has each participant
train a local model and share parameter updates. A central server
then aggregates those parameter updates to train a global model.
Consequently, no raw data is required to be shared and thus collab-
orative learning is made more secure and better preserves privacy.

2



The notion of federated learning was developed by researchers at
Google [39]. Specifically, its first application was that of Gboard,
the Google keyboard, which can predict the next word while typing
on smartphones.

Federated learning is often characterized by three properties,
namely the data is massively distributed, non-IID and unbalanced
[39]. The number of devices can be much larger than the average
number of records stored on each device, meaning that the data is
massively distributed. Non-IID means that the data is not indepen-
dently and identically distributed. In other words, datasets residing
on different devices are specific to each user and thus no single
dataset is representative of the entire population. Similarly, the size
of the datasets residing on different devices varies greatly, which is
what is signified by the unbalanced property. All of these properties
must be taken into account in federated learning.

Typically, federated learning is applied in settings that deal
with cross-device rather than cross-silo collaborative learning [39].
Cross-device refers to a setting in which many devices each have
a small dataset (relative to the size of the total dataset). Cross-silo,
on the other hand, refers to a setting in which a handful of organi-
zations each have a relatively large dataset.

Moreover, the datasets that reside on each device can be thought
of as being partitions of the global dataset. These partitions can be
horizontal, meaning each dataset contains the same features but
the records are split among datasets. Alternatively, the partitions
can be vertical, meaning each dataset contains the same records but
the features are split among datasets. In this research, horizontal
partitions are dealt with.

2.2.1 Formalization. In this section, we formalize the 𝑘-means
clustering algorithm in the setting of federated learning. To do
so, we apply the generalized federated learning setting [39] to 𝑘-
means. As such, we consider the typical client-server structure in
this section.

During each learning round, each device 𝑙 trains its own local
𝑘-means clustering model by minimizing the within-cluster sum of
squares, as follows:

𝑎𝑟𝑔𝑚𝑖𝑛𝑆

𝑘∑︁
𝑖=1

∑︁
𝑥 ∈𝑆𝑖
| |𝑥 − `𝑖 | |2, (2)

where 𝑘 is the number of clusters, 𝑥 represents a record and `𝑖
is the mean of the points in the set 𝑆𝑖 . In fact, `𝑖 is the centroid
corresponding to the set 𝑆𝑖 . We can thus extract `𝑖 for each 𝑖 ∈
{1, ..., 𝑘} from each device 𝑙 . The collection of centroids from device
𝑙 at round 𝑡 is denoted as𝑤𝑡

𝑙
.

Aggregating the local centroids requires two steps. First, each
local centroid produced in round 𝑡 is matched with the nearest
global centroid from round 𝑡 − 1. This matching is done based on
Euclidean distance. For each cluster, the local centroids are then
combined to produce an aggregate:

`𝑖∗𝑡 =
1
𝑁

𝑁∑︁
𝑙=1

`
𝑙,𝑖
𝑡 (3)

where `𝑖∗𝑡 is the aggregate for the 𝑖-th global centroid, 𝑁 is the
total number of devices selected to supply an update and `

𝑙,𝑖
𝑡 is the

centroid from device 𝑙 that corresponded with the global centroid.

Afterward, the 𝑖-th global centroid is updated according to the
following rule:

`𝑖𝑡 = 𝛾 · `𝑖𝑡−1 + (1 − 𝛾) · `
𝑖∗
𝑡 , (4)

where 𝛾 ∈ (0, 1] is a coefficient to control the influence of the
previous global centroids and the newly aggregated local centroids.
In that sense, 𝛾 is similar to a learning rate in deep learning [19]. `𝑖𝑡
is the new 𝑖-th global centroid, and `𝑖

𝑡−1 was the 𝑖-th global centroid
during the previous round. The collection of all 𝑘 global centroids
at round 𝑡 is denoted as𝑤𝐺

𝑡 .
Often, federated averaging (FedAvg) [39] is used for aggregation

of all received local updates. This is done to assign more weight to
updates from devices that have more records than others. In the
context of 𝑘-means clustering, federated averaging can be denoted
as:

`𝑖∗𝑡 ←
1
𝑁

𝑁∑︁
𝑙=1

|𝑡𝑟𝑎𝑖𝑛𝑙 |
𝑡𝑟𝑎𝑖𝑛𝑎𝑣𝑔

`
𝑙,𝑖
𝑡 , (5)

where `𝑖∗𝑡 is the aggregate for the 𝑖-th global centroid, 𝑁 is the
total number of devices selected to supply an update, |𝑡𝑟𝑎𝑖𝑛𝑙 | is the
number of records that device 𝑙 used for training and 𝑡𝑟𝑎𝑖𝑛𝑎𝑣𝑔 is
the average number of records per device. Notably, the weight of
the update should be scaled based on the total number of records at
a device and not the number of records that are closest to the 𝑖-th
cluster. This is done to avoid information leakage, as devices may
not want to share how many records they have that correspond to
a certain cluster.

It should be stressed that both the choice for the learning rate 𝛾
in Equation 4 and the way in which federated averaging is applied
in Equation 5 touch on design decisions made in this research. We
briefly thouch on these choices in Section 7, where we compare our
prototype with an existing implementation of federated 𝑘-means
[52].

2.3 Blockchain
In 2008, Nakamoto proposed a blockchain with its first application
being Bitcoin [43], which is a decentralized currency. In essence, a
blockchain is a distributed ledger that allows collaborators to main-
tain a record of transactions in a decentralizedmanner [12]. Notably,
this means that no central party is responsible for the verification
of transactions. Instead, a consensus is reached through a type of
decentralized arbitration, where a so-calledminer can verify a trans-
action if they win a cryptographic puzzle referred to as Proof-of-
Work (PoW). There are several aspects and features of blockchains
that are important to consider in this research. Blockchains allow
to store any type of data, are append-only, ensure data integrity
and allow parties involved to reach consensus in a decentralized
manner [12]. For a block to be added to the chain, consensus on that
block must first be reached between participants. As such, an actor
in the network may attempt to add a block to the chain but if no
consensus is reached, the block will not be added to the chain. Once
a block is appended to the chain its contents cannot be changed or
reverted, which ensures the integrity of the system.

To showcase the structure of a blockchain, we take a closer
look at Bitcoin. Figure 1 shows that Bitcoin is a chronologically
ordered list of blocks in which each block refers to the unique
cryptographic hash of the previous block. Due to the difficulty of

3



Figure 1: The structure of the Bitcoin blockchain [43].

the cryptographic puzzle, it is sufficiently unlikely that a single
party succeeds in verifying subsequent transactions. Solving the
puzzle and showing the resulting hash serve as proof that work
was done. Typically, transactions are signed to ensure they are
not changed using a mechanism called asymmetric encryption. In
asymmetric encryption, each actor within a network has a key pair,
namely a private and a public key. After a transaction is created, its
creator can sign it using their private key, after which anyone seeing
the transaction can verify that the creator signed it by verifying it
using the creator’s public key [16].

Much debate exists about the use of PoW as mining difficulty
increases over time and it requires a relatively large amount of
resources [21]. However, other types of consensus protocols exist
which use fewer resources, such as Intel’s proof-of-elapsed-time
(PoET) [10] or election-based consensus protocols such as RAFT
[46].

Typically, a blockchain system is either private or public [58].
In private blockchains, authentication is required and often more
loose assumptions exist about the (malicious) nature of participants.
In public blockchains, anyone can enter and exit the network as
they wish. A third type of blockchain exists that is semi-private,
also known as a consortium blockchain. A consortium blockchain
only allows a group of pre-selected devices to participate. Within
the context of federated learning, this pre-selection is especially
important as participants should contribute positively to the global
learning process. Thus, requiring potential participants to prove
that they have data pertaining to the global learning task or are
willing to pay a fee to join the learning process may already thwart
potential attackers.

In this research, we consider a consortium blockchain where
anyone can enter granted that they pay a fee that can be earned
back if they positively contribute to the global learning process but
few assumptions exist on the nature of participants.

3 PROBLEM DESCRIPTION AND MOTIVATION
This section describes the problem and the motivation behind this
research. Section 3.1 describes the problem in detail and provides
a use case with which we illustrate the motivation behind this
research. Section 3.2 describes the requirements that we defined for
blockchain-based federated clustering based on existing research.

3.1 Detailed Problem Description
We consider the setting of healthcare where we want to properly
diagnose patients. In this setting, we consider the participants of
federated learning to be hospitals. We can utilize clustering to
identify profiles of patients having similar symptoms. Specifically,
each resulting cluster has distinguishable features that are likely to
map onto clearly defined diagnoses that in turn help to diagnose
a patient whose illness is difficult to assess. For the sake of this
example, we refer to those clusters as profiles.

Data pertaining to a patient’s symptoms are sensitive and can
be misused if they are leaked to an adversary. As such, the data
must be kept confidential and thus a privacy-preserving and secure
solution is necessary to train such a model collaboratively.

Each hospital may have, either coincidentally or because of its
location, varying sets of patients. Consequently, the data may show
that they suffer from various symptoms as well. This showcases the
need for a solution that takes non-IID data into account. Moreover,
this may cause certain versions of the collaboratively trained model
to perform better locally than a more recent version. Lastly, as
there is no clear candidate to host a central server that performs
the aggregation task in this setting, it makes sense to decentralize
the learning process.

Currently, the only way to perform 𝑘-means clustering is to
share raw data with a central server that then builds a collaborative
model. As such, information may leak if such a solution was opted
for. Moreover, traditional collaborative 𝑘-means clustering models
do not take into account that data from different sources may be
non-IID distributed. Instead, most operate under the assumption
that each participant has data pertaining to each of the 𝑘 clusters.
Lastly, with a central server being tasked with the training of a
collaborative model, it is often the case that only the most recent
model resides at the central server. It may be the case that an earlier
version of the global model works best for a specific participant,
however. Accordingly, they should be able to retrieve that version.

Blockchain-based federated clustering can remedy some of these
problems. Firstly, 𝑘-means clustering has not been investigated
thoroughly in the setting of federated learning. Applying 𝑘-means
clustering to the setting of federated learning already solves issues
pertaining to privacy, as raw data no longer has to be shared. More-
over, by applying similarity measures and local validation we can
identify potentially malicious participants who supply updates that
aim to deteriorate the global model. These techniques have been
investigated for solutions other than unsupervised learning [26].
Blockchain-based federated learning also removes the need for a
central server as the aggregation task is decentralized.

3.2 Requirements
We identified several requirements which were used as a reference
when designing the blockchain-based federated clustering system.
These requirements are based on those put forward by the authors
of [54] and are shown in Table 2.

We shortly describe the requirements and themotivations behind
them:

• Personalization: The requirement of personalization was
put forward as traditional federated learning does not allow
participants to select a model depending on which version

4



ID Requirement Description
R1 Personalization Participants share local updates to augment the global model and can extend the global model for

local purposes.
R2 Decentralization No single party owns all data nor is a single party responsible for the federated learning task.
R3 Trust The system maintains the trust of participants, either through monitoring of local updates or

behavior generally.
R4 Heterogeneity-awareness Differences in data residing at devices are accounted for such that these differences are not marked

as malicious nor are they disregarded because of their dissimilarity with other devices’ data.
R5 Context-awareness Differences between participating devices in terms of computation power and link speeds are

accounted for by dividing computational and communicational load.
R6 Secure Information leakage is kept at a minimum by only sharing data that is necessary to build a global

model.
R7 Robust Attacks aiming to deteriorate the global model quality are protected against.

Table 2: Requirements of (blockchain-based) federated learning systems with detailed descriptions.

performs best locally, but rather only allow them to use the
most recent version [30].
• Decentralization: Decentralization is one of the main aims
of using a blockchain with distributed consensus in the con-
text of federated learning. By removing the need of a central
server, no single party is responsible for the federated learn-
ing task and the global learning process can be made robust
against connectivity issues.
• Trust:Using distributed consensus requires themaintenance
of trust to prevent malicious participants from propagating
bad updates in the global learning process. For this measure
of trust, we are no longer exclusively interested in the quality
of local model updates but also on the general behavior of
participants, such as whether they respond and successfully
produce updates at all.
• Heterogeneity-awareness: Heterogeneity is particularly
relevant to consider in the context of federated learning
as the local data residing at participants may differ greatly.
Proper awareness of this fact is characterized by allowing
honestly produced local updates to be very dissimilar while
still being able to identify malicious updates.
• Context-awareness: Typically, federated learning is per-
formed using devices that have limited hardware, meaning
both computation and communication are slow [33]. Conse-
quently, federated learning systems should be context-aware,
meaning that devices having more resources should be cho-
sen to have a higher workload during federated learning
than other devices.
• Secure: The federated learning system should be secure in
the sense that data sharing is kept at a minimum. This trans-
lates to only sharing data that is necessary to improve the
global model or broadcast the global model to participants.
In 𝑘-means, this translates to only sharing local updates with
(partially) trusted participants and sharing the global cen-
troids with all participants. This requirement is especially
important in the use case that we defined, as patient data is
very sensitive.
• Robust: Lastly, the federated learning system should protect
against attacks that aim to deteriorate the global model qual-
ity. In our use case, deterioration of the quality of the global

model can result in clusters that do not align with any of
the patients seen by any hospital. Consequently, discovered
clusters may become entirely useless if such attacks are not
protected against.

In Sections 5 and 7 we briefly mention these requirements when
evaluating the proposed system. Moreover, Section 9 provides an
overview of existing solutions for federated learning along with
an overview showing which requirements those solutions meet.
Using that overview, we compare our proposed systemwith existing
solutions.

4 SYSTEM DESIGN
This section describes the design of the system. We researched
several existing frameworks, which included proof-of-stake (PoS)
based approaches [13], committee-based approaches [36], and also
frameworks that considered fairness and privacy preservation in
great detail [38]. The design decisions made in those frameworks
along with the requirements we defined in the previous section
helped guide the design process of blockchain-based 𝑘-means clus-
tering. In this section, we show how blockchains can be used to
facilitate federated learning and how 𝑘-means clustering can be
adopted in that setting.

Section 4.1 describes the architecture of the system. Section 4.2
describes the reputation management and utilization within the
system. A global overview of the system architecture is provided
in Figure 2.

4.1 Architecture
The blockchain-based federated clustering system (BC-FL 𝑘-means)
can be divided into five separate processes: blockchain initializa-
tion, local training, validation and aggregation, consensus, and
committee election. Except for blockchain initialization, each of
these processes is performed during each learning round. Figure 2
shows a global overview of these processes.

This section describes in detail the different processes and steps
that the system performs.

4.1.1 Entities. There are several roles that participants can fulfill
in the learning process:

5



Figure 2: Global overview showing communication between
different parts.

(1) Data owners: who perform the local learning step and send
their updates to the committee members.

(2) Committee members: who validate received updates and
aggregate them, after which they send the aggregated up-
date to the committee leaders. They also vote on blocks that
committee leaders propose.

(3) Committee leaders: who propose the addition of new blocks
using the received aggregated updates to update the global
model parameters.

4.1.2 Blockchain Initialization. At the start of the collaborative
learning process, the genesis block must be created and the peer-
to-peer communication channels must be established. Moreover,
consensus is required on the initial parameters of the global model.
The genesis block then forms the root of the blockchain, contain-
ing a timestamp and the initial model parameters. For the initial
parameters, we assume the bounds of each feature in the dataset
such that random initialization of 𝑘 initial centroids is possible.
Furthermore, a handful of devices must be randomly selected to be
committee members and leaders. The other devices participating
in the federated learning task can then start the local training step
using the initial global model parameters.

4.1.3 Local Training. The local training process is shown in Figure
3. At the start of each learning round, each data owner selected to
supply an update retrieves the most recent global model from their
local ledger and performs a local training step using that global
model as a starting point. Specifically, this means that each data
owner matches their local clusters with the global clusters and then
executes a single iteration of 𝑘-means. In doing so, we take into

Figure 3: Local training on a device.

account the heterogeneity among participants by allowing data
owners that have data describing fewer clusters than the global
model to produce an update only for those clusters. After perform-
ing the local training each data owner extracts the update and sends
it to the committee members with whom they were associated. By
default, data owners send their updates to every committee member,
but this can be tuned to reduce the load on committee members.

4.1.4 Validation and Aggregation. The validation step is shown in
Figure 4. After having retrieved the local update from a data owner,
the committee member validates it locally. This means that they
retrieve the most recent global model from their local ledger, apply
the retrieved update and then test the resulting model using their
local data. Using this validation step, they assess the contribution
of the data owner whose update they validated. This contribution
is detailed in Section 4.2. After retrieving all of the updates or after
a timeout, the committee member aggregates all validated updates
and sends the result to the committee leader. This aggregation is
computed using federated averaging [39].

4.1.5 Consensus. The consensus protocol is shown in Figure 5.
After retrieval of aggregated updates from different committee
members, the committee leaders can propose to append a block.
It is important to note that there are multiple leaders such that if
one disconnects, there is still one that can successfully produce and
propose a block. They do this by constructing a block containing the
updated global model parameters and trust values. The global model
parameters are updated according to the update rule presented in
Equation 4. In this sense, we deviate from simple 𝑘-means as we
consider a parameter similar to a learning rate in deep learning

6



Figure 4: Validation step performed by a committee member.

[19]. After block creation, leaders send their proposed block to
the committee members. Specifically, the committee leader signs
the block using their private key. The committee members can
then verify the signature using the leader’s public key. This step
is performed to confirm the leader’s identity. If the committee
member agrees with the appendage of the proposed block, they
produce a vote. This vote contains their signature on the proposed
block, their identifier, their public key, and a timestamp at which
the vote was cast. The committee members then send their vote
to the committee leader. The committee leader can append their
proposed block to the chain once they receive ⌊ |C |2 ⌋ + 1 number of
votes, where |C| is the number of committee members. To ensure
enough votes were received by a committee leader, they serialize
the votes into a byte-array of which the length can be checked by
committee members to assess whether the length corresponds to
a majority vote. Afterward, the winning leader can propagate the
block to committee members who then propagate it throughout
the network. If there is no winner after all votes are cast or after a
timeout window, a new learning round starts.

It is worth noting that each winning block is appended to the
chain such that every state of the global model can be accessed
by all (honest) participants. This ensures that the global learning
process is completely traceable and thus participants can choose
the version of the global model that performs best for them locally.

4.1.6 Committee Election. After block propagation, a new commit-
tee is elected. The idea behind this election is that participants that
behave honestly are selected to be part of the committee, either
as member or leader. Other devices are selected to be data owners
unless they have been flagged as having supplied malicious updates.
The selection process is detailed in Section 4.2.2.

Figure 5: Consensus protocol of the system.

4.2 Trust
Trust is an important aspect of decentralized peer-to-peer commu-
nication networks. In situations where no central party records the
reputation values of participants, methods aggregating local trust
values are often used, as is the case in EigenTrust [31]. In these
situations, peers maintain trust values for local peers and can share
them if prompted to do so. However, in the case of blockchain-based
systems, the values associated with trust, namely reputation and
contribution in this research, can be stored on-chain. Reputation is
associated with the behavior of the committee members and lead-
ers while contribution depends on the quality of updates supplied
by data owners. This means that both reputation and contribution
values are maintained for each participant as they may change roles
after each learning round.

4.2.1 Contribution. The contribution score is used to reflect the
quality of the local updates based on the gain in model quality.
Committeemembers validate local updates by applying them locally
and then testing the resulting model on their local dataset.

Definition 4.1 (Contribution). The contribution of a device 𝑙 is used
to represent how their local updates affect global model performance
and can be defined as:

𝐶 (𝑙𝑡 ) = 𝛽 · (S(𝑊 𝑙
𝑡 ) − S(𝑊𝐺

𝑡−1)) + (1 − 𝛽) ·𝐶 (𝑙𝑡−1)
where 𝛽 ∈ (0, 1] is a coefficient to control the effect of the historical
contribution and the contribution during round 𝑡 on the eventual
contribution score 𝐶 (𝑙𝑡 ). S(·) gives the average silhouette score as
computed by a committee member. The silhouette score measures how
similar records are to other records in the same cluster and how dis-
similar they are to records associated with other clusters. The average
silhouette score is given in the range of [-1, 1], meaning the range of

7



possible values of 𝐶 (𝑙𝑡 ) is also [-1, 1]. Negative values of 𝐶 (𝑙𝑡 ) imply
that applying the local update from device 𝑙 at time 𝑡 deteriorates
global model performance.𝑊 𝑙

𝑡 are the centroids of the local model
at the current round and𝑊𝐺

𝑡−1 are the centroids of the global model
in the previous round. Moreover, the term (1 − 𝛽) ·𝐶 (𝑙𝑡−1) is used to
consider the historical contribution of device 𝑙 .

It is worth noting that the contribution score of a particular de-
vice depends on the local data of the committee member providing
feedback on the local update of the device. As such, it can be the
case that a device is assigned a low contribution score even if their
local update may be valuable to the global learning process. To
prevent a device from being excluded completely, we still select
poorly contributing devices to provide local updates with a 10%
probability. The only exception to this is when those devices are
flagged as malicious. This happens when their contribution is below
a threshold \𝑐𝑜𝑛𝑡𝑟 < 0.0.

4.2.2 Reputation. The reputation score is used to reflect the behav-
ior of participants when they fulfill the role of committee member.
Specifically, their reputation reflects whether they successfully val-
idate, aggregate, and then send the received local updates to the
committee leaders.
Definition 4.2 (Beta distribution). A beta distribution is a family
of continuous probability distributions described in the interval [0,
1], characterized by two parameters, 𝛼, 𝛽 ≥ 1. The PDF of a beta
distribution with shape parameters 𝛼 and 𝛽 is:

𝛽 (𝑥 ;𝛼, 𝛽) = 𝑥𝛼−1 (1 − 𝑥)𝛽−1∫ 1
0 𝑦𝛼−1 (1 − 𝑦)𝛽−1 𝑑𝑦

.

We maintain, for each participant, a value for 𝛼 and 𝛽 such that we
can take samples from their beta distributions. Let 𝑖 and 𝑗 both be
participants in federated learning. Let 𝛼𝑖 and 𝛽𝑖 be the parameters of
the beta distribution of 𝑖 and let 𝛼 𝑗 and 𝛽 𝑗 be the parameters of the
beta distribution of 𝑗 . If 𝛼𝑖 > 𝛼 𝑗 and 𝛽𝑖 < 𝛽 𝑗 , the expected value when
sampling a random variable from participant 𝑖’s beta distribution is
larger than that of 𝑗 . We use this notion in the selection of committee
members and leaders.

In the Beta model of reputation, only two types of interactions
exist, namely successful or unsuccessful [42]. In other words, if
no fine-grained ratings are required or possible to be given, rely-
ing on beta distributions suffices. In this research, a beta model is
considered for reputation both for its simplicity in general and its
applicability to the role that committee members and leaders fulfill.

The reputation value for a participant 𝑗 at time 𝑡 , 𝑅( 𝑗), is a pair,
namely 𝑅( 𝑗) = (𝑠 𝑗 , 𝑓𝑗 ). We consider the parameters 𝑠 𝑗 , 𝑓𝑗 to be the
number of successful and unsuccessful interactions respectively.
Initially, 𝑠 𝑗 = 0 and 𝑓𝑗 = 0, thenwe require𝛼 𝑗 = 𝛽 𝑗 = 1 as otherwise,
we have no valid shape parameters for the beta distribution. As
such, we have 𝛼 𝑗 = 𝑠 𝑗 + 1 and 𝛽 𝑗 = 𝑓𝑗 + 1, meaning the beta
distribution associated with participant 𝑗 has shape parameters
(𝛼 𝑗 , 𝛽 𝑗 ). Whenever a new participant 𝑘 joins the network, they
start with the shape parameters 𝛼𝑘 = 𝑠𝑘 + 1 and 𝛽𝑘 = 𝑓𝑘 + 1. To
allow them to catch up, we assign a committee member or leader
role to devices having 𝛼 𝑗 = 1 and 𝛽𝑘 = 1 with a probability of 10%.
Definition 4.3 (Cosine similarity). The cosine similarity is a mea-
sure of similarity between two numeric sequences, returning a number

in the range [-1, 1], where -1 indicates dissimilar sequences and 1 indi-
cates equal sequences. The numerical sequences are viewed as vectors
in an inner-product space, such that the cosine similarity is the cosine
of the angle between them.
The cosine similarity of two vectors 𝐴 and 𝐵 is:

𝑆𝐶 (𝐴, 𝐵) =
𝐴 · 𝐵
| |𝐴| | | |𝐵 | | =

∑𝑛
𝑖=1𝐴𝑖𝐵𝑖√︃∑𝑛

𝑖=1𝐴
2
𝑖

√︃∑𝑛
𝑖=1 𝐵

2
𝑖

,

where 𝐴𝑖 and 𝐵𝑖 are the components of 𝐴 and 𝐵, respectively.

Whenever an interaction happens between a committee mem-
ber 𝑗 and a committee leader, the leader provides feedback to the
committee member by incrementing either 𝑠 𝑗 or 𝑓𝑗 , depending on
whether the interaction was successful or not. Specifically, an in-
teraction is deemed successful if an aggregate was sent and the
cosine similarity between the leader’s update and the aggregate
is above a threshold of \𝐶 ≥ 0.0. Cosine similarity is used here as
it helps to assess whether an aggregate helped move the updated
global centroids toward the global learning goal [44]. Moreover, if
the ratio of unsuccessful interactions (𝑓𝑗 ) to successful interactions
(𝑠 𝑗 ) reaches a threshold of \𝑅 , a device is no longer allowed to fulfill
the role of committee member or leader. We evaluate the ratio of 𝑓𝑗
to 𝑠 𝑗 to exclude malicious devices or otherwise unreliable devices.
It should also be noted that committee leaders’ reputation cannot
be negatively affected.

Utilizing the Beta model of reputation, we can arrive at an es-
timate of the probability of success when trusting a participant
𝑗 as well as at the expectation of trusting participant 𝑗 [29]. Let
𝑚 be the number of participants to be selected to be committee
members or leaders, then we can sample from each participant’s
Beta distribution, described by 𝑅( 𝑗) = (𝛼 𝑗 , 𝛽 𝑗 ), and select the top-
𝑚 participants. From those participants, the leaders are randomly
elected. Moreover, no participant can be a committee member or
leader for subsequent learning rounds. In other words, it can never
occur that a participant 𝑗 is a committee member in round 𝑡 + 1 if
they have been a committee member or leader in round 𝑡 . This is
done to limit information leakage, as this ensures no subsequent
updates from the same device are sent to the same participant.

5 SECURITY ANALYSIS
In this section, we analyze the security and privacy-preservation
of the proposed BC-FL 𝑘-means system. Specifically, the analysis
focuses on the confidentiality of local data and the resilience to
attacks aiming to deteriorate the quality of the global model. In
Section 5.1 we describe the adversarial model that we consider with
respect to poisoning attacks, the adversary’s strategy, and defenses
against them. We consider possible information leakage in BC-FL
𝑘-means in Section 5.2. Lastly, we discuss other attacks that are
relevant to BC-FL 𝑘-means in Section 5.3.

5.1 Poisoning Attacks
For the evaluation of the resilience against poisoning attacks of BC-
FL 𝑘-means, we consider an adversarial model typically considered
in the context of federated learning [8] [26]. The adversary attempts
to poison the global model, thus threatening the quality of the

8



global learning process. This is typically done through either data
poisoning or model manipulation.

Model manipulation attacks involve training rule manipulation
to produce updates aimed to deteriorate global model performance
[8]. Data poisoning attacks involve injecting faulty data to update
a (local) model with, such that the resulting update deteriorates the
quality of the global model.

Typically, federated learning handles either type of poisoning at-
tack through (robust) aggregation schemes [44]. These aggregation
schemes often adopt some type of outlier detection [18], similarity
measure [44], or pruning of models [37], [28].

Rather than relying solely on an aggregation scheme, we use
similarity measures at leaders and validation at committee members
to identify malicious updates. Specifically, the similarity measure,
cosine similarity in the case of BC-FL 𝑘-means, is used to discern
whether a committee member’s aggregate positively contributes
to the eventual global update produced by a (winning) leader. On
top of that, we leverage the data storage capacity of blockchains
to track the contribution and reputation of devices based on the
feedback they are given.

5.1.1 Adversarial Behavior. The malicious behavior exhibited by
the adversary in the context of poisoning attacks is twofold:

(1) Data poisoning, where an adversary alters or otherwise per-
turbs their training data to produce faulty local model up-
dates.

(2) Model manipulation, where an adversary alters the updates
produced by their local model, or alters the training rule by
which their local model trains to produce a poisoned model.

We consider the majority of participants assigned to each role
(data owner, committee member, and leader) to behave honestly.
Moreover, we consider the adversary to not have access to real
data which aligns with the global model. If they did have such data,
they would benefit from the clustering model produced through
collaborative learning. In other words, the adversary’s motivation
to deteriorate the quality of the global model relies on them not
being able to contribute to it. We consider the adversary to be
successful if they manage to inject a poisoned update such that the
quality of the global model deteriorates across participants.

Lastly, the adversary knows the following:
(1) The update rule of the global model,
(2) \𝑐𝑜𝑛𝑡𝑟 , the threshold on contribution such that devices hav-

ing contribution below that threshold are excluded,
(3) \𝐶 , the threshold set on cosine similarity such that leaders

only accept aggregates scoring above that threshold, and
(4) \𝑅 the threshold of the ratio of unsuccessful versus successful

interactions such that devices are excluded if their ratio is
above the threshold.

Given what the adversary knows, they are able to manipulate their
model entirely. As this is a more direct approach to deteriorating
global model quality, we limit our analysis to model manipulation.

In the context of BC-FL 𝑘-means, poisoning attacks can be per-
formed in each of the roles:

(1) Data owner, in which role the adversary attempts to produce
updates that deteriorate the global model such that their
update moves the centroids in the opposite direction that

they would move if only updates were accepted from hon-
est participants. As the adversary has no data related to the
global learning goal, they can produce this update based on
previous updates of the global model or if no information
is available entirely, they can produce random updates. For-
mally, this can also be viewed as the adversary attempting
to maximize deterioration of the global model by producing
an update 𝑢 for which 𝑆𝐶 (𝑢,𝑤) = −1, where 𝑤 represents
the aggregated update from honest participants.

(2) Committee member, in which role the adversary obtains
local updates from all data owners. They attempt to assess
the likely contribution of an update based on previous global
model updates. From this, they produce an aggregate𝑤 from
the positively contributing local updates. Afterward, they
produce an aggregate 𝑣 for which 𝑆𝐶 (𝑣,𝑤) = −1 and send
that to leaders.

(3) Leader, in which role the adversary obtains aggregates from
committee members. From those aggregates, they attempt
to produce a combined aggregate 𝑧. Afterward, they pro-
duce a global update 𝑢𝐺𝑡 such that 𝑆𝐶 (𝑢𝐺𝑡 , 𝑧) = −1, where 𝑧
is the combined aggregate derived from honest committee
members.

On top of adversaries performing poisoning attacks, they are
also able to collude with other malicious participants if they are
assigned the role of committee member or leader. This collusion is
centered around the provision of positive feedback to other mali-
cious participants:

(1) Committee member, in which role the adversary accepts
updates that move away from the global learning goal and
provides them with positive feedback. To identify these up-
dates, they look at the previous changes of the global model
and assess the likelihood with which an update deteriorates
the global model quality.

(2) Leader, in which role the adversary accepts aggregates from
committee members that they deem to be likely to deterio-
rate global model quality. To identify those aggregates, the
adversary looks at previous changes of the global model
and assesses the likelihood with which the aggregate moves
away from the global learning goal. They then provide the
committee members that sent those updates with positive
feedback.

5.1.2 Defenses. There are three defenses in place against poison-
ing attacks, namely the validation of local updates by committee
members, the checking of the cosine similarity of aggregates (with
respect to the produced update) by leaders and the voting for pro-
posed blocks done by committee members. We present per role
how BC-FL 𝑘-means is robust against poisoning attacks:

(1) Data owner, in which role the adversary produces an update
𝑢 for which 𝑆𝐶 (𝑢,𝑤) = −1 and sends it to all committee
members. Committee members apply the obtained update
locally and validate its contribution by obtaining the average
silhouette score. If 𝑆𝐶 (𝑢,𝑤) = −1, it is very unlikely that
the average silhouette score is larger than that of the global
model at the previous round. Thus, the adversary’s update
will not be accepted by honest committee members and their

9



contribution is decreased accordingly. If, as a result, their
contribution drops below \𝑐𝑜𝑛𝑡𝑟 < 0.0, they are excluded
from the global learning process entirely.

(2) Committee member, in which role the adversary produces
an aggregate 𝑣 for which 𝑆𝐶 (𝑣,𝑤) = −1 and sends it to all
leaders. However, the aggregates from committee members
are not accepted if the cosine similarity is less or equal to
\𝐶 . Moreover, if a leader encounters an aggregate for which
the cosine similarity is less or equal to \𝐶 , the leader will
provide the committee member with negative feedback. If
the ratio between unsuccessful interactions and successful
interactions (i.e. 𝑟 𝑗 and 𝑠 𝑗 respectively for a participant 𝑗 )
becomes greater than \𝑅 , the device is excluded from the
global learning process and no longer has access to new
global model updates. Consequently, the adversary can only
produce aggregates of which the cosine similarity is greater
or equal to \𝐶 if they want leaders to accept it and provide
them with positive feedback such that they maintain access
to the global learning process. However, the adversary can
still give positive feedback to data owners that supplied poi-
soned or otherwise poor updates and send that feedback to
the leader. The leader combines this feedback with feedback
from other committee members, causing the effect of an ad-
versary to be small if the majority of committee members
behave honestly.

(3) Committee leader, in which role the adversary is able to pro-
duce a global update that decreases the quality of the global
model. However, due to the voting mechanism, a majority of
committee members will vote for the global update that per-
forms best for them locally or not vote at all if all produced
global updates deteriorate their local performance. As such,
the adversary is unable to have their update accepted . It is
worth noting that the adversary can give positive feedback
to committee members they control if they are a leader. How-
ever, this feedback is only propagated within the network if
they produce the winning block.

5.1.3 Alternative Attack Strategy. Rather than maximizing the de-
terioration of the global model, an adversary can opt for a strategy
that slows down the global learning process by producing updates
such that they are within the thresholds of \𝑐𝑜𝑛𝑡𝑟 and \𝐶 . This
would allow the poisoned updates to be accepted by committee
members and leaders. However, as this does not immediately de-
teriorate global model quality it is more of a nuisance to honest
participants as convergence then requires more iterations. More-
over, attacks of this type can be partially mitigated by setting stricter
thresholds for \𝑐𝑜𝑛𝑡𝑟 and \𝐶 .

5.2 Information Leakage
Information leakage in the context of 𝑘-means clustering refers to
any information or data that may be learned other than the cen-
troids describing the global clustering model. Typically, research
focuses on the disclosure of (raw) data and the assignment of spe-
cific records to centroids or the distances from those records to the
centroids [27] [25]. Some research argues that information leaks
even when the number of iterations or the number of records per
cluster is disclosed [40] and several papers have investigated issues

such as that thoroughly [24] [56]. However, attacks that typically
occur in distributed learning regarding data privacy, such as infer-
ence attacks and reconstruction attacks, have not been researched
in the context of clustering [47].

Within BC-FL 𝑘-means, intermediate centroids of local models
are shared with committee members. Moreover, the intermediate
centroids of the global model are sent to all participants. Other than
that, no data is disclosed as the assignment of records to clusters
and the computation of distances between records and centroids is
performed locally.

The assertion can be made that disclosing the intermediate cen-
troids of local models to committee members leaks information.
However, each participant only sees the intermediate centroids of
the local model for a fraction of the total number of iterations. On
top of that, participants having relatively better reputation are more
likely to be selected as a committee member and are more likely to
behave honestly. Moreover, the centroids from a local model are
heavily influenced by the global centroids from the previous round
as only one iteration of 𝑘-means is performed locally by each data
owner each round. All that can be inferred from the intermediate
centroids of local models are the number of centroids for which
participants have records. If this is unwanted, participants can be
forced to train their local model with the same number of clusters
as the global model. However, this may cause data owners to pro-
duce the same update for multiple global centroids as all of them
map onto the same local centroid and thus decrease global model
quality.

Lastly, we argue that disclosing intermediate global centroids
every learning round does not leak information as any information
that can be derived from them cannot be linked to an individual
participant and therefore does not infringe on their privacy. Thus,
we conclude that BC-FL 𝑘-means is secure, in that it meets the
requirement presented in Table 2.

5.3 Other Attacks
A different attack type that is more general to networks is Sybil
attacks [26]. Sybil attacks in the context of federated learning of-
ten constitute attacks where a single paticipant attempts to inject
poisoned data, for instance, through the use of multiple devices.
As these devices often do not carry a unique identifier, it tends
to be difficult to identify them. A naive approach to dealing with
Sybil attacks is to use similarity measures, as it is expected that
updates from the same participant would be very similar, especially
in the case of data poisoning [17]. A more widely adopted way
of dealing with Sybils in the context of blockchain is to have par-
ticipants put in a stake or fee to participate in the network [59].
Alternatively, blockchain-based systems may require participants
to identify themselves through the signing of transactions [16]. We
assume a fee must be paid to join the network in BC-FL 𝑘-means
and mitigate Sybil attacks accordingly.

6 PROTOTYPE IMPLEMENTATION
In this section, the implementation of the prototype of BC-FL 𝑘-
means, is described. This section describes the decisions made in
the implementation of the prototype and where its usage differs
from real-world distributed systems.

10



This prototype is meant as a proof-of-concept of BC-FL 𝑘-means,
aimed to test the proposed committee-based consensus method as
well as federated 𝑘-means. As such, it is not immediately deployable
on real distributed systems. Instead, it is meant to showcase how
committee consensus and clustering work in a blockchain-based
federated learning setting and how it performs in a simulation, mod-
eled such that it is comparable to how federated learning behaves
in a real distributed system. We analyze the performance using this
prototype in Section 7.

6.1 Implementation Details
The prototype was implemented using Python 3.8.8, NumPy 1.21.4
and Scikit Learn 0.24.1. The code can be found at https://github.
com/WVLeeuw/BC_Unsupervised_FL. The prototype consists of
three main components:

(1) Blockchain;
(2) Devices;
(3) Federated 𝑘-means algorithm.
The blockchain uses simple hashes to have each block point to

the previous block. As proof-of-work is not used as a consensus
algorithm, hashing does not become more difficult as the chain
length increases. Instead, the committee consensus protocol is im-
plemented and leaders’ block appendages are verified by check-
ing the length of the byte-array that leaders produce using the
votes they obtained, also referred to as proof-of-vote (PoV) [34].
As currently existing blockchains do not support PoV consensus,
the blockchain was built from scratch. Blockchains that support
pluggable consensus algorithms exist, though no equivalent of PoV
is currently available [5]. These may be viable candidates for actual
real-world implementations of blockchain-based federated learning.

The devices can have three different roles, namely data owner,
committee member or leader, or be excluded from participating
entirely during a learning round.

The device class allows for parameters to be set regarding their
computation power and link speeds. These parameters are used to
simulate real distributed systems as these include devices having
varying hardware.

The local learning part of the federated 𝑘-means algorithm uses
the implementation of 𝑘-means clustering from Scikit Learn [2].
Scikit Learn’s implementation uses state-of-the-art techniques to
improve the convergence of clustering models and is thus sufficient.
Moreover, it allows for pre-defined initial centers to be passed,
which was a necessity as we require each device to have the same
starting point. Globally, to perform the aggregation at the commit-
tee members and leaders, NumPy was used as it deals efficiently
with large-scale arrays as it is memory-efficient and leverages C
code to achieve high speeds [22]. Moreover, NumPy simplifies the
code base as it is vectorized, removing complicated and inefficient
loops. The local learning step in combination with the aggregation
steps at the committee members and leaders can be perceived as
comprising the federated 𝑘-means algorithm in its totality.

6.2 Limitations
The payment of a fee and how it can be earned back through the
positive contribution to the global learning process is not part of the
prototype. In an actual distributed system, a reward pool would be

instantiated for each learning round and devices can earn a portion
of that pool depending on their contribution and reputation during
that learning round.

The prototype only includes the basic implementation of 𝑘-
means clustering as provided by Scikit Learn [2]. The current im-
plementation may thus not be sufficiently equipped to deal with
non-convex sets. Moreover, dimensionality reduction techniques
are not included but may be promising for efficient clustering of
datasets having numerous features.

7 PERFORMANCE EVALUATION
In order to evaluate the general performance of the proposed BC-FL
𝑘-means prototype in the previous section, we ran several experi-
ments. These experiments are run using the prototype, simulating
devices and their behavior. From those simulations, we draw con-
clusions with respect to the performance of BC-FL 𝑘-means. This
performance includes model quality, convergence and time spent
learning.

We briefly describe the evaluation environment in Section 7.1.
The experiments that were run, and the parameters being changed,
are described in Section 7.2. Lastly, the results of the experiments
are evaluated in terms of model quality, convergence and runtime
in Section 7.3.

7.1 Evaluation Environment
To measure overall performance, we perform BC-FL 𝑘-means on
a synthetic dataset as well as several toy datasets [3]. To account
for large datasets, a dataset describing forest cover types [1] was
used. Table 3 describes all datasets that were used to evaluate the
performance. The simulation was run on a laptop with an Intel i7
CPU having a clock rate of 2.30 GHz and 16 cores.

7.1.1 Parameter Settings. We briefly describe some of the param-
eters which were set for the simulations. These were kept equal
across all simulations.
• \𝑐𝑜𝑛𝑡𝑟 = −0.2, the threshold on contribution at which a
device is no longer allowed to participate. Moreover, devices
are not considered to be data owners if they are in the bottom
25% of contribution values (if negative contribution values
exist).
• \𝐶 = 0.25, the threshold of the cosine similarity of an aggre-
gate produced by a committee member at which point it is
not considered by the leader.
• \𝑅 = 3, the threshold on the ratio of successful (𝑠 𝑗 ) to unsuc-
cessful interactions (𝑓𝑗 ). A participant 𝑗 is no longer consid-
ered to be a committee member or leader when 𝑓𝑗 > 3 · 𝑠 𝑗 .
Setting this threshold at 3 allows for (coincidentally) failed
connections or poor aggregates.
• 𝜖 = 0.05, the stopping condition defined as a proportion of
the minimum distance between the initial centroids such
that it is independent of the dataset being trained on. Let
𝛿 be the minimum distance between initial centroids, then
the global learning process has reached its stop condition if
the average Euclidean distance that centroids move during a
learning round is less than 𝜖 · 𝛿 .
• Network stability was kept at 90% such that whenever there
is an interaction between devices, either device has a 10%

11

https://github.com/WVLeeuw/BC_Unsupervised_FL
https://github.com/WVLeeuw/BC_Unsupervised_FL


Name No. records Features Description
Blobs 500 2 Synthetic data having a distribution such that it lends itself well to clustering.
Breast cancer Wisconsin 569 30 Dataset describing features computed from a digitized image of a fine needle

aspirate (FNA) of a breast mass.
Forest cover types 581012 54 Dataset describing soil cover measurements and the accompanying forest cover

type.
Table 3: Datasets used in experiments.

chance to disconnect. Next time they are prompted to inter-
act with a device, they have a 90% chance to reconnect.
• The transmission speed of devices is sampled from a uniform
distribution ranging from 1 to 70,000 kb/s.
• The computation power of devices is sampled from a uniform
distribution ranging from 0.1 to 4.0. To obtain the time spent
on an action by a (simulated) device, the actual time spent is
divided by their computation power.

7.2 Simulations
This section describes the experiments carried out to assess the
performance of BC-FL 𝑘-means using the built prototype. Specifi-
cally, seven different experiments were carried out to observe the
effects on model quality, convergence, and runtime. Moreover, we
compared the model quality of centralized 𝑘-means, traditional
federated 𝑘-means, and BC-FL 𝑘-means.

The experiments carried out can be summarized as follows:

E1 Comparison between federated and centralized 𝑘-means.
E2 Differing number of global clusters.
E3 Differing number of features in the dataset.
E4 Differing number of records in the dataset.
E5 Influence of the reputation systemwith differing proportions

of malicious devices.
E6 Scalability of blockchain.
E7 Scalability of BC-FL 𝑘-means.

Experiment E1 was carried out to investigate whether federated
𝑘-means maintains the same clustering quality as centralized 𝑘-
means. If this is the case, that would mean that it is viable to perform
𝑘-means clustering in the setting of federated learning.

Experiments E2 to E4were posed to investigate the scalability of
BC-FL 𝑘-means with respect to number of global clusters, number
of features in the dataset, and number of records in the dataset.
The time complexity of 𝑘-means is O(𝑡 · 𝑘 · 𝑛 · 𝑑), where 𝑡 is the
number of iterations, 𝑘 is the number of clusters, 𝑛 is the number
of records and 𝑑 is the number of features in the dataset [23]. This
suggests that changing the number of clusters, records or features
has an equally large effect on runtime. Moreover, in BC-FL 𝑘-means
specifically, the validation step at the committee members often
forms the bottleneck, as its time complexity is O(𝑢 ·𝑘 ·𝑛 ·𝑑), where
𝑢 is the number of updates obtained by a committee member. 𝑡 is
always equal to 1 at committee members as they are only required
to perform one step of 𝑘-means to validate an update. We want to
investigate whether, in practice, the runtime grows according to
the presented time complexity.

Experiment E5 was carried out to investigate how well the repu-
tation system is able to investigate malicious devices and guarantee

convergence. These malicious devices attempt to poison the global
model. As data owners and committee members, they produce en-
tirely random updates. In the role of leader, however, they produce
a global update based on the aggregates they obtain from commit-
tee members. They essentially flip that global update such that the
global centroids move in the opposite direction. Moreover, we are
interested in whether the use of the reputation system negatively
affects model quality if no malicious devices are present.

Experiment E6 aims to investigate the effect of the number of
blocks on the runtime of BC-FL 𝑘-means. If BC-FL 𝑘-means is
unaffected by the number of blocks, this would suggest that its
consensus protocol is already more scalable than proof-of-work
consensus. To investigate this, we start the global learning process
using an existing blockchain.

Experiment E7 was posed to investigate the scalability of BC-FL
𝑘-means broadly. To this end, we investigate the runtime when
using a dataset having many records, namely the forest cover type
dataset [1].

In the evaluation, we distinguish between cases dealing with
IID and non-IID distributed data. It is worth noting that we treat
non-IID distributed data as each device having data only belong-
ing to a single cluster. This is a strict interpretation of non-IID
distributed data, as in practice it is more likely that non-IID distri-
butions translate to devices having data that does not describe all
clusters [30].

The simulations are run first and foremost to evaluate the per-
formance of BC-FL 𝑘-means. On top of that, we investigate the
requirement of heterogeneity and context-awareness, as described
in Table 2. To account for the random initialization of centroids,
each simulation setting was run 100 times unless specified other-
wise. Moreover, the default setting for the number of devices was
20 having a role division of 12, 5, and 3 for the number of data
owners, committee members, and leaders respectively. The time
spent is computed as if the devices ran concurrently, meaning the
time spent at each step is computed by taking the maximum time
spent by a device fulfilling that step.

7.3 Performance Analysis
Performance was evaluated in terms of quality and convergence of
the global 𝑘-means clustering model and time spent. The quality is
assessed in terms of average silhouette score and Davies-Bouldin in-
dex, combining the data from each device to create a global dataset
used for evaluation. The average silhouette score is defined for
the interval [-1, 1] and a higher value corresponds with a better
clustering. The Davies-Bouldin index, on the other hand, is defined
for the interval [0, 1] and a lower value corresponds with a better

12



clustering. Using these measures, BC-FL 𝑘-means is comparable
with centralized 𝑘-means as well as federated 𝑘-means [52]. More-
over, the time spent was computed by adding the maximum time
spent per step for each step during every learning round. This is
done to estimate the time spent if the devices ran in parallel.

The remainder of this section describes a comparison with tra-
ditional federated and centralized 𝑘-means and further results in
terms of quality, convergence and time spent separately. Each sub-
section presents several interesting results based on the simulations
that were run as described in Section 7.2.

7.3.1 Comparison between Federated and Centralized 𝑘-means. An
important assessment of the viability of BC-FL 𝑘-means is to com-
pare its resulting model quality with traditional federated and cen-
tralized 𝑘-means. For the centralized 𝑘-means algorithm to com-
pare with, we used Scikit Learn’s implementation [2] without par-
titioning the data. For the federated 𝑘-means algorithm, we use
an existing implementation [52] that is configured to use its own
(NumPy-generated) synthetic data. That dataset is different from
the Blobs presented in Table 3, but we consider it because the exist-
ing implementation may have been optimized with that synthetic
dataset in mind.

The existing implementation presented by the authors of [52]
differs from our federated 𝑘-means algorithm in two important
ways:

(1) Number of local epochs, which are the number of local it-
erations of 𝑘-means carried out by data owners each global
learning round. The number of local epochs is set to be equal
to 5 by the authors of [52] while we set it at 1.

(2) Cluster size sharing, where the number of records belonging
to a particular cluster are disclosed. In the context of potential
information leakage, we want to limit the sharing of data.
The authors of [52], however, chose to share the number of
records belonging to each cluster for each device in their
federated 𝑘-means algorithm. This leaks information about
the data residing at each device. On the other hand, the
existing implementation is able to use this information to
update the global centroids more meaningfully.

We ran centralized 𝑘-means, federated 𝑘-means and BC-FL 𝑘-
means using the synthetic dataset generated by [52] to compare
them. This dataset is unlabelled. Because of this, we are unable to
split it such that we end up with a non-IID distribution of data.
We also ran centralized 𝑘-means, federated 𝑘-means and BC-FL
𝑘-means on the breast cancer dataset. As that dataset is labelled,
we were able to distribute the data both IID and non-IID.

For BC-FL 𝑘-means, we only consider the setting where no ma-
licious devices exist. We list the results in terms of the silhouette
average and Davies-Bouldin index in Table 4. These results are av-
eraged scores across multiple runs. The results for the breast cancer
dataset are shown in Table 5. The resulting clusterings on the syn-
thetic dataset are shown in Appendix A. The resulting clusterings
on the breast cancer dataset are shown in Appendix B.

The time spent shown in Table 4 is the average time spent until
convergence. The scores suggest that BC-FL 𝑘-means performs
similar to the existing federated 𝑘-means implementation. More-
over, the scores achieved by BC-FL 𝑘-means are very similar to that

of centralized 𝑘-means. However, federated 𝑘-means is almost 20
times faster than BC-FL 𝑘-means. If we exclude role assignment,
BC-FL 𝑘-means spends 11.18 seconds on the actual learning process,
which is still considerably slower than federated 𝑘-means.

The results for the breast cancer dataset, shown in Table 5, also
suggest that BC-FL 𝑘-means performs similar to centralized 𝑘-
means. However, this is no longer the case if the data is non-IID
distributed. This is likely due to committee members providing
feedback to data owners that have data that is very dissimilar to
that of the committee members. Consequently, honest data owners
are excluded from the global learning process. Comparing BC-FL
𝑘-means with federated 𝑘-means, on the other hand, we find that
BC-FL 𝑘-means performs better with IID and non-IID distributed
data. Notably, the difference between the runtime of federated 𝑘-
means and BC-FL 𝑘-means is smaller for the breast cancer data than
for the dataset synthesized by the authors of [52]. For the breast
cancer dataset, federated 𝑘-means is 5 times faster than BC-FL
𝑘-means but achieves slightly worse results.

7.3.2 Number of Global Clusters. The number of global clusters is
important to consider as having more (global) clusters can impact
the time spent learning drastically, affecting the scalability of BC-FL
𝑘-means. To account for this, we already allow devices to match
the global clusters with their local clusters.

Table 7 shows the time spent and number of iterations for several
different numbers of global clusters on the Blobs dataset. For each
of the settings, we averaged the time spent per iteration across 20
runs. As the required number of iterations increases in order to
reach convergence as the number of global clusters increases, we
conclude that the number of global clusters has a significant impact
on runtime.

7.3.3 Number of Features. Using synthetic datasets to test BC-FL
𝑘-means, we are able to change the number of features without
changing their variability. We investigate the effect of the number
of features on runtime as this shows whether BC-FL 𝑘-means is
well equipped to deal with datasets having many dimensions.

Table 6 shows the time spent and number of iterations on average
for several different numbers of features on the Blobs dataset. For
each of the settings, we averaged the time spent per iteration across
20 runs. The results suggest that the number of features does not
significantly impact runtime.

7.3.4 Number of Records. Similar to the number of (global) clusters
and features, we can also change the amount of records for the
synthetic dataset. We were interested in whether this has a larger
effect on runtime than either increasing the number of features or
the number of clusters.

Table 8 shows the time spent on average and the number of
iterations for several different amounts of (total) records on the
Blobs dataset. We averaged the time spent across 20 runs. The
results suggest that the number of records influences the runtime
considerably, even though the number of iterations required to
reach convergence remains more or less unaffected.

7.3.5 Influence of Reputation System. The influence of the repu-
tation system should be assessed in cases when malicious devices
exist within the network as well as when there are no malicious

13



𝑘-means Silhouette average Davies-Bouldin index Time spent (s)
Centralized 0.449 0.789 0.030
Federated 0.434 0.815 3.088
BC-FL 0.443 0.799 60.056

Table 4: Quality comparison between centralized, federated and BC-FL 𝑘-means ran on synthetic data from [52].

𝑘-means Silhouette average Davies-Bouldin index Time spent (s)
Centralized 0.673 0.554 0.104
Federated (IID) 0.547 0.628 13.80
Federated (non-IID) 0.443 0.797 15.82
BC-FL (IID) 0.673 0.535 74.94
BC-FL (non-IID) 0.590 0.596 70.12

Table 5: Quality comparison between centralized and BC-FL 𝑘-means ran on the breast cancer dataset.

No. features Time spent (s) no. iterations
2 15.07 12
6 12.08 6
10 8.90 6
60 12.99 10

Table 6: Time spent and number of iterations of BC-FL 𝑘-means ran on the Blobs dataset having different number of features.

No. global clusters Time spent (s) no. iterations
3 15.07 12
6 52.15 43
9 84.46 81

Table 7: Time spent and number of iterations on average of BC-FL 𝑘-means ran on the Blobs dataset having different number
of global clusters.

devices. It is essential to know whether the presence of the reputa-
tion system slows down convergence or limits the quality of the
global model as this is unwanted. To this end, we ran simulations
both with and without malicious devices present and observed
the results in terms of convergence, average silhouette score and
Davies-Bouldin index of the global model. Figures describing the cu-
mulative convergence of runs for proportions of malicious devices
that are not shown here are shown in Appendix C. The role assign-
ment of devices (distinguishing between malicious and honest) are
shown in Appendix D.

Figure 6a shows the cumulative converged proportion of runs
at every iteration when no malicious devices are present and data
is IID distributed. Figure 6b shows the same setting with non-IID
distributed data.

When data is IID distributed and no malicious devices exist, the
global learning process converges in approximately 85% of runs
when the reputation system is used. If it is not used, it converges in
approximately 70% of runs. From Figure 6a, we also conclude that
runs converge faster when the reputation system is used.

When data is non-IID distributed and no malicious devices exist,
the global learning process converges in approximately 75% of runs
when the reputation system is not used. If it is used, it converges in

approximately 60% of runs. In other words, the reputation system
negatively impacts convergence in this setting. This is likely due to
feedback not properly reflecting whether a local update contributes
poorly. However, many runs that do converge in case the reputation
system is used, converge earlier (i.e. require less iterations) than
runs do when the reputation system is not used.

Figure 7a shows the cumulative converged proportion of runs
at every iteration when 40% of devices are malicious (8 out of 20)
and data is IID distributed. The figure suggests that the reputa-
tion system has little effect in this setting as approximately 35% of
runs converge with and without the reputation system. As the pro-
portion of malicious devices increases, they affect feedback more.
Consequently, the reputation system can no longer distinguish
properly between malicious and honest devices. This would explain
why we observe the same percentage of runs converging with and
without the reputation system.

Figure 7b shows the cumulative converged proportion of runs
at every iteration when 40% of devices are malicious with non-IID
distributed data.When the reputation system is used, approximately
40% of runs converge. When it is not used, only approximately
25% of runs converge. This suggests that the reputation system
can still discern random (malicious) updates from updates sent by

14



No. records (in total) Time spent (s) no. iterations
500 15.07 12
5000 18.14 14
50000 75.71 15

Table 8: Time spent and number of iterations on average of BC-FL 𝑘-means ran on the Blobs dataset having different number
of records.

(a) Cumulative runs done converging with and without the reputa-
tion system with IID distributed data.

(b) Cumulative runs done converging with and without the reputa-
tion system with non-IID distributed data.

Figure 6: Cumulative runs done converging without mali-
cious devices, with IID and non-IID distribution of data.

honest data owners in non-IID setting. Notably, this means that the
reputation system makes BC-FL 𝑘-means robust against malicious
devices even in case data is non-IID distributed.

(a) Cumulative runs done converging with and without the reputa-
tion system with IID distributed data.

(b) Cumulative runs done converging with and without the reputa-
tion system with non-IID distributed data.

Figure 7: Cumulative runs done converging with 40% mali-
cious devices, with IID and non-IID distribution of data.

Figure 8a shows the average silhouette score and Figure 8b shows
the Davies-Bouldin index for each proportion of malicious devices
with IID distributed data. For IID distributed data, there is no sig-
nificant observable difference between model quality and different

15



(a) Silhouette average per proportion of malicious devices.

(b) Davies-Bouldin index per proportion of malicious devices.

Figure 8: Quality of 𝑘-means models per proportion of ma-
licious devices with IID distribution of data for converged
runs.

proportion of malicious devices. This implies that in IID setting,
the reputation system is always able to discern malicious updates
from honest ones. As the data residing at each participant is suf-
ficiently alike, it tends to be the case that a participant’s update
is not flagged as malicious if they are behaving honestly. In other
words, the only updates being flagged as malicious are those from
participants trying to poison the global model.

Figure 9a shows the average silhouette score and Figure 9b shows
the Davies-Bouldin index for each proportion of malicious devices
with non-IID distributed data. For non-IID distributed data, we

(a) Silhouette average per proportion of malicious devices.

(b) Davies-Bouldin index per proportion of malicious devices.

Figure 9: Quality of 𝑘-means models per proportion of mali-
cious devices with non-IID distribution of data for converged
runs.

observe that model quality increases if more malicious devices are
present. As malicious devices try to poison the model by submitting
random updates, this suggests that the reputation system allows
BC-FL 𝑘-means to perform better because it can discern between
random updates and genuinely poor updates. An update would be
seen as poor if a committee member has data that is very dissimilar
to that of a data owner from whom they receive an update. They
would provide negative feedback to that data owner, but a device
submitting random updates receives more negative feedback still.

7.3.6 Scalability of Blockchain. We investigated what would hap-
pen if we started the learning process with an existing chain already
composed of many blocks. This is relevant as in many applications

16



No. blocks Time spent per iteration (s)
0 1.02
100 1.20
500 1.34
1000 1.10

Table 9: Time spent on average per iteration of BC-FL 𝑘-means ran on the breast cancer dataset when starting with a blockchain
having different numbers of blocks.

Reputation system Devices per role Time spent per iteration (s)
Used 80, 15, 5 103.41
Not used 80, 15, 5 97.80
Used 160, 30, 10 88.66
Not used 160, 30, 10 131.07

Table 10: Time spent on average per iteration of BC-FL 𝑘-means ran on the forest cover type dataset with and without the
reputation system.

using blockchain the appendage of new blocks takes longer as min-
ing difficulty increases. Moreover, each time a block is appended,
the entire chain must be validated.

The time spent per iteration per number of blocks on the chain
when starting the global learning process is displayed in Table 9.
As the number of iterations required to converge depends on the
centroids recorded in the latest block of the chain which was used as
a starting point, we omitted it from the table. The results presented
in the table suggest that the number of blocks does not significantly
impact time spent. This is in line with our expectation as more
blocks only results in having to check whether each block properly
refers to the previous block. Moreover, during execution the number
of blocks in BC-FL 𝑘-means is at most equal to the total number
of iterations. The chain can then be appended to collaboratively
if multiple participants want to continue the federated learning
process, or the parameters can be extracted from a block and a local
model can then be built.

7.3.7 Scalability of BC-FL 𝑘-means. A dataset describing forest
cover types [1] was used to test the scalability of BC-FL 𝑘-means.
The number of global clusters considered for this dataset was equal
to 7, as that is the amount of forest cover types described in the
datasest. We consider both the effect of the number of devices
and the number of committee members validating each update in
terms of time spent learning. In all simulations run, each committee
member saw updates from half of all data owners. This was done to
reduce learning times without drastically influencing global model
quality.

Table 10 shows the time spent per setting and whether the repu-
tation system was used. For the settings with 100 devices in total,
we ran 100 iterations. For the settings with 200 devices in total, we
ran 10 iterations and based the average time spent per iteration
only on those 10 iterations. From these results, we conclude the
size of the dataset has more of an effect on the time spent rather
than the number of devices participating in the federated learning
process. Moreover, most time was spent by committee members val-
idating local updates. Lastly, it should be noted that the forest cover

type dataset [1] has 581,012 records in total and has 54 features, as
described in Table 3. On average, an iteration on the breast cancer
dataset took 1.12 seconds. Running BC-FL 𝑘-means on the forest
cover type dataset took 105.24 seconds, averaged across the four
settings. Even though the dataset is more than 1,000 times larger
than the breast cancer dataset, the runtime is only approximately
100 times larger.

8 DISCUSSION
In this section, the lessons learned from this research are presented
and evaluated. We structure this section according to the research
questions posed in Section 1 and evaluate the lessons learned given
the requirements that were defined for federated learning systems
in Table 2. This is done in Section 8.1. Moreover, certain limitations
are presented in Section 8.2 that are worth considering when evalu-
ating the applicability of blockchain and other methods introduced
in this research to federated learning.

8.1 Lessons Learned
We reflect on the research questions we put forward in Section 1.1.
Specifically, we reflect on our attempt to change the blockchain ar-
chitecture to make it more suitable to federated learning in Section
8.1.1. We assess the (dis-)advantages of using a blockchain in feder-
ated learning in terms of scalability, privacy, security, resilience to
attacks, and traceability in Section 8.1.2. Lastly, we reflect on our
𝑘-means clustering algorithm and unsupervised federated learning
generally in Section 8.1.3.

8.1.1 Adaptations of Blockchain. Leveraging the collective knowl-
edge of participants for calculating reputation (through validation)
and building consensus works well with blockchain. Reputation
values can be stored on-chain and retrieved if necessary. Maintain-
ing these reputation values helps in making federated learning ro-
bust against poisoning attacks. A voting-based consensus protocol
leverages the knowledge of participants about the global learning
task to select the best global update to be propagated. Research
into blockchain-based federated learning should keep this in mind,

17



rather than build further upon poorly scalable consensus protocols
such as proof-of-work.

8.1.2 (Dis-)advantages of Blockchain. Blockchain aids in making
traceable historical global models and reputation values while neg-
atively impacting runtime. Moreover, using blockchain to facilitate
federated learning has an insignificant effect on privacy, security,
and resilience to attacks.

We argue that traceability of global model versionsmakes person-
alization of models easier, as participants can copy the version that
performs best for them locally. In terms of runtime, it is worth not-
ing that blockchain decentralizes the aggregation task. If a specific
application of federated learning requires this, it may be worthwhile
to use blockchain. Within BC-FL 𝑘-means, privacy is preserved by
limiting how much data participants see. However, it can still be
argued that additional techniques must be used to preserve privacy.
Lastly, we made BC-FL 𝑘-means secure and resilient to attacks
through means that are typically used in federated learning [30].

8.1.3 Unsupervised Federated Learning. Our implementation of
federated 𝑘-means is able to achieve a performance similar to cen-
tralized 𝑘-means, meaning 𝑘-means has promising results within
the setting of federated learning. Our federated 𝑘-means algorithm
struggles to achieve a good quality clustering in the case of non-
IID distributed data, but this is an ongoing problem in federated
learning that has yet to be solved [30]. However, through the use
of a reputation system, BC-FL 𝑘-means manages to produce clus-
tering models that have a higher quality than those produced by
the authors of [52], against which we compared our performance.
As such, BC-FL 𝑘-means is sufficiently aware of the heterogeneity
of data. Lastly, the proposed algorithm may be generalized to fit
traditional federated learning by substituting the committee with a
central server.

The merit of performing blockchain-facilitated unsupervised fed-
erated learning generally, however, remains an open case. 𝑘-means
is a relatively simple algorithm whereas other unsupervised models
are more difficult to execute in a blockchain-based framework. To
exemplify this, FREPD [20] proposes a robust federated learning
framework for variational autoencoders using probability distri-
bution functions to determine whether an update is malicious. If
this process would be decentralized, every participant that can be
selected to validate updates would be required to maintain these
probability distribution functions. Depending on the specific imple-
mentation, this would not only increase runtime but also have a
decreased accuracy in identifying malicious updates.

8.2 Limitations
The simulations run using the prototype do not translate immedi-
ately to a real-world distributed system, especially considering that
the simulations were run on a single machine. As the parameter
settings per device regarding computation power and link speeds
are randomized within a range, the simulation comes reasonably
close. On the other hand, however, there is a single percentage with
respect to connection stability. Thus, we do not encapsulate fully
that devices may have connections with varying stability.

In the simulations, we assume we know the bounds on the values
that the features take in the given datasets. However, this may not

be the case in practice. To this end, a secure protocol to (randomly)
select 𝑘 initial centroids with multiple parties must be adopted [11].

We have not investigated the trade-off between the number of
updates obtained by a committee member and runtime exactly. As
committee members see more updates, more feedback is given to
each data owner. As such, it becomes easier to discern malicious par-
ticipants from honest ones. However, if many participants supply
updates, this may produce a bottleneck at the committee members
as they are tasked with the validation of every single one.

Due to limited available research on blockchain-based federated
learning, we are unable to compare the scalability of our consensus
protocol with existing solutions. Many existing solutions pertain
to neural networks and thus tend to require more time to be built
collaboratively due to the number of parameters. As such, it is
difficult to assess the scalability of our consensus protocol.

Although information leakage is limited through the use of a
committee-based consensus protocol, where only a limited amount
of participants see local updates, it can still be argued that this is
unwanted. To ensure information leakage is kept to a minimum,
techniques aiming to preserve privacy, such as homomorphic en-
cryption [6], (local) differential privacy [53] or secure multi-party
computation [48] must be adopted.

9 RELATEDWORK
This section explores existing research within the field of federated
learning. We distinguish between research on traditional federated
learning and research on blockchain-based federated learning. We
also list the requirements, which were first presented in Table 2,
met by the related solutions. We aim to showcase how different
techniques can help meet the requirements put forward and thus
illustrate how solutions differ.

Firstly, we summarize how our work meets the requirements in
Section 9.1. The remainder of this section differentiates between
traditional federated learning solutions, described in Section 9.2,
and blockchain-based federated learning solutions, described in
Section 9.3.

9.1 Our Work
Our work (BC-FL 𝑘-means) meets requirementR1 by allowing each
participant to select the version of the global model that performs
best for them locally and continue training it locally. Moreover,
through the committee-based consensus protocol we decentral-
ize the aggregation task, thus meeting requirement R2. We meet
requirement R3 by maintaining reputation values based on local
update quality and the reliability with which devices communicate.
Through the selection of devices that are more reliable in their
communication, BC-FL 𝑘-means takes into account the context in
which federated learning tends to take place (R5). We have shown
that our work still performs well in case of non-IID distributed
data, thus we meet requirement R4. Through the committee-based
consensus protocol, we argue that we limit information leakage
sufficiently by limiting the number of participants that see local
updates (R6). Lastly, we have shown that through the maintenance
of contribution values, the validation step at committee members

18



ID Requirement [51] [32] [48] [15] Our work
R1 Personalization × × × ✓ ✓
R2 Decentralization × × o × ✓
R3 Trust ✓ ✓ × × ✓
R4 Heterogeneity-awareness × × × ✓ ✓
R5 Context-awareness ✓ ✓ ✓ × ✓
R6 Secure × × ✓ ✓ ✓
R7 Robust ✓ ✓ × × ✓

Table 11: Requirements fulfilled by related solutions within traditional federated learning.
’✓’ means a requirement is fulfilled. ’×’ means it is not fulfilled. ’o’ means that a requirement is partially fulfilled.

and the checking of the cosine similarity of aggregates with re-
spect to the global updates produced by leaders, BC-FL 𝑘-means is
sufficiently robust against poisoning attacks (R7).

9.2 Traditional Federated Learning
We researched several existing frameworks within traditional fed-
erated learning that aim to remedy existing problems in federated
learning. To ensure that the comparison between existing solu-
tions remains meaningful, we focus on solutions that consider trust
and security. Several proposed solutions are discussed in this sec-
tion, with a summary of the requirements met by each of them
showcased in Table 11.

The work done in [51] focuses on the setting of Internet-of-
Things by taking into account limited resource availability. To do so,
the proposed solution adopts a Beta reputation model that, together
with a measure of connection reliability, is used in its scheduling
policy. Maintaining these reputation values meets requirement R3
and using them in the scheduling policy meets requirement R5.
Moreover, as devices are excluded if they contribute poorly, this pro-
tects against poisoning attacks, meeting requirement R7. However,
the proposed solution uses a Beta reputation model for the assess-
ment of local updates, which produces a binary assessment with
respect to update quality. This is unwanted, as it leads to situations
where participants barely contributing positively and participants
contributing very positively cannot be distinguished. Instead, a
reputation model allowing fine-grained ratings for update quality
assessment should be adopted. Moreover, the proposed solution
only provides the most recent version of the global model to partic-
ipants, thus failing to meet requirement R1. Lastly, they require a
central server (R2), only consider uniform data distributions (R4)
and do not consider information leakage at all (R6).

Another solution focusing on the setting of IoT is presented by
Kang et. al. [32]. They consider a selection scheme for participants
to supply updates. For this, they calculate the reputation of a device
based on a (multi-weight) subjective logic model and store the
resulting reputation on a blockchain. On top of this, they apply a
poisoning attack detection scheme, specifically Reject on Negative
Influence [49] and FoolsGold [17]. As such, requirements R3 and
R7 are met by the presented solution. Moreover, as interaction
frequency and reliability are considered in their subjective logic
model, the proposed solution meets requirement R5. However,
the model is not provided to all participants, thus failing to meet
requirement R1. A central aggregator is still used, which means

the provided solution fails to meet requirement R2. Lastly, the
authors only consider a uniform distribution of data (R4) and do
not consider information leakage at all (R6).

POSEIDON [48] focuses on privacy-preserving federated neu-
ral network learning. Specifically, POSEIDON is the first system
that enables quantum-resistant distributed learning. It uses multi-
party homomorphic encryption (MPHE) to preserve privacy, thus
meeting requirement R6. Notably, they achieve partial decentral-
ization of the aggregation task (R2) through the use of MPHE as
they require multiple servers that together securely aggregate up-
dates and produce the global update. Through the application of
optimization techniques, it is sufficiently context-aware (R5) as
its time complexity scales linearly rather than quadratically as a
result, which is typically the case for solutions adopting multi-party
computation [41]. Although POSEIDON’s contribution in terms of
privacy preservation and security is promising, it does have several
shortcomings. POSEIDON does not provide all participants with
the trained neural network (R1). On top of that, they do not main-
tain the reputation of participants (R3) and do not consider them
having dissimilar data (R4). Lastly, they do not consider poisoning
attacks (R7).

FedHealth [15] describes a novel approach to federated learning
for neural networks by showcasing how transfer learning can be
done in a distributed setting. Specifically, they focus on the setting
of wearable healthcare devices for activity recognition. Their moti-
vation is that activity recognition warrants the use of personalized
models for individuals and a global model can aid in improving
these personalized models. Through transfer learning, knowledge
attained by the global model can be transferred to a personalized
model in case that knowledge is general enough to be descriptive
of the entire population. As such, FedHealth meets requirement R1.
However, the effect of transfer learning within federated learning
depends on the application area and thus the presented approach
may not be generalizable. By limiting the layers of the neural net-
works that are used for the federated learning part, it is sufficiently
aware of heterogeneity in data (R4). Through the use of homomor-
phic encryption, FedHealth meets requirement R6. As FedHealth
still requires a central aggregator, requirement R2 is not met. More-
over, FedHealth does not maintain reputation values (R3) and do
not consider the context sufficiently (wearable healthcare devices)
such that the federated learning can be optimized with respect to
runtime (R5). Lastly, FedHealth does not consider poisoning attacks
(R7).

19



ID Requirement [57] [14] [38] [7] Our work
R1 Personalization × ✓ × o ✓
R2 Decentralization ✓ ✓ × ✓ ✓
R3 Trust ✓ × ✓ ✓ ✓
R4 Heterogeneity-awareness × × × ✓ ✓
R5 Context-awareness o o × ✓ ✓
R6 Secure ✓ ✓ ✓ o ✓
R7 Robust ✓ ✓ ✓ ✓ ✓

n.a. Blockchain Consortium Public Private Consortium Consortium
Table 12: Requirements fulfilled by related solutions within blockchain-based federated learning.
’✓’ means a requirement is fulfilled. ’×’ means it is not fulfilled. ’o’ means that a requirement is partially fulfilled.

9.3 Blockchain-based Federated Learning
Besides existing solutions within traditional federated learning, we
also researched existing blockchain-based federated learning solu-
tions. These solutions vary considerably as each deploys a different
consensus protocol to validate or verify global updates. Different
consensus protocols can lead to varying results in terms of scalabil-
ity, resilience to attacks, and runtime. Several proposed solutions
are laid out in this section, with a summary of the requirements
each of them meets showcased in Table 12.

The authors of [57] present a solution focusing specifically on
IoT. They differentiate between manufacturers and customers. The
manufacturers can raise requests for a machine learningmodel to be
built to encapsulate customers’ (device) behavior. As customers do
not gain access to the global model, we conclude that requirement
R1 is not met. They use differential privacy tominimize information
leakage, thus meeting requirement R6. Moreover, they use the
Multi-KRUM aggregation scheme [9] which deals effectively with
poisoning attacks (R7). Using this aggregation scheme, they also
assess customers’ reputation (R3). The proposed solution only takes
into account context partially by having fog servers execute most
computations, regardless of whether a device is able to perform
that computation locally or not. Moreover, the proposed solution
does not consider non-IID distribution of data, thus it does not meet
requirement R4. Lastly, they use Algorand’s consensus protocol
which is based on Proof-of-Stake and Byzantine fault tolerance
(BFT). It is a committee-based consensus protocol that performs
relatively well in the context of federated learning and decentralizes
the aggregation step (R2).

LearningChain [14] presents one of the earliest applications of
blockchain to the setting of federated learning. They use local dif-
ferential privacy to minimize information leakage (R6) and use
an 𝑙-nearest aggregation scheme to limit the impact of poisoning
attacks (R7). Moreover, as each participant keeps a local copy of
the ledger, they are able to retrieve any historical version of the
global model, thus meeting R1. LearningChain decentralizes the
aggregation task by having each computing node perform the aggre-
gation of local updates from a subset of participants (R2). However,
they do not maintain reputation values (R3) and do not take into
account non-IID distribution of data (R4). Moreover, they only par-
tially consider the context in which federated learning occurs by
having devices compete according to the Proof-of-Work consensus

protocol (R5). The winner of PoW can compute the global update
and append a block to the chain.

Lyu et al. [38] describe a federated learning framework that fo-
cuses on fairness. They define fairness as rewarding participants
proportional to model quality improvement. Notably, rather than
a monetary reward, they provide a worse version of the global
model to participants contributing poorly to global learning. This
means that they do not meet the requirement of personalization
(R1). They use local differential privacy to limit information leak-
age, thus meeting requirement R6. However, they assess the model
quality improvement of participants based on the supplied update
after perturbation according to differential privacy. This may re-
sult in a distorted view of the contribution of a participant and
thus sabotage the fairness of the proposed solution. They main-
tain these values as a participant’s credibility, which can be seen
as their reputation (R3). However, they do not meet requirement
R4 as they are quite strict to participants having dissimilar data.
This strictness does entail that they meet requirement R7 as poi-
soning attacks are thwarted. They decentralize the aggregation
task by using multi-party homomorphic encryption, thus meeting
requirement R2. Lastly, the proposed solution is very computation-
ally heavy through the use of differential privacy and multi-party
homomorphic encryption. As such, they insufficiently take into ac-
count the context in which federated learning is usually performed,
thus not meeting requirement R5.

Behera et al. [7] showcase how smart contracts may be used in
an Ethereum-based blockchain to incentivize participants to join
the federated learning process. In the paper, federated contribution
is defined as a measure of reputation (R3) combining the number of
records and the similarity of a local update compared to the global
model update. By using federated contribution in the selection of
local updates to be used for the aggregation, they meet requirement
R7. As smart contracts make the federated contribution calcula-
tion and the accompanying rewarding scheme entirely transparent,
this helps incentivize participants to join the federated learning
process. They only achieve partial security (R6) as they use RSA
cryptography [50] to securely send local model updates. They then
fail to consider that the receiver of those local updates may be
compromised themselves. Requirement R2 is not met because they
use a central server for the aggregation task and computation of
federated contribution through smart contracts. Moreover, require-
ment R1 is met partially through the central server sending each

20



participant the newest version of the global model. It can also be
stated that they manage to take the context in which federated
learning typically occurs into account by outsourcing the aggrega-
tion task to a central server (R5). Lastly, Behera et al. show that
their proposed solution takes into account the heterogeneity of
data by showing that they manage to obtain accurate models when
data is non-IID distributed.

10 CONCLUSIONS AND FUTUREWORK
We presented a blockchain-based framework for federated learning
in which we applied our federated 𝑘-means clustering algorithm.
The framework included a committee-based consensus protocol de-
signed with collaborative learning in mind and a reputation system
to improve convergence and global model quality.

We have shown that BC-FL 𝑘-means performs similarly to cen-
tralized 𝑘-means if data is IID distributed. Moreover, the reputation
system helps reach convergence in many cases, even when data is
non-IID distributed and the proportion of malicious devices is high.
The use of blockchain alongside federated learning, on the other
hand, comes with an increase in runtime compared to traditional
federated learning and only marginally helps in alleviating issues
in traditional federated learning.

Future research should be concerned with arbitrarily partitioned
datasets. In this research, we have only considered horizontally par-
titioned datasets. However, a generic solution to 𝑘-means clustering
in the setting of federated learning should also work for vertically
and arbitrarily partitioned datasets. Such solutions exist, but do not
operate in the framework of federated learning [55] [25].

Existing blockchains currently developing the possibility to adopt
pluggable consensus protocols may help in the application of de-
centralized machine learning. Currently, these blockchains, such
as Hyperledger Fabric and Sawtooth [5], allow a limited number
of consensus protocols to be plugged. As more development is
done with respect to blockchains such as those, however, they may
allow completely tuneable consensus protocols and thus offer a
more scalable solution for blockchain-based federated learning and
decentralized machine learning generally.

Lastly, smart contracts should be investigated to make transpar-
ent the computation of trust values, aggregates, and global updates
such that participants are more likely to join the federated learning
process as they gain confidence from the information they have
been provided.

REFERENCES
[1] Covertype data set. https://archive.ics.uci.edu/ml/datasets/covertype. Accessed:

2022-02-01.
[2] Scikit-learn k-means clustering. https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.KMeans.html. Accessed: 2022-01-01.
[3] Scikit-learn toy datasets. https://scikit-learn.org/stable/datasets/toy_dataset.html.

Accessed: 2022-02-01.
[4] General data protection regulation (gdpr), regulation (eu) 2016/679 of the euro-

pean parliament and of the council of 27 april 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec, 2016.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo Caro, David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish
Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, and Jason Yellick. Hyperledger fabric: A distributed operating
system for permissioned blockchains. 01 2018.

[6] Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. Fedopt: Towards com-
munication efficiency and privacy preservation in federated learning. Applied
Sciences, 10:1–17, April 2020.

[7] Monik Raj Behera, Sudhir Upadhyay, and Suresh Shetty. Federated learning
using smart contracts on blockchains, based on reward driven approach. ArXiv,
2021.

[8] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin B. Calo.
Analyzing federated learning through an adversarial lens. CoRR, abs/1811.12470,
2018.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
Machine learning with adversaries: Byzantine tolerant gradient descent. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[10] Mic Bowman, Debajyoti Das, Avradip Mandal, and Hart William Montgomery.
On elapsed time consensus protocols. IACR Cryptol. ePrint Arch., 2021:1–47, 2021.

[11] Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In
Proceedings of the 14th ACMConference on Computer and Communications Security,
CCS ’07, page 486–497, New York, NY, USA, 2007. Association for Computing
Machinery.

[12] Thiago Candido. A technical introduction to blockchain, October 2021.
[13] Hang Chen, Syed Ali Asif, Jihong Park, Chien-Chung Shen, and Mehdi Bennis.

Robust blockchained federated learning with model validation and proof-of-stake
inspired consensus. AAAI 2021 Workshop - Towards Robust, Secure and Efficient
Machine Learning, 01 2021.

[14] Xuhui Chen, Jinlong Ji, Changqing Luo, Weixian Liao, and Pan Li. When machine
learningmeets blockchain: A decentralized, privacy-preserving and secure design.
In 2018 IEEE International Conference on Big Data (Big Data), pages 1178–1187,
2018.

[15] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A
federated transfer learning framework for wearable healthcare. IEEE Intelligent
Systems, 35(4):83–93, 2020.

[16] Ali Dorri and Raja Jurdak. Tree-chain: A fast lightweight consensus algorithm
for iot applications. CoRR, abs/2005.09443, 2020.

[17] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. Mitigating sybils in
federated learning poisoning. CoRR, abs/1808.04866, 2018.

[18] Avishek Ghosh, Justin Hong, Dong Yin, and Kannan Ramchandran. Robust
federated learning in a heterogeneous environment. arXiv, 06 2019.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[20] Zhipin Gu, Liangzhong He, Peiyan Li, Peng Sun, Jiangyong Shi, and Yuexiang
Yang. Frepd: A robust federated learning framework on variational autoencoder.
Computer Systems Science and Engineering, 39:307–320, 01 2021.

[21] Runchao Han. On the performance of distributed ledgers for internet of things.
Internet of Things, 10:100087, 08 2019.

[22] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

[23] J. A. Hartigan andM. A.Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[24] Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca Wright. A new
privacy-preserving distributed k -clustering algorithm. volume 2006, 04 2006.

[25] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving distributed k-
means clustering over arbitrarily partitioned data. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
KDD ’05, page 593–599, New York, NY, USA, 2005. Association for Computing
Machinery.

[26] Malhar Jere, Tyler Farnan, and Farinaz Koushanfar. A taxonomy of attacks on
federated learning. IEEE Security & Privacy, PP, 12 2020.

[27] Somesh Jha, Louis Kruger, and Patrick McDaniel. Privacy preserving clustering.
volume 3679, pages 397–417, 09 2005.

[28] Yuang Jiang, Shiqiang Wang, Bong Jun Ko, Wei-Han Lee, and Leandros Tassiu-
las. Model pruning enables efficient federated learning on edge devices. CoRR,
abs/1909.12326, 2019.

[29] Audun Jøsang. Artificial reasoning with subjective logic. In Proceedings of the
2nd Australian Workshop on Commonsense Reasoning, 2008.

[30] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawit, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,
David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.
Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-
dak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,

21

https://archive.ics.uci.edu/ml/datasets/covertype
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/datasets/toy_dataset.html
http://www.deeplearningbook.org


Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mari-
ana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda
Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,
Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances and open
problems in federated learning. Foundations and Trends in Machine Learning,
4(1):1–121, 2021.

[31] Sepandar Kamvar, Mario Schlosser, and Hector Garcia-molina. The eigentrust
algorithm for reputation management in p2p networks. The EigenTrust Algorithm
for Reputation Management in P2P Networks, April 2003.

[32] Jiawen Kang, Zehui Xiong, Dusit Tao Niyato, Yuze Zou, Yang Zhang, and Mohsen
Guizani. Reliable federated learning for mobile networks. IEEE Wireless Commu-
nications, 27:72–80, 2020.

[33] Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong.
Federated learning for internet of things: Recent advances, taxonomy, and open
challenges. CoRR, abs/2009.13012, 2020.

[34] Kejiao Li, Hui Li, Hanbing Wang, Hui yao An, Ping Lu, Peng Yi, and Fusheng Zhu.
Pov: An efficient voting-based consensus algorithm for consortium blockchains.
In Frontiers in Genetics, 2020.

[35] Tian Li, Anit Kumar Sahu, Ameet S. Talwalkar, and Virginia Smith. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine, 37:50–60, 2020.

[36] Yuzheng Li, Chuan Chen, Nan Liu, Huawei Huang, Zibin Zheng, and Qiang Yan.
A blockchain-based decentralized federated learning framework with committee
consensus. IEEE Network, 35(1):234–241, 2021.

[37] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. CoRR, abs/1805.12185,
2018.

[38] L. Lyu, J. Yu, K. Nandakumar, Y. Li, X. Ma, J. Jin, H. Yu, and K. Ng. Towards fair
and privacy-preserving federated deep models. IEEE Transactions on Parallel &
Distributed Systems, 31(11):2524–2541, November 2020.

[39] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data.
In 20th International Conference on Artificial Intelligence and Statistics (AISTATS),
2017.

[40] Fatima Meskine and Safia Nait-Bahloul. Privacy preserving k-means clustering:
A survey research. International Arab Journal of Information Technology, 9, 03
2012.

[41] Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-
Pierre Hubaux. Multiparty homomorphic encryption from ring-learning-with-
errors. Cryptology ePrint Archive, Paper 2020/304, 2020. https://eprint.iacr.org/
2020/304.

[42] Tim Muller and Patrick Schweitzer. On beta models with trust chains. In IFIPTM,
2013.

[43] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography
Mailing list at https://metzdowd.com, 03 2009.

[44] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza
Sadeghi, T. Schneider, and Shaza Zeitouni. Flguard: Secure and private federated
learning. IACR Cryptol. ePrint Arch., 2021:25, 2021.

[45] Frank Nielsen. Introduction to HPC with MPI for Data Science, pages 185–213.
Springer, February 2016.

[46] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages 305—-320, USA, 2014. USENIX
Association.

[47] Maria Rigaki and Sebastian Garcia. A survey of privacy attacks in machine
learning. CoRR, abs/2007.07646, 2020.

[48] Sinem Sav, Apostolos Pyrgelis, Juan Ramón Troncoso-Pastoriza, David Froelicher,
Jean-Philippe Bossuat, Joao Sousa, and Jean-Pierre Hubaux. Poseidon:privacy-
preserving federated neural network learning. Network and Distributed Systems
Symposium, pages 1–24, September 2020.

[49] Muhammad Shayan, Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh.
Biscotti: A ledger for private and secure peer-to-peer machine learning. CoRR,
abs/1811.09904, 2018.

[50] Gurpreet Singh and Supriya Kinger. A study of encryption algorithms (rsa,
des, 3des and aes) for information security. International Journal of Computer
Applications, 67:33–38, 04 2013.

[51] Zhendong Song, Hongguang Sun, Howard H. Yang, Xijun Wang, Yan Zhang,
and Tony Q. S. Quek. Reputation-based federated learning for secure wireless
networks. IEEE Internet of Things Journal, pages 1–15, 2021.

[52] Oskar J. Triebe and Ram Rajagopal. Federated k-means clustering algorithm.
https://github.com/ourownstory/federated_kmeans. Accessed: 2022-01-01.

[53] Stacey Truex, Ling Liu, Ka Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei.
Ldp-fed: Federated learning with local differential privacy. CoRR, abs/2006.03637,
2020.

[54] Muhammad Habib ur Rehman, Khaled Salah, Ernesto Damiani, and Davor
Svetinovic. Towards blockchain-based reputation-aware federated learning. In

IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 183–188, 2020.

[55] Jaideep Vaidya and Chris Clifton. Privacy-preserving k-means clustering over
vertically partitioned data. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03, page 206–215,
New York, NY, USA, 2003. Association for Computing Machinery.

[56] Chang Xia, Jingyu Hua, Wei Tong, and Sheng Zhong. Distributed k-means clus-
tering guaranteeing local differential privacy. Computers & Security, 90:101699,
12 2019.

[57] Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang Li,
Lingjuan Lyu, and Yingbo Liu. Privacy-preserving blockchain-based federated
learning for iot devices. IEEE Internet of Things Journal, 8(3):1817–1829, 2021.

[58] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
An overview of blockchain technology: Architecture, consensus, and future
trends. 06 2017.

[59] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and Huaimin Wang.
Blockchain challenges and opportunities: A survey. International Journal of Web
and Grid Services, 14:352, 10 2018.

22

https://eprint.iacr.org/2020/304
https://eprint.iacr.org/2020/304
https://github.com/ourownstory/federated_kmeans


APPENDIX
A CLUSTERING RESULTS SYNTHETIC DATA

Figure 10: Clustering result of centralized clustering on syn-
thetic dataset from [52].

Figure 11: Clustering result of federated 𝑘-means on syn-
thetic dataset from [52].

Figure 12: Clustering result of BC-FL 𝑘-means on synthetic
dataset from [52].



B CLUSTERING RESULTS BREAST CANCER
DATA

Figure 13: Clustering result of centralized 𝑘-means on the
breast cancer dataset.

Figure 14: Clustering result of federated 𝑘-means on the
breast cancer dataset.

(a) Clustering result of BC-FL 𝑘-means using IID distributed data.

(b) Clustering result of BC-FL 𝑘-means using non-IID distributed
data.

Figure 15: Clustering results of BC-FL 𝑘-means on the breast
cancer dataset with IID and non-IID distributed data.

24



C CUMULATIVE CONVERGENCE OF RUNS
WITH DIFFERING PROPORTIONS OF
MALICIOUS DEVICES

(a) Cumulative convergence of runs with and without reputation
system with IID distributed data.

(b) Cumulative convergence of runs with and without reputation
system with non-IID distributed data.

Figure 16: Cumulative convergence of runs with IID and non-
IID data distribution when 10% devices are malicious.

(a) Cumulative convergence of runs with and without reputation
system with IID distributed data.

(b) Cumulative convergence of runs with and without reputation
system with non-IID distributed data.

Figure 17: Cumulative convergence of runs with IID and non-
IID data distribution when 20% devices are malicious.

25



(a) Cumulative convergence of runs with and without reputation
system with IID distributed data.

(b) Cumulative convergence of runs with and without reputation
system with non-IID distributed data.

Figure 18: Cumulative convergence of runs with IID and non-
IID data distribution when 30% devices are malicious.

D ROLE ASSIGNMENT OF REGULAR AND
MALICIOUS WITH DIFFERING
PROPORTIONS OF MALICIOUS DEVICES
PRESENT

(a) Role assignment of devices with and without the reputation sys-
tem when data is IID distributed.

(b) Role assignment of devices with and without the reputation sys-
tem when data is non-IID distributed.

Figure 19: Role assignment with IID and non-IID data distri-
bution when no malicious devices are present.

26



(a) Role assignment of devices with and without the reputation sys-
tem when data is IID distributed.

(b) Role assignment of devices with and without the reputation sys-
tem when data is non-IID distributed.

Figure 20: Role assignment with IID and non-IID data distri-
bution with 10% of devices being malicious.

(a) Role assignment of devices with and without the reputation sys-
tem when data is IID distributed.

(b) Role assignment of devices with and without the reputation sys-
tem when data is non-IID distributed.

Figure 21: Role assignment with IID and non-IID data distri-
bution with 20% of devices being malicious.

27



(a) Role assignment of devices with and without the reputation sys-
tem when data is IID distributed.

(b) Role assignment of devices with and without the reputation sys-
tem when data is non-IID distributed.

Figure 22: Role assignment with IID and non-IID data distri-
bution with 30% of devices being malicious.

(a) Role assignment of devices with and without the reputation sys-
tem when data is IID distributed.

(b) Role assignment of devices with and without the reputation sys-
tem when data is non-IID distributed.

Figure 23: Role assignment with IID and non-IID data distri-
bution with 40% of devices being malicious.

28


	1 Introduction
	1.1 Research Questions
	1.2 Contribution
	1.3 Structure

	2 Preliminaries
	2.1 Unsupervised Learning
	2.2 Federated Learning
	2.3 Blockchain

	3 Problem Description and Motivation
	3.1 Detailed Problem Description
	3.2 Requirements

	4 System Design
	4.1 Architecture
	4.2 Trust

	5 Security Analysis
	5.1 Poisoning Attacks
	5.2 Information Leakage
	5.3 Other Attacks

	6 Prototype Implementation
	6.1 Implementation Details
	6.2 Limitations

	7 Performance Evaluation
	7.1 Evaluation Environment
	7.2 Simulations
	7.3 Performance Analysis

	8 Discussion
	8.1 Lessons Learned
	8.2 Limitations

	9 Related Work
	9.1 Our Work
	9.2 Traditional Federated Learning
	9.3 Blockchain-based Federated Learning

	10 Conclusions and Future Work
	References
	A Clustering results synthetic data
	B Clustering results breast cancer data
	C Cumulative convergence of runs with differing proportions of malicious devices
	D Role assignment of regular and malicious with differing proportions of malicious devices present

