
 Eindhoven University of Technology

MASTER

Performance analysis of meta-learning and contrastive learning for speech emotion
recognition

King Gandhi, Raeshak

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a7fb4d1d-e81c-4e29-822a-cda23cd4efd2


Performance analysis of
meta-learning and

contrastive learning for
speech emotion

recognition

Master Thesis

Raeshak King Gandhi

Department of Mathematics and Computer Science
Interconnected Resource-aware Intelligent Systems Research Group

Supervisors:
Prof. Dr. ir. Nirvana Meratnia

MSc. Vasileios Tsouvalas

Eindhoven, June 2022





Acknowledgement

This thesis is an opportunity provided by the Department of Mathematics and Computer Science
at Eindhoven University of Technology. I am extremely grateful to the support provided by
various people for the duration of my master’s thesis. First of all, I would like to express my
utmost gratitude to Prof. Dr. ir. Nirvana Meratnia for providing me the opportunity to work on
this wonderful thesis. I would also like to thank her for the peerless guidance provided by her for
the duration of my thesis. Next, I would like express my deepest thanks to Vasileios Tsouvalas for
the extensive help and support he provided throughout the thesis, both technical and theoretical,
no matter the time or place. I would not have been able to complete the thesis without their help
nor would I have developed a research oriented mindset.

I would also like to thank my parents for providing me with abundant financial and emotional
support which enabled me to brave tough waters throughout my Master’s here at TU/e. Finally,
I would like to thank my friends for their constant encouragement during my time entire time
abroad.

Performance analysis of meta-learning and contrastive learning for SER iii





Abstract

Emotion recognition has a variety of applications in many fields. Audio is one of the means of
detecting emotions, the others being facial and body movement recognition, and measuring bio-
metric signals. Speech Emotion Recognition (SER), however, it is not extremely reliable. One
of the problems faced by SER is the problem of Domain Generalization (DG). When a SER
model is trained in one language corpus, it does not perform well in predicting data from another
corpus of the same language, much less on a corpus from another language. In this thesis, DG
methods perfected for use on images are used to perform DG on Log-Mel spectrogram of audio
emotion data from different datasets belonging to various languages. Two methods are selected,
i.e., Meta-Learning Domain Generalization (MLDG) [29] and Self-supervised Contrastive Regu-
larization (SelfReg) [48]. MLDG and SelfReg are used to test performance of generalization of
emotions over different languages. In case of low performance, this thesis tries to identify which
part of the model is the cause of this low performance. It also tries to identify different avenues in
which models can be improved in the future. Finally, the input to the DG models are varied by
performing augmentations and/or using embeddings from another pre-trained model, called [77].

Keywords: Domain Generalization, Meta-learning, Contrastive learning, deep learning, Speech
emotion recognition, augmentation.
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Chapter 1

Introduction

Emotion recognition has many applications ranging from simple mood recognition for selecting a
music playlist, to a more complex utility in monitoring behavior of people in a certain place to
prevent illegal activities. Recognizing positive emotions may be used in smartphones to capture
pictures or to receive a review of a movie on completion. Recognizing negative emotions, for
example, may help in healthcare domain to alert officials regarding the current (negative) state of
the patient in psychiatric institutions. Emotions could be determined from one’s facial movements
and expressions, tracking one’s biometric data such as pulse and EEG data, or via audio. Audio
is considerably less invasive, when compared to biometric data or use of video recordings, and
one can retain privacy to a higher extent, when compared to video. Authors of [81] have stated
that Speech Emotion Recognition (SER) can be utilised in applications that require response to
emotional states, such as patient care, geriatric nursing, call centres, psychological consultation,
and human communication. However, SER has its own drawbacks, such as input audio being
susceptible to noise.

Hidden Markov Models, such as [13] and [14], Gaussian mixture models [38] and SVMs (such
as[16]) used to be famous emotion detection models. Nowadays, deep learning (DL) models are
trending when it comes to emotion detection from audio. Here, a variety of audio features are
extracted from raw audio signals, with Mel spectrogram and MFCCs being two of the most
dominant ones. DL models are trained on these audio features, usually extracted from a single
audio collection database (an audio dataset). Hence, most of the existing deep learning approaches
are either speaker dependent or language dependent or both. In this master thesis, we try to
overcome the aforementioned dependencies by utilizing meta-learning and contrastive learning in
SER.

The speaker and language dependencies of models are often affected by domain shifts. Specific-
ally, the models are trained on selected features which are exclusive to speakers or the language.
However, when a different speakers or languages are used, the models’ performance deteriorates.
To prevent this, models could learn to recognize speaker and language invariant features by util-
izing deep learning techniques which perform significantly better when faced with the problem
of domain shifts. In particular, meta-learning, which is trained over multiple sampled tasks, and
contrastive learning, with specific losses are defined for latent space alignment of encoded features
from different classes, could be employed. Meta-learning tries to optimize the optimizer of the
model itself (the meta data) depending on a defined meta objective, which could be utilized to
learn speaker and language invariant features. In addition, with contrastive learning, models learn
from similar and dissimilar pairs of data in batches depending on a defined contrastive loss, which
could again be defined to improve domain generalisation. Authors of [29, 48] utilize meta-learning
and contrastive learning, respectively, to address domain generalisation. In this master thesis, we
aim to adapt both techniques for SER.

Performance analysis of meta-learning and contrastive learning for SER 1



CHAPTER 1. INTRODUCTION

1.1 Problem statement

Speech emotion recognition (SER) has its unique set of challenges due to the personalized nature
of how emotions are expressed. One such challenge is creating a model which can perform well
across multiple corpora, even if they are of the same language. This is due to various factors
such as label ambiguities, different data distributions, different recording environments, language
acquisition, and varying speakers. To obtain a robust model resistant to the problems caused by
domain shift (due to difference in speakers, languages etc), specific techniques that perform Do-
main Generalization (DG) are required. Some models showing high accuracies while being trained
and tested with one corpus, while their performance deteriorates once they had been tested on
another. In particular, the average accuracy of such models does not exceed 65%, (as for example
reported in [72, 73, 74]) when being tested across multiple corpora. This points us to our first
problem statement, caused by domain shift, stated as follows:

Problem Statement 1: Models which perform well while being trained and tested
on a single corpus do not perform well on other corpora, even those of the same
language.

Each language may have its own feature considered important for emotion recognition, while
the same feature may not be important for another language. Adding differences in prosody,
speaking rate, the difference in pronunciations and enunciations between different languages, the
accuracies of SER models drop drastically when tested on different languages.

As mentioned above, a possible way to decrease the effect of lack of generalization is to train
models on multiple SER tasks. This is done, for example, in [20] and [21], where an ensemble of
multiple trained models is used to create a generalized model. However, this approach significantly
increases both time and resource consumption. In this regard, we investigate the use of meta-
learning to train tasks related to SER and train a generalized model using DG learning techniques
tackling the aforementioned problem statement. Some of the advantages of meta-learning include:

• Training generalized models: Meta-learning can be trained to perform multiple tasks such as
identify emotions over multiple speech corpora, with proper definition of the required tasks.

• Fast adaptation with fewer data requirements: Meta-learning models can train over large
number of classes with significantly lower amount of data samples per class.

Another possible way to tackle the problem of domain shift is the use of contrastive learning,
by using losses specifically designed to perform alignment of data between different domains and
learn domain invariant features. We investigate the use of contrastive learning to overcome domain
shifts. Advantages of contrastive learning include:

• Self-supervised : Contrastive learning can utilize data from multiple datasets without needing
labels to train. Classification is performed as a downstream task.

However, while performing experiments, it was seen that Domain generalisation models which
perform well in the field of image recognition did not perform very well when it was utilized on
log mel spectrograms of different speech data depicting emotions. This is explained in detail in
the upcoming chapters.

Problem Statement 2: Domain generalization methods with good performance
across image domains do not achieve similar performance on speech emotion recog-
nition tasks.

In this regard, experiments will be run to determine whether the problem arose from the model
itself, from the backbone network, or the data.

2 Performance analysis of meta-learning and contrastive learning for SER



CHAPTER 1. INTRODUCTION

1.2 Research Questions

From the above-mentioned problem statements, we define the following research questions:

To what extent can the performance and generalization (over different languages)
of deep-learning backbone SER models be improved?

Answers to the following sub-research questions, collectively, help us answer our main research
question:

1. To what extent can the performance of deep learning backbone SER models, generalized
over multiple speech corpora of a single language, be improved by using meta-learning and
contrastive learning techniques?

2. To what extent can the performance of deep learning backbone SER models, generalized
over multiple speech corpora of multiple languages, be improved by using meta-learning and
contrastive learning techniques?

3. In case of low performance of the model, does the problem lie on the model’s algorithm, the
backbone network or the input data?

4. What is the performance of a different form of input, such as an augmented input, obtained
from different speech emotion dataset combinations, used to train models to perform domain
generalization?

1.3 Approach

To answer the above research questions, we investigate different meta-learning and contrastive
learning methods. Literature related to state-of-art topics on audio pre-processing, deep learning
models (for backbone networks), and augmentation techniques were investigated to try and im-
prove performance of the chosen models. The contribution of this thesis can be summarized as
follows:

• Studying domain generalization by training on different combinations of speech emotion
datasets and testing on an entirely different speech emotion dataset, by using meta-learning
and contrastive learning.

• Improving existing models by replacing outdated parts such as losses and augmentation
tactics with state-of-the-art techniques.

• Explaining different experiments performed to test the effectiveness of augmentation and
different forms of inputs to the models obtained from audio pre-processing.

• Performing extensive experiments to identify the reason in case of low performance and
accuracy results.

• Solving this performance issues by investigating the effect of different backbone networks
and inputs.

1.4 Thesis outline

The thesis is organized as follows:

• Literature survey (Chapter 2): The literature survey begins with a brief description of
emotions and its different representations as viewed in different literature. This is followed by
elaborating on different audio pre-processing techniques utilized, especially when it comes
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CHAPTER 1. INTRODUCTION

to emotion detection. Next, a list of widely used speech emotion datasets is presented.
Finally, a taxonomy of state-of-the-art deep learning techniques used for detecting emotions
is presented.

• Preliminaries (Chapter 3): In this chapter, domain generalization and the chosen tech-
niques i.e. Meta-Learning Domain Generalization (MLDG) [29] and Self-supervised Con-
trastive Regularization (SelfReg) [48] are explained in detail.

• Methodology (Chapter 4): This chapter includes our approach including adoption of
MLDG and SelfReg from the image domain to the audio domain, the architecture of the
models, and our pre-training strategy.

• Experiments (Chapter 5): Extensive experiments that we performed on domain general-
ization are presented in this chapter together with their observations and results.

• Conclusion (Chapter 6): This chapter concludes the thesis and elaborates on the future
work that could be built upon this thesis.

4 Performance analysis of meta-learning and contrastive learning for SER



Chapter 2

Literature survey

This chapter provides basic information about state-of-the-art research being done on related
fields, such as in the area of emotion and Speech Emotion Recognition (SER). Compiling this
information helped identify the problem addressed by this Thesis in the field of SER.

2.1 Emotions

Emotions, according to [1], are impulses human beings feel. Those tend to influence the way they
act and can range from positive emotions such as happiness to negative emotions such as disgust.
In addition, emotions can range from extremely active emotions such as excitement or anger, to
passive emotions such as sadness. According to [12], emotions can be represented using a two-
dimensional model as shown in 2.1, the two dimensions representing arousal and valence. Valence,
usually represented in the x-axis, indicates how negative or positive (pleasant or unpleasant) an
emotion is. Arousal, usually represented in the y-axis, indicates the excitation levels of emotions.
Most of the emotion datasets usually take these values into account. They help in providing a
clear, finer distinction between emotions. Another manner of representation of emotions is the
”palette theory” as specified in [57]. It utilizes a number of core emotions (Anger, fear, joy,
surprise, sadness and disgust). Different combinations of these core emotions could give rise to
new, derived emotions called compound emotions.

Figure 2.1: Circumflex model of emotions, taken from [1]

Performance analysis of meta-learning and contrastive learning for SER 5



CHAPTER 2. LITERATURE SURVEY

2.2 Audio pre-processing

Before extracting audio features, audio signals must be processed to produce meaningful data.
There may be numerous steps depending on the audio feature to be extracted and the input audio
signal.

2.2.1 Audio segmentation

The most basic processing steps involve filtering the active signal fragments from those that depict
silence using zero-crossing detectors and intensity peak detectors (to distinguish between actual
speech and environmental noise) [7]. These active signal fragments are then framed, with each
frame consisting of an equal number of samples (considering digital audio signal, else sampling
must be performed). Furthermore, to ensure a smooth transition, these frames have some degree
of overlap. Framing can be done using different windows, such as Hamming, Hann (Hanning),
Triangular, Gauss, Welch, Blackman, and Bartlett [8]. In addition to segmentation, by choosing
proper windowing function, noise reduction and isolation of important audio frequencies can also
be achieved. The audio segmentation pre-processing steps are shown in Figure 2.2.

2.2.2 Audio features

Choosing adequate audio features to be extracted from audio signals to detect emotions is an
equally important step during the pre-processing of audio data for SER. According to [1], audio
signals could be analyzed using three approaches - temporal, prosodic and frequential.
The temporal approach involves detecting parameters such as windows, zero crossings, peaks, and
kurtosis. The number of windows is related to the number of segments of voiced activity detected.
In zero crossings the weighted average of times that the speech signal changes the sign in a
window of time is calculated [2]. Furthermore, the kurtosis parameter depicts the deviation from
the normal distribution. A higher value means a distribution with a higher peak, which implies
larger impulsiveness of sound. The prosodic approach involves measuring prosodic features of the
speech such as rhythm, stress, and intonations.

The most dominant audio features used in SER research originate from the frequency domain.
Those features are extracted from the spectrum of the analyzed signal, such as the Power spectral
density. A common frequency-based acoustic feature is the Mel Frequency Cepstral Coefficient
(MFCC). It involves mapping the spectra of a signal into the Mel scale using triangle or cosine
overlapping windows, followed by taking a log of the powers at each Mel frequency and compressed
by performing a Direct Cosine Transform on these log Mel powers [3]. In this way, the resulting
MFCCs are the magnitude of the resulting spectrum. In particular, the first coefficient represents

Figure 2.2: Pre-processing steps and MFCC extraction, taken from [32]
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CHAPTER 2. LITERATURE SURVEY

Figure 2.3: Basic SER model, taken from [32]

the average power in the spectrum, the second approximates the shape of the spectrum, while the
remaining ones contain finer details of the spectrum [5]. The extraction process is illustrated in
Figure 2.2. However, the DCT compression step may remove auditory information and disrupt
spatial relations [4]. By omitting the DCT compression, the filter banks values, known as the
log-Mel spectrum, can retain the spatial relations and thus are attracting considerable attention
in recent SER research. In addition, the Mel scale represents the relation between actual frequency
and the frequency of sound perceived by humans, whereas MFCCs only capture the timbral
characteristics of sound. Another disadvantage of MFCC is that it is susceptible to additive
noise.

Other than MFCCs and log-Mel Spectrograms, there are numerous other frequency-based fea-
tures, such as Chromagram, Spectral contrast feature, Tonnetz representation, perceptual linear
predictive cepstral coefficients, linear predictive coefficients, line spectral frequencies. After ex-
tracting the audio features, these can then be fed as inputs to a deep learning model to learn
the underlining relationship between these features and the emotional state present in the audio
signal. The log-Mel spectrogram features are often treated as images and are fed to popular image
recognition models, such as ResNet or VGG16 [19, 33, 17, 18]. Finally, audio feature extraction
tools, such as openSMILE [6], have also been developed to extract a series of low-level descriptors,
including MFCCs. An abstract example of an end-to-end SER system is shown in Figure 2.3.

2.3 Emotion Recognition Models

SER models could be broadly classified into traditional machine learning models and deep learning
models. Pre-processed audio data or spectrograms could be used as inputs and classified into
different emotions either by predicting emotions directly or by determining the arousal and valence
values. Different SER models have been categorized and presented in Figure 2.4.

2.3.1 Non-deep learning models

In the past, traditional ML techniques determined a probability distribution over a predefined
set of emotions using hand-crafted features from audio signals. Among those, Hidden Markov
models were widely used due to their ability to capture the temporal effects of speech in the form
of a concatenation of states resulting in high accuracies [13, 14]. Another popular approach was
combining the prediction of different classifiers, such as a naive Bayes classifier [15] and Support
Vector Machines (SVMs) [16] for a given set of audio feature, like MFCCs. With the advent of
deep learning, these classifiers were then combined with deep learning techniques. DL techniques
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were responsible to extract meaningful representations from raw audio signal such as in [17].
Nonetheless, all of the aforementioned approaches were speaker-dependent and had low accuracies
when experimented across different datasets.

2.3.2 Deep learning models

Recently, the research focus shifted towards deep learning approaches for SER. Deep learning
SER networks can be used as feature extractors from segmented audio features, such as log-
Mel spectrograms, after which a downstream classifiers, such as Random forest classifiers [17] or
clustered using KNN clustering [18], is used for classification. In addition, deep learning end-
to-end SER networks can be used to perform both feature extraction and classification of input
data. In [17] and [18] a CNN is utilized to determine relations between a sequence of inputs and
produce a vector with smaller dimensions. In this way, the newly compressed vector is able to
effectively capture local features and characteristics of the input data. Furthermore, for the case of
log-Mel spectrograms when treated as images, CNN-based models have proven to be particularity
successful in SER, following their exceptional representation power in image classification task. A
considerable amount of research has also been directed to overcome the dependency of emotion
recognition models on a speaker’s voice characteristics. Few papers, such as [19], have used
LSTMs to capture long-term contextual dependencies as well as local information, which showed
great improvements in speaker-independent recognition, but only within specific datasets, as they
are still dependent on the utterances and language of that dataset. Authors of [20] and [21]
used ensemble methods to improve speaker independence. In particular, [20] have proposed an
ensemble of three deep learning models, each of which are tuned to learn the arousal, valence and
categorical emotions. Following a different approach, [21] has created an ensemble of deep learning
models which first detect ”difficult” emotions, such as boredom and disgust, and then proceed to
detect ”easily” distinguishable emotions, such as happiness, anger, sadness, fear and neutral. This
ensemble method’s performance is similar to [19].

Deep learning was also used in other manners in the area of SER, such as in [22] providing
attention to only the important parts of the speech, such as verbal sounds and non silent or
active regions, and using LSTM encoders with attention modules. In addition, DL models were
also used to create embeddings using autoencoders to aid in their clustering (for semi-supervised
learning) [23] and models which takes into account the accuracy of annotators and uses them as
auxiliary inputs to reduce the effects of faulty labels[24].

2.3.2.1 Meta-learning

Meta-learning is a relatively new concept recently developed in deep learning. A normal deep
learning technique involves making multiple training passes to compute the gradients of the model’s
parameters and optimizing them to converge to an appropriate model. Meta-learning, however,
is different as it tries to optimize the parameters of the optimizer itself (the meta data). It could
involve learning the relation between two inputs by computing their distance in metric space for
few shot learning (metric based). It could also imply learning optimal initialization parameters
rather than random parameters for faster convergence (optimization based). Or it could entail
replacing the optimizing an optimizer of a model with a RNN for faster convergence (model-based).

An advantage of meta-learning is its capability of few shot learning. Since a meta-learning
model is able to learn and adapts quicker, it requires significantly less data for training. Another
advantage is that meta-learning optimizes over different tasks. This means that [29] is better at
generalization and could possible perform better over different speakers and datasets.

Although meta-learning has been used in many applications, its use in SER has not been
well explored. Papers [31] and [30] use two different variations of MAML algorithm to achieve
high emotion classification accuracy over multiple languages. However, they do not perform DG.
Rather, they concentrate on domain adaptation, which is a technique where a small amount of
data from test domain is used to converge the model quickly to predict rest of the data from the
test domain.
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2.3.2.2 Contrastive learning

Contrastive learning is a DL technique that learns from the similarity between similar and dis-
similar pairs of data in batches. The similarity is usually calculated using distance measures such
as Euclidean distance or cosine similarity between data points. For this, the data points have to
be embedded in a lower dimensional latent space. Embeddings are created using base encoders
from input data pairs and embedded in latent space using projection modules in such a way that
agreement between similar data pair is maximized by minimizing a contrastive loss formula. This
contrastive loss formula usually depends on similarity such as cosine similarity [34] as mentioned
before. Using a downstream classification task, one can classify the embeddings of input data
as required. Hence, contrastive learning models are generally self-supervised, while the adequate
formation of data pairs is essential. A depiction of contrastive learning has been presented in 2.5.

Data augmentations could be used to create even more similar and dissimilar pairs for con-
trastive learning. Instead of using two different input data of the same class to create a pair, a
single data can be augmented in two different ways to create a pair. Heavy data augmentation
is required for proper training as it creates more diverse pairs for training batches. More diverse
pairs reduce the requirement of input data thus reducing the size of required dataset. As there is
a lack of well-defined and large open datasets for emotions available, this reduced requirement is
helpful. However, increasing training data significantly improves performance as said in [34].

Contrastive learning for audio is mostly used in the field of audio representation which could
be extended to SER. In [36], data pairs are created for different types of data, namely augmen-
ted images of log-Mel spectrograms and their respective augmented waveforms. This model has
achieved higher accuracy scores compared to other audio representation models. Author of [35]
used Siamese networks for performing SER, while they tested their approach on two distinct con-
trastive loss functions, each utilizing cross entropy loss and cosine similarity. In both approaches,
a CNN-based architecture, such as ResNet, was utilized as encoder. It is possible that other deep-
learning architectures, such as LSTMs and Bi-directional LSTMs (B-LSTMs) could be employed
as encoders to further improve their results. Finally, [39] utilized an encoder to create latent space
representations of utterances out of which pairs are formed for contrastive learning.

Figure 2.5: Depiction of contrastive learning, taken from [34]. f(.) denotes the encoder, while g(.)
denotes the projection heads. zi and zj are the projections of the xi and xj , which are augmented
outputs of input x.
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Figure 2.4: Papers categorized into different types of models
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2.4 Domain generalization

In deep learning, models usually tend to overfit on their training data domain, especially models
such as Convolution Neural Networks (CNN), which are extremely powerful. They try to learn
most of the learnable features of training dataset, even if it does not contribute a lot while pre-
dicting data from test dataset. Although every bit of learned features help, it may not help in
predicting data from a different data domain, which is similar to the original data domain. This
new data domain, which is different, may have some features in common with the original data
domain. An example of this situation is training a SER on training data from a group of speakers.
This may allow the SER to predict a test set from that same group of speakers with a good accur-
acy score. However, it may fall short when it tries to predict a test set from an entirely different
group of speakers. It could be said that the SER has become speaker dependent.

This is where domain generalization is beneficial. Domain generalization is performed when
a DL model tries to learn the semantics of the source domain, which could be generalized to a
target domain, if there are semantics to be learnt. The DL tries to learn a generalized predictive
function which could then be used to predict Out-of-distribution (OOD) data (data different from
the training data distribution).

There have also been work done on domain generalization in the field of SER. The paper
[73] introduces a technique dependent on mining semi-hard triplets to perform alignment using
triplet loss in order to learn domain invariant features for SER. Authors of [74] introduced a
model called Adversarial Discriminative Domain Generalization (ADDoG), with critic network
and feature extractor network in which one is trained when the other is frozen, so that model
learns to distinguish invariant features by challenging itself. Authors of [72] used a combination
of CNN and RNN architecture (called CNNRNNATT) to run tests on DG with SER.

2.4.1 Applications of domain generalization

Domain generalization is used when obtaining training data is expensive or difficult. It may be
easier to make use of data from different domains and then generalize to the required domain.
It also tries to make the model more robust in the face of domain shifts present in real world
scenarios. DG could be used in many applications, some of which are listed below:

• Character recognition: DG could be utilized to predict written characters from alphabets
of a language, written in a different style from the training data. This could be used to
recognize sentences from different handwriting.

• Speech recognition: DG could be used to generalize DL speech recognition networks over
different speaker, sometimes even over different languages.

• Medical imaging: DG could be utilized to generalize over domain shifts caused by varying
factors such as difference in imaging equipment.

• Face recognition: DG helps in generalizing and recognizing the face of a person even when
a domain shift is present due to factors such as viewing angle, viewing distance and noise.

• Object recognition: Most of the time, objects present in daily life, such as vases, TVs etc,
vary a lot in appearance, but still have some similar features. A DG model tries to learn
these features of the objects to be recognized. It could then be used to recognize different
types of the same objects. For example, a DG model could use the PACS dataset to learn
domain agnostic features of houses from paintings, sketches and cartoons of houses, and then
try to recognize photos of houses in the real world.

2.4.2 Taxonomy of domain generalization techniques

The paper [58] presents a taxonomy of domain generalization methods. According to the authors of
[58], domain generalization can be performed by manipulating the data, having different learning
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strategies or by learning specific representations. Data manipulation strategies involve using data
augmentation such as Domain Randomization and Pyramid Consistency (DRPC) [63], which tries
to enforce pyramid consistency on augmented images as well as real images from different domains.
Learning specific representations is another path that could be taken and involves learning specific
domain invariant features by using DL networks that recognize them. An example of learning
specific domain invariant features is seen in variation of Domain-Adversarial Training of Neural
Networks (DANN) [65], which uses a generator to generate features to confuse the discriminator
and the discriminator tries to distinguish domains. The third category includes different learning
strategies, which modify the way of learning for backbone networks to create a robust model which
performs well against domain shifts. Learning strategies include techniques such as ensemble
learning (an ensemble of multiple models performing tasks on different domains), Meta-learning
and Self-supervised learning.

This thesis uses the third category, i.e it uses two different learning strategies from Meta-
learning (MLDG) and Self-supervised learning (SelfReg). The methods this thesis uses are marked
in green in figure 2.6, which shows the taxonomy of domain generalization as seen in [58].

Figure 2.6: Taxonomy of domain generalization, taken from [58]
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2.5 Speech emotion datasets

Emotion datasets can be divided into three main types, namely acted, simulated and natural [37].
Emotion datasets usually provide information on categorical emotions. Some datasets also provide
information on Arousal, Valence and dominance values. From the available datasets, IEMOCAP
is the only dataset which contains both acted and evoked audio samples. Table 2.1 contains
detailed information for each dataset in particular. However, it is important to note that not all
of presented datasets are publicly available.

Table 2.1: Emotion datasets

No. Dataset Description Open data-
set

Type

1. IEMOCAP
[9]

Collected by the Speech Analysis and Interpretation
Laboratory (SAIL) at the University of Southern Cali-
fornia (USC), IEMOCAP is an audio-visual database
consisting of over 12 hours of data. 10 actors with
markers in face, head and hand perform conversations
in English displaying five types of emotions (happi-
ness, anger, sadness, frustration, and neutral state).

No (restricted
access)

Acted
and
Evoked

2. EmoDB
[10]

This open dataset consists of 10 actors (5 male and 5
female) hold conversations in German displaying seven
types of emotions neutral (neutral), anger (Ärger),
fear (Angst), joy (Freude), sadness (Trauer), disgust
(Ekel) and boredom (Langeweile).

Yes Evoked

3. RAVDESS
[11]

The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) is an open dataset and
contains 7356 files (approx. 24.8 gb) of audio state-
ments made by 24 actors (12 male and 12 female) in
North American accent. Emotions depicted includes
calm, happy, sad, angry, fearful, surprise, disgust (all
with 2 levels of intensity – normal and strong), and
neutral expression.

Yes Acted

4. CHEAVD
[25]

CASIA Chinese Natural Emotional Audio–Visual
Database is an audio-visual database consisting of over
140 mins of data. The data is extracted from films and
talk shows. It consists of data from 238 speakers of
varying age groups labelled into 26 non-prototypical
emotional states labelled by four native speakers.

No Natural

5. NNIME[26] The NTHU-NTUA Chinese Interactive Multimodal
Emotion Corpus consists of over 11 hours of audio
data acted by 22 females and 20 males. It is labelled
as angry, happy, sad, neutral, surprise, and frustration
by 49 annotators.

No Acted

6. EmoFilm–
Zenodo [27]

EmoFilm dataset consists of English and Italian audio
data from 43 films and 207 speakers. It consists of
1115 files classified into anger, contempt, happiness,
fear, and sadness.

No (restricted
access)

Natural

7. TESS [40] The Toronto emotional speech set consists of 200 tar-
get English words displaying each of seven emotions
(anger, disgust, fear, happiness, pleasant surprise, sad-
ness, and neutral). This is performed by two actresses.

Yes Acted
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8. SAVEE [41] The Surrey Audio-Visual Expressed Emotion
(SAVEE) consists of 480 British English utterances
by seven male actors. It consists of 3 common, 2
emotion-specific and 10 generic sentences which are
phonetically balanced and can be classified into anger,
disgust, fear, happiness, sadness and surprise.

Yes Acted

9. EMOVO
[42]

EMOVO is an Italian database consisting of utter-
ances of 6 actors who speak 14 sentences simulating
6 emotional states (disgust, fear, anger, joy, surprise,
sadness) and the neutral state. They are validated by
two different groups of 24 listeners

Yes Acted

10. ShEMO
[43]

The Sharif Emotional Speech Database consists of
3000 utterances Extracted from online radio and has
up to 3 hours and 25 minutes of audio data. It covers
87 speakers simulating anger, fear, happiness, sadness
and surprise, as well as neutral state. They are valid-
ated by two different groups of 24 listeners

Yes Natural

11. URDU [44] URDU database consists of 400 utterances by 38
speakers (27 male and 11 female), gathered from Urdu
talk shows. They simulate Angry, Happy, Neutral,
and Sad emotions.

Yes Natural

12. CAFE [59] The Canadian French Emotional (CaFE) dataset con-
sists of utterances from 6 male and 6 female actors,
who pronounce 6 different sentences. This dataset de-
picts six basic emotions (sadness, happiness, anger,
fear, disgust and surprise) and a separate neutral emo-
tion

Yes Acted

13. AESDD
[60]

The Acted Emotional Speech Dynamic Database
(AESDD) consists of audio data files recorded by pro-
fessional actors in Greek language. It depicts five emo-
tions: anger, disgust, fear, happiness, and sadness

Yes Acted

14. CREMA-D
[61]

The Crowd Sourced Emotional Multimodal Actors
Dataset consists of 7,442 original clips of English lan-
guage from 91 actors who spoke from a set of 12 sen-
tences. They simulate Anger, Disgust, Fear, Happy,
Neutral and Sad emotions.

Yes Acted

This thesis uses nine datasets from the above table. They are CREMA-D, AESDD, CAFE,
EMODB, RAVDESS, TESS, SAVEE, EMOVO and SHEMO. These datasets were selected due to
ease of availability and for the reason that they are mostly open datasets. Also only five emotions
i.e. anger, disgust, fear, happiness, and sadness are considered as they are common among all the
datasets and can be used for domain generalization.
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Chapter 3

Preliminaries

In this chapter, the concepts of domain and Domain Generalization (DG) are explained in detail,
together with their mathematics definitions, to provide the necessary background for the reader
to understand the developed approaches discussed in Chapter 4. In addition to the domain gener-
alization optimization problem, the architecture of the chosen DG algorithms, namely MLDG [29]
and SelfReg[48], are presented alongside with their objectives.

3.1 Domain generalization

In this work, the underlining problem is how to predict emotions from speech data that originate
a domain different from the one the predictive model has initially being trained. However, be-
fore mathematically expressing the domain generalisation problem, the term “domain” has to be
defined.

Definition of a domain: Let X denote a nonempty input space and Y an output space.
A “domain” is composed of data that are sampled from a distribution. We denote it as S=
(xi, yi)

n
i=1P̃XY , where x ∈ X ⊂ Rd, y ∈ Y ⊂ R denotes the label, and PXY denotes the joint dis-

tribution of the input sample and output label. Here, X and Y corresponds to random variables.

Given the above definition, a “domain” could be considered as a collection of data points,
which are collected from the same distribution. Given the aforementioned definition of “domain”,
the concept of DG, in [58], is as follows:

Domain generalization (DG) : In domain generalization, we are provided with M train

(source) “domain” Strain = {Si | i = 1, . . . ,M}, where Si = (xj
i , y

j
i )

ni

j=1 denotes the ith “domain”.

Furthermore, for each pair of “domain”, the joint distributions differs, hence P i
XY ̸= P j

XY , 1 ≤
i ̸= j ≤ M. The goal of domain generalization is to learn a robust and generalizable predictive
function h : X → Y from the M train “domain” to achieve a minimum prediction error on an
unseen test “domain” Stest. Therefore, the domain generalization problem is formulated as:

min
h

Ex,y∈Stest
[ l(h(x), y)] , (3.1)

, where E is the expectation and l(·,·) is the loss function.
A intuitive understanding of the domain generalization problem is provided in Figure 3.1.

3.1.1 Meta-Learning Domain Generalization (MLDG)

Meta-learning aims to learn from its own backbone network’s experience on performing different
tasks (learning to learn). Although a considerable amount of meta-learning algorithms concentrate
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Figure 3.1: Illustration of Domain Generalization. Adapted from [58]

on solving problems related to few shot learning, where a limited number of examples with super-
vised information for a target task are provided, these algorithms could be extended to perform
domain generalization as well. The MLDG algorithm [29], inspired by the MAML meta-learning
algorithm, performs domain generalization by adjusting the MAML algorithm’s objective. Addi-
tionally, MLDG is model-agnostic, thus it could work in conjunction with any backbone model
architecture.

A meta-learning algorithm can be said to have two parts – Episodes construction and Meta-
representation [62]. Similar to MAML, MLDG samples tasks from randomly selected datasets
of the source domain. Assume that the backbone network is parameterized as Θ. During the
episodes construction step, the original source domain S is split at random into two disjoint sets,
the S−V meta train domains denoted by S̄ and V meta test domains denoted by S̆. The Episodes
construction step represents the multiple possible domain shifts within the source domain from
which the backbone network could learn. During the Meta-representation step, the goal is to choose
which layers of the backbone network should be meta-learned and update them. Hence, MLDG
learns and optimizes the entire backbone network rather than specific layers. When training has
been completed, the acquired model is then tested on the test domain, which is entirely disjoint
from the source domain.

MLDG has two objectives implemented in the form of nested training loops. The first objective
aims to utilize the meta train domain, S̄, to minimize the following loss function:

F(.) =
1

S − V

i=1∑
S−V

1

Ni

j=1∑
Ni

lΘ(ŷ
(i)
j , y

(i)
j ) , (3.2)

, where ŷ denotes the predicted label, y corresponds to true label, l(·) refers to cross entropy loss,
i is the sampled domains, Ni is the number of samples of the ith meta-test domain, and j denotes
data points.

With a backpropagation step to update the backbone network based on the performance on
the meta train set, the effect of this update will be observed on the meta test domain. The second
objective of MLDG is to check whether optimizing the network based on the meta train set has a
beneficial effect on the meta test set. Therefore, the second objective mimics situations in which
the model is used to test data from domains different from the train domain, i.e it simulates
domain shifts. Mathematically, this objective can be formulated as follows:

G(.) = 1

V

i=1∑
V

1

Ni

j=1∑
Ni

lΘ′(ŷ
(i)
j , y

(i)
j ) , (3.3)
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where ŷ denotes predicted label, y indicates the true label, l(.) refers to cross entropy loss, i
denotes sampled domains, Ni is the number of samples of the ith meta-test domain, and j denotes
data points.

Considering the the aforementioned objectives, MLDG aims to simultaneously minimize both
losses defined in Equations 3.2−3.3. Therefore, the overall optimization function of MLDG is the
following:

argmin
Θ

F(Θ) + βG(Θ− αF ′(Θ)) (3.4)

, where F ′(Θ) = ∇Θ i.e the gradient obtained from meta train step, α is the meta-train step size
and β is the meta-test step size.

3.1.2 Self-supervised Contrastive Regularization (SelfReg)

A widely used approach for learning domain invariant features is domain alignment. When invari-
ant features among source domains are learnt, they are expected to withstand domain shifts in test
domains. Such features can be learnt by minimizing the difference between similar distributions of
domains and aligning similar features. This can be done by minimizing moments, KL divergence,
contrastive loss etc. SelfReg [48] utilizes contrastive loss to perform alignment between domains,
thus aims to learn domain-invariant representations. As in the case of MLDG, SelfReg is also
model-agnostic, and could be used with a wide range of model architectures.

SelfReg aims to identify positive pairs and minimize their distance. This is in contrast with
other contrastive learning algorithms, whose objective is to mine hard or semi-hard negative pairs
and increase the difference between them. As identifying proper negative pairs from the input data
is considered a hard task as mentioned in [48], the positive pair technique is primarily exploited
in domain generalization. Additionally, data augmentation could be utilized to further increase
the number of positive pairs. An intuitive understanding of SelfReg is presented in Figure 3.2.

Similar to MLDG, SelfReg aims to minimize two objectives during each training step. The
first objective is to minimize a pre-defined loss, called Individualized In-batch Dissimilarity Loss
(Lind). Minimizing Lind aligns different representations belonging to the same class. This is
done by minimizing Lind loss between the original representations and a shuffled copy of the
original representations. However, before aligning the pairs, it is made sure that the copies are
passed through a Multi-Layer Perceptron (MLP) layer, termed Class-specific Domain Perturbation
Layer (CDPL). In this way, the model is prevented from learning a collapsed representation (i.e.
directly learning a representation, which results in zero loss). This was also observed in [66], where
authors identified this behavior when using augmented data. Therefore, the MLP layer, whose
weights are not updated by the gradients of the backbone network, perturbs the copies of features.
Mathematically the first objective can be formulated as follows:

Lind(z) =
1

N

N∑
i=1

∥zci − fCDPL(z
c
j∈[ 1,N ] )∥

2
2 , (3.5)

where zci represents the i
th latent representation out of N representations belonging to a class c of

the source domain. Minimizing this loss forces the model to learn domain invariant features from
different representations belonging to the same domain. The same objective can also be extended
to logits. Here, the logits vector replace the latent representation of Equation 3.5.

The second objective is to minimize Heterogeneous In-batch Dissimilarity Loss. Before calcu-
lating this loss, two distinct shuffled copies of representations belonging to the same class, zci and
zcj , are combined using Mixup [79]. Assuming the output of the CDPL layer i.e fCDPL(zi) is u

c
i ,

Mixup of the two representations can be defined as follows:

ūc
i = γuc

i + (1− γ)uc
j∈[ 1,N ] , (3.6)

, where γ ∼ Beta(α, β) (Beta distribution) and γ ∈ [ 0, 1] .
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Figure 3.2: Illustration of SelfReg architecture. SelfReg utilizes Inter-domain learning curriculum
and stochastic weight average to optimize gradients “in conflict direction”. Self-supervised con-
trastive losses are used to regularize and learn domain-invariant representations. Adapted from
[48].

Using Equation 3.6, the Heterogeneous In-batch Dissimilarity Loss is defined as follows:

Lhdl(z) =
1

N

N∑
i=1

∥zci − ūc
i∥22 , (3.7)

, where ūc
i is the output of Mixup as defined in Equation 3.6. Minimizing this loss further aligns

the data pairs and applies pressure on the model to learn even more domain invariant features from
different domains involved in Mixup. This loss is also be applied to logits, with logits replacing
representations in the loss formula.

In SelfReg, these two aforementioned objectives are scaled to control their impact during the
training procedure. Additionally, SelfReg also considers the standard Categorical Cross-Entropy
(CCE) loss, which considers the difference between the predicted and original class labels. The
resulting optimization function of SelfReg is as follows:

L = Lc + Cscale(λlogits(Lhdl logits + Lind logits) + λfeature(Lhdl feature + Lind feature)) (3.8)

, where Cscale, λlogits and λfeature are all scaling factors and Lc is the classification loss.
To average network’s weights over a specified period of time, SelfReg utilizes Stochastic Weights

Averaging (SWA). This weight averaging techniques could be Incorporated to any loss function
to improve generalization, as a flatter minima is present over a range of local minima [48].

3.1.3 Beyond meta-learning and contrastive learning

Apart from meta-learning and contrastive learning, other state-of-the-art readily-available ap-
proaches for cross-domain classification tasks have been considered in this work. For the conveni-
ence of the reader, a concise overview is presented here.

3.1.3.1 Representation self-challenging

Representation Self-challenging [69] (RSC) has achieved significant performance when comes to
domain generalization in image datasets, such as PACS [78], VLCS [86], Office-Home [87] and
ImageNet-Sketch [88]. Specifically, RSC discards most dominant features of input data, and aims
to learn any other representations relevant to the input data. Thus, RSC forces the backbone
network to learn less dominant features. This is done by identifying the top (100− p)th percentile
(where p is a constant) of the network’s parameters by calculating the gradients of the upper
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layers. Then, these parameters are muted by setting the respective values to zero, before updating
the entire network. Intuitively, the network iteratively forgets the most dominant representations,
and guides the model to learn less important features could mostly be domain invariant. As an
example consider learning from images of cats and dogs. In this case, dominant features, such
as ears, could easily be distinguished between the two animals. However, other features, such as
whiskers, are much harder to classify correctly. Thus, discarding dominant features in this case
could result in a much more powerful network. In this work, we consider whether RSC learning
scheme could help improve cross-domain speech emotion recognition.

3.1.3.2 Feature-based classification

Recently, the extraction and utilization of embeddings from raw audio data using a large-scale
pre-trained model has received a considerable attention [77]. In [77], the embeddings extracted
from the 12th of a 600 million parameter model has achieved state-of-the-art performance across a
number of audio classification tasks. Such models are often pre-trained on million hours of audio
data obtained from different environments in different conditions, such as YT-U [89]. To mitigate
the need for loading such large-scale model to extract embeddings from raw audio signals, recent
works [77] have proposed the construction of significantly smaller model with similar representa-
tional power via knowledge distillation. In this direction, TRILLson [77], a model distilled from
CAP12 [77], achieved a significant reduction in the number of parameters, while maintaining over
90% of CAP12’s performance. In this work, we explore whether the embeddings extracted using
TRILLson could help improve cross-domain speech emotion recognition.
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Chapter 4

Methodology

This thesis is about training and testing a robust SER model which could be used for domain
generalization utilizing two different learning schemes, namely MLDG and SelfReg. This section
describes the algorithms of MLDG and SelfReg, along with the pre-processing pipeline used. In
these models, ResNet18 was utilized as a backbone network.

4.1 Problem formulation

According to the definition of domain generalization in Section 3.1, M training (source) domains
are required for learning invariant features amongst them, those features which could be extended
to predict data from a separate, but similar test domain. The two learning techniques MLDG
and SelfReg were originally intended for domain generalization in the image domain [29, 48].
Therefore, in this work, an adaption of these approaches has been made to perform cross-corpus
domain generalization on speech emotion data.

Our goal is to learn a predictive function h : X → Y (where X denote a non-empty input
space and Y an output space in all the domains used), through means of training a deep learning
network. This predictive function should achieve minimum prediction error, when used to predict
emotions from speech data from a test domain, while it was trained in domain, originated from
a different distribution. In essence, the test loss obtained during the test phase between the
original labels and the labels predicted using function h : X → Y must be minimum. This can be
represented as:

min
h

Ex,y∈Stest
[ l(h(x), y)]̃, (4.1)

where E is the expectation and l(·, ·) is the loss function. The loss function used, as the problem is
a multi-class classification problem (there are five emotion classes), should be Categorical Cross-
Entropy loss (CCE). As the performance of a model is more easily understood with accuracy and
as the recognition of emotions does not have heavy penalties for false positives, accuracy is chosen
as the main objective to improve in this work. Hence, the thesis monitors and presents the results
as sparse categorical accuracy (as the problem is a multi-classification problem).

4.2 MLDG

The objective of Meta-Learning Domain Generalization (MLDG) is depicted in Equation 4.2. The
goal is to update the parameters of the backbone network by minimizing the following:

argmin
Θ

F(Θ) + βG(Θ− αF ′(Θ)) (4.2)
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The implemented algorithm is described in the following sequential steps:

• Input data: Different input data domains are combined to form a single source domain
S. All the input data batches are pooled together, and random batch indices, which are
uniformly generated, are selected to randomly pick training batches. The remaining batches
form the test batches. This random selection simulates the selection of different random
tasks per training step, although there is only one task present in this case, which is the
multi-classification problem involving five emotion classes. Before the training loop begins,
the current parameters of the models are saved as a checkpoint.

• Meta-train The first objective is implemented as a custom inner training loop to minimize
F , explained in 3.1.1. This loss is calculated from the labels predicted by the backbone
network, as a result of a single training episode on passing the randomly selected training
batches. During meta-train step, the calculation of the first order gradients of loss F occurs
in an inner training loop within a gradient tape (a TensorFlow API that keeps track of
variables and calculates gradients). This gradient tape is nested within another gradient
tape present in the outer training loop, which calculates the second order gradients of loss
F for the final Meta-optimization.

• Update parameters: The gradient ∇Θ of the parameters (Θ) of the backbone network
with respect to the loss function, which is defined in Equation 3.2, is calculated and used to
update the parameters of the backbone network according to the rule Θ′ = Θ− α∇Θ. The
first order gradients of F from the inner training loop is passed to an optimizer (assumed to
be optimizer A) within the inner training loop which updates the parameters Θ by a single
step to Θ′.

• Meta-test: After a single training step, the next step is to simulate a testing phase with the
rest of the unselected batches. This is done to imitate practical situations where the model is
required to test data from unseen domains. The test loss obtained from this updated model
is the loss B indicated in Equation 4.2. This loss is dependent on the gradients of the loss F
and the test batches. The gradient of this loss is calculated in the outer training loop along
with the second order gradients of loss F , which is required for the final meta-optimization
step

• Rollback: The parameter θ′ is restored to θ by rolling back to the checkpoint saved before
the meta-train step.

• Meta-optimization: From the Equation ??, it is clear that to update parameters per-
manently, the second derivative of loss F is needed. The second order gradients of loss F
(calculated in the meta-test step), along with gradients of loss G are fed to another optimizer
(assumed to be optimizer B) to reduce the final objective shown in Equation 4.2.

The algorithm of MLDG is provided in Algorithm 1. Since the original MLDG implementation
was given in PyTorch, a adaptation to TensorFlow was performed in this work. Once the training
procedure is complete, the final backbone network is tested then tested in an unseen domain,
which is entirely different from the source domain.
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Algorithm 1: MLDG algorithm
Data: From source domains, collectively denoted as S

1 Initialization: ResNet18 with model parameters Θ, hyperparameters α, β and γ
2 for epoch in epochs do

3 Random split: S̄ and S̆ ← S
4 Meta-train: ∇Θ = F ′(S̄,Θ)
5 Update parameters: Θ′ = Θ− α∇Θ

6 Meta-test: Loss G(S̆,Θ)
7 Rollback: Rollback Θ′ obtained from Meta-train back to Θ
8 Meta-optimization: Update Θ

Θ = Θ− γ
∂(F(S̄; Θ) + βG(S̆; Θ− αF ′(Θ)))

∂Θ

9 end

4.3 SelfReg

Self-supervised Contrastive Regularization (SelfReg) is a learning technique to create robust mod-
els for domain generalization using contrastive learning, a well established field in deep learning.
SelfReg defines multiple losses that helps align different pairs of similar data from multiple source
domains, so as to learn domain invariant features. Unlike contrastive learning algorithms that
mine negative data pairs to maximize difference between the pairs, SelfReg relies on reducing the
difference between positive data pairs using predefined losses. An advantage of this technique is
that unlike hard negative mining, it is easier to recognize positive pairs. Identifying negative pairs
from different domains usually requires expensive computation and complex algorithms. It may be
easier in the image domain, but it is not so when it comes to audio where there are limited common
invariant features to learn. This thesis doesn’t use SWA as it was seen that it provided negligible
improvement in preliminary experiments. An algorithm of SelfReg as well as an explanation of
the algorithm has been added below.

• Input data: Data from three different domains are used as input. In some scenarios, only
two datasets are used as input. This affects the IDCL, as it means one less interval to add
another dataset has to be calculated.

• Inter Domain Curriculum Learning (IDCL): SelfReg uses IDCL, which introduces
new data domains as input in a staggered fashion. Use of IDCL was shown to perform
better empirically via experiments in [48]. The calculation of the epochs in which data is
to be added is shown in the algorithm. This could be extended to a larger number of input
domains.

• Sort input batches: The data from input batches are sorted according to their classes to
cluster similar data together and determine positive pairs accordingly.

• Perform forward pass: After a forward pass with input data batches sorted (clustered)
according to classes, logits are obtained as the output of the dense layer of the backbone
network.

• Obtaining features: An auxiliary model with the same layers as the backbone network,
except the topmost dense layer, is initialized using the backbone network’s current para-
meters. The same sorted input batches used in previous steps are passed into the auxiliary
model to obtain features as output from the global average pooling layer.

• Create a copy and shuffle: Two copies of the logits and features are made. The clusters
in both the copies are shuffled. One of the copy takes part in Mix-up.

• Pass features through fCDPL: The copies are fed through an MLP layer called Class-
specific Domain Perturbation Layer. This is to prevent the backbone network from learning
a collapsed representation.
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Algorithm 2: SelfReg algorithm
Data: From three source domains, collectively denoted as S

1 Initialization: ResNet18 with model parameters Θ, hyperparameters CScale, λlogits and λfeatures

2 for epoch in epochs do
3 if epoch ≤ (epoch/3)/2 then
4 Input: Batches from Domain 1;
5 end
6 if (epoch/3)/2 ≤ epoch ≤ epoch/3 then
7 Input: Batches from Domain 1 and 2 combined;
8 end
9 if (epoch/3) ≤ epoch ≤ epochs then

10 Input: Batches from Domain 1, 2 and 3 combined;
11 end
12 Sort input batches: Sort according to class;
13 Perform forward pass: Train using batches from input;
14 Obtain features and logits: Features from second last layer;
15 Create a copy and shuffle: Copy of logits and fCDPL output. Shuffle amongst classes;
16 Pass copied features through fCDPL;
17 Calculate Lind: For both logits and features. shuffled and original.
18

Lind(z) =
1

N

N∑
i=1

∥zci − fCDPL(z
c
j∈[ 1,N ] )∥

2
2

19 Perform mix-up: On shuffled copies of features and logits;
20

ūc
i = γuc

i + (1− γ)uc
j∈[ 1,N ]

21 Calculate Lhdl: For both logits and features. shuffled, augmented and original;
22

Lhdl(z) =
1

N

N∑
i=1

∥zci − ūc
i∥22

23 Calculate final loss: From classification loss, and Lhdl and Lind after scaling;
24

L = Lc + Cscale(λlogits(Lhdl logits + Lind logits) + λfeature(Lhdl feature + Lind feature))

25 Calculate gradients and update parameters: Update Θ to minimize L.;
26 end

• Calculate Lind: The MSE loss between original features and the features passed through
the fCDPL is calculated. The same is done for logits. The loss is described in detail in the
preliminaries 3 section.

• Perform mix-up: One copy of features and logits undergo mix-up with the other copy.

• Calculate Lhdl: The MSE loss between original features and the features after Mix-up is
calculated. The same is done for logits. The loss is described in detail in the preliminaries
at 3.1.2 section.

• Calculate Final loss: These losses coupled with the classification loss forms the main loss
as depicted in Equation 3.8.

• Update parameters: The gradients are calculated for this loss and fed to an optimizer to
optimize the parameters of the model.

The algorithm of SelfReg is depicted in Algorithm 2. It can be seen from the algorithm that
in order to implement Lhdl and Lind, one has to use Mean Square Error (MSE) loss, as described
in the formula in Equations 3.5 and 3.7.
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Figure 4.1: Illustration of Mixup and Cutmix from [70]. On the left, Mixup is applied using two
images belonging to two different classes, where a clear overlay is observed. On the right, Cutmix
has been applied on the same images, patching only a specific region from one image to the other.

4.4 Model Architecture and Optimization

We utilized the ResNet18 architecture as backbone network in this work due to the fact that it is a
lightweight model with sufficient capacity for learning powerful generalizable features. In addition,
this CNN-based model avoids capturing fine-grained details, which can undermine the model’s
domain generalizability and result in overfitting on the training domain. The backbone network is
coded to provide logits as output to allow for more flexibility with any developed algorithms. As
an activation function, we used ReLu non-linear activation function, a well-established choice for
these models. The range of hyper-parameters used by the backbone network in the experiments
performed in Chapter 5 is shown in Table 4.1

Across all experiments we use the same pre-processing pipeline. Firstly, the input audio data
is converted into log-Mel spectrogram, which is then used as input to the backbone network. The
reason for selecting log-Mel spectrograms as input has to do with the selected algorithms, as they
are meant for images. The pre-processing pipeline can be seen in Figure 4.2.

Table 4.1: Details on backbone network, hyper-parameter range and input used in experiments

Parameters Values

Backbone network ResNet18
Activation function ReLu
Optimizers Adam, SGD, Adagrad
Learning rate 0.0001 - 0.1
Epochs 8 - 150
Batch size 32 - 128

Input Log Mel spectrogram
Mel bins per window 128
Sample rate 16 kHz

SelfReg uses techniques Mixup [79] to mix two features from the same class. To further improve
the algorithm performance, we consider Cutmix [70] as an augmentation strategy. Cutmix is build
upon Mixup [79], which combines two images together in different random ratios so as to add noise
to the original image. However, it tries to retain some characteristics of the original image by only
replacing a part of the image. An example of Cutmix and Mixup from [70] can be seen in Figure
4.1.

Another optimization by changing the loss function of SelfReg was attempted. It is inherently
difficult to identify learnable features from Log mel spectrograms. A new loss function introduced
in [71] is the focal loss. [71] introduces a modulating factor to regular cross entropy loss and then
tries to recognize outlier features rather than dominant features, which is rather helpful for DG.

Performance analysis of meta-learning and contrastive learning for SER 25



CHAPTER 4. METHODOLOGY

Figure 4.2: Our pre-processing pipeline

To further improve the performance, experiments related to augmentations are also performed.
The library called Audiomentations [75] which is compatible with TensorFlow GPU and is suitable
for performing large scale audio augmentation. This is done to induce similarity between audio
from different languages.

4.5 Model pre-training strategy

While MLDG and SelfReg do not require pre-trained weights for initialization, their performance
can significantly improve when appropriate pre-trained weights are used. In the image recognition
domain, both MLDG and SelfReg used weights from [82], pre-trained on ImageNet dataset, for
initialization. Furthermore, in the field of audio classification, pre-training not only improves
training speed and probability of convergence, but can enable learning domain invariant features
([68]). Thus, this necessitates pre-training model to achieve better results in this thesis. For this
purpose, VoxCeleb was used to pre-train ResNet18. VoxCeleb [80] is a large-scale audio dataset,
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Table 4.2: Details on backbone network, hyper-parameters and inputs used during pre-training

Pre-training Parameters Parameters

Backbone network ResNet18
Optimizers Adam
Learning rate 0.0005 with decay step of 75
Batch size 256
Epochs 75
Loss CCE

Input Log Mel spectrogram
Mel bins per window 128
Sample rate 16 kHz

which consists of over 150,000 samples obtained from 1,251 speakers. The hyperparameters used
in pre-training are shown in Table 4.2, where an early stopping mechanism was employed to avoid
overfitting and improve models generalizability. In Chapter 5, when referring to pre-trained model,
we implicitly indicate a ResNet18 model pre-trained on VoxCeleb.
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Chapter 5

Experiments

In this chapter, all experiments conducted to answer research questions are outlined. These
experiments evaluate the performance of MLDG and SelfReg. The results and their inference are
also presented in Chapter 5. The detailed results of experiments has been added to Appendix A.

5.1 Datasets

During experimentation nine distinct datasets were considered, namely CREMA-D, AESDD,
CAFE, EMODB, RAVDESS, TESS, SAVEE, EMOVO and SHEMO, the details of whom are
presented in Section 2.5. These datasets were selected due to their availability and ability to cap-
ture a wide range of speakers’ characteristics. In addition to the versatility of speakers’ origins,
these datasets also introduce multi-linguistic problems to the emotion recognition task. Therefore,
each dataset is considered a separate domain during experimentation. The datasets utilized dur-
ing training are called train domains, while those used for performing final tests are named test
domains. In domain generalization, the task at hand will be to learn common invariant features
from each of train datasets, which have their own unique distribution of data.

The audio files of each dataset were re-sampled at 16kHz using the FFmpeg library [76], a
standard approach to reduce the computational complexity without removing vital information
from the original audio signals. Afterwards, the re-sampled audio signals were either trimmed or
padded to two-seconds and normalized. Following the normalization, we computed STFT with a
fixed frame length of 1024 to construct spectrograms and convert them from the linear to log-Mel
scale with 128 bins, resulting in the final log-Mel spectrograms. It is important to note that, Log
Mel spectrograms of speech audio data as input were used throughout experimentation, unless
mentioned otherwise.

5.2 Evaluation strategy

The thesis also follows a set of evaluation strategies while performing multiple experiments. These
strategies are outlined below:

• Uniform data pre-processing: Models explored throughout experimentation utilize identical
pre-processing pipelines and use 128-bins log-Mel spectrogram, as explained in Section 4.4.

• Consistent data partitioning: The same train/test split was used during evaluation. Each
datasets predefined split was choosen to enable reproducibility. In cases where no standard
split exists, such as for AESDD and EMOVO dataset, splits were populated ensuring that
no speaker overlap is present between the train and test set.

• Eliminating randomness: A minimum of 5 iterations per experiment was performed to
reduce any randomness due to weights or kernels initialization. Furthermore, a seed was
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Table 5.1: Emotion datasets used in the six domain generalization scenarios. Here, ○␣ represent
train domains, while ○ indicate the test domain.

Scenario CREMA-D SAVEE TESS RAVDESS AESDD CaFE EMOVO ShEMO EmoDB

SC1 ○␣ ○␣ ○␣ ○
SC2 ○␣ ○␣ ○ ○␣
SC3 ○␣ ○␣ ○ ○␣
SC4 ○ ○␣ ○␣ ○␣
SC5 ○␣ ○␣ ○␣ ○
SC6 ○␣ ○ ○␣

provided in all functions regarding data partitioning and shuffling, allowing the control over
the training process.

• Consistent set of emotions: A set of five emotions, i.e. happiness, sadness, anger, disgust
and fear, were selected during experimentation. This choice was dictated from the need to
combine distinct datasets (regarded as domains) to perform domain generalization, thus only
the common emotions across all datasets could be utilized.

• Rigorous evaluation metrics: As the main performance metric, Sparse Categorical Accur-
acy (noted as accuracy) was selected in the experiments, while the confusion matrix was com-
puted in various cases to draw further conclusions. Moreover, the Categorical Cross-Entropy
(CCE) loss was utilized during training (unless mentioned otherwise), as it is standard for
most classification tasks.

5.3 Scenarios

Domain generalization experiments were executed on all or a subset of six different scenarios with
distinct training and test domains. To evaluate the perform of the developed approaches in domain
generalization, six distinct scenarios were considered, each introducing a unique challenge. These
scenarios were constructed by combining various datasets into a single one, which had different
domains (i.e., the individual datasets). The datasets utilized as train or test domains for the six
different scenarios are shown in Table 5.1.

The selection of these specific combinations was based on the following:

• Single language cross-corpus DG: Scenario 1 and 2 use only English speech emotion
datasets as training and test domains. Scenario 2 was added because of its high sparse
categorical accuracy score, as presented in sections 5.5 and 5.6.

• Cross-lingual cross-corpus DG (multiple similar languages): Scenario 3 uses two
English and one German speech emotion datasets for its training, and a French speech
emotion dataset for its test data. This scenario uses speech emotion datasets from languages,
which share lexical similarity with English.

• Cross-lingual cross-corpus DG (multiple dissimilar languages): Scenario 4 uses
three different languages (i.e., German, Persian and Italian) for training and Greek language
for testing. These languages differ greatly from each other.

• Cross-lingual cross-corpus DG (two dissimilar languages): Scenario 5 uses only
English speech emotion datasets for training and Persian (a language significantly different
from English) for testing. This is an extreme case, as the train domain does not learn
domain invariant features of emotions from different languages. Rather it tries to learn
domain invariant features of emotions only from English. There may not be many learnable
common features between the training and test datasets.
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• Cross-lingual cross-corpus DG (corpora with high accuracy results): Scenario 6
uses speech emotion datasets that have a good accuracy score when trained and tested
individually using the backbone network ResNet18, as presented in Section 5.4.1.

5.4 Baseline experiments

Before running experiments, it is necessary to verify if the chosen backbone network and the chosen
algorithms work properly and what are their performances. Thus, we perform two preliminary
experiments to determine the baselines.

5.4.1 Backbone model performance

From these experiments we aim to observe whether the backbone network has an acceptable
performance when it comes to recognising emotions in a single speech emotion dataset. Thus, we
performed experiments with all datasets listed in Table 5.1. A detailed list of the hyper-parameters
used in these experiments is shown in Table 5.2, where a cosine learning rate schedule with decay
steps of 150, and early stopping mechanism were employed. The results in Figure 5.1 are an
average of sparse categorical accuracies obtained over four experiments. The error bars depict
standard deviation of sparse categorical accuracies over four independent runs.

From Figure 5.1, we observe that the performance our choosen model is lower when compared
to state of the art architectures in various datasets. However, during our experimentation only

Figure 5.1: Baseline results on speech emotion dataset. The state-of-the-art accuracies are from
[83] except TESS, whose accuracy is from [84].

Table 5.2: Hyper-parameters of preliminary experiments with individual speech emotion datasets.

Model Optimizer Learning rate Epochs Batch Size

ResNet18 SGD 0.005 150 64
ResNet18 (pre-trained) Adam 0.005 150 64
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five emotions were utilized, which resulted in a considerable reduction of available training data.
Therefore, a direct comparison with other baselines is of little significance. Additionally, datasets,
such as SAVEE and EMOVO, have very few training data, even without the reduction of emotion
classes, further incommoding to the task’s difficulty. The poor performance of these datasets could
also be attributed to the choice of emotions that are utilized. Disgust is much hard to determine
and decode when compared to the neutral state which was discarded, since it was not present
across all datasets. [67].

5.4.2 MLDG and SelfReg performance on image domain

Additionally, experiments were conducted to verify whether the developed algorithms are improv-
ing models’ generalizability over the vision domain, from which they were originated. For this, we
conducted experiments with PACS dataset, which is widely-used to validate domain generalizab-
ility over the vision domain. The PACS dataset, introduced in [78], has a total of four different
domains - Art paintings, Photos, Sketches and Cartoons. These domains each contains pictures
classified into seven different classes - Dog, Elephant, Giraffe, Guitar, Horse, House and Person.
Domain generalization can be performed on different combination of these four domains used as
training and test domains. At first, the PACS dataset was trained and tested on ResNet18, the
backbone network, both with weights pre-trained with ImageNet obtained from [82], and without
using pre-trained weights. Then, the PACS dataset was trained and tested on MLDG and SelfReg,
both pre-trained with ImageNet, in the same way it was done in their respective papers [29, 48].
The hyper-parameters of these experiments are shown in Table 5.4, while the results are shown in
Table 5.3. These results are the average of 5 iterations.

From the results, it is clear that MLDG and SelfReg do improve cross-corpus DG results
when applied to the backbone network (ResNet18). SelfReg results depend on the augmentation
provided to the PACS dataset. We only used horizontal flip and random saturation. The use of all
augmentations performed in the original PyTorch implementation destroyed the data and reduced
accuracy scores drastically. As the use of augmentation varies in the TensorFlow reproduction
performed in this thesis, the accuracy of the TensorFlow’s SelfReg algorithm drops below the
accuracy of its Pytorch implementation. It was also observed that IDCL provides significant
improvement to SelfReg when tested on the PACS dataset.

Table 5.3: Preliminary experiments on PACS dataset

Model Accuracy

Supervised 22.31
Supervised (pre-trained) 59.9
MLDG 70.70
SelfReg 64.01

Table 5.4: Hyper-parameters of preliminary experiments with PACS datasets. In SelfReg, Piece-
wise Constant Decay was utilized with a decay step of 290.

Method Optimizer Learning rate Epochs Batch Size

Supervised SGD 0.01 100 128
Supervised (pre-trained) SGD 0.01 100 128
MLDG (pre-trained) SGD/SGD 0.005 / 0.005 10 128
SelfReg (pre-trained) Adagrad 0.007 - 1E-8 18 128
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5.4.3 Supervised baseline performance on all scenarios

After the preliminary experiments, the next step was to determine the backbone network’s per-
formance while considering cross-corpus DG, with which the performance of MLDG and SelfReg
could be compared with. ResNet18 was used directly, without any learning techniques, to perform
domain generalization on the following six scenarios as described before. The hyper-parameters of
these experiments are shown in Table 5.5, while the results are shown in Table 5.7. The learning
schedule Cosine Decay with decay steps = 100 and alpha = 0.05, and early stopping callback
was used. These results are the average of 5 iterations. The hyper-parameters and optimizers
were kept constant for all scenarios for further comparisons. The optimizers were chosen in such
a way that they provided the best results for all scenarios. It can be seen that Adam optimizer
performed best. If a baseline result has high standard deviation values, then it means that it could
be fine-tuned further to get slightly better results.

From the results Table 5.7, it can be seen that pre-training generally provides better results, as
mentioned in many other literature, such as [68]. These results shows that pre-training improves
generalization. However, in case of Scenario 5, which is an extreme situation, a reduction in
accuracy was observed. It could be hypothesized that pre-trained weights may cause the model’s
parameters to converge much more easily towards a predictive function much more suitable for
English language (which form the training set). This would make it difficult for the model to
predict Persian language, as it is much different than English. On the other hand, using random
initialization could slow down this convergence, preventing the model from overfitting towards
English. Table 5.6 shows the results for two different optimizers, keeping the hyper-parameters
same. These results are the average of 5 iterations. The accuracy pattern of Scenario 5 remains
the same even when optimizers were changed, as it can be seen in Table 5.6. This shows that the
advantage of pre-training remains even though optimizers are changed. It is also seen that SGD
performs better than Adam for scenario 5.

Table 5.5: Hyper-parameters of ResNet18 on baseline cross-corpus DG experiments of Table 5.7.

Method Optimizer Learning rate Epochs Batch Size

Supervised Adam 0.01 100 64
Supervised (pre-trained) Adam 0.002 100 64

Table 5.6: Baseline cross-corpus DG experiments on Scenario 5 with different optimizers

Scenario ResNet18-SGD ResNet18-Adam
ResNet18-SGD
(pre-trained)

ResNet18-Adam
(pre-trained)

SC 5 43.7 ± 2.99 40.38 ± 4.20 25.37 ± 11.81 24.88 ± 7.21

Table 5.7: Baseline cross-corpus DG performance using ResNet18

Scenario Supervised Supervised (Pre-trained)

SC 1 27.51 ± 2.89 31.57 ± 2.24
SC 2 33.26 ± 4.10 49.96 ± 8.17
SC 3 25.51 ± 0.89 41.69 ± 3.48
SC 4 26.92 ± 1.70 29.36 ± 3.34
SC 5 40.38 ± 4.20 21.22 ± 4.41
SC 6 20.83 ± 3.89 24.81 ± 6.15
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5.5 Performance of MLDG

The goal of this section is to obtain the best sparse categorical accuracy score possible to determine
the performance for all the scenarios explained in the evaluation strategy using the meta-learning
algorithm (MLDG). The scenarios cover different cross-corpus DG possibilities over a single lan-
guage corpora (English) or over multiple language corpora as required by sub-research questions
1 and 2.

5.5.1 Experiments

The first experiment was to train and test MLDG both with and without ResNet18’s pre-trained
weights. The results of this experiment are shown in Figure 5.2. It can be seen that MLDG
actually shows improvement on all scenarios compared to the baseline results shown in Table 5.7,
with the exception of Scenario 5 (which is an extreme case scenario). The hyper-parameters
and optimizers used are noted in Table 5.8. Adam optimizer was chosen for these experiments
as it performed better during baseline experiments. The detailed results has been added to the
Appendix as A.2.

The second experiment was to check the influence of optimizers on the performance of MLDG.
Optimizers A and B of the MLDG model are varied for all six scenarios. It was found that
Adam optimizer for both optimizer A and B performed the best across all scenarios, except for
scenario 5 and 6. As a result, the experiment on scenario 5 and 6 was re-run by varying optimizers
separately, to select the best optimizer combination. For scenario 5, Adam as optimizer A and
SGD as optimizer B had the best accuracies. For scenario 6, SGD as optimizer A and B had
the best accuracies. These results are shown in Tables 5.9 and 5.10. Table 5.10 does not include
pre-trained scores as the pre-trained model did not converge properly for scenario 6 when using
SGD as both optimizer A and B. The hyper-parameters were the same as the previous step (see
Table 5.8) and only the optimizers were changed.

5.5.2 Observations on performance of MLDG

From the above results, we conclude that the MLDG model was sensitive to the optimizer used.
Using a different optimizer prevented the model from converging. On the other hand, utilizing a
proper optimizer helped in achieving higher accuracies as well as converging the model to a certain
extent. We observe that the accuracies still have high standard deviation. The effects of choosing
the wrong optimizer can be clearly seen in Figure 5.3 which showcases accuracies of MLDG in
different scenarios using two different optimizers. These results are the average of 5 iterations.

Another point that could be observed is that pre-training the backbone network with a data-
set containing an extensive collection of speech audio, such as VoxCeleb, provides a significant
improvement in accuracies. This is in line with the standard results in literature, such as [68],
which state that pre-training on relevant datasets help create a robust model suitable to perform
domain generalization. An exception is the extreme case of scenario 5, where using pre-trained
weights and/or applying the algorithm does not improve the performance more than the baseline
accuracy score. Instead of increasing, the accuracy decreased. This could be attributed to the lack
of similarity in vocals between English and Persian languages. This could significantly decrease the
number of common invariant features that could be learnt to distinguish emotions, which results
in a large number of false predictions. This is visible in the confusion matrices of scenario 5, when

Table 5.8: Hyper-parameters of MLDG while performing domain generalization experiments

Method Optimizer Learning rate Epochs Batch Size

MLDG Adam / Adam 0.001 / 0.0004 15 64
MLDG (pre-trained) Adam / Adam 0.003 / 0.0008 10 64

34 Performance analysis of meta-learning and contrastive learning for SER



CHAPTER 5. EXPERIMENTS

Table 5.9: MLDG accuracies varying both optimizers for Scenario 5

Scenario
MLDG

(Adam/Adam)
MLDG

(Adam/SGD)
MLDG (Pre-trained)

(Adam/Adam)
MLDG (Pre-trained)

(Adam/SGD)

SC 5 22.97 ± 4.14 28.65 ± 12.60 23.77 ± 4.66 38.41 ± 5.07

Figure 5.2: Sparse categorical accuracies of MLDG for different scenarios

compared with scenario 2 which has the highest accuracy, as seen in Figure 5.4. This misinter-
pretation of a certain emotion does seem to be dependent on the emotion itself, as removing the
over-predicted emotion simply shifts the problem to another. These over-predicted emotions are
usually those that are easier to predict (i.e., emotions with high arousal values), such as fear and
anger. According to [67], emotions such as anger and fear are often easier to predict due to their
easily distinguishable features such as high intensity. On the other hand, emotions such as disgust
is often harder to identify due to lack of easily distinguishable features. This points to a problem
in log-mel spectrogram, i.e the lack of proper representation for every emotions.

This is evidence in Figures 5.5a and 5.5b, where scenario 1 was considered with and without
the fear emotion, respectively. While including fear class, we observe that the model tends to
over-predict fear across all samples. However, upon the removal of the fear emotion, we note in
Figure 5.5b that anger now is over-predicted.

To illustrate this problem clearly, t-SNE embeddings for Scenarios 1,2 and 6 are shown in
Figure 5.6. Scenarios 1,2 and 6 were chosen as Scenario 2 has the best result, Scenario 1 has an
intermediate result and Scenario 6 has the poorest result. Specifically, in Figure 5.6a and 5.6b,
although proper clusters are formed, some emotions are not predicted at all. As for scenario 6 in
Figure 5.6c, there is a high overlap between all t-SNE embeddings clusters due to model’s poor
performance.

Another observation is that, ignoring baseline results of Scenario 5, MLDG did improve pre-
trained accuracy of Scenario 5, as it can be seen in Figure 5.2. This is due to the inherent learning
process which uses two different losses. This slows down the pre-trained backbone network from
overfitting towards one single language and thus improves accuracy when using pre-trained weights.
This is unlike normal ResNet18 behaviour, which tends to overfit quickly towards a language when
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Table 5.10: MLDG accuracies varying both optimizers for Scenario 6

Scenario
MLDG

Adam/Adam
MLDG

SGD/SGD

SC 6 17.78 ± 4.14 27.16 ± 2.61

Figure 5.3: Sparse categorical accuracies of MLDG without pre-trained weights for different scen-
arios with varying optimizers

trained on a network initialized with pre-trained weights. One may note that the accuracy score of
Scenario 2, which is very high. This could be attributed to the ease of prediction of the test dataset
which is the TESS dataset. TESS has very high baseline scores, as seen in Figure 5.1. However,

(a) Scenario 2 (b) Scenario 5

Figure 5.4: MLDG confusion matrices for Scenarios 2 and 5. Values 0, 1, 2, 3 and 4 correspond
to happiness, fear, anger, sadness and disgust, respectively.
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(a) Scenario 1 (b) Scenario 1 without fear emotion.

Figure 5.5: MLDG confusion matrices for Scenarios 1. Values 0, 1, 2, 3 and 4 correspond to hap-
piness, fear, anger, sadness and disgust, respectively. In confusion matrix of scenario 1 ”without
fear” emotion, values 0, 1, 2 and 3 correspond to happiness, anger, sadness and disgust, respect-
ively.

even with the improvement in sparse categorical accuracies, the accuracies are not good enough
to be practical. Scenario 1,3 and 6 have low accuracies. This could be attributed to the presence
of small sized datasets such as SAVEE, TESS in the train domain. Hence, the performance of
MLDG is still not good enough to be practical in the field of domain generalization on SER, even
with an improvement to baseline accuracy.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 6

Figure 5.6: MLDG t-SNE embeddings for different scenarios
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5.6 Performance of SelfReg

The goal of this section is to obtain the best sparse categorical accuracy score possible to determine
the performance for all the scenarios explained in the evaluation strategy using the contrastive
learning algorithm (SelfReg). The scenarios cover different cross-corpus DG possibilities over a
single language corpora (English) or over multiple language corpora as required by sub-research
questions 1 and 2. The following subsection explains the experiments performed.

5.6.1 Experiments

The first experiment was to train and test SelfReg both with and without ResNet18’s pre-trained
weights according the the six scenarios described earlier. The results of this experiment are
shown in Figure 5.7. It can be seen that SelfReg only improves the performance on Scenario
1 and 4 compared to the baseline accuracies as seen in Figure 5.7. The hyper-parameters and
optimizers used are noted in Table 5.11. Preliminary experiments were conducted to investigate
which optimizer is most suited for SelfReg. Adagrad, introduced in [85], seems to result in the
best model performance. We omit the results of this hyper-parameter search, since they are of no
significant value.

The next experiment replaces the Categorical Cross Entropy loss with a state of the art loss
called Focal loss [71]. Additionally, the Mix-up augmentation was replaced with Cut-mix [70],
since it was shown to increase the generalizability of trained models [70]. Those modifications
were applied in the original SelfReg architecture, after which the aforementioned experiments
where repeated, thus determining the performance improvement over the original results shown

Table 5.11: Hyper-parameters of SelfReg while performing cross-corpus DG experiments

Method Optimizer Learning rate Epochs Batch Size

SelfReg Adagrad 0.01 32 64
SelfReg (pre-trained) Adagrad 0.005 36 64

Figure 5.7: Sparse categorical accuracies of SelfReg for different scenarios
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Figure 5.8: Sparse categorical accuracies of modified SelfReg for different scenarios

in Figure 5.7. For a rigorous evaluation, the same hyper-parameters and optimizer as listed in
Table 5.11 were used. It is seen that the results in Figure 5.8 did not change a lot compared to
Figure 5.7. Even then, the accuracy in most scenarios is worse than the baseline accuracies.

5.6.2 Observations on performance of SelfReg

The low accuracy of the SelfReg experiments could be attributed to the working concept of SelfReg
model. SelfReg depends on aligning positive pairs of data together by optimizing two different
losses called Individualized In-batch Dissimilarity Loss and Heterogeneous In-batch Dissimilarity
Loss. To decrease these losses, the model learns invariant common features belonging to the
domain. However, if the input data does not have many common invariant features, then the
positive pairs do not align properly, increasing the difficulty to decrease the losses. These results
show the disadvantage of using positive pairs, as the model fails to distinguish between emotions
and over-predicts some emotions, a result of insufficient learnt representations. This impedes the
formation of proper cluster of similar features (as the objective of SelfReg is to bring similar data
and features together). To illustrate this problem clearly, t-SNE embeddings for Scenarios 1,2
and 6 are shown in Figure 5.9. Scenarios 1,2 and 6 were chosen as Scenario 2 has the best result,
Scenario 1 has an intermediate result and Scenario 6 has the poorest result. It can be seen that
a few emotions such as anger and fear have been over-predicted, similar to MLDG, as it can be
seen in Figure 5.6.

Another point to be noted is that in some scenarios, pre-training seems to reduce the accuracy
scores drastically. Initializing using pre-trained weights could possibly interfere with the alignment
of similar data from different classes and thus, the formation of proper cluster of similar features.

It is also seen that the results of the SelfReg after introducing focal loss and Cutmix shown in
Figure 5.8 were worse than the original results presented in Figure 5.7. In the literature presented
in [71], although the focal loss helps identify outlier features, it was also mentioned that it helps
better identify negative pairs. This is the opposite of SelfReg’s objective, which is to align positive
pairs. So, this could be a reason for its bad performance.

The sparse categorical accuracies of different scenarios show do not show improvement from
the baseline (except scenario 1 and 4). Using pre-trained weights tends to decrease accuracy in
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 6

Figure 5.9: SelfReg t-SNE embeddings for different scenarios

scenarios (except Scenario 2, 3 and 6) The models have low accuracies due to lack of common
representations between the datasets of the training and test domains. Perhaps it would be
better if the SER network learns to distinguish emotions by mining hard negative pairs with
distinguishable features, or by using a discriminator and a generator (even though they require
complex computations and increased resources).

The accuracies are not good enough to be practical. This could be attributed to the presence of
small sized datasets such as SAVEE, TESS in the train domain, as contrastive learning algorithms
heavily depend on the large amounts of data. Scenario 2 has a decent accuracy. However, the test
domain of Scenario 2 is TESS, which has very high standard recognition rates even when trained
as an individual dataset, as seen in Figure 5.1, thus it is easy to identify.

5.7 Identifying the cause of low performance

As seen in the previous results, the accuracy scores of both algorithms are not good enough to be
practical. This could be due to a problem with the learning technique, the backbone network, or
the data used as input. In the next few experiments, we try to determine if changing the learning
technique or the backbone network could improve the current results. Finding a better learning
technique or model out of scope of this thesis, however. The experiments explained in this section
tries to answer the sub-research question 3.

5.7.1 Experiments

The first experiment is to change the learning technique to something other than MLDG or SelfReg.
This new learning technique, called RSC [69], was fine-tuned and uses different hyper-parameters.
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Figure 5.10: Sparse categorical accuracies for different scenarios by varying backbone networks

The optimizer used by RSC is Adam, with a learning rate of 0.0004. The model is trained for 50
epochs with a training batch size of 64. The results of this experiment are shown in Table 5.12.

Table 5.12: Performance comparison between RSC, MLDG and SelfReg

Scenario MLDG SelfReg RSC

SC 1 31.87 34.51 40.3
SC 3 35.62 31.38 43.1
SC 4 32.06 31.3 38.5

The accuracies, which were used for comparison, are the results of the previous MLDG and
SelfReg experiments presented in Tables A.2 and A.3. Although the original RSC paper uses
ResNet50, this experiment changes the backbone of the network to ResNet18, which is used in
other models.

The next experiment is to observe whether replacing ResNet18 with a more powerful model
leads to better results. To proceed with this experiment, the backbone network of MLDG was
changed from ResNet18 to ResNet50. The hyper-parameters remain the same as the ones used
for experiments in Section 5.5, the ones specified in Table 5.8. We only use MLDG model to vary
the backbone network. This is because unlike SelfReg, MLDG had shown a positive improvement
in accuracy scores from the baseline for all scenarios except Scenario 5. The results are shown in
Table A.7 and in Figure 5.10.

5.7.2 Observations on varying DG technique and backbone network

It can be seen from the results that there is a significant improvement for all scenarios when RSC
is used. On the other hand, changing the backbone network to a better CNN network does not
seem to significantly change the results (the results show small improvements in some scenarios
and small decrements in some scenarios), as it can be seen in Figure 5.10. A point to note is
that using a more powerful backbone network does not necessarily improve the results, as it tends
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to overfit towards the training set by learning many features, most of which tend not be domain
invariant.

Another point to be noted is that techniques which help in learning outlier features and tend
to control the amount of dominant features learnt seem to perform better. This can also be seen
in many other articles such as Adversarial Discriminative Domain Generalization (ADDoG) [74],
which uses techniques categorized as representation learning to perform cross-corpus DG in audio
seem to perform better, as they control the features to be learnt to some extent. In ADDoG, the
model tries to train encoder and critic separately to control what representations are learnt (by
the encoder) and to distinguish between representations (by the critic).

The last point to be noted is that even on replacing older methods (backbone networks and
DG techniques) with superior methods in the experiments, the achieved improvements are not
significant. This could mean that the low accuracy scores may be the result of a problem present
in the input form of data (the log-mel spectrogram), rather than a problem with the model.
The log-mel spectrogram may not have enough domain invariant features that could properly
distinguish between emotions, even between same languages. This could be due to the difference
in the expression of emotions in different languages. Some words which express anger in a language
may sound similar, and/or have similar features with words that express happiness in a different
language (because both anger and happiness have high arousal values). Consequently, the model
may have a hard time distinguishing between emotions learnt from different training domains.
Therefore, there is a need to discover a different type of representation that can clearly represent
the features of different emotions without much overlap.

5.8 Performance evaluation with varying input

As noted in the previous sections, the accuracy scores are still not good even if changes to the
learning techniques provided some improvements. Another avenue for improvement is varying the
type of input. In the next few experiments, we try to determine if modifying the input, such as
augmenting the input, improves the current results from Section 5.5. A point to be noted is that
these experiments are to determine which path could lead to a higher improvement. Finding a
better form of input or best augmentation technique is out of scope of this thesis, however. The
experiments explained in this subsection tries to answer the the sub-research question 4.

5.8.1 Experiments

The first experiment is to create a copy of the original input speech audio data used in the six
scenarios and augment it before introducing it to the pre-processing stage. The augmented audio
input is added along with the original audio input. As a result, the number of inputs is doubled.
These inputs are used to perform experiments on MLDG and SelfReg models, to determine their
performance in six scenarios. The augmentation are obtained from the Audiomentations lib-
rary [75] and are presented in Table 5.13. Other parameters of the experiment remains the same
as the experiments performed in Section 5.5 and 5.6. This experiment is executed using both for
MLDG and SelfReg models. However, in the case of SelfReg, this experiment was performed only
on the model which was not pre-trained with VoxCeleb. This is because SelfReg shows better
performance in most scenarios without pre-training. The results of this experiment is shown in
Figure 5.11 and 5.12.

The next experiment is similar to the previous one, except that only the augmented data is
used as input. The augmentation used from the Audiomentations library are presented in Table
5.13 (same as in the previous experiment). Other parameters of the experiment remain the same
as in the experiments performed in Section 5.5 and 5.6. This experiment is used to verify whether
the improvement in accuracies of MLDG and SelfReg models are due to augmentation or due to
the increase of data samples. However, in the case of SelfReg, this experiment was performed only
on the model which was not pre-trained with VoxCeleb. The results of the experiment are shown
in Figure 5.11 and 5.12.
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Table 5.13: Augmentations used from the Audiomentations library

Augmentation Explanation Parameters

Time Stretch Stretches the signal along the time domain
without changing the pitch

min rate = 0.8
max rate = 1.25
probability = 0.7

Time Shift Shifts the signal along the time domain
min fraction =- 0.5
max fraction = 0.5
probability = 0.8

Figure 5.11: Sparse categorical accuracies of MLDG for different scenarios with augmented data

The final experiment is different from all other experiments of this thesis. The goal of the
experiment is to perform domain generalization on embeddings of different dataset combinations
(according to the six scenarios) extracted from the heavily pre-trained model released by Google,
called TRILLson [77]. The MLDGs backbone network is replaced by a simple Multi-Layer Per-
ceptron (MLP) network, as the TRILLson model has already been pre-trained and does not require
further training. Hence, only the upper dense layer is trained by MLDG. The MLPs details are

Table 5.14: Hyper-parameters of MLDG when using TRILLson [77] embeddings

MLDG Parameters Values

Backbone Network 3-layer MLP
Kernel regularizer L2 with rate 1e-5
Optimizer Adam / Adam
Learning rate 0.02 / 0.008
Epochs 30
Batch size 64
Input shape (1024,1)
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Figure 5.12: Sparse categorical accuracies of SelfReg for different scenarios with augmented data.

Figure 5.13: Accuracy of MLDG using TRILLson’s [77] embeddings as input to perform cross-
corpus DG for all scenarios.

provided in Table 5.14 and the results are shown in Figure 5.13.

5.8.2 Observations on varying inputs

From the presented results, it can be seen that augmentations show improvement in most Scenarios
(i.e., 4 scenarios out of 6) for MLDG. It shows good improvement in the last 2 scenarios which use
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ShEMO dataset as the test set. This could be due to the augmented speech emotion data from
train domain showing some similarity to the Persian speech emotion data. The lower accuracy of
Scenario 2 could be due to the erasure of common features due to augmentation. The results of
these experiments show that it is necessary to determine the effects of augmentation on common
invariant features before applying them on speech emotion data.

Another point to be noted is that the use of augmented data and the use of both augmented
and original data do not seem to have much difference in accuracy in all scenarios in MLDG.
However, SelfReg is more sensitive to augmented data as it depends on augmentations to provide
an increase in the number of positive pairs for alignment. This leads to a wider variation in
SelfReg’s results in some scenarios.

The final point to note is that even though the TRILLson model does not perform well in
scenarios 1 to 5, it performs much better in Scenario 6 compared to MLDG and SelfReg results
from Table A.2 and A.3, even though the model did not converge very well. This could indicate
the presence of common embeddings between the train and test domain extracted by TRILLson.

Therefore, it can be seen that using augmentation and embeddings from an extensively trained
model have good potential to improve accuracy scores, as seen by the significant improvement in
some scenarios, even though they may seem irregular.
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Chapter 6

Conclusions

Domain generalization in the field of audio, especially emotion recognition, is still under devel-
opment. It is an area undergoing heavy research to create a model whose performance is good
enough to be practical. The main goal of this thesis is to find out whether meta-learning and
contrastive learning can help improve performance of emotion recognition when performing do-
main generalization in the field of audio. This goal was divided into 4 sub-research questions
outlined in Chapter 1. To answer these questions, one meta-learning technique (i.e., MLDG) and
one contrastive learning technique (i.e., SelfReg) were selected, and extensive experiments were
performed. The meta-learning algorithm provided an improved accuracy over the baseline in most
scenarios. However, These accuracies were not high enough to be practical. In the case of SelfReg,
the model showed improvement in far less scenarios (only two scenarios). However, this does not
mean that contrastive learning is worse than meta-learning when it comes to domain generaliz-
ation in audio. SelfReg is a model sensitive to augmented data and is dependent on common
invariant features that could be learnt. Unlike MLDG, which teaches the backbone network how
to learn by simulating multiple test scenarios using a part of the train domain, SelfReg depends
on the presence of common features in positive pairs of data. MLDG learns from meta-data, while
SelfReg learns directly from data and has multiple objectives that tries to control the features
which could be learnt. However, if most of the features of the training set are not in common with
those of the test set, or if there is not much common invariant features amongst the input datasets
to be learnt, then the SelfReg model is affected drastically. The reason for low accuracy of both
models can be seen by performing experiments by varying the learning strategy and the backbone
network, using the state of the art domain generalization techniques and CNN networks.

In performing experiments using RSC learning technique, although one could observe a good
increase in accuracy, the performance was still not good enough. Using a different backbone
network did not seem to solve the problem either. There also seems to be an improvement while
performing augmentation, as augmentation bridges the difference between languages to a certain
extent. One may conclude from these results that performance can be improved by using a better
technique that can recognize and distinguish common invariant features of the domain, or use a
different form of data representation other than mel-spectrogram as input, such as embeddings
from a heavily pre-trained model that represent most invariant features. Improvement can also
be obtained on simulating different testing scenarios similar to MLDG.

6.1 Future work

In this thesis, it was seen that using algorithms that learn domain invariant features by testing
models on multiple domains to simulate domain shifts (such as MLDG), and control the learning
process of dominant features that are learnt by models (such as RSC) show good improvement
over baseline accuracies. Using augmentations or different inputs such as embeddings from pre-
trained models could also improve accuracy scores while performing cross-corpus DG. Cross-corpus
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Domain generalization using Generative Adversarial Network (GANs) such as one proposed in [74],
or using embeddings from models such as TRILLson could be further developed to address the
current shortcomings of domain generalization in SER. This technology could be useful in many
fields and applications, such as in the field of medical and psychological healthcare, customer care
and home automation.

An exciting path of future work would be to develop a proper input for speech emotions with
plentiful distinguishable representations to be learned, to perform DG for SER. Right now, there
exist models, which have been trained on millions of hours of audio data such as CAP12 [77]. A
distilled version of CAP12, the so called TRILLson, has been shown to create embeddings that are
robust to domain shifts in terms of speech audio, on in its paper [77]. If similar models could be
trained on speech emotion or related datasets, it could help create robust embeddings that could
perform domain generalization on SER extremely well. However, before that, it is necessary to
compile huge amounts of sound emotion data for such an idea to become reality.
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SERAB: A multi-lingual benchmark for speech emotion recognition.

[84] Ahmed, Md & Islam, Salekul & D, Ph & Islam, A.K.M. & Shatabda, Swakkhar. (2021).
An Ensemble 1D-CNN-LSTM-GRU Model with Data Augmentation for Speech Emotion
Recognition.

[85] Lydia, Agnes & Francis, Sagayaraj. (2019). Adagrad - An Optimizer for Stochastic Gradient
Descent. Volume 6. 566-568.

[86] Fang, Chen & Xu, Ye & Rockmore, Daniel. (2013). Unbiased Metric Learning: On
the Utilization of Multiple Datasets and Web Images for Softening Bias. 1657-1664.
10.1109/ICCV.2013.208.

[87] Ramakrishnan, Raghavendran & Nagabandi, Bhadrinath & Eusebio, Jose & Chakraborty,
Shayok & Venkateswara, Hemanth & Panchanathan, Sethuraman. (2020). Deep Hashing Net-
work for Unsupervised Domain Adaptation. 10.1007/978-3-030-45529-3 4.

[88] Haohan Wang, Songwei Ge, Eric P. Xing, and Zachary C. Lipton. ”Learning Robust Global
Representations by Penalizing Local Predictive Power

[89] Zhang, Yu, Daniel S. Park, Wei Han, James Qin, Anmol Gulati, Joel Shor, Aren Jansen,
Yuanzhong Xu, Yanping Huang, Shibo Wang, Zongwei Zhou, Bo Li, Min Ma, William Chan,
Jiahui Yu, Yongqiang Wang, Liangliang Cao, Khe Chai Sim, Bhuvana Ramabhadran, Tara N.
Sainath, Franccoise Beaufays, Zhifeng Chen, Quoc V. Le, Chung-Cheng Chiu, Ruoming Pang
and Yonghui Wu. “BigSSL: Exploring the Frontier of Large-Scale Semi-Supervised Learning
for Automatic Speech Recognition.” ArXiv abs/2109.13226 (2022)

54 Performance analysis of meta-learning and contrastive learning for SER

https://github.com/RichardXiao13/TensorFlow-ResNets/releases/download/v0.3.0/resnet18_imagenet_notop.h5
https://github.com/RichardXiao13/TensorFlow-ResNets/releases/download/v0.3.0/resnet18_imagenet_notop.h5


Appendices

Performance analysis of meta-learning and contrastive learning for SER 55



Appendix A

Detailed results

ResNet18
ResNet18

(pre-trained)

CREMA-D 51.01 54.65
TESS 98.55 99.75
SAVEE 25.33 35.33

RAVDESS 47.5 52.5
AESDD 35.62 38.52

CAFÉ 31.45 49.58
EmoDB 40.01 88.75
EMOVO 29.29 43.21
ShEMO 74.7 79.02

Table A.1: Detailed results of preliminary experiment involving ResNet18 on Individual emotion
audio datasets.

ResNet18
accuracy

ResNet18 accuracy
(pre-trained)

MLDG
accuracy

MLDG accuracy
(pre-trained)

Scenario 1 27.51± 2.89 31.57±2.24 31.87± 3.33 34.17± 2.19
Scenario 2 33.26± 4.10 49.96± 8.17 52.78± 3.68 62.87± 4.50
Scenario 3 25.51± 0.89 41.69± 3.48 35.62± 1.25 41.95± 0.58
Scenario 4 26.92± 1.70 29.36± 3.34 32.06± 2.97 34.71± 1.79
Scenario 5 40.38± 4.20 21.22± 4.41 22.97± 4.14 23.77± 4.66
Scenario 6 20.83± 3.89 24.81± 6.15 17.78± 3.49 25.23± 5.11

Table A.2: Detailed MLDG Sparse categorical accuracy results
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ResNet18 accuracy
ResNet18 accuracy

(pre-trained)
SelfReg accuracy

SelfReg accuracy
(pre-trained)

Scenario 1 27.51± 2.89 31.57± 2.24 31.33± 1.47 30.81± 1.45
Scenario 2 33.26± 4.10 49.96± 8.17 43.45± 2.83 39.58± 4.87
Scenario 3 25.51± 0.89 41.69± 3.48 26.4± 2.12 41.14± 1.82
Scenario 4 26.92± 1.70 29.36± 3.34 28.55± 4.51 28.65± 1.67
Scenario 5 40.38± 4.20 21.22± 4.41 38.28± 1.99 26.42± 2.86
Scenario 6 20.83± 3.89 37.75± 6.15 12.34± 3.31 15.42± 7.65

Table A.4: Detailed updated SelfReg Sparse categorical accuracy results

ResNet18 accuracy
ResNet18 accuracy

(pre-trained)
SelfReg accuracy

SelfReg accuracy
(Pre-trained)

Scenario 1 27.51± 2.89 31.57±2.24 34.51± 0.57 31.41±4.43
Scenario 2 33.26± 4.10 49.96± 8.17 38.98± 3.29 43.09±6.79
Scenario 3 25.51± 0.89 41.69± 3.48 31.38± 0.72 32.19±1.85
Scenario 4 26.92± 1.70 29.36± 3.34 31.3± 4.15 22.8±1.75
Scenario 5 40.38± 4.20 21.22± 4.41 39.55± 2.59 29.95±5.47
Scenario 6 20.83± 3.89 24.81± 6.15 11.07± 1.18 20.78±9.40

Table A.3: Detailed SelfReg Sparse categorical accuracy results

SelfReg accuracy
SelfReg accuracy
(augmented input)

SelfReg accuracy
(augmented and original input)

Scenario 1 34.51± 0.57 31.05± 3.64 32.13± 6.15
Scenario 2 38.98± 3.29 25.02± 4.51 38.30± 9.09
Scenario 3 31.38± 0.72 27.44± 5.84 29.85± 3.40
Scenario 4 31.3± 4.15 28.50± 5.01 28.50± 3.31
Scenario 5 39.55± 2.59 35.02± 14.05 20.33± 14.45
Scenario 6 11.07± 1.18 16.40± 9.30 14.99± 2.53

Table A.5: Detailed SelfReg Sparse categorical accuracy results with augmented and/or normal
input

MLDG accuracy
MLDG accuracy
(augmented input)

MLDG accuracy
(augmented and original input)

Scenario 1 34.17±2.19 39.66± 0.94 39.68± 1.45
Scenario 2 62.87± 4.50 54.43± 8.15 52.65± 5.77
Scenario 3 41.95± 0.58 42.96± 0.84 44.91± 2.45
Scenario 4 34.71± 1.79 29.77± 3.80 30.34± 1.78
Scenario 5 23.77± 4.66 31.02± 5.36 28.54± 8.74
Scenario 6 25.23± 5.11 23.77± 8.20 30.49± 0.63

Table A.6: Detailed MLDG (pre-trained) Sparse categorical accuracy results with augmented
and/or normal input
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ResNet18 accuracy
MLDG accuracy

(ResNet18)
MLDG accuracy

(ResNet50)
Scenario 1 27.51±2.89 31.87± 3.33 33.12±1.74
Scenario 2 33.26± 4.10 52.78± 3.68 47.12± 5.62
Scenario 3 25.51± 0.89 35.62± 1.25 31.62± 2.22
Scenario 4 26.92± 1.70 32.06± 2.97 32.77± 2.77
Scenario 5 40.38± 4.20 22.97± 4.14 25.06± 8.83
Scenario 6 20.83± 3.89 17.78± 3.49 15.34± 2.19

Table A.7: Detailed Results of MLDG with ResNet50 as backbone in comparison with other results

Scenarios TRILLson accuracy using MLDG

Scenario 1 24.49±1.93
Scenario 2 19.84±1.96
Scenario 3 20.16±0.69
Scenario 4 26.08±1.92
Scenario 5 20.02±12.76
Scenario 6 38.53±18.77

Table A.8: Detailed Results of MLDG using TRILLSON’s embeddings as input to perform DG in
all scenarios
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