
 Eindhoven University of Technology

MASTER

Coverage of lifetime confidence bounds for highly censored and few Weibull distributed data

Jongerius, Sabine C.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ed861804-1023-46b6-acb8-11949e6f7235


Coverage of lifetime confidence bounds for highly censored and few

Weibull distributed data.

Sabine Jongerius
Supervised by Alessandro Di Bucchianico & Roberto Rocchetta

August 2022



Contents

Preface 3

1 Introduction 4
1.1 Original Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical Background 6
2.1 Reliability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Failure time distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Type I censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Type II censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 General form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Alternative parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Literature Review 11
3.1 Point Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Assumption in shape parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Parameter Estimation Methods 13
4.1 Likelihood for Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Confidence Interval and Hypothesis Testing Methods 17
5.1 Fisher Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Normal approximate confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Nelson’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3.1 Parameter estimation Maximum Likeliood with given shape parameter and zero
failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.4 Likelihood ratio confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1 Bounds on parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.2 Bounds on Life Time and Reliability . . . . . . . . . . . . . . . . . . . . . . . . 20

5.5 Hypothesis testing vs. confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6 Summary of the reviewed confidence bounds . . . . . . . . . . . . . . . . . . . . . . . . 21

5.6.1 Zero failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.6.2 Complementary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.7 Coverage probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 Reliability testing: A simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.8.1 The proposed Monte Carlo simulation procedure . . . . . . . . . . . . . . . . . 23

1



6 Analysis 25
6.1 Effect of sample size and censoring rate . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Effect of the assumed shape parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Bounds comparison for zero failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.4.1 Average of the lower confidence bounds for high censoring rates . . . . . . . . . 28
6.4.2 Coverage probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusions 31
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



Preface

This report is the result of my graduation project for the master program Industral and Applied Math-
ematics at the Eindhoven University of Technology (TU/e). The subject of this report was suggest by
my supervisor Alessandro Di Bucchianico. The underlying actual industrial problem was part of the
Studygroup Mathematics with Industry (SWI), proposed by SKF (Svenska Kullagerfabriken AB).

I would like to thank my supervisors Alessandro Di Bucchianico and Roberto Rocchetta for their
immense support, patience and time in the process of my graduation. Alessandro, I very much
appreciate your attention to detail, your personal guidance throughout this process and our talks
about music and the university. Roberto, thank you very much for the intensive help with the code,
numerous coffees and your time in general.

I would like to thank my parents for believing in me, no matter which choices I make. Their
love and support is a constant throughout my life and education, making it much easier to deal with
possible bumps in the road.

Dear friends, thank you for being there, with distracting activities or pep talks. Luuk, thank you
for the unconditional support in the final phase of my education, always with fun and food.
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Chapter 1

Introduction

Acceptance tests are a set of experimental methods whose primary goal is to determine if new products
meet specific expectations on their durability and reliability. Many companies perform mechanical,
physical, and chemical tests to certify new products, like bearings and PCBs. Because well-designed
engineering components seldom fail (due to their high durability), censoring is often inevitable. Al-
though reliability acceptance tests have a solid theoretical foundation, very high censoring rates and
data scarcity might complicate the analysis and prevent reliability engineers from delivering a final
judgment on the acceptability of the products. Especially for highly reliable products, the lack of
data uncertainty must be carefully addressed and formally quantified. This procedure is necessary to
avoid: unjustified rejections of new reliable prototypes, the definition of wrong warranty contacts, and
unexpectedly high maintenance costs.

The goal of this report is to look into reliability testing with a small number of items (less then
10) and high censoring rate, meaning two or less failures occur before termination of the test. This
problem is inspired by an actual industrial problem, proposed in the 2018 edition of the Studygroup
Mathematics with Industry (www.swi-wiskunde.nl). The problem was proposed by SKF (Svenska
Kullagerfabriken AB). SKF is a global technology provider offering products and services related to
bearings and units, seals, mechatronics, and lubrication systems. Its headquarters are located in
Sweden. The company has around 165 production sites in 28 countries. SKF has several research
centres, including one in the Netherlands in Nieuwegein.

1.1 Original Problem Description

Mechanical bearings are an important product of SKF. They are mechanical elements that constrain
motions to desired motions only, and at the same time reduce friction between moving parts. There
is a wide range of applications of bearings, including bicycles, cars, manufacturing machines, trains,
wind turbines and airplanes. Sizes of bearings range from less than 10 mm to 14 m.

Since bearings are essential for the proper and safe functioning of machines and equipment, it
is essential for SKF to give customers reliable information on the performance. The performance of
mechanical bearings is expressed through their life, i.e., the amount of time or number of revolutions
that a bearing is capable to reach within nominal functioning. Bearing performance is assessed via in-
tensive life testing and physical modelling. To validate and communicate this guaranteed performance,
customers may also require SKF to perform tailor-made acceptance life tests under specific operating
conditions from their application. It is standard in this branch of industry to present the results of
these acceptance tests in terms of parameters of the Weibull probability distribution. The precision of
these Weibull parameter estimates depends strongly on the test strategy (number of bearings tested,
test duration, number of observed failures, and replacement policy). Acceptance tests are due to high
costs usually performed with a limited sample size meant to survive a test under severe conditions.
To avoid being too conservative, acceptance tests may also be passed with very limited failures (1
or 2), which makes the statistical estimation of the life parameters (in particular the 10th life per-
centile) more challenging. It is thus necessary to have sound and transparent estimation methods that
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work well with practical sample sizes to be able to reach reliable acceptance decisions. Unfortunately,
existing methods like the Normal approximation (Fisher Matrix) method do not perform well small
sample sizes with high censoring rates. As a consequence, these methods cannot be used in industrial
practice, in particular for expensive capital goods. It is not clear why these methods do not work well
and how they can be improved or adapted.

1.2 Research Questions

Based on the problem description of Section 1.1, we identified the following research questions that
we will address in this report:

1. Investigate the accuracy and sensitivity of the current reliability estimation methods for small
data sets with few or no failures.

2. Investigate other estimation methods that do not suffer from the drawback of current reliability
estimation methods for small data sets with few or no failures.

3. Study the effect of model assumptions on the coverage probability of reliability bounds.

1.3 Outline of the report

This report is structured as follows. In Chapter 2 we supply the mathematical background necessary to
describe the research questions and existing reliability demonstration methods in precise mathematical
terms. An overview of relevant literature can be found in Chapter 3. In Chapter 4 we describe the
different estimation methods for parameters of the Weibull distribution in detail. Chapter 5 then
proceeds with the different methods for construction of confidence intervals and hypothesis testing. To
address the research question we propose and perform a simulation study in Chapter 6. In Chapter 7
we will present conclusions from the simulation study and literature review to answer the stated
research questions and describe further research suggestions.
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Chapter 2

Mathematical Background

In this chapter we will describe the necessary mathematical background to reliability analysis which
we will use in the sequel of this report. Apart from introducing and discussing general notions, we
will present the Weibull distribution in detail.

2.1 Reliability analysis

In this section we will briefly describe the concept of reliability analysis and its key aspects. Reliability
analysis is the analysis of reliability data. Reliability analysis is similar to survival analysis in a
mathematical context, where the term reliability analysis is used in a more industrial setting and
survival analysis in a medical setting (Meeker and Escobar (1998)). We will focus on the more
industrial setting with reliability analysis. In a time with rapid developing technology there is a need
for reliable and safe products. Reliability is often defined as the probability that a product (or system,
machine etc.) will perform as intended under operating conditions, for a specified time. Improving
reliability is of high interest for developers of new products and systems, and for this reason analyses
are designed to quantify the reliability. This involves collection of reliability data from different types
of tests and monitoring.

We speak about reliability analysis when we analyze life and failure data to predict product life.
For this analysis we need a notion of time. An important aspect of time is non-negativity. However,
for reliability analysis we need to specify time even more. This is not just simply calendar time, we
need the effective testing time or number of rotations or some other measure related to the effective
performance period.

2.1.1 Failure time distribution function

In reliability we aim to express aspects of life time of a specific product. Lifetime data may be discrete,
but for the purpose of this research we assume lifetime to be continuous. We assume that the lifetimes
are from a nonnegative probability distribution with density f and distribution function F . We can
express the relationship of these functions as shown in Table 2.1. So either of these can fully determine
the probability distribution of the nonnegative continuous random variable. In lifetime data, we are
naturally more interested in survival probabilities P (T > t) than in the the probability P (T < t),
related to the cumulative distribution function. Therefore we use the reliability function R, defined
as

R(t) = 1− F (t) = P (T > t). (2.1)

This clearly also completely determines the probability distribution of a nonnegative random variable,
since R = 1− F .

With reliability data, it is often of interest to consider survival probabilities given that the item
at hand has already survived a certain time. Reliability functions are not suited for this purpose, and
therefore another notion is being used.
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Definition 2.1.1 Let T be a nonnegative continuous random variable with density f and reliability
function R. Then the failure rate λ (also known as failure intensity or hazard rate h) is for t ≥ 0
defined as

λ(t) =
f(t)

R(t)
(2.2)

The cumulative failure rate Λ (also known as cumulative hazard function H) is defined through the
relation Λ(t) =

∫ t
0 λ(x) dx.

With this definition we can fully express the failure time distribution. In reliability analysis a measure
of high interest is the residual life after a certain amount of time, given that the item has not failed
beforehand. We can express that as follows:

Definition 2.1.2 The mean residual life m of a nonnegative random variable T is defined as the
function

m(t) = E (T − t | T ≥ t). (2.3)

In industrial applications, this is often referred to as Remaining Useful Life (RUL).
We thus have different mathematical objects that fully characterize the probability distribution of

a nonnegative continuous random variable. The following theorem shows that they are equivalent and
fully characterize the probability distribution.

Theorem 2.1.3 The probability distribution of nonnegative continuous random variable is fully de-
termined by each of the following objects:

1. reliability function, R,

2. cumulative distribution, F ,

3. density function, f ,

4. failure rate, λ,

5. mean residual life, m.

Every characterization fully determines the probability distribution of a nonnegative continuous vari-
able, since we can express every characterization in terms of another one. In Table 2.1, from Di Bucchi-
anico and Castro (2021), the relations between the different characterizations of lifetime distributions
are given. For reliability demonstration, it is important to quantify the fraction of items that are

F (t) f(t) R(t) Λ(t) m(t)

F (t) = −
∫ t
0 f(x) dx 1−R(t) 1− e−Λ(t) 1− m(0)

m(t) e
−
∫ t
0

1
m(u)

du

f(t) = F ′(t) − −R′(t) λ(t) e−Λ(t) m(0)(m′(t)+1)
m2(t)

e
−
∫ t
0

1
m(u)

du

R(t) = 1− F (t)
∫∞
t f(x) dx − e−Λ(t) m(0)

m(t) e
−
∫ t
0

1
m(u)

du

λ(t) = F ′(t)
1−F (t)

f(t)∫∞
t f(x) dx

−S′(t)
S(t) − 1+m′(t)

m(t)

m(t) =
∫∞
t (1−F (x)) dx

1−F (t)

∫∞
t

∫∞
x f(u) du dx∫∞
t f(x) dx

∫∞
t S(x) dx

S(t) eΛ(t)
∫∞
t e−Λ(x) dx −

Table 2.1: Relationship between the different characterizations of lifetime distributions.

guaranteed to survive at least a given time period. Mathematically, we can state this as quantiles of
a probability distribution. To be more precise, this can be stated in terms of a probability level p
from the reliability function R. This is also known as the 100pth quantile of the distribution which
expresses that proportion 1 − p survives at least until time Lp (in industry this is directly expressed
in percentages, so L10 is the 10th percentile). The expression is thus simply

Lp = R−1(p) with p ∈ [0, 1] (2.4)

In the remainder of the report we will mainly focus on L10 as this is a widely used measure of interest
in industrial application.
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2.2 Censoring

In reliability analysis it is often impossible to test the products of interest until they are all failed. In
medical context one could imagine that patients cannot be followed after certain treatments until their
death. This also holds in the case of testing bearings, which are designed to last multiple decades.
These bearings are tested under accelerated life testing, i.e. testing under more severe conditions than
normal in such a way that using physical degradation laws one can connect lifetimes under severe
conditions to life times under normal conditions (see e.g., (Meeker and Escobar, 1998, Chapter 19)).
However, even under this type of testing, not all bearings will fail after reasonable test time. Censored
data is life data where not all failures occur within the time frame in which data is collected, due to
removal of the subject, time constraints or other circumstances. In order not to lose information from
the data, statistical techniques are applied to handle the censored data. There are several types of
censoring. Here we state the two types relevant for this report. We restrict ourselves to single right
censoring, where we know the starting time of the test but we do not know the end time or number
of failures, due to termination of the experiment.

2.2.1 Type I censoring

Suppose we have n items, and we test until predetermined time T . We assume that the lifetime of a
bearing X(i) is a nonnegative continuous random variable with density function f that depends on a
parameter θ and F is the related cumulative distribution function. By Y(i) we denote the observable
lifetime. Then

Yi = min (Xi, T ) and δi =

{
1 if Xi ≤ T

0 if Xi > T

Thus we call it Type I censoring when the test is terminated after a fixed time T . The number of
failed items r at time T is then a random variable R. This random variable R follows a binomial
distribution with success probability Fθ. The likelihood function for type I censoring can be obtained
by first conditioning on R:

L(x(1), . . . , x(n); θ) = fθ;X(1),X(2),...,X(n)|R=r(x(1), . . . , x(n))Pθ(R = r)

= r!

(
r∏

i=1

fθ(x(i))

Fθ(T )

)(
n

r

)
Fθ(T )

r(1− Fθ(T ))
n−r

For derivations of this and more complex censoring schemes, see (Bain and Engelhardt, 1991, Chap-
ter 2). Simplifying the last expression results in the likelihood function for Type-I censoring:

L(x(1), . . . , x(n); θ) =
n!

(n− r)!

(
r∏

i=1

fθ(x(i))

)
(1− Fθ(T ))

n−r, (2.5)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(k), the ordered failure times.

2.2.2 Type II censoring

We speak of Type II censoring when we end the test after a fixed number of k ≤ n failures. Since
k is deterministic we can now express the likelihood function as the joint density of the k first order
statistics (see (Bain and Engelhardt, 1991, Chapter 2)). This type of censoring is thus mathematically
easier to handle than type I censoring. The likelihood function for type II censoring equals

L(x(1), . . . , x(n); θ) =
n!

(n− k)!

(
k∏

i=1

fθ (xi)

)
(1− Fθ (xk:n))

n−k (2.6)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(k), the ordered failure times. In this type of censoring,
the number of failures is fixed, while the end time is random.
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2.3 Weibull Distribution

The most widely used probability model for industrial reliability data is the Weibull distribution.
Rinne (2008) is an extensive monograph discussing many details of the Weibull distribution. A reason
for the popularity of the Weibull distribution in industrial reliability applications, is that it allows
flexibility in modelling failure rates, since it can represent both increasing and decreasing failure rates
(aging process or infant mortality). There is also a justification through a “weakest link” argument,
which basically is a limit theorem for extremes rather than sums. The Weibull distribution is member
of the family of extreme value distributions.

2.3.1 General form

A random variable X is two-parameter Weibull distributed with parameters β > 0 and α > 0 if its
probability density function is given by

fX(x|β, α) =

{
β
α

(
x
α

)β−1
e−(

x
α)

β

x > 0

0 otherwise
(2.7)

Note that different parametrizations of the Weibull distribution are used in statistics, but in reliability
this is the most common parametrization, next to the parametrization we will present in Section 2.3.2.
The related distribution function equals

F (x) = 1− e−( x
α
)β (2.8)

where β > 0 is a shape parameter and α > 0 is a scale parameter. The corresponding reliability
function is

R(x) = e−( x
α
)β . (2.9)

With these expressions we can see that when parameter β = 1 we have a special case that Wei(α, 1) ∼
Exp(α). If shape parameter β is known, then we have X ∼ Wei(α, β) then Xβ ∼ Exp(αβ). We can
prove this using the reliability function. We have X ∼ Wei(α, β) and then the reliability function

equals R(x) = e−( x
α
)β = e

−( xβ

αβ )
, which is the reliability function for the exponential distribution for

Xβ ∼ Exp(αβ).
Another transformation that can be performed to a Weibull distribution is to an Extreme Value

type I distribution. An Extreme Value type I distribution is defined as X ∼ EV I(η, θ), then

P (X > x) = e−e
x−η
θ . The transformation is done via a log-transformation. If log(X) ∼ Wei(α, β),

then X ∼ EVI(log(α), 1/β). We will show this again with the reliability function. When we have
logX ∼ Wei(α, β) we have

R(log x) = e−(
log x
α )

β

(2.10)

= e−(e
x−logα)

β

(2.11)

= e
−
(
e
x−logα

1/β

)
. (2.12)

This is equal to the reliability function of the Extreme Value Type I Distribution with location pa-
rameter logα and scale parameter 1/β. This transformation has the advantage that it is now a
location-scale distribution, which is convenient for constructing confidence intervals and hypothesis
tests. Another advantage is that asymptotic convergence is faster for this type of transformation (see
e.g., Meeker and Nelson (1976)).

2.3.2 Alternative parametrization

In industry a different parametrization of theWeibull distribution is commonly used. This parametriza-
tion replaces the scale parameter α by the 10%-quantile of the distribution (denoted in industry by
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L10), as presented in 2.4. The parameters are linked to each other through the relation

L10 = α (− log(9/10))1/β . (2.13)

In this representation, the reliability function of the Weibull distribution has the form:

RL10,β(x) =
9

10
e
−
(

x

L10

)β

. (2.14)

Note that these two relations are specific to the 10%-quantile of the reliability distribution. More
generally, the Lp lifetime can be expressed as follows

Lp = α (− log (1− p))1/β . (2.15)

where 1 − p defines a target reliability level. Similarly, the reliability distribution function (Weibull)
is given by:

RLp,β(x) = (1− p) e
−
(

x

Lp

)β

. (2.16)

Note that p ∈ [0, 1] but it often indicated in percentage in the Lp subscript, i.e., selecting a p = 0.1
we indicate a lifetime L10.
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Chapter 3

Literature Review

In this chapter we present an overview of the literature on research that is either directly relevant or
related research. Section 3.1 deals with point estimators for the parameters of the Weibull distribution,
with emphasis on the case of zero or few failures. In section 3.2 we present literature that may provide
more insight in assuming a shape parameter when estimating a Weibull Distribution. We conclude this
chapter with an overview of literature on the different methods for constructing confidence intervals
in Section 3.3.

3.1 Point Estimators

Several methods are being used for parameter estimation of Weibull data. Maximum likelihood estima-
tion is known to be theoretically optimal (at least asymptotically), but in industrial practice regression
methods are widely used. Maximum likelihood estimators have been derived in Cohen (1965) and can
be shown to be unique when they exist as proven in Farnum and Booth (1997) (see also Section 4.1).
Corrections for the bias in the parameters have been discussed in several papers, including McCool
(1970b), Hirose (1999), Yang and Xie (2003), and Shen and Yang (2015). Bias correction for the
regression estimation method has been discussed in Zhang et al. (2006).

Genschel and Meeker (2010) compare Maximum Likelihood estimation method for 2-parameter
Weibull distribution with Median Rank Regression. This method is proposed as preferable to Maxi-
mum Likelihood in certain settings by different articles. However, in the comparison study of Genschel
and Meeker (2010), there is no clear setting where Median Rank Regression outperforms MLE. It is
also important to note that Median Rank Regression requires at least two failures, which makes it not
suitable for the problem of this report.

In order to overcome the problem that Maximum Likelihood estimators do not exists for Weibull
data with zero failures, Jiang et al. (2010) introduce a modified version of Maximum Likelihood
estimation through a shrinkage factor. They also indicate how to estimate the reliability function, and
indicate a way to determine an appropriate shrinkage factor.

Several papers propose a Bayesian approach to circumvent the problems in parametric inference
when there are no failures (see e.g., Fan and Chang (2009), Han et al. (2014), Jiang et al. (2015), and
Zhang (2021). However, it is not clear what the influence of the choice of prior distribution has on
the outcome.

3.2 Assumption in shape parameter

Huang and Porter (1990) present and prove a lower bound on the Reliability or Life Limit (L10) for
censored data with few or no failures assuming a Weibull distribution. This is an important lower
bound since it deals with the uncertainty of (unestimated) scale parameter β. It requires conditions
on the total sample size and number of units with equal maximal test time. When these conditions
hold, a minimum value of β exists for the reliability or life time function. With this minimal value
a lower bound for the lower bound can be expressed, which holds for every (true) value of β. If the
conditions on the data are not met, then a “worst case” β does not exist, and this method becomes
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useless. Since we deal with not only few failures, but also small sample size in the setting of this
report, the conditions on data do not hold, and we cannot use these lower bounds to decrease the risk
of the pre-assumed value of β.

McCool (1970a) expresses hypothesis tests based on Monte Carlo Methods with Maximum Likeli-
hood Estimators, which are only dependent on the sample size and the degree of censoring. Besides
two tests for comparison of two populations, it provides tests for the Weibull shape parameter and
the Weibull percentile. These tests could be of interest when checking the validity of the estimated
β. However, these methods are not suited for small datasets with low censoring, this will lead to very
wide confidence intervals.

3.3 Confidence Intervals

An extensive overview and comparison of different methods for constructing confidence bounds is done
by Jeng and Meeker (2000) with estimation methods of likelihood ratio and different bootstrapping
methods. However, in their simulation studies they only present results for data with more than one
failure. This is done since ML estimators do not exist for zero failures and some confidence bounds do
not exist for one failure. From these simulations we can see that bootstrapping methods might be very
suitable for small data with few failures for confidence bounds on the scale parameter. However, these
results cannot be directly translated to confidence intervals for lifetime lower bounds. They suggest
several methods to improve estimation for data with less than 10 expected failures. However, these
include redesigning the experiment or extending censoring time. If this is not possible, they suggest,
if possible, nonparametric methods, but as is well-known, nonparametric methods require more data
than parametric methods.

Probably the most relevant research for this report was done by Nelson (1985). He proposes
confidence intervals for the scale parameter and measures of interest for Weibull data with few or
no failures based on fixed assumed shape parameter, based on the exponential transformation, as
described in Section 2.3. These confidence intervals are especially interesting data with no failures,
since other estimation methods lead to unreasonable estimates. Keats et al. (2000) recommended not
to use this method, especially in the case of zero failures, but that study was quite limited in scope
and mainly focused on errors in the estimation of the scale parameter. As Xie et al. (2000) explained,
the poor estimation properties of the scale parameter are to be expected since the estimators of the
scale and shape parameters are correlated. It does not automatically mean that estimators for the
mean life or percentiles perform badly (the last issue is discussed in Section 4 of Xie et al. (2000)).

Keats et al. (2000) perform a simulation study on these confidence intervals for the Weibull pa-
rameters after exponential transformation. They investigate the effect of the misspecification of shape
parameter β on the estimate. From their simulation study they conclude that confidence intervals for
Weibull using the exponential transformation should not be used in any case. A similar comparison
study is performed by Yuan and Rai (2011) for different confidence bounds.

Magalhaes and Gallardo (2020) propose the Bartlett correction factor for the likelihood statistic
with censored Weibull distributed data. They perform a Monte Carlo simulation to study the perfor-
mance of this factor. This factor could also be very useful for small the confidence bounds in the few
failure setting of this report. In the simulation study of Jeng and Meeker (2000) this correction factor
performs well. The machinery to obtain this factor is rather involved, when there is censored data,
simulation is needed to determine the factor.
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Chapter 4

Parameter Estimation Methods

In this chapter we will give a detailed description of the Maximum Likelihood estimation method
for parameters of the Weibull distribution with right censoring. Afterwards we will demonstrate the
uniqueness of these ML estimators.

4.1 Likelihood for Weibull

In this section we will first derive Maximum Likelihood estimates for the parameters for the Weibull
distribution with right-censored data. Furthermore, we will show whether these equations have a
solution, and if that solution is unique. We will explain in detail the results of Farnum and Booth
(1997). That paper concisely demonstrates the uniqueness of Maximum Likelihood Estimates for
Weibull, even in the case of censoring. We will follow their steps in higher detail, to concisely show
the uniqueness of these estimates. An important side-result is that the derivative of the equation for
the β parameter has a monotonicity property, so that there are no numerical issues: any optimisation
algorithm will easily find the maximum likelihood estimate.

Recall the likelihood function for right censored data from 2.5:

L(x(1), . . . , x(n); θ) =
n!

(n− r)!

(
r∏

i=1

fθ(x(i))

)
n∏

i=r+1

(1− Fθ(x(i))), (4.1)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(r), the ordered failure times. Note that the likelihood
functions for type I and type II censoring are similar, but we have to be careful to keep in mind which
type of censoring we are dealing with. For type I censoring, the number of failures r is random and
the censoring time for the n− r non-failure items is deterministic, whereas for type II censoring, the
number of failures is deterministic and the censoring time Xr is random. The following expressions
hold for both types of censoring, if we interpret r as the number of non-censored observations (random
or deterministic). Throughout this part we will use XT as the censoring time, for both type I and
type II censoring. For type I this is trivial, namely the preset end-time T , such that for all i that is
non-failure at time T , X(i) = XT . For type II censoring XT = Xr, where r is the number of failures
after which we end the test. First recall the distribution function and density function for the Weibull
distribution

F (x) = 1− e−( x
α
)β (4.2)

f(x) =
β

α

(x
α

)β−1
e−( x

α
)β . (4.3)

In the following steps we will express the Maximum Likelihood Equations and use them to derive a
function h(β) in order to estimate β. Since this will be a function independent of α, we can use this
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function to show uniqueness of both estimates. The Likelihood for Weibull with censoring equals

L =
n!

(n− r)!

r∏
i=1

β

α

(
X(i)

α

)β−1 n∏
i=r+1

e
−
(

XT
α

)β
(4.4)

=
n!

(n− r)!

(
β

α

)r r∏
i=1

(
X(i)

α

)β−1

e
−
∑r

i=1

(
X(i)
α

)β

−(n−r)
(

XT
α

)β
. (4.5)

From this point on, we will ignore the factor n!
(n−r)! , for convenience of notation. This is allowed,

because this factor would not influence the Maximum Likelihood estimator as it is independent of the
parameters. We take the logarithm of the likelihood function to express the log-likehood and simplify
the result.

log(L) = C + r log β − r logα− r(β − 1) log(α) + (β − 1)

r∑
i=1

log
(
X(i)

)
−

r∑
i=1

(
X(i)

α

)β

− (n− r)

(
XT

α

)β

= C + r (log β − β logα) + (β − 1)

r∑
i=1

log(X(i))−
r∑

i=1

(
X(i)

α

)β

− (n− r)

(
XT

α

)β

Then we express the derivatives of the log-likelihood with respect to α and β to obtain the MLE.

∂ logL

∂α
=

−rβ

α
+ β

(
1

α

)β+1
(

r∑
i=1

Xβ
(i) + (n− r)Xβ

T

)
(4.6)

∂ logL

∂β
=

r

β
− r logα+

r∑
i=1

logX(i) −
(
1

α

)β
(

r∑
i=1

Xβ
(i) log

(
X(i)

α

)
+ (n− r)Xβ

T log

(
XT

α

))
(4.7)

We set the derivative to α from 4.6 equal to 0 and simplify to obtain

αβ =

∑r
i=1X

β
(i) + (n− r)Xβ

T

r
. (4.8)

This leads to the estimator

α =

∑r
i=1X

β
(i) + (n− r)Xβ

T

r

 1
β

. (4.9)

Note that this estimator for α is not suitable for a data set with zero failures, as one would divide by
zero. We will present a possible alternative in Section 5.3.1.

In the following part we will look into the uniqueness of the estimates following from MLE. We
set the derivative to β from 4.7 equal to 0, substitute the expression from 4.8 for αβ and rearrange
the terms. This leads to

0 =
1

β
+

1

r

r∑
i=1

logX(i) −
∑r

i=1X
β
(i) logX(i) + (n− r)Xβ

T logXT∑r
i=1X

β
(i) + (n− r)Xβ

T

. (4.10)

Then we arrive at the function h(β) = 1
β :

h(β) =

∑r
i=1X

β
(i) logX(i) + (n− r)Xβ

T logXT∑r
i=1X

β
(i) + (n− r)Xβ

T

− 1

r

r∑
i=1

logX(i). (4.11)
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We will now show that h is an increasing function of β, and with properties of h we will prove
uniqueness of the maximum likelihood estimator.

First we want to show h is an increasing function of β. We compute the derivative

h′(β) =

∑r
i=1X

β
(i)

(
logX(i)

)2
+ (n− r)Xβ

T (logXT )
2∑r

i=1X
β
(i) + (n− r)Xβ

T

−

(∑r
i=1X

β
(i) logX(i) + (n− r)Xβ

T logXT

)2
(∑r

i=1X
β
(i) + (n− r)Xβ

T

)2
Putting these two terms under a common denominator

(∑r
i=1X

β
(i) + (n− r)Xβ

T

)2
, we see that the

numerator equals(
r∑

i=1

Xβ
(i) + (n− r)Xβ

T

)
·

(
r∑

i=1

Xβ
(i)

(
logX(i)

)2
+ (n− r)Xβ

T (logXT )
2

)

−

(
r∑

i=1

Xβ
(i) logX(i) + (n− r)Xβ

T logXT

)2

.

Since the denominator
(∑r

i=1X
β
(i) + (n− r)Xβ

T

)2
of h′(β) is positive, it suffices to that the numerator

of h′(β) is positive to conclude h is an increasing function. When we further expand the numerator
we get

r∑
i=1

Xβ
(i)

r∑
i=1

Xβ
(i) log

2X(i) + (n− r)Xβ
T log2XT

r∑
i=1

Xβ
(i) + (n− r)Xβ

T

r∑
i=1

Xβ
(i) log

2X(i)

+(n− r)X2β
T log2XT −

(
r∑

i=1

Xβ
(i) logX(i)

)2

− (n− r)X2
T log2XT − 2(n− r)Xβ

T logXt

r∑
i=1

Xβ
(i) logX(i).

Then, rearranging the terms we get:

r∑
i=1

Xβ
(i)

r∑
i=1

X(i) log
2X(i) −

(
r∑

i=1

Xβ
(i) logX(i)

)2

+(n− r)Xβ
T

n∑
i=1

Xβ
(i)

(
log2XT + log2(X(i) − 2 log(XT ) log(X(i))

)
=

r∑
i=1

(
X

β/2
(i)

)2 r∑
i=1

(
X

β/2
(i)

)2
log2(X(i))−

(
r∑

i=1

X
β/2
(i)

(
X

β/2
(i) log(X(i))

))2

+(n− r)Xβ
T

r∑
i=1

Xβ
(i)

(
log(XT ) + log(X(i))

)2
.

With the Cauchy-Schwarz inequality, we see that the first term is bigger or equal to the second term.
Since the third term is positive, we now know that the numerator of h′(β) is positive and thus h(β)
is increasing.

We will now show, using V for notation purposes, that

lim
β→∞

h(β) = log(XT )−
1

r

r∑
i=1

log(X(i)) = V. (4.12)

First recall h(β) from 4.11 and rewrite as

h(β) =

∑r
i=1

(
X(i)

XT

)β
logX(i) + (n− r) logXT∑r

i=1

(
X(i)

XT

)β
+ (n− r)

− 1

r

r∑
i=1

logX(i) (4.13)
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We will now distinguish two cases, first X(i) ≤ Xr < XT , which is the case for type I censoring. Then

lim
β→∞

h(β) =
(n− r) log(XT )

n− r
− 1

r

r∑
i=1

log(X(i)) = log(XT )−
1

r

r∑
i=1

log(X(i)) = V (4.14)

The second case is type II censoring where Xr = XT by definition. Then

lim
β→∞

h(β) =

∑r
i=1

(
X(i)

XT

)β
logX(i) + (n− r) logXT∑r

i=1

(
X(i)

XT

)β
+ (n− r)

− 1

r

r∑
i=1

logX(i) (4.15)

=

(
XT
XT

)
log(XT ) + (n− r) log(XT )

1 + n− r
− 1

r

r∑
i=1

log(X(i)) = log(XT )−
1

r

r∑
i=1

log(X(i)) = V.

(4.16)

Then the final thing we need to show is h(0) = (1− r
n)V :

h(0) =

∑r
i=1 log(X(i)) + (n− r) log(XT )

r + (n− r)
− 1

r

r∑
i=1

log(X(i)) (4.17)

=

∑r
i=1 log(X(i)) + (n− r) log(XT )

n
− 1

r

r∑
i=1

log(X(i)) (4.18)

=

(
1

n
− 1

r

) r∑
i=1

log(X(i)) +
n− r

n
log(XT ) (4.19)

= −1

r

(
1− r

n

) r∑
i=1

log(X(i)) +
(
1− r

n

)
log(XT ) (4.20)

=
(
1− r

n

)(
log(XT )−

1

r

r∑
i=1

log(X(i))

)
=
(
1− r

n

)
V. (4.21)

Along the lines of Farnum and Booth (1997) we now know three aspects of our Maximum Likelihood
Estimates for α and β. First, if V > 0, since h(β) is an increasing function for β > 0 and 1

β is

decreasing, α̂ and β̂ are unique. Secondly, if V > 0, then β̂ > 1/V and α̂ >
(
n−1 ·

∑n
i=1 t

1/V
i

)V
. And

thirdly, if and only if V = 0, all failure times are equal. For clarification in intuition, see Farnum and
Booth (1997) for a visualisation of this derivation. Also recall that since h(β) is monotone, so that
there are no numerical issues: any optimisation algorithm will easily find the maximum likelihood
estimate.
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Chapter 5

Confidence Interval and Hypothesis
Testing Methods

In the previous chapter, we derived point estimates for the Weibull distribution. In this chapter,
we extend the mathematical background by reviewing and describing various methods for construct-
ing confidence intervals. The derivation of confidence bounds depends on assumptions used for the
derivations. Unfortunately, unwarranted assumptions like asymptotic behaviour, symmetry of two-
sided bounds, and other model assumptions, may not hold in practice. This is especially true for lack
of knowledge/data situations when the samples are limited and heavily censored. This report will
look into different methods for computing confidence bounds and will target specific problems with
severely censored data. For synthesis’ sake, we will restrict our focus to a small number of methods of
which some are specific to the Weibull distribution family. Moreover, we will only focus on one-sided
confidence bounds, worst cases, which are often applied in the industry to tackle reliability qualifica-
tion tasks. In the remainder of the report we will focus on estimating methods with known or assumed
value for the shape parameter β, as suggested by for example Nelson (1985). Methods that are suited
for simultaneously estimating both parameters are presented first presented in general. We will briefly
look into the relationship between hypothesis testing and confidence intervals, which will be useful to
study reliability demonstration hypothesis tests.

5.1 Fisher Matrix

In order to construct normal approximate confidence bounds, also known as Fisher’s bounds, we need
estimates for the variance of α and β based on the Fisher matrix. The observed variance-covariance
matrix for a 2-parameter Weibull model can be defined from the inverse of the observed information
matrix as follows, see e.g. Meeker and Escobar (1998):

Σ
α̂,β̂

=

[
Var(α̂) Cov(α̂, β̂)

Cov(α̂, β̂) Var(β̂)

]
= E

[
−∂2L(α,β)

∂α2 −∂2L(α,β)
∂α∂β

−∂2L(α,β)
∂β∂α −∂2L(α,β)

∂β2

]−1

=
1

I(α, β)

where the Var(·) and Cov(·) are the variance and covariance operators, I(α, β) is the observed Fisher
information matrix for the shape and scale parameters (α, β), and L is the log-likelihood function.
The factors β̂, α̂ are, respectively, estimators for the scale and shape parameters. Note that the Fisher
information matrix quantifies the amount of information carried by an observable random variable
about the unknown parameters α and β.

Specifically for the Weibull distribution family, the second derivative of the log-likelihood with
respect to α is given by:

∂2L(α, β)
∂α2

=

r∑
i=1

[
β

α2
−
(
β + β2

α2

)(
X(i)

α

)β
]
− (n− r)

(
β + β2

α2

)(
XT

α

)β

.
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Note that, assuming β is known and fixed, the partial derivative ∂L(α,β)
∂β = 0 and the information

matrix reduces to I(α) = E[−∂2L(α,β)
∂α2 ]. For this case, the variance of the scale parameter can be

simply expressed as follows, see e.g. Meeker and Escobar (1998),

Var(α̂) =
1

r

(
α̂

β

)2

. (5.1)

This expression will be used to construct normal approximate confidence bounds in the following
section.

5.2 Normal approximate confidence bounds

The normal approximate confidence bounds are computed from asymptotic distributions, so the good-
ness of these bound generally rely on the availability of large sample sizes. However, under a lack of
data, asymptotic confidence bounds may fail. Since it is a commonly used method, we will present it
here. We can express normal approximate confidence bounds for a parameter θ in general, see e.g.,
LLoyd and Lipow (1977):

θU = θ̂ · e
K 1−δ

2

√
Var(θ̂)

θ̂ (Two-sided upper), (5.2)

θL =
θ̂

e

K 1−δ
2

√
Var(θ̂)

θ̂

(Two-sided lower). (5.3)

Here Kp is the quantile function of the Standard Normal distribution, so Kp = Φ−1(1−p), where Φ(x)
is the distribution function of a Standard Normal random variable. Note that we use δ to indicate
the significance level in order to avoid confusion with our parameter α (which is often used in the
literature to express a confidence level). From equation (5.3) and replacing the variance of α with 5.1
the following lower confidence bound for scale parameter holds:

αL =
α̂

e
1
β

√
1
r
·K 1−δ

2

r ≥ 1. (5.4)

Then we can transform this into a lower bound on the time for a specific reliability at level p. First
recall the Reliability function, as presented in Section 2.3.2:

Lp = α (− log(R))1/β . (5.5)

where R = 1− p ∈ [0, 1] stands for the targeted reliability level. In order to obtain a lower bound for
Lp, we will substitute α in this expression with αL. This leads to:

Lp,L =
α̂

e
1
β

√
1
r
·K 1−δ

2

(− log(R))
1
β r ≥ 1 (5.6)

Hence, by selecting a reliability level R = 0.9 and experession for the the L10,L can be derived as
follows:

L10,L =
α̂

e
1
β

√
1
r
·K 1−δ

2

(− log(9/10))
1
β r ≥ 1 (5.7)

These approximate normal confidence intervals are not suited for situations with a very limited number
of failures or without failures. These bounds are not defined when there are zero failures, since we
would divide by zero. Therefore, in the next section we present the method proposed by Nelson (1985),
specifically aimed at few and zero failure data.
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5.3 Nelson’s method

Nelson (1985) presents a method for construction of confidence intervals for data with few or zero
failures. This method is based on the fact that β can be assumed from engineering knowledge and
historical data. Other methods in this chapter allow for simultaneously estimating α and β, but this
is not possible for this method. However, one may never assume β is known. After constructing
confidence bounds with this method, a sensitivity analysis on the value of β should be done, to
get more insight in the quality of the bounds. The estimate for α as presented in Nelson (1985) is

α̂ =
(∑n

i=1X
β
(i)/r

)1/β
, note that this is equal to (4.9), although it provides less insight in the structure

of the data. Then with this estimate for α, Nelson (1985) introduced a lower 1− δ confidence bound
on α:

αL = α̂

(
2r

χ2(1− δ; 2r + 2)

)1/β

for r ≥ 1,

=

 2
∑n

i=1X
β
(i)

χ2(1− δ; 2r + 2)

1/β

for r ≥ 0. (5.8)

where χ2(1 − δ; 2r + 2) is the chi-squared distribution with probability parameter (confidence) 1 − δ
and degrees of freedom 2r + 2. We can also express the lower confidence bound for Lp as follows

Lp,L = αL (− log(R))1/β

=

−2 log(R)
∑n

i=1X
β
(i)

χ2(1− δ; 2r + 2)

1/β

. (5.9)

The basis of these bounds lies in the transformation to the exponential distribution, as described in
Section 2.3. To repeat it, when parameter β is known, then we have X ∼ Wei(α, β) then Xβ ∼
Exp(αβ). When we use this transformation, we have an estimate for the mean of the corresponding

exponential distribution, θ̂ =
∑n

i=1X
β
(i)/r. The corresponding Poisson 1− δ% confidence lower bound

equals:

θL = 2rθ̂/χ2(1− δ; 2r + 2) =
2
∑n

i=1X
β
(i)

χ2(1− δ; 2r + 2)
.

We can use this expression and transform back to get an expression for α, as written in 5.8.
In order to have an estimate for α when there are no failures in the data, an alternative is needed

for 4.9. We will describe a possible alternative in the following section, as presented in Nelson (1985).

5.3.1 Parameter estimation Maximum Likeliood with given shape parameter and
zero failures

The described estimate on α as in 4.9 does not hold when no failures are in the data. But as described
in e.g., Nelson (1985) and (Meeker and Escobar, 1998, Chapter 8), we can use the lower bound estimate
with a 50% confidence bound as a substitute for the parameter estimate. So the estimate will be, just
as the lower bound mentioned earlier

α̂ = α∗
L =

2
∑n

i=1X
β
(i)

χ2
(0.5;2)

1/β

=

∑n
i=1X

β
(i)

− log(0.5)

1/β

(5.10)

since χ2
(1−δ;2) = −2 log(δ). Note that Nelson (1985) describes that this estimate might be conservative

(low) and that its theoretical performance has not been studied. However, there is no real alternative
available, since our MLE for α divides by the number of failures. In the article of Nelson (1985) it is
mentioned in the introduction that for less than 2 failures, alternative estimation methods are needed.
However, this is not true for methods based on Maximum Likelihood estimates. For this method a
minimum of 1 failure is needed, as we are dividing by r.
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5.4 Likelihood ratio confidence bounds

The Likelihood Ratio bounds (LRB) method is sometimes preferred over approximate normal (or FM)
method, especially in situations where there are smaller sample sizes. See e.g. Meeker and Escobar
(1998) for short technical derivation. This methods is based on the Likelihood ratio equation:

−2 · log

(
L(θ)

L(θ̂)

)
≥ χ2

1−δ;k. (5.11)

In equality of this expression we find the confidence bounds on parameters (no closed form). Using
this, we can numerically determine the bounds. The bounds we will first describe are also known as
uncorrected in e.g. Doganaksoy and Schmee (1993), as we just use above expression, without any
corrections. In Section 3.3 we describe a possible correction factor to improve this method. Note that
this method can be quite heavy numerically. In specific instances it might be necessary to work with
loglikelihood expression, to improve numerical stability.

5.4.1 Bounds on parameter

We recall the Likelihood function for right-censored data as in 4.5:

L (β, α) =

(
β

α

)r r∏
i=1

(
X(i)

α

)β−1

e
−
∑r

i=1

(
X(i)
α

)β

−(n−r)
(

XT
α

)β
(5.12)

which is defined for 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(r), the ordered failure times. Then we calculate L(β̂, α̂)
with our MLE estimates for our parameters (or β fixed and α estimated). And then we can calculate

L(β, α)− L(β̂, α̂) · e
−χ2

1−δ;1
2 = 0 (5.13)

where δ is the specified confidence level, and with that we can calculate the value for the chi-squared
statistic. Then values for β and α need to be found that satisfy this equation, since L(β̂, α̂) is a known
quantity with our data and MLEs. For simultaneously finding both parameters this is an iterative
process, but for the purpose of this report we have a fixed β and we can just calculate the value of α.

5.4.2 Bounds on Life Time and Reliability

In order to express confidence bounds on Life time and Reliability, we need to transform 5.12 into a
function of β and t or R. We rewrite the Reliability function R = e−( t

α
)β to express α = t

(− log(R))
1
β
.

We replace α in 5.12 to obtain a Likelihood function in terms of β and t.

L (β, t) =

 β
t

(− log(R))
1
β


r

r∏
i=1

 X(i)
t

(− log(R))
1
β


β−1

e

−

 X(i)
t

(− log(R))
1
β


β

−(n−r)

 XT
t

(− log(R))
1
β


β

=

(
β (− log(R))

1
β

t

)r r∏
i=1

X(i) (− log(R))
1
β

t

β−1

e
−

X(i)(− log(R))
1
β

t

β

−(n−r)

XT (− log(R))
1
β

t

β

Then we use

L(β, t)− L(β̂, α̂) · e
−χ2

1−δ;1
2 = 0 (5.14)

in a similar way as for parameter bounds to calculate the Lifetime lower bound with confidence
level δ. It is important to note that when β is known, we do not have to do this transformation on
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the Likelihood function. Since we do not need to estimate the β simultaneously we can use 2.13 with
the estimated lower bound on α to express the lower confidence bound on L10. So we just plug the
estimate in the following

L10,L = αL (− log(9/10))1/β .

Then we obtain a lower confidence bound on L10.

5.5 Hypothesis testing vs. confidence intervals

From our confidence intervals we can construct hypothesis tests. We will do this for the example of a
lower bound for L10. As in 5.7 we have expressed this one-sided 100(1− δ)% lower confidence bound
for L10 as follows

L10,L =
α̂

e
1
β

√
1
r
·K1−δ

(− log(9/10))
1
β (5.15)

where K1−δ is the quantile function for a Standard Normal distribution for quantile 1− δ. Then with
L10,L we can express our hypothesis test as follows:

H0 : L10 ≥ L10,L (5.16)

Ha : L10 < L10,L (5.17)

We will reject H0 when L10 < L10,L with significance level δ. We can rewrite this expression as follows

L10 ≥
α̂

e
1
β

√
1
r
·K1−δ

(− log(9/10))
1
β (5.18)

L10

α̂ (log(9/10))1/β
≥ 1

e
1
β

√
1
r
·K1−δ

(5.19)

e
1
β

√
1
r
·K1−δ ≥ α̂ (log(9/10))1/β

L10
(5.20)

K1−δ ≥ log

(
α̂ (log(9/10))1/β

L10

)
β√
1
r

. (5.21)

This construction of hypothesis tests related to the confidence intervals (or vice versa) can be done
for all different parameter estimates.

5.6 Summary of the reviewed confidence bounds

In Table 5.1 we give an overview of the bounds reviewed in this section. We will analyze and discuss
tightness and coverage of the bounds in Chapter 6. Note that we do not have a closed form expres-
sion for the Likelihood ratio method, since these are not available. The Normal approximation and
Likelihood ratio is not (directly) applicable for zero failures, since there is not ML estimate, so an
alternative for estimating α is needed, as described in the following section.

5.6.1 Zero failures

As described in Section 5.3.1, an estimate for the shape parameter is necessary to apply the reviewed
method. Unfortunately, for r = 0, the MLE cannot be commuted, making M1-M3 not directly
applicable. For zero failure, we need an alternative estimate for the scale parameter we need an
alternative estimate to the maximum likelihood estimator for the scale parameter α. The proposed
solution is to replace the MLE with the median estimate of the confidence bound from Nelson’s
method. For a data set with zero failures, the lower confidence bounds only depend on sample size,
censoring time and the guess for the shape parameter β.
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ID Name αL L10,L No-failures

M1 Normal approximation α̂

e

1
β

√
1
r ·K 1−δ

2

α̂

e

1
β

√
1
r ·K 1−δ

2

(− log(0.9))
1
β No

M2 Nelson’s

(
2
∑n

i=1 X
β
(i)

χ2(1−δ;2r+2)

)1/β (
−2 log(0.9)

∑n
i=1 X

β
(i)

χ2(1−δ;2r+2)

)1/β

Yes

M3 Likelihood ratio L(β, αL) = L(β̂, α̂) · e
−χ2

δ;1
2 L(β, L10) = L(β̂, α̂) · e

−χ2
δ;1
2 No

Table 5.1: A summary of the reviewed confidence bounds and their applicability to no-failures situa-
tions.

In addition to that, we need to check whether the method for the confidence bounds can be used
when there are zero failures. The normal approximation method has no defined expression for the
lower confidence bounds on α when there are no failures and consequently there is no bound on L10.
For the likelihood ratio method this problem does not occur, however in literature there is no mention
of the use of this method when there are few or no failures. So there is no research on the performance
of the bound with zero.

5.6.2 Complementary methods

In general, more methods are available to estimate the lower confidence bounds on reliability data and
specifically censored Weibull data. Some of these methods are studied in for example Jeng and Meeker
(2000). However, few of these methods are suitable for few failures or few data points in general. For
example all methods that involve bootstrapping require larger data sets with some failures. The
selected methods for this report are the most used methods and the methods that are aimed at few
failures.

5.7 Coverage probability

The coverage probability can be interpreted in terms of hypothetical repetitions of the entire data
collection and statistical analysis procedure such that independent data sets are drawn from the same
probability distribution and a confidence interval is computed from each of these data sets. The
coverage probability is the fraction of these computed confidence intervals that include the desired
but unknown and not observable parameter value. The coverage probability is the frequency of times
that a confidence interval will contain the value of the target parameter and is defined as follows:

Pc = P[θ ≥ θL] (5.22)

where θL is the lower confidence bound on an unknown parameter θ. For instance, the coverage
probability of a one-sided lower confidence bound on the the L10 is P[L10 ≥ L10,L]. Note that for
CI the ”nominal coverage probability” is often set at 0.95, e.g., the value of δ is set such that a
95 % confidence in the bounds is achieved. However, the true coverage probability is the actual
probability that the confidence interval will contain the true target value. Note that, to estimate
the coverage probability, the true L10 is required. This is never available in practice. A simulation
study will be used to analyze coverage properties of different methods in a controllable and verifiable
numerical environment. The interested reader is reminded to, e.g., Jeng and Meeker (2000); Kabaila
and Leeb (2006); Diciccio and Romano (1988) and Brookmeyer and Crowley (1982), for further details
on coverage probabilities.

5.8 Reliability testing: A simulation study

We will perform a simulation study to compare different estimation methods for Weibull distributed
data with one failure and small sample size (6 samples) with type I censoring (time censoring on
one specific point in time for all non-failure objects). We will perform a similar analysis to Jeng and
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Meeker (2000), which investigated the performance of many different confidence interval methods, for
censored data. In particular it looked at the coverage probability dependent on different censoring
proportions and different sample sizes. They deliberately removed all observations with 1 or zero
failures, as some of the methods behaved poorly in these cases. In line with the research question of
this report, we will extend this analysis to cases where there are few failures, for several methods. We
will compare the coverage probabilities of the L10 confidence bounds of the following methods:

M1: Normal-approximation,

M2: Nelson’s method,

M3: Likelihood ratio.

Furthermore we will investigate the influence of a varying shape parameter, when this parameter is
(wrongly) assumed to be known.

5.8.1 The proposed Monte Carlo simulation procedure

We propose a Monte Carlo (MC) simulator to generate time-to-failure and censoring indicators from
a known Weibull distribution and assess the validity of the reviewed methods. A numerical simula-
tor allows controlling the data generating mechanism, the censoring rates, experiment duration, and
sample size. We will exploit this feature to study different experimental scenarios (low sample sizes,
high-censoring rates) and issues related to model miss-specification. Moreover, because the underlying
distribution generating lifetime data is known precisely, the true L10, α, and β can be easily computed.
We will use their reference values to check the goodness of statistical estimators, the reviewed confi-
dence bounds and their coverage probabilities. In this work, we study three generating mechanisms
and model errors:

(1) The assumed shape parameter, βguess = 1.5,is exactly equal to the true value β = 1.5.

(2) The assumed shape parameter, βguess = 1.5, overestimates the true value β = 1.39.

(3) The assumed shape parameter, βguess = 1.5, underestimate the true value β = 1.61.

In both cases, the reliability distribution family selected to generate the data is the Weibull family.
The scale parameter is set to α = 1283. Note that for case (1) the true L10 is equal to 286.21 hours,
for case (2) L10 = 254.16 hours, whilst for case (3) the L10 is only 317.09 hours. In other words, for
case (3), about 10% of the components do not survive the 13 days of operations.

The numerical implementation of the MC simulator work as follows:

(i) Data Generation: First, we draw n samples from a known Weibull distribution with true
α = 1283 and β selected as case (1), (2) or (3). If a sample exceed the selected censoring time T
(the duration of the experiment) their value is set equal to T and censoring indicator assigned
to them. In this example, a T between 100 and 400 hours leads to high censoring rates, between
approximately 82 % to 98% depending on the selected case.

(ii) Estimation: The L10 and α are estimated from the data generated in (i), see e.g. equation
(2.13), and methods M1, M2 and M3 applied to derive L10,L and α10,L. We always apply a
confidence level δ = 0.05 to compute the bounds.

(iii) Coverage: An indicator function assigned to each interval as follows:

1A =

{
1 if A is true

0 otherwise.

Note that 1A is equal to 1 if the statement A is true and 0 otherwise. For instance if the
statements of interest are A := {α ≥ αL} and A := {L10 ≥ L10,L}, two indicator functions are
assigned, one for each bound.
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(iv) Iterate and post-process the results: Steps (i) to (iii) are repeated N times and the results
processed to estimate coverage probabilities and average values of the lower confidence bounds.
For instance, coverage probabilities are estimated as follows,

Pc,i = E[1A] ≈
∑N

i=1 1{A}

N
.

We repeat this procedure for various experimental set ups, for instance, by increasing sample
sizes and test duration (and this decreasing censoring rates).
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Chapter 6

Analysis

In this section, we will use the simulation tool described in Section 5.8 to investigate the sensitivity,
coverage probabilities and tightness of the confidence bounds on α and L10 reviewed in this thesis.
In the original problem description provided by SKF, a data set with six devices is available for the
reliability qualification analysis. The duration of the reliability test is 300 hours, the Weibull distri-
bution family assumed for the characterization of the components’ reliability and a pre-determined
shape parameter set to βguess = 1.5. Among these six objects, five survived the test and only one
failed. Hence, the lifetime of the former is right-censored (Type I censoring) at 300 hours, whilst the
latter is assumed to fail at either 50, 100, 150, 200, and 250 hours.
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Figure 6.1: ML estimation L10 and normal approximation method forL10,L with δ = 0.05 for original
problem, for different single failure times, βguess = 1.5.

Figure 6.1 presents the estimated reliability for the original problem as stated by SKF. The marked
blue and red lines present, respectively, the maximum likelihood estimates of the, L10, and the lower
bound, L10,L. The x-axis shows the failure time of the only failed component. Note that the lower
bound on L10,L is computed using the variance of the Fisher information matrix and the normal ap-
proximation method and setting a confidence level 1− δ = 0.95, a confidence level which we will use
throughout this chapter. Both the estimate and its lower bounds increase for increasing the value
of the non-censored failure time. However, one could argue that the estimates, especially the lower
bound, are not very sensitive to different failure times.
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6.1 Effect of sample size and censoring rate

To investigate this alleged lack of sensitivity, we study estimates for an increasing number of failed
components (from 1 to 6) and for increasing sample sizes (from 6 to 12). Figure 6.2 presents the
results of the first analysis, where solid lines represent the L10, and the dashed lines the lower bounds.
In this figure, we notice that increasing the number of failed components has a more significant effect
on L10 than on L10,L. These results suggest that L10,L might not be so sensitive to the number of
failures in this specific setting. To further investigate the sensitivity of the different estimates, we also
plot the L10 and L10,L for increasing sample sizes. In this setting, we again have just one failure, and
all other objects are censored at a time of 300 hours. The results are shown in Figure 6.3. In this
setting, we see an increase of data, but still, one failure only marginally changes the L10,L.
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Figure 6.2: Estimates of L10 (solid lines)) and the lower bounds L10,L (dashed lines) with δ = 0.05 for
different number of failures r = 1, ..., 6, n = 6.
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Figure 6.3: Estimates of L10 (solid lines) and lower bounds L10,L (dashed lines) with δ = 0.05 for
sample sizes n = 6, .., 12 and for single failure times with different number of objects.
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6.2 Effect of the assumed shape parameter

In practice, when only few data points are available, the shape parameter β is guessed beforehand.
This model assumption can lead to poor quality of the estimated α parameter and L10 since β is
part of the estimates. To investigate the effect of β, we repeated the estimation procedure for several
values of β ∈ [1, 2]. In Figure 6.4 we see what a variation in β has on the estimated L10 in our original
problem of n = 6 data points with r = 1 failure.
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Figure 6.4: Estimates of L10 (solid lines) and lower bounds L10,L (dashed lines) with δ = 0.05 for
different values of β with single failure times between 50 and 300 hours.

6.3 Bounds comparison for zero failures

In this section, we study the lower bounds for L10 when there is data with zero failures. The un-
availability of failures is a probable outcome of reliability tests on high-quality and expensive samples
given a limited testing time (e.g. due to budget constraints). When this happens, the estimate
only depends on the sample size, the censoring time and the assumed value of the shape parameter
β, assuming the lifetime data is Weibull distributed. In Table 6.1, we provide the lower confidence
bounds on α and L10 for different values of a guess shape parameter β and sample sizes. We only
present Nelson’s method (M2), and the likelihood ratio method (M3) since the normal approximation
method (M1) is not directly applicable when there are no failures. See Section 5.6.1 for further details.

Note that, in the results of Table 6.1, the Nelson’s estimate for α̂ substitute the MLE and is ap-
plied to derive the bounds for both M2 and M3. This procedure was necessary to compute the bounds
since the MLE for α̂ is not computable for zero failure data. The Nelson’s estimate α̂ for sample
sizes n = [6, 10, 20] and β = 1.39 are [1146.3, 1574.3, 2421.5]. For a higher β = 1.61, the estimated
α̂ increases significantly to [1417.2, 2046.7, 3369.9] for the three sample sizes whilst for β = 1.5 the
results is [1264.7, 1777.8, 2822.2].

From the results in Table 6.1 we can observe that the values of the bounds increase when the
sample size gets larger, without significant differences between M2 and M3. Increasing the value of
β, the lower bound also increases. In general, M2 and M3 behave largely the same when samples
increase or different βguess are used. However, the estimates of M3 are higher in general, so M2 is
more conservative for zero failure data.
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L10,L for zero failures

M2 M3

data size β = 1.39 β = 1.5 β = 1.61 β = 1.39 β = 1.5 β = 1.61

n = 6 97.95 106.33 114.14 108.05 116.4 124.23

n = 10 141.45 149.47 156.76 156.0 163.7 170.61

n = 20 232.91 237.27 241.11 256.9 259.85 262.4

αL for zero failures

M2 M3

data size β = 1.39 β = 1.5 β = 1.61 β = 1.39 β = 1.5 β = 1.61

n = 6 494.5 476.6 461.8 545.4 522.0 502.6

n = 10 714.1 670.1 634.3 787.6 733.8 690.3

n = 20 1175.7 1063.6 975.5 1296.9 1164.8 1061.7

Table 6.1: The lower bounds computed with M2 and M3 on L10 for data without failures. Different
sample sizes are investigated and different assumed values for the shape parameter are used, with a
censoring time of 300, δ = 0.05.

6.4 Simulation results

In the following section we will present the results of a simulation study on the three selected meth-
ods, namely the normal approximation method (M1), Nelson’s method (M2) and the likelihood ratio
method (M3). We look at the performance for the different methods for confidence intervals with dif-
ferent censoring rates. Furthermore, we will investigate the implications of under- and overestimating
shape parameter β. Moreover we will investigate coverage probabilities for the different methods.

6.4.1 Average of the lower confidence bounds for high censoring rates

In Table 6.2 we present the results of the simulation study for the different confidence bounds for L10

and α with different censoring rates and for different values of β with δ = 0.05. For this simulation
we simulated 2000 data sets of size 100 for every scenario. The data sets that contained zero failures
(r = 0), so fully censored data sets, where omitted, since this would give a skewed view on the normal
approximation method, which cannot handle zero failure data.

6.4.2 Coverage probabilities

In Table 6.5 the coverage probabilities are presented from the simulation study of the different con-
fidence bounds on L10 and α for different censoring rates and different values of β. We computed
the coverage probabilities estimates from 2000 independent realization of random data set of size 30
and 100. We see that for all simulation with 30 samples, the coverage probability is very high, higher
than the 0.95, which was an expected result since the lower bound computed have been computed
for a confidence parameter δ = 0.05, see Section 5.7. For data with 100 samples, we see coverage
probabilities closer to 0.95, especially when censoring is lower than 90%. The results suggest that
when less data is available (either because of the data set size or because of higher censoring rates),
the reviewed methods become more conservative.

For Table 6.5, we can observe that (small) errors in the guessed parameter β do not significantly
impact the coverage probabilities. Nevertheless, the average magnitude of the estimated bounds (and
therefore its “closeness” to the true estimate) can change substantially for different methods. In other
words, the probability that the confidence bounds on the lifetime given by the three are correct is
always very high and quasi-identical. On the other hand, the impact of the statement on the minimum
lifetime L10 (which is the average magnitude of the bound) can be quite different, e.g., for β = 1.61
and 100 h test, M1 guarantees an L10 of at least 140 hours whilst M3 almost 149 hours. Note an
inversion in the order of magnitudes which occurs for lower censoring rates, where method M3 gives
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L10,true = 254.16 [h] Overestimated shape, β =1.39
Censoring T M1 M2 M3
82 % 400 h 207.57 206.67 200.0
86 % 320 h 195.99 195.02 192.0
90 % 240 h 182.41 181.47 178.93
94 % 170 h 164.05 163.89 162.11
97 % 100 h 126.06 133.29 128.4

L10,true = 286.21 [h] Exact shape, β =1.5
Censoring T M1 M2 M3
84.0% 400 h 221.94 220.92 215.89
88.2% 320 h 211.00 212.14 206.40
92.3 % 240 h 199.04 198.08 194.59
95.3 % 170 h 181.21 181.58 180.75
97.8 % 100 h 133.41 136.36 138.91

L10,true = 317.09 [h] Underestimated shape, β =1.61
Censoring T M1 M2 M3
85.8 % 400 h 238.80 237.70 232.36
89.8 % 320 h 233.01 231.81 227.61
93.4 % 240 h 220.07 219.35 216.36
96.2 % 170 h 196.3 197.9 198.46
98.3 % 100 h 140.8 145.1 148.9

αtrue = 1283 Overestimated shape, β =1.39
Censoring T M1 M2 M3
82 % 400 h 930.50 926.46 896.6
86 % 320 h 878.61 874.26 860.8
90 % 240 h 817.71 813.49 802.1
94 % 170 h 735.88 734.68 726.7
97 % 100 h 589.20 597.53 575.8

αtrue = 1283 Exact shape, β =1.5
Censoring T M1 M2 M3
84.0% 400 h 1002.0 997.38 967.81
88.2% 320 h 955.93 951.01 925.26
92.3 % 240 h 898.79 894.58 872.30
95.3 % 170 h 807.98 809.43 810.26
97.8 % 100 h 599.95 613.59 622.73

αtrue = 1283 Underestimated shape, β =1.61
Censoring T M1 M2 M3
85.8 % 400 h 1078.38 1073.12 1038.29
89.8 % 320 h 1038.49 1033.06 1020.35
93.4 % 240 h 979.91 981.63 961.76
96.2 % 170 h 860.98 905.24 884.56
98.3 % 100 h 631.44 650.62 668.52

Table 6.2: Average values for the lower bounds on L10 and α computed according to M1, M2 and M3
and neglecting r = 0 scenarios, βtrue = 1.5. Different censoring rates are investigated and two cases
where the shape parameter is under and over estimated, respectively. Note that the values reported
in the table are averages over 2000 randomized data set of size 100.

shorter guarantees on the lifetime compared to M1 and M2, e.g., for β = 1.61 and 400 h test, M3
ensures an L10 of at least 232 hours whilst M1 and M2 are closer to 238 hours.
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Generative model with β =1.39 α =1283.

100 samples 30 samples

Censoring T M1 M2 M3 M1 M2 M3

82 % 400 h 0.94 0.94 0.96 0.98 0.98 0.97

86 % 320 h 0.95 0.96 0.96 1.00 1.00 0.97

90 % 240 h 0.96 0.96 0.96 1.00 1.00 1.00

94 % 170 h 0.98 0.98 0.98 1.00 1.00 1.00

97 % 100 h 1.00 1.00 1.00 1.00 1.00 1.00

Table 6.3: Coverage probability of the lower bound on L10, where Pc,i is estimated for Models Mi with
i = 1, .., 3. We consider the cases when the shape parameter β is overestimated (β = 1.5 when the
true value is 1.39). We present two set of results, for samples sizes of 100 and 30. The probabilities
are estimated for 5 × 103 data sets drawn from the same reliability distribution but for increasing
censoring rates, δ = 0.05.

Generative model with β =1.61 α =1283.

100 samples 30 samples

Censoring T M1 M2 M3 M1 M2 M3

85.8 % 400 h 0.96 0.97 0.98 1.0 1.0 0.97

89.8 % 320 h 0.96 0.97 0.97 1.0 1.0 1.0

93.4 % 240 h 0.96 0.96 0.96 1.0 1.0 1.0

96.2 % 170 h 1.0 1.0 1.0 1.0 1.0 1.0

98.3 % 100 h 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.4: The coverage probability, Pc,i of the lower bound on L10 for Models Mi with i = 1, .., 3 and
under estimated β (the true value is 1.61). We present two set of results, for samples sizes of 100 and
30. The probabilities are estimated for 5× 103 data sets drawn from the same reliability distribution
but for increasing censoring rates, δ = 0.05.

Generative model with β =1.5 α =1283.

100 samples 30 samples

Censoring T M1 M2 M3 M1 M2 M3

84.0% 400 h 0.96 0.96 0.96 0.98 0.96 0.96

88.2% 320 h 0.95 0.95 0.97 1.0 1.0 1.0

92.3 % 240 h 0.96 0.96 0.96 1.0 1.0 1.0

95.3 % 170 h 1.0 0.96 0.96 1.0 1.0 1.0

97.8 % 100 h 1.0 1.0 1.0 1.0 1.0 1.0

Table 6.5: The coverage probability, Pc,i of the lower bound on L10 for Models Mi with i = 1, .., 3 for
an exact guess of the shape parameter, βguess = β. We present two set of results, for samples sizes
of 100 and 30. The probabilities are estimated for 5 × 103 data sets drawn from the same reliability
distribution but for increasing censoring rates, δ = 0.05.

30



Chapter 7

Conclusions

In this chapter we will present the conclusions following the literature review and analysis from the
simulation study as performed in this report. In Section 7.2 we present some possibilities for future
research on the topic of this report.

7.1 Conclusions

In this thesis, we investigated reliability acceptance tests and methods used in the industry to esti-
mate the reliability of new products and systems. We analyzed statistical confidence bounds for data
sets having small sizes and few or no failures and studied their applicability to no-failure situations,
their coverage probability, and average tightness. We considered both lower bounds on service life
and reliability model parameters. For synthesis’ sake, we restricted our analysis to Weibull lifetime
models, type I censored data, and scenarios characterized by high censoring rates and low sample sizes.
Note that the reviewed bounds only apply to the formerly mentioned scenarios and do not generalize
to other distribution families. Nevertheless, lifetime data and small sample sizes are not uncommon
in the engineering and manufacturing industry, where tests on new products can be expensive and
seldom lead to failures (because of highly reliable components). Moreover, Weibull reliability models
are prevalently used in practice, making this investigation of immediate importance for practitioners
in the field of reliability qualification and reliability acceptance testing.

We started this work with a concise but comprehensive mathematical introduction to reliability
and survival analysis. Then, we presented a literature review of some of the most commonly adopted
confidence bounds for reliability qualification. We showed uniqueness for MLE for Weibull distributed
data with right-censoring. Then, we focused on three specific bounds: (1) the normal approximate
bounds, (2) Nelson’s confidence bounds, and (3) bounds derived through the likelihood ratio methods.
These bounds are well-known in the reliability, and this work focused on investigating their advan-
tages, shortcomings and applicability to high-censoring and low sample size scenarios. Issues related
to sample size and censoring might arise due to the specific set-up of the experiment and underlying
(and unknown) failure-generating mechanism. Besides these issues, we also focused on model errors
and, specifically, errors arising from a wrong guess of the shape parameter.

To investigate the coverage probability of the three bounds, we designed a simulation model where
we generate data, estimate the parameters α and L10 and their lower confidence bounds and compute
the coverage probability for different underlying parameters and sample sizes. A separate data study
for zero failure data is done for Nelson’s method and the likelihood ratio method.

The results suggest that higher censoring rates give more conservative confidence bounds, for all
the investigated methods. Increasing the sample size in general would improve the bounds. In the
comparison of the three methods, we see that for higher censored cases the Likelihood Ratio method
provides the highest lower bounds, whereas the normal approximation method gives higher lower
bounds for lower censoring cases. In the results for the zero failure data, we see that Nelson’s method
provides more conservative lower confidence bounds in general. Increasing the sample size with data
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with zero failures greatly increases the confidence bound.
Another effect we see in the results is that under estimated shape parameter leads to a higher cover-

age probability, leading to conservative confidence bounds and vice versa. Note that when estimating
lifetime, conservative confidence bounds can be undesirable with for example expensive components.

7.2 Further research

In addition to the studies on the different methods for the confidence bounds, a study on the quality of
different estimates for the parameters of the Weibull distribution for data sets with zero failures could
give more insight, since the methods depend on the quality of the estimate. For example the alternative
MLE as suggested by Jiang et al. (2010) could be compared to the median estimate as suggested by
Nelson. To extend this simulation study, more bounds could be included that are assumed to behave
nicely for few failure data. As described by Magalhaes and Gallardo (2020), it might prove beneficial
to correct the likelihood ratio method. Research in the performance of this correction are necessary
especially in the case of few or zero failures.
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