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Abstract

Honeypots are not new in the field of information security, as even in the IoT/IIoT/CPS domain
already, there exist numerous works that propose solutions for a particular goal. However, there
exists no overarching methodology that is accessible to develop honeypots specific to an individual’s
needs. This work, therefore, proposes a framework that enables the systematic construction of
a honeypot in the IoT/IIoT/CPS domain, given an objective specified by the user. First, a
topology of existing honeypot characteristics was developed, based on over twenty works. Then,
relevant observation targets were selected from the MITRE ATT&CK for ICS framework, and
categorized into phases of the Cyber Kill Chain. By mapping these observation targets with the
constructed topology, different sets of honeypot features were provided as output, which were
able to facilitate specific observation targets. Part of the mapping was validated and found to be
consistent. To demonstrate that the framework is practical, a use case was presented in which
a government agency aimed to develop a honeypot for their building automation system. The
proposed methodology was followed, which resulted in a honeypot that facilitated two different
attack paths and was able to capture all observation targets derived from the user’s objective.
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Chapter 1

Introduction

Cyber-Physical Systems (CPS) describe systems that measure and control the physical world to
achieve a particular goal. They can be found in many industries, such as electric, water, manufac-
turing and building automation. Over the past years, CPS have been connected to the Internet
increasingly, promoting efficiency and ease of use [1]. While there are clear benefits in the increas-
ing connectivity of these systems, it also increases a greater need for their security. Especially
since CPS are developed with long life cycles, older systems typically do not have the required
modern security measures in place.

In recent years, various incidents have taken place where critical infrastructure, containing CPS
had been attacked, resulting in unavailability or even damage to those systems. In 2015, a power
outage was caused by an attack on a regional electricity distribution company in Ukraine [2]. A
petrochemical plant in Saudi Arabia was attacked in 2017, where the malware was specifically
designed to manipulate safety systems in the critical infrastructure [3]. Besides the implications
on the system itself, the disruption of large scale physical processes could have significant impact
on the security and safety of many people.

One of the defensive countermeasures for protecting networks is the use of honeypots. These ‘fake
targets’ can be placed inside a network to attract attackers by realistically imitating a device,
service or application. By connecting and interacting with the honeypot, the owner is alerted and
could collect information about the attacker and its method of operating. Even though honey-
pots can be very effective as security measure, the development of these mechanisms can be time
costly as they are often tailor-made for a specific goal and network environment, and therefore
not reusable. The aim of this project is to develop a solution such that a user can systematically
construct honeypots for a specific objective in the Internet of Things (IoT)/Industrial Internet of
Things (IIoT)/CPS domain. The remainder of this work will have the following structure:

In Chapter 2, we provide background information to give an understanding of honeypots and
different type of networks. Furthermore, in the same chapter, a literature research has been per-
formed to see what studies have been performed already in the IoT/IIoT/CPS honeypot research
domain. Chapter 3 uses the existing literature to identify the gap in the state-of-the-art and
thus provide the motivation for the research. Moreover, it states the research question and sub-
questions on which the research has been based. In Chapter 4, the methodology is built in a
stepwise approach, by first creating an IoT/IIoT/CPS honeypot topology based on honeypots in
the literature. Chapter 5 describes the results that are obtained while using the methodology. In
Section 5.1 we aim to demonstrate that the mapping performs as intended, using honeypots that
were not considered before in the development of the methodology. In Section 5.2, a use case is
conducted in which we construct a functional honeypot to show that the framework is practical.
In Chapter 6, the results and limitations of the research shall be discussed and finally in Chapter
7, we summarize the conclusions and provide some points to consider for future work.
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Chapter 2

Background and Literature
Research

In this chapter, an extensive state-of-the-art analysis regarding honeypots is performed, based
on (recent) scientific literature. To be able to place the research into context, we will first give
a description of honeypots, their different types, and considerations. Next, we will explain the
characteristics of the IoT/IIoT/CPS, as well as their differences with traditional Information
Technology (IT) infrastructure. Then we will provide a detailed overview of a typical Building
Automation System (BAS) network, as this application domain plays an important role in the use
case of this research. Finally, we discuss relevant literature to identify gaps in the state-of-the-art.

2.1 Honeypots in a Nutshell

Following one of the earliest definitions, according to SecurityFocus, a honeypot is: “an information
system resource whose value lies in unauthorized or illicit use of that resource” [4]. Later on, more
definitions appeared, such as ”A system (e.g., a web server) or system resource (e.g., a file on a
server) that is designed to be attractive to potential crackers and intruders, like honey is attractive
to bears.”, according to Request for Comments (RFC) 4949 [5]. What these definitions have in
common is the core purpose of being attackable by potential intruders. A honeypot is a defense
mechanism in an active network, which main value is to monitor adversary behaviour, by posing
as a production device. Since the decoy has minimum actual practical use in a network, whenever
there is a connection made to the honeypot, it can be assumed that there is malicious intent.
When comparing honeypots with other well known monitoring mechanisms, such as a Network
Intrusion Detection System (NIDS), there are several advantages for its use:

– Low false positive rate: In contrast to a NIDS, there are very few false hits as a NIDS
monitors traffic throughout the entire network. In the case of a honeypot, however, any
form of actively initiated communication is suspicious by definition [6].

– Small data sets: As honeypots only monitor local interactions, logging files are notably
smaller than those generated by NIDS. Therefore, honeypots are a relatively cheap and easy
solution in terms of data analysis compared to NIDS [7].

– Likelihood of capturing valuable information: Depending on the complexity of the honeypot,
valuable information ranging over the Pyramid of Pain can be gained [8]. Examples can vary
from Internet Protocol (IP) addresses and logins with simple honeypots to zero-day exploits
and tooling used for complex decoy systems.

– No encrypted data: Since a honeypot acts as an end device, it does not suffer from dealing
with encrypted data. Therefore, processes such as malware reversing and mapping an attack
on the honeypot are made much more feasible as opposed to NIDS.

2



CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

There are also some limitations worthwhile mentioning regarding the use of honeypots [9][10]:

– Narrow field of view: Since honeypots only monitor local traffic, a honeypot is only effective
when it is the target of the attack. Therefore, honeypots are not suitable as standalone
defense systems.

– Detection: In order to attract a targeted attacker, the honeypot needs to resemble the real
device as much as possible. There are many tools available that are able to fingerprint
well-known honeypots by their configuration or to detect whether an application/operating
system is running in a virtual environment.

– Risks: For specifically production honeypots, there are real risks when due to incorrect
configuration/segregation the honeypot could be used to attack production systems when it
is taken over.

2.2 Types of Honeypots

From a user’s point of view, there are two main reasons to deploy a honeypot. The first reason is
to use it as a defense mechanism in an active network. Its primary objective then is to distract the
adversary from real systems and alarm the user when interactions with the decoy occur. These
types of honeypots, namely production honeypots, are not necessarily accessible from the Internet.
Instead, their operation logic lies with monitoring internal or isolated networks and are, therefore,
also well-suited to defend against local attackers. For example, if the honeypot takes the form of
some critical resource (database, mail server), malicious employees or automated malware could
be attracted and detected. The second reason for deploying a honeypot is to gain information,
either for educational purposes or for threat intelligence. This type of honeypot is referred to as a
research honeypot and focuses mainly on attackers, their targets, motives, and methods. Research
honeypots are generally accessible from the Internet, where the user hopes that an adversary at-
tempts a connection such that data is gathered.

Simulated service

Simulated OS

Host service

Host OS

Attacker Low-interaction honeypot

Figure 2.1: Example of layering in a virtualized low-interaction honeypot.

The objective of a user when deploying a honeypot is closely linked to the abilities that the
honeypot should possess. In literature, these are categorized into different levels of interaction
[10]. While there does not exist a widely accepted or authoritative definition of these different
interaction types, somewhat of a description can be given, based on similarities between the
different works analyzed in this research. Starting with the simplest one, low-interaction honeypots
mostly offer a single service that is frequently targeted by attackers. This could for example be
an open port, simple web portal, or some (part of a) network service. A typical setup for such
a honeypot can be found in Figure 2.1, where the adversary communicates with a sandboxed
simulated service. The dashed box in the figure represents the possibility of either presence or
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CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

absence of a simulated Operating System (OS) in the honeypot. The reason for it is that this type
of honeypot is predominantly script-based, meaning that the attacker has no access to the host
operating system. Consequently, low-interaction honeypots have a reduced risk of being taken
over and are much easier to set up. On the other hand, the information gathered from this type is
limited and consists of often rudimentary data such as raw packets with corresponding origin IP
addresses and username/password combinations. Low-interaction honeypots are primarily used
in the research domain for statistical analysis of automated attacks, such as scans and spammers.
They can also be found as a supplement to an Intrusion Detection System (IDS) when an alarm
is triggered as soon as any form of communication with the honeypot occurs. The downside of
low-interaction honeypots is that a targeted attacker could detect them relatively fast due to the
limited pre-programmed functionality and responses in script-based simulated services.

Host service(s)

Host OSAttacker High-interaction honeypot

Figure 2.2: Example of layering in a virtualized high-interaction honeypot.

On the other side of the spectrum, high-interaction honeypots provide the attacker with much
more possibilities. For example, advanced emulation of OS or even the use of real services, allows
the adversary to perform more actions on these systems. The goal of this type of honeypot is to
gather more complex data from the attacker’s activity. Therefore, it is essential that the honeypot
behaves as much as a real device as possible, by imitating or even using a real device as shown in
Figure 2.2. High-interaction honeypots are generally used in environments where the adversary
model is mostly based on the ‘targeted attacker’, such as Industrial Control Systems (ICSs) [11].
An example would be the use of a real non-production Programmable Logic Controller (PLC)
with a mirroring switch in order to log all incoming traffic to the honeypot. Deploying a honeypot
in such a scenario would offer the attacker all available services without affecting an actual (cyber-
physical) system.
Because of the realistic functionalities of the honeypot, the attacker might use an exploit on an
unknown vulnerability, thinking that he successfully intruded into the target network [12]. Log-
ging this type of information can be much more valuable compared to data gathered from a
low-interaction honeypot. There are some drawbacks to high-interaction honeypots, however, in-
cluding high costs due to the complexity or use of a real device, specifically in the IoT/IIoT/CPS
domains [13]. Furthermore, there is a higher risk involved since the attacker might take control
of the operating system and attempt to use the honeypot for lateral movement towards an actual
production device. Therefore, proper configuration and network structure are crucial to prevent
more harm than good from being done by the high-interaction type.

2.3 IoT, IIoT and CPS Networks

Being able to identify the attack surfaces and vectors in an IoT, IIoT, or CPS network, requires
an understanding of such network structures. Honeypots and other security mechanisms that ori-
ginated in the IT world, are increasingly being incorporated in the CPS domain [14]. Therefore,
using differences between these networks it should become clear what adaptations are necessary
for an IoT, IIoT, or CPS honeypot. To determine the differences between the aforementioned

4



CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

Table 2.1: Key differences between CPS and IoT.

CPS IoT
Specific domain No specific domain

Scalable Highly scalable
Data generation Very high data generation
Isolated system Internet-connected

IoT IIoT CPS

Figure 2.3: Venn-diagram of IoT, IIoT, and
CPS.

network types, we first provide their definitions based on available recognized and authoritative
sources.

IoT: A global infrastructure for the information society, enabling advanced services by intercon-
necting physical and virtual things based on existing and evolving interoperable information and
communication technologies [15].

CPS: Systems that use computations and communications deeply embedded in and interacting
with physical processes to add new capabilities to physical systems [16]. BAS and ICS are ex-
amples of a CPS.

IIoT: A subset within IoT that focuses on industrial applications [17].

These concepts and their relationships are visualized in Figure 2.3 by a Venn diagram [18]. It
shows that IIoT is a subset of both IoT and CPS, containing the overlap between these two
concepts. Therefore, we could say that IIoT consists of CPS of which their embedded systems
are inter(net)connected, enabling advanced services. Table 2.1 shows the key differences that
distinguish CPS from IoT. Examples of specific domains that CPS refer to, are ICS and our
use case, BAS. The main difference between IT and IoT lies in the characteristics, such as the
heterogeneous and resource-constrained devices that are present in IoT, together with its ultra-
large-scale network that connects all ‘things’ to the Internet [19].

To get a better understanding of the architecture of typical IIoT and CPS networks, we are using
BAS as an example, since it belongs to the CPS domain and will be relevant for our use case. The
main differences between traditional IT and BAS boil down to the case of IT versus Operational
Technology (OT). Whereas IT mainly deals with data and the flow of digital information, OT
deals with the operation of physical processes. In the BAS domain, this translates into services
available in buildings, for example, Heating, Ventilation and Air Conditioning (HVAC), lighting,
access control mechanisms, and (fire) alarms among others. Consequently, the availability of these
services is paramount in BAS, whereas confidentiality and integrity are the main security-related
priorities in IT networks. Moreover, the disruption of physical processes inside a building has a
direct impact on the persons and things in that building.

In Figure 2.4, the typical structure of a BAS network is depicted. Depending on the terminology
used, three or four layers can generally be distinguished. Starting from the top, the highest layer
describes devices used for the management of the network. Specific devices on this layer are mostly
engineering workstations used by operators, to monitor or control the system. These devices might
or might not be connected to the Internet, resulting in different attack paths.
In the middle layer (Automation), the building automation controller connects different field
devices within the same subnet. The reason for the naming of the automation layer is that
the controller enables autonomous interoperability between subsystems of different vendors using
(pre-)configured control logic. Communication between automation layer devices and management
layer devices generally takes place using IP-based protocols, such as Hypertext Transfer Protocol

5



CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

BAS/ICS NETWORK

MANAGEMENT

FIELD

FIELD

AUTOMATION

Figure 2.4: Typical network structure of a Building Automation System.

(HTTP), File Transfer Protocol (FTP) or BAS specific protocol stacks, such as LonWorks and
Building Automation and Control Networks (BACnet). BACnet is an open protocol stack spe-
cifically used in BAS, consisting of application, network, data link, and physical layers. In the
example of Figure 2.4, the two controllers in the automation layer both have their separate local
networks but are still inter-connected through an IP-based protocol such as BACnet/IP. Even
though this interconnectivity can increase efficiency (think about light control in adjacent parts of
a building), it creates opportunities for adversary lateral movement, especially since these types
of protocols do not have security implemented by design.

The Field layer describes the subsystems that interact with the physical world, such as sensors,
actuators, and their corresponding PLCs and Remote Terminal Units (RTUs). The communica-
tion of these devices with the automation controller takes place using a variety of field protocols
such as Modbus, MS/TP, KNX, LonTalk, and many others.

The attack paths in a BAS heavily depend on the configuration of its network. Attack paths in
general can be modeled through the MITRE ATT&CK Framework [20]. This framework enables
threat modeling, ranging from information about particular Advanced Persistent Threat (APT) as
well as the tactics, techniques, and software used for specific attacks. In the ATT&CK Framework,
tactics represent tactical adversary goals during an attack. Techniques describe the means by
which the attacker attempts to achieve a certain goal. The ATT&CK Framework will contribute
significantly to our research, particularly in Section 4.3.2. Dos Santos et al. from the company
Forescout listed potential attack paths on different surfaces, which can be found in Figure 2.5 [21].
The main distinction that can be made is whether a device within the BAS is directly connected to
the Internet or not. In the first scenario, the attacker can reach a device in the BAS network from
the Internet. There are various ways in which the exposed device could unintentionally provide
initial access such as an ‘Exploit Public-Facing Application’ (in case of a server) or by use of
hard-coded/default credentials (in case of an IoT device or PLC) [22][23].
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CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

The alternative scenario in Figure 2.5, indicated by the purple path, describes a properly air-
gapped network, which requires physical or close access to the network. Techniques such as
‘Hardware Addition’ or ‘Replication Through Removable Media’ could be used to gain initial
access through the use of USB sticks or by connecting a malicious device to the network.

Figure 2.5: Potential BAS attacker paths identified by Forescout [21].

Since security features such as authentication and monitoring are often not integrated or optional
in BAS protocols, initial access is generally the hardest tactic to apply. Once the adversary is
inside a network, he or she can move around easier in a BAS compared to an IT network. This
makes BAS also significantly susceptible to insider threats. For example, an insider could exploit
an IoT device on local network A, and move up the hierarchy, through the building automation
controllers to local network B being responsible for HVAC or access control.

2.4 State-of-the-Art Analysis

Over the past fifteen years, lots of research and progress has been made in the honeypots research
domain. In 2004, Google engineer Niels Provos released one of the first open-source honeypot
frameworks for virtual computer systems [24]. Honeyd could be configured with different services,
such as Post Office Protocol 3 (POP3), TelNet, Simple Mail Transfer Protocol (SMTP), or FTP
such that an adversary could communicate with the honeypot on the network level. While this
framework allowed the spawn of thousands of virtual devices on a network, its low interaction
severely limited the opportunity of gathering information about the attack(er). However, over the
years Honeyd has matured significantly due to its increased configurability resulting in the possib-
ility for high-interaction honeypots. Furthermore, a lot of services, including industrial protocols,
were added such that a large number of recent honeypots have and are being constructed using
this framework [25][26][27][28][29].

In 2018, Wang et al. developed ThingPot, and proclaimed the system as medium-interaction IoT
honeypot [30]. In this research, medium-interaction is described as a combination of high and
low interaction elements. According to the definition that we use, which will be further specified
in Section 4.2.1, ThingPot can be considered to offer high interaction. The research uses an Ex-
tensible Messaging and Presence Protocol (XMPP) client and a REpresentational State Transfer
(REST) Application Programming Interface (API) for the use case of imitating a Philips Hue
smart light system. Data was collected for 1.5 months, by logging both services and classifying
captured requests as ‘targeted’, ‘untargeted’, and ‘undefined’. This way, the distinction could
be made between general scanning activity and specific attacks. Whereas the XMPP service did
not receive any direct requests, the REST logs did indicate attacker activity. More interestingly,
an attacker methodology was derived in the research, where after general scanning for openings,
targeted attacks using brute force or fuzzing would take place.

7



CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

Another honeypot in the IoT domain, namely Honeytrack, has been developed by Kamoen [31].
This work was built on top of an existing open-source framework and extended the available ser-
vices with TelNet [32]. Another feature of this honeypot is that it is able to save the virtual
machine state for each attacker. Consequently, sessions could be restored, allowing for higher
interaction and thus increasing the amount of knowledge that could be gathered.

A recent study by Dodson et al. describes the largest high-interaction ICS honeypot network in
the literature yet, mimicking RTUs and PLCs using dispersed geographical locations [33]. Due
to the convincing imitation of ICS devices, they were able to identify new ICS exploits injected
in the honeypot network. The research states that a clear distinguishment can be made between
adversary motivation for targeting IoT and ICS devices. Where IoT is susceptible to large-scale
attacks, ICS lacks this interest mostly by its high cost of entry, a fragmented population that uses
proprietary software, and the generally limited resources of ICS devices. Therefore, the adversary
model is narrowed down to a targeted attacker with particular knowledge, looking for specific
devices. Dodson et al. states that, for that reason, an effective ICS honeypot should offer high
interaction. A worrying observation is that the convergence of IIoT and IoT domains results in
a decrease in the gap between ICS- and IoT-aware hosts, which could result in an increased at-
tractiveness for large-scale ICS attacks in the future. Finally, a set of recommendations is given
to improve the effectiveness of ICS honeypots, based on the data collected in a large-scale exper-
iment. Key points are the use of realistic IP addresses, as well as a systematic and continuous
deployment to allow a larger attacker window, again matching the modus operandi of the targeted
attacker.

The most realistic ICS honeypot in the literature up to the present time is that developed by Hilt
et al. [34]. It could be called a honeynet since an entire ICS environment consisting of a multitude
of devices was deployed. A factory plant was simulated using four real PLCs combined with three
Virtual Machines (VMs) where the goal was to build a honeypot appearing so realistic that not
even a ‘well-trained control systems engineer’ could see through without making the uttermost
efforts. What is even more interesting in this paper is the presence of non-technical features that
contribute to the attractiveness of the honeypot. A fake company was set up to online presence
through a company website with AI-generated employee pictures, and other information such as
available phone numbers and mailboxes. They even went a step further, by repeatedly advertising
the company’s network as vulnerable on forums popular among cybercriminals. The honeypot
received a variety of interactions, including multiple successful ransomware attempts, where nego-
tiations with cybercriminals were recorded and published. Furthermore, cryptocurrency miners,
different kinds of fraud, and a beaconing attack were found in the logs.

A paper from Cifranic et al. describes the Decepti-SCADA framework that uses a modular, Dock-
erized design to create a high-interaction ICS honeypot [35]. The architecture consists of two
parts. The first part provides the honeypot deployment while the second part is monitoring net-
work traffic and provides a user interface. Due to its modularity, new containers can be added
and deployed using the images of arbitrary existing Supervisory Control and Data Acquisition
(SCADA) devices. It remains unclear how the device images were retrieved and whether they
are publicly accessible. As a result, it is impossible to assess how far high-interaction is achieved
in this framework, as the major challenge in an extensible high-interaction honeypot is the real-
istic imitation of proprietary software from a wide range of manufacturers. Also, contrary to the
extensive networking logging present, the paper’s architecture shows no indication of host-based
logging, which plays a significant role in capturing complex attacks on high-interaction honeypots.

An extensive survey by Franco et al. analyzed a large number of existing honeypots in the IoT
and ICS domain [36]. Common characteristics of state-of-the-art honeypots and honeynets were
extracted and key design factors and open research problems were discussed. One of these design
factors is Resource Level Selection, which determines whether virtual, real, or a combination of
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CHAPTER 2. BACKGROUND AND LITERATURE RESEARCH

both device types are used in a honeypot. While the paper states that a virtual honeypot costs
12.5 times less to maintain than a physical honeypot, virtual environment detection techniques
used by adversaries could decrease the effectiveness of simulated honeypots. Furthermore, the
choice of services to provide is crucial in the design. Not only the support of device-specific pro-
tocols but also file persistency, response times, and commands for utilities should be realistic to
prevent honeypot fingerprintability. Open issues identified by Franco et al. mainly concern emer-
ging technologies and unexplored protocols. For example, out of the 79 honeypots investigated,
43 works concerned CPS while only a single one of those was specifically designed for a building
automation system [37]. Next, in accordance with Dodson et al., an emphasis is put on deploy-
ment locations, such as cloud providers versus private locations. They claim to have found no
study that aims to optimize this deployment location. Also, the majority of honeypots described
in the literature are research honeypots, which do not actively participate in securing an IoT/ICS
production environment. Therefore, we think it would be interesting to combine a honeypot with
an IDS for integration in a production environment as a defense mechanism.

Litchfield et al. proposed HoneyPhy, the BAS honeypot mentioned above, which contributes by
realistically modeling process behavior and providing auxiliary information arising from the at-
tached physical system [37]. The purpose of this is to prevent an attacker from being alerted by
the lack of delay and deviations from expected process behavior. As a solution, Litchfield et al.
introduce the ‘hybrid-interaction honeypot ’ that could use real devices to interact with a process
simulation. As Proof of Concept (PoC), an HVAC honeypot was developed, using a low-interaction
imitation of a SEL-751A device and a physics-based heating and cooling simulation model. The
major problem with this honeypot framework, however, is that extendibility is very limited for
other cyber-physical applications. Devices and realistic process models are generally only valid for
a single application, which would require redefining the physical model for every environment the
honeypot is placed in.

In 2017, Lin developed a honeypot based on a Siemens APOGEE building automation system us-
ing P2 and BACnet protocols [38]. The center of attention in this research was to increase realism
by generating network traffic that mimics genuine control systems. The motivation for this work
was the claim that the lack of OT traffic on a network can give away the identity of honeypots. As
an APT may involve passive network monitoring in a multi-staged attack, realistically generated
traffic coming from honeypots may increase the interest of the attacker in that particular device.
By extracting the characteristics from collected traffic sets of the Siemens device, a configuration
file could be composed that was used to set up virtual hosts through the Honeyd framework.

Only one other honeypot specifically for BAS has been found in the literature, developed by Bauer
et al. [39]. This research aimed to investigate whether malicious actors were already carrying out
attacks against Internet-connected BAS devices and how to distinguish targeted attacks from
widespread attacks on arbitrary devices. By imitating an existing BAS device (DDC4200), an
Secure Shell (SSH) server and web interface were set up, connected to the Internet through thought
out IP addresses. After a ten-week deployment period, no attacks were found, however, except
for a significant number of SSH login attempts. As no adversary information was collected, it is
difficult to conclude whether the honeypot was not realistic enough, there was no attacker interest,
or if there was another cause.
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Chapter 3

Motivation and Research
Questions

The analyzed literature provides a great level of detail regarding the capabilities of the developed
honeypots. Therefore, it is possible to extract specific features for each honeypot. Table 3.1 con-
tains an overview of the related work, the corresponding application domain, and a set of features
derived from each research. This set serves as an example and is merely a selection from a mul-
titude of technicalities that can be derived from the different works. It can be seen that there
are significant differences between the honeypots, even within the same application domain. This
observation is in line with the state-of-the-art analysis, where each honeypot seemed to possess
its own specific capabilities and components. The reason for this heterogeneity remains mostly
unclear and in practice even extends beyond the specific set of features listed in Table 3.1.

Work Application Features
Interaction Virtualization Physical process Persistency Size

Honeyd [24] IT Low Service Imitation No No Pot
Bauer et al. [39] BAS Low Service Imitation No No Pot
HoneyPHY [37] BAS Low Service Imitation Model No Pot
Dodson et al. [33] ICS/BAS High Real Device No Yes Pot
Hilt et al. [34] ICS High Real Device Real plant Yes Net
Cifranic et al. [35] ICS High Digital Twin No No Pot
Honeytrack [31] IoT Low Service imitation No Yes Pot
ThingPot [30] IoT High Digital Twin No No Pot

Table 3.1: Overview of related work, including a set of selected features.

This heterogeneous nature of honeypots, however, appears to pose difficulties for an individual
who intends to construct one. Specifically, a systematic methodology to select appropriate fea-
tures in order to meet the user’s objective seems absent. It would appear that there is a gap
in the state-of-the-art, providing the coupling between security threats, and the composition of
a honeypot being able to mitigate these threats. With increasing connectivity and integration
of heterogeneous interconnected IoT devices in CPS, the attack surface is expected to increase
significantly in the coming years. Therefore, a framework that allows for systematic development
of honeypots in IoT/IIoT/CPS networks seems to be well-needed.

This project aims to create a framework for the development of IoT, IIoT, and CPS honeypots.
Using this framework, it should become straightforward to develop and deploy an arbitrary honey-
pot in an IoT/IIoT/CPS environment, given the user’s objective, its observation targets, and a set
of parameters obtained from the target network environment. Finally, the practical functionality
of the framework will be demonstrated by a use case where we plan to develop and deploy a PoC
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BAS honeypot. BAS is an interesting domain application domain because of the convergence of
IoT and CPS, caused by the incorporation of IoT end devices in buildings [40]. Furthermore,
security in the BAS domain is relatively underrepresented in the literature, while new vulnerab-
ilities are being discovered increasingly [21][41]. Based on the described problem, derived from
state-of-the-art analysis, the following research question and sub-questions have been composed.

How can we develop a systematic framework for the construction of arbitrary hon-
eypots in IoT, IIoT and CPS networks?”

Sub-questions
1. What (technical) features can be derived by the deconstruction of existing IoT, IIoT, and CPS
honeypots?
2. What are the known attacker Tactics Techniques and Proceduress (TTPs) that are used in
IoT, IIoT and CPS networks and how can they be translated to observation targets?
3. How can those relevant observation targets be mapped to the derived (technical) features?
4. How can we practically apply the obtained framework to create a PoC honeypot in a BAS use
case?
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Chapter 4

Methodology

To answer the research question, we aim to create a framework that guides the user when con-
structing an IoT/IIoT/CPS honeypot. The composition of this proposed framework for systematic
honeypot development yields multiple stages. In the first stage, Subsection 4.2, we aim to obtain
an IoT/IIoT/CPS honeypot topology by analyzing existing honeypots and deconstructing these
works in so-called ‘features’. The features allow for the classification of certain technical proper-
ties of each honeypot, such that each honeypot can be dissected in a combination of existing or
new features. After completion, there should be an as complete as possible overview of technical
aspects. Next, in Section 4.3 we specify what interaction needs to be caught by a honeypot, by
extracting relevant techniques from the ATT&CK for the ICS framework and categorizing them
in phases of the Cyber Kill Chain [42][43]. As the final step of the methodology, we map the
obtained observation targets to the required features in Section 4.4.

4.1 Our Methodology in a Nutshell

The methodology that we aim to develop consist of three phases. Each phase represents a step
that the user needs to take and where the framework should offer assistance. In the first phase,
the user can, based on his objective, select certain observation targets which together form the
attack path that the user aims to capture.

Honeypot
construction 

Observation
targets 

Technical  
features 

Functionality matrix 

Objective 

I II III

Figure 4.1: Overview of the methodology that we aim to develop.

These observation targets are the input for the second phase, where they are translated to sets
of technical features that we will identify in the upcoming section. To perform this mapping,
an overview of all known honeypot features is required. In the third phase, the sets of collected
features are bundled to a single set, which forms the basis for the constructed honeypot. Figure
4.1 shows an overview of the methodology, with corresponding phases.
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4.2 Honeypot Topology

For the first research sub-question, What (technical) features can be derived by the deconstruction
of existing IoT, IIoT, and CPS honeypots?, we aim to create a representative topology. To do
this, over twenty IoT/IIoT/CPS honeypots have been studied in this research. Most literature
emphasizes specific characteristics that have been implemented or are being proposed. However,
a top-down approach is preferred to allow stepwise refinement in the course of analyzing the
honeypots. For that reason, the initial step is to make a distinction between the general purpose
of each characteristic, based on the top-level features shown in Figure 4.2. These features form
the highest level of abstraction in the topology and are further specified in this section.

Honeypot

Deceptive
functionalities

User-related
functionalities

Deployment-related
functionalities

Figure 4.2: Top-level features that describe the general purpose of a characteristic.

– Deceptive functionalities: Features belonging to the deceptive functionality have the
objective to trick an attacker into thinking that it is facing a real and relevant system. They
describe, mostly technical, parts that together compose the perceived system and enable
interaction initiated by the adversary.

– Deployment-related functionalities: The features within this characteristic do not ne-
cessarily translate into a product, but rather provide advice or context about the deployment
conditions in order to increase the likelihood of capturing the desired interaction. In order
to prevent any influence on the deceptive composition of the honeypot, this top-level feature
considers functionalities around a finished product that is ready to be deployed.

– User-related functionalities: Features that are related to the user have the objective
of capturing the interaction that is enabled by the deceptive functionalities and extracting
relevant information if applicable.

Each top-level functionality contains multiple features on a lower level of abstraction that further
elaborate on characteristics that together contribute to the top-level objective. For example, a
feature that has already been identified in the literature and was mentioned in Section 2.2 is the
‘Interaction Level’. This feature belongs to the Deceptive functionalities because it is related to
the decoy system that is perceived by the attacker. The interaction level feature, along with many
others, is further discussed in Subsections 4.2.1, 4.2.2, and 4.2.3.

4.2.1 Deceptive Functionalities

The features belonging to the objective of providing a decoy system, reside on a lower layer of
abstraction. These meta-level features each describe a relevant aspect that together form a basis
for the deceptive composition of the honeypot. An overview of identified meta-level features can
be found in Figure 4.3. All features described have been derived from existing honeypot research.
In the descriptions that will follow, we refer to some of these works. A full overview of the analyzed
honeypots and their categorization can be found in Appendix A.
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Below the meta-level layer, the tech-level features can be found. Tech-level features represent a
value for their parent, where for some features only a single option is allowed. The features Size,
Interaction Level, Virtualization, and Physical Process all have options whereof only one can be
picked (exclusive). For the features Services and External Persuasion, multiple tech-level options
can be selected. For example, a honeypot cannot be low and high interaction at the same time,
while it could be possible to have both an Human Machine Interface (HMI) and some protocols
integrated into the system.

Virtualization Services External Persuasion

Meta-level

High-level

Device imitation
(digital twin)

low

HMI

credibility
increase

MAC

OS

vendor

file
system

absent model

Tech-level

Remote
access

IT/ 
generic

Industrial

Deceptive
functionalities

Interaction LevelSize

interfaces protocolshighpot active

credibility
increaseadvertisement

passivenet

Physical Process

absent model

CLI

real plantReal
device

Service
imitation

Figure 4.3: An overview of features that belong to the deceptive functionality, on different layers
of abstraction.

Furthermore, cost plays a significant role when developing a honeypot. In Section 2.4, we described
the cost differences between the use of virtual and real devices, based on the research of Franco
et al. [36]. Therefore, we assign relative costs to the exclusive tech-level parameters. This will
help in selecting the cheapest option when more than one tech-level feature can be selected within
the same exclusive meta-level parent. We will see this becoming relevant in Section 4.4, where
it becomes visible what features are necessary to catch specific observation targets. Within the
deceptive functionalities, the following features have been identified:

– Size: describes the volumetric extent of the honeypot system. The honeypot can present
itself as a standalone device, a pot. On the other hand, the decoy system offered to the
attacker can be a network of interconnected devices, also referred to as ‘honeynet’. The vast
majority of available honeypots are developed and presented as a single pot. For that reason,
the pot generally imitates a specific service of a device or the device in its entirety. Conpot,
for example, contains several templates of which a single be selected upon initialization.
Each template contains a set of services that can be attributed to a particular device [44].
Other examples of pots in our examined set are Mimepot, CryPLH, Honeyd, and DiPot [45]
[46][24][47].

Contrary to the standalone pots, some of the studied honeypots clearly present themselves
as a net of interconnected devices [34][48][49][50]. This means that the attacker perceivably
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has the possibility to interact with more than one device. Furthermore, these devices are
then connected to form a network that can exchange information. The honeynet developed
by Hilt et al., for instance, contains four PLCs, a file server, a network switch, and other
devices that an attacker could target. The net that Piggin and Buffey provided, consists of
a PLC, workstation, and switch, however, it remains unclear which exact devices were used.

The tech-level features within the Size feature can be described by the following set:

Size = {pot, net}, where in terms of cost, pot < net.
The reasoning behind this cost is quite self-explanatory: a net consisting of two connected
similar pots has a higher cost than that of a single instance of the same pot. For the purpose
of consistency, we refer to each work as a honeypot, regardless of the value of the Size feature.
In the case of a net, we use terms along the lines of ‘ a honeypot system that consists of a
net of interconnected devices ’.

– Interaction level: this feature is a subject of discussion in the honeypot research domain.
As mentioned in Section 2.2, there exists no definitive description, resulting in honeypots
with self-proclaimed interaction. This research defines the interaction level as the quality of
implemented services. If the service is implemented in a way that can enable all interaction
that would be possible with that same real service, the honeypot is deemed high interaction.
When a service is implemented in a manner such that the intended attacker is limited in
interaction through that service, we consider a low interaction honeypot. This definition
corresponds to other literature that states that a low-interaction honeypot is software-based
[51]. Whereas some authors classify a third category, medium interaction, this term could
increase the ‘grey area’ around interpretations of interaction level. Therefore, this research
considers most self-proclaimed medium interaction honeypots as low interaction. An example
is Kippo, which simulates an (SSH) service and additionally offers a fake filesystem [52].
Execution or modification of those files, however, is not supported which directly shows the
limitations of low-interaction decoys. Other honeypots in this category are Conpot, Digital
Bond, HoneyPHY, and the research by Simões et al. [44][53][37][54].

In our analyzed set, we also classified honeypots as high-interaction, of which a few are
Cifranic, Honware, and Piggin and Buffey [35][55][50]. The first two used device emulations
which allowed for service implementations close to real services. The latter claimed to have
used PLC hardware, implying that the corresponding services are real and thus per definition
high interaction.

The tech-level features within the Interaction Level feature can be described by the following
set:

Interaction level = {low, high}, where in terms of cost, low < high.

– Virtualization:

Virtualization should be considered as the extent to which a service/device is imitated or
real, and does not necessarily reflect the level of interaction offered. We distinguish three
categories of virtualization. In the first category, named service imitation, the focus of the
honeypot is on one or more particular services that are offered to the adversary. Concretely,
the entire honeypot consists of the implemented services and a handler to interpret any
input from the attacker. In practice, these honeypots are generally script-based and contain
a preprogrammed set of commands that they are capable to handle. This category involves
the largest portion of current existing honeypots. SSH or Telnet honeypots, such as those
of Kippo and Cowrie, are common examples that fall into this group [52] [56].

The second category within this feature is device imitation, which in literature is also referred
to as a digital twin [57]. In this category, the honeypot resembles a digital copy of a specific
device, consisting of an underlying OS, file system, and software related to the device it
mimics. Consequently, more attack paths, such as through software vulnerabilities, could
be introduced since file execution is possible in these honeypots. In addition, these types
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of deceptive systems facilitate persistence, such that the attacker is able to resume the
session at another moment. Due to the aforementioned characteristics of this category, the
implementations are in practice not script-based but rather bundled into a virtual machine.
An example that falls into this category is Thingpot, which mimics a Philips Hue smart
lighting system by not only providing similar communication protocols but also implementing
the device-specific backend API and a representative frontend [30]. Other instances of device
imitations are Digital Bond, providing a VM that resembles a Modicon Quantum PLC,
Decepti-SCADA which uses Docker images to replicate real operation systems, and Honware
which is self-adaptive and able to emulate a variety of devices [53][35][55].

The third category, real device, entitles the use of the actual physical device. The added
value of this category is the presence of hardware, enabling a variety of attack paths that
depend on physical access to the device. Furthermore, the services in the honeypot have the
highest level of realism, compared to the other categories of the Virtualization feature. Some
of the analyzed works that make use of real devices are Piggin and Buffey which provided
real PLC hardware, Pliatsios et al. which have used RTU devices, and SIPHON which used
real IP-cameras [50][48][58].

In practice, a correlation can be observed between interaction level and virtualization. Real
devices offer high interaction by default, since the services contained in that device are real
and thus maintain the highest level of quality. Service imitations, however, generally provide
low interaction. Conpot, for example, uses scripts to simulate services that are able to handle
a fixed set of commands. The latter does not imply that high interaction service imitations
are impossible by default, but it takes considerably more effort to mimic a service, compared
to implementing the real service in a device imitation.

The tech-level features within the Virtualization feature can be described by the following
set:

V irtualization = {service imitation, device imitation, real device}, where in terms of cost,
service imitation < device imitation < real device.

The reasoning behind the cost is that a device imitation consists of at least the same services
as a service imitation while having additional effort in resembling the device by providing
other characteristics. The same holds for a real device, that has at least the same software
as the device imitation, but additionally contains the device-specific hardware.

– Services:

We describe services as (software) functionalities through which an attacker can interact
with the deceptive system. Through the services present in the honeypot, the attacker
can attempt to reach objectives such as disruption, theft of information, or other forceful
activities. Taking this definition into account, it logically follows that all honeypots should
have at least one service implemented in order to provide a possibility for interaction. Two
main types of services are distinguished within this feature. Firstly, the interface type
that the adversary interacts with, and secondly, the underlying protocols that facilitate the
interaction.

With respect to the interface types, we differentiate between a Graphical User Interface
(GUI) and a Command-Line Interface (CLI). As the name indicates, the first type provides
a graphical overview of the system and/or the user’s possible actions. GUIs are especially
common in CPS since they can supply the user with a clear visual overview of states within
a physical process. For instance, Bauer et al. integrated a control web interface displaying
information about the mimicked device and its in/outputs [39]. SIPHON contained web
interfaces where, upon successful authentication, the IP cameras could be controlled and
live images could be seen [58]. Gridpot used specific HMI software of which the details
remain unknown, according to the authors, to prevent fingerprintability [49].
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The CLI is a text-based interface used to run programs, manage files and interact with a
device in general. It is often provided in cases where there is no need for visual interaction.
This type of interface is generally implemented when the attacker is able to navigate through
a decoy file system or send remote commands which will be discussed in the protocols below.

The protocols in this research are divided into three categories, as can be seen in Figure
4.3. IT protocols are application layer protocols that originate from the IT domain, with
well-known examples as DNS, HTTP, FTP, and SNMP. Even though these protocols are not
specific to CPS, often they are still integrated with devices tied to this domain, to facilitate
web services, file transfer or network configuration and management.

The next category describes protocols that facilitate remote access to a machine. Upon
successful connection and authentication, these protocols can be used to control a remote
machine. Examples of widely used remote access protocols are RDP, RAS, SSH, and Telnet.
This is generally done in the form of the earlier described CLI that is provided to the user.
Therefore, the use of these remote access protocols is coupled with the use of command-line
interfaces within this same meta-level feature.

The third category involves protocols that are explicitly used for industrial purposes. Their
objective lies mainly in the automation of physical processes, through sensor readings, com-
putational logic, and actuator control. The most frequent industrial protocols encountered
in the analyzed set are Modbus and S7comm. Some of the industrial protocols are even
more domain-specific, such as BACnet which is predominantly used in the BAS domain.
An extensive overview of all protocols that were implemented in the honeypots that we
investigated, can be found in Table 4.1.

The tech-level features within the Services feature can be described by the following set:

Services = {interfaces : GUI, CLI, protocols : IT, Remote Access, Industrial} As men-
tioned earlier in this section, only features where a single value needs to be picked, are
assigned relative costs. Since multiple interface and protocol types are simultaneously pos-
sible in a honeypot, no cost is assigned.

– External Persuasion: describes methods to lure potential adversaries or to increase cred-
ibility of the honeypot. This takes place outside the technical part of the honeypot system
and can be realized in either active or passive methods. Within our set, only Hilt et al.
implemented this feature [34]. Passive methods are meant to support the existence of the
decoy such that an attacker ‘believes’ that the system is real and belongs to some company
or organization. Hilt et al. put significant effort into this method, by constructing a fictitious
company including a website and contact details that were in fact reachable and handled
incoming messages.

Active methods constitute a more aggressive form, in which the honeypot is deliberately pro-
moted as a real vulnerable system. Hilt et al. applied this method by posts on Pastebin that
presented the honeypot as a vulnerable robotics workstation. This category also provides
opportunities to leak, for example, credentials that could be used in one of the honeypot
services. Even though only one honeypot in our set contained this feature, other IT honey-
pots implemented this feature in some way. John et al. developed a ‘heat-seeking’ honeypot,
that dynamically generates web pages that resemble web pages that are frequently targeted
by attackers [61]. Similarly, Mphago et al. tried to maximize attack surfaces in their web
application honeypot, as a form of advertisement to attackers [62]. We believe that this
feature could be interesting for future research in the attraction of targeted attackers and
have, therefore, included it in the topology.

The tech-level features within the External Persuasion feature can be described by the
following set:

External Persuasion = {Passive: fictitious company, Active: advertisement }

17



CHAPTER 4. METHODOLOGY

Honeypots Implemented protocols
IT Remote

Access
Industrial

SCADA Honeynet project
[26]

HTTP, FTP Telnet Modbus/TCP

Digital Bond [53] HTTP, FTP,
SNMP

Telnet Modbus/TCP

Serbanescu et al. [59] SNMP, TFTP,
XMPP

Modbus, IEC 70870-5-104,
DNP3, ICCP

Conpot [44] HTTP, FTP,
SNMP, IPMI,
TFTP

BACnet, Guardian AT,
Kamstrup, Modbus,
S7comm, EtherNet/IP

Pliatsios et al. [48] Modbus/TCP
DiPot [47] HTTP,

SNMP, IPMI
Modbus, Kamstrup,
BACnet, Guardian AST,
S7comm

Hilt et al. [34] VNC S7comm, EtherNet/IP, Om-
ron FINS

Honeyd [24] FTP, SMTP,
IIS, POP

Telnet

Dodson et al. [33] SOAP S7comm, BACnet, , IEC-104
DNP3, Modbus

HoneyPHY [37] DNP3
GridPot [49] HTTP IEC 61850 GOOSE/MMS,

Modbus
Piggin and Buffey [50] HTTP SSH, RDP
CryPLH [46] HTTP, SNMP S7 ISO-TSAP
Simoes et al. [54] SNMP, FTP Modbus
Thingpot [30] XMPP, HTTP Zigbee
MimePot [45] Modbus/TCP
Bauer et al [39] SSH
Vd. Lelie et al. [60] SSH
Honware [55] HTTP,

DHCP, UPnP,
MDNS, TFTP

Telnet,
SSH

SIPHON [58] HTTP, RTSP Telnet,
SSH

Honeytrack [31] HTTP, TFTP Telnet

Table 4.1: An overview of the implemented protocols in the analyzed honeypots.

– Physical Process: In contrary to most of the other meta-level features, this feature is
very specific to the CPS domain. Since these types of systems have both computational
and physical elements integrated, there needs to be a way how modifications in digital
components are reflected in the physical world. Therefore, this feature describes the method
by which a physical process is incorporated into the decoy system. Targeting a CPS with the
intention to disrupt the regulated physical process, requires comprehension of that specific
process rather than the sole knowledge of conventional IT-focused skills [63]. Without this
knowledge, it is unlikely that an attacker can achieve a complex or undetectable disruption.

The investigated honeypots each have different methods in which the physical process is
considered. For the vast majority of investigated honeypots, a representation of the process
has not been taken into account at all. As a result, an attacker does not see a reflection
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of any of his modifications done. The absence of a process either modeled or physical does
not come across as realistic, especially with an attacker that has disruptive intentions. Even
though initial interaction is caught, it could lead to disengagement and thus missing out on
the true intentions of an attacker.

Besides the absence of process implementation, some of the considered honeypots have in-
tegrated a certain form of process in their deceptive system. In these cases, no real physical
process representation, but a model has rather been implemented instead. The definition of
a process model can be widely interpretable, however, we describe it as the reflection of the
attacker’s actions, performed on a system that appears to directly control a process. Follow-
ing this line of reasoning, a model could consist of very simple state changes that imply that
a valve is opened or closed, or whether a door is locked or unlocked. On the other hand,
some of the works have implemented more complex physics-based models with the aim to
increase realism [37][49][45][50]. Only one of the analyzed honeypots utilized a real plant, in
the form of a robotic workstation that could be controlled through a HMI [34].

The tech-level features within the Physical Process feature can be described by the following
set:

Physical Process = {absent, process model, real process}, where in terms of cost, absent <
process model < real process.
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Size i i a i i
Interaction level i a i i i
Virtualization i a a i a
Services a i a i i
External Persuasion i i i i i
Physical Process i i a i i

a: affect

p: prevent

i: independent

Table 4.2: Relationship matrix of meta-level features in Deceptive Functionalities.

Now that all features within the deceptive functionalities have been identified, we aim to identify
the relationships between these meta-level features. The relations are relevant for determining
the coexistence of certain feature combinations. Table 4.2, shows the relationships between each
feature that is part of the deceptive system. The independent relation implies that, after selecting a
value for the feature on the vertical axis, all values remain possible for the feature on the horizontal
axis. An example, whether the value for Size is pot or net, the user’s choice for Interaction Level
remains open.
An affect relation means that picking certain values for the first feature, in some way influences
the possibilities for the second feature. When we revert to the previous example but replace
Interaction Level with the feature Services, the affect relation can be noticed. The reasoning is
that a net, per definition, requires more services than a pot, due to the communication that takes
place between the interconnected devices. More serious affect relations are identified around the
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Virtualization feature. When opting for a low-interaction honeypot, using a real device is not
possible as was mentioned earlier in this section. Furthermore, controlling a real plant with the
corresponding hardware is also not feasible using a service imitation as this type of honeypot does
contain the proper physical necessities. These types of limitations are important to consider for
Section 4.4, where sets of features are assembled. The elaboration on the remaining relationships
can be found in Appendix B.

4.2.2 Deployment-related Functionalities

The functionalities within this feature should provide considerations when aiming to deploy the
deceptive system composed in the previous subsection. Even though these functionalities do not
directly contribute to the composition of the honeypot, they have a role in determining whether
it is likely to catch the desired interaction. The corresponding meta-level features can be found in
Figure 4.4, together with the tech-level features that reside on a lower level of abstraction.
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Figure 4.4: Features within the deployment functionality.

– Scale: This feature represents the magnitude of the deployment of a deceptive system.
One would think that a honeypot would be connected to either the Internet or an internal
network, using a single running instance. However, a significant number of investigated
honeypots have the possibility to deploy multiple instances of the same decoy. This allows
numerous attackers to simultaneously connect with one of the instances, hence increasing the
attack surface of the deceptive system. As a result, the chances of being interacted with are
significantly higher than when using a single instance. This large-scale deployment started
with Honeyd that could host up to 65536 hosts at once already [24].

It is important to notice that some compositions of deceptive functionalities make it easier
or more difficult to deploy more than one instance. When using virtual hosts, in the form of
a service imitation, it is possible to create multiple virtual hosts [64]. However, when using
a real device, it generally becomes harder or seriously more expensive to deploy multiple
honeypots. Dodson et al. still managed to deploy a high number of instances by using
proxies for real devices [33]. This way each real device was capable of hosting multiple
virtual IP addresses.
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The tech-level features within the Scale feature can be described by the following set:

Scale = {single,multiple}

– Deployment period: describes the length that the honeypot should be deployed to increase
the likeliness or frequency of desired interaction. It is, obviously, not possible to guarantee
any form of interaction when a honeypot is deployed for a certain amount of time. However,
especially in CPS, real-life attacks have shown to be spread out over months, if not, years
[65][66].

From the analyzed honeypots, we distinguish three possibilities for the duration of the de-
ployment. The group with the shortest duration considers a deployment period of fewer
than two months. The impact of this relatively short period is illustrated by Serbanescu et
al., which collected data for 28 days [59]. Most of the logged interactions resembled recon-
naissance activities, where no targeted attacks were captured. The same situation occurred
for CryPLH which, after being deployed for a month, did not receive PLC-specific attacks
[46].

For the middle value of this feature, a deployment period between two and six months
has been considered. The honeypots in our set that fall into this category are SIPHON,
DiPot, Bauer et al., and Honeytrack, which showed a significantly higher amount of caught
interactions. However, most of this interaction could still be attributed to automated attacks
which were noted by lack of manual interaction on, for example, web interfaces.

The last category considers the longest period, with durations over 6 months. During a 7-
month deployment, Hilt et al. received, even though not CPS specific, a number of targeted
attacks including ransomware and beaconing [34]. Dodson et al. had a 13-month deployment,
where only 0.01% of the captured packets were both ICS specific and malicious, including
Denial of Service (DoS) and command replay attacks [33].

The tech-level features within the Period feature can be described by the following set:

Period = {<2 months, 2-6 months,>6 months}, where in terms of costs,
<2 months < 2-6 months < >6 months.

– Hosting location: describes the network location from which the honeypot is hosted.
The tech-level features are extracted by differentiating between the production and research
honeypots mentioned in Section 2.2. Research-oriented honeypots are directly accessible
from the Internet and therefore hosted on an external network. This external network could
be set up from various locations. Serbanescu et al., DiPot, and SIPHON all used cloud
service providers to host their honeypot instances [59][47][58]. CryPLH and Honeytrack were
deployed from the IP range consistent with the universities involved in the research [46][31].
Hosting the decoy from realistic IP addresses are an important aspect to avoid suspicion.
Realistic implies an IP address in the range of the mimicked company/organization, or at
least geographically consistent.

Production honeypots, however, are typically placed in an internal network of a running
process, with the aim of detecting an intruder. The decoy is then placed close to other
machines that the adversary might deem interesting. Unfortunately, these honeypots remain
undisclosed more often than not, for the reason of protecting modus operandi. An example is
illustrated by Lelie et al. that used a dataset from honeypots that were placed in monitored
networks by the Dutch National Cyber Security Centre (NCSC-NL) [60].

The tech-level features within the Hosting Location feature can be described by the following
set:

Hosting Location = {internal, external : Cloud, University, Company/Organization,
misc.}

– Security: describes the method of controlling traffic flow towards and from the honeypot.
The main purpose of this feature is to prevent misuse of the decoy, for example as a pivot to
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actual production devices on the same network. Furthermore, due to incorrect configuration,
a honeypot could be used for malicious activities such as the distribution of illegal material,
or to launch attacks on other systems which could have legal implications [67]. Digital
Bond used a security mechanism which can be placed in front of a honeypot [53]. This
mechanism, named Honeywall, is able to stop the outbound traffic from the compromised
honeypot. Simoes et al. also refer to a firewall as containing measure which should allow
all incoming traffic but deny any outbound connections which are not made back to the
attacker [54].

Besides prevention of misuse, a firewall also provides the opportunity to filter out some of
the incoming traffic that the user does not consider relevant, such as automated attacks
when aiming to attract a targeted attacker.

The tech-level features within the Security feature can be described by the following set:

Security = {firewall}

Similar to the deceptive functionalities, we analyze the relationships between these meta-level
features to make sure that dependencies are identified. For instance, when determining the Scale
of deployment, one should consider the effects on the Hosting Location. A large-scale deployment
might not be feasible or realistic on an internal network, but instead, distributed over different
geographical nodes. Additionally, the Hosting Location determines whether security measures are
necessary, to protect potential production devices on the same network as the honeypot.
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Deployment Period i i i
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Security i i a

a: affect

i: independent

Table 4.3: Relationship matrix of meta-level features in Deployment-related functionalities.

4.2.3 User-related Functionalities

Whereas the deceptive and deployment-related functionalities mainly focused on creating and
launching a system that adversaries could target, the user-related functionalities should ensure
that all relevant information is extracted from the decoy. Figure 4.5 contains an overview of
features within the user-related functionalities.

– Logging: describes the method in which interaction with the deceptive system is being cap-
tured and made available to the user. In theory, all actions performed by a remote attacker
could be considered loggable through network traffic. However, in practice, encryption could
prevent the user to interpret the use of any techniques. Also, one could prefer to see the
result of the adversaries’ actions on the targeted system, for example, the creation of some
malicious process. There is a large difference between network-based and host-based logging.
The latter becomes especially relevant when the attacker has full access to the device’s OS,
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Figure 4.5: Features within the user functionality.

i.e., possibilities for file modification and execution. It also means that we are more likely
to see host-based logging methods in device imitations or real devices. This expectation is
confirmed by the honeypots that we have investigated. Hilt et al. used VirtualBox screen
recording, where the recording was started when there had been an indication that someone
accessed the honeypot [34]. Digital Bond implemented a rootkit named Sebek in its VM,
which is able to log keystrokes, commands executed, and system calls [53]. Honware modified
an existing kernel function to log programs invoked by the attacker [55].

For the majority of honeypots, which are service imitations, the possibility to implement
host-based logging is very limited. The reason is that most service imitations are low-
interaction, and thus do not have a functional file and/or operation system. Consequently,
there are generally not many options to integrate a functionality that registers modifications
on such system. Therefore, we observe a shift towards network-based logging in that category.
The logging functionality is being integrated into the service imitation script, resulting in
captured application layer data with additional metadata as output for the user. Conpot,
for example, registers the type of request or response regarding the implemented protocol for
each incoming session [44]. On top of that, timestamps, source and destination IP addresses,
and port numbers are logged as well. Furthermore, tools such as Wireshark, TCPdump, and
TShark were seen to be commonly implemented for capturing incoming packets.

Besides application and network layer data, it is also important to consider other connec-
tion properties that could provide useful information regarding an attack. For example,
the Received Signal Strength Indicator (RSSI) in wireless networks, which in case of close
access could supply information about the location from where the attack is launched. Even
though none of the honeypots in our set considered this property, there are other (non-CPS)
honeypots that took RSSI into account [68][69].

The tech-level features within the Logging feature can be described by the following set:

Logging = {network-based, host-based}
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– Detection: describes the functionality to detect specific attack methods within interaction
with the honeypot. This feature, therefore, extends further than logging, which simply
ensures that the data itself is captured and stored. We distinguish different types of detection,
signature-based and anomaly-based IDS. The first mentioned scans through a live set of
activities and attempts to find matches with another signature that already exists in the
signature database [70]. Serbanescu et al., Digital Bond and HoneyPHY all implemented
Snort, which is the most used signature-based IDS because of its open-source software [71].

Anomaly-based detection relies on deviations with respect to regular operation. In order
to implement this type of detection, a normal model of the behavior of a computer system
is created. Whenever the live set of activities deviates a certain amount from this normal
model, it is considered an anomaly which should trigger an alarm for the user. Any significant
deviation between the observed behavior and the model is regarded as an anomaly, which can
be interpreted as an intrusion. GridPot implemented this type of detection in an interesting
manner by focusing on anomalies in the physical process instead of in the network traffic
[49]. Besides GridPot there is other recent literature that investigates this physics-based
anomaly detection, specifically in the CPS domain [72][73].

The tech-level features within the Detection feature can be described by the following set:

Detection = {signature-based, anomaly-based}

– Visualization: describes the method in which the captured data is presented to the user.
Visualization methods by giving the user a quick and perceptible overview of the collected
information. DiPot implemented a data visualization interface where the user can view a
world map with geographical indications of incoming connections to the honeypot nodes [47].
Furthermore, statistics regarding protocol and source IP address distribution were presented
in a visual way. Lelie et al. focused on visualizing SSH honeypot data which resulted in a
dashboard that could assist security analysts in analyzing a large amount of data [60].

The tech-level features within the Visualization feature can be described by the following
set:

V isualization = {geographical, statistical}

– Alert: describes the method in which the user is alerted when relevant interaction has
occured. This feature could be considered as supplementary to the Detection feature. How-
ever, it focuses more on when and how security/alarm messages are generated rather than
the detection of malicious activity. Consequently, an alert action should only be triggered
when an event is deemed critical.

Simoes et al. used specific security event messages based on a standard data format designed
for IDS [54]. Furthermore, Digital Bond offered report/alerting preferences in the Honeywall
manager [53].

The relationship matrix for within the user functionalities is relatively straightforward and can be
found in Table 4.4. The implemented Logging feature heavily influences the possibilities for the
other features, as those depend on the captured information.
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Table 4.4: Relationship matrix of meta-level features in User-related functionalities.

4.3 Observation Targets

This section describes the formation of observation targets that we use for the development of
our methodology. By doing this, we aim to answer the second research sub-question, “What are
the known attacker TTPs that are used in IoT, IIoT and CPS networks and how can they be
translated to observation targets?”. We define observation targets as specific interactions, caused
by the adversary, that the user aims to capture. In Subsection 4.3.1, we discuss how structure
can be applied to cyberattacks, using well-known attack frameworks. In addition, we explain why
these frameworks are relevant for our research. The final Subsection 4.3.2 then discusses how we
use the earlier obtained information to extract our observation targets.

4.3.1 Structuring an Attack

The Cyber Kill Chain can be used to model, recreate or analyze the offensive actions of the attacker
in the IT domain [74]. To apply structure, the kill chain breaks an attack down into subsequent
stages that each have a specific goal. CPS, however, are different types of systems compared to the
traditional IT infrastructure. Consequently, CPS also attract attackers with different objectives.
Therefore, the SANS Institute introduced a modified version of the original Cyber Kill Chain,
specifically for ICS which we consider part of CPS [43]. The ICS version of the kill chain can be
found in Figure 4.6. Compared to the traditional version, The difference lies in the addition of
a second stage after the intrusion has taken place. The reason behind the multi-staged approach
is that the CPS-specific part is generally initiated quite sometime after the first, intrusion, stage.
The intrusion stage itself has been left unmodified because even in CPS attacks, the first point of
entry generally resides in the IT part of the organization’s network, as has happened with real-
world attacks that involved BlackEnergy3, Stuxnet, and Triton [2][75][76]. Upon the final step of
the intrusion stage, attackers are able to collect detailed information about the inner workings of
the CPS to craft a tailor-made attack for the device types and software of that CPS.
The relevance of the kill chain for our research lies in the translation from the user’s objective
to the observation targets. For example, a user that intends to perform statistical research on
port scanning activity needs to consider other stages of the kill chain, compared to someone that
aspires to learn details on how attackers deliver their second stage malware.
To use the kill chain, we need to identify which phases are in fact observable from the target
system’s point of view. The red lining in Figure 4.6 indicates whether this phase is observable
from the targets’ point of view. For example, the Weaponization phase, where a specific type of
malware is being developed, cannot be detected by the defender. In the Delivery phase, however,
the conveyance of this piece of malware onto the defenders system can be observed. The identi-
fied observable phases will form the highest abstraction layer of observation targets in our research.

25



CHAPTER 4. METHODOLOGY

Develop

Test

Deliver

Install / Modify

Execute ICS Attack

STAGE 2 - CPS Attack

TargetingWeaponization

STAGE 1 - Intrusion

Weaponization TargetingWeaponization TargetingTargetingWeaponization

Reconnaissance

TargetingWeaponization

Act

C2

Install / Modify

Delivery

Execute ICS Attack

Install / Modify

Deliver

Install / ModifyExploit

= Observable step

Figure 4.6: ICS Cyber Kill Chain with red contours that represent the observable phases.

Another acclaimed method for deconstructing and analyzing attacks is the MITRE ATT&CK
framework, as has been mentioned in Section 2.3. Whereas the Cyber Kill Chain provides a
series of subsequent phases, the ATT&CK matrix consists of lists of tactics that could be used
by the adversary during an attack. The MITRE framework, therefore, resides on a lower level
of abstraction. We specifically use the ATT&CK framework for Industrial Control Systems [42].
From this framework, we first select the tactics that are relevant for each phase in the kill chain and
that can be perceived by a honeypot system. Subsequently, we do the same for each technique
that is listed within the tactics. For example, a tactic that can be applicable to honeypots is
‘Initial Access’. Within that tactic, there are multiple techniques available. The ‘Exploit Public-
Facing Application’-technique is very relevant for honeypots, as it describes how the adversary
may leverage weaknesses to exploit software reachable from the Internet. Techniques that do not
appear to be suitable or relevant for a honeypot are omitted. After performing these steps for
each technique in the ATT&CK matrix, the following techniques have been excluded:

– Drive-by Compromise (T0817)

– Supply Chain Compromise (T0862)

– Screen Capture (T0852)

The reason for excluding the first two techniques is that they are beyond the research scope.
Our research only considers server honeypots, whereas ‘Drive-by Compromise (T0817)’ would
be suitable for client honeypots. Furthermore, we consider ‘Supply Chain Compromise (T0862)’
too broad for our research as we aim for more direct forms of attack by the adversary. Finally,
‘Screen Capture (T0852)’ has been omitted because neither the facilitation nor the logging of the
technique are accessible by the honeypot.

Reconnaissance

Active Scanning (T1595)
Gather Victim Org Information (T1591)
Phishing for Information (T1598)
Wireless Sniffing (T0887)

Table 4.5: Categorization of MITRE techniques in the Reconnaissance phase of the Cyber Kill
Chain.
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4.3.2 Formation of Observation Targets

Now that we have a selection of relevant techniques, we categorize them into observable phases of
the Cyber Kill Chain. The reason is that it eventually creates structure in the large matrix that
will be used for the mapping. Consequently, it is easier, for someone that intends to construct a
honeypot, to translate his objective into the necessary observation targets. This categorization is
possible because of the different layers of abstraction that the frameworks reside on. Therefore,
an attacker could use different techniques during a phase of the kill chain. For instance, when
considering the Reconnaissance step, four techniques can be categorized in that phase, as shown
in Table 4.5.
It is important to understand that a technique is not necessarily limited to one specific phase
of the Cyber Kill Chain. There are multiple examples of techniques that could occur in more
than a single attack phase. One of those is ‘Valid Accounts’ (T0859), which we have placed in
the ‘Exploit’ phase as a user has been exploited and the attacker gained a foothold in the target
system. However, one could rightly argue that this technique could also be relevant in the ‘Act’
phase, where the attacker could utilize the credentials to move to another part of the network.
Nonetheless, for readability purposes, each technique only occurs once in the matrix that will be
used for the mapping of observation targets with features. Therefore, those specific techniques
have been assigned to the earliest phase of the kill chain that they occur in. With the list of
relevant and structured techniques, we can start investigating how to incorporate these into a
honeypot. To do that, we aim to answer the following questions for each technique:

– What functionality is required to ensure that the attacker could apply a technique?

– What functionality is required to ensure that the user could observe the use of that technique?

We extract the information necessary to answer these questions from both the existing honeypots
that managed to capture such techniques and the ATT&CK framework that supplies information
about real-world examples and their detection. Having answered the questions, we know what
each technique entails, what deceptive functionalities are required, and what is needed to log the
technique. The answers together form the basis for our observation targets. This method can
be considered an intermediate step toward the mapping. It also prevents a narrow field of vision
by forcefully coupling an observation target with the existing fixed set of features that has been
assembled in Section 4.2. The example below shows how the information about the relevant target
is annotated.

– Active scanning (T1595)
To enable: Service(s) running on one or multiple ports, which an external IP address can
communicate with.
To log: Code/software that captures network traffic or registers incoming connection requests
from source IP to specific ports of the host.

The first line provides a brief description of the required deceptive functionalities. In the example,
it concerns a running service that is exposed to and reachable from the Internet. The second line
merely defines that there should be a functionality that captures an incoming connection request.
This annotation has been assembled for all observation targets and can be found in Appendix C.

4.4 Mapping

Even though the topology in Section 4.2 provides detailed information about characteristics that
need to be contemplated when constructing a honeypot, it is not yet suitable for a one-to-one
mapping against the observation targets that we acquired in the previous section. The reason is
that, while some features increase the likelihood of attracting attackers, or enhance the processing
of captured interaction, they are not strictly necessary to capture the particular interaction that
we have called an observation target. For instance, deployment functionalities such as Period and
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Scale do not determine whether an observation target can be enabled and captured. Furthermore,
Detection, Visualization, and Alert are nice-to-haves, but not decisive in the facilitation or logging
of any of the observation targets. Therefore, we distinguish functional features from non-functional
ones, where we use the former to construct the mapping. Figure 4.7 shows the functional features,
where it can be seen that the deceptive functionalities have remained intact. For the user-related
functionalities, only both logging features have been included.
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Logging

file 
system processes packetsscreen

recording
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interfaces protocolsservice
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real
device
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Figure 4.7: Selection of functional features that can be used for the mapping.

The result of the mapping can be found in Table 4.6. The rows of the table consist of the
observation targets, grouped in the labeled kill chain phases. For readability purposes, each
observation target is represented by its MITRE technique number. An overview of all technique
numbers with corresponding names can be found in Appendix C. The columns of the table present
the same functional features as shown in Figure 4.7.
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Continued on next page
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Table 4.6 – continued from previous page
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Table 4.6: Mapping of observation targets to honeypot features.

The mapping clearly shows that the relevance of certain features depends on the phase that an
attack is in. External persuasion seems most relevant in the early phases, where an attacker is
still aiming to gain information, or when credentials need to be leaked in order to provide the
attacker access to the deceptive system. Contrarily, any representation of the physical process
appears to become increasingly important as the second stage of the Cyber Kill Chain progresses.
Furthermore, the table shows that, when aiming to facilitate techniques within the first installa-
tion phase, a high-interaction pot needs to be constructed, which certainly requires some form of
host-based logging to capture the observation target. Besides these rather explainable relation-
ships, some entries may be cause for confusion. For instance, there is one technique that has not
been mapped to any of the logging features, which is ‘Wireless Sniffing (T0887)’. The absence of
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logging features lies in the fact that the application of this technique is likely to remain unnoticed
by the user. Wireless sniffing is a passive activity that does not generate any data or trace on the
target system [77]. The reason for still involving the techniques in the mapping is that it plays
a significant role in other techniques that are plausible to follow or precede it. Therefore, one
would want to make sure that an attacker could practice such undetectable technique, to enable
an attack path that involves other techniques that are detectable. Concretely, this means that a
subsequent technique could be ‘Wireless Compromise (T0860)’, which is part of the Exploitation
phase and can be captured.

Moreover, for some observation targets, multiple values within the same meta-level feature are
selected. This has been done because the observation target is not specific enough to attribute
it to a single value. A clear example can be found in the first entry of Table 4.6, where for
‘Active Scanning (T1595)’, all three types of protocols have been selected. Since any type of
service implemented on an exposed port could be scanned from the Internet, all of them need to
be considered. Therefore, in those cases, the environment, determined by the use case, ultimately
decides which of the options is most suitable.
To show how we can use Table 4.6, we composed a simplified attack path, which can be seen in
Figure 4.8. The attack path, of which the first two observation targets have been discussed earlier,
needs to be translated to a single set of features that form the basis for the construction of a
honeypot.

Wireless Sniffing 
(T0887)

Wireless Compromise 
(T0860)

Valid Accounts 
(T0859)

Theft of Operational
Information
(T0882)

Figure 4.8: An exemplary combination of observation targets that form an attack path.

When feeding each individual observation target to the mapping, we obtain the following sets of
features:

Wireless Sniffing (T0887): Size:pot, Interaction:high, Virtualization: real device, Protocols:
industrial, IT.

Wireless Compromise (T0860): Size:pot, Interaction:high, Virtualization: real device Proto-
cols: industrial, IT, Logging: RSSI, packet capturing.

Valid Accounts (T0859): Size:pot, Interaction:low, Virtualization: service imitation, Interfaces:
HMI, CLI, Protocols: remote access, industrial, IT, External Persuasion: active, passive, Logging:
screen recording, packet capturing.

Theft of Operational Information (T0882): Size:pot, Interaction:low, Virtualization: service
imitation, Interfaces: command-line, Protocols: IT/Remote Access, Physical Process: model, Log-
ging: packet capturing.

The next step is combining the sets of the desired observation targets into a single set that
facilitates all of them. In the case of the same values for the meta-level features, it is straightforward
to select the matching features. However, whenever the values vary, the feature with the highest
cost should be selected for the reason that the ability of the costliest option includes the option
with lower costs. For example, for the feature Size, a net includes pots. Regarding Virtualization,
when using a real device, atleast the same services have been implemented compared with using a
service imitation. Finally, when opting for high interaction, it includes at least the possibilities that
low interaction has to offer, with additional quality. By applying this approach to the previously
acquired sets, we can produce the following combination of features:
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Combination (T0887, T0860, T0859, T0882): Size:pot, Interaction:high, Virtualization:
real device, Interfaces: HMI, CLI, Protocols: remote access, industrial, IT, External Persuasion:
active, passive, Physical Process: model, Logging: packet capturing.

The feature set forms a solid basis for the construction of a honeypot that captures the selected
observation targets. The final step would be to integrate environmental parameters that should
be extracted from the use case. These parameters further decide which protocol should be im-
plemented or whether an HMI and/or CLI is applicable. For example, when the attack path in
Figure 4.8, the use case contains some replay attack such as the Polish tram incident, we can only
select the industrial protocol from the feature set [78]. The same principle holds for the interface
types, where observations targets such as ‘Valid Accounts’ alone cannot determine whether cre-
dentials should be entered through an HMI or CLI. A more extensive and real-world example of
the construction of a honeypot will be presented in Section 5.2 by means of a use case.
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Results

We have developed a methodology by creating a topology and using parts of it to map against
interactions that attackers could carry out. Now we ought to demonstrate that the mapping is
correct and that the methodology is suitable for practical application. Therefore, this section is
split into Section 5.1, which treats the constructed mapping, and Section 5.2, which demonstrates
a real-world use case to show the practicality of our methodology.

5.1 Validation

To show that the mapping is representative, a set of seven honeypots, which have not been used
earlier in this research, has been composed. A higher number of honeypots would not necessarily
result in the validation of a larger part of the mapping, as the vast majority of the available
research captures the same observation targets. Many of our observation targets, such as T0865,
T0847, T1200, and T0864 to only name a few, have not even been found implemented in any
available CPS honeypot. Hence, increasing the number of works would not increase the number
of validated observation targets.

Honeypots Observation Targets
Bodenheim [79] Active Scanning (T1595), Default Credentials (T0812)

Mashima et al. [80]
External Remote Services (T0822), Remote Services (T0886),
Network Sniffing (T0842), Monitor Process State (T0801),
Unauthorized Command Message (T0855), Manipulation of Control (T0813)

iHoney [81]
Remote Services (T0886), Graphical User Interface (T0823),
Network Sniffing (T0842), Data Destruction (T0809),
Unauthorized Command Message (T0855), Manipulation of Control (T0813)

Antonioli et al. [82]

Active Scanning (T1595), External Remote Services (T0822),
Remote Services (T0886), Scripting (T0853),
Man in the Middle (T0830), Denial of Service (T0814),
Manipulation of Control (T0813)

HosTaGe [83]
Active Scanning (T1595), Internet Accessible Device (T0883),
External Remote Services (T0822)

Belqruch et al. [84] Active Scanning (T1595), External Remote Services (T0822)

S7commTrace [85]
Active Scanning (T1595), Remote Services (T0886),
Program Download (T0843), Device Restart/Shutdown (T0816)

Table 5.1: Set of honeypots with their observation targets that have been used for validation.

Rather than aiming to validate the entire mapping, we aim to demonstrate that the mapping
performs as intended using honeypots that were not considered before in the development of the
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methodology. Table 5.1 contains the works that have been used for comparison together with the
observation targets they claim to facilitate. The works have been selected based on their diversity
in identified observation targets, to prevent an overrepresentation of honeypots that solely capture
scanning activities.
To see how our mapping performs, first combine the features of each honeypot, derived from their
observation targets to a single set, as was done with the example in Section 4.4. This combination
is represented by the Mapping-label in Table 5.2. Then, we deconstruct the honeypot, based on
the architectural description that has been given in the corresponding research paper. This set of
features is specified using the Actual -label in Table 5.2.
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Bodenheim [79]
Mapping: x x x x x x x x x
Actual: x x x x x x x

Mashima et al. [80]
Mapping: x x x x x x x x x x
Actual: x x x x x x x x

iHoney [81]
Mapping: x x x x x x x x x x x x x
Actual: x x x x x x x x x x x x

Antonioli et al. [82]
Mapping: x x x x x x x x x x x
Actual: x x x x x x x x x x

HosTaGe [83]
Mapping: x x x x x x x x x
Actual: x x x x x x x x x

Belqruch et al. [84]
Mapping: x x x x x x x x
Actual: x x x x x x

S7CommTrace [85]
Mapping: x x x x x x x x x x
Actual: x x x x x x

Table 5.2: Comparison between the honeypot features expected through the mapping and the
actual features.

Five out of the seven works match very well with the features that our mapping has produced.
Regarding the other two honeypots, Bodenheim and iHoney, differences can be noticed within
the Interaction and Virtualization feature. Whereas Bodenheim used a real device, which we
have linked by definition to high interaction, our mapping indicates that only a service imita-
tion was required to capture their observation targets. This observation raises the suspicion that
Bodenheim might have developed a decoy with costlier choices than necessary, through our defin-
ition of cost. Upon investigating, this suspicion is strengthened by the fact that the honeypot
only investigated fingerprinting by scanning using Nmap and exposed a web interface through
the HTTP service which displayed device-specific characteristics. Concerning iHoney, our map-
ping indicates that for Virtualization a device imitation would suffice for the targets it aimed to
capture, while the authors decided to use real devices. Our mapping output was caused by the
‘Data Destruction’ target that requires a functional file system with an underlying OS, but not
necessarily a real device. The research mentions that the ICS system was implemented with help
from a specialized contractor, which may indicate that they already had access to physical devices.

The key takeaways from the rather brief validation are: if the mapping suggests that a costlier
feature is needed, while researchers accomplished it with something less costly, the mapping is
clearly incorrect. This, however, has not been the case in our research. Nonetheless, when mapping
suggests a less expensive solution, while researchers accomplished it with a feature with higher
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costs, it simply indicates that they used a more costly solution than what might have been required.
Therefore, our mapping contributes to the suggestion that their observation targets could be
captured with fewer costs. However, it is important to understand that in practice there might
be other reasons to pick a certain composition. For example, if an organization or individual is
already in possession of a real PLC device, it would be preferable to use that device for a honeypot,
rather than developing their own service or device imitation. Moreover, virtualization in ICS is not
trivial [86]. Therefore, buying a real device might be cheaper than developing the virtualization
techniques needed.

5.2 Use Case: Building Automation Access Control

The previous sections have shown why the framework is needed, how it has been built and whether
the mapping is consistent when compared with a different set of existing honeypots. Now, finally,
we aim to demonstrate that the framework is suitable in terms of practicality. A real-life use case
is presented where there is demand for a honeypot in a specific scenario. First, we explain the
scenario of the use case, which embodies the objective of the user and the environment that will be
considered. Then the framework is instantiated by applying the produced methodology. In other
words, by using the developed approach, we guide the user from its objective to a set of features
that together form the basis for a honeypot. To take it even further, we implement the identified
features to realize a functional honeypot. Ultimately, we close the circle by demonstrating that
the honeypot is able to detect the observation targets and therefore meets the objectives of the
user.

5.2.1 Scenario Description

A reputable European government agency has implemented an access control mechanism in its
building automation system. This mechanism allows personnel to use a smartcard for entering
specific spaces in the building. Security officers are able to monitor the state of offices to see which
doors are open or locked and to collect logs through a workstation that is directly connected
to the Building Management System (BMS). Furthermore, engineers have access to an HMI,
which permits them to regulate access by manually override the state of office doors in case of
maintenance or emergency. The BAS uses a network that is mainly local and from the automation
layer downwards decoupled from the IT infrastructure of the organization. The structure of this
network is shown in Figure 5.1 where, for visibility purposes, only a single instance of each field
device type is displayed.

The internal network is not strictly air-gapped, however, as the service contract for the BAS in-
volves polling the Internet for updates periodically. This means that the workstation has internet
access to provide the BMS with updates when necessary. Furthermore, the computers in the man-
agement layer are also coupled with the IT infrastructure to exchange information on whether a
smartcard associated with person X is or is not authorized to unlock the door of a specific room.
The devices in the management layer are used to control the HMI as well as to configure the build-
ing controller. In the automation layer, the HMI allows valid users to directly control the system
using clickable buttons. The building controller functions as a gateway that translates commands
from IP-based protocols to field protocols, and vice versa, sensor and state information from field
protocols to IP-based protocols. Additionally, the computers and PLCs in the automation and
field layer are spread throughout the building, and not necessarily limited in physical access. Based
on the described system architecture, a concern has been raised for the manipulation of the access
control mechanism by potential intruders. The organization is worried that attackers might have
access to a building automation controller and disrupt the physical process by manually locking
or unlocking specific doors. For example, incorrect configuration within the network could result
in exposed HMIs and occurs regularly in practice [87]. The organization wants to be able to make
a distinction between different types of attackers in terms of knowledge and capabilities. More
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Figure 5.1: Overview of the organization’s building automation system, where the red and blue
interconnections represent IP-based and field protocols, respectively.

specifically, they would like to have a solution that is able to investigate if different approaches
are being used to reach a similar goal, where each approach requires a different particular skill.
This requirement will have a significant role in the derivation of observation targets in the next
section.

While there are lots of honeypots available on the market, the organization could not find any that
meets their specific objective and that fits in their environment. There is no existing plug and play
solution to address the specific demands of the government agency. More than that, there is no
systematic methodology available on how to compose an effective honeypot for a specific need. As
mentioned in Chapter 3, existing solutions lack the ability to couple the objective of an arbitrary
user to the required composition of the honeypot. Therefore, we use the developed methodology
to construct a honeypot tailored to the user’s objective.

5.2.2 Application of the Methodology

In order to apply the framework to the given use case, the required steps need to be specified. The
first step is to extract particular observation targets from the scenario discussed in 5.2.1. We do
this by defining attack paths that can be deconstructed into observation targets, that are aimed
to be caught. In the second step, the obtained mapping is used to identify which features should
be supported to facilitate and register that target. The user is left with multiple sets of features
at the end of this stage, depending on the number of observation targets that have been used in
the mapping. In the third and final step, the sets are combined into a single one, that supports
the facilitation of all involved observation targets. Furthermore, the environment parameters are
considered in this stage as well, as they determine the further details that are required for the
implementation of the honeypot. Figure 5.2 shows the framework in action, instantiated by a use
case that can be dissected in the following two elements:

- Objective: Detection of a potential intruder that has the intention to disrupt the physical
process. Being able to detect attackers with different capabilities by facilitating multiple
approaches to reach the goal. Consequently, the framework should output a group of features
that can provide all approaches that will be specified.

- Environment: Parameters from the target environment that are needed to develop the
honeypot, such as the device type, services used, and other properties of the network where
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the device is located. Due to security limitations stated by the organization, it has not been
possible to disclose the device type and number that is used in their network. Therefore, in
the implementation phase, a different device type but with similar services has been used.

 

Use case

Environment  

Honeypot
construction 

Observation
targets 

Technical  
features 

Functionality matrix 

Objective 

Parameters 

Figure 5.2: Framework in action employing a use case.

From Objective to Observation targets
The first step in applying the methodology consists of the derivation of observation targets from
the use case in the previous Subsection 5.2.1. In the scenario, we aim to enable multiple approaches
that could result in the manipulation of control. For this step in the methodology, it means that
there will be multiple attack paths, consequently, resulting in distinct observation targets. The
first path should be fairly approachable for an ordinary user, i.e., a regular cybercriminal. The
regular cybercriminal should not be required to have very technical or environment-specific know-
ledge and skills. For the second path we design a path where the majority of attackers disengages
due to lack of knowledge, and attacking the system is possible only for an advanced cybercriminal.
At the same time, there needs to be an incentive for an attacker that has skills, to takes this
approach. Hence, the reward for taking this path is higher, in the form of the ability to unlock a
door that is not controllable from the HMI.

Path 1
The first attack path that we consider is through an exposed HMI. In the scenario, the user
interface has become directly accessible from the Internet, due to improper network configuration
in the management layer. Using HTTP in the web browser, arbitrary users can access the HMI
when in possession of the corresponding IP address and port number. Furthermore, it is also
possible for insiders to reach this device through the internal network. An attacker that solely
visits the Web address, however, does not match the intentions that we aim to capture. Therefore,
the HMI provides an overview of available actions that the user can perform to initiate a physical
operation such as unlocking a door. The actions on the HMI are then registered to distinguish
”accidental visitors” from users with malicious intent. Though the HMI is accessible for all users,
valid credentials are required to allow modification of parameters. This adds another layer of
security that the adversary needs to overcome. Also, it allows for future extension of the honeypot
by having the possibility to leak specific sets of credentials on arbitrary locations. The complete
combination of observation targets, together composing the first attack path can be found in
Figure 5.3.

The next step for this attack path will be the translation to the required features for the honeypot
that will be constructed.

Path 2
For the second attack path, a port of the building controller that uses an industrial protocol is
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Figure 5.3: First path: attack through an exposed HMI.

exposed to a potential attacker. This protocol facilitates the modification of object parameters
through the use of commands, resulting in changes within physical processes. In this scenario we
assume that no authentication mechanism has been implemented, meaning that any user is allowed
to send arbitrary commands to the building controller. Such a scenario matches real-life situations
where these mechanisms, despite their availability nowadays, are widely omitted in practice [88]
[89]. Whereas the modification of parameters on an HMI happens visually, industrial protocols
use particular syntax that requires specific knowledge about that service. Therefore, we state that
manipulation of control through this path, which is shown in Figure 5.4, requires more knowledge
than through the path presented in Figure 5.3.

Manipulation of
ControlRemote Services Modify ParameterUnauthorized

Command Message

Figure 5.4: Second path: attack through an unauthenticated industrial protocol.

Similar to the previous path, each individual observation target will be translated to a set of
required features.

From Observation targets to Features
Now that the objective of the user has been translated to the specified observable actions, the
mapping that has been presented in Section 4.4 can be used to acquire the technical features for
the organization’s honeypot. Firstly, we list the feature set that corresponds with each observation
target for both paths. Then, we analyze the sets to determine which similarities or differences are
present within the meta-level features. Based on these matches we combine them into a single set,
that is able to enable and log the affected targets. Finally, the environment is considered, which
determines the implementation details such as specific services or device types that will be used
in the next phase.

For the path through the exposed HMI, the following features have been identified:

Internet accessible device (T0883): Size:pot, Interaction:low, Virtualization: service imita-
tion, Interfaces: CLI, Protocols: IT/Remote Access, Logging: packet capturing.

Graphical user interface (T0823) : Size:pot, Interaction:low, Virtualization: service imita-
tion, Interfaces: HMI, Protocols: IT, Logging: screen recording, packet capturing.

Valid Accounts(T0859): Size:pot, Interaction:low, Virtualization: service imitation, Interfaces:
web portal, CLI, Protocols: IT/Remote Access, External Persuasion: blog posts, Logging: screen
recording, shell, packet capturing.

Modify Parameter (T0836): Size:pot, Interaction:low, Virtualization: service imitation, Inter-
faces: HMI/ CLI, Protocols: IT/Industrial, Logging: packet capturing.
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Manipulation of Control (T0813): Size:pot, Interaction:low, Virtualization: service imitation,
Interfaces: HMI/CLI, Protocols: IT/Industrial, Physical Process: model, Logging: packet captur-
ing.

The second path, through the use of the industrial protocol, is mapped to the following sets of
features:

Remote Services (T0886): Size:pot, Interaction:low, Virtualization: service imitation, Inter-
faces: CLI, Protocols: Remote Access/Industrial, Logging: packet capturing.

Unauthorized Command Message (T0855):
Size:pot, Interaction:low, Virtualization: service imitation, Protocols: Industrial, Logging: packet
capturing.

Modify Parameter (T0836): Size:pot, Interaction:low, Virtualization: service imitation, Inter-
faces:HMI/CLI, Protocols: IT/Industrial, Logging: packet capturing.

Manipulation of Control(T0813): Size:pot, Interaction:low, Virtualization: service imitation,
Interfaces: HMI/ CLI, Protocols: IT/Industrial, Physical Process: model, Logging: packet cap-
turing.

Based on the features that were obtained in the above steps, the most consistent composition in-
volves a single low-interaction pot that provides two services to the attacker. Also, the sets clearly
show that in terms of virtualization, a service imitation should suffice in enabling the observation
targets we aim to capture. The first service that should be offered is an HMI, to enable execution
through a graphical user interface. Since this HMI is accessible from the Internet through a web
browser, it logically follows that the HMI should be facilitated by an IT protocol (such as HTTP).
The second service should be an industrial protocol, of which the specifics depend on parameters
acquired from the environment. Furthermore, a physical process model is required in order to
reflect a change in the state caused by modifications that the attacker performs. Finally, packet
capturing is necessary to register the interaction that the attacker has made. Although the screen
recording appeared in some of the feature sets, this will not be necessary since a service-imitation
does not have such ability compared to device imitation where the attacker is compromising the
host machine rather than a standalone service. Also, script-based service imitation provides a
good opportunity to integrate logging of all attacker inputs.

modify BACnet object

Modify Parameter

(un)lock buttons

Modify Parameter

HTTP/port 8800

Internet Accessible
device

BACnet/port 0xBAC0

Remote Services

Manipulation of
Control

(un)lock abitrary door

BACnet commands

Unauthorized
Command Message

floorplan

Graphical User
Interface

admin account

Valid Accounts

Figure 5.5: Combined attack paths with relevant information of the environment.

The environment that the use case considers is an internal production network, as the target build-
ing controller, an EasyIO FW-08 is used in the automation layer. This means that the controller is
used to control field devices such as room controllers and corresponding sensors/actuators through
the BACnet protocol. Furthermore, the device offers a proprietary software programming tool,
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CPT tools, that allows for the creation of graphical webpages and widgets that can be hosted on
the device’s web server.

5.2.3 Implementation

For the implementation, existing frameworks have been investigated to determine whether any
would be suitable as starting point. Based on the feature set composed in Section 5.2.2, we are
looking for a framework that offers a low-interaction standalone pot, which is able to imitate
services. At the same time, it should have enough flexibility to support the integration of the
other features in our set.

Taking all considerations into account, the existing framework Conpot was selected to build upon
[44]. The original version, however, does not provide all the features that are deemed necessary.
Specifically, the features that enable ‘Graphical User Interface’ and ‘Valid Accounts’ are missing,
while for the other targets, the environment parameters need to be integrated. In the first step,
Conpot’s HTTP service has been extended to serve as an HMI, accessible through the web browser.
The HMI, shown in Figure 5.6, contains a floorplan from the scenario description to provide an
overview of the building section. Furthermore, the state of each access door is represented by a
red or green color, indicating a locked or unlocked state respectively.

Figure 5.6: An overview of the HMI offered through HTTP on port 8800.

To add an extra layer of security by enabling the ‘Valid Accounts’ observation target, the HMI has
two modes. Upon reaching the network address, the default mode is Viewer, where no modification
through the interface is possible. When switching to Admin mode, the sign-in window shown in
Figure 5.7 is displayed, which requires a valid set of credentials. In this implementation, these
credentials are stored in the source code, but the organization is free to release them in other
preferable ways such as through honeytokens on an internal server, or blog posts [34]. After
completing the sign-in, the user can open any individual access door object. The faceplate, which
can be seen in Figure 5.8, describes the actions that a user can generally perform. The actions
that can be performed consist of locking and unlocking a door, and enabling or disabling the
smartcard reader on the door. The reader allows personnel to locally unlock the door of a room
that they intend to enter, assuming that the smartcard contains the prescribed authorization. As
specified in the scenario description, the floorplan in the HMI contains one room, F.028, that
cannot be unlocked regularly, in the sense that all buttons on the faceplate have been disabled.
Furthermore, certain read-only properties regarding the access door, such as state of service, are
shown as well. It is important to notice that Conpot’s HTTP service does not provide any form
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of persistence on the server’s end. Therefore, the changes made by the attacker on the HMI are
stored in Javascript on the client-side. This means that the attacker has access to the source code,
though, there exist code obfuscation methods to decrease readability and thus the likelihood that
the HMI is identified as deceptive [90].
With a finished deceptive system for this path, the remaining part is the logging functionality. We
want to capture an attacker accessing the HMI on the decoy device, any credentials that might be
entered, and any interactions and modifications carried out on the HMI. However, as the interac-
tion caused by the attacker is only stored on the client-side, it does not automatically end up at
server-side where we could extract that information. Also, upon a modification by the attacker,
we cannot just reload the entire page by invoking an HTTP request with logging information to
the server. The door states would then be reloaded to their initial state, which might rise a suspi-
cion. As a solution, we utilized Asynchronous JavaScript And XML (AJAX) to send parameters
through HTTP GET requests to the server, as soon as any of the aforementioned interaction has
taken place. This way, data is send to webserver in background, without reloading the entire page.

Figure 5.7: Sign-in window required for switching
to Admin mode.

Figure 5.8: Faceplate with the inability to modify
any parameter for room F.028.

To accomplish the second attack path, it has been built further upon Conpot’s native implementa-
tion. The original template offers the possibility to create BACnet objects that represent physical
items or descriptions of processes. An access door is one of the existing object types and provides
a variety of properties specific to that object type [91]. These access doors have been added to
the original version, with modifications to match the objects with those shown in the GUI and
that is consistent with the use case. The significant difference with the first attack path here
is that using the BACnet service, it is possible to manipulate controls for the door that could
not be performed on the HMI. Figure 5.9 shows the address objects that are contained by the
FW-08 device, seen from the attacker’s perspective. This view has been obtained by using the
BACnet client Yabe on another machine while connecting to the IP address and port number of
the honeypot [92]. Once an object has been selected, which in this case is the door of room F.028,
the client transmits a read request to obtain the object properties and their corresponding values.
The implemented properties can be found in Figure 5.10. The Present Value property contains
the writable command, where the values 0 and 1 represent lock and unlock requests, respectively.
Upon modification, the client transmits the message to the receiver, which in this case is the
BACnet server of our honeypot. By performing this action for the room with restricted access,
the attacker has successfully circumvented the limitations in the HMI.
Again, the remaining functionality that requires implementation is the logging feature. According
to our composed sets of required features, network-based logging should suffice in capturing all
stated observation targets in this path. The native implementation already contained some logging
functionality. For example, it can capture whether a connection, using the BACnet service, has
been established including source IP address and port number. Moreover, it is able to detect the
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transmission of Protocol Data Units (PDUs) from and to the honeypot. What is missing, however,
are the details regarding the content of the PDU. Consequently, it is not clear whether reading
or writing actions take place, and what values are being read or written. To solve this issue, we
coded additional logging lines in the functions that initiate read and write actions. As a result,
whenever any form of interaction takes place, the user receives information consisting of atleast
the relevant ObjectName and its PresentValue.

Figure 5.9: BACnet device containing the Access
Door objects.

Figure 5.10: Properties of Access Door object,
where present value has been modified to ‘1’ (un-
lock action).

5.2.4 Verification

Now that an implementation has been created, we need to demonstrate that the honeypot is
effective and succeeds in capturing the defined observation targets. For the first attack path,
we can show that the target device is accessible from the attacker’s machine with another IP
address. In the snippet that can be found in Figure 5.11, the incoming HTTP session is logged
at the moment that the attacker tries to connect. Specifically, the source IP address, source
port number, timestamp, and metadata such as user-agent are attained. The second observation
target, ‘Graphical User Interface’, can only be verified using the interaction that takes place on
that interface. The interaction that is offered on the HMI consists of a sign-in action and the
possibility to click specific buttons. As a result, this observation target is verified inevitably,
by verification of the targets ‘Valid Accounts’ and ‘Modify Parameter’. Figure 5.12 shows the
capture of information that is relevant to these observation targets. The credentials entered by
the attacker are stored at sign-in. Upon entering a set of valid credentials, the modifications
that can be performed on most doors are logged in the form of locked/unlocked actions with the
corresponding room number. Since the parameters in this honeypot are directly tied to state in
the physical process, its modification can be interpreted as the intention to manipulate control.
This means that as soon as the attacker clicks one of the lock buttons, it implies that in the real
world, a disruption of the physical process would have taken place, which concludes the verification
of the first attack path.

Figure 5.11: Logging an incoming HTTP session from the attacker.

To verify that honeypot is able to capture all observation targets for the second attack path, we take
on the role of the attacker again. When using the Yabe client to connect to the honeypots BACnet
service, the incoming connection is captured. Figure 5.13 shows that record, including source
address and port number. This means that both the facilitation and logging of the observation
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Figure 5.12: Logging the submitted credentials as well as parameter modification by the attacker.

target ‘Remote Services’ is functional. After establishing the connection, in contrary to the first
attack path, we are able to send command messages for the room with restricted area, F.028,
to the controller. At the same time, the command consists of a writeable value that represents
the desired state of an object property. Therefore, by sending this command with an updated
written value, both the targets ‘Unauthorized Command Message’ and ‘Modify Parameter’ are
being applied. The upper snippet in Figure 5.14 shows the logging of these targets by capturing
that a write action is performed against the selected object, using the selected value. The lower
snippet shows a read action, after the attacker modified the parameter. We can see that the
current DoorValue has changed to unlock, compared to the locked state before the attack which
can be seen in Figure 5.13. This final observation demonstrates that an adversary could inflict
‘Manipulation of Control’ and that the honeypot is able to capture it, hence the final observation
target is verified.

Figure 5.13: Logging an incoming BACnet connection from the attacker.

Figure 5.14: Logging the transmission of an unauthorized command message and an updated value
after parameter modification.

To conclude, a honeypot has been constructed that meets the objective of the organization. Based
on observation targets, derived from the stated objective, a set of features was composed that
formed the basis of the honeypot. For the implementation, we used an existing platform and
extended it with functionalities to create a system that included the necessary features for our
use case. This resulted in a honeypot where it is possible, through two different attack paths,
to manipulate parameters that would, in the real world, affect the physical process. While the
attacker is interacting with the deceptive system, the owner of the honeypot receives specific
information about the attackers’ activities. Hence, the organization is able to retrieve insight into
both the intentions and capabilities of an adversary.
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Discussion

In this chapter, we elaborate on our findings during the development of the methodology. Fur-
thermore, we interpret the obtained results and state the limitations of the framework.

The first step in developing the methodology was to form a topology of honeypot features based on
existing research. When considering the identified features, significant differences in the support for
certain features can be seen. Features such as Logging, Size, and Interaction Level are prevalent in
the analyzed literature compared to External Persuasion. However, as can be seen in the mapping,
even these features with lower support are required to capture certain observation targets.

Furthermore, the definition of Interaction Level is not fixed, resulting in honeypots that could
proclaim their own interaction level. Some literature states that high-interaction entitles the use
of a real device by definition [11]. We think that the Interaction Level and Virtualization features
should remain decoupled, as in our research, especially with a new generation of virtualization
techniques allowing for accurate imitation and thus a high quality of implemented services [93].

One important topic that has not been included in the formation of observation targets, but was
considered thoroughly is the attacker profile and its role in forming attacker models for a honeypot.
We identified the following three relevant profiles for the industrial and governmental nature of
the systems in our research, based on existing literature [94].

– Nation-State: highly capable and well-resourced attacker sponsored by a state/nation.
Potential targets consist of public infrastructure systems, mass transit, power or water sys-
tems, and general intelligence [95]. According to the Microsoft Threat Intelligence Center
(MSTIC), nation-state actors are mainly focused on government agencies, intergovernmental
organizations (IGOs), nongovernmental organizations (NGOs), and think tanks for tradi-
tional espionage or surveillance objectives [96].

– Insider: attacker that has physical access to the system, either a disgruntled employee or a
person motivated by a third party. There are two forms of attacks, directly against a system,
or providing critical information to a third party for intelligence gathering or enabling an
attack [97].

Now, due to the convergence of CPS and IoT domains, traditional CPS such as Industrial
Control Systems and Building Automation Systems become Internet-connected. As the
physical barrier for accessing a target network is removed in these systems, another attacker
type becomes relevant:

– Cybercriminal: an attacker with extensive security knowledge and skills. Driven mainly
by economic motivation/gaining profit. With growing connectivity due to, for example, the
rise in remote access, cybercriminals increasingly gain access to CPS networks [98].
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We aimed to attribute observation targets to certain attacker profiles. For instance, observa-
tion targets that require physical access to a system, such as ‘Hardware Additions (T1200)’, or
‘Replication through Removable Media (T0847)’, could be attributed to the profile of an insider.
Consequently, the user of our developed methodology could only retrieve the observation tar-
gets that were relevant for his use case, based on the expected attacker profiles. For example,
a company could base its honeypot on observation targets associated with cybercriminals, or, a
government agency could choose from a set of observation targets that are mostly associated with
nation-states or insiders. However, while some observation targets could be attributed fairly well,
most of the targets are in practice not specific to an attacker profile. That is, among others,
because the TTP of nation-states and (advanced) cybercriminals are becoming increasingly alike
[99]. Therefore, it becomes significantly harder to make a distinction in observation targets based
on the attacker’s capabilities. Hence it has been omitted in the development of our methodology.
However, for future research, it would be very useful to be able to align the honeypot with the
type of attackers it aims to attract.

In the mapping, we can observe a number of relations that can be explained well. For example,
in the installation/modification phases, the vast majority of techniques require high interaction.
This observation corresponds with expectations, as the techniques in this phase often rely on file
and/or operation systems to be used. Also, when considering the validation, the mapping is fairly
consistent compared to the validation set. However, the main problem with proper validation
lies in the fact that most of the MITRE techniques have, in the available literature, not yet been
caught by honeypots. A reason could be that the MITRE for ICS framework is relatively new,
published in 2020. The techniques from the framework have been identified during actual attacks
on physical production devices. As a result, there does not yet exist a known reference or source
that can be used to validate the mapping, especially for observation targets that we claim could
be captured using virtualized honeypots. Therefore, this framework could be seen as a beginning,
such that future honeypot research could document the recognized techniques that they have cap-
tured.

Despite the impossibility to validate the entire mapping, we were able to show consistency in a
part of it. The validation set of honeypots demonstrated that for an arbitrary set of observation
targets, the predicted features mostly correspond with the actual features that the works had im-
plemented. For the deviating values, we noticed that some options more expensive than necessary
might have been taken by the researchers of those works. This, however, is also a limitation of
the framework. We assumed relative costs based on the functional differences within a meta-level
feature. For most features, such as Size and Interaction Level it works well. However, specifically
for the Virtualization feature, the assumption that a real device costs more than a device or service
imitation becomes problematic. In practice, there are various ways in which the procurement of a
physical device can be less costly than developing a digital twin. Therefore, in future research, a
cost function or similar method should be constructed to decide whether to select a device imita-
tion or a real device if both options would suffice in capturing an observation target.

Another limitation of the framework can be seen through the difficulty of integrating all depend-
encies between certain features. For example, when merging the output of the mapping to a
single set of features in the use case in Chapter 5.2.2, the combination of host-based logging with
service imitation as Virtualization feature occurred. In practice, this combination is unusual as
the options for host-based logging are limited for this level of virtualization, due to the absence
of a functional operating system. Therefore, we recommended that the output of the mapping is
always checked before the features are adopted for implementation.

Finally, the use case shows that it is completely possible to build upon an existing honeypot
framework, as long as that framework supports the possibility to integrate any missing features
that the user aims to implement. Conpot initially did not offer an HMI or the type of network-
based logging that we required for the user’s observation targets. However, since it did support
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an HTTP server and a basic, incomplete, logging functionality, it was possible to facilitate and
verify all observation targets that belonged to the agency’s objective.
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Chapter 7

Conclusion and Future Work

In this chapter, we provide a conclusion by summarizing the answers to our research questions.
Moreover, we come up with suggestions for future work based on the findings of our research.

7.1 Conclusion

The motivation for this research originated from the identified heterogeneity of honeypots in the
IoT/IIoT/CPS domain. While there are lots of well-known honeypots available in the literature, it
is difficult for users to fabricate a honeypot according to their specific objectives. The goal of the
research was to develop a systematic framework for the construction of arbitrary IoT/IIoT/CPS
honeypots for the particular objective that a user might have. To accomplish this objective, we
first required an overview of all known characteristics of honeypots in our domain. Then, we
needed to identify the known attacker TTPs used in our domain. As a third step, the honeypot
characteristics and observation targets should be linked together. To fulfill the final objective, we
needed to demonstrate that the methodology we wanted to develop could also be used in practice.

The first sub-question has been answered by the creation of a topology of honeypot features. This
topology provides a clear overview of identified features, based on a set of existing IoT/IIoT/CPS
honeypots. The features were structured hierarchically and grouped depending on their charac-
teristics.

To identify the attacker TTPs that were relevant for our research, we used two existing reputable
frameworks which were specific to our research domain. From these frameworks, we made a strict
selection of observation targets relevant to honeypots.

For the third research sub-question, we first investigated what functionalities would be needed to
facilitate and register the observation target. Then, we constructed a mapping, using the honeypot
topology made in the first sub-question, in which we clarify what set of features is required to
capture a specific observation target.

To demonstrate that the framework is not only theoretical but can also be applied in real-world
scenarios, we presented a use case. In the use case, the methodology is followed, starting with a
user’s objective and ending with a functional and verified honeypot.

The framework has certain limitations, such as the assumptions that were made to determine
the relative costs of features. Also, the output of the mapping should be interpreted before
implementation, to make sure that complicated dependencies have not created a set in which
some features are unlikely to coexist. As a final result, we have come up with a framework for a
user with a specific objective that intends to construct a honeypot in the IoT/IIoT/CPS domain.
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7.2 Future Work

This section describes three recommendations for possible improvements and directions for further
research.

In our opinion, virtualization has high potential in the honeypot research domain. Realistic vir-
tualized honeypots could decrease physical location dependencies and increase scalability and
adaptability. For future research, we would recommend a feasibility study regarding virtualization
techniques specifically for CPS devices. Consequently, improved estimations of costs could be
made such that users can have a more substantiated choice between the use of device imitations
or physical devices.

Our second recommendation concerns the need for a consensus on the definition of Interaction
Level. As we have seen researchers interpret this feature differently, it results in confusion and
mismatches when comparing honeypots from different works. By proposing a well-defined topo-
logy consisting of specific requirements to proclaim a system as high-interaction, future honeypots
could be classified and compared objectively.

Finally, we need to investigate how to include the environment of the user in the framework. Until
now, the environment parameters are only considered after the set of features has been composed.
Consequently, the user still needs to investigate how to implement a specific protocol in the
constructed honeypot. By integrating the specifics of the target environment in the framework,
one could aim for automated development of the honeypot, when the user specifies the objective
and the target environment.
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Appendix A

Deconstruction of Analyzed Set

Size
pot Scada Honeynet project

Digital Bond
Conpot
CryPLH
Simoes et al.
MimePot
HoneyPHY
Honeyd
Dodson et al.
Bauer et al.
Cifranic et al.
Serbanescu et al.
DiPot
Lelie et al.
Honware
SIPHON
Thingpot
Honeytrack

net Pliatsios et al.
Hilt et al.
GridPot
Piggin and Buffey

Interaction Level
low Scada Honeynet project

Digital Bond.
Serbanescu et al.
Conpot
Honeyd
HoneyPHY
Simoes et al.
DiPot
Lelie et al.
CryPLH
Honeytrack
Gridpot

high Piggin and Buffey
Pliatsios et al.
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MimePot
Bauer et al.
Cifranic et al.
Honware
SIPHON
ThingPot
Hilt et al.
Dodson et al.

Virtualization
service imitation Scada Honeynet project

Honeyd
HoneyPHY
GridPot
Lin et al.
Simoes et al.
MimePot
Serbanescu et al.
Lelie et al.
Honeytrack
Conpot
Bauer et al.

device imitation Digital Bond
CryPLH
ThingPot
Cifranic et al.
DiPot
Honware

real device Piggin and Buffey
SIPHON
Pliatsios et al.
Hilt et al.
Dodson et al.

Services
interfaces Pliatsios et al.

Hilt et al.
Gridpot
Piggin and Buffey
Bauer et al.
SIPHON

protocols can be found in Table 4.1
External Persuasion
active Hilt et al.
passive Hilt et al.
Physical Process
process model HoneyPHY

GridPot
Piggin and Buffey
MimePot

real plant Hilt et al.
Scale
single Scada Honeynet project

Digital Bond
Conpot
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CryPLH
Simoes et al.
MimePot
HoneyPHY
Pliatsios et al.
Hilt et al.
GridPot
Piggin and Buffey

multiple Honeyd
Dodson et al.
Bauer et al.
Cifranic et al.
Serbanescu et al.
DiPot
Lelie et al.
Honware
SIPHON
Thingpot
Honeytrack

Deployment Period
<2 months CryPLH

Honware
Thingpot
Serbanescu et al.(

2-6 months SIPHON
Bauer et al.
Honeytrack

>6 months DiPot
Hilt et al.
Dodson et al.
Lelie et al.

Hosting Location
external Serbanescu et al.

DiPot
SIPHON
Holczer
Dodson et al.
Honeytrack
ThingPot

internal Simoes et al.
Cifranic et al.
Lelie et al.
Hilt et al.

Security
firewall Piggin and Buffey

Simoes et al.
Digital Bond
Pliatsios et al.
Honware

Logging
network-based Conpot

HoneyPHY
Piggin and Buffey
CryPLH
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Dodson et al.
Gridpot
Digital Bond
Cifranic et al.
Serbanescu et al.
Pliatsios et al.
DiPot
Lelie et al.
SIPHON
Simoes et al.
Hilt et al. (
Bauer et al.

host-based Hilt et al.
Digital Bond
Honware

Detection
signature-based Digital Bond

Serbanescu et al.
HoneyPHY
Piggin and Buffey
Simoes et al.
Cifranic et al.
Lelie et al.

anomaly-based GridPot
Visualization
geographical Lelie et al.

DiPot
statistical Lelie et al.

Hilt et al.
Digital Bond
Cifranic et al.

Alert
Simoes et al.
Digital Bond
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Appendix B

Feature Relationships

Relations between meta-level features within the Deceptive functionalities
– (1,1) —
– (1,2) - Size-Interaction - independent: Since interaction is defined as the quality of im-
plemented service(s), the size of the honeypot system has no influence on the interaction
possibilities.

– (1,3) - Size-Virtualization - independent - The size of the honeypot system has no influence
on virtualization possibilities, besides the costs which are explicitly excluded here.

– (1,4) - Size-Services - affects - A net needs to have additional services to enable communica-
tion between the devices. Therefore, the size of the honeypot system affects the (number of)
services that the honeypots requires.

– (1,5) - Size-External Persuasion - independent - The size of the honeypot system has no
influence on possibilities for external persuasion, such as the creation of a cover company,
or active advertisement of the honeypot.

– (1,6) - Size-Physical Process - independent - In case of multiple independently deployed pots,
you will need multiple instances of physical processes (either models or real plants). However,
theoretically it is possible, since cost is not included in this matrix.

– (2,1) - Interaction-Size - independent - The quality of the implemented service(s), has no
influence on the size (pot, pots, net) of honeypot system.

– (2,2) —
– (2,3) - Interaction-Virtualization - affect -The quality of implemented service does affect
virtualization possibilities. When choosing high interaction, you could either go virtualized,
or use a real device. However, when opting for low-interaction, you could only go virtual, as
a real device has high quality of service(s) per definition

– (2,4) - Interaction-Services - independent - A higher interaction level, implies a higher quality
of implemented service(s) and does not influence the number or type of service.

– (2,5) - Interaction-External Persuasion - independent - No influence, since both low and high
interaction honeypots could have any form of external persuasion

– (2,5) - Interaction-Physical Process - independent - No influence, since both low and high
interaction honeypots could have any form of physical process (simulation)

– (3,1) - Virtualization-Size - independent - The type of virtualization has no influence on
possibilities for the size of the honeypot system, except for increased costs when multiple real
devices are deployed.

– (3,2) - Virtualization-Interaction - affect - The virtualization option does have influence of
interaction level. When going for a real device, the interaction level is high per definition.
However, when using a digital twin or service imitation, all levels of interaction can be
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reached.
– (3,3) —
– (3,4) - Virtualization-Services - affect - The level of virtualization determines whether which

(number of) services should be implemented, and if the user needs to do this himself.
– (3,5) - Virtualization-External Persuasion - independent - Trivial (1,6)
– (3,6) - Virtualization-Physical Process - affect - It seems pointless or even impossible to
implement a real sensor/actuator network when using a service imitation, even though, in
the other cases all combinations can independently occur.

– (4,1) - Services-Size - affect - The choice for the number and types of services, has an influence
on the size of the honeypot system. For example, to be able to realize a honeynet, multiple
services are needed to interconnect the system.

– (4,2) - Services-Interaction - independent - The amount or type of services has no influence
on the quality of those implemented services.

– (4,3) - Services-Virtualization - affect - The choice for a limited number and type of services
is incompatible with the use of a real device as the device itself comes with it fixed services.
Also, there may be vendor-specific proprietary services, which can only be realized by using
real devices.

– (4,4) —
– (4,5) - Services-External Persuasion - independent - The selection of services has no influence
on the possibilities for external persuasion

– (4,6) - Services-Physical Process - independent - The selection of services has no influence
on the possibilities for physical process (simulation) implementations

– (5,1) - External Persuasion-Size - independent - Non-technical external persuasion measures
such as blog posts or a cover company have no influence on the possible size of the honeypot
system.

– (5,2) - External Persuasion- Interaction - independent - Non-technical external persuasion
measures such as blog posts or a cover company have no influence on the interaction level.

– (5,3) - External Persuasion-Virtualization - independent - Non-technical external persuasion
measures such as blog posts or a cover company have no influence on the virtualization
options.

– (5,4) - External Persuasion-Services - independent - Non-technical external persuasion meas-
ures such as blog posts or a cover company have no influence on the technical services offered
to the attacker.

– (5,5) —
– (5,6) - External Persuasion-Physical Process - independent - Non-technical external persua-

sion measures such as blog posts or a cover company have no influence on the possibilities
for (the simulation of) a physical process.

– (6,1) - Physical Process-Size - independent - Presence and type of physical process has no
influence on the size of the honeypot

– (6,2) - Physical Process-Interaction - independent - Presence and type of physical process has
no influence on quality of implemented services

– (6,3) - Physical Process-Virtualization - affect - Presence and type of physical process affects
the virtualization, since a real plant requires proper input (in terms of energy) of a specific
control device in order to function.

– (6,4) - Physical Process-Services - independent - Presence and type of physical process has
no influence on the services that can be offered

– (6,5) - Physical Process-External Persuasion - independent - Presence and type of physical
process has no influence possibilities for external persuasion
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– (6,6) —

Relations between meta-level features within the Deployment-related functionalities
– (1,1) —
– (1,2) - Scale-Deployment Period - independent - The number of deployed honeypots does not

influence the period that they could or should be deployed.
– (1,3) - Scale-Hosting Location - affect - The number of honeypots deployed affect the hosting

location. When hosting a large volume of decoys, one should think about where to host from
(cloud, private IP range).

– (1,4) - Scale - Security - independent - The number of honeypots should not influence the
measures that can be taken to control traffic from and to these honeypots.

– (2,1) - Deployment Period-Scale - independent - The duration of deployment has no influence
on the number of honeypots that can be deployed

– (2,2) —
– (2,3) - Deployment Period-Hosting Location - independent - The duration of deployment has
no influence on the possible location that the honeypot is deployed on.

– (2,4) - Deployment Period-Security - affect - The duration of deployment has no influence
on possible security measures/configurations for the honeypot

– (3,1) Hosting Location-Scale - affect - When a location is determined, it could affect the
number of pots that can be deployed (for example when renting some cloud instance to host
from)

– (3,2) Hosting Location - Deployment Period - independent - The location where the honeypot
is hosted from, has no influence on the possible duration of deployment

– (3,3) —
– (3,4) - Hosting Location-Security - affect - When a honeypot is hosted inside an internal
(production) network, certain security measures might be in place to control traffic or limit
misuse of the system. However a standalone honeypot, hosted from an arbitrary location
does not necessarily have those (similar) security measures.

– (4,1) Security-Scale - independent - Traffic control from and to the honeypot does not influ-
ence the number of honeypots that could be deployeed

– (4,2) Security-Deployment Period - independent - The security measures/configurations for
the honeypot have no influence on possible duration of deployment.

– (4,3) Security-Hosting Location - affect - While a honeypot without any traffic restrictions
would suffice if it was standalone and Internet-connected, it would not be suitable to host a
similar honeypot inside an active production. network.

– (4,4) —

Relations between meta-level features within the User-related functionalities
– (1,1) —
– (1,2) - Logging-Detection - affect - The type and extent of logging determines what kind of
detection algorithmes can be implemented

– (1,3) - Logging-visualization - affect - The type and extent of logging determines what kind
of visualization can be applied.

– (1,4) - Logging-Alert - affect - The type and extent of logging determines on which interactions
an alert/security event can be triggered
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– (2,1) - Detection-Logging - independent - Detection needs a logging functionality in order to
analyze interaction. However, logging itself is not affected by a certain detection implement-
ation.

– (2,2) —
– (2,3) - Detection-visualization - independent - Detection does not affect visualization possib-

ilities
– (2,4) - Detection-Alert - affect - The outcome of detection algorithms determine whether

malicious activity has taken place, and thus whether an alert/security event needs to happen.

– (3,1) Visualization-Logging - independent - visualization choices do not affect logging func-
tionalities.

– (3,2) Visualization-Detection - independent - visualization choices do not affect Detection
functionalities

– (3,3) —
– (3,4) Visualization-Alert - independent - visualization choices do not affect alert functional-

ities

– (4,1) Alert-Logging - independent - A certain type of security event manager or other alerting
function does not influence logging functionalities.

– (4,2) Alert-Detection - independent - A certain type of security event manager or other
alerting function does not influence Detection functionalities.

– (4,3) Alert-visualization - independent - A certain type of security event manager or other
alerting function does not influence visualization functionalities.

– (4,4) —
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Observation Targets

Reconnaissance

– Active scanning (T1595)
To enable: Interface that attacker IP address can communicate with, consisting of 1 or
multiple ports.
To log: Code/software that captures network traffic or registers incoming connection requests
from source IP to specific ports of host.

– Gather Victim Org Information (T1591)
To enable: Publicly available resources that contain information about target (website, social
media).
To log: Functionality in resource that registers visitors (Web Server logs).

– Phishing for information (T1598).
To enable: Electronic conversation service (Email, chat).
To log: Functionality that saves chats.

– Wireless sniffing (T0887)
To enable: Wireless access point that is transmitting signals.
To log: Not possible when passively sniffing

Delivery

– Spearphishing Attachment (T0865).
To enable: Electronic conversation service that supports file attachments.
To log: Functionality that saves chats.

– External Remote Services (T0822)
To enable: an access mechanism service (VPN, citrix, etc), mostly via a corporate network.
(Access to valid accounts is often a requirement)
To log: Capture of network traffic.

– Internet Accessible Device (T0883)
To enable: An Internet-connected service that is publicly available (VNC/RDP/etc).
To log: Capture of network traffic.

– Replication Through Removable Media (T0847)
To enable: Either physical device, or virtual machine (with file system) that is connected
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with a physical device (can be then be targeted via shared network drives).
To log: Software/code that registers Drive, File or Process creation and/or file access.

– Hardware Additions (T1200 Enterprise)
To enable: Physical device or network access point that provides opportunity for physical
connection (USB/Ethernet port)
To log: piece of software on device that registers the physical connection of attacker’s hard-
ware.

– Transient Cyber Asset (T0864)
To enable: A possibility to physically connect the the asset to target network.
To log: Capture network traffic from the transient asset.

– Rogue Master (T0848)
To enable: Multiple devices exchanging network traffic
To log: Functionality that captures in and outgoing traffic to see if honeypot is being misused.

Exploit

– Wireless compromise (T0860)
To enable: Wireless access point that accepts connection from attacker.
To log: Functionality that registers incoming wireless signals (Signal strength, timestamps,

– Exploitation of Remote Services (T0866)
Similar to T0822

– Exploit Public-Facing Application (T0819)
To enable: Application on a device (HMI, PLC) that is directly accessible from the Internet
To log: Functionality on host that registers processes created by that application. No
cybercriminals because an application is generally too specific for general exploits, and thus
needs advanced knowledge of that specific application.

– Command-Line Interface (T0807)
To enable: shell simulation or real command line.
To log: keystroke logger, syslogging, saving user input (script), command-line auditing/pro-
cess creation auditing.

– Execution through API (T0871)
To enable: Functionality that responds to preprogrammed set of API commands, or real API
including backend server.
To log: Functionality that register API function calls (either by saving user input to script,
or by integrating logging functionality in API backend server)

– Native API (T0834)
To enable: Functionality that responds to preprogrammed set of OS API commands, or the
use of an actual OS.
To log: Process creation events (windows)/ system/exec call auditing/tracing (Unix).

– Scripting (T0853)
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– User Execution (T0863)
To enable: Operating system (for process & file creation, and command execution).
To log: Process creation events (windows)/ system/exec call auditing/tracing (Unix)

– Valid Accounts (T0859)
To enable: Login functionality (scripted/simulation or real), and set of leaked valid creden-
tials.
To log: Functionality that registers login attempt and credentials used.

– Default credentials (T0812)
To enable: Login functionality (scripted/simulation or real), and set of valid credentials of
device/service imitated.
To log: Functionality that registers login attempt and credentials used.

Install Modify (stage I)

– Change Operating Mode (T0858)
To enable: Physical device with keyswitch, or well-implemented API.
To log: Functionality that registers (unexpected) changes in device state, such as restarting,
shutdown etc.

– System Firmware (T0857)
To enable: Physical device that contains hardware that is compatible with the intended ma-
licious firmware upgrade
To log: Functionality deeply embedded in host that captures modification of firmware.

– Module Firmware (T0839)
To enable: Physical entity within device that contains hardware that is compatible with the
intended malicious firmware upgrade
To log: Functionality deeply embedded in host that captures modification of firmware.

– Hooking (T0874)
To enable: Program or Operating system that uses API functions to redirect calls. Example
hooking method is DLL injection in Windows (containing API functions).
To log: Functionality that registers modification or replacement of files
Different types of Hooking, can also be embedded in tools (such as Carberp, Empire, )

– Project File Infection (T0873)
To enable: CPS specific engineering program/software that uses objects, variables, configur-
ations stored in project files.
To log: Functionality that registers the modification of such a file.

– Indicator Removal on Host (T0872)
To enable: command-line (for remove-action), file-system (to host the indicator that is being
removed)
To log: Keylogger (to catch ‘rm filename’-commands), or scan process list for SDelete (Win-
dows).

– Masquerading (T0849)
To enable: Filesystem on which malicious applications or executables can be disguised.
To log: Functionality that registers file paths, process names such that they can be compared
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with reference (normal) path/name combinations

– Rootkit (T0851)
To enable: Access to kernel ( presence of drivers), Operating systems
To log: Functionality that is able to register modifications made to the kernel

C2

– Commonly Used Port (T0885)
To enable: Service allowing outgoing network traffic
To log: Functionality that captures (outgoing) network traffic

– Connection Proxy (T0884)
To enable: Service allowing outgoing network traffic
To log: Functionality that captures destination IP-address of (outgoing) network traffic. Pos-
sibly compare that with a list of known malicious proxies.

– Standard Application Layer Protocol (T0869)
To enable: Service providing outbound L7 protocol (HTTP, FTP, DNS, etc).
To log: Capture of network traffic (log IP addresses, use signatures).

Act

– Network connection Enumeration (T0840)
To enable: System tools (netstat) to inspect connections on host, network adapters that en-
able the inspections and multiple devices on network (net).
To log: functionality on host that registers use of these tools.

– Network sniffing (T0842)
To enable: Available network interface to be able to capture traffic. Multiple devices on net-
work (net) needed for creation of traffic
To log: Functionality on host that registers the use of a network interface.

– Remote System Discovery (T0846)
To enable: Network interface on host, and multiple devices (net) such that they can be dis-
covered on the network.
To log: Functionality that captures the remote service scans (network traffic)

– Detect Operating Mode (T0868)
To enable: Functionality that show current operating mode of device. Can either be
To log: Difficult, use signature to detect keystate detection (Triton)

– I/O Image (T0877)
To enable: Process (model) or other functionality that mimics the input and output of a
PLC.
To log: Functionality that registers the access to the memory region where this Image is
stored.
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– Automated collection (T0802)
To enable: OS to run automated script/tool, and services (such as OPC) that can be used
to enumerate/gather information about connected resources/servers/devices.
To log: Functionality that audits process creation (by running the tool or executing the script).

– Point & Tag Identification(T0861)
To enable: Industrial protocols that exchange process environment specific information such
as points (inputs, outputs, memory locations, variables) and tags (the corresponding identi-
fiers)
To log: Functionality that captures network traffic, based on (abnormal) enumeration of in-
bound or outbound traffic using industrial protocols.

– Data from Information Repositories (T0811)
To enable: An accessible filesystem that contains (fake) sensitive data
To log: Functionality that captures network traffic (stream) to identify file transfer. Or func-
tionality that registers when a file is being accessed (Windows - Object access: File System -
Audit policy)

– Monitor Process State (T0801)
To enable: Physical process (model) and a service in order to retrieve information about the
states in that process (model)
To log: Functionality that registers the use of a service used to retrieve process state inform-
ation. For example: capturing network traffic when using an industrial protocol to request
the values of operational variables.

Delivery (stage II)

– Lateral Tool Transfer (T0867)
To enable: More than one (virtual) machines, with a service that offers file transfer
To log: Functionality that captures traffic over internal network

– Program Download (T0843)
To enable: Vendor-specific management protocol that provides transfer of a user program to
a controller
To log: Functionality on host that registers program modification. Possibly also network
traffic capture that registers specific inbound protocols associated with program download).

– Remote Services (T0886)
To enable: At least two network interfaces/services (net) that provide a communication chan-
nel between them.
To log: Functionality that registers the flow data over the channel.

Install/Modify (stage II)

– Modify Parameter (T0836)
To enable: Program on (virtual) control device where an attacker can change values.
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To log: Functionality on host that registers the modification of values (screen capture, key-
logger, saving parameter values).

– Brute Force I/O (T0806)
To enable: Program (for example CODESYS,) on control device that offers modification of
I/O point values.
To log: Either a functionality in the application/program that registers the modification of
I/O point values, or capturing network traffic (excessive I/O connections).

– Manipulate I/O Image (T0835)
To enable: Similar as above, or access to direct memory for overriding the I/O table.
To log: Functionality on host that registers modification in image table (in PLC’s internal
storage.

– Block Serial COM (T0805)
To enable: (Virtual) serial COM port that is accessible from the device.
To log: Functionality that registers opening of COM connection (on operating system)

– Man in the Middle (T0830)
To enable: Operating system and network interface on which adversary can sniff and/or
modify incoming/outgoing network traffic
To log: Capture network traffic (source, destination, modifications).

– Spoof Reporting Message (T0856)
To enable: Service on at least two devices that can exchange messages (PLC and Workstation
for example)
To log: capture network traffic between devices.

– Modify Program (T0889)
To enable: Well-implemented industrial software/program and the ability to make changes
to functions inside the program.
To log: Functionality that registers modification of file and or verifies integrity (CRC, check-
sums).
Requires in-depth knowledge about specific target CPS devices AND/OR interaction with
physical process.

– Data Destruction (T0809)
To enable: Operating system and files such that attacker can either use standard system
commands or specific tools to delete data.
To log: Functionality on host that logs changes in filesystem, and/or functionality that logs
shell (if deletion happens through command-line).

– Denial of Service (T0814)
To enable: Interface that attacker IP address can communicate with.
To log: Functionality that captures number and content of incoming requests

– Device Restart/Shutdown (T0816)
To enable: Build-in function in most devices, using web interfaces, CLI and protocols. Could
also be simulated in script, by temporarily disabling access to attacker (Conpot, set counter
and freeze access to all protocols).
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To log: Functionality on host that logs either commands (shell) or event logs (shutdown/re-
start)

– Service Stop (T0881)
To enable: Services on a system that an attacker is able to terminate or disable.
To log: Either functionality on host that registers process termination, or key/shell logger in
case of standalone service (imitation)

– Unauthorized Command Message (T0855)
To enable: Functionality on device that allows an incoming command message and acts ac-
cordingly
To log: Functionality that registers all command messages send (so, capturing network
traffic)

– Modify Alarm Settings (T0838)
To enable: Functionality that acts as overall reporting system for the management of phys-
ical processes. (modifying in memory code to fixed values or tampering with assembly level
instruction code)
To log: To log: Functionality in application that handles alarm, that registers any modifica-
tions.

– Alarm Suppression (T0878)
To enable: Functionality that acts as overall reporting system for the management of physical
processes
To log: Functionality in application that handles alarm, that registers any modifications.

– Block Command Message (T0803)
To enable: Multiple devices (origin, destination of message), services that are responsible for
message exchange. Access to interface in order to hinder exchange.
To log: No capture of network traffic (since this is hindered). Functionality in application
on host, that registers any modification that results in message blocking.

– Block Reporting Message (T0804)
To enable: Multiple devices (origin, destination of message), services that are responsible for
message exchange. Access to interface in order to hinder exchange.
To log: No capture of network traffic (since this is hindered). Functionality in application
on host, that registers any modification that results in message blocking.

Execute ICS Attack

– Damage to Property (T0879)
To enable: Physical process, that can be controlled by the adversary.
To log: Functionality that senses/records the change within the physical process, with respect
to ‘normal behaviour’.

– Manipulation of Control (T0813)
To enable: Functionality that imitates physical process, that can be controlled by the ad-
versary.
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To log: Functionality that senses/records the change within the physical process (model), with
respect to ‘normal behaviour’.

– Manipulation of View (T0815)
To enable: Functionality that imitates physical process, that can be view by the adversary.
To log: Functionality that senses/records the change within graphical representation of the
physical process (model).

– Theft of Operational Information (T0882)
To enable: Resource that contains information about the physical process (model) .
To log: Functionality that senses/records access to the resource.

Excluded ICS MITRE techniques:

– Drive-by Compromise

– Supply Chain Compromise

– Screen Capture
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