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Abstract

Capgemini has co-developed with ASML a family of Domain Specific Languages called ASOME.
These languages allow ASML to specify on a high abstraction level the Data, Control, and Al-
gorithms (DCA) aspects of a system in separation. A code generator has been developed that
generates C++ code that should conform to the specification. Code generators are developed by
humans and therefore typically not bug-free. Since the users need to rely on these code generators
to produce code that matches their input specification, it is clear that there is a strong need for
these code generators to work correctly. A solution from Model-Driven Engineering for the testing
process of a system is Model-Based Testing (MBT). This technique allows generating test cases
automatically, which enables testing a system extensively. We will research how to apply MBT
to the code generator for Domain Data Models. In particular, we will apply MBT on the code
generator of ASOME using the PyModel tool. We will cover all steps involved in the application
of MBT. That includes the selection of an MBT tool, making Domain Data Models compatible
with the MBT tool, the development of an adaptor, the creation and analysis of different testing
strategies, dividing an infinite state space up into a finite number of equivalence classes, and the
actual application of MBT on generated code. We will evaluate on the MBT procedure and see
that apart from some drawbacks, MBT can in fact be used in an industrial context to recover bugs
in a mature code generator.
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Acronyms

API Application Programming Interface.

ASOME ASML Software Modeling Environment.

AST Abstract Syntax Tree.

ASM Abstract State Machine.

CRUD+A Create, Read, Update, Delete and Add.

DAG Directed Acyclic Graph.

DCA Data Control and Algorithms.

DSL Domain-Specific Language.

DMDSL Domain-Interface Modeling Domain Specific Language.

EFSM Extended Finite State Machine.

EMF Eclipse Modeling Framework.

FSM Finite State Machine.

GPL General Purpose Language.

IUT Implementation Under Test.

LTS Labelled Transition System.

MBT Model-Based Testing.

MC/DC Modified Condition Decision Coverage.

MDE Model-Driven Engineering.

OCL Object Constraint Language.

OOP Object-Oriented Programming.

STS Symbolic Transition System.

SUT System Under Test. (In the context of this thesis, this term is typically avoided. We use the
term IUT instead.)

V&V Verification and Validation.
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Chapter 1

Introduction

1.1 Model-Driven Engineering

Since the digital revolution started, a lot of technological advancements are made that significantly
contribute to society. With these advancements also comes a whole new set of challenges, among
which is the development of correct software. There is no denying that society nowadays heavily
relies on software. In almost every electronic device, there is some software controlling it. Coffee
machines, cars, vacuum cleaners, and with the rise of IoT even lights have some software running
on them. Since the devices and systems we develop are getting increasingly more complex, the
complexity of writing correct software also grows. To keep up with this, new methods are created
that assist in writing software (e.g. intelligent IDEs, testing frameworks, programming with AI
assistance, etc.). However, due to the increasing complexity, developing correct software remains a
big challenge. As a consequence, developers nowadays spend a significant part of their development
time merely on debugging [5]. For some systems, such as a computer game, a subtle rare bug can
be acceptable. On the other hand, it is of major importance that the software controlling a nuclear
reactor is correct. The consequences of incorrectness can be astronomical. Even on more common
devices, such as a pacemaker, it is of vital importance that the device behaves as expected. It is
clear that there is a need for new techniques that help to develop correct software.

A software development methodology that is gaining more and more interest is the field of
Model-Driven Engineering (MDE). This is a development methodology that focuses on the creation
and usage of models as primary software artifacts. In this methodology, creation of models be-
comes an important part of the development cycle. Domain-Specific Languages (DSL) are created
that allow for the development of models on a high abstraction level, exploiting domain-specific
knowledge. These models can often be transformed into a general-purpose language (GPL) and
sometimes even be verified using tools. By working on a high abstraction level, the expressiveness
of the written lines of code increases. Furthermore, since the specification language is designed for
a specific domain, the language can be designed in such a way that the expressiveness of a single
line of code further increases by exploiting domain-related properties in the language design. Fred
Brooks describes in his famous book ‘The Mythical Man-Month: Essays on Software Engineering ’
that on average a professional programmer contributes 10 lines of code per day, no matter the
programming language chosen [6]. Even today, when dividing the lines of code in a project by the
number of man-hours spent, it turns out that the average is still close to his estimation. To reduce
development time, it is clear that these 10 lines should be rather expressive. One can imagine that
much more meaningful code can be written in a DSL that gets transformed into hundreds of lines
of C++ code, as can be done in 10 lines of Assembly Language. This high expressiveness of code
in DSLs, therefore, allows for faster development cycles. Furthermore, by working on a higher
abstraction level it should be easier to specify the system. Validation techniques on the model can
help verify that the system satisfies the requirements. MDE could thus be an important tool to
write correct software and reduce development time.

Testing an Industrial Code Generator With Model-Based Testing 1



CHAPTER 1. INTRODUCTION

1.2 Introduction to the ASOME Languages Family

The ASML Software Modeling Environment (ASOME) is a set of DSLs for usage in ASML. This
set of languages employs the ASML DCA Pattern. This is a pattern in which the Data, Control,
and Algorithms of a system are separated from each other. Using these languages, aspects of
ASML’s scanners architecture can be defined and verified in isolation. This should facilitate in
the creation of correct software for these scanners.

One of the languages in the ASOME language family is the “Domain Interface Modeling DSL”
(DMDSL). This language handles the Data aspect of the DCA pattern. The DMDSL language
allows the user to define domain interfaces. In such a domain interface, constructs such as Entities,
ValueObjects, and their corresponding relations can be described. The operations the interfaces
provide access to are the Create, Read, Update, Delete and Add operations (CRUD+A). In
particular, Entities can be instantiated using the Create operation. Such an instance can be added
to a corresponding Entity repository using the Add operation. Instances from the repository can
be read from the repository using the Read operation. The instances can also be removed from the
repository using the Delete operation. Finally, the instances can also be changed using the Update
operation. On the basis of such interfaces, a realization satisfying the interfaces can be generated.
In this work, we will focus on this DMDSL language, and test whether the transformation from the
high-level DMDSL specification to C++ happens correctly using a technique called Model-Based
Testing (MBT).

1.3 Problem Statement

An important reason for using a DSL to develop a system is to decrease the chances for the system
to show undesired behavior. However, can we be confident that a code generator for the DSL will
produce code conforms to the specification? Suppose a specification in a DSL satisfies all desirable
properties, but still the generated code is faulty. Then still the developer of the model is left with
incorrect code, and it is not this developer who is to blame. That would be very undesirable and
arguably worse. Therefore, a high level of confidence in this translation process is needed. A need
to get very thorough testing of the code generator emerges. The testers of the code generator of
the DMDSL language point out the difficulties in the testing process of the code generator of this
language. It is time-consuming to come up with a testcase for some given model. Having lots of
testcases also puts a burden on maintainability. It is even mentioned by testers of Capgemini that
compilation time becomes an issue when there are too many test models. For complex models,
it is often not easy to see what the expected behavior of the generated code should be which
contributes to the difficulties of writing testcases for the code generator.

Model-Based Testing is a testing approach in which testcases are derived from a model on
which the implementation is based, and in the context of code generators even generated from. In
the model, on a high abstraction level, the intended behavior of the implementation is specified.
Hence, information on how the implementation of the system should behave is encoded in such
a model. In order to test the actual implementation, it is then possible to derive tests, including
the test verdicts, from a model automatically. With MBT one is then able to test whether an
implementation seems to conform to the model by producing testcases automatically. This allows
for a testing procedure that is at least quantitatively more extensive than feasible with manually
written testcases.

To apply MBT in the context of a code generator, we need to research how the ideas translate
to such a setting. We want to be able to generate a high-quality test suite to get high confidence
in the correctness of the tested code generator. Therefore, we need a way of determining what an
appropriate MBT solution is. Furthermore, we need to figure out how we can apply such an MBT
solution, and observe if it is feasible to discover bugs in a code generator that is currently in use.

2 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 1. INTRODUCTION

1.4 Research Questions

The main research question in our research will be: How to apply Model-Based Testing to a code
generator?

Answering this question gives rise to the following sub-questions

1. How is Model-Based Testing applied to improve the testing of code generators?

2. How to assess which Model-Based Testing tool is suitable for a code generator?

2.1 Which Model-Based Testing tool is suitable for the problem setting?

3. How to apply a given Model-Based Testing tool to a code generator?

3.1 How to make test models compatible with a Model-Based Testing tool?

3.2 How to create an adapter that can apply abstract test cases to generated code?

4. What are the benefits and drawbacks of applying Model-Based Testing on a code generator
in an industrial context?

To answer these questions we will do a case study on the DMDSL code generator.

1.5 Approach

To answer question 1, we will investigate the techniques that are currently used to test code
generators. We will research the literature to see how MBT has been applied to code generators.
Finally, we will describe on an architectural level how MBT can be applied to test the DMDSL
Code generator.

To answer question 2, we will investigate what assessment criteria for Model-Based Testing are.
We will check which assessment criteria are most important for models in the DMDSL language.
Finally, we experiment with a few concrete MBT tools so that we can select a tool that works in
the context of the code generator of the DMDSL language.

To answer question 3, we will apply a selected MBT tool on the DMDSL code generator. We
will research how DMDSL specifications can be made compatible with the Model-Based Testing
Tool. Then we investigate how the MBT tool can apply the generated test cases on the generated
code. Finally, we will investigate how the MBT tool can be used to generate high-quality tests.

To answer question 4, we will describe the benefits and drawbacks encountered during the
MBT process on the DMDSL code generator.

1.6 Outline

In chapter 2, we will investigate the literature for different techniques that can help in the verifi-
cation of a code generator. Furthermore, we give an introduction to MBT, and how it can be used
to verify a code generator. In chapter 3, we will introduce the semantics of the DMDSL language.
In chapter 4, we will put MBT in the context of the DMDSL code generator, and discuss the
general architecture of the process. In chapter 5, we will discuss the procedure of selecting an
MBT tool. This involves a discussion of popular mathematical modeling formalisms, a discussion
of a popular testing theory, and some experiments with different MBT tools. In chapter 6, we
will discuss the process of translating DMDSL models into a specification language supported by
an MBT tool. In chapter 7, we will discuss the development of an adaptor. In chapter 8, we
will create different testing strategies, do some analysis on these strategies, and apply MBT to
generated code to put the code generator to the test. Finally, in chapter 9 we will make a general
conclusion, and consider future work.
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Chapter 2

Testing a Code Generator

In this chapter, we will research existing testing techniques applied to code generators. We will
also dive deeper into the technique of Model-Based Testing.

2.1 Techniques to Test a Code Generator

There are several techniques to test a code generator. We will consider popular techniques to test
a code generator.

2.1.1 Unit Testing

A common approach to the testing of software is the application of unit testing [2]. In unit testing,
components of the implementation under test (IUT) are called by executing testcases from the unit
testing framework. In the testcase, the output of the component is compared against the expected
output. As Stahl et al. point out, applying this to a code generator naively has significant
disadvantages [27]. In a code generator, the specification expressed in a DSL is translated to a
GPL. Hence, naively one would compare the generated code against the expected code. In the
unit test, one could do a string comparison to see if the output of the code generator matches the
expected output. The disadvantages they point out are as follows:

• Many false positives: even a small change of formatting would make the test code fail, even
though the generated code is semantically equivalent and correct.

• Reliance on low-level implementation: the creator of the test has to specify the expected
output for the translation process. This makes concrete assumptions about the translation
process. There are almost always uncountable many ways how a specification could be
translated into code. When some change is made to the code generator, which results in
producing different code that still conforms to the specification, the unit test would already
fail even though the output is correct.

As a result, Stahl et al. suggest executing the generated code and observing if it has the
desirable effect. Since we have specified a model of the generated IUT, it should follow from the
semantics of the modeling language what the desired behavior is. For example, in the context of
ASOME, the developers manually created test models to validate the features of interest. Then in
manually written tests, it is checked that for manually specified inputs, the output produced by
the executed code is equivalent to the output one would expect on the basis of the model. There
is, however, currently not a way of executing the model itself. Hence, the test designers need to
manually conclude from the informally described dynamic semantics what they expect the output
should be. This tactic will provide a certain degree of confidence in the implementation. However,
since the creation of these testcases is very labor-intensive, there will (at least quantitatively) not
be such an extensive testing procedure achievable. Furthermore, when changes to the DSL happen
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due to requirement changes, new testcases need to be written, and old testcases might need to be
rewritten which is very time-consuming.

2.1.2 Back-To-Back Testing

In [17] Jörges and Steffen also recognized the problem of testing a code generator with unit tests.
They followed the suggestion of Stahl et al. to test the generated code’s effect instead of concrete
syntax. This lead them to applying back-to-back testing on a code generator.

In [35] the Back-To-Back testing technique is introduced. Vouk describes back-to-back testing
as a strategy that involves the production of two or more functionally equivalent programs. These
programs are then tested with the same input, and outputs are compared. In the situation of
testing a code generator, one of the ‘programs’ would be an executable version of the manually
crafted test model, and the other program would be the GPL of the test model produced by
the code generator. Now the test designer would specify some input. The input will be run on
both the model and the generated code. All outputs produced by the running model and by
running the generated code on the input are compared. To apply this technique, it is needed
that the Model can be executed in some way. Zamani points out that in MDE one often wants
to explore the models by executing them, in order to apply dynamic software Verification and
Validation (V&V) techniques [12]. He points out that for most dynamic V&V tools a prerequisite
is to trace the execution of executable models. To support the execution of models, an executable
modeling language must provide execution semantics. For models that can be transformed to a
GPL using a code generator, there is not always a strong need to develop a method to execute
a model and explore its traces on the level of the high-level specification. In particular, the code
generator can transform the high-level specification into code, and the execution of the code will
reflect the dynamic semantics of the model. In such a situation, some additional work needs to
be done to apply back-to-back testing. It is obvious that using the generated GPL as both inputs
for back-to-back testing will be a self-comparison and no meaningful results can be concluded.
Zamani describes that in such a situation there are three approaches possible to provide execution
semantics:

• Denotational semantics approach: Describe the semantics of the language in mathematical
terms.

• Translational approach: The specification of the model is translated into another executable
language for execution.

• Operational approach: The execution behavior of the model is defined by an interpreter.
This can be considered a virtual machine that can execute the model through a series of
transitions, moving between the states.

From the point of view of the author of this thesis, the denotational approach should be considered
to be the first step in the translational and operational approach.

Both the translational and operational approaches are used in practice. Papadopoulus re-
searched the testing of a code generator for a DSL called Maverick, which is used and created
by the Dutch bank ING [13]. He produced a concise definition of the semantics of Maverick by
developing a definitional interpreter [24], following the operational approach. This gave a concise
definition of the model’s execution semantics. In the work of Frenken a code generator for the OIL
DSL, which is developed by Océ, is tested [10]. In this work, they express the execution semantics
of the OIL language in terms of the mCRL2 language. Here the translational approach is chosen.

2.1.3 Model-Based Testing

The technique of MBT builds on the technique of back-to-back testing, with the extension that
the testcases will be automatically generated. Utting and Legeard define in their book “Practical
Model-Based Testing: A Tools Approach” the term Model-Based Testing as follows: “Model-based
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testing is the automation of black-box test design. A Model-Based Testing tool uses various test
generation algorithms and strategies to generate tests from a behavioral model of the IUT”[20].
The MBT strategy applies back-to-back testing but uses an algorithm to generate the inputs that
are used for the IUT and the executable model. By observing output from the model, the tool
can derive test cases. Typically, when MBT is applied, it is used for assisting in the development
of a system. A model is created on the basis of the requirements of a system that will be or has
been developed. After creating a satisfactory model, we test by applying MBT whether the IUT
satisfies the desirable behavior as specified by the model. The book of Utting and Legeard points
out that typically it is pointless to do Model-Based Testing if the IUT is automatically generated
via the code generator when also this same model is used input model of the MBT solution. In
that situation, both the tests and implementation are derived from the same source. Hence, errors
in the model will propagate to the IUT. The test and implementation suffer in this situation from
lack-of-independence. Therefore, they state that applying MBT using the model from which the
IUT was derived, and the generated code is useless, except if one wants to test the correctness of
the test generation and code generation tools themselves. Indeed, the latter is what we’re trying to
do in this work! Hence, creating test models, and observing whether these are translated correctly
into code using MBT is a way of testing the code generator.

Researching the internet for techniques to test code generators confirms that MBT is a sug-
gested technique in testing code generators. For example, in the work of Stürmer and Conrad, an
overview of a practice-oriented testing approach for code generation tools is provided [29]. This
paper suggests testing a code generator using the principles of MBT. The fact that it can generate
tests automatically, allows for the creation of a test suite with lots of test cases. This would not
be feasible with manually written test cases. Furthermore, when the design of the test model
changes, one only has to make the change to the test model, and all test cases will be updated.
Hence, extensive testing of the code generator can be done in a maintainable way. The technique
is however not exhaustive. That is, if all test cases are passed, we still can not be sure whether
the IUT will be behaviorally equivalent to the input model.

2.1.4 Formally Prove Correctness

Another approach is to formally verify each transformation rule of the code generator. For example,
in the work of Blech and Glesner, an example is shown of how a proof could be done to show that
transformed code preserves the semantics of the transformed programs in single-static-assignment
form [4]. This relates however mostly to compiler optimizations which is not the purpose here.
Nevertheless, also in our code generator, it should from a theoretical point of view be possible to
prove that each transformation step preserves the semantics. Stürmer et al. point out that due
to the high rate of technological innovation, language changes appear in relatively short cycles,
making formal verification in practice infeasible [30]. Furthermore, there is no commonly agreed
way to define the semantics of the input DSLs. The target language also often does not have a
fully defined semantics. Even the generator itself can be written in a DSL without fully fledged
semantics, which makes writing a proof in practice rather difficult.

2.2 Model-Based Testing

2.2.1 General Context

In this work we make use of the following definition of Model-Based Testing:

Definition 1 (Model-Based Testing). Model-Based Testing is a testing technique where software
is tested by using a model for both generation of testcases, and in providing a verdict whether the
software passes the testcases.

The technique can be particularly helpful in finding bugs that are state dependent. It could
be the case that some features of the software are not available from the initial state, but only
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Figure 2.1: Visualization of MBT using respective Adaptor and Transformator approach.

after some inputs have been provided. Finding these kinds of bugs with unit testing is very time-
consuming. One would need to manually come up with a set of inputs to get the software in
the desired state. Only then it can be checked if the desired behaviour is shown in the state.
Determining for the given state what the appropriate behaviour is, is not always easy. For each
test case there will be time spent on coming up with a test sequence of interest, and time spent in
determining what the expected behaviour of the implementation would be. The latter is referred
to as the oracle problem [20]. The MBT tool typically solves this problem by generating test cases
on the basis of the provided specification, by for example exploring the model and generating an
execution trace. When the model is expressed as transition system this can for example be done
by applying graph exploration algorithms on the transition system. During the exploration, the
expected outputs can be observed. The observed outputs can serve as oracles for the generated
test cases. Using a model, typically uncountably many test sequences can be derived.

The model of a system is on a higher abstraction level than the system itself. The test cases
derived using MBT are therefore typically abstract test cases. The test engineer should then
provide a way for these abstract test cases to become runnable on the IUT. The book of Utting
and Legeard [20] points out that bridging this step is often done by a transformation tool or
adaptor as seen in figure 2.1:

• Transformation tool: a program that can map an abstract test into an executable test script.
For example, it maps the abstract tests to unit tests for the IUT.

• Adaptor: Some code that will serve as a wrapper around the IUT. The wrapper can receive
the abstract tests as input and will be able to execute these on the IUT.

The book distinguishes between two types of deploying MBT. In online/on-the-fly testing,
the MBT tool will be in a direct connection with the IUT and the tests will be executed during
production. It is clear that in such a situation the Adaptor approach would be more appropriate.
In offline testing, a collection of concrete testing scripts will be generated. In offline testing, the
transformation tool approach would be more appropriate.

2.2.2 Code Generator Context

We would like to apply Model-Based Testing to test a code generator. We will consider the
application of MBT to test whether a given test model is translated correctly to a GPL program
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to be the first dimension of applying MBT on a code generator. Here MBT is used implicitly to
test the code generator. We can also distinguish a second dimension of applying MBT to a code
generator. This will be a more direct application of MBT. In particular, here the IUT is the code
generator itself, which is a system that takes as input a model and produces generated code as
output. The task of the MBT tool is now to come up with interesting test models, and check
whether generated code conforms to the specification.

• In the work of Stürmer and Conrad, the idea of Model-Generation for testing a code generator
is shown [28]. The specific part of the transformation of the code generator is considered
where guarded transitions of labelled transition systems are translated into if-then-else code.
To test all transformations, one would like to have complete coverage. They describe how
from the Classification-Method a model can be generated that exploits all transformations.
Stürmer and Conrad point out that the number of possible test models that could be derived
from a classification tree is very high [29].

• In [23] the CoGenTe tool is presented. The authors have developed a tool called CoGenTe
for Code Generator Testing. The tool takes as input a syntactic and semantic meta-model of
the modeling language, and a test specification specifying a coverage criterion of the meta-
model. The tool then produces a test suite that can be used to test code generators for
this language. The CoGenTe applies the idea of the second dimension and can generate
test models itself. To test whether a code generator produces code that conforms to the
generated test model, CoGenTe applies the technique of the first dimension.

Successful execution of the test cases provides confidence that the translation process worked
correctly. The goal is that the testers of the code generator use MBT as a testing technique to
reduce the number of bugs. It is not the intention that end-users apply MBT for their created
models. We desire that the end-users can rely on the code generator to translate their specifications
correctly.
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Chapter 3

The ASOME Software Modeling
Environment

In our work, we investigate the application of Model-Based Testing on the code generator of the
DMDSL language. In this chapter, we will introduce the DMDSL language and introduce the
formal semantics of DMDSL models.

3.1 Introduction to DMDSL

The DMDSL language copies ideas from the Repository Pattern [19]. In this pattern, the data
aspect is shared between software components by means of a shared repository that is accessible
to the software components. In the DMDSL the user can make a specification that contains
constructs such as Entities and ValueObjects. Entities are similar to classes in Object-Oriented
Programming (OOP). In the dynamic semantics of the model, entities can be instantiated, giving
corresponding (Entity) Instances which would be similar to objects in OOP. Each instance will
have a unique identifier. For each Entity, a corresponding repository is created. An instance of
an Entity can be stored in the repository of the corresponding Entity. In particular, we can
do Create, Read, Update, Delete and Add (CRUD+A) operations to manipulate the content
of the repositories. The ValueObjects can be seen as tuples of attributes and are owned by an
Entity or another ValueObject. The Composition relation is used to denote ownership of such
ValueObject. The ValueObjects can not be stored by themselves in repositories and do not have
a unique identifier. Entities can also have relations with each other. We distinguish between the
Association, and Specialization relation.

Note: To be more precise, the DMDSL language allows specifying a Repository Service
Specification and a Repository Service Realization. By connecting a Repository Service
Specification to Domain Interfaces, the user can indicate the interfaces the Repository Ser-
vice Specification should offer. It is however often the case that many realizations of such
specification are possible. There can even be a single realization satisfying multiple do-
main interfaces, allowing for different accessibility levels dependent on the interface used.
Therefore, in the Repository Service Realization, on a lower abstraction level, it can be
specified how the actual implementation should implement the Repository Service Specifi-
cation. One can also decide to generate a default Repository Service Realization from the
Service Specification. In our work, we will restrict ourselves to the models created within
the context of a single Domain Interface. In particular, we assume the Repository Speci-
fication provides only one Domain Interface, and the default generated Repository Service
Realization is used. While it is good to know that these concepts exist, there is no strict
need for the reader of to be familiar with these concepts.
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3.2 Basic Specification in DMDSL

In this section, we will explain the most important concepts of the DMDSL language. We will
provide a running example to assist in understanding the semantics and syntax.

3.2.1 Example

In figure 3.1 we have a simple example model containing a Dog entity and a Person entity.

Entity Multiplicity The Dog entity has a minimum multiplicity of 0 and a maximum multi-
plicity of 1. The Person entity has a minimum multiplicity of 0 and a maximum multiplicity of
3. This means that during execution at any time there should be at least 0 Dog instances in the
repository, and at most 1 Dog instance can exist. Analogously, at least 0 Person instances should
be in the repository, and at most 3 Person instances can exist.

Note: One might wonder why the minimum multiplicity restricts the number of instances
in the repository, and the maximum multiplicity bounds the existence of instances. These
constraints intend to put boundaries on the number of instances in the repository. One
should however be aware that already at creation time one could hit memory boundaries of
the system running the software. Hence, it is desirable that the maximum constraint will
already be enforced at creation time. Since the maximum constraint enforces the number
of instances that can exist, it will indirectly also limit the number of instances that can
exist in the repository of the corresponding entity.

Association relation Furthermore, there is an association relation named “owner” from the
Dog entity towards the Person entity. The source multiplicity of this association relation has a
minimum source-multiplicity of 0, and a maximum source-multiplicity of 1. This denotes that
an arbitrary Person instance has to be the owner of at least 0 dogs, and can be the owner of at
most 1 dog. The minimum target-multiplicity is 3, and the maximum target-multiplicity is 5. This
means that an arbitrary Dog instance has at least 3 owners, and at most 5 owners. For concrete
instances, the association relations will get materialized. E.g., when we create a Dog instance
and specify the owners, we will materialize the ‘owner’ association relation. We will refer to the
materialization of association relations as links. A Dog instance will thus have links to Person
instances that are the ‘owners’ of the dog.

Cascade Deletion Note that at the source of the association relation in figure 3.1 there is a
garbage bin. This symbol denotes that the source cascade deletion property is enabled. This
means that for an arbitrary Dog Instance d that has a link towards some Person Instance p, that
if p gets deleted, d will get deleted as well. Analogously there could instead be a garbage bin at
the arrow of the association relation. Then, the target cascade delete property would be enabled.
For this property, we must have that when d gets deleted all the persons that d points to with
the owner relation (among which the p instance) get deleted as well. It is clear that for a large
Domain Data Model, with many cascade delete options enabled, a single deletion could result in
the deletion of many instances due to the propagation of the deletion caused by cascade deletion.

Constructability Entities can be either Constructable or Unconstructable. The construction
hat of Dog in 3.1 indicates the Dog entities are Constructable in the Domain Interface, meaning
the Entity can be instantiated. A crossed construction hat means that the Dog is Unconstructable
in the Domain Interface. Note that an entity Unconstructable from one interface could actually
be Constructable via some other interface.
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Figure 3.1: A simple data model containing a Dog and Person entity.

Mutability Entities can be either Editable, Uneditable, or Immutable. The pen of Dog in figure
3.1 indicates the Dog entities are Editable in the Domain Interface. This means that instances can
be updated after addition to the repository via the interface. A pen with a single strike through
denotes the entity is Uneditable. This means the instances of this entity can not be modified via
this interface after it has been added to the repository. The entity may however be editable from
another interface. A crossed pen as seen for the Person entity denotes this entity is Immutable.
This is a stronger property than the Uneditable property. When an entity is Immutable it means
it can not be edited from the interface, with the extra guarantee that there is no other interface
from which these entities can be edited.

Deletability Entities can be either Deletable, Undeletable, or Undestructable. The garbage bin
of Dog in figure 3.1 indicates the Dog entities are Deletable in the Domain Interface. This means
that instances can be deleted from the repository via the interface. A garbage bin with a single
strike through it denotes the entity is Undeletable. This means instances of this entity can not
be deleted from the repository via this interface. It may be possible that such an instance is
deleted via a different interface. A crossed garbage bin means that the Dog is Undestructable in
the Domain Interface. This means that instances cannot be deleted by anyone once stored in the
repository.

Note: The entities may contain attributes, and own certain ValueObjects. In this way
data can be stored in entity instances. These aspects are not covered in the semantics of
Derasari. We will also not consider this aspect of the DMDSL language in this work. From
a behavioral perspective, the features of interest are a result of association relations.

When considering the semantics in the context of a single domain interface (as we will do in
this thesis) Undeletable and Unconstructable are considered to be equivalent terms in the formal
semantics of the work of Derasari. Similarly, an Entity that is Uneditable or Immutable he considers
to result in the same execution semantics and considers them to be equivalent terms in the context
of a single domain interface.

In figure 3.2, some execution behavior allowed by the model in figure 3.1 is visualized. Instances
of entities are represented as circles in the figure. Links between instances have been visualized as
arrows between the circles.
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Figure 3.2: Example trace allowed by the dynamic semantics of the example model in figure 3.1.

3.3 Formal Semantics

In the thesis of Derasari, research is done on the DMDSL language [8]. There was no formal
semantics of this DSL. The static and dynamic semantics of this language are given in text and
diagrams. Derasari pointed out that this can lead to misconceptions between language engineers,
which can lead to implementation gaps. The result of this is that static constraints in the model
could be missed, or that operations in the dynamic semantics might need to be reconsidered. It
is undesirable that it is possible to define models that are inconsistent.

Note: We will refer to the work of Derasari for the definition of an inconsistent model i.e
a model that allows for repository inconsistency. An example violation of model consis-
tency would be if during execution it would be possible for the number of instances of an
entity type to be greater than the maximum multiplicity of the corresponding entity type.
Derasari addressed this issue by formalizing both the static and dynamic semantics of a
subset of the DMDSL language and checked with Alloy [14] that the semantics were sound
w.r.t. model consistency.

12 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 3. THE ASOME SOFTWARE MODELING ENVIRONMENT

In the thesis of Derasari a more detailed description of the concepts of DMDSL is provided.
In section 2.2 of the thesis, the static semantics of the modeling language are described in natural
language. In section 2.3 of the thesis, the dynamic semantics of DMDSL models are described
in natural language on the basis of execution in terms of function calls of the C++ code. In 2.4
of the thesis, the static constraints are provided in natural language. These static constraints
are defined to exclude models that can cause inconsistencies at runtime, or prevent models that
allow undefined behavior. In section 3 of the thesis, these concepts are formalized. In particular,
in section 3.2 the static semantics are formalized, and in section 3.6 of the thesis, the dynamic
semantics are formalized. Finally, in section 4 of the thesis, the semantics are expressed in the
Alloy specification language. Alloy is then used to check that the CRUD+A operations are sound
with respect to repository consistency. Alloy is not sufficient as verification proof. It can only show
the existence of bugs, but not the absence of bugs. The tool has been built with the small-scope
hypothesis in mind [1]. This hypothesis states that a significant part of bugs can be found by
testing a program with input in a very small scope. Assuming this holds true for ASOME models,
the verification in Alloy does provide us with high confidence that the semantics are indeed sound
with respect to model consistency.

3.3.1 Static Semantics

A Domain Data Model is typically specified in the DMDSL language using the diagram editor.
Besides drag-and-dropping elements in the graphical interface, the architect can also set certain
properties, to get the desired Domain Data Model. By drag-and-dropping elements, and setting
properties, the architect can create a valid Domain Data Model, without knowing the syntax
of the underlying specification language. While creating the model via the diagram editor, the
underlying textual specification is adjusted. The textual specification of the model is in the
.ASOME file. There are however static constraints that need to be respected by the specified
models. An example of a property of an entity would be its minimum and maximum multiplicity.
It is clear that a minimum multiplicity of an entity should be smaller or equal to the maximum
multiplicity. To prevent the architect from creating models that violate these static constraints,
the Object Constraint Language (OCL) is used. We will now briefly provide the formal semantics
of the DMDSL language as specified in the work of Derasari.

In section 3 of the work of Derasari, a subset of the DMDSL language is formalized into
mathematical concepts. The static semantics of an ASOME model M can be considered as a
tuple 〈Entity,Association〉, where Entity is the set of entity types, and Association is the set of
associations in the model. An Entity has certain properties. Let e ∈ Entity, then e = 〈C,M,D,N 〉
for C,M,D ∈ B, and N ∈ N×N1. N = 〈minimum,maximum〉 is a tuple denoting the multiplicity
of the Entity e

• C = True means the Entity is Constructable.

• C = False mens the Entity is Unconstructable.

• M = True means the Entity is Editable.

• M = False means the Entity is Uneditable or Immutable.

• D = True means the Entity is Deletable.

• D = False means the Entity is Undeletable or Undestructable.

Again, note that by means of a boolean value, no distinguishment between Uneditable and Im-
mutable, and Undeletable and Undestructable has been made. For models containing multiple
domain interface, this does make a difference, and the mathematical representation should then
be adapted. Furthermore, the semantics ignore the notion of ValueObjects, Attributes, and In-
heritance. It does, however, consider the association relation between entities.

Let a ∈ Assocation, then a = 〈source, target, SProperty, TProperty〉.
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• source : Entity: Element of Entity. Is the source entity of the association.

• target : Entity: Element of Entity. Is the target entity of the association.

• SProperty, TProperty : B× (N× N): Association-end property (respectively source associ-
ation property, or target association property), which is a tuple 〈cascade,multiplicity〉.

• cascade : B : Boolean denoting the cascading deletion property of the association end.

• multiplicity : N×N1: Tuple containing the multiplicity 〈minimum,maximum〉 correspond-
ing to the association end.

We will now provide an example of a DMDSL model.

Example 3.3.1. Let M = 〈Entity,Association〉, where

Entity = {Dog, Person}

Association = {〈Dog, Person, 〈True, (0, 1)〉, 〈False, (3, 5)〉}

Dog = 〈True,False,False, (0, 1)〉

Person = 〈True,False,False, (0, 3)〉

This example has been visualized in Figure 3.1.

In section 3.3 in the work of Derasari some well-formedness constraints are specified for these
semantic models. These are not of relevance to us, since we are not the creators of the test models.
We assume, that these constraints are enforced by the creator of the models. (In fact, they should
be enforced by OCL in de ASOME Modeling environment).

3.3.2 Dynamic Semantics

Instances In the dynamic semantics, the entities can be instantiated. These instances can be
represented as a tuple 〈id〉 where id is an element from the universe of identifiers. We leave
implicit what this universe is, but this universe could for example be the set of natural numbers.
The Entity (type) of an instance can be recovered via the type function (see state paragraph).

Links In the dynamic semantics, the associations will get materialized in the form of links. These
links can be represented as a tuple 〈instance1, association, instance2〉 where instance1, instance2
are elements in the universe of instances, and association ∈ Association. Furthermore, we require
that type(instance1) = association.source, and type(instance2) = association.target.

States In the work of Derasari, the dynamic semantics have been formalized as a transition
system. States in this transition system are currently defined by instances that exist, the contents
of the repositories, and links between instances. When this description is formalized the a state
of a given ASOME model M is a tuple S = 〈I,REPO,L, type, output〉 where:

• I denotes the set of instances that are created (but do not need to be stored in a repository).

• REPO contains the set of instances that are stored in repositories (it follows that REPO ⊆ I
in any state).

1Strictly speaking the domain is N × (N ∪ {∞}), but we will restrict ourselves to finite multiplicities due to
possible memory limitations. The ASOME tool also warns when the number of entities are not bounded in their
multiplicities. For association relations, the source and target multiplicities do not have such a warning. By the
small scope hypothesis, one would expect bugs to occur already for ‘small’ models.
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• L is a bag (i.e. multiset) of links2. E.g., in fig 3.1 we have the association relation ‘owner’.
A concrete Dog Instance can then have a link to some Person target instance. The link is
the materialization of this ‘owner’ association relation. The mathematical notation for links
is 〈source, association, target〉 with source ∈ I, target ∈ I, association ∈ Association

• type : I → Entity is the function that maps instances in I to their corresponding entity type.
Between different states, instances can be created and deleted, and thus the type function is
subject to change.

• output ∈ OutputMessages presents the success or error output as a result of execut-
ing the action leading to the current state (initially output will contain Success). We
have that OutputMessages = {Success, Entity MultiplicityMaximum, Entity Uncon-
structable, Entity Immutable, Entity Undestructable, Entity Immutable, Entity Un-
destructable, Entity UnexpectedAssociation, Entity MissingAssociation, Associa-
tion SourceMaximum, Association TargetMaximum, Association TargetMinimum, Link -
TargetNotInRepository, Instance NotInRepository, Instance AlreadyInRepository}

It follows that in the semantics a state is thus not only defined by the instances, instances in
repositories and existing links, but also by the type mapping and the output state variable. We
can, however, consider states for which I,REPO,L, type are the same to be equivalent states.
This has been explicitly encoded in Alloy to verify the semantics.

The set of transitions are {Create,Read, Update,Delete, Add}. The result of a transition is
that state variables will be modified accordingly.

We will now have a look how the transitions affect the state variables. We sometimes deviate
from the notation in the work of Derasari to make them easier to read, or in order to be a bit
more precise.

3.3.2.1 Create

The Create(e, links) action takes as argument, an Entity e, and a bag of links. The action tries to
create an instance new /∈ s.I , where new is the source of each link in links. If the Create action,
can successfully be done from a given state s, and arguments e and links, the resulting state s′

will look as follows:

s′.I = s.I ∪ {new}

s′.L = s.L ] links (The ] is used as union operator for bags)

s′.REPO = s.REPO

s′.output = Success

s′.type = s.type[new → e]

When the action can not be successfully done, then all state variables remain unchanged,
except the output state variable of the resulting state s′ will reflect why this is the case. For the
Create action we distinguish between the following error outputs.

• Entity Unconstructable

– Rationale: It should not be allowed to create an instance of an entity, that is not
constructable.

– Formalization: e.C = False.

• Entity MultiplicityMaximum

2Note that an instance can have multiple links of some association relation to the same target instance. Therefore,
a bag is used, instead of a set.
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– Rationale: It should not be allowed to create an instance of an entity, of which the
maximum multiplicity is already reached.

– Formalization: |{i ∈ s.I | type(i) = e}| = e.N.maximum.

• Entity UnexpectedAssociation

– Rationale: It should not be allowed to create an instance of an entity, where one of the
links materializes an association that is not an outgoing association of entity.

– Formalization: {a ∈ Association | ∃link[link ∈ links : a = link.association]} 6⊆
e.OutgoingAssociations. In which e.OutgoingAssociations := {a ∈ Association |
a.source = e}

• Entity MissingAssociation

– Rationale: For each ‘required association’ a link should be provided. We consider a
‘required association’ to be an outgoing association of the entity with minimum target
multiplicity ≥ 1. (Note, in the work of Derasari this output message is not properly
defined. It states that all outgoing associations of entity e should be a subset of the
associations used in the provided link set links. This does not need to hold, since the
target minimum multiplicity of an association relation can be 0, and then no association
needs to be provided.)3

– Formalization: {a ∈ Association | a.source = e ∧ a.TProperty.minimum ≥ 1} 6⊆
{link.association ∈ Assocation | link ∈ links}

• Association TargetMaximum

– Rationale: It should not be allowed to create an instance of an entity that has more
association targets than allowed by the corresponding association relation.

– Formalization: ∃a[a ∈ e.OutgoingAssociations : |{link ∈ links | a = link.association}| >
a.TProperty.multiplicity.maximum].

• Association TargetMinimum

– Rationale: It should not be allowed to create an instance of an entity that has less
association targets than allowed by the corresponding association relation.

– Formalization: ∃a[a ∈ e.OutgoingAssociations : |{link ∈ links | a = link.association}| <
a.TProperty.multiplicity.minimum].

• Association SourceMaximum

– Rationale: It should not be allowed to create an instance of an entity, when the result
would be that one of the target instances would now have too many incoming links for
one of its incoming association relations.

– Formalization: ∃a,i[a ∈ e.OutgoingAssociations∧i ∈ s.Instances∧i.Entity = a.target.Entity :
|i.incomingLinks(a) ] links(a, i)|] > a.SProperty.multiplicity.maximum,

where

i.incomingLinks(a) := {link ∈ s.L | link.association = a ∧ link.target = i}

links(a, i) := {link ∈ links | link.association = a ∧ link.target = i}

3The careful reader may already spot this, but Association TargetMinimum actually implies Entity -

MissingAssociation. During the application of MBT, this will also become clear.
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3.3.2.2 Read

The Read action has not concretely been formalized in the work of Derasari. Fortunately, it is
an easy operation and the formalization is rather simple. The Read(identifier) action takes as
argument an id identifier. If the Read action, can successfully be done, it means that an instance
in the repository exists, of which the corresponding id is identifier. From a given state s, and
argument identifier the variables of s′ will look as follows:

s′.I = s.I

s′.L = s.L

s′.REPO = s.REPO

s′.output = Success

s′.type = s.type

When the action can not be successfully done, then all state variables remain unchanged, except
the output state variable will reflect why this is the case. For the Read action, we distinguish
between the following error outputs.

• Instance NotInRepository

– Rationale: It should not be possible to read from the repository using an identifier of
which there is no instance in the repository that has such an identifier.

– Formalization: ¬∃x[x ∈ s.REPO : x.id = identifier].

3.3.2.3 Update(instance, links)

The Update(instance, links) action takes as arguments, an instance, and a bag of links. If the
Update action, can successfully be done, the outgoing links of the instance will be replaced by
links. From a given state s, and arguments identifier and links, s′ will look as follows:

s′.I = s.I

s′.L = (s.L \ {link ∈ s.L | link.source = instance}) ] links

s′.REPO = s.REPO

s′.output = Success

s′.type = s.type

Note: We slightly deviate from the formalization done in the work of Derasari. In his
work, it was assumed that links only contained links corresponding to a single outgoing
association, and only replaces those links. Those semantics would match better with the
actual IUT. In our Update function, we assume that links replaces all links in s.L in which
instance is the source. This makes the function more general and creates more overlap
with the Create operation, in which links also contains all outgoing links of instance.

When the action can not be successfully done, then all state variables except for the output
state variable remain unchanged. The output variable will reflect why the Update action could not
be done successfully. For the Update action, we distinguish between the following error outputs.

• Entity UpdateImmutableType

– Rationale: It should not be possible to modify an entity that is not mutable.

– Formalization: instance.Entity.M = False.
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• Link TargetNotInRepository

– Rationale: It should not be possible to make an instance (in the repository) point to a
target instance that is not in the repository.

– Formalization: ∃l[l ∈ links : l.source = instance ∧ l.target /∈ s.REPO]

• Association TargetMinimum

– Rationale: It should not be allowed for an instance of an entity to exist, that has less
association targets than allowed by the corresponding association relation.

– Formalization: ∃a[a ∈ instance.Entity.OutgoingAssociations : |{link ∈ links | a =
link.association}| < a.TProperty.multiplicity.minimum].

• Association TargetMaximum

– Rationale: It should not be allowed for an instance of an entity to exist, that has more
association targets than allowed by the corresponding association relation.

– Formalization: ∃a[a ∈ instance.Entity.OutgoingAssociations : |{link ∈ Links | a =
link.association}| > a.TProperty.multiplicity.maximum].

• Association SourceMaximum

– Rationale: It should not be allowed to update an instance of an entity, when the result
would be that one of the target instances would now have too many incoming links of
one of the association relations.

– Formalization: ∃a,i[a ∈ e.OutgoingAssociations∧i ∈ s.REPO∧i.Entity = a.target.Entity :
|i.incomingLinks(a) ] links(a, i)|] > a.SProperty.multiplicity.maximum.

where

i.incomingLinks(a) := {link ∈ s.L | link.association = a ∧ link.target = i}

links(a, i) := {link ∈ links | link.association = a ∧ link.target = i}

3.3.2.4 Delete

The Delete(identifier) action takes as an argument, an identifier identifier. If the Delete action,
can successfully be done, the instances with id identifier will be removed from its repository.
Furthermore, instances that should also be deleted (due to cascade deletion) should also be removed
from the repository. We will denote the set of instances that will be removed with deletion set.
From a given state s, using argument identifier, the variables of s′ will look as follows:

s′.I = s.I \ deletion set

s′.L = s.L \ {link ∈ s.L | ∃so[so ∈ deletion set | s.L.source = so ∨ s.L.target = so]}

s′.REPO = s.REPO \ deletion set

s′.output = Success

s′.type = {i 7→ s.type(i) | i ∈ s.I}

In which deletetion set will be defined as follows:

R0 := {instance} (where instance ∈ s.I ∧ instance.id = identifier)

Rn+1 := {i ∈ s.I | ∃l[l ∈ s.L : l.source = i ∧ l.target ∈ Rn ∧ l.SProperty.cascade = True]

∨ ∃l[l ∈ s.L : l.target = i ∧ l.source ∈ Rn ∧ l.TProperty.cascade = True]} (for n ∈ N)

deletion set :=
∞⋃

i=0

Ri
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The deletion set denotes the instances that get deleted as a result. Note that applying a
deletion using identifier can have many deletions as a result due to the cascade deletion
properties. The deletion set is in fact a sort of transitive closure on the link set. In the
work of Derasari, this closure has not been formalized. To be explicit, we have provided
the exact definition of deletion set.

When the action can not be successfully done, then all state variables remain unchanged, except
the output state variable will reflect why this is the case. For the delete action, we distinguish
between the following error outputs.

• Instance NotInRepository

– Rationale: It should not be allowed to perform delete on an identifier if there is no
corresponding instance for it in the repository.

– Formalization: ¬∃instance[instance ∈ s.REPO : instance.id = identifier]

• Entity DeleteOnUndestructable

– Rationale: It should not be allowed to perform delete on an identifier if the correspond-
ing entity is not Deletable.

– Formalization: ∃y[y ∈ deletion set : y.D = False]].

• Entity MultiplicityMinimum

– Rationale: It should not be allowed to perform delete on an identifier if the result would
be that after deletion, the entity minimum multiplicities would be harmed by removing
the deletion set.

– Formalization: |{i ∈ s.REPO | i.Entity = instance.Entity} \ {i ∈ deletion set |
i.Entity = instance.Entity}| < instance.Entity.multiplicity.minimum. where instance ∈
s.REPO for which instance.id = identifier

– One should not create models where the minimum multiplicity of an entity is > 0,
where the entity also has an outgoing association relation with source cascade deletion
enabled. This restriction is enforced by OCL.

3.3.2.5 Add

The Add(instance) action takes as an argument, instance instance. If the Add action, can suc-
cessfully be done, instance will be added to its repository. From a given state s, and argument
instance the variables of s′ will look as follows:

s′.I = s.I

s′.L = s.L

s′.REPO = s.REPO ∪ {instance}

s′.output = Success

s′.type = s.type

When the action can not be successfully done, then all state variables remain unchanged,
except the output state variable will reflect why this is the case. For the Add action we distinguish
between the following error outputs.

• Instance AlreadyInRepository

– Rationale: It should not be possible to add an instance to the repository if it is already
in there.
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– Formalization: instance ∈ s.REPO

• Link TargetNotInRepository

– Rationale: It should not be possible to add an instance to the repository if it has a link
to an instance that is not yet in the repository.

– Formalization: ∃link[link ∈ s.L : link.source = instance ∧ link.target /∈ s.REPO]
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Chapter 4

Model-Based Testing in the
Context of DMDSL

In this chapter, we will identify the aspects that are involved in applying Model-Based Testing to
the DMDSL code generator. In Figure 4.1, the architecture of applying MBT on a code generator
is visualized. The concepts involved will be explained in the sections of this chapter.

Figure 4.1: Architecture of applying Model-Based Testing on the DMDSL code-generator.

4.1 DMDSL Testing Models

To apply MBT on the code generator of the DMDSL language, we will apply the first dimension
of MBT as introduced in section 2.2.2. There is also literature available that chooses the second
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dimension of applying MBT on code generator. In [7] research is done on the generation of input
test models where also the DMDSL code generator is used as a case study. They surveyed a
number of academic tools for this and concluded that the underlying fundamentals are solid and
useful but still additional work is needed to bring them to the required quality for industrial
application. In this work, we will consider test models as given. The research required to generate
test models automatically will be out of the scope of this work.

Since we apply the first dimension of applying MBT to test code generators, we will create
testcases that test whether the generated code conforms to the model, and in this way implicitly
test the code generator. In the literature, the implementation is often referred to as the System
Under Test (SUT) or Implementation Under Test (IUT). We will consistently use the notation
IUT to refer to the generated C++ code. The system that is implicitly tested using MBT is
actually the code generator itself. The term SUT, therefore seems more appropriate for the code
generator itself. To avoid confusion we will avoid the term SUT.

4.2 Making DMDSL Models MBT Compatible

Unfortunately, DMDSL is not a specification language supported by an MBT tool. In order
to apply an existing MBT tool, we need to transform the test model written in DMDSL to a
specification language supported by an MBT tool (translational approach). To do this process
automatically, we need to create a model-to-text transformation. The DMDSL language is built
with the Eclipse Modeling Framework (EMF). A metamodel of the DMDSL language has been
built using EMF. A DMDSL Model is then simply an instantiation of the metamodel of the
DMDSL language constructs.

Xtext is a DSL to describe the concrete syntax of a language, and how it is mapped to an
in-memory representation. The Xtext language is used to define the grammar of the DMDSL
language. After describing the grammar in Xtext, a parser of the DMDSL language is automati-
cally provided. After parsing a textual specification in the DMDSL language, the parser can give
a corresponding Abstract Syntax Tree (AST), which is in fact the instantiation of the DMDSL
metamodel. This AST is referred to as the (ecore) model. It is the model as described in the
textual specification in the DMDSL language. To transform a DMDSL specification to a textual
specification, we then simply need to read the elements of interest from the model, and transform
it to the textual specification of the target language. Since we only cover part of the DMDSL lan-
guage, it is expected that we will use a target driven transformation here. The resulting textual
specification should encode the behavioral semantics of the input DMDSL model in the target
specification language. The tasks we obtained are (1) express the semantics of the DMDSL into
the target specification language. (2) Develop a tool to do these transformations automatically.

Domain Data Models are not typical models to use for MBT. A more typical example would be
a coffee machine. As input, this machine accepts coins and notices button presses. As an output,
this machine can produce different kinds of beverages. In such a system we can identify clear
input and output actions, and the execution of these actions would result in state changes. It is
clear that we are dealing with a reactive system here. Such a reactive system can be semantically
represented by a Labelled Transition System or some other type of state-dependent formalism. In
our setting of Domain Data Models, we are focussed on the processing of data using the repository
pattern [19]. In this pattern we are dealing with Create, Read, Update, Delete and Add actions
(CRUD+A). The corresponding semantic concepts for the application of MBT are not obvious.
From the work of Derasari, it has been made clear that these Domain Data Models do in fact also
have clear inputs and outputs (see section 3.3.2). The inputs are the CRUD+A actions, and the
outputs are success/corresponding error message after the operation. One could wonder whether
this is sufficient for MBT. When an Add action is taken, and Success is reported as expected, can
we actually be sure that the implementation added the instance to the repository? We can not
immediately be sure. However, when later in the test sequence a Read action is done using the
identifier of the added instance we would expect a Success to occur. When a Read action is done
with an identifier from an instance that is not in the repository, we would expect a corresponding
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error message. The effect of executing a CRUD+A action affects the output of future actions.
When the output actions during a test sequence are consistently as expected, one builds more and
more confidence that these operations are indeed performed as reported by the output messages.
We can thus in fact consider the IUT of a Domain Data Model to be a reactive system, and use
popular MBT techniques that apply to reactive systems.

4.3 MBT Tool Evaluation

That test sequences that the MBT tool creates contain actions with corresponding input argu-
ments. In our context that would be for example the type of operation (CRUD+A), but also the
arguments for the operation such as the instance identifier needed in a deletion. The MBT tool
should in some way generate these action arguments. We should, however, be careful that these
will be sensible. For example, when an instance of entity type E is created with some identifier i,
it is probably desirable to also test deleting an instance with identifier i later in the test sequence.
We should thus be careful in the selection of the MBT tool so that it supports the generation of
sensible test cases that are sufficiently sophisticated. This goes hand in hand with the supported
constructs of the specification language of the MBT tool. Furthermore, the tool should be suffi-
ciently scalable to handle the transformed DMDSL models. The following task emerges: (3) Make
an assessment of which MBT tools are appropriate in the context of DMDSL .

4.4 Adaptor

Since the MBT tool will create test cases on the basis of a high-level DMDSL specification, the
MBT tool will only be able to generate test cases on a higher abstraction level. In the context
of DMDSL, this will be a sequence of CRUD+A actions with corresponding arguments. These
abstract actions should be turned into concrete method calls on the implementation. Furthermore,
the concrete outputs the IUT produces, such as exceptions, should be transformed back into
the abstract DMDSL output messages as defined in section 3.3.2. We should therefore create
an adaptor. The following task emerges: (4) Develop an adaptor to translate abstract tests to
executable tests for the generated C++ code.

4.5 Test Report

When a test model is given, an MBT tool is selected, a tool is developed to transform the test-
model in a specification language supported by the MBT tool, and an adaptor is developed. The
MBT tool can then be used to test the generated code of the test model (IUT). It is not unlikely
some problems will pop up, as a result of the exhaustive testing. These problems need to be
manually investigated. A problem does not necessarily mean that there is a bug in the code
generator:

• It could be the case that there is some error in transforming the model to the specification
language supported by the MBT tool. Then, the model-to-text transformer needs to be
changed.

• It could also be the case that the Adaptor, did not handle some input properly. Then, the
adaptor needs to be changed.
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Note: The fact that in both the adaptor and translated model bugs can occur seems
problematic. However, since the code generator is developed in isolation from the
adaptor and generator, it is not typical that the exact same bug occurs in the gen-
erated implementation and in the generated specification and adaptor for the MBT
tool (given the dynamic semantics are properly defined). Therefore, problems of the
adaptor or translated model will typically be exposed in the test report, allowing the
tester to fix them.

• Another problem that could occur is that there was some misconception about the seman-
tics of the modeling language. For example, there could be misconceptions about what a
property of the test model actually means. This could result in execution semantics of the
IUT that are different from the dynamic semantics used in the MBT for the test model.
Nevertheless, it is good that MBT can point out these misconceptions, so that discussion
between the developers and testers occurs and forces them to refine the semantics of the
language. Perhaps even some constraints need to be added, and the test model is a type of
model that we actually would like to reject.

• Finally, it could be the case that there is some actual problem with the implementation. The
developers should then be made aware of this so that they can inspect the test report, and
find the cause of the bug. The test report could for example show a trace that would lead
to incorrect behavior of the IUT. The developer should inspect such a trace, find the cause
of the bug, and fix the bug. After fixing the bug the MBT testing process can be continued.
If it is not feasible to fix the bug in time, and it is desirable to continue the MBT process,
one could try to restrict the exploration of the model by for example avoiding traces where
this specific bug occurs, to try and find different types of bugs.
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Chapter 5

Selecting a Model-Based Testing
Tool

In chapter 4, we explained an approach for applying MBT on a code generator. An essential
piece in this puzzle is the MBT tool itself. There are many different MBT tools available. It is
important to select an MBT tool appropriate for our setting. In this chapter, we will investigate
how to select a proper MBT tool. We will first consider popular formalisms behind MBT tools.
Then, for formalisms that seem most applicable, we will investigate the underlying theory and
consider popular tools that rely on these. Finally, we will experiment to see if it is possible to
encode the dynamic DMDSL semantics in the underlying specification language and assess whether
the tools are sufficiently scalable to capture more complex DMDSL models.

5.1 Approach

In this section, we will research how we can select an MBT tool for the DMDSL context. We
will start off by considering existing literature on this topic, and continue with a proposal of an
approach used in the DMDSL context.

5.1.1 A Systematic Review of Tools

The selection of an MBT tool is important. One MBT tool could be better for a use case than
some other MBT tool. Unfortunately, in literature where MBT is applied, the selection procedure
of the MBT tool is usually left out. In the paper of Shafique and Labiche an attempt at a
systematic review of nine prominent MBT tools is done on tools that support state-based models1

[25]. They point out the many difficulties in this process. (1) There are widely varying modeling
notations, and the tool capabilities are often very dependent on the input language. Therefore,
they restrict themselves to state-based models. (2) Even when restricting oneself to state-based
models there are still many different constructs: Finite State Machine, Extended Finite State
Machines, UML state machines, Labeled Transition Systems, and more, making tools hard to
compare. (3) Furthermore, they state that academic and open source tools are often outdated
and contain incomplete documentation. On the contrary commercial tools often have up-to-date
manuals, but vendors often do not provide enough technical information. Since the vendors have
a profit motive, it is not unsurprising the vendors do not publish research. (4) They also conclude
that there is a gap between MBT tool support and research on MBT since supposedly a large part
of research in this field does not translate into tools.

The authors created four groups of criteria in their evaluation:

1They consider both transition-based notation (e.g. Labelled Transitions Systems, Finite State Machines), but
also pre/post notation (e.g. Abstract State Machines) to be state-based models.
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1. Model-flow criteria: Adequacy criteria on how test cases are built. Examples of these are
state coverage and transition coverage.

2. Script-flow criteria: If the modeling notation allows for mechanisms that go beyond state
machines, such as pre- and post-conditions, we may use traditional test criteria such as
‘modified condition/decision coverage’ (MC/DC) to specify coverage of these code segments.

3. Data criteria: Criteria referring to the selection of input values for arguments in abstract
tests cases. They consider criteria such as boundary-value testing.

4. Requirement criteria: Criteria that rely on traceability between model elements and require-
ments.

It is good to be aware of these criteria. In the context of the DMDSL code generator, the test-
models are given, so we are not so much interested in the requirements criteria. The data criteria
are of particular interest since the actions are very data-driven. It should be noted, however,
that the domains over which we operate are from a theoretical point of view often of infinite size.
Furthermore, from the semantics described in section 3.3.2, it does not become clear how criteria
such as boundary-value testing can be applied to such models. In particular, the transitions
of the transitions systems do not have guards where boundary value testing is usually applied
on. It depends on how a DMDSL model is translated to a different specification language if the
defined data criteria are really applicable. The script-flow criteria are more of relevance. The
CRUD+A actions have quite a complexity hidden in the calculation of resulting state variables.
Unfortunately, only one of the nine tools, has some serious support for control-flow criteria. The
remaining, either do not support the criteria, or the modeling notation does not involve any scripts.
Unfortunately of the nine tools covered, five are no longer available. Some of the commercial tools
covered are still available, but as the paper is from 2010, it is uncertain to what extent the testing
tools of these commercial companies still follow the original approach. Finally, the Model-flow
criteria is of interest to get a notion of a good coverage. Also, here the selection based on this
criteria is quite tough. It is not yet clear how the DMDSL model will translate to a model
supported by the MBT tool. It is thus not clear what kind of coverage criteria will apply to the
resulting model. What if the resulting model has an infinite state space or an infinite number of
transitions? Is a notion of state coverage or transition coverage in such a situation even useful?
Shafique and Labiche put the result of their tool evaluations in several tables. In the different
tables one can observe that a significant part of the cells is filled either with N (does not support
the criterion), N/A (not of relevance), ? (simply unknown whether it is supported). It shows
how inherently hard it is to come up with good general criteria to compare MBT solutions with
each other. Furthermore, it is hard to assess to what extent the criteria apply and to what extent
they are relevant if it is not clear how the models will be expressed in the underlying specification
language.

5.1.2 Procedure Used in DMDSL context

Shafique and Labiche have taken a systematic approach in the review of MBT tools. We have
seen that it is quite hard to apply their result in practice in the selection of an MBT tool. We will
take a more practical approach in the selection of an MBT tool (in the context of the DMDSL
language). The steps we take are as follows:

1. We have a look at popular formalisms used in Model-Based Testing for the encoding of the
models. Then we select a few of formalisms that seem most promising for expressing DMDSL
models. This relies on the concepts the formalisms provide, e.g. does it allow for an infinite
number of states, does it allow for symbolic treatment of data.

2. We have a look at the general concepts and definitions used in formal theories of Model-Based
Testing.
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3. For the selected formalism, we look at the underlying theory an the tools used in the appli-
cation of MBT. This should give more confidence whether the formalism is appropriate for
applying Model-Based Testing. For example, to what extent is non-determinism or partial
specification supported by the underlying testing theory? It is also good in the assessment to
understand how tools can derive test sequences and verdicts to assess whether the formalism
is appropriate. We do the following:

(a) We try to manually describe how DMDSL models can be translated to the selected
formalism.

(b) We try out popular MBT tools that rely on the selected formalism and testing theory.
In particular, we try to translate constructs of test models in the underlying specification
language. It may be the case that the underlying formalism from a theoretical point of
view is more expressive than the specification language used by the MBT tool is.

(c) Assess how the Model-Based Testing tool could explore the model and assess whether
this can be done for models on the intended complexity level.

The selection of the appropriate formalism and which specification language is used will mostly
depend on answering ‘How to express feature X in semantics Y using specification language Z?’.
We will now start applying this procedure to find an MBT tool that is applicable in DMDSL
context.

5.2 Formalisms in Model-Based Testing

In this section, we will have a look at the different formalisms to specify models. Then, we will
consider the procedure of selecting formalisms that are good for capturing the dynamic semantics
of DMDSL test models in an MBT context.

5.2.1 Popular Formalisms

In Chapter 3.3.2 the dynamic semantics of the DMDSL have been formalized into some transition
system. The textual specifications that are supported by Model-Based Testing tools are often
influenced by a mathematical formalism. These typically will be different from the formalism
as specified in the work of Derasari. Fortunately, there are formalisms that are rather close.
To assess which MBT tools are appropriate for our context, it is sensible to list some of the
popular formalisms. Based on different literature, we constructed a (non-exhaustive) list of popular
formalisms used in MBT and a short description.

Finite State Machine (FSM) (with Input and Output) (Mealy Machines) In testing
theories, one of the simpler concepts is the Finite State Machines with input and output, which
are also known as mealy machines [20]. In the classical setting, we have that input and output
strictly alternate. That is, we have that output is produced on the basis of input and previous
state. Hence, on the basis of some input, a transition is fired in which output is produced, and
consecutive state is reached. Furthermore, in Finite State Machines, the transitions must be input-
enabled and the number of states and transitions should be finite. The fact that it is input-enabled
does not harm expressiveness. Typically, unexpected inputs would be modeled as self-loops. It is
usually required that the FSM is deterministic. That is, every outgoing transition for a state has
a unique input label. Many of the test generation algorithms on FSMs require non-determinism of
the FSM. It may however be desirable to have a notion of non-determinism in the modeling, since
it allows for specification on a higher abstraction level. In such case, the FSM would probably
not be a desirable formalism to use. An example of an MBT tool that relies on FSMs is the
TestOptimal tool (https://testoptimal.com/).
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Symbolic Input/Output Finite State Machine In this type of state machines, the transi-
tions can have some input argument from a possibly infinite domain [22]. By specifying guards, a
transition can be enabled or disabled, on the basis of the provided input. Furthermore, the output
produced may depend on the input. Note, however, that the states do not have state variables (in
particular we have a finite state space), and the input only influences the output and next state.

Extended Finite State Machines The Extended Finite State Machine (EFSM) builds upon
the notion of these Symbolic Input Finite State Machine with Output. In these state machines,
the state space can be greatly reduced by assigning state variables to the states of the system. On
the basis of the test objective, one can decide to partition the state space into interesting areas and
represent these as states in the diagram. E.g. state1 when state variable x < 1 and state2 when
state variable x ≥ 1. In the EFSM the transitions can have guards so that the desired behavior

can be modeled. In the example, we could have transitions state1
increaseX/{x:=x+1}/[x<1]
−−−−−−−−−−−−−−−−−−→ state1

and state1
increaseX/{x:=x+1}/[x≥1]
−−−−−−−−−−−−−−−−−−→ state2. In such representation, state1 and state2 are repre-

sentatives for a much larger state space. An example of an MBT tool that relies on this formalism
is the ModelJUnit Library [20].

Labelled Transition System (LTS) with Input and Output These are systems containing
a set of states, and labelled (input/output) transitions between the states. Hence, it may be
possible that, from a single state, multiple outputs are possible, allowing observable output non-
determinism. It is also possible that from a state, there are transitions leading to different states,
but share the same input/output label, which is also a form of non-determinism. Furthermore,
states do not need to accept all transitions, allowing for partiality. Unfortunately, test generation
for FSMs does not apply to LTSs, but work on test generation is done [33]. An example of an
MBT tool that relies on this formalism is the TorX tool [31].

Symbolic Transition System (STS) with Input and Output The LTS with input and
output has been extended to a symbolic formalism. In this formalism, the labelled transitions
may have input arguments. Furthermore, the transitions may have guards, and the states can
have state variables. By this extension, the STSs have some similarities with the EFSM. Note,
however, that the STSs allow for partiality, and non-determinism in both output and input actions.
Furthermore, input actions do not directly produce output. Examples of MBT tools that rely on
this formalism are the TorXakis tool [32] and the Axini tool (www.axini.com).

Extended Finite Automaton / UML State machine A popular formalism in MBT are
UML State machines. These are an extension of a finite automaton expressed in UML notation.
Typically these transition systems have an initial state and a final state. Furthermore, there are
transition arrows between the states. The transitions have a trigger, constraint, and transitional
behavior. It follows that there is a large similarity with EFSMs. Something exceptional about
UML State Machines is that they allow for the clustering of states in a superstate. An example of
an MBT tool that relies on this formalism is the MoMuT testing tool [18].

Abstract State Machine The basic Abstract State Machine (ASM), which was formerly known
as evolving algebras, is a finite set of transition rules of the form if Condition then Updates which
transforms abstract states. The introduction and first use of evolving algebras in a paper were
in 1988 by Yuri Gurevich [11]. It was introduced as ‘a computation model that is more powerful
and more universal than standard computation models’. The ASM provides a formal method to
describe an algorithm by providing a mathematical view of a program state. Some of the current
Model-Based Testing tools make use of Model Programs that are inspired by the ideas of ASMs.
Examples of MBT tools that make use of Model Programs inspired by ASMs are Spec Explorer
[34], NModel [15], and PyModel [16].
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5.2.2 Selecting a Formalism

The book ‘Practical Model-Based Testing’ [20] lists pre/post (or state-based) notation and transition-
based notation as the most popular paradigms. In the former, the system is modeled as a collection
of variables, representing the internal state of the system, plus operations modifying those vari-
ables. A corresponding mathematical formalism would be the Abstract State Machine. In the
latter, the focus is on describing the transitions between different states (modeled as locations)
of the systems. The remaining formalisms introduced in 5.2.1 (FSMs, LTSs, etc.) would be more
close to this category. As a basic guideline, the book points out that pre/post notations are best
for data-oriented systems. The transition-based notation is considered best for control-oriented
systems. It is not always clear if the system is more data-oriented than control-oriented. Fur-
thermore, there is not always such a clear distinction between the two paradigms. In particular,
the state-based notation can often also be used to model transition systems. One could use some
state variable that indicates the node considered. The enabledness of outgoing transitions could
then simply be made dependent on this node state variable. In this way, it would be possible to
express a model that originally uses transition-based notation using state-based notation. On the
other hand, the transition-based notation may also support more complex data structures. We
have seen this for example in EFSM, and in STSs, allowing these structures also to operate over
arbitrary data structures.

Since the DMDSL language covers the data aspect of systems, it is clear that the type of models
we are considering are more data-oriented. It, therefore, seems best to focus on the formalisms
found in the pre/post notation and the transition-based structures that have sufficient support
for complex data structures. When looking at the dynamic semantics as defined by Derasari,
we consider a transition system, with state variables. Each state has the outgoing CRUD+A
transitions, and output is represented by changing the output state variable. Since it is clearly
defined how the actions manipulate the state variables, we would not expect it to be hard to express
such a system as Model Program (ASM), we will conceptually describe how this could be done.
Furthermore, we expect it will also be possible to encode a DMDSL model in a Transition-Based
Notation that supports complex data structures such as a Symbolic Transition System or Extended
Finite State Machine. We will try to encode the model as an STS with input and output. This
formalism has in comparison to EFSMs a richer underlying formal theory. In practice, EFSMs
are actually more close to Model Programs. If the research in STSs shows that having locations
is beneficial, we may decide to research the translation to EFSMs as well. We use the semantics
defined by Derasari, as a middle-ground, and transfer these concepts into the specification language
that underlies corresponding formalisms.

5.3 General Formal Concepts

It depends on the semantics of the input specifications supported by the MBT tool how an MBT
tool can derive verdicts for test cases. Constructs such as non-determinism and symbolic actions
can make this process non-trivial. Formal theories have been developed that influence how to do
analysis, derive verdicts from a specification, and how one could derive test cases. These theories
differ in the underlying mathematical formalism, which accordingly influences the specification
supported by the MBT. Since it is important for us to assess what kind of MBT tool will be most
appropriate for our context setting, we will investigate some of the formal theories behind MBT
that are relevant. We will start of with the general concepts seen in MBT theories.

5.3.1 Formal Conformance

We wish to know whether the IUT implements the provided specification. The IUT is, however,
not a formal object. As a matter of fact, in practice, the implementation could be a physical
device to which only input can be provided, and output can be observed. Hence, the IUT will
serve as a black box.

Testing an Industrial Code Generator With Model-Based Testing 29



CHAPTER 5. SELECTING A MODEL-BASED TESTING TOOL

We assume there is some universe SPECS of specifications, a universe IMPS of implemen-
tations. A conformance relation conforms-to ⊆ IMPS ×SPECS then expresses whether an IUT
conforms to a specification, i.e. IUT is a correct implementation of the specification.

As mentioned, the IUT is not a formal object and is considered to be a black box. Still, we
would like to be able to formally reason about the implementation. Hence, in the literature, it
is assumed that for an implementation IUT there exists a formal model of the implementation
iIUT ∈ MODS in which MODS is the universe of formal models. This is referred to as the test
hypothesis. This assumption allows us to formalize the conforms-to relation. The formalization is
now imp ⊆MODS × SPECS where IUT conforms-to S if and only if iIUT imp S

An MBT tool should use S to generate testcases. Based on the observations of the IUT the
MBT tool should be able to assess whether the implementation passes a test case T or fails the
testcase. We say that a test suite TS (set of testcases) is passed if the implementation passes all
testcases in it. We desire to generate a test suite TS such that

IUT conforms-to S if and only if iiut passes TS

Such a test suite TS would be a complete test suite. It will be able to reject all implementa-
tions that do not satisfy the specification. Furthermore, all implementations that implement the
specification should pass the testcase. In practice, such test suite TS would unfortunately be of
infinite size. We will provide an example that even for very simple systems, such a test suite would
be of infinite size.

Example 5.3.1 (Complete test suites are often of infinite size). Suppose a specification S
of a light switch is provided in CCS [21] with as input actions {toggle?} and output actions
{lightOff !, lightOn!}. The specification S looks as follows:

LightSwitch := toggle?.lightOff !.toggle?.lightOn!.LightSwitch

The corresponding Labelled Transition System is visualized in figure 5.1. To assess whether the
IUT shows the desired behavior, we would like to generate testcases. It might be the case that for
first input toggle? we indeed observe from the implementation output lightOff !, and for second
input toggle? output lightOn!. However, perhaps the implementation will fail to provide the
correct output after executing this input sequence 100 times (or more). The expected output after
100 toggles would be lightOff !, but since the IUT is considered to be a black box we can not be
sure if the output would be correct without testing this sequence. It is clear that the specification
has only a few states, but it is unknown to us how many possible states iIUT has. To reject all
faulty implementations of a LightSwitch, we would need a test suite of infinite size.

We can split the notion of completeness up into two separate conditions:

Definition 2 (Definition of completeness, soundness, and exhaustiveness). A test-suite TS is
complete if and only if TS is both a sound and exhaustive test-suite. Soundness and completeness
are defined as follows:
Soundness:

if IUT conforms-to S then iiut passes TS

Exhaustiveness:
iiut passes TS then IUT conforms-to S

Since completeness is in practice not achievable when considering the IUT as black box, but
we do desire that correct implementations pass the testcases, we desire the generated test suites
to be sound.

Now that we have seen the general concepts in testing theories, we can start exploring some
testing theories seen in MBT, and see if these are applicable in DMDSL context.
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Figure 5.1: Example of specification, and IUT represented as black-box.

5.4 Model-Based Testing with Labelled Transition Systems

It would be interesting to see if we are able to express the DMDSL models as STS. MBT applied on
STSs builds on the testing theory used in LTSs. The STSs can in fact be semantically represented
as an LTS. This allows the conformance relation ioco that is used on LTSs to be used as confor-
mance relation for MBT using STSs. We will therefore first have a look at LTSs and the ioco
conformance relation, then we will see how STSs are defined and have LTS semantics. Afterwards,
we will from a conceptual point of view try to express a DMDSL model as an STS, and try to
encode such a model in a specification language. In particular, the commercial Axini tool, and the
academic TorXakis tool and their specification languages will be considered. It will turn out that
we will get a negative result for both tools in terms of practical application to DMDSL models.
As a result, this subsection will not be of particular interest for the remainder of the thesis. This
subsection may still be of interest to the reader to see how an extensive testing theory is applied
to the case study.

5.4.1 IOCO on Labelled Transition Systems

We will provide a brief repetition of the ioco theory on Labelled Transitions as seen in the work
of Tretmans [33]. This formal theory forms the basis of several different MBT tools. To assess
whether the theory applies to our setting some knowledge of this theory is required.

The ioco relation is a conformance relation defined on Labelled Transition Systems with In-
put and Output. LTSs allow for capturing non-determinism and partiality in the specifications.
Sometimes it is desirable to observe that the IUT does not produce any output at all. The
LTSs considered therefore also support the absence of output (quiescence). These concepts are all
respected by the ioco relation.

We first provide the definition of a Labelled Transition System.

Definition 3. A Labelled Transition System (LTS) is a quaternary tuple L = 〈Q,L, T, q0〉

• Q is a possibly infinite set of states

• q0 ∈ Q is the initial state
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• L is a possibly infinite set of action labels. The τ action denotes the unobservable action. All
other actions are in L and are observable. We have that the set of action labels is L ∪ {τ}.
We can use Lτ to denote this set.

• T ⊆ Q× Lτ ×Q is a transition relation. For (s0, a, s1) ∈ T we often write s0
a
−→ s1.

Instead of referring to L, the initial state s0 is often used to refer to the corresponding transition
system.

Definition 4. Let A be a set. Then A∗ is the set of all finite sequences over A including the
empty sequence ε. If σ1, σ2 ∈ A∗ are finite sequences, then σ1 ∙ σ2 is the concatenation of σ1 and
σ2.

Definition 5. Let p = 〈Q,L, T, q0〉 be a labelled transition system with s, s′ ∈ Q, and a ∈ L.

s
ε

=⇒ s′
val
= (s = s′ ∨ s

τ ∙...∙τ
−−−−→ s′)

s
a

=⇒ s′
val
= ∃q1,q2 [q1, q2 ∈ Q : (s

ε
=⇒ q1

a
−→ q2

ε
=⇒ s′)]

Definition 6. Let p be (a state of) a labelled transition system.

• p after σ
def
= {p′ ∈ Q | p

σ
=⇒ p′}.

• p is strongly converging if there is no state of p that can perform an infinite sequence of
internal transitions.

• p is image finite if for all σ ∈ L∗, p after σ is finite.

• LT S(L) is the class of all image finite and strongly converging labelled transition systems
with labels in L.

Tretmans points out that the form of LTSs as defined in Definition 3 is usually sufficient for
analyzing and reasoning about applications. However, in the context of testing, it is not desirable
to abstract from the initiative and direction of an action. The environment communicates with
the system via an input action, and the system communicates with the environment via an output
action. Therefore, the concept of labelled transition systems with inputs and outputs is introduced.

Definition 7. A labelled transition system with inputs and outputs is a Quinary tuple 〈Q,LI , LU , T, q0〉
where

• 〈Q,LI ∪ LU , T, q0〉 is a labelled transition system in LT S(LI ∪ LU ).

• LI is a finite set of input labels and LU is a finite set of output labels.

The input labels will be decorated with a ? and output labels with !. The class of labelled transition
systems with inputs and outputs is denoted with LT S(LI , LU )

Except for the addition of some syntactic sugar, the labelled transition systems with inputs and
outputs do not really differ from regular labelled transition system. The ioco relation restricts
itself for the implementation to a special type of transition system referred to as input-output
transition systems.

Definition 8. An input-output transition system 〈Q,LI , LU , T, q0〉 is a labelled transition system
with inputs and output for which

∀q[q ∈ Q ∧ q is reachable from q0 : ∀σ[σ ∈ LI : q
σ

=⇒]]

(where q
σ

=⇒
val
= ∃q′ [q′ ∈ Q : q

σ
=⇒ q′]). I.e. all input actions are enabled in any state reachable

from the initial state.
We denote the class of input-output transition systems with IOT S(LI , LU ) where IOT S(LI , LU ) ⊆

LT S(LI , LU )
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For many systems, the view as an input-output transition system is sensible. For example, for
a vending machine, the user can always press any of the buttons. However, when no money is
inserted into the machine, the vending machine typically will not respond to this input action. In
such a situation, a self-loop could be modeled in the transition system. Also, in the context of a
DMDSL model, this requirement is sensible. At any point in time, the user can do a CRUD+A
operation. Even in a state where some instance with identifier i does not exist, it should be
possible to do the Delete(i) transition. As expressed by Derasari, this would be represented as a
self-loop and the output variable would be changed.

For an input-output transition system, the environment can at any point in time decide to
perform an input action. The IUT can autonomously decide when to perform an output action.
It is therefore, of relevance for the environment to be aware if the system is in a state in which no
output action is possible anymore, and thus the system cannot autonomously proceed. We call
such a state quiescent and denote a quiescent state d with δ(d). It turns out that it is convenient
if the system is able to express to ‘see nothing’. Hence, the possibility of δ-transitions is added to
the language.

Definition 9. Let p = 〈Q,LI , LU , T, q0〉 ∈ LT S(LI , LU )

• A state q of p is quiescent, denoted with δ(q) when ∀μ[μ ∈ LU ∪ {τ} : q 6
μ
−→]

• Lδ
def
= L ∪ {δ}

• pδ
def
= 〈Q,LI , LU ∪ {δ}, T ∪ Tδ, q0〉 where Tδ

def
= {q

δ
−→ q | q ∈ Q ∧ δ(q)}

• The suspension traces of p are Straces(p)
def
= {σ ∈ L∗

δ | pδ
σ

=⇒}

Definition 10. Let q ∈ Q of some transition system p = 〈Q,LI , LU , T, q0〉. Then:

• out(q)
def
= {o ∈ LU | q

o
−→} ∪ {δ | δ(q)}

• out(Q)
def
=
⋃
{out(q) | q ∈ Q}

Finally, we will provide the ioco relation presented in the work of Tretmans:

Definition 11 (ioco relation). Given a set set of input labels LI and a set of output labels LU ,
the relation ioco ⊆ IOT S(LI , LU )× LT S(LI , LU ) is defined as follows:

i ioco s
val
= ∀σ[σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)]

Note that the definition of ioco considers suspension traces from s, and does not say any-
thing about suspension traces of i that are not suspension traces for s. This allows for partial
specifications (partiality).

In section 5.2 in the work of Tretmans, an algorithm for complete test generation is provided
[33]. In section 5.3 it is pointed out that this algorithm can detect all and only all non- ioco correct
implementations. We call the test suite T this algorithm can compute complete. In practice,
however, such a test suite would be of infinite size, and the algorithm would not terminate. One
would thus typically create only sound test suites. As Tretmans points out, exhaustiveness is more
a theoretical result and usually not practically applicable. We will now provide formal definitions
of these terms in the context of the ioco theory.

Definition 12. Let s be a specification and T a test suite; then for ioco

T is complete
def
= ∀i[i ∈ IOT S(LI , LU ) : i ioco s ⇐⇒ i passes T ]

T is sound
def
= ∀i[i ∈ IOT S(LI , LU ) : i ioco s =⇒ i passes T ]

T is exhaustive
def
= ∀i[i ∈ IOT S(LI , LU ) : i ioco s ⇐= i passes T ]
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In practice when ioco is applied, the relation will be restricted to a subset of suspension traces:

Definition 13. Let F ⊆ (LI ∪LU ∪ {δ})∗ be a set of suspension traces (typically generated from
specification s) and let i ∈ IOT S(LI , LU ) and s ∈ LT S(LI , LU )

i iocoF s
def
= ∀σ[σ ∈ F : out(i after σ) ⊆ out(s after σ)]

In LTSs, the labels on the transition system indicate the interaction that a system may have
with its environment. This is also in line with the transition system induced by a DMDSL model
as described in the work of Derasari [8]. The output actions of the CRUD+A operations have
however been made part of the content of the state, whereas for an LTS you would expect these
to be an output action label. Furthermore, when the state variables of two states in the transition
system are different, we would expect in the LTS different states/locations to exist for reflecting
this. Since state variables are not supported for an LTS one would need to find LTS semantics for
the transition system defined in the work of Derasari.

5.4.2 IOCO for Symbolic Specifications

The IOCO Theory forms a rich formal theory for MBT using LTSs. If we attempt to express the
model of Derasari in LTS semantics, we will encounter problems. The CRUD+A actions, have
been formalized using input arguments. When these input arguments would be ‘hard-coded’ in
the transitions, then the number of transitions for a single state would be very high, and possibly
infinite. For example, for the ‘Deletion’ of an instance, an identifier needs to be passed. One
would expect the domain of identifiers to be of infinite size. However, having an infinite number
of outgoing transitions is typically not allowed by the tools. One would need to finitize such a
domain. Depending on how these are finitized, this potentially could still give rise to a large
number of transitions. Furthermore, the states do not allow for state variables. Due to the high
number of combinations of possible for the state state variables, we would expect the state space
to be very large, and depending on how the system is modeled, of infinite size. For tools relying
on LTSs, this is typically problematic. In the work of Frantzen, Tretmans and Willemse [9] these
problems are pointed out. To allow for the modeling of such systems, they augment the LTS as
Symbolic Transition Systems (STSs) and lift the ioco test theory to these structures. Finally,
they present an on-the-fly algorithm for generating and executing test cases for STSs.

Analogous to the paper of Frantzen, Tretmans and Willemse, we will first remember the reader
to some of the first-order logic concepts and then introduce the STSs.

5.4.2.1 First Order Logic

Suppose a first order structure is given

• A logical signature S = (F, P )

– F is a set of function symbols, where each f ∈ F has an arity n ∈ N denoting the
number of arguments. When n = 0 for some function f we will say that f is a constant.

– P is a set of predicate symbols. Each p ∈ P has an arity of n ∈ N+.

• A model M = (U, (fM)f∈F , (pM)p∈P )

– U denotes the universe, where U 6= ∅.

– For f ∈ F with arity(f) = n we have that fM : Un → U .

– For p ∈ P with arity(p) = n we have pM ⊆ Un.

Definition 14 ((ground)terms ). Let X be a set of variables.

• Suppose X ⊆ X. Now t ∈ T(X) is an element that can be constructed from function symbols
in F and variables in X. We denote t as term over X. Furthermore, we use var(t) to denote
the set of variables used in term t. In particular, we have that var(t) ⊆ X.
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• Let t ∈ T(∅), then t is constructed using only function symbols in F , and thus var(t) = ∅.
We denote t as ground term.

Definition 15 (Term-mapping). A term-mapping is a function σ : X → T(X) that assigns to
each variable in X a term over X. Furthermore, we denote with T(Y )X the set of term mappings
containing term-mappings with type X → T(Y ). Furthermore, the substitution of terms σ(x) for
x ∈ var(t) is denoted with t[σ].

Example 5.4.1. Let S(F, P ) with F = {false, not, and} with respective arities 0, 1, 2, and let
P = {equiv} with arity 2. A possible model would be the boolean algebra with the signature

false,¬,∧ and the
val
= predicate on propositions. Example terms would be not(x), not(and(x, y)).

Example of ground terms would be: and(not(false), not(false)), not(and(not(false), not(false))).
Now let X = {x, y}, Y = {x}. Now we have that σ = {x 7→ x, y 7→ false} is a term mapping in
the set T(Y )X . Now consider t := not(and(x, y)) and we thus have t ∈ T(X). Furthermore, note
that t[σ] = not(and(x, false))

Definition 16 (Valuation). • A valuation is defined as a function ϑ : X→ U.

• We write ϑ ∈ UX when ϑ : X → U for X ⊆ X. When y ∈ X \ X then ϑ(y) = ∗ for an
arbitrary element ∗ of the set U.

• Suppose ϑ ∈ UX , ς ∈ UY where X ∩ Y = ∅. Then, the union is defined as:

(ϑ ∪ ς)(x)
def
=






ϑ(x) if x ∈ X

ς(x) if x ∈ Y

∗ otherwise

Definition 17 (Satisfaction). Let ϕ be a predicate. The satisfaction of ϕ w.r.t to a valuation ϑ
is denoted with ϑ |= ϕ.

Definition 18 (Term-evaluation). The extension of a valuation ϑ to evaluate whole terms is called
a term-evaluation. This is denoted with ϑeval : T(X)→ U.

Example 5.4.2. Consider the model of boolean algebra on the signature of example 5.4.1. Let
ς = {x → false, y → false} ∈ U{x,y}. We have that ςeval(and(x, y)) = false and ςeval(x) =
false. It is clear that for ϕ = equiv(and(x, y), x) we have that ς |= φ.

5.4.2.2 IOCO on STSs

Definition 19 (Symbolic Transition System). A Symbolic Transition is a septuple 〈L, l0,V , ι, I, Λ,→〉

• L is a countable set of locations.

• l0 ∈ L is the initial location.

• V is a countable set of location variables.

• ι is an initialization of the location variables. (i.e. ι is a mapping V → T(∅) where T(∅) is
the set of ground terms. Ground terms, are build from function symbols, and do not contain
variables.)

• I is a set of interaction variables with I ∩ V = ∅.

• Λ is a finite set of gates. The unobservable gate is denoted with τ , and τ /∈ Λ. We use Λτ to
denote λ ∪ {τ}. We say that each λ ∈ Λτ has an arity(λ) denoting the number of distinct
interaction variables. We have that arity(τ) = 0 is fixed since the unobservable gate does
not allow for interaction, and therefore will not contain interaction variables.
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• →⊆ L × Λτ × T(V ∪ I) × T(V ∪ I)V × L, which denotes the switch relation. Instead, we

can write l
λ,φ,ρ
−−−→ l′ to denote (l, λ, φ, ρ, l′) ∈→. Hence, we have that for such a transition, λ

would serve as a gate, φ would serve as a guard, and ρ would serve as an update mapping.

We will use ΛI to denote the set of input gates, and ΛU for the set of output gates. Furthermore,
in a visualization we will denote this respectively with ? and !.

Definition 20 (ioco on STSs). Let S = 〈L, l0,V , ι, I, Λ,→〉 be an STS. The LTS semantics of S
are given by JSK = 〈Q, Σ, T, q0〉

• Q = L× UV as set of states.

• Σ =
⋃

λ∈Λτ
({λ} × Uarity(λ)) is the set of actions, where ΣU =

⋃
λ∈ΛU

({λ} × Uarity(λ)) and
ΣI =

⋃
λ∈ΛI

({λ} × Uarity(λ)).

• q0 = (l0, eval ◦ ι) ∈ S is the initial state.

• T ⊆ Q× Σ×Q where T is the transition relation defined by

l
λ,ϕ,ρ
−→ l′ type(λ) = 〈ν1, . . . , νn〉 ς ∈ Utype(λ) ϑ ∪ ς |= ϕ ϑ′ = (ϑ ∪ ς)eval ◦ ρ

(l, ϑ)
(λ,〈ς(ν1),...,ς(νn)〉)
−−−−−−−−−−−−→ (l′, ϑ′)

Since this provides LTS semantics to STSs, this allows using the ioco test relation as seen in
section 5.4.1 to be applied on these structures.

5.4.2.3 Expressing the Semantics of a DMDSL Model as STS

We will transfer the semantics as defined by Derasari as an STS. We will refer to this STS as
Model idea 1, which has been visualized in figure 5.2. Let

• L := {inputState, outputState}

• l0 := inputState

• V := {Repo, Instances,Links,Output}

• ι := {Repo→ ∅, Instances→ ∅,Links→ ∅,Output→ Success}

• I := {entity, targets, identifier, instance, output}

• Λ := {Create(entity, targets), Read(identifier), Update(instance, targets),
Delete(instance), Add(instance), OutputMessage(output)}

•

→= {
(
inputState, Create(entity, targets), [True], {(Instances,Repo,Links,Output)

:= UpdateFor((Instances,Repo,Links,Output), Create(entity, targets))}, outputState
)
,

(
inputState,Read(identifier), [True], {(Instances,Repo,Links,Output)

:= UpdateFor((Instances,Repo,Links,Output), Read(identifier))}, outputState
)
,

(
inputState, Update(identifier, targets), [True], {(Instances,Repo,Links,Output)

:= UpdateFor((Instances,Repo,Links,Output), Update(identifier, targets))}, outputState
)
,

(
inputState,Delete(identifier), [True], {(Instances,Repo,Links,Output)

:= UpdateFor((Instances,Repo,Links,Output), Add(instance))}, outputState
)
,

(
inputState,Delete(identifier), [True], {(Instances,Repo,Links,Output)

:= UpdateFor((Instances,Repo,Links,Output), Delete(identifier))}, outputState
)
,

(
outputState,OutputMessage(output), [output == Output], {}, inputState

)

}
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As state variables, we will use Instances to denote the set of instances that were created and
not yet deleted. We use Repo to denote the set of instances that are in their repository. We use
Links as the set of links between instances. Initially, these are initialized with the empty set. We
have a specialized function UpdateFor that can update the state variables on the basis of the state
variables of the current state, and the action executed for some given arguments. How Updatefor
should be defined follows from the dynamic semantics in chapter 3.3.2, where is specified how
the contents of the state variables should look, after executing an action given the current state
variables. From the inputState the UpdateFor determines that successful execution of the action
is possible, the state variables Instances,Repo,Links will be updated accordingly and Output
will contain the output message Success. If the UpdateFor execution determines that successful
execution is not possible, the state variables Instances,Repo,Links remain unchanged, and
the Output variable will be set to the output message denoting the reason that execution was
not possible (as specified in chapter 3.3.2). Note that all complexity is actually hidden in the
UpdateFor function. Since the CRUD+A actions are always enabled, we can set the guards for
each of these actions to True. In the outputState state there is only one transition possible, in
which the content of the Output variable is communicated with a corresponding output gate.

Figure 5.2: Model idea 1 - Dynamic Semantics Captured as STS.

The STS thus has two states: an input state, for receiving actions, and an output state that
can only output the result of the action. Although such modeling would be sound, it does not
truly use the power of these transition systems. The idea behind such transition-based notation
would be to create separate locations for which the corresponding states have significantly different
behavior. This fact is also pointed out in [20], where they point out that for such formalisms you
could even create a single location, and transfer all logic, and possible output values in self-loops
for this single state. Of course, implicitly there are many states, but these will all be mapped to
a single location.

We could try to improve on the initial model, and get rid of the Output state variable, and
instead model for each type of error message a separate state that only allows for outputting the
specific error message. By adding guards we can ensure that the transition is only enabled, when
input arguments are passed for which such an error would be the result. We will provide part of
such an STS in figure 5.3 where only the Delete action has been modeled. For the Delete action, we
would have an outgoing arrow for the occurrence of Instance NotInRepository, Entity Dele-
teOnUndestructable, Entity MultiplicityMinimum errors, and a transition if neither of these
errors would occur, and a Success message is expected. In the figure we observe in the guard of
the first outgoing transition a isInstanceNotInRepositoryError((Instances,Repo,Links), id),
which takes as argument the state variables, and the id of the instance on which the delete action
is performed. Such function can decide on the basis of the state variables if indeed the Instance -
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NotInRepository error could occur for the input arguments. As specified in the work of Derasari,
this could occur if x /∈ Repo (where x is the instance that has as identifier the corresponding id).

Note that multiple errors could occur simultaneously. For example, doing a Create opera-
tion with insufficient targets, to an entity for which the maximum entity multiplicity would
be exceeded. Then the implementation could output both Entity MultiplicityMaximum
but also Association TargetMinimum. We make use of the non-deterministic property of
STSs, in which multiple transitions can be enabled, for the same action (and arguments).
The result is that the MBT tool does not know which of the states of the specification is
supposed to match with the state the implementation is in. This requires the underlying
MBT tool to be more sophisticated in order to handle this notion.

The introduction of states for each output message will increase the states of the model from
two, to the ‘number of distinguished output messages’+1(for the initial/input state). Note that
if the MBT tool would try to achieve state coverage, it would indirectly cover all possible output
messages. We could slightly adapt it and describe it as an STS in which the output states are
unique for each of the CRUD+A actions. For example, the Instance NotInRepository error
could occur when trying to read an instance that is not in the repository, but also when trying to
delete an instance that is not in the repository. If we decide to make a unique state for outputting
Instance NotInRepository after executing a Read action, and a different state reachable after
executing a Delete action, we would slightly increase the state space. Then, when the MBT tool
would try to achieve state coverage, then indirectly we would get coverage of the output messages
on a per-action basis. We will call this model idea 2. This would still be reflected in figure 5.3,
since only the Delete action has been visualized. Note that for, for example, the Success output
message, we now have a separate location for each action.

We have provided two ways to model the dynamic semantics of DMDSL as STS. Even after
increasing the state space so that for each output action a unique state exists, we do not truly
make use of different behavior on a different location basis. The global idea remains that one
the CRUD+A actions is chosen, to which a corresponding output will occur on the basis of the
state variables, and a modification of the state variables will happen. The CRUD+A actions, will
always be enabled, but only a different output message will happen on the basis of the arguments
and the current state variables. It is not “wrong notation” to use STS as formalism, but it gives
the intuition that we do not truly make use of the mechanisms it offers. The complexity is hidden
in the functions to update the state variables. It depends on the tool support to what extent
such model would be good in practice. If there are sophisticated techniques, relying on the state
variables to create interesting test cases then such a model could still make sense. We would
however expect that for such a notation the tool would be mostly focused on the locations of the
STS in its possibility of generating test cases.

5.4.3 Tools

Examples of tools that make use of Labelled Transition Systems and the ioco test relation are
TorX [31] and JTorX [3]. JTorX is a re-implementation of TorX, but has some additional features.
Unfortunately, these tools are no longer developed, nor available. A different tool that is based on
TorX and JTorX is TorXakis [32]. The TorXakis tool keeps data symbolically, and unlike JTorX
and TorX it does not unfold the data in all possible concrete data values. The TorXakis tool
manages to work over infinite structures by making use of a constraint solver. It currently uses
Z3 and CVC4 as SMT solvers. Using such a solver, the tool can come up with arguments of a
transition, satisfying all input constraints. The tool is still actively developed and implements
the test generation for symbolic transition systems as seen in [9] closely. The creators note that
TorXakis is an experimental tool, used in research education and some case studies in industries.
Furthermore, it is pointed out that the tool is not always powerful enough to be sufficiently scalable
for a complex system. The usability is sometimes insufficient. Furthermore, it is pointed out that
test selection is currently still mainly random.
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Figure 5.3: Model idea 2 - The dynamic semantics of the delete action of DMDSL represented as
STS.

We will also have a look at the Axini MBT tool. Axini is a company that developed an MBT
tool in a Software As A Service (SAAS) format. The tool is commercial and not publicly available.
The tool implements the ioco theory, and allows for symbolic treatment of data. One would expect
due to its commercial nature that such a tool is better applicable for industrial use cases, and
overall has better usability. Axini states ‘Our platform cleverly chooses and generates test cases to
maximize the test coverage’. What these exact strategies are, are not public information, but these
words seem more promising in comparison to the mostly random testing strategy of TorXakis. This
tool also runs a solver in the background, allowing it to operate over infinite domains. We will
try out both tools, to check out the potential of applying these as MBT solutions in the context
of the code generator.

5.4.3.1 Axini

In Axini an LTS or STS is encoded using the Axini Modeling Language (AML). It provides a
pleasant notation to encode a model. By using mechanisms such as looping, one is able to express
a large LTS or STS with only a small specification. When experimenting with the Axini tool,
we encounter a few problems. The tool has as data types integer, string, decimal, boolean, date,
time, list, hash, struct and enum. One of the data types that are lacking is a set. In particular,
for the state variables, the order of the elements in Instances,Repo, Links do not matter. Hence,
it would be desirable to use set notation to express this. Since these are not supported we could
use lists instead. Result of that is that states can be behaviorally equal, but have different state
variables due to the different ordering in the lists. It thus lacks a form of data abstraction to
express this. Furthermore, containment checking for a set can typically be done in O(1) time,
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whereas for lists this typically takes O(n) (although we do not know how this is implemented
under the hood.)

If we try to encode a model as shown in model idea two, we already encounter limitations
of the tool. In particular, the constraints that Axini allows you to specify can not be complex.
It only supports basic mathematical operations such as <,>, 6=, =, and some boolean checks
on lists (e.g. list containment). While the tool allows you to create more advanced functions
using the Ruby language, these functions can not be used for solving. This means that an input
value (that needs to be generated by the constraint solver) can not be used as argument for
a function in the constraint. The auxiliary function can only be used for some fixed value in
the constraint, or for a given argument in the update block. Some of the easier checks, such
as ‘isInstanceNotInRepositoryError’, can be expressed as constraint. It is simply checked if the
instance argument is a member of the Repo list. However, if we get to slightly more complex
constraints, such as isEntityMultiplicityMinimumError we already run into problems. Now we
desire the input argument to be an instance of an entity type, of which removing the instances
causes a minimum multiplicity violation. One would typically iterate over the Instances list, and
check if the input argument would cause such a violation. This is however not expressible as a
constraint in the AML language. For even more sophisticated constraints, this becomes even more
clear. For example, when an entity is deleted, this can cause a lot of deletions due to cascade
deletion. Each of the instances that get deleted as a result of the operation can induce error
output messages. To determine which elements would be deleted, one would typically need to
compute which instances are reachable via the link set from the instance that will be deleted,
for which the corresponding association relation has source cascade deletion enabled. One could
compute such closure using a fixed-point computation. This is unfortunately not expressible with
the limited mathematical operations. It would be expressible in the Ruby language, but the
tool can not manage to create input using such a Ruby function, since these are not allowed
to be used in constraints. The simpler model such as in figure 5.2 would (although awkward) be
probably expressible in the AML language. Note that here the constraints are actually empty, and
hence there is not really any solving involved. The Instances,Repo, Links, and Output variables
would simply be updated on the basis of the randomly generated input. This input would be fully
random and there is no incline for the solver to generate any ‘interesting’ test cases at all. The tool
would quickly terminate since coverage of the two locations and transitions is almost immediately
reached.

5.4.3.2 TorXakis

In TorXakis an STS is encoded using the TorXakis language. The TorXakis language is a functional
programming language. The language has only as built-in types the Bool, Int, String, and Regex
type. It has the option for users to define their own (recursive) Algebraic Data Type. This allows
the user to create for example a list data type. It however does not seem to be possible to express
a set as such a data type. Hence, also the TorXakis tool lacks this form of data abstraction. It is
unfortunate that there is not a broader list of predefined data types, but it is good that we can
define datatypes. This allows us to create a datatype for the concepts such as Multiplicity, Entity,
Instance, Association, Link, etc. as we have seen in chapter 3. Furthermore, the language allows
us to make user-defined functions for which solving is supported. Hence, we can make guards
containing these functions. This would make TorXakis much more expressive than Axini is.

We will make an attempt to see if we can express the DMDSL semantics in the TorXakis tool.
Furthermore, we translate a simple model into the TorXakis language. To prevent overwhelming
ourselves, we will consider a model without associations. Furthermore, since we do not have
associations we will also ignore the update Action (since there are no links to update anyways).
The visualization of the DMDSL model and the full TorXakis code are provided in appendix A.
We will now elaborate on the translation to TorXakis

Datatypes We will first create datatypes for the static constructs that are used in the DMDSL
language. We will show for sake of example some of the constructs translated as Algebraic Data
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Types. For the full list of Algebraic Data Types, see the listing in the appendix A. In the listing
we define the Multiplicity data type. This has a tuple constructor requiring an integer for the
minimum, and an integer for the maximum. The Instance datatype requires in the constructor
an entityName (of type ValidEntityName, where ValidEntityName will be the datatype reflecting
the entity names of the model that will be translated) and an id, which is modeled as an integer
here. Finally, we will also create a datatype InstanceList. We need such a list to model the
Instances state variable. Note that the InstanceList is defined recursively as one would expect
for these list data types. It is unfortunate that the TorXakis language does not support generic
data types. As a result, for each type that we want to use in lists, we need to create a separate
list data type.

TYPEDEF
Multiplicity ::= Tuple {min :: Int; max :: Int }

ENDDEF

TYPEDEF
Instance ::= Instance { entityName :: ValidEntityName; id :: Int }

ENDDEF

TYPEDEF
InstanceList ::= Nil | Cons { hd :: Instance; tl :: InstanceList }

ENDDEF

Now we express the model in the form of a TorXakis State Automaton called DmdslModel,
which uses CreateInput, DeleteInput, AddInput, ReadInput as gates (channels) for correspond-
ing operations, and the Output as gate for output of the IUT. Then we declare states for each error
and success message as seen in model idea 2. Then we declare variables instances, repo, and
links as state variables. Besides these state variables, there is also a highestId state variable,
that is used to assign ids to instances in the creation process so that the uniqueness of the id can
be guaranteed (i.e. highestId as id when creating an instance, and after creation, the variables
gets incremented). These state variables are then initialized to the emptylist (Nil) for instances,
repo and links, and the highestId is initialized to 0.

STAUTDEF DmdslModel [CreateInput :: CreateOperation ;
DeleteInput :: DeleteOperation ;
AddInput :: AddOperation ;
ReadInput :: ReadOperation ;
Output :: OutputMessage ]()

::= {- DECLARE STATES -}
STATE

initialState ,
outputState ,
Entity_Unconstructable_State ,
Entity_MultiplicityMaximum_State ,
Instance_NotInRepository_State_Delete ,
Instance_NotInRepository_State_Read ,
Entity_Undestructable_State ,
Instance_AlreadyInRepository_State ,

successfulCreationState , successfulDeletionState ,
successfulAdditionState , successfulReadStat e

{- DECLARE STATE VARIABLES -}
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VAR
instances :: InstanceList ;
repo :: InstanceList ;
links :: LinkList ;
highestId :: Int

{- INITIALIZE STATE VARIABLES -}

INIT initialState {
instances := Nil;
repo := Nil;
links := Nil;
highestId := 0
}

We can now start to describe the transitions. We will only cover the Delete transition here for sake
of example. Since for now, we do not consider models with associations, only the instance of the
provided id will be deleted. The errors that could result from this operation would be Entity -
DeleteOnUndestructable, Instance NotInRepository, and Entity MultiplicityMinimum.

• Entity DeleteOnUndestructable: To check if a deletion happens on an instance that is
undeletable/undestructable, we at least require that the provided id, is an id of an instance.
Therefore, in the guard of the transition (indicated with [[. . . ]]) leading to the Entity Unde-
structable State, we check the id is the id of an instance in the instance list. Then using an
isEntityDeleteOnUndestructableError function it is checked whether the corresponding
entity is undeletable/undestructable.

• Instance NotInRepository: Analogously, we have a transition leading to Instance Not-
InRepository State Delete that is only enabled when the passed id, is not the id of an
instance in the repository list.

• Entity MultiplicityMinimum: There is also a transition leading to a Entity Multiplic-
ityMinimum State which is only enabled, if deleting the instance with corresponding id
would cause the number of instances of the corresponding entity to dive below the minimum
multiplicity.

• Success: Finally, when none of the error conditions hold (which is specified in the guard),
it must mean that we can successfully delete the instance, and a transition to success-
fulDeletionState would be enabled. This transition also removes the instance from the
instances and repo state variables (modification of state variables is denoted with {. . . }),
since the instance that will be deleted, should be removed from both lists according the
semantics.

TRANS

{-BEGIN: DELETION -}
{-ERROR DELETION -}

initialState ->
DeleteInput ? deleteInput
[[ isEntityDeleteOnUndestructableError (

id(deleteInput), instances )
/\ isIdInInstanceList(id(deleteInput), instances)]]

{ }

42 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 5. SELECTING A MODEL-BASED TESTING TOOL

-> Entity_Undestructable_State

initialState ->
DeleteInput ? deleteInput
[[ isInstanceNotInRepositoryError(id(deleteInput), repo) ]]
{ }

-> Instance_NotInRepository_State_Delete

initialState ->
DeleteInput ? deleteInput
[[ isEntityMultiplicityMinimumError(id(deleteInput), repo )
/\ isIdInInstanceList(id(deleteInput), repo)]]
{ }

-> Entity_MultiplicityMinimum_Stat e

{-SUCCESFUL DELETION -}
initialState ->
DeleteInput ? deleteInput
[[not( isInstanceNotInRepositoryError(id(deleteInput), repo )

)
/\
not( isEntityDeleteOnUndestructableError(id(deleteInput) ,

instances) /\ isIdInInstanceList(id(deleteInput) ,
instances) )

/\
not( isEntityMultiplicityMinimumError(id(deleteInput), repo )
/\ isIdInInstanceList(id(deleteInput), repo) )
]]
{ repo := removeInstanceFromInstanceList(id(deleteInput) ,

repo);
instances := removeInstanceFromInstanceList(id(deleteInput )

, instances) }
-> successfulDeletionState

{-END: DELETION -}

The functions used in the guards of the delete transition are as follows:

• The isEntityDeleteOnUndestructableError get as argument id and instances list. The
function traverses the instances list until an instance is found that has id as its identifier.
Then for corresponding instance it is checked whether it is destructable.

• The isInstanceNotInRepositoryError gets as argument an id and repo list. The function
traverses the repo list, until an instance is found, for which the id matches the identifier of
the corresponding instance, and true is returned. If such instance can not be found, false
will be returned.

• The isEntityMultiplicityMinimumError has as argument id and instances list. First,
the corresponding instance with identifier id is found. Then it is checked what the entity
of corresponding instance is. Finally, the instances list is traversed to check the number
of instances of this entity type, allowing to conclude if deletion would violate the minimum
number of instances.
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For the exact implementation of these functions, see appendix A.1

We also present the transitions for the error states that can only output the corresponding
error, and the success states that can only output a Success output message.

Entity_Unconstructable_State -> Output ! Entity_Unconstructabl e
-> initialState

Entity_MultiplicityMaximum_State -> Output !
Entity_MultiplicityMaximum -> initialState

Instance_NotInRepository_State_Delete -> Output !
Instance_NotInRepository -> initialStat e

Entity_Undestructable_State -> Output ! Entity_Undestructabl e
-> initialState

Instance_AlreadyInRepository_State -> Output !
Instance_AlreadyInRepository -> initialStat e

Instance_NotInRepository_State_Read -> Output !
Instance_NotInRepository -> initialStat e

{- SUCCESS STATES -}
successfulCreationState -> Output ! Success -> initialStat e
successfulDeletionState -> Output ! Success -> initialStat e
successfulAdditionState -> Output ! Success -> initialStat e
successfulReadState -> Output ! Success -> initialStat e

ENDDEF

MODELDEF Model ::=
CHAN IN CreateInput , DeleteInput , AddInput , ReadInpu t
CHAN OUT Output
BEHAVIOUR DmdslModel [CreateInput , DeleteInput , AddInput ,

ReadInput , Output ]()
ENDDEF

In appendix A.1, one can see a full (but simple) DMDSL model expressed in the TorXakis
language. When we use the stepper to make the tool step through the model, we can already
observe that for a very simple model, the tool gets slower when more steps are taken. In particular
on an iMac 2012 3,2GHz i5 we observe that after 100 transitions, taking a next transition already
takes longer than 1 second. After 200 transitions this takes even longer than 4 seconds. On the one
hand, this is not very surprising. When more instances are created, it takes more time to check if
an instance with an id is in the list. The list is an Algebraic Data Type that is inductively defined.
To check for containment, in the worst case the entire list needs to be checked (O(n)) time. Also,
to check for an EntityMultiplicityMinimumError, it needs to be counted for a given Entity, how
many instances in the repository exist with the corresponding Entity (Type). This, of course, is
also an O(n) traversal. Note that since these functions are used in the guards of transitions, they
will actually impose restrictions on the input value the solver tries to generate. When there are
more restrictions, it is harder for the solver to find an input value that satisfies all constraints.
Apparently, this already puts quite a burden on the Z3 solver running in the background.

It is possible to now extend to models with association relations. An important aspect of this,
is to determine which elements should get deleted as a result of the Delete action due to cascade
deletion. In algorithm 1, a typical procedure is described to calculate the Deletion set (when only
source cascade deletion is considered).
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Algorithm 1 ComputeDeletionSet(instances)

1: predecessors = ∅
2: if |instances|=0 then
3: return ∅
4: end if
5: for instance ∈ instances do
6: predecessors := predecessors ∪ SCDPredecessors(instance)
7: end for
8: Deletion Set := instances ∪ predecessors
9: Deletion Set := Deletion Set ∪ (ComputeDeletionSet(predecessors))

10: return Deletion Set

Algorithm 2 SCDPredecessors(instance)

1: SCDPredecessors ← ∅
2: for each link ∈ s.Links do
3: if link.target = instance ∧ link.association.SProperty.cascade then
4: SCDPredecessors := SCDPredecessors ∪ {link.source}
5: end if
6: end for
7: return SCDPredecessors

The elements that are removed as a result of deleting an instance can be found by exploring the
links set of the current state state s in a Breadth-First Search style algorithm, where only links are
considered in which source cascade deletion is enabled. This has been implemented in Algorithm
1, and computes for an input set instances, what the elements are that would be removed as a
result of deleting all elements in instances. The algorithm works as follows: When there are no
elements in instances, the result of deleting instances, is that no elements are deleted. Hence,
∅ is returned. When there are elements in instances, we compute for each instance x in the
instances set what its SCDPredecessors are (the instances that have a link to x where in the
corresponding association relation source cascade deletion is enabled). The SCDPredecessors and
instances are added to Deletion Set since the SCDPredecessors are then also instances that need
to be deleted. For these SCDPredecessors, we also compute the corresponding deletion set, by
making a recursive call to the algorithm, and add corresponding instances to Deletion Set. The
runtime of the algorithm to compute Deletion Set would be O(l ∙ n) where n is the size of the
s.Instances and l the size of s.Links (for state s).

While the imperative algorithm could be improved in runtime if the incoming links of a node
could be found efficiently (using for example an adjacency list), these structures are lacking in
TorXakis. We could now translate these algorithms into functional style in TorXakis. The iteration
over lists can be done functionally using the head (hd) and tail (tl) functionalism recursively. E.g.,
Algorithm 2 is implemented in TorXakis as follows:

FUNCDEF SCDPredecessorOfInstance(instance :: Instance; links : :
LinkList;

returnList :: InstanceList) :: InstanceLis t
::=

IF links == Nil THEN returnList
ELSE

IF target(hd(links)) == instance /\ ( cascade(sproperty (
getAssociationByAssociationName(associationName(hd(links))) )
)

== True )
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THEN SCDPredecessorOfInstance(instance , tl(links), Cons (
source(hd(links)),

returnList))
ELSE SCDPredecessorOfInstance(instance , tl(links), returnList )
FI

FI
ENDDEF

Note: In the current definition of the link data type we put the association name in the
link and not the actual association object. The reason for this is that otherwise the output
screen would be cluttered with information. Hence, in the current implementation, this
function would actually take O(la) time with a the number of associations. The association
list should be traversed to find the corresponding association.

The full algorithm can be found in appendix A.2. One can observe that we make use of an
append operator instead of the union operator. While the implementation of the union operator is
possible (see A.3), it would be highly inefficient. When applied to two lists, for each element that
would be added, the other lists need to be traversed to see if it is contained in the list. Hence, this
would give a complexity of O(nm) just for determining a single union, whereas in an imperative
language this would typically be done in O(n) time. We instead use the append operator and
accept that duplicates will occur. However, appending two lists also requires appending each
element of one list to the other, giving a runtime of O(n). In an imperative language appending
two lists can often be done in O(1) (e.g. using a Linked List). It is not hard to see that the
functional variant of Algorithm 1 has a high complexity. The result would be that for even a few
links, there would be very heavy burden on the constraint solver, making exploration in practice
infeasible, even for small models.

To conclude: The TorXakis tool can be used to encode the semantics of a DMDSL Model,
however, due to its programming language, for part of the operations there does not appear
to be a way to efficiently implement them. The functional language is currently not optimized
to implement the desired operations. The creator of the tool states in the user documentation
“TorXakis currently misses good usability, scalability does not always match the requirements of
complex systems”. Unfortunately, we have to agree that this indeed holds true in our context,
making the tool practically not applicable in the context of DMDSL Models where some complex
operations play a role. One could decide to further limit the scope of testing in a TorXakis model,
and try to narrow down the models to test aspects in separation. This has not been investigated
further. We also discovered in the attempts to translate a DMDSL model to STS semantics, that
locations did not appear to be useful in the context of DMDSL model. The general idea remains
that all CRUD+A actions are always enabled, and input is followed up with the output. Tool
support for creating interesting test cases on the basis of the state variables was not available.

5.5 Model-Based Testing with Model Programs

Given the negative results for using state/location-based semantics for applying MBT, we will
now have a look at data-oriented semantics. We now investigate if we can make use of Model
Programs to encode the semantics of a DMDSL model. We start by considering some of the
underlying formal theory, consider existing tools and finally describe conceptually how it can be
done.

5.5.1 Conformance on Model Programs

One of the other formalisms we have briefly covered is the Abstract State Machine. In these struc-
tures, states are first-order structures over arbitrary data. The states are modified by transition
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rules in the form of if Condition then Updates. In practice, we see the ideas of the Abstract
State Machines in MBT applied in the form of Model Programs (e.g. in SpecExplorer [34], NModel
[15] and PyModel [16]).

While there is not a unified formalism for these Model Programs, we will provide one, and an
appropriate conformance relation. The formalism and conformance relation are based on [34] and
[15]. A Model Program P = (M,V ,U) provides a finite set M of action methods, and a set of
state variables V , a set U denoting the universe of data values. States are defined in terms of the
contents of their state variables. That is, two states are equal if and only if the content of their
state variables are equal. Each action m ∈M has a fixed arity (number of input arguments). For
each action method m, one can define a precondition Prem : Un → B, where n is the arity of
m. We then have for input vector ~x ∈ Un, that Prem(~x) evaluates to a boolean value indicating
whether the action method is enabled for ~x from a given state s. If Pre(~x) evaluates to true for s,
then from s the m transition can be taken with the input parameters ~x which will produce a new
state t. In this state t the state variables of s have been modified by m. These preconditions are
sometimes referred to as guards. Besides modifying the state variables, the action methods may
also produce output. We use m(~x)/o to denote that action method m produces output o for input
vector ~x when taken from the current state. In these Model Programs a distinction between two
types of actions is made:

• Controllable actions : Actions that can be executed on demand by the test tool.

• Observable actions : Actions the test tool can only execute when observed from the IUT.

Note that these 2 types of actions correspond to the input actions and output actions respectively
of the LTSs with Input and Output of the ioco theory. In the ioco theory, the Transition System
allowed for a notion of non-determinism in a way that two outgoing transitions of a state can
have the same label, but lead to a different state. This is a notion of non-determinism that is not
possible in Model Programs. In a Model Program, the execution of an action method will produce
a new state on the basis of input arguments, and the state variables of the current state. Hence,
there will be only one possible successor assuming the actions do not contain randomness (which
should not be allowed). The state variables of a state thus uniquely identify the state the model
is in. The Model Programs do support the following notion of non-determinism : A state can have
multiple observable actions enabled. On the basis of observing the IUT, it is determined what the
successor state is. We will see an example of this in example 5.5.2. This notion of non-determinism
is also available for output actions in the LTSs of the ioco theory. When the Model Program lacks
observable actions, the program is deterministic and is referred to as a closed system. A system
that includes observable actions is referred to as an event-driven system.

Let MP be a model program. It is now important to wonder when IUT conforms to MP .
In section 5.3.1 we have introduced this notion, and now provide the inductive definition in the
context of model programs:

Definition 21 (State Conformance). Let SMP be a state in the model program. Let SIUT be
an arbitrary state of the iIUT (which is the assumed model program of the implementation as
specified by the test assumption).

• If there is a controllable action a allowed from SMP , producing S′
MP , then a must be allowed

from SIUT and producing state S′
IUT such that S′

MP and S′
IUT conform.

• If there is an observable action a allowed from SIUT , producing S′
IUT , then a must be allowed

from SMP and producing state S′
MP such that S′

MP and S′
IUT conform.

Definition 22 (Model Program Conformance Relation). MP and IUT conform if and only if the
initial states of MP and iIUT conform.

Note that it is not clearly defined how output produced by the actions may affect the confor-
mance relation. Hence, when actions produce output, one could adapt the definition slightly.

We will provide an example of a model program to get some more familiarity with the notions.
We also specify how output influences the conformance relation.
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Example 5.5.1 (Stack). Suppose we wish to make a model program of a stack that operates
on the integers. We require from a stack that it works with a last-in, first-out mechanism. We
will provide some code of a model program in a hypothetical programming language for model
programs.

State Variables:
stack_list = []

Controllable Actions:
push_enabled(x):

return True
push(x):

stack_list.add_back(x)

pop_enabled ():
list.size() > 0

pop_back ():
return stack_list.pop_back ()

The state variable of the model program is a stack list. The action methods are the push and
pop actions. These respectively add a provided element to the list, and remove the last element
from the list. We specify in the pop enabled() guard that pop is only allowed when there are
elements in the list. We consider it undefined behavior what the implementation does in such
cases, and therefore do not consider traces where we pop an empty stack. Furthermore, we require
from the conformance relation that the produced output of the controllable actions should be
equal.

Example 5.5.2 (Linear Data structure specification). Suppose we have a specification on a higher
abstraction level, and only require from the implementation that it is a linear data structure that
respects insertion, and removal in arbitrary order. For such a specification, both the implementa-
tion of a Stack and a Queue would be accepted.

State Variables:
list = []

Controllable Actions:
insert_Enabled(x):

return True
insert(x):

list.add(x)
remove_send_enabled () :

list.size() > 0

remove_send ():
//No implementation needed

Observable Actions:
remove_receive_enabled(x):

return contained(x, list )
remove_receive(x):

list.remove_first(x, list )
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In the above example, we have as controllable action the insert action. For the remove action,
we can not know which element the implementation will remove. As long as it is an element in the
list, it conforms to the specification. We will make use of observable actions, to model this non-
deterministic behavior. In this example, we have as a controllable remove action remove send,
that will inform the IUT of the removal action. We then observe the output of the remove action
via the observable remove receive action. When this action is ‘observed’, it suffices to check
if the item x that the implementation removed is in the list state variable, which is done in its
corresponding precondition remove received enabled. If this action is not enabled in the Model
Program, a problem regarding conformance would be detected (see definition 21). Note that this
Model Program would consider both a Queue and a Stack as valid implementations, whereas in
the previous example only a Stack would be considered a valid implementation. Non-determinism
(via observable actions) is used to accept any element from the list as valid output.

5.5.2 Tools

Popular tools that rely on these types of model programs are Spec Explorer [34], NModel [15] and
PyModel [16]. The Spec Explorer is an MBT tool developed by Microsoft Research. Jonathan
Jacky, Margus Veanes, Colin Campbell and Wolfram Schulte wrote the book ‘Model-Based soft-
ware Testing and Analysis with C#’ which also has been created at Microsoft Research. In this
book, they dive into the technique of Model-Based Testing using Model Programs. To support
the book, they developed the NModel Library. They point out that many of the ideas shown in
the book are applicable to other tools, among which Spec Explorer. Jonathan Jacky, one of the
authors of the book, then developed PyModel, of which the foundation can be found in NModel.

The latest release of Spec Explorer became public in 2010, and Microsoft unfortunately no
longer supports this tool. On the SpecExplorer page of Microsoft, they also refer to NModel as
an alternative. Unfortunately, the corresponding page also seems to be no longer available. It
seems this framework is also no longer supported nor available. The PyModel tool its framework
and website are still available. Jonathan Jacky provided its last functional update in 2013. The
tool was written in Python 2, which harms usability in a time where Python 2 has been declared
end-of-life, and Python 3 has been standardized. Fortunately, in early 2022 a GitHub contributor
zlorb created a new fork, where the PyModel tool has been updated to Python 3. Jonathan Jacky,
has now placed a url on the GitHub page to refer to this updated version, where it supposedly will
be actively developed. We will therefore have a closer look at the PyModel tool since it currently
seems most relevant.

5.5.2.1 Expressing the Semantics of ASOME as Model Program

We will use the PyModel tool to create a Model Program. One of the advantages of being able
to encode a Model using an existing programming language is that you can make use of all
features the often extensive programming language has to offer. When the model is encoded with
a specification language that is specific for the MBT tool, the number of built-in data types and
algorithms could be very limited, as we have seen for TorXakis and Axini. The research that went
into the popular known programming languages is typically much more extensive than one can
expect for a specification language specific to a MBT tool. As a result, operations can be encoded
much more efficiently in such a language. Furthermore, as is pointed out in [15], being able to
encode models in a familiar programming language, makes the tool usable by most people involved
in the technical aspect of the software production process. We will now consider roughly how to
translate the main concepts to Model Programs of PyModel:

State Variables Following the state variables defined in chapter 3.3.2. We can use a Python
set instances for I, a Python set repo for REPO, and a Python list links to represent the bag
semantics of L.
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Actions The actions are the Create, Read, Update, Delete, and Add actions. The actions should
modify the state variables as described in chapter 3.3.2. In PyModel, the actions can simply
implemented as Python functions. Implementing these actions, should not induce many problems
in the Python programming language. The CRUD+A actions can all be controllable actions since
such actions can be executed on demand by the test tool. The output that will be produced, will
depend on the state (and thus state variables) from which the action is fired, and the provided
input arguments.

Remember that sometimes multiple messages are allowed as output messages according the
specification. For example, when trying to delete an instance of an entity that is undestructable,
but deleting it would also violate the minimum multiplicity of the corresponding entity type the
Entity Undestructable, or the Entity MultiplicityMinimum is both considered to be valid
output. The IUT conforms to the specification when either of these messages is outputted. Such
non-deterministic behavior could in fact be modeled as observable action in a Model Program. In
the guard of the observable action we can then check whether the output that is provided, is one
of the allowed outputs (e.g., after executing an action, we maintain a list of valid outputs, and
in the guard of the observable action, we check for containment in the valid output list). Having
non-deterministic behavior adds some complexity between the bridge of the PyModel mode, and
the IUT, since in principle at any time such observable action can occur.

In the context of DMDSL models the output action that is produced, does not actually influence
the next state. Either the Model Program only finds a Success acceptable, and the state variables
would be modified accordingly, or the Model Program finds elements in a set of error messages
acceptable and the state variables remain unchanged. Which of the error messages the IUT
outputs, does not influence the next state of the Model Program. Furthermore, it is deterministic
whether a Success message occurs or whether an error message will be output. This property
allows us to actually model it as a closed system. We could, for each action, produce as action-
output the set of outputs that are allowed to occur, and modify the state accordingly. After
executing the action on the IUT, and the output is passed back, it suffices to check for containment
of the IUT output in the set that is output by the action of the Model Program . Since in such a
setting we do not have observable actions and make use of action output, we can adapt definition
21 to our context.

Definition 23 (State Conformance for DMDSL models). Let SMP be a state in the model
program. Let SIUT be an arbitrary state of the iIUT (which is the assumed model program
of the implementation as specified by the test assumption).

• If there is a controllable action a allowed from SMP producing S′
MP and output O, then

a must be allowed from SIUT and producing state S′
IUT and output o′ such that S′

MP and
S′

IUT conform and o′ ∈ O.

Example 5.5.3. Suppose that from the state SMP a Create action using Entity1 and an empty
list of links would produce output {Entity MultiplicityMaximum, Entity Unconstructable}
i.e. we have Create(Entity1, []) / {Entity MultiplicityMaximum, Entity Unconstructable}.
Then, we desire from SIUT that the Create(Entity1,[]) action can be performed, and that the
output produced is either Entity MultiplicityMaximum or Entity Unconstructable. If for ex-
ample SIUT would produce a Success, then a problem regarding conformance is detected (since
definition 23 requires Success ∈ {Entity MultiplicityMaximum, Entity Unconstructable}
which clearly does not hold).

Guards Since the CRUD+A actions are always enabled, we do not need guards. We may
however decide to use guards if we want to restrict to specific kinds of traces in the testing
process.

Domains In ioco theory on STSs, there is a reliance on constraint solvers to construct input
arguments. In Model Programs, finite domains need to be provided for the actions. Sometimes the
argument of an action has an infinite domain. Then, the tester should try to finitize the domain in
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a sensible manner. One way is to provide fixed finite domains for the action arguments. One can,
however, also provide a lambda expression that creates a finite domain for the action arguments
dependent on the current state. This is a very powerful feature in our context. For example,
the Add operation requires an instance. It depends on the state what instances exist. On a state
basis, you can provide a finite domain for this. For the identifier parameter, one can construct
for a given state a finite domain of identifiers of instances that currently exist. Of course, one
can additionally add some identifiers that do not have a corresponding instance. Making use of
the uniformity assumption, it suffices to only add a limited amount of such identifiers. There is
probably no value in having an infinite number of identifiers of which no corresponding instance
exists (even though these identifiers exist from a theoretical point of view). We will further discuss
the finitization of these domains in the testing strategy in chapter 8.1.

Testing Strategy To guide the tool in Model-Based Testing, the PyModel tool allows you to
write a custom strategy. That is for a provided state, using the finite domains, a finite set of
enabled transitions is constructed by the PyModel. One can manually write an algorithm in
Python to select one of the enabled actions. A few example strategies ActionNameCoverage and
StateCoverage are provided by the tool.

Since the tool allows one to write complex operations in the actions, makes use of finite domains
that can be re-evaluated on a state basis, and offers functionality to write custom strategies, this
tool seems very promising for our context. Translating a simple DMDSL model as PyModel
showed, that it was indeed capable of generating test cases in an efficient manner, even when
associations are considered. We will not provide the test model and translation here, as we will
continue to use PyModel in our case study.

5.6 Result of MBT selection

We have considered two different formalisms, and three tools in total. We summarize the infor-
mation obtained during our selection procedure in table 5.1

Tool Formalism Conformance Relation Expressiveness Scalable Treatment Symbolic Data

TorXakis STS ioco Sufficient Insufficient
Solver on action argument

with support for
functions in constraints.

Axini STS/LTS ioco Insufficient N/A
Solver on action argument

without support for
functions in constraints.

PyModel Model Program/ASM Definition 21 Sufficient Sufficient2
(State-dependent) finitized

domains.

Table 5.1: Summary of results in tool selection procedure.

The analysis showed that of the three tools considered, PyModel has the most potential to
apply MBT in the context of the DMDSL code generator. The underlying specification language
is sufficiently expressive, and seems to be sufficiently scalable. Furthermore, the fact that domains
of actions can be finitized on the basis of the current state, make it very useful in the DMDSL
model context.

2Given the finitized domains are not too large.
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Encoding Models in an MBT Tool

We use PyModel as a Model-Based Testing tool for testing the code generator of the DMDSL
language. In this chapter, we will investigate how to translate the dynamic semantics of a DMDSL
model to the language used in PyModel (i.e., mostly Python concepts). First, we will discuss the
scope of test models covered. Then we will briefly discuss how generation is done, and what
files are produced. Then, we will go more in-depth on the files that are produced. In particular
we discuss how to transform the elements found in the Abstract Syntax of DMDSL models into
PyModel constructs. Then, we will transform the dynamic constructs of the DMDSL language to
PyModel constructs. Being able to make this translation step allows us to make a model-to-text
transformation so that arbitrary DMDSL models can be automatically transformed into PyModel
models. Finally, we will briefly discuss how PyModel provides a way to debug a translated model.

6.1 Scope of Modeling

We will concern ourselves with DMDSL models in the testing process, that satisfy the following
assumptions:

• The code is generated for intraprocess communication.

– Code can also be generated for interprocess communication. In that case, domain
interfaces are deployed in such a way that multiple processes can connect to it via
a shared memory segment. To make the scope of testing feasible in this work, will
not consider this behavior, and restrict ourselves to code generated for intraprocess
communication.

• All entities and association relations have finite multiplicities.

– The ASOME tool gives a warning if the entities do not have finite multiplicities. It
is however not forbidden, but it goes against the design guidelines of ASML. A lack
of finite multiplicities could result in overflowing memory when too many entities are
created. The association multiplicities do not need to be bounded. We however restrict
ourselves to models where these are bounded. Since one could create test models in
which these multiplicities are very large, and additionally, it is expected that bugs
already occur for ‘small’ test models (small scope hypothesis), it is not expected that
the testing procedure will suffer greatly from this assumption.

• Of the association relations, we only consider association relations in which source cascade
deletion is enabled.

– While, we will support association relations in which target cascade deletion is enabled,
making such models in ASOME is not (yet) supported. The semantics made by Derasari
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are on this perspective actually ahead of the implementation. We also do not consider
association relations in which cascade deletion is disabled since the semantics of Derasari
do not cover this behavior properly1. Furthermore, we do not consider the inheritance
relation, since it is not covered in the semantics.

6.2 Generation of PyModel Model

To translate a DMDSL model to a PyModel model we need to do a model-to-text transformation.
The DMDSL language is built using the Eclipse Modeling Framework (EMF). A metamodel of
the DMDSL language has been built using EMF and the syntax has been defined using Xtext.
The latter automatically provides a parser for the DMDSL language. We thus only need to be
able to transform a given model to a textual PyModel specification i.e., to make a model-to-text
transformation. We select Acceleo (https://www.eclipse.org/acceleo) as a template-based
code generator framework to implement this model-to-text transformation. The primary reason
for this is that the same framework is used to develop the code generator for the DMDSL language,
making embedding the model-to-text transformation in the ASOME tool easier.

The model-to-text transformation takes as input a DMDSL model, and produces the files listed
below and visualized in figure 6.1:

• LanguageConstructs.py: Here are the Abstract Syntax elements independent of the pro-
vided model.

• GeneratedFromModel.py: Here are the elements that depend on the input model (the entities
and associations).

• CRUDA folder: Here is the PyModel translation for handling output for the CRUD+A actions.
A folder is generated containing for each of the CRUD+A actions a file. In such a file, for
each output message that might occur for the CRUD+A action, a method is provided that
checks whether the output message occurs for the action (e.g. a method to check whether
Association SourceMaximum occurs). These are all independent of the input model.

• Model Translation.py: Here will be the specification of the Model Program (declaration of
state variables, action methods, guards and domains of actions). The action method makes
calls to the methods in the CRUDA folder, to check what output occurs for the action
executed. Furthermore, the action methods modifies the state variables accordingly. The
file is practically independent of the model, except for the fixed domain of entities which is
dependent on the test model.

• stepper.py: A file that serves as a bridge between the IUT and the PyModel model. This
will be part of the adaptor and is covered in chapter 7. The stepper is practically independent
of the input model, except a reference to the generated code will be made, which is dependent
on the name of the model.

The model-to-text could thus actually only output Model Translation.py since the remaining
files are practically independent of the test-model under consideration. We decide to output all
files to get a complete package for testing.

After integration of the model-to-text transformation in the ASOME environment, it is possible
in the ASOME tool to generate a PyModel specification by right-clicking on the project as seen
in figure 6.2. With orange, we indicate that the file does not rely on the input, with yellow, we
indicate that only a small part of the file relies on the input model, and with green, we indicate
that the files largely depend on the model.

1Some issues regarding the respecting of multiplicity constraints when associations do not have source cascade
deletion enabled were found by Wilbert Alberts during the creation of this thesis. Investigation into why these did
not give problems with respect to Repository Consistency in Alloy is required.
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Figure 6.1: Files produced by the model-to-text transformation.

Figure 6.2: Generating a PyModel specification from a DMDSL Model.

6.3 Abstract Syntax Elements

There are certain language constructs that we need to be able to specify in the specification
language of the MBT tool. The elements of the Abstract Syntax are independent of the input
model and will be generated in LanguageConstructs.py.

6.3.1 Multiplicity

The notion of a multiplicity is a tuple (minimum,maximum). We will map this notion of multi-
plicity to python as follows:

1 c l a s s Mu l t i p l i c i t y :
2 de f i n i t ( s e l f , min , max) :
3 s e l f . min = min
4 s e l f .max = max
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6.3.2 Entity

An element e ∈Entity has been formalized as a tuple 〈C,M,D,N 〉 where C denotes constructabil-
ity, M mutability, D deletability, and N denotes the entity multiplicity. We will translate this
into a Python concept as follows:

1 c l a s s Entity :
2 de f i n i t ( s e l f , i s c o n s t r u c t ab l e , i s mutable , i s d e l e t a b l e , mu l t i p l i c i t y ) :
3 s e l f . i s c o n s t r u c t a b l e = i s c o n s t r u c t a b l e
4 s e l f . i s mutab l e = i s mutab l e
5 s e l f . i s d e l e t a b l e = i s d e l e t a b l e
6 s e l f . mu l t i p l i c i t y = mu l t i p l i c i t y
7

8 s e l f . o u t a s s o c i a t i o n s = None
9 s e l f . i n a s s o c i a t i o n s = None

Additionally, we will define a few member functions:

• get outgoing associations(): At the first call, it will use the global associations list to
determine the outgoing associations of the corresponding entity. These will be added to the
out associations list member variable. (This allows returning them in O(1) time for all
consecutive calls.)

• get incoming associations(): At the first call, it will use the global associations list to
determine the incoming associations of the corresponding entity. These will be added to the
in associations list member variable. (This allows returning them in O(1) time for all
consecutive calls.)

• get number of instances(): The function iterates over state variable instances (see section
6.5.1) to count the number of instances with corresponding entity type.

These turn out to be practical in the dynamic semantics.

6.3.3 Instance

Entities can be instantiated. In the semantics specified in the work of Derasari, we have that every
instance corresponds to some entity, and each instance can be uniquely identified by its id. We
model this notion of instance as a separate concept, instead of relying on Python instantiations of
an Entity (see the remark in section 6.4.1).

The translation is as follows:

1 c l a s s Ins tance :
2 de f i n i t ( s e l f , Entity , instanc e name , id ) :
3 s e l f . Ent ity = Entity
4 s e l f . id = id
5 s e l f . instance name = instance name
6

7 de f g e t i d ( s e l f ) :
8 re turn s e l f . id
9

10 de f e q ( s e l f , o ther ) :
11 i f o ther i s None :
12 re turn Fal se
13 re turn s e l f . id == ( other . id ) and s e l f . Ent ity == ( other . Ent ity )
14

15 de f r e p r ( s e l f ) :
16 re turn f sm s t r i n g ( s e l f . instanc e name )

Hence an instance is defined by the id, the corresponding entity (type) and the instance name.
The instance name is a new notion that turns out to be practical for the adaptor between model
and code.
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6.3.4 Association

To define Associations, we first need the notion of an AssociationEndProperty. The notion of an
AssociationEndProperty has been defined as a tuple 〈Cascade,Multiplicity〉. We will translate
this into a Python construct as follows:

1 c l a s s Assoc iat ionEndProperty :
2 de f i n i t ( s e l f , i s c a s c ade , mu l t i p l i c i t y ) :
3 s e l f . i s c a s c ad e = i s c a s c ad e
4 s e l f . mu l t i p l i c i t y = mu l t i p l i c i t y

An Association is defined as a tuple 〈source, target, SProperty, TProperty〉. We can now
translate this into a Python construct as follows:

1 c l a s s As soc i a t i on :
2 de f i n i t ( s e l f , a s soc iat ion name , s ou r c e en t i t y , t a r g e t e n t i t y ,

s ou r c e a s s o c i a t i o n p r op e r t y , t a r g e t a s s o c i a t i o n p r o p e r t y ) :
3 s e l f . a s soc ia t i o n name = assoc ia t i o n name
4 s e l f . s o u r c e e n t i t y = s ou r c e e n t i t y
5 s e l f . t a r g e t e n t i t y = t a r g e t e n t i t y
6 s e l f . s o u r c e a s s o c i a t i o n p r op e r t y = s ou r c e a s s o c i a t i o n p r op e r t y
7 s e l f . t a r g e t a s s o c i a t i o n p r o p e r t y = t a r g e t a s s o c i a t i o n p r o p e r t y
8

9 de f e q ( s e l f , o ther ) :
10 re turn s e l f . a s soc ia t i o n name == other . a s soc ia t i o n name and \
11 s e l f . s o u r c e e n t i t y == other . s o u r c e e n t i t y and \
12 s e l f . t a r g e t e n t i t y == other . t a r g e t e n t i t y

Even though it is not added in the formal model, there should also be an association name. An
association between two entities is named in the model, and in practice, it is practical to keep
track of this information. There could be two association objects that are exactly equal in terms of
〈source, target, SProperty, TProperty〉 but differ in association name. Since sometimes implicit
copies of the association object happen, we also define an equality operator. As expected, two
associations are equal when both associations have the same source entity, target entity, and
association name.

6.3.5 Link

A link is defined as tuple 〈source, association, target〉. We can model this in Python as follows:

1 c l a s s Link :
2 de f i n i t ( s e l f , s ou r c e i n s t ance , a s s o c i a t i on , t a r g e t i n s t a n c e ) :
3 s e l f . s o u r c e i n s t an c e = sou r c e i n s t an c e
4 s e l f . a s s o c i a t i o n = a s s o c i a t i o n
5 s e l f . t a r g e t i n s t a n c e = t a r g e t i n s t a n c e
6

7 s e l f . id = uuid . uuid4 ( )
8

9 de f e q ( s e l f , o ther ) :
10 re turn s e l f . id == other . id
11

Since implicit copies of links happen during execution, it is not sufficient to use the default
equality operator, which checks if the compared elements are really the same object in memory.
This does not hold true when a copy is compared to the original. Comparison on the basis of
equality of source instance, target instance, and association is also not sufficient. For
different links, this equality could hold (remember the bag semantics of links in states), even
though they are not the same representative of the link. Therefore, we add a hidden member
variable that assigns a unique id to the links. The equality operator is now implemented by the
equality of this hidden id.
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6.4 Model-Dependent Constructs

The remaining constructs will be created on the basis of the model considered, and need infor-
mation from the model under consideration. We will consider these elements here. They will be
generated in GeneratedFromModel.py

6.4.1 Entities

For each Entity in the model, a separate class will be generated that inherits from the Entity class,
with the is constructable, is mutable, is deletable, and multiplicity set accordingly. The
model-to-text transformation thus needs to generate these according the provided model. E.g.,
for the model in figure 3.1 the model-to-text transformation generates:

1 c l a s s Dog( Entity ) :
2

3 de f i n i t ( s e l f ) :
4 super ( ) . i n i t (True , True , True , Mu l t i p l i c i t y (0 , 1) )
5

6

7 de f r e p r ( s e l f ) :
8 re turn f sm s t r i n g ( ”Dog” )
9

10 c l a s s Person ( Entity ) :
11

12 de f i n i t ( s e l f ) :
13 super ( ) . i n i t (True , False , True , Mu l t i p l i c i t y (0 , 3) )
14

15

16 de f r e p r ( s e l f ) :
17 re turn f sm s t r i n g ( ”Person” )
18

19 DogSingleton = Dog ( )
20 PersonS ing le ton = Person ( )

Furthermore, the default new (cls) function (which is called to create a Python Object) is
overwritten with an alternative implementation that ensures that for each of these entities, only one
instance can exist. We apply the Python Singleton pattern to the generated Entity sub-classes. We
desire that for each entity (type), only one Python object can exist. Global variables DogSingleton
and PersonSingleton are instances created to use as representatives for the corresponding entity
(type). We will model instances of these entities separately.

Note: Python itself allows for the instantiation of classes. Although we could try to relate
the Python instances of an Entity class to the notion of instance as used in the semantics
of DMDSL, we decided to keep these concepts separate from each other to avoid confusion.
This allows us to define precisely what an instance of an entity means according to the
semantics of the DMDSL language, without relying on analogous concepts that are inherited
from Python instances.

6.4.2 Associations

In the formal model Association is a set of existing associations. For each association in the input
model an Association class will be instantiated accordingly, and added to the global variable as-
sociations that stores all associations. The model-to-text transformation thus needs to generate
these according to the provided model. E.g., for the model in figure 3.1 we generate:

1 a s s o c i a t i o n s = [
2 Assoc i a t i on ( ”owner” , DogSingleton , PersonSing leton ,
3 Associat ionEndProperty (True , Mu l t i p l i c i t y (0 , 1 ) ) ,
4 Associat ionEndProperty ( False , Mu l t i p l i c i t y (3 , 5 ) ) )
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5 ]

6.5 Dynamic Language Constructs

In the representation of the dynamic semantics in PyModel, we first determine the state variables.
As this notion of the PyModel model is similar to the notion of the transition system as introduced
in the work of Derasari, the translation of concepts will be similar. Deviations will be there, but
these are often subtle.

6.5.1 State Variables

We identify a state using the variables:

• instances: The set of instances that were created (but were never deleted). These instances
may or may not have been added to their corresponding repositories.

• repo: The set of instances that are currently in the corresponding repository.

• links: A list of links between instances that currently exist.

• all identifiers: A list of all identifiers of the instances that have ever been created.

• highest id: an id that is strictly greater than the identifiers of instances that were ever
created.

Note that instances corresponds to I, repo corresponds to REPO and links corresponds
to L in the work of Derasari. We don’t need the evolving type function, as in our translation
we can simply check for a given instance what the entity type is (it is a member of the Instance
class). Furthermore, we also do not use the output state variable. Output will be handled via
transitions, and will be considered in 6.5. Additionally the all identifiers list is added since
for the testing process it is good to keep track of all the identifiers that were ever created (which
will be elaborated on in chapter 8). The highest id is used, so that for each instance that is
created, a unique identifier can be used as the corresponding identifier. We simply use highest id
as identifier, and increment it.

6.5.2 PyModel Actions

6.5.2.1 Create

In the semantics, a create(e, links) transition is defined. As an input argument, this transition
takes an entity e and a bag of links. The translation to PyModel is as controllable action Cre-
ate(entity links, instance name, instance id) where the arguments are as follows:

• entity links: A tuple 〈entity, new links〉 containing the entity entity of the created
instance and a bag of links new links in which the created instance will be the source.

• instance name: This will be the representative for the newly created instance. (I.e., the
actual instance that is generated by executing the implementation will be matched to this
abstract instance name.)

• instance id: This will be the abstract id for the instance that is created. (In the IUT the
actual instance that will be created also gets assigned an id, which is unknown in the context
of the PyModel model. The abstract id will be used as a representative for this id.)
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Note: The Read and Delete actions are executed by passing as argument the identifier
of the instance. The actual instance first needs to be added to the repository before the
repository ‘knows’ what instance corresponds to the identifier. The Add action, therefore,
uses the actual instance as argument in the call. We use instance name as representative
for using the actual instance as argument, and instance id for using the identifier as
argument.

When none of the error conditions hold, the instance of the entity can be successfully created.
Derasari defined the relation between the current state s and next state s′ as follows:

s′.I = s.I ∪ {newInstance}

s′.L = s.L ∪ links

s′.Repo = s.Repo

s′.output = Success

s′.type = s.type[newInstance→ e]

In the PyModel transition system the following happens:

s′.I = s.I ∪ {newInstance}

s′.L = s.L ∪ links

s′.Repo = s.Repo

s′.highestIdentifier = s.highestIdentifier + 1

s′.allIdentifiers = s.allIdentifiers ∪ {newInstance.id}

It may also be the case that some error conditions hold, and then corresponding error messages
are output. For sake of example we will provide the concrete action method for the Create method:

1 de f Create ( e n t i t y l i n k s , instance name , i n s t a n c e i d ) :
2 g l oba l in s tance s , repo , l i nk s , a l l i d e n t i f i e r s , h i g h e s t i d
3

4 en t i t y = e n t i t y l i n k s [ 0 ]
5 l i nk s ne eded = e n t i t y l i n k s [ 1 ]
6

7 check l og = CRUDA. CreateOperat ion . c r e a t i o n che ck ( ent i ty , l i nk s ne eded )
8 no e r r o r s = ( l en ( check l og ) == 0)
9 output = {}

10 i f n o e r r o r s :
11 output = {” Success ”}
12 e n t i t y i n s t a n c e = Ins tance ( ent i ty , i n s t a n c e i d )
13 # Add created in s t ance
14 i n s t an c e s . add ( e n t i t y i n s t a n c e )
15 # Add new i d e n t i f i e r
16 a l l i d e n t i f i e r s . append ( e n t i t y i n s t a n c e . id )
17

18 # Add the new l i n k s and s e t the source o f the se l i n k s to the newly c rea ted
in s t ance

19 f o r l i n k in l i nk s ne eded :
20 l i n k . s ou r c e i n s t an c e = en t i t y i n s t a n c e
21 l i n k s = l i n k s + l i s t ( l i nk s ne eded )
22 h i g h e s t i d = h i g h e s t i d + 1
23 e l s e :
24 # Set the output to the e r r o r s
25 output = chec k l og
26 re turn l i s t o u t p u t ( output )

Error Messages The creation of an instance of an entity may fail. Therefore a set of failure
cases, and corresponding output messages has been defined. We will translate these to the PyModel
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model using the helper functions below. In some of the helper functions, we use arguments
corresponding to the following:

1 en t i t y = e n t i t y l i n k s [ 0 ]
2 new l inks = e n t i t y l i n k s [ 1 ]
3 n ew l i n k a s s o c i a t i o n s = { l i n k . a s s o c i a t i o n f o r l i n k in new l inks }
4 ou t g o i n g a s s o c i a t i o n s = en t i t y . g e t ou t g o i n g a s s o c a t i o n s ( )
5 r e q u i r e d a s s o c i a t i o n s = { a s s o c i a t i o n f o r a s s o c i a t i o n in ou t g o i n g a s s o c i a t i o n s

i f a s s o c i a t i o n . t a r g e t a s s o c i a t i o n p r o p e r t y . mu l t i p l i c i t y . min >= 1}

1. e.C = False =⇒ output = Entity Unconstructable

1 de f i s e n t i t y u n c o n s t r u c t a b l e e r r o r ( en t i t y ) :
2 re turn not en t i t y . i s c o n s t r u c t a b l e ) :

2. |{i ∈ s.I | type(i) = e}| = e.N.maximum =⇒ output = Entity MultiplicityMaximum

1 de f i s e n t i t y mu l t i p l i c i t y max imum er r o r ( en t i t y ) :
2 re turn en t i t y . g e t numbe r o f i n s t ance s ( ) >= ent i t y . mu l t i p l i c i t y . max :

3. {a ∈ Association | ∃link[link ∈ links : a = link.association]} 6⊆ e.OutgoingAssociations =⇒
output = Entity UnexpectedAssociation

1 de f i s u n e xp e c t e d a s s o c i a t i o n e r r o r ( ou t go i n g a s s o c i a t i on s ,
n ew l i n k a s s o c i a t i o n s ) :

2 re turn not n ew l i n k a s s o c i a t i o n s . i s s u b s e t ( o u t g o i n g a s s o c i a t i o n s ) :

4. {a ∈ Association | a.source = e ∧ a.TProperty.minimum ≥ 1} 6⊆ {link.association ∈
Assocation | link ∈ links} =⇒ output = Entity MissingAssociation

1 de f i s e n t i t y m i s s i n g a s s o c i a t i o n e r r o r ( r e qu i r e d a s s o c i a t i o n s ,
n ew l i n k a s s o c i a t i o n s ) :

2 re turn not r e q u i r e d a s s o c i a t i o n s . i s s u b s e t ( n e w l i n k a s s o c i a t i o n s ) :

5. ∃a[a ∈ e.OutgoingAssociations : |{link ∈ link | a = link.association}| > a.TProperty.
multiplicity.maximum] =⇒ output = Association TargetMaximum

1 de f numbe r o f l i n k s w i t h a s s o c i a t i o n ( a s s o c i a t i on , l i n k s ) :
2 count = 0
3 f o r l i n k in l i n k s :
4 i f l i n k . a s s o c i a t i o n == a s s o c i a t i o n :
5 count += 1
6 re turn count
7

8

9 de f i s a s s o c i a t i o n ta r g e t max imum er r o r ( ou t go i n g a s s o c i a t i on s , new l inks ) :
10 f o r a s s o c i a t i o n in ou t g o i n g a s s o c i a t i o n s :
11 i f n umbe r o f l i n k s w i t h a s s o c i a t i o n ( a s s o c i a t i on , ne w l inks ) >

a s s o c i a t i o n . t a r g e t a s s o c i a t i o n p r o p e r t y . mu l t i p l i c i t y . max :
12 re turn True
13 re turn Fal se
14

6. ∃a[a ∈ e.OutgoingAssociations : |{link ∈ links | a = link.association}| < a.TProperty.
multiplicity.minimum] =⇒ output = Association TargetMinimum

1 de f i s a s s o c i a t i o n t a r g e t m in imum e r r o r ( ou t go i n g a s s o c i a t i on s , new l inks ) :
2 f o r a s s o c i a t i o n in ou t g o i n g a s s o c i a t i o n s :
3 i f n umbe r o f l i n k s w i t h a s s o c i a t i o n ( a s s o c i a t i on , ne w l inks ) <

a s s o c i a t i o n . t a r g e t a s s o c i a t i o n p r o p e r t y . mu l t i p l i c i t y . min :
4 re turn True
5 re turn Fal se
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7. ∃a,i[a ∈ e.OutgoingAssociations∧i ∈ s.Instances∧i.Entity = a.target.Entity : |i.incomingLinks(a)]
links(a, i)|] > a.SProperty.multiplicity.maximum =⇒ output = Association SourceMaximum

1 de f numbe r o f i n c om in g l i n k s t o i n s t an c e ( ins tance , a s s o c i a t i on , l i n k s ) :
2 count = 0
3 f o r l i n k in l i n k s :
4 i f l i n k . t a r g e t i n s t a n c e == in s tance and l i n k . a s s o c i a t i o n == (

a s s o c i a t i o n ) :
5 count += 1
6 re turn count
7

8 de f i s s ou r c e max imum mu l t i p l i c i t y v i o l a t i on ( ou t go i n g a s s o c i a t i on s , new l inks )
:

9 from Mode l Trans lat ion import repo , l i n k s
10 f o r a s s o c i a t i o n in ou t g o i n g a s s o c i a t i o n s :
11 f o r i n s t ance in repo :
12 numbe r o f e x i s t i n g l i n k s p o i n t i n g t o i n s t a n c e =

numbe r o f i n c om in g l i n k s t o i n s t an c e ( ins tance , l i n k s )
13 numbe r o f n ew l i nk s po i n t i n g t o i n s t an c e =

numbe r o f i n c om in g l i n k s t o i n s t an c e ( ins tance , new l inks )
14 i f n umbe r o f e x i s t i n g l i n k s p o i n t i n g t o i n s t a n c e +

numbe r o f n ew l i nk s po i n t i n g t o i n s t an c e \
15 > a s s o c i a t i o n . s o u r c e a s s o c i a t i o n p r op e r t y . mu l t i p l i c i t y . max

:
16 re turn True
17 re turn Fal se

6.5.2.2 Read

In the semantics of Derasari read(identifier) transition has not formally been defined. It is
fortunately very trivial. The translation to PyModel is as follows: Read(identifier)

• identifier: The id of the instance we wish to read from the corresponding repository.

When no errors occur, all state variables remain unchanged and Success is output. For the
translation of the error output see appendix C.2.

6.5.2.3 Update

In the semantics an update(instance, links) has formally been defined. As input argument this
transition takes an instance instance and a bag of links links. The translation to PyModel is as
follows: Update(instance links).

• instance links: a tuple 〈instance, links〉 containing the instance to update and a bag of
links that replaces the original set of links that instance is the source of.

When none of the error conditions hold, the instance can successfully be updated and the links set
will be modified accordingly and Success is output. All other state variables remain the same.
For the translation of the error output see appendix C.2.

6.5.2.4 Delete

In the formal semantics the delete(identifier) has been defined. As input argument this transition
takes an instance identifier identifier. The translation to PyModel is as follows: Delete(identifier).

• identifier: an identifier of an instance.

Deletion executed on an instance, will due to cascade deletion induce a deletion set of instances
that should be deleted. Using a fixed point computation algorithm we can determine the dele-
tion set as follows:
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1 de f g e t d e l e t i o n s e t ( i n s t ance ) :
2 g l oba l in s tance s , repo , l i nk s , a l l i d e n t i f i e r s
3 d e l e t i o n s e t = { i n s t anc e }
4

5 i s changed = True
6 d e l e t i o n s e t s i z e = len ( d e l e t i o n s e t )
7 l a s t added = { i n s t anc e }
8 whi le i s changed :
9 new elements = s e t ( [ ] )

10 f o r i n s t ance in l a s t added :
11 f o r l i n k in l i n k s :
12 i f l i n k . t a r g e t i n s t a n c e == in s tance and l i n k . a s s o c i a t i o n .

s o u r c e a s s o c i a t i o n p r op e r t y . i s c a s c ad e :
13 new elements . add ( l i n k . s ou r c e i n s t an c e )
14 i f l i n k . s ou r c e i n s t an c e == in s tance and l i n k . a s s o c i a t i o n .

t a r g e t a s s o c i a t i o n p r o p e r t y . i s c a s c ad e :
15 new elements . add ( l i n k . t a r g e t i n s t a n c e )
16 d e l e t i o n s e t = d e l e t i o n s e t . union ( new elements )
17 l a s t added = new elements
18 i f l en ( d e l e t i o n s e t ) == d e l e t i o n s e t s i z e :
19 i s changed = False
20 e l s e :
21 d e l e t i o n s e t s i z e = len ( d e l e t i o n s e t )
22 re turn d e l e t i o n s e t

Since the number of instances in a given state is finite, termination is guaranteed.

Each of the instances in the deletion set should be removed from the repo and instances.
When none of the error conditions hold, the deletion set can successfully be removed. For the
translation of the error output see appendix C.3.

6.5.2.5 Add

In the semantics an add(instance) has formally been defined. As input argument this transition
takes an instance instance The translation to PyModel is as follows: Add(instance).

• instance: an instance object.

When none of the error conditions hold, the instance is added to the repository state variable, and
all other state variables remain the same. For the translation of the error output see appendix
C.4.

6.6 Exploration of PyModel Models

We could wonder about the correctness of the PyModel specification. How can we know that
correctly translated the semantics? That is a fair point, but we should realize that the PyModel
specification is encoded at a much higher abstraction level than the IUT. This makes the imple-
mentation of the PyModel specification easier and makes it more feasible to keep an overview
and less likely for bugs to occur. Furthermore, one should not forget that the generation of the
PyModel specification is implemented in isolation from the generation of the IUT. The chances
are small that the exact same bug that occurs in the C++ code, is also in the model program.
When something is incorrectly encoded in the PyModel specification program, but correct in the
IUT, we would expect that during MBT some unexpected behavior happens that should make us
aware of issues. PyModel also allows you to create an FSM of the model program, by exploring it
to a provided transition depth. In this FSM, we can explore the transitions that are enabled and
inspect the resulting state. The FSM that PyModel can generate is written in the DOT graph
description language. These .dot files can be converted to a .svg to visualize the graph in an
internet browser. By hovering the mouse over the states, one is able to inspect the state variables
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of a state, and check if these variables are as one would expect them to be. This also helps in
detecting problems in the model program at an early stage.

We explore the DMDSL model of figure 6.2 as an FSM with transition depth 13 in figure 6.3.
If we explore the .svg of the FSM in the browser and hover over state 1, then we indeed observe
that the instances list now contains instance0. From state 1, we have that a read(0) transition
indeed induces an Instance NotInRepository, error as we can also see from the image. In state
2, instance0 got added, and we can observe (although the output is a bit cluttered) a Success
output when reading instance0. You might expect some more transitions to be visualized in
this image. Due to the finitization of the domains, we only have the provided transitions for this
simple model explored until transition depth 13. In chapter 8, we will elaborate on this finitization
process.

Figure 6.3: FSM of an example model.
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Chapter 7

MBT Tool Adaptor

Now that we are able to encode DMDSL test models in PyModel, we want to start connecting
PyModel to the IUT. We will need an adaptor for this. In this chapter, we will first discuss the
high-level architecture of the adaptor. Then, we will explain how PyModel actions (i.e. abstract
actions) are translated into concrete API calls (i.e. concrete actions). Afterwards, we will discuss
how PyModel action outputs can be related to concrete outputs (e.g. exceptions). Finally, we will
discuss how to make the adapter compatible with the generated code of some DMDSL model. In
particular, we discuss how to overcome the challenge that the adapter relies on interfaces of the
IUT that are dependent on the DMDSL model considered.

7.1 Architecture of Adaptor

The PyModel tool is able to generate abstract test cases on-the-fly. The MBT tool should be able
to communicate these test sequences with the implementation in order to check if the behavior of
the implementation conforms to the specification. The model is at a high abstraction level and
we should be able to accommodate the low-level differences of interfaces and output messages so
that checks on this higher abstraction level can be done. We, therefore, need to develop an adaptor.

As explained, the API of the model, which is often rather abstract, does not exactly match
the API of the IUT. The task of the adaptor is to bridge this gap. In [20] the adaptor is assigned
the following responsibilities:

• Setup: Setup the IUT to make it ready for testing.

• Concretization: Translate model-level abstract operation calls and abstract input values to
concrete IUT calls.

• Abstraction: Obtain the IUT results from the concrete calls and translate them back into
abstract values and pass these back to the model for comparison.

• Teardown: Shut down the IUT at the end of each test sequence.

In our case, the adaptor consists out of multiple components, on which we will elaborate in the
coming subsections.

• stepper.py: Handles communication with the C++ process being tested. In our case, this
is the wrapped version of the IUT.

• main.cpp: Handles incoming and outcoming communication of the C++ process, and com-
municating this to the CallTranslator.

• CallTranslator: Wrapper around the IUT that makes actual API calls to the IUT, and
translates concrete output messages s.a. exceptions back to abstract output messages.
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The different components of the adaptor are visualized in figure 7.1. in the testing context. The
different elements of the adaptor are marked in green.

Figure 7.1: Visualization of the adaptor placed into the testing context.

7.1.1 Stepper

The MBT tool needs to communicate with the IUT in some way. The PyModel tool allows for
defining a so-called stepper. In stepper.py one should implement how the action calls should be
sent to the process that is tested, and how messages observed from the process should be translated
for the MBT tool. In our case, the tested process is the wrapped version of the generated DMDSL
C++ code. The PyModel framework requires the tester to implement a test action method with
parameters aname, args and modelResult. Respectively, these correspond to the action name,
arguments, and output of the transition taken. We should thus ensure in stepper.py that aname
and args are communicated with the C++ process and that the output of the process that is
tested conforms with modelResult. In the stepper, we spawn the process in which the IUT lies
and connect to the input pipe and output pipe of the process so that the stepper can send the
abstract action calls and their arguments to the IUT and receive the corresponding output of the
IUT via the output pipe. stepper.py checks if the received output is an element of modelResult
to check if conformance is respected.

7.1.2 Main

In the main.cpp file, the setup phase of the adaptor takes place. In particular, a serviceBundle
for the domain interface of the IUT is instantiated. The serviceBundle serves as a gateway to the
generated DMDSL code of the model. We use the pointer to the serviceBundle in the creation
of the CallTranslator. This class will be explained in more detail in the next subsection. The
main.cpp also serves as the communication interface of the C++ code. In the main.cpp file, we
will handle the input on the stdin pipe. The first input is the action (Create, Read, Delete, Add,
Update). Corresponding to the action that is provided as input via the stdin pipe, a corresponding
subroutine will be called, which handles the parameters provided via stdin. For example, for the
Create action these are as follows:

• entityType: The type of entity of which an instance should be created.

• associations: The association list (in json format) to specify the targets in the creation
process.

• instanceName: The abstract instanceName for the soon-to-be-created instance.

• instanceId: The abstract instance id that is used for the soon-to-be-created instance.

Now the corresponding action in the CallTranslator will be called with the input arguments
passed via strings. The CallTranslator will return a string as output as a result of the call.
main.cpp will provide this on the stdout output pipe.
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7.1.3 CallTranslator

The generated IUT of a DMDSL model is a set of C++ files. Typically, the programmer would
create .cpp files and write code to perform CRUD+A actions as desired in his project. To apply
MBT, we desire that these actions are dynamically callable so that on-the-fly testing is possible.
The adaptor should thus be able to translate abstract action calls that PyModel is generating, to
actual method calls at execution time. Therefore, we will develop in C++ a CallTranslator that
serves as a wrapper around the generated C++ code. The tasks of the CallTranslator are the con-
cretization and abstraction tasks of an adaptor. The CallTranslator functions as a bridge between
the abstract calls and the actual calls on the generated C++ code. In other words, using the ab-
stract arguments and abstract action names, it will make concrete calls to the generated DMDSL
code via appropriate serviceBundle calls (concretization task ). Furthermore, it will translate the
concrete output messages (e.g., error exceptions) to the abstracted output messages (abstraction
task). Since there is quite a deviation between the respective calls and output messages, this is
not trivial.

7.2 Concretization of Actions

In this section we will elaborate how the CallTranslator can concretize the abstract actions. In
figure 7.2, the relevant concrete interfaces of the generated DMDSL code are visualized.

Figure 7.2: Visualization of the objects the serviceBundle points, and corresponding relevant
interfaces for concretization of the model in figure 3.1.

7.2.1 Create

The abstract PyModel call is Create(entity links, instance name, instance id), where en-
tity links= 〈entity, links〉 is a tuple containing the entity and links for the newly created
instance. instance name will be the abstract name and instance id will be the abstract id.

In the generated code, the serviceBundle provides access to a CreateDeleteAccessRefer-
enceRepo for each entity. This repository then provides a factory for the corresponding entity.
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Figure 7.3: Mappings preserved in the CallTranslator.

The factory has a create method where for each association the corresponding target instances
need to be provided as arguments. If in the model it is specified that for an association, precisely
one target instance needs to be provided, this will be a C++ instance of the corresponding target
entity. If it requires {0, ..., 1} target instances for an association, this will be a boost::optional of
a C++ instance of the target entity. In all other cases, a vector of instances of the target entity
needs to be provided. The CallTranslator will call the factory method for entity. Furthermore,
it splits the provided links based on the association name and puts them into the appropriate
format (a concrete instance, boost::optional, or vector). Then, a call to the createModifiable
function of the appropriate factory is made in which CallTranslator passes the target instances
as arguments in the order desired by the interface. Finally, it will turn out that the Call-
Translator needs to maintain some mappings to translate the remaining CRUD+A actions. The
abstractInstanceNameToInstance maps the instance name to the created instance, and the
abstractInstanceIdToConcreteId maps the abstract instance id to the actual id of the newly
created instance. It is less obvious (but will soon be clear) that we also need to preserve the entity
types corresponding to the abstract instances and abstract ids. The abstractInstanceNameToEn-
tity maps instance name to entity and abstractInstanceIdToEntity maps instance id to
entity. These mappings are needed to properly translate the calls of the remaining CRUD+A
actions.

7.2.2 Read

The abstract PyModel call is Read(identifier). The Read action is performed by calling the
ReadAccessReferenceRepoPtr of the appropriate entity type via the serviceBundle. The Call-
Translator uses the mapping abstractInstanceIdToEntity to get the corresponding entity
type. It can use this information to get the ReadAccessReferenceRepoPtr of that entity. This
repository pointer has a get method corresponding to our defined Read action. As an argument, it
expects the identifier of the instance one likes to read from the repository. The CallTranslator
uses abstractInstanceIdToConcreteId to transform an identifier into the actual concrete
identifier, which then can be passed to the get operation to perform the Read action on the
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generated C++ code.

7.2.3 Update

The abstract PyModel call is update(instance links), where instance links= 〈instance, links〉
is a tuple containing the instance that will get its outgoing links replaced by links. Via the ab-
stractInstanceNameToInstance, the adapter can find the corresponding instance. A mutable
instance has for each association a dedicated method to replace the targets. The adaptor will group
the links based on the association name and call for each group the corresponding replacement
method of the instance, in order to replace the links.

7.2.4 Delete

The abstract PyModel call is delete(identifier). The serviceBundle also has a Creat-
eDeleteAccessReferenceRepoPtr for each entity. Using the abstractInstanceIdToEntity the
CallTranslator can get the entity of the instance belonging to the identifier. It can then use
this information to get the repository belonging to the entity. This repository then provides a re-
move method corresponding to our defined delete action. As an argument, it expects the identifier
of the instance one likes to delete from the repository. The CallTranslator uses abstractIn-
stanceIdToConcreteId to transform identifier to the actual concrete identifier, which then
can be passed to the remove operation to perform the Delete action on the generated C++ code.

7.2.5 Add

The abstract PyModel call is add(instance). The serviceBundle has a CreateDeleteAccess-
ReferenceRepoPtr for each entity. Using the abstractInstanceNameToEntity the CallTrans-
lator can get the entity of the instance belonging to the instance. It can then use this information
to get the repository belonging to the entity. This repository then provides an add method corre-
sponding to our defined add action. As an argument, it expects the instance one likes to add to
its repository. The CallTranslator uses abstractInstanceNameToInstance to transform in-
stance to the actual concrete instance, which then can be passed to the add operation to perform
the Add action on the generated C++ code.

7.3 Abstraction of Output

Typically, before the development of the code generator, the semantics of the input models and
observable input and output messages are clearly defined. For the DMDSL language, this has
not been formally worked out. Therefore, applying MBT after the fact raises some problems.
Normally, one should consider the IUT as a black box, and the code of the IUT should not be
inspected. Since it is unknown what the exact error messages are, we should try to relate these
concrete error/output messages to the abstract error messages specified in the dynamic semantics.
We have created this mapping by communicating with the developers, inspecting the code, and
manually executing traces on the IUT.

7.3.1 Create

Entity Unconstructable When a create call is made using an entity type that has been spec-
ified in the domain interface as unconstructable, the dynamic semantics expects to have an En-
tity Unconstructable output message. However, in the implementation, the Factory Pattern is
used for the creation of instances of each entity type. For an entity that is unconstructable, there
will be no create method in the corresponding factory. In this way, it is statically enforced that
no instance can be created of an entity that is unconstructable. Theoretically, it could be the case
that the code generator is not functioning correctly, and for some entities that are constructable,
no create function is made, and for some that entities are unconstructable, a create function does
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exist in the corresponding factory. A way to overcome this would be for the adaptor to perform
static analysis and inspect if the corresponding methods are there. There will, however, be no
power of MBT itself involved here, since it is not state-dependent. It would make more sense
to write unit tests that perform such static analysis. From an economical perspective, a manual
inspection would probably be sufficient. We will leave this check out of scope.

This gives rise to the question of how to overcome such difference in interface. An option
would be to restrict our PyModel model and add a guard to the Create action so that we can not
take the Create action for entities that are unconstructable. It is, however, probably undesirable
to adapt the high-level specification to the implementation. A future new implementation could
not have this static enforcement but output a corresponding error message, which would also be
valid behavior according to the dynamic semantics (and strictly speaking, would match it even
closer). We will not choose this route. The task of the adaptor is to form a bridge between the
MBT tool. We can bridge this difference as follows. In the generation of the adaptor, the create
function for entity types that are constructable will call the corresponding function of the IUT. For
entity types that are unconstructable, the adaptor itself will return the Entity Unconstructable
output message. In this way, it is statically checked that entities that are constructable have
a corresponding create function (otherwise the adaptor would fail to compile since it refers to
methods that do not exist). It is not excluded that there is no create function for entities that are
not constructable. As mentioned, this is not where the power of MBT lies, and this is not really
the type of bug we desire to discover here.

Entity MultiplicityMaximum It turns out that there is no error message in the IUT for
exceeding the Entity MultiplicityMaximum. If the code is built for interprocess communication,
the error ERxEXC::Exception(“The number of allowed entity instances is exhausted...”) is thrown
when too many instances are added to the repository. The formal semantics, however, require this
error already to be thrown when too many instances are created. When creating a generator for
interprocess communication, we could catch this exception and handle it by outputting Entity -
MultiplicityMaximum. We will develop an adaptor for intraprocess-communication only. The
fact that this error message is missing already gives the suggestion of a flaw in the code generator.
Is it indeed the case that the maximum can be exceeded?

Note: The fact that an error message can not be matched does not by definition need to
be problematic. Although perhaps not typical, it could be the case that models that could
induce an error that is not matched will be rejected by the model constraints. Hence, such
a model is not supposed to be used for code generation. Furthermore, as we observed in
section 5.4.2.3, there may be multiple error messages possible as output. It is up to the
implementation to decide which exact error message it will output. Theoretically, it could
be possible that the error message will only be thrown in conjunction with some other error
message, of which the other error message does have a translation in the implementation and
is actually enforced. Then the implementation will still conform to the specification. We
expect in our context that an error message that can not be matched will be problematic.
It is expected that MBT will point this problem out to us.

Entity MultiplicityMinimum When the minimum multiplicity of entities is underrun, an
std::out of range("...Repository has to contain at least ...") is thrown. Note that
when the minimum multiplicity of an entity is non-zero, in the initial state there should already
be entities in the repository. Therefore, constructor delegates are created when the minimum
multiplicity is non-zero, which will be invoked when the serviceBundle is called. The developer
needs to provide corresponding create calls so that the minimum multiplicity is respected. When
the constructor delegates are not filled, the out-of-range exception should already occur. Therefore,
we try to catch such an exception at the creation of the serviceBundle in main.cpp.
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Entity UnexpectedAssociation During creation, the target instances to which the newly
created instance will have a link should be provided. Similar to entity constructability, it will
be statically enforced that only instances of an entity to which an association exists, can be used
as target instances in the create method. We will resolve this by making the adaptor output
Entity UnexpectedAssociation when an instance as a target is provided to which the entity of
the ‘to be created instance’ has no association.

Association TargetMaximum For a target maximum of 1, the target maximum will be stati-
cally enforced (since during the creation of the entity, a target instance needs to be provided). For
target maximum of {0..1} a boost::optional needs to be provided, and thus again the maximum
will be statically enforced. We will reflect the static enforcement by letting the Adapter output
Association TargetMaximum in such cases. However, for {x..y} where y > 1 ∧ y ≥ x a vector of
target instances is expected. One would expect the vector to be checked for the appropriate size.
However, there does not appear to be an error check on the size of the vector. This should induce
problems in the testing.

Association TargetMinimum Analogously to Association TargetMaximum, the association
target multiplicity of 1 and {0..1} are statically enforced. We will reflect the static enforcement by
letting the Adapter output Association TargetMinimum in such cases. No output message can
be identified for the case that {x..y} where y > 1 ∧ y ≥ x. The comments in the generated code
confirm that these constraints are not actually enforced, showing that the developers of the code
generator were aware of this.

Assocation SourceMaximum In the models the associations also have a source multiplicity
that indicates, for a target instance, the maximum number of source instances that can have a
link to it. The creation process, however, does not appear to have an error output for this.

There are quite a lot of possible error output messages for the Create action. It turned
out that only the Entity MultiplicityMinimum could be properly matched, which seems rather
disappointing in applying Model-Based Testing.

7.3.2 Read

Instance notInRepository We observe that providing an id to the repository of an instance
that is not in the repository triggers the std::out of range(..., repository does not con-
tain it.) exception. The adaptor catches such exceptions and returns Instance notInRepos-
itory accordingly.

7.3.3 Update

Entity UpdateImmutabletype In the interface of the generated code, there will only be meth-
ods to change the target instances of an instance when the corresponding entity type is mutable.
Hence, this is statically enforced in the generated code. We will handle this in the adaptor by
outputting Entity UpdateImmutableType when trying to update an entity that is not mutable.

Link TargetNotInRepository There does not seem to be any check in the code for this.

Association TargetMaximum The error checking is analogous to the error checking for the
Association TargetMaximum in the creation of an entity.

Association TargetMinimum The error checking is analogous to the error checking for the
Association TargetMinimum in the creation of an entity.
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Association SourceMaximum The error checking is analogous to the error checking for the
Association SourceMaximum in the creation of an entity.

7.3.4 Delete

Instance NotInRepository When providing an identifier of an instance that is not actually in
the repository, no exception is thrown. However, from the comments of the generated code, it turns
out that the delete function returns a size t object of the number of items deleted. They note
that the instances deleted via cascade deletion are not taken into account. I.e., it can only be 0 or
1, depending on whether the instance was deleted or not. Hence, when 0 is returned, we expect the
instance to not be in the repository and the adaptor would output Instance NotInRepository.

Entity DeleteOnUndestructable The repository interface of an entity that is not destruc-
table will not have a remove function. Hence, this error is statically enforced. We will resolve this
by adding in the generator the Entity DeleteOnUndestructable output for calls to entities that
are not destructable.

Entity MultiplicityMinimum We already considered this error message for the creation of
instances in the initial state. However, the minimum multiplicity could also be underrun by an
arbitrary state where deletion of an instance would result in violating Entity MultiplicityMin-
imum. The exception that is thrown is again the std::out of range("...Repository has to
contain at least ...") exception. We can simply try to catch it in the adaptor and output
the Entity MultiplicityMinimum output message.

7.3.5 Add

Instance AlreadyInRepository When trying to add an instance to the repository, the ex-
ception std::invalid argument("cannot add ..., repository contains it already.") is
thrown. We can simply try to catch it in the adaptor and output the Instance AlreadyInRepos-
itory output message.

Link TargetNotInRepository When trying to add an instance to its repository, for which
links to target instances have been established, it is necessary for these target instances to be in
the repository. It turns out that when trying to add such an instance, no error message will be
thrown.

7.4 Generating an Adaptor

The interfaces the adaptor needs to access are dependent on the DMDSL model. For example,
where in the abstract model we expect a Create(Entity, Links) interface, in the actual imple-
mentation the factory of Entity needs to be accessed. This factory provides a Create method,
where the target instances need to be provided as separate arguments grouped on association
name. Another example is that entities that are unconstructable do not have a Create method.
Here the adaptor needs to return Entity Unconstructable since there is no method for it to call.
It is clear that we can not make an adaptor independent from the input model. Hence, we should
also generate the Adaptor, so that the adaptor can call the appropriate methods. We again use
Acceleo to perform the transformation automatically. Now when the PyModel Model is generated,
it will also include the adaptor. In figure 7.4, it is visualized what files are generated. The files
generated for PyModel are made transparent to emphasize the files generated for the adaptor. We
again use orange to indicate that the file does not rely on the input, with yellow we indicate that
only a small part of the file relies on the input model, and with green we indicate that the file
largely depends on the model.
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Figure 7.4: Generation of files visualized.
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Chapter 8

Application of MBT

In this chapter, we will investigate how to use PyModel in practice to test the code generation of
DMDSL models. We will start by considering how to finitize the domains of the actions in the
DMDSL model. Then, we will discuss several strategies that one can use to test DMDSL Models.
In one of these strategies, we will introduce a notion of state equivalence, that allows us to divide
the state space up into a finite number of equivalence classes. We will also do some analysis on
the different strategies. After that, we will actually apply Model-Based Testing on a given model
and see if we manage to find some problems with the code. Finally, we will run the MBT tool on
a set of test models using a strategy that simulates behavior when most of the preconditions of
actions are satisfied. This allows us to draw some conclusions with regard to the correctness of
the code generator when the programmers respect the preconditions of all actions.

8.1 Domains of Actions

Each of the CRUD+A actions relies on input arguments out of a certain domain. For some of
the input arguments, it is clear that a finite domain exists. For some other arguments, this is less
clear, and a possibly infinite domain could exist. Since PyModel iterates over all enabled actions in
conjunction with the possible arguments to determine which transition to take, it is not possible to
work with infinite domains, and practically infeasible to work with domains that are too large. We
need a form of data abstraction to deal with this. A typical solution is to finitize these domains.
The key challenge here is to finitize them in such a way that the corresponding arguments are
still most likely to expose failure. Since we have knowledge about the system, we have some
ideas about what inputs are likely to produce the same behavior. The underlying assumption is
called the uniformity assumption [20]. We will consider each of the CRUD+A actions and their
corresponding arguments, and apply our domain knowledge to come up with arguments that are
most likely to expose failure.

PyModel requires you to specify for each of the actions, and corresponding arguments what
the finite domain is. It is, however, allowed to make these finite domains dependent on the state.
Especially in our context, this is a powerful feature of PyModel. It depends on the state what
instances exist and thus what instances could be added to the repository. There is no way to specify
such a domain initially since in the initial state there won’t be any instances at all. Domains that
are state-dependent are defined using a lambda term. The lambda term will be re-evaluated from
the current state, to determine the finite domains of each action for the current state. In this way,
it is determined what the outgoing transitions are.

8.1.1 Create

In the formal semantics of the Create action, the arguments are the entity (entity) of the instance
that will be created and the links (new links) in which the new instance will participate as the
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source. For the creation of an entity instance, for each outgoing association, some subset of the
elements in s.I (instances of state s) will be involved as target instances. Suppose that there are 20
elements in s.I . Then, the number of subsets will be 220. Note, however, that a single instance can
be used multiple times as a target (even for a single association relation). Therefore, the number
of options for new links is actually of infinite size. While one could decide to limit the behavior
of the model so that we only consider subsets of I, calculating a domain of size 220 will not be
feasible in practice, even though it is finite. We can observe that a significant part of the options
in the infinite domain will lead to an error due to the multiplicities of the source and target of
an association relation. E.g., when an association relation between some EntityA and an EntityB
has a target multiplicity of 4, then trying to create an instance of EntityA with 100 links to an
Entity B instance (could even be 100 times the same instance), would clearly lead to an error due
to exceeding the maximum number of target instances.

We should consider a finitized domain that invokes the most interesting behavior of this action
but is also computationally feasible to calculate in each state. The idea of boundary value testing
is to choose test input at the boundaries of the domain [20]. In this way, we hope to satisfy the
uniformity assumption. In particular, we consider the outgoing association relations of the entity.
Then for each outgoing association, we consider the following groups of target instances:

• Group 1: No target instances.

– Interesting to observe if the implementation handles no target instances as expected.
Can it deal properly with a data type for passing no target instances? (e.g. boost::optional::none,
empty collection, some other way this is implemented?)

• Group 2: One target instance.

– Interesting to observe if the implementation handles a single target instance as expected.
Can it deal properly with the data type used for passing a single instance? (e.g. a
concrete instance is passed, a collection containing a single instance, some other way
this is implemented?)

• Group 3: One element below the minimum number of target instances.

– Interesting to observe if the implementation handles the check on the minimum number
of target instances properly, and fails as expected.

• Group 4: The minimum number of target instances.

– Interesting to observe if the implementation handles the check on the minimum number
of target instances properly, and succeeds as expected.

• Group 5: The maximum number of target instances.

– Interesting to observe if the implementation handles the check on the maximum number
of target instances properly, and succeeds as expected.

• Group 6: Exceeding the maximum number of target instances by one.

– Interesting to observe if the implementation handles the check on the maximum number
of target instances properly, and fails as expected.

• Group 7: The midrange (minimum+maximum
2 ) of target instances.

– Interesting to observe if the implementation handles the check on a non-boundary case
of target instances properly, and succeeds as expected.
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At first, one might think Group 3 and Group 2 are not really needed since if it is possible to go
below the minimum number of target instances, this would happen as well in Group 1 (or possibly
also for Group 2). We consider these to be special cases since it is typical that implementations
use a different data type for passing nothing or a single instance.

There are many options possible for these groups. Suppose we have an association relation
from EntityA to EntityB with a target multiplicity {3..5}, and there are five instances of EntityB
in existence. Then we have 1 option for group 1, 5 options for group 2, 52 options for group 4, 55

options for group 5, 56 options for group 6, and 54 options for group 4. This would already lead
to a ‘finite’ domain of 1 + 51 + 52 + 55 + 56 + 54 options just for this single association relation.
This is of course still rather large. We will not create all the options for each of the groups, but
instead, we will simply do a single ‘sample with replacement’ to fill the groups. That is, for group
2, an arbitrary EntityB instance will be picked. For group 3, an arbitrary ‘minimum − 1’ target
instances will be picked, etc. Hence, for the creation of each type of entity, there will be 7 options
to use as target instances for each of the corresponding outgoing associations. Hence, in the worst
case, there would be

∑
e∈Entities

∏
assoc∈e.outgoingAssociations 7 Create transitions possible from a

given state. This can still be a large number. Typically, the number of outgoing associations is
fortunately limited. It should be noted that due to the ‘sample with replacement’, it typically will
happen when the same state is visited again, different outgoing transitions will be available for the
Create action due to randomness. If one finds this undesirable, the ‘Pick with replacement’ can
be done using a random seed that is, for example, based on a hash value unique for each state.

In practice, it turns out that having a factor of 7 in the product still creates too many options
in the finite domain, making domain calculation rather slow. Suppose one is considering a model
of 3 entities, each with 3 outgoing associations. Then, one would expect in worst case (7 ∙ 7 ∙ 7) +
(7 ∙ 7 ∙ 7) + (7 ∙ 7 ∙ 7) = 1029 possible Create transitions per association for a state. Therefore, in
practice, we will limit ourselves to Group1, Group6, and Group7. In this way, we will still test
going below the minimum number of target instances (if this is possible), exceeding the number
of target instances, and providing an appropriate number of target instances. In worst case one
would now expect (3 ∙ 3 ∙ 3) + (3 ∙ 3 ∙ 3) + (3 ∙ 3 ∙ 3) = 81 Create transitions per association, which
is significantly less.

Note: The groups are formed based on the type of Entity of which an instance is going to
be created. Hence, the new links set of target instances is dependent on which entity is
going to be created. The domain of entity and new links should thus not be finitized in
isolation. Otherwise, PyModel could attempt to create an instance of some EntityB using
a new link set intended for the creation of the instance of some other EntityA. To fix this,
we combine the two parameters into a single parameter entity links. This will be a tuple
〈entity, new links〉 where the first element is the entity of the newly created instance,
and the second element is its outgoing link set. By merging entity and new links, we
can ensure the tool will pick only links that are ‘intended’ for the creation of an instance
with entity type entity.

Example 8.1.1. Consider the model in figure 8.1. Suppose that s.Instances = {Entity2Instance0,
Entity1Instance1}, s.Repo = ∅, s.Links = {(Entity1Instance1, ‘entity2’, Entity2Instance0)}.
Now during the calculation of the enabled transitions, one of the options will be the creation
of an instance of Entity3 called Entity3instance2. Now for each outgoing association relation of
Entity3, the groups will be determined:
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Figure 8.1: Example Model.

• ‘entity2’ association:

Group1 = ∅

Group6 = {(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ,‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0)}

Group7 = {(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0),

(Entity3instance2, ‘entity2’, Entity2Instance0, }

• ‘entity1’ association:

Group1 = ∅

Group6 = {(Entity3instance2, ‘entity1’, Entity1Instance1),

(Entity3instance2, ‘entity1’, Entity1Instance1),

(Entity3instance2, ‘entity1’, Entity1Instance1),

(Entity3instance2, ‘entity1’, Entity1Instance1), }

Group7 = {(Entity3instance2, ‘entity1’, Entity1Instance1),

(Entity3instance2, ‘entity1’, Entity1Instance1)}

Now, we consider the possible arguments for new links (given that entity= Entity3). The
options are (‘entity2’: Group1, ‘entity1’:Group1), (‘entity2’: Group1, ‘entity1’:Group2), (‘entity2’:
Group1, ‘entity1’:Group3), (‘entity2’: Group2, ‘entity1’:Group1), etc. The new links argument
of for example (‘entity2’: Group1, ‘entity1’:Group3) would then be the concatenation of Group1
and Group3. To be more precise, given entity = Entity3 the options for new links are the
concatenation of the elements in the tuples from the cartesian product between the set of groups

76 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 8. APPLICATION OF MBT

of association relation ‘entity2’ and the set of groups of association relation ‘entity1’. Using
Group1 ++ Group3 as new links argument for the creation of Entity2 is not sensible (it does not
even have any outgoing association relations). We have a dependency of the new links parameter
on the entity parameter. Therefore, these are determined in conjunction via a tuple as explained
in the note.

Also, an identifier (instance id) and the name of the instance (instance name) are passed as
an argument. We distinguish between an identifier and a name since some of the CRUD+A actions
are performed using the identifier, such as the Read action for which we will use instance id,
whereas the Add action requires the actual instance as argument in which we will use instance -
name. The identifier of an instance is determined on the basis of the highest id state variable to
ensure uniqueness of the id. The instance name is simply the concatenation of the word ‘instance’
and the identifier.

To summarize:

• entity links: We use a lambda expression that returns a set of tuples 〈entity, new links〉,
where entity comes from the fixed domain of entities, and based on the entity, the new -
links list is constructed using the grouping method.

• instance id: We use a lambda expression that takes the highest id using the highest id
state variable.

• instance name: We use a lambda expression that concatenates the word ‘instance’ and
highest id.

8.1.2 Read

The Read action takes as an argument an identifier called identifier, and tries to read a cor-
responding instance from the repository. The identifier is modeled as an integer and thus has an
infinite domain.

Note: Modeling the identifiers as a finite set is not desirable. One might think that when all
entities are bounded, one could create a finite set of identifiers containing

∑
e∈Entities e.max

unique identifiers. Due to the creation and deletion of instances, that would mean that an
identifier i that was used previously for some instance that got deleted, would need to be
reused for the creation of an instance at a later point of time if sufficient Create and Delete
actions are done. This is undesirable if one wants to maintain a one-to-one correspondence
between abstract identifiers and concrete identifiers in the implementation. Otherwise,
housekeeping in the Adaptor with regard to reuse should be done. Furthermore, it is
probably desirable that doing a Read operation using an identifier of an instance that was
deleted results in a corresponding Instance NotInRepository error, instead of succeeding
because it is now bound to some different instance.

Option 1: We use a lambda expression that returns all identifiers. This list contains all the iden-
tifiers that of instances that were ever created. Hence, we would test the operation using
instances that exist that can be in or out of the repository, and using the identifiers of
instances that no longer exist

Option 2: We take the identifiers of all instances that currently exist (i.e., instances both in and not in
the repository). Furthermore, #instances arbitrary identifiers from the all identifiers
list are picked (this set also contains identifiers of instances that were deleted). We use a
lambda expression that concatenates both lists.

Option 2 is introduced since in Option 1, for longer test sequences, a significant part of the
identifiers in all identifiers will correspond to instances that no longer exist. Furthermore,
the all identifiers domain would grow unboundedly, making the exploration increasingly slow.
Initially, Option 1 will be used, but during analysis, the refinement to Option 2 will be proposed.
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8.1.3 Update

The update Action takes as argument a tuple 〈instance, links〉. The action tries to replace
the outgoing links of the instance with the provided links. Analogous to the Create action we
use a lambda expression that returns a set of tuples 〈instance, links〉, where instance comes
from the domain of state variable instances and based on the corresponding entity new links is
constructed using the grouping method.

8.1.4 Delete

The Delete Action takes as an argument an identifier and tries to Delete the corresponding instance
from the repository. We will use the same finite domain as used in the Read action.

8.1.5 Add

The Add action takes as an argument an instance and tries to Add the instance to the repository.
We use a lambda expression that returns the state variable instances. This will contain both
instances that are in the repository and instances that are not in the repository so that both
success and error output messages are tested.

8.2 Testing Strategies for Model Exploration

The MBT tool creates traces by exploring the PyModel Model. Typically in many states, multiple
actions are possible. Furthermore, the set of traces that are possible is almost always of infinite size.
It follows that exploration of all possible traces will not be feasible. An MBT tool typically has
some predefined strategies to find ‘interesting’ traces. It could be of interest to make the testcase
generation focus on putting the PyModel Model in different states, aiming for state coverage. It
could also be of interest to discover all possible actions and aim for transition coverage. In this
section, we will investigate how to create strategies so that the MBT tool explores DMDSL models
in a clever way, resulting in hopefully interesting testcases being generated. In particular, an
interesting strategy is explored in which an equivalence relation on the set of states is introduced.
This allows us to divide an infinite state space up into a finite number of equivalence classes. In
addition, we will point out some of the deficiencies of the strategies.

Definition 24 (Enabled transition). We will refer to an action with corresponding arguments,
(for which corresponding guard evaluates to true in the current state), as an enabled transition.

Pymodel Strategy PyModel allows users to define their own testing strategy. A Python file
describing the testing strategy contains a method test action(enabled) where enabled is a
list of tuples (aname, args, result, next, properties) representing the enabled transitions from the
current state, which the PyModel tool will provide. As a tester, one should fill in this method
body, and use the information of the enabled to determine which transition should be taken. The
information provided of each enabled transition is:

• The enabled transition has aname as name of an action.

• The enabled transition uses args as input arguments.

• Execution of the transition produces the output result.

• Execution of the transition would result in a state with the state variables set as described
by next.

• (properties are not of relevance in our context.)
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In a strategy it is only possible to influence for a given state which of the enabled transitions
it takes, based on the tuples in the enabled list. It is not possible to check for the resulting state
next what its outgoing transitions are. This limits the creation of more sophisticated strategies
that look further then one transition ahead.

We will now have a look at some testing strategies. The Random Strategy and Default
State Coverage are provided by the tool. The remainder of the described strategies have been
implemented within the scope of this thesis.

8.2.1 Random Strategy

By default, the model will be explored using the random strategy. That is, a randomly enabled
transition will be taken. We will see in section 8.4.1 that the strategy is quite good in finding
issues where model constraints are not enforced and semantics are not properly defined. It turns
out that in practice it is not so good in exploring the model very well. Especially in a model with
many entities, and lots of association relations it can be hard to properly explore the model. We
refer to this strategy as Random Strategy.

8.2.1.1 Chaining Problem

In figure 8.2 we have a chain of entities. It is hard to properly instantiate Entity1. There need to
be at least two target instances of Entity2 for the successful creation of Entity1, and these need to
be provided as target in the creation call. For the creation of Entity2, there needs to exist at least
one Entity3 instance, and it must be provided as a target. Finally, for the creation of an instance
of Entity3 at least one Entity4 instance needs to exist and it needs to be provided as target. The
creation process should thus traverse this chain from back to front to properly instantiate Entity1.

It is clear that especially for smaller test sequences the probability that Entity1 would get
successfully instantiated is small using the Random Strategy. We will run PyModel on the
model of figure 8.2 with a test sequence of size 100, three times and report the average data
obtained. In figure 8.3 we observe the spread of output messages. We observe that the Success
message do not contain a large part of the Create, and Add actions. In the Update and Delete
actions, no Success output occurs, which is not surprising since all entities are undestructable
and immutable. It is probably desirable that the Create and Add actions contain more Success
messages since these actions will manipulate the contents of the state variables. Furthermore, a
close look at these actions shows that on average 4 1

3 Entity4 instances, 3 Entity3 instances and
11

3 Entity2 instances are created. In none of the runs it was able to create an Entity1 instance.
In the test sequence, it added on average 4 1

3 Entity4 instances, 1 2
3 Entity3 instances, 1

3 Entity2
instances to the repository. Also, in none of the runs it managed to add an Entity1 instance to
the repository.

What becomes clear from inspecting the trace is that adding instances to the repository suffers
from the same issue. All link targets of an instance need to be in the repository in order to
successfully add it (otherwise Link TargetNotInRepository occurs). Not very surprisingly, for
the Add operation, it is thus even more difficult to be executed successfully for instances in which
the corresponding Entity is at the beginning of the chain. For an instance of Entity1 to be added,
first the creation process should have properly traversed the chain. Then, in the adding process,
the chain needs to be properly traversed again. If one would increase the size of the test sequence,
it is expected that eventually creation and adding of an Entity1 instance will happen. E.g., if we
increase it to 300, we observe that often it will manage to create an instance of Entity1. To also
add it, a larger test sequence is needed. Note that in the model, the instances are undestructable.
If they would in fact be destructable, it would be even harder to instantiate Entity1, since during
the random exploration instances in the front of the chain can be deleted. We will refer to this
problem for creating and adding instance as the chaining problem.
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Figure 8.2: Example model with chain of entities.

Figure 8.3: Results of random strategy on chain model.

8.2.2 Exhaustive Create Add Strategy

A way to overcome the chaining problem is to have a creation phase before the random explo-
ration. In the creation phase, the strategy will only pick enabled Create transitions that will have
Success as output. Due to the boundaries of the entities, it is guaranteed there will only be a
finite number of consecutive create transitions possible (the creation phase will be smaller than∑

e∈Entities e.max steps since the multiplicities are bounded). In this way, automatically we will
have that instances of Entity4 will be instantiated before the creation of Entity3. Analogously we
will have that instances of Entity3 will be instantiated before the creation of Entity2. Finally, we
then have that instances of Entity2 will exist before the creation of Entity1. If this is not the case,
then the entities can not successfully be instantiated. As the Add action suffers from the same
issue, it is desirable to have an exhaustive Add phase after the Create phase. Finally, after the
Create and Add phase, the state variables instances, repo, and links will be very populated.
The strategy can then switch back to random exploration. It is expected that lots of interesting
behavior would be exposed during the random exploration after the Create and Add phase since
the state variables are very filled. We refer to this strategy as Exhaustive Create Add.

By applying the Exhaustive Create Add to the model of figure 8.2. we have that in the
average of three test sequences applying this strategy, we have that 5 Entity4 instances are created
and all are added to the repository. 4 1

3 Entity3 instances are created of which 4 instances are added
to the repository. 2 1

3 Entity2 instances are created and all are added to the repository. 1 Entity1
instance is created and it is added to the repository. Indeed, it seems like the technique managed
to solve the problem of the creation and adding instances for entities that are in the front of such
a chain.
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Note: In the test sequence of Exhaustive Create Add more Entity3 instances were
created on average, then added to the repository. In the random phase after exhaustively
creating and adding instances, it might be possible that new options for the creation of
entities appear. The finite domains are reconsidered, which potentially could give new
options. When the entities are mutable, it could also be the case that links are changed,
allowing for the creation of more entities. E.g., suppose that we have 4 Entity2 instances
for the model in figure 8.2. Theoretically, two Entity1 instances can be created. However,
if the first created Entity1 instance has 3 Entity2 instances as a target, due to the source
maximum of the association relation it is not possible to create another Entity1 instance.
If the number of target instances of Entity1 is decreased during the test sequence, new
options for the creation of an Entity1 instance could emerge.

8.2.3 Default State Coverage

The default state coverage strategy is implemented by maintaining a list of states, and the number
of times that state has been visited. In the selection of a transition, an arbitrary transition is picked
that would lead to a new state. If no such transition exists (i.e. all transitions would lead to a
state that has already been visited), it will pick the transition leading to a state that has been
visited least often. This is a very appealing strategy since the strategy tries to get the model in
as many different states as possible by avoiding repetition as much as possible. Since the model
is built on a higher abstraction level, we expect IUT to be in a different kind of state as well,
increasing the likelihood that a state can be found in which the IUT does not show the behavior
that we desire. The PyModel tool provides this strategy for us. This strategy is referred to as
Default State Coverage strategy.

8.2.4 State Coverage 1

Remember that in the model program a state has been defined using the state variables instances,
repo, links, highest identifier, all identifiers

Intuitively, when we consider an input Model with an entity called EntityA, and the test
sequence executes the creation of an EntityA instance, adds the instance to the repository, and
finally deletes the newly created instance, we would end up in the initial state again. Since
we make use of highest identifier and all identifiers, this is not the case. In the new
state, the highest identifier will have been increased to 1, and the all identifiers set now
contains identifier 0, since an instance with such identifier existed before. We can thus improve
on the default state coverage strategy and consider arbitrary states s, s′ equal if and only if
the s.instances = s′.instances ∧ s.repo = s′.repo ∧ s.links = s′.links. We will use State
Coverage 1 (SC1) to refer to this strategy.

8.2.5 State Coverage 2

We will now introduce a new state coverage strategy. The strategy makes use of a new notion of
state equivalence. We will first define this concept. Then, we will see that Graph Isomorphism
reduces to the newly defined notion of state equivalence, which shows that determining equivalent
states is a complex problem. Then, we will see how this notion of state equivalence can still be
used in practice. Finally, we will compare the strategy against the State Coverage 1 strategy.
Furthermore, we will see how it performs on the chaining problem.

8.2.5.1 Introducing State Equivalency

One might think that it would be sufficient to leave out highest identifier and all identi-
fiers out of the state variables in comparing states of state coverage. A large part of states,

Testing an Industrial Code Generator With Model-Based Testing 81



CHAPTER 8. APPLICATION OF MBT

however, will allow for traces that are rather similar. Note that the input models puts boundaries
on the number of entities that can be created. Hence, when one would abstract from the identifiers
one could create a model program (although typically much too large for exploration) with a finite
state space. Hence, it makes sense to adapt the notion of state coverage so that we can abstract
from the actual identifiers. It may be good to formally define a notion of equivalent states, so that
we can try to prevent visiting states of which an equivalent state has been seen before.

We will provide an example:

Example 8.2.1. Suppose state1 is:

Instances = {DogInstance1, DogInstance2, OwnerInstance3, OwnerInstance4}

Repo = ∅

Links = {(DogInstance1, owner,OwnerInstance3), (DogInstance1, owner,OwnerInstance4)}

and suppose state2 is:

Instances = {DogInstance5, DogInstance4, OwnerInstance9, OwnerInstance4}

Repo = ∅

Links = {(DogInstance4, owner,OwnerInstance9), (DogInstance4, owner,OwnerInstance4)}

Note that when abstracting from identifiers, state1 and state2 would behave very similarly.
In particular, actions executed on OwnerInstance9 in state2 would correspond to actions per-
formed on OwnerInstance3 in state1 and vice versa. Analogously actions DogInstance4 in
state2 would correspond to actions on DogInstance1 in state1, OwnerInstance4 would corre-
spond to OwnerInstance4 in state1, and finally DogInstance5 in state2 would correspond to
DogInstance4 in state1 and vice versa. Considering the induced transition system of state1,
would be equal to the induced transition system of state2 when the arguments are renamed under
their respective correspondence (i.e. OwnerInstance9, would get renamed to OwnerInstance3,
DogInstance4 would get renamed to Doginstance1 etc..)

We observe some properties desirable for this notion of equivalency:

• Injectivity in Instance Matching: No two instances in state1 should correspond to the same
instance in state2: Suppose it would be allowed that two instances in state1 would correspond
to a single instance in state2, then deleting one of the instances in state1 (leading to state
state1′) would correspond to deleting the instance of state2 (leading to state2′). Now, state1′

still allows for deleting the other instance, whereas the matched instance of state2 no longer
exist in state2′, and therefore corresponding behavior would not induce the same output.

• Surjectivity in Instance Matching: Each instance in state2 should correspond to at least
an instance in state1: Suppose there would be an instance in state2 that would not have
a corresponding instance in state1, then state2 would for example allow for deleting the
corresponding instance, whereas state1 would not have a corresponding behavior.

• Repository containment in instance matching: The allowed traces are also affected by repos-
itory containment of the instances. Suppose an instance i in state1 that is in the repository
is matched to an instance i′ in state2 that is not in the repository. Then performing a delete
action on i in state1 would result in a Success output, whereas performing a delete action on
i′ in state2 would result in an Instance NotInRepository output. Hence, in the matching,
the repository containment should also correspond, so that traces under renaming are equal.
Therefore, we desire that repository containment is also preserved in the instance matching.

• Link matching: Since the links have behavioral consequences due to cascade deletion, we
desire that the links also have a one-to-one correspondence in this notion of equivalent
states. In particular, it would be desirable that (instance x, association name, instance y) ∈
state1.Links ⇐⇒ (instance x′, association name, instance y′) ∈ state2.Links where instance x′

would be the instance in state2 that is matched to instance x and instance y′ would be the
instance in state2 that is matched to instance y.
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Let’s now formally define a notion when states are considered to be equivalent:

Definition 25 (State equivalency). We say that state1 is equivalent to state2, denoted state1 ∼
state2, if and only if

• There exists a bijection φ : state1.Instances→ state2.Instances with x ∈ state1.Repo ⇐⇒
φ(x) ∈ state2.Repo and x.Entity = φ(x).Entity

• We have that for all instances instance x, instance y ∈ state1.Instances

(instance x, association name, instance y) ∈ state1.Links

⇐⇒

(φ(instance x), association name, φ(instance y)) ∈ state2.Links

Having this notion of equivalency could be of interest in the state coverage. We are now able
to divide the state space up into equivalence classes in which the states behave equivalently up to
renaming of identifiers.

Note: It is left to future research to further formalize this notion. It would be of interest
to give the Model Programs LTS semantics, and try to prove that two ‘equivalent states’
are bisimilar under LTS semantics for some relabelling function. This is out of scope of
this work.

Under the assumption that the multiplicities of the entities and associations are bounded, we
have a finite number of equivalence classes. It should however be noted that for non-trivial models,
the number of equivalence classes will be rather large, and reaching state coverage modulo the
defined notion of equivalency does not seem feasible in practice. Nevertheless, if we manage to
encode this notion of equivalency in the state coverage strategy, then state coverage would try to
avoid the states that are equivalent and produce hopefully more interesting test sequences.

8.2.5.2 Graph Isomorphism Reduces to State Equivalency

The provided definition might remind the reader of the definition of Graph Isomorphism. In this
section we will show that the problem of determining whether two graphs are isomorphic can be
reduced to determining whether two states are equivalent. Since the Graph Isomorphism problem
is not known to be tractable (solvable in polynomial time) nor to be NP-Complete, the reduction
will show that it is unlikely that we would be able to come up with an efficient procedure for
determining state equivalency. For the theoretically oriented reader the following section might
be of interest. From a practical point of view, the conclusion is most important.

Definition 26 (Graph Isomorphism). Two directed/undirected graphs G = (V,E) and H =
(W,F ) are isomorphic if there is a bijective function f : V →W such that for all v, w ∈ V :

(v, w) ∈ E ⇐⇒ (f(v), f(w)) ∈ F

We will now show that determining whether undirected graphs are isomorphic can be reduced
to determining state equivalency.

Theorem 8.2.2. Graph isomorphism on undirected graphs reduces to state equivalency.

Proof. It has been proven that the Graph Isomorphism problem reduces to Directed Acyclic Graph
(DAG) isomorphisms as follows [36]: let G = (V,E) be an undirected graph. Now let G′ = (V ′, E′)
where

• V ′ = V ∪E. I.e. each vertex of G will be a vertex in G′ and each edge of G will be a vertex
in G′. To the former, we refer to as ‘regularNode ’, and the latter we refer to as ‘edgeNode ’.
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• E′ = {(x, y) ∈ V × E | x is an endpoint of y}. I.e. for each edge e ∈ E, there is a directed
edge in E′ from the endpoints of e to the corresponding ‘edgeNode’ of e in V ′.

For an example transformation from Graph Isomorphism on an undirected graph to Graph Iso-
morphism on a directed graph, consider the first transformation step in example 8.2.3. We can
conclude, if we would be able to solve the isomorphism problem for the DAGs, we would be able
to solve the Isomorphism Problem for undirected graphs. Interesting to observe is that the type of
DAGs the undirected graphs reduce to, can be reduced to determining state equivalency . Consider
the DMDSL model in figure 8.4.

Figure 8.4: ASOME Model for Graph Isomorphism Reduction

Note: One could wonder why we reduce the isomorphism problem on undirected graph to
state equivalency, instead of reducing the isomorphism problem on DAGs state equivalency.
It turns out that the type of DAGs undirected graphs reduce to, are expressible as state
graphs for a general ASOME model (see figure 8.4). Arbitrary DAGs are not expressible
as state graphs for a general ASOME model. That would make a proof very cumbersome.

Now consider 2 arbitrary undirected graphs G1 = (V1, E2), G2 = (V2, E2) on which we’d
like to determine whether these are isomorphic. We reduce the problem to the DAG Isomor-
phism problem, as described by the reduction transformation. Thus we consider the graphs
G′

1 = (V ′
1 , E′

1), G
′
2 = (V ′

2 , E′
2) with V ′

1 = V1 ∪ E1 and V ′
2 = V2 ∪ E2 and E′

1 = {(x, y) ∈ V1 × E1 |
x is an endpoint of y} and E′

2 = {(x, y) ∈ V2×E2 | x is an endpoint of y}. Now we will reduce the
DAG isomorphism problem of G′

1 and G′
2 to state equivalency. Let state1 and state2 be defined

as follows:

• state1.Instances := V ′
1 (where v.Entity := regularNode for v ∈ V1 and v.Entity :=

edgeNode for v ∈ E1)

• state1.Repo := ∅

• state1.Links := {(x, directedEdge, y) | (x, y) ∈ E′
1}

And

• state2.Instances := V ′
2 (where v.Entity = regularNode for v ∈ V2 and v.Entity :=

edgeNode for v ∈ E2)

• state2.Repo := ∅

• state2.Links := {(x, directedEdge, y) | (x, y) ∈ E′
2}

This is clearly a polynomial time reduction. We will now show that showing state1 ∼ state2 is
equivalent to showing G′

1 and G′
2 are isomorphic:
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• ⇒): Suppose that state1 ∼ state2. Then, we can pick a bijection with φ : state1.Instances→
state2.Instances with x ∈ state1.Repo ⇐⇒ φ(x) ∈ state2.Repo and x.Entity = φ(x).Entity
and

(x, directedEdge, y) ∈ state1.Links

⇐⇒

(φ(x), directedEdge, φ(y)) ∈ state2.Links

We will now show that φ satisfies all requirements as a witness for DAG isomorphism of G′
1

and G′
2

– Since state1.Instances = V ′
1 and state2.Instances = V ′

2 it follows that φ is a bijection
between V ′

1 and V ′
2 .

– We will now show that (x, y) ∈ E′
1 ⇐⇒ (φ(x), φ(y)) ∈ E′

2 is preserved for all x, y ∈ V ′
1 .

Let x, y ∈ V ′
1 be picked arbitrarily. Assume that (x, y) ∈ E′

1. Then by definition of
state1.Links we have that (x, directedEdge, y) ∈ state1.Links. Then by definition
of ∼ it follows that (φ(x), directedEdge, φ(y)) ∈ state2.Links. By set definition of
state2.Links then follows that (φ(x), φ(y)) ∈ E′

2. Now assume that (φ(x), φ(y)) ∈
E′

2. By definition of state2.links we then have that (φ(x), directedEdge, φ(y)) ∈
state2.Links. Since x, y ∈ V ′

1 we have that x, y ∈ state1.Instances and thus by defini-
tion of ∼ it then follows that (x, directedEdge, y) ∈ state1.Links. From set definition
of state1.Links then follows that (x, y) ∈ E′

1.

Hence φ is a bijection that maps V ′
1 to V ′

2 with (v, w) ∈ E′
1 ⇐⇒ (φ(v), φ(w)) ∈ E′

2 for all
v, w ∈ V ′

1 allowing us to conclude that G′
1 and G′

2 are isomorphic.

• ⇐) : Suppose that G′
1 and G′

2 are isomorphic. Then we can pick a bijective function φ :
V ′

1 → V ′
2 such that for all v, w ∈ V ′

1 : (v, w) ∈ E′
1 ⇐⇒ (φ(v), φ(w)) ∈ E′

2. We will show
that φ is also a witness for DAG isomorphism between state1 and state2.

– Since state1.Instances = V ′
1 and state2.Instances = V ′

2 , it follow that φ is a bijection
between state1.Instances and state2.Instances.

– Furthermore, since state1.Repo = ∅ = state2.Repo it follows that for φ the requirement
x ∈ state1.Repo ⇐⇒ φ(x) ∈ state2.Repo is trivially satisfied.

– Since (v, w) ∈ E′
1 ⇐⇒ (φ(v), φ(w)) ∈ E2, from set definition of state1.Links and

state2.Links it follows that

(x, directedEdge, y) ∈ state1.Links

⇐⇒

(φ(x), directedEdge, φ(y)) ∈ state2.Links

is preserved.

– Since ‘edgeNodes’ have 2 incoming arrows, and ‘regularNodes’ do not have incoming
arrows, it follows from (v, w) ∈ E′

1 ⇐⇒ (φ(v), φ(w)) ∈ E2 that ‘regularNodes’ will be
mapped via φ to ‘regularNodes’ and ‘edgeNodes’ will be mapped via φ to ‘edgeNodes’.
Hence, x.Entity = φ(x).Entity will be preserved.

Hence φ is a bijection that maps state1.Instances to state2.Instances with x ∈ state1.Repo ⇐⇒
φ(x) ∈ state2.Repo and x.Entity = φ(x).Entity and all instances instance x, instance y ∈
state1.Instances

(instance x, association name, instance y) ∈ state1.Links

⇐⇒

(φ(instance x), association name, φ(instance y)) ∈ state2.Links

We conclude state1 ∼ state2.
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Since we have proven that the isomorphism problem on undirected graphs reduces to an isomor-
phism problem on a type of DAGs that can be reduced to determining state equivalency for a
DMDSL model, we can conclude that Graph Isomorphism reduces to state equivalency.

Example 8.2.3. Suppose we wish to see if the following two undirected graphs G1 (star shape)
and G2 (circle shape) are isomorphic. Then we would apply the following 2 transformation steps
to reduce the problem to a state equivalency problem.

state1.Instances = {v1, v2, v3, v4, v5, E v1-v3, E v3-v5, E v5-v2, E v2-v4, E v4-v1}

state1.Repo = ∅

state1.Links = {(v1, ‘directedEdge’, E v1-v3), (v3, ‘directedEdge’, E v1-v3), (v3, ‘directedEdge’, E v3-v5),

(v5, ‘directedEdge’, E v3-v5), (v5, ‘directedEdge’, E v5-v2), (v2, ‘directedEdge’, E v5-v2),

(v2, ‘directedEdge’, E v2-v4), (v4, ‘directedEdge’, E v2-v4), (v4, ‘directedEdge’, E v4-v1),

(v1, ‘directedEdge’, E v4-v1)}

state2.Instances = {v1, v2, v3, v4, v5, E v1-v2, E v2-v3, E v3-v4, E v4-v5, E v5-v1}

state2.Repo = ∅

state2.Links = {(v1, ‘directedEdge’, E v1-v2), (v2, ‘directedEdge’, E v1-v2), (v2, ‘directedEdge’, E v2-v3),

(v3, ‘directedEdge’, E v2-v3), (v3, ‘directedEdge’, E v3-v4), (v4, ‘directedEdge’, E v3-v4),

(v4, ‘directedEdge’, E v4-v5), (v5, ‘directedEdge’, E v4-v5), (v5, ‘directedEdge’, E v5-v1),

(v1, ‘directedEdge’, E 5-v1)}

It turns out that it is possible to reduce the graph isomorphism problem to the defined notion
of state equivalency. That means, if we would manage to write an efficient algorithm to determine
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whether two states are equivalent, then we could use this algorithm to solve the graph isomor-
phism problem for two arbitrary undirected graphs. This problem is not known to be solvable in
polynomial time nor to be NP-complete. Therefore, it is unlikely that we would manage to create
an efficient algorithm for checking state equivalency.

8.2.5.3 Application of State Equivalency

The result of the previous subsection seems a bit disappointing. It raises the question whether
the notion of state equivalency is only of interest from a theoretical standpoint. In this subsec-
tion, we will provide a different reduction. We will show that state equivalency also reduces to
Graph Isomorphism on labelled DAGs. This reduction allows us to use the mechanisms that have
been discovered to tackle this problem in practice. In particular, we will make use of a hashing
procedure that has the property that if two graphs have a different hash value, the graphs are not
isomorphic. Using a reduction from state equivalency to graph isomorphism this hashing proce-
dure can be used to exclude that two states are equivalent states.

Now, suppose we wish to make use of the introduced notion of state equivalency in our strategy.
We desire that the enabled transition is picked of which the equivalence class of the resulting state
has been visited least often. We will refer to a state of which no equivalent state has been seen in
the test sequence as a novel state. Note that in a state often many transitions are enabled. Even
with our finitized domains, it is typical to have more than 50 transitions enabled. Each of these
transitions will have a resulting state. Suppose PyModel, discovered in the running sequence so
far only 50 states. This suggests that in the worst case we have to do 50 × 50 comparisons, to
determine which of the possible next states are novel states/corresponding equivalence class has
been visited least often. Fortunately, this does not mean we need to solve for step 50×50 problems
that are at least as hard as 50 × 50 Graph Isomorphism problems.

We have shown that the Graph Isomorphism problem reduces to state equivalency, showing that
finding an efficient state equivalence procedure is not likely. There exists also an easy reduction
from state equivalency to DAG isomorphism on labelled graphs.

Definition 27 (State graph). Let state be a given state of a DMDSL Model Program. Let G =
(V,E) be a DAG, where V = {x | x ∈ state.I}, E = {(x, y) | (x, associationName, y) ∈ state.L},
and labelling function λ(x) = x.EntityName [(x ∈ REPO)?InRepo : NotInRepo]. I.e. the labels
of the nodes encode the entity name of the corresponding instance, and whether the corresponding
instance is in the repository. Then G is the state graph of state

Example 8.2.4. Consider the model in 3.1. Clearly the dynamic semantics of this model allow for
a state state with state.I = {dogInstance0, personInstance1, personInstance2, personInstance3},
state.L = {(dogInstance0, owner, personInstance1), (dogInstance0, owner, personInstance2), (dogInstance0,
owner, personInstance3)}, state.REPO = {personInstance2}. Then the corresponding state
graph looks as follows:
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Proof that DAG isomorphism for state graphs is equivalent to proving state equivalency is
left to the reader. The proof is in fact quite trivial and can be done in a similar style as done
in subsection 8.2.5.2. The result of this reduction is that we can use all existing techniques and
implementations for graph isomorphism on labelled DAGs in determining state equivalency. In
[26] the Weisfeiler-Lehman Graph Isomorphism test is introduced. This procedure can be used to
assign hashes to graphs, such that when graph1 and graph2 are isomorphic then hash(graph1) =
hash(graph2), and when graph1 and graph2 are not isomorphic there are strong guarantees
that hash(graph1) 6= hash(graph2). Hence, such a method can be used to exclude that graphs
are isomorphic, and when applied on state graphs exclude corresponding states would not be
equivalent. Using such a hash function, we can determine for a potential next state that if its hash
value has not been encountered earlier in the trace, we are guaranteed that this potential next state
is a novel state. Given that equal hashes typically won’t occur for graphs that are not isomorphic,
this seems to be a good strategy to get a better state coverage modulo state equivalency. If the
hash function would often give equal hashes on state graphs that are not isomorphic, the result
would be that the strategy would avoid lots of states that are in fact novel states, which still
is not that problematic. Fortunately, this should not happen often in practice. The hashing
procedure has been implemented in the NetworkX python package. The package allows to apply
this procedure also in Directed Acyclic Graphs that are labelled. The package also contains an
exact algorithm for determining Graph Isomorphism.

We propose the following procedure. For all enabled transitions, compute for the resulting state
the hash value of the corresponding state graph. Then, check via a dictionary whether the hash
has been seen before and determine the group of enabled transitions leading to a state of which
the hash has never been seen before (thus leading to a novel state) and pick a random transition
out of the group. If there are no novel states reachable, determine the group of reachable states of
which the corresponding hashes have been visited least often, and pick a random transition from
the group. We will refer to the method of state coverage modulo state equivalency with State
Coverage 2 (SC2).

Figure 8.5: Visualization of State Coverage 2. In the figure transition1 would be the preferred
transition.
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Model
Hash revisits

in SC1
False positives

in SC1
Hash revisits

in SC2
False positives

in SC2
AME1437 11 0 0 0

bench 18 1 0 0
IPCDv2 49 0 2 0
SIRE01 99 0 2 0

TestOptional 120 0 5 0
TM003 73 8 2 0
TM020 85 0 2 0
TM033 12 0 0 0
TM065 17 0 0 0

TM10001 68 0 3 0

Table 8.1: Table indicating the number of hash revisits in generating a test sequence of lenght 250
using SC1 and SC2

8.2.5.4 State Coverage 2 vs. State Coverage 1

One could wonder if the notion of state equivalency introduced in SC2 is really interesting. Per-
haps the notion in which the all identifiers and highest id variables are ignored in state
comparison suffices (SC1), and visiting equivalent states does not happen often in practice. We
apply the following procedure:

In sections 8.4.2 we will introduce a set of test models. Visualizations of these models are
provided in appendix B. We run a single test sequence of transition length 250 using strategy
SC1 and SC2 procedure. In “Hash revisits in SC1” the number of states visited, where for the
corresponding state graph, the hash value was seen earlier in the test sequence. Two states having
the same hash suggests that corresponding states are equivalent states. The hash function does
not guarantee that two states with the same hash are equivalent states. States that have equal
hashes, but are not equivalent states, we will refer to as false positives. We can confirm whether
a false positive occurs using the exact isomorphism algorithm.

As can be seen in table 8.1 in ‘False positives in SC1’ there are not a lot of false positives,
showing that the hashing function works well in determining whether two graphs are isomorphic,
and thus wether two states are equivalent. It is clear that visiting equivalent states happens often
using SC1. Only for TM003 the number of false positives was relatively high. But even for this
model, still, 73 − 8 = 65 of the states visited, were non-novel states. SC2 managed to avoid most
of the equivalent states. Only in rare situations, PyModel needed to take a transition leading
to a state of which an equivalent state was already visited earlier in the sequence. Especially for
smaller models such as TestOptional, the reduction is significant. In both test runs, 250 states were
visited. In SC1 120/250 states were non-novel states, whereas in SC2 only 5/250 were non-novel
states. This shows the strong need for this notion in smaller models.

Analysis on ‘Extensive Model’ We will now run and keep statistics of how many duplicate
states are visited during the execution of a test sequence on the model called ‘Extensive Model’
of figure 8.9. After executing three test sequences of 250 transitions with SC1, we observe that
on average 121 states are visited of which the corresponding hash was already seen earlier in the
trace. What was interesting to observe is that in this model there were lots of false positives.
There were in fact on average 80 false positives. This means that there are actually much fewer
equivalent states visited. There were on average 41 equivalent states visited using SC1. For SC2
we observe that on average 29 states are visited of which the corresponding hash was already seen
earlier in the trace. On average there were 12 false positives, and thus the average number of
equivalent states visited was 17. It is interesting that this specific model gives quite a lot of false
positives. It is expected that some of the induced state graphs that are typical for this kind of
DMDSL model to occur are a type of graph in which the Weisfeiler-Lehman graph hash will give
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equal hashes. Further research is required here.
The linear data (averaged) has been plotted in figure 8.6 We can see that for the SC1 in the

Figure 8.6: Plot of equivalent states visited for a test sequence of size 250, on Extensive Model
with State Coverage 1 and State Coverage 2 strategy.

first 50 transitions, not a lot of duplicate states are visited. For SC2 visiting states with a known
hash, could be postponed to roughly 100 transitions. It is not very surprising that such a section
exists in the beginning, since all states are initially unknown. When more states are visited, it
becomes increasingly more likely that a state is visited of which no equivalent state has been seen
before. Even though this particular model does not seem to be ideal for our procedure, the SC2
still is significantly better than SC1 in revisiting novel states. The growth in visits of equivalent
states visited is also much less steep in SC2 when compared to SC1.

8.2.5.5 Chains of Entities Continued

We will also try to apply SC2 on the model in figure 8.2 three times with a test sequence of 250
transitions. This gives a creation average of 5 Entity4 instances, 5 Entity3 instances, 5 Entity2
instances, and 2 Entity1 instances. All of these instances are also added to the repository. As
a matter of fact, this is the theoretical Create maximum for each of the Entities. In all three
runs, it managed to produce the theoretical maximum. It turns out that the incline of avoiding
equivalent states works very well in exploring the chain example. Also, since creation is done on
arbitrary moments (and not only in a creation phase), the domains of the create actions are more
often finitized, increasing the probability that at some point a successful create action is possible.
The fact that the notion of state equivalence seems to be able to cope with chains in the creation
process, and tries to avoid visiting equivalent states, makes this strategy appealing.

8.2.6 State Coverage 3

It should be noted that SC2 will pick a state it has not seen before. Therefore, it will practically
always take a Create, Update, Delete or Add action, since these will result in modification of the
state variables. The Read action will thus practically never be executed. This seems undesirable
since it is relevant to know if instances that should not be in the repository, are not in it and if
instances that should be there, are in fact there. A simple fix that we can add is to simply add
some of the enabled Read actions to the set containing the actions leading to novel/least visited
states. Since the newly performed action will be chosen from this set, we will have that sometimes
a Read action will occur (and as a result the next state will then be the same state). We will
in this way thus slightly deviate from the State Coverage strategy of reaching as many different
states as possible, but as a result, sometimes execute Read actions.
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Another problem that we can observe is that some actions are overrepresented in the test
sequence due to the high number of parameters that are possible for the specific action. One
could wonder whether it is really more likely for problems to occur in such a function when
more arguments are possible. Furthermore, we finitized the domains, so in practice, some of the
less represented actions in the test sequence might have more possible arguments making the
representation rather arbitrary. Hence, instead, we will give equal priority to each of the actions,
so that at least equal chances are given for the execution of each of the CRUD+A actions. We can
do this by grouping the enabled transitions on the basis of the corresponding action. We randomly
pick a CRUD+A action of which the corresponding group is non-empty. Then randomly pick a
transition out of the corresponding group. In this way, all of the CRUD+A actions will be more
equally represented in the test sequence.

We refer to this strategy in which Read actions are included, and equal priority is given to all
CRUD+A actions as State Coverage 3 (SC3)

8.2.7 State Coverage 4

Finally, when observing the test sequence of SC1,2,3, we observe that typically only Success
output messages occur. This is actually as you would expect since when error output messages
occur, the state variables do not change. We of course also would like to consider behavior that
should induce error messages. A way to cope with this is to consider the State Coverage strategy as
seen in SC2, but every second transition will be a random enabled transition (with equal priority
for each of the enabled CRUD+A actions, as seen in SC3). In this way, we will explore the state
space, but for a significant part of the states discovered, also have a self-loop executed and some
error output message tested. We will refer to this strategy as State Coverage 4 (SC4)

8.2.8 Coverage for output messages

8.2.8.1 Output Coverage

We have distinguished several output messages. To test in an efficient manner whether these
output messages are implemented correctly by the IUT, we can introduce the notion of Output
Coverage. We simply maintain in a dictionary which of the output messages we have already
seen. Then, for all enabled transition we pick a random transition that results in an output
message that is seen least often.

8.2.8.2 Output-Action Coverage

While the proposed strategy might seem tempting, one should be aware that some of the out-
put actions such as Success or Instance NotInRepository are shared by different actions. It is
clear that these actions will have different implementations. The fact that the IUT managed to
produce output x for action y, does not mean that output x will also correctly be produced for
action z (where y 6= z). It, therefore, makes sense to make the output coverage dependent on the
action that is taken. We can change this by using the Action name+output message as key in the
dictionary.

On DMDSL models we can see that these strategies focussing on output are not of practical
relevance. There will be an emphasis on giving different output messages, with as a result that the
model will not really be discovered. The Success output message will be largely under-represented.

8.3 Strategy Analysis

In the previous section, we considered different strategies. We considered Random Strategy,
Exhaustive Strategy, SC3, SC4 to be the most interesting strategies. In this section, we
will analyze the different strategies on a model and point out some of the identified benefits and
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drawbacks of applying them on a large model. Furthermore, we will propose refinements to SC3
called SC3.1 and SC3.2 and to the domain of identifiers. The analysis will happen without actually
executing them on the implementation. In this subsection we only care about the generation of
abstract tests and how the different strategies compare in this.

8.3.1 Bench

We will have a close look at the Bench model in appendix B.2. It is used to perform benchmark
analysis by Capgemini. As a matter of fact, it is a realistic example of a DMDSL model that
could be used by ASML. The exact names are therefore disclosed. As one can observe from the
figure, we have indeed long chains of entities in the figure. E.g., to create an Entity1 instance,
one needs to provide an Entity2 instance, to create an Entity2 instance one needs to provide an
Entity4 instance, etc. This shows that models in practice suffer from the chain issue. We will do a
more careful analysis to see how the different strategies perform on such an extensive model. We
create test sequences of 300 transitions with the different strategies. The spread in the Creation
and Adding of instances is visualized in figure 8.7. This gives a notion to what extent the model
is explored. If some entities are not created or added, some features of the model might not be
tested. The spread in output messages is visualized in figure 8.8. This gives a notion if for all
actions sufficient Success output messages occur, and gives some insight to what extent all other
output messages are covered. The runtime of the strategies is indicated in table 8.2.

Strategy Average runtime
Exhaustive Create/Add 696 sec.

Random 92 sec.
State Coverage 3 159 sec.
State Coverage 4 130 sec.

State Coverage 3.1 230 sec.
State Coverage 3.2 63 sec.

Table 8.2: Runtime of different strategies on B.2.

Figure 8.7: Number of instances created and added split on Entity type.

Random Strategy We observe that the Create action is overrepresented in the Random
Strategy. Many of the Create attempts resulted in an Error output message. This is not
very surprising since the chances are not so high that with the random strategy all requirements
of the Create action will be fulfilled. This also limits the domains of the remaining CRUD+A
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Figure 8.8: Output messages per strategy.

actions. There are, for example, fewer instances that one could add to the repository. As a re-
sult, the Create actions will be over-represented in the set of enabled transitions, and in random
selection of an enabled action the chances are higher a Create action will be picked. We can also
observe that the strategy does not do well in covering the different Entities in the Create and Add
actions. For example, Entity4 is not even created, and thus also not added in the test sequence
due to the chaining problem. The runtime of this strategy is fortunately relatively low.

Exhaustive Create Add We observe that in Exhaustive Create Add fewer Create actions
are done in comparison to random testing, and more of them result in a Success. Furthermore,
we can observe that in Exhaustive Create Add these are better spread out over the entities,
which is preferable. In terms of output messages, it behaves similarly to Random Testing since
after the Create and Add phase it switches to this strategy. It may be undesirable to have specific
phases in which these actions occur. It might actually be desirable to have these actions happen
at arbitrary moments instead. A big downside to this strategy is that the runtime is rather slow.
This is due to the fact that the finitized domains are rather large, after the Create and Add phases.

State Coverage 3 We observe that in SC3, the number of entities created and added is rather
large. Unfortunately, on such a large model this is not properly spread out over the different
Entity types. In, for example, the entity Entity1, the strategy does not manage to add instances
to the repository. We expect it works less well here than in the chain example seen in figure
8.2 because now the Entities are now deletable. As a result, there are more variations of states
possible by adding and removing instances of Entities ‘in the front of the chain’. We can see this in
for example Entity6, which does not require any links at all in the creation, that lots of deletions
and adds are done on this type of instance. We expect that for these large models a much more
extensive testing process with SC 2/3/4 is needed to get better coverage. Furthermore, it should
be noted that almost all output messages are Success output messages since only these lead to
state changes. Fortunately, it is good that the notion of state equivalence does not add a large
burden on the runtime showing that the hashing procedure indeed had the desired effect.
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Proposal State Coverage 3.1: We noticed that even though the SC3 strategy tries to find
a state in which no equivalent states have been seen, it does not evenly spread out the Create and
Add actions due to the fact that the chaining problem still exists on large models in which the
entities are deletable. We, therefore, propose a refinement. In the State Coverage 3.1 strategy,
in the case of a Create/Add action it does not randomly pick a corresponding Enabled transition
but instead, picks the transition that applies it for an Entity seen least often in such an action.

State Coverage 3.1 (SC3.1) We observe in figure 8.7 that the strategy indeed manages to
get a good spread in both the creation and adding of instances of each entity type. Hence, this
refinement helps the SC3 strategy cope with the chain issue. In terms of output messages, it be-
haves very similarly to SC3 as expected. As one would expect, the maintenance of keeping track
of which entity types have been seen least often does put a burden on the runtime. Fortunately,
the runtime is still significantly less than the Exhaustive Create Add strategy, making it very
appealing.

Proposal State Coverage 3.2: What is also problematic in SC3 and SC3.1 is the fact that
no Update action is executed. There are multiple reasons why this occurs, but the most significant
reason is the fact that for many models it is quite hard to take an Update action leading to a state
that is not equivalent to some other state. Even though the result of the Update could lead to a
state that is not unique, it still is important to test whether the change of links happens properly.
We, therefore, propose to add Update actions that have Success as output to the set containing
the actions leading to new/least visited states.

A general issue that has become clear from figure 8.8 is that Instance NotInRepository is
overrepresented in the Read action. This is actually not very surprising since the identifiers are
taken from the all identifiers list as specified in option 1 in 8.1.2. For large test sequences,
this list will get very large, causing an incremental burden on the runtime, where the majority of
the identifiers correspond to instances that either do not exist or are not in the repository. We
resolve this by changing the domain to option 2 instead. As we will use State Coverage 3.2 as
testing procedure in the next section using option 2, it is important to do the analysis using this
new domain.

State Coverage 3.3 (SC3.2) We indeed observe that besides a good spread in both the creation
and adding of instances of each entity type, it now also involves successful executions of the Update
action. Furthermore, now for approximately half of the Read actions, we get a Success, and for
the other half, we get an Instance NotInRepository. The new domain, indeed now makes sure
that we properly test the reading of instances that should be in the repository. Furthermore, since
we limited the domain of identifiers the runtime also significantly improved.

State Coverage 4 The strategy performs similarly to the original SC3 in the spread of creation
and adding of instances, which unfortunately is not very good. Since every second transition taken
is a random action, we do now consider all the error outputs. Furthermore, it even managed to
(successfully!) execute Update actions (without the refinement proposed in SC3.2), which were
missing in the SC3 strategy. Since every second transition taken is a random transition, the run-
time is a bit less than SC3.

8.4 Testing a Model

We will now put MBT into practice on a model, and start with actually testing some generated
code. We will consider the following manually crafted model called Extensive Model. This model
is visualized in figure 8.9
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Figure 8.9: Visualization of Extensive Model.

The model contains entities that are deletable, undeletable, undestructable, mutable, im-
mutable, uneditable. All entities are constructable since we are working under the context of
a single domain-interface. The modeling constraints do not allow modeling an entity that is not
unconstructable if there is not a second domain interface in which it is actually constructable. The
model has several association relations all with source cascade deletion enabled. There are several
variations of this in the model. We have a mandatory association from Entity1 to Entity3. We
have an optional association from Entity1 to Entity4, and we have a required association relation
from Entity1 to Entity2 that might contain more than 1 target element. There is also an associa-
tion source maximum of 2 for the association between Entity1 and Entity3. The remainder of the
association relations has an association source maximum of 1.

8.4.1 Finding Issues

Execution command: We will execute the test command on the Pymodel Model by making a
call pmt -n 200 -i stepper Model Translation to start the PyModel tester. In particular, we
make a call to pmt (PyModel Tester) with argument -n 200 indicating that we would like to take
200 transitions for the test sequence, and argument -i stepper indicating that pmt should use
the stepper.py file to communicate with the IUT.

First time running execution command gives:

Create (("Entity4", ()), ’instance0 ’, 0) / ’{Success}’
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Create (("Entity3", ("instance1 ,entity3entity4Assoc ,instance0" , "
instance1 ,entity3entity4Assoc ,instance0" )), ’instance1 ’, 1) / ’{
Success}’

Create (("Entity3", ("entity3entity4Assoc ,instance0" , "
entity3entity4Assoc ,instance0", "entity3entity4Assoc ,instance0")
), ’instance2 ’, 2) / ’{Association_SourceMaximum ,
Association_TargetMaximum}’

0. Failure at step 3, there is a problem. implementation gave
Success where {Association_SourceMaximum ,
Association_TargetMaximum} was expected

In the third step, the tool tries to create an instance of Entity3, with as targets for the en-
tity3entity4 association, three times instance0. According to the model, this would be incor-
rect. After the second step instance0 has two incoming entity3entity4 links. If the third step
would be successful, three extra entity3entity4 links would have instance0 as a target. The
entity3entity4 association allows an arbitrary instance of Entity4 to have at most two incom-
ing entity3entity4 links. Hence, the Association SourceMaximum applies. Furthermore, the
creation of instance2 would result in three outgoing links from instance2. This is not allowed
by the association relation that states that it needs to have at most 2 outgoing links. Hence,
Association TargetMaximum applies. The implementation does not implement these checks and
returns Success. This bug is not very surprising, since we could not map these output messages
since these are not statically enforced. It is good to see that so quickly the MBT tool found this
problem. We conclude: The Association TargetMaximum and Association SourceMaximum
are not always enforced.

Let’s see if running the command again, points out a different bug. Second time running
execution command gives:

Create (("Entity4", ()), ’instance0 ’, 0) / ’{Success}’
Create (("Entity2", ()), ’instance1 ’, 1) / ’{

Entity_MissingAssociation , Association_TargetMinimum}’
Create (("Entity2", ("instance1 ,entity2entity4Assoc ,instance0" ,)), ’

instance1 ’, 1) / ’{Success}’
Create (("Entity3", ()), ’instance2 ’, 2) / ’{

Entity_MissingAssociation , Association_TargetMinimum}’

0. Failure at step 4, there is a problem. implementation gave
Success where {Entity_MissingAssociation ,
Association_TargetMinimum} was expected

In step 3, an attempt is made to create an instance of Entity3, called instance2 without any outgo-
ing links. The model specified there should be precisely two entity3entity4Assoc links. Hence,
we would violate the minimum number of associations, and thus Association TargetMinimum
applies. Furthermore, a required association is missing, and thus Entity MissingAssociation
applies. Such test sequences require one to think more carefully about the output messages En-
tity MissingAssociation and Association TargetMinimum. In practice, we see that when the
former output message appears, the latter output appears as well. One could wonder whether
the Entity MissingAssociation is thus in fact redundant. Indeed, analysis of the formulas
confirms this. We conclude: Entity MissingAssociation implies Association TargetMinimum
making Entity MissingAssociation redundant. Furthermore, Association TargetMinimum is not
always enforced.

Let’s see if running the command again, points out a different bug. Third time running
execution command gives:

96 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 8. APPLICATION OF MBT

Create (("Entity1", ()), ’instance0 ’, 0) / ’{
Association_TargetMinimum , Entity_MissingAssociation}’

Create (("Entity4", ()), ’instance0 ’, 0) / ’{Success}’
Create (("Entity1", ()), ’instance1 ’, 1) / ’{

Association_TargetMinimum , Entity_MissingAssociation}’
Create (("Entity4", ()), ’instance1 ’, 1) / ’{Success}’
Create (("Entity2", ("instance2 ,entity2entity4Assoc ,instance1" ,)), ’

instance2 ’, 2) / ’{Success}’
Add("instance0" ,) / ’{Success}’
Read(0,) / ’{Success}’
Delete (2,) / ’{Instance_NotInRepository ,

Entity_DeleteOnUndestructable}’
Add("instance2" ,) / ’{Link_TargetNotInRepository}’

0. Failure at step 9, there is a problem. implementation gave
Success where {Link_TargetNotInRepository} was expecte d

When trying to add instance2 to the repository, the implementation does not complain. How-
ever, instance2 has as entity2entity4Assoc target instance1. This instance was never added
to the repository. The semantics does not allow for adding instances to the repository that have a
link to an instance that is not in the repository. We conclude: The Link TargetNotInRepository
is not always enforced.

It is now much harder to find traces that induce different kinds of bugs. We are aware that the
above issues exist, but we can unfortunately not instantly solve these (this is also not really our task
as a tester). To continue the testing process, we can avoid traces containing Link TargetNotIn-
Repository as output for the Add operation and Entity MissingAssociation, Association -
TargetMinimum, Association SourceMaximum, Association TargetMaximum as output for the
Create operation. We can do this by specifying in the guard of corresponding action that it is
disabled if one of the above messages will be output of executing the action.

Let’s see if running the command again, points out a different bug. Fourth time running
execution command gives:

Create (("Entity4", ()), ’instance0 ’, 0) / ’{Success}’
Create (("Entity2", ("instance1 ,entity2entity4Assoc ,instance0" ,)), ’

instance1 ’, 1) / ’{Success}’
Create (("Entity4", ()), ’instance2 ’, 2) / ’{Success}’
Add("instance2" ,) / ’{Success}’
Read(2,) / ’{Success}’
Read(0,) / ’{Instance_NotInRepository}’
Create (("Entity2", ("instance3 ,entity2entity4Assoc ,instance2" ,)), ’

instance3 ’, 3) / ’{Success}’
Delete (2,) / ’{Entity_DeleteOnUndestructable}’

0. Failure at step 8, there is a problem. implementation gave
Success where {Entity_DeleteOnUndestructable} was expecte d

We observe that something went wrong with the deletion using identifier 2. This is the identifier of
instance2, which is of type Entity4. PyModel indicates that Entity DeleteOnUndestructable
is expected. Entity4 is, however, destructable. ‘Why is this happening?’ one might wonder.
Note that instance3 was successfully created with instance2 as a target instance. Now, when
deleting instance2, we have that due to source cascade deletion the instance3 gets deleted. This
instance is in fact undeletable. It turns out that in this way it is possible to delete instances that
are undeletable, even though we thought this would not be possible within the context of a single
domain-interface. The semantic representation of deletability as a boolean value, as done in the
semantics in the work of Derasari is thus not right. We conclude: There is in fact a difference
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between undestructable and undeletable within the context of a single domain-interface. Either
the semantics need to be adjusted, or models where undeletable entities that have an outgoing
association with source-cascade deletion enabled should be rejected by the OCL constraints. The
latter happens for entities that are undestructable.

Let’s see if running the command again, points out a different bug. Fifth time running execution
command gives:

Create (("Entity5", ()), ’instance0 ’, 0) / ’{Success}’
Create (("Entity5", ()), ’instance1 ’, 1) / ’{Success}’
Create (("Entity5", ()), ’instance2 ’, 2) / ’{

Entity_MultiplicityMaximum}’
0. Failure at step 3, there is a problem. implementation gave

Success where {Entity_MultiplicityMaximum} was expecte d

In this trace, two instances of Entity5 are created. When an attempt is made to create a third
instance of Entity5, the implementation gives a Success where we would expect an Entity Mul-
tiplicityMaximum. We conclude: The implementation does not respect the maximum multiplicity
boundary.

If we also avoid traces that output Entity MultiplicityMaximum of the Create action, and
Entity Undestructable for the Delete action, we sometimes finish without problems. However,
when generating a test sequence multiple times, it is also be pointed out that Association -
TargetMinimum, Association TargetMaximum, Association SourceMaximum, and Link Tar-
getNotInRepository are not enforced on the Update operation. When also avoiding traces con-
taining these output messages for the Update operation, PyModel is able to successfully execute
the tests.

Most of the issues shown here are due to the fact that the constraints specified in the model
are simply not enforced in the executable code. While these kinds of issues are not the type of
bugs where the true power of MBT lies, the methodology still provided a structured approach
in finding issues in code of which the exact workings is unknown. After studying the code and
talking to the developers we conclude from the above problems the following set of issues:

• The Association TargetMaximum is not enforced for association target multiplicity > 1 on
both the Create and Update action.

• The Association SourceMaximum is not enforced on both the Create and Update action.

• Association TargetMinimum is not enforced for association target multiplicity > 1 on both
the Create and Update action.

• Entity MissingAssociation implies Association TargetMinimum, making it a redundant
output message.

• Link TargetNotInRepository is not enforced on both the Add and Update action.

• There is a distinction between an instance that is undeletable and undestructable in the
context of a single domain interface, even though the semantics do not make this distinction.

• Entity MultiplicityMaximum is not enforced on the Create action.

8.4.2 Applying PyModel on Capgemini Test Models

We will now use PyModel to test the generated code of the test models developed by Capgemini.
Since we have identified the generated code suffers from mostly issues when the preconditions of
actions are not satisfied, we will now focus on testing if the code conforms to the specification
for behavior in which the preconditions are not violated. In other words, the behavior conforms,
if the programmer uses the generated code as intended. This is still very interesting. It should
provide confidence in things as

98 Testing an Industrial Code Generator With Model-Based Testing



CHAPTER 8. APPLICATION OF MBT

• Whether the implementation implements source cascade deletion in all situations properly.

• Whether instances that should be in the repository, are actually in the repository.

• Whether the Update action works properly, and it is respected by source cascade deletion

• etc.

The strategy that tests this behavior properly is the State Coverage 3.2 strategy. Except for
the Read action, typically all actions will have Success as output since these induce state changes.

Note: Initially no hash is in the dictionary, and therefore it is not uncommon that the first
action produces output different from Success. Furthermore, in rare cases, it is possible
that all enabled transitions lead to only non-novel states. In such cases, it could also be
that output different from Success is produced. Since Read actions are additionally added,
these can also give output different from Success.

In table 8.3, a large number of the test models used by Capgemini are listed. These are all
adjusted (removal of data attributes, removal of specialization relations, making all multiplicities
finite) so that they are covered by the formal semantics we use, and we can thus apply our
MBT approach. These test models all have some interesting aspects. Some information about
these models is listed in the table. Furthermore, in appendix B, these test models are visualized.
Unfortunately, since we only cover a subset of the semantics, and we restrict ourselves to reference-
based repositories with only intraprocess communication, some of the models show their feature
of interest mostly in aspects not covered. Nevertheless, they touch on different aspects of the
semantics that are covered, making them an interesting set of models to apply the MBT approach
on.

Inspired by #entities #constr. #mut. #delet. #assoc. shape figure
AME1437 5 5 2 4 3 3-outgoing B.1

Bench 12 12 10 12 11
Long chain
& cluttered

B.2

IPCDv2 4 4 2 4 3 Zig-zag B.3
SIRE01 4 4 2 4 3 Zig-zag B.4
TM003 5 5 2 4 4 Diamond B.6
TM020 4 4 0 4 4 Diamond B.7
TM033 7 7 0 7 6 Pyramid B.8
TM065 7 7 0 6 7 Saucepan/Square B.9

TM10001 5 5 2 5 4 Small chain B.10

Table 8.3: Summary of the properties of the test models.

We will explore each of the listed test models. We will run test sequences of different sizes so
that for each entity type at least one instance is created and added to the repository (ideally more
than 1). In this way, we have notion if the data model has been discovered to a sufficient depth.
Furthermore, for each Action, we will list the number of actions taken.
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Experiment 1

Test Model: AME1437

Testing Strategy: State Coverage
3.2

Number of transitions: 300

Execution Time: 59.86 seconds

Number of instances created per entity:
EntityA: 18, EntityB: 18, EntityC: 18,
EntityD: 19, EntityChainStart: 4

Number of instances added per entity:
EntityA: 13, EntityB: 15, EntityC: 16,
EntityD: 16, EntityChainStart: 4

Action output:

– Success: Create 77, Read 30,
Update 37, Delete 52, Add 64

– Instance NotInRepository:
Read 40

Generated code passes: YES

Experiment 2

Test Model: Bench

Testing Strategy: State Coverage 3.2

Number of transitions: 500

Execution Time: 149.37 seconds

Number of instances created per entity: Entity1:
7, Entity2: 10, Entity3: 10, Entity4: 10, En-
tity5: 10, Entity6: 10, Entity7: 10, Entity8: 10,
Entity9: 10, Entity10: 10, Entity11: 10

Number of instances added per entity: Entity1:
2, Entity2: 6, Entity3: 10, Entity4: 6, Entity5:
9, Entity6: 10, Entity7: 9, Entity8: 9, Entity9:
8, Entity10: 8

Action output:

– Success: Create 116, Read 59, Update
109, Delete 66, Add 86

– Instance NotInRepository: Read 63

– Association TargetMinimum: Create: 1

– Entity MissingAssociation: Create 1

Generated code passes: YES

Experiment 3

Test Model: IPCDv2

Testing Strategy: State Coverage 3.2

Number of transitions: 300

Execution Time: 22.66 seconds

Number of instances created per entity: En-
tityA1: 29, EntityA2: 6, EntityB1: 9, En-
tityB2: 27

Number of instances added per entity: En-
tityA1 26, EntityA2 3, EntityB1 3, Enti-
tyB2 27

Action output:

– Success: Create: 71, Read: 41, Up-
date; 45, Delete: 52, Add: 59

– Instance NotInRepository: Read:
31

– Association TargetMinimum: Cre-
ate: 1

– Entity MissingAssociation: Cre-
ate: 1

Generated code passes: YES

Experiment 4

Test Model: SIRE01

Testing Strategy: State Coverage 3.2

Number of transitions: 300

Execution Time: 35.67 seconds

Number of instances created per entity: En-
tityA1: 24, EntityA2: 22, EntityB1: 22,
EntityB2: 23

Number of instances added per entity: En-
tityA1: 21, EntityA2: 13, EntityB1: 5, En-
tityB2: 21

Action output:

– Success: Create: 91, Read: 38, Up-
date: 42, Delete: 48, Add: 60

– Instance NotInRepository: Read:
20

– Association TargetMinimum: Cre-
ate: 1

– Entity MissingAssociation: Cre-
ate: 1

Generated code passes: YES
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Experiment 5

Test Model: TestOptional

Testing Strategy: State Coverage 3.2

Number of transitions: 300

Execution Time: 61.25 seconds

Number of instances created per entity: Entity1:
35, Entity2: 31

Number of instances added per entity: Entity1: 30,
Entity2: 29

Action output:

– Success: Create: 66, Read: 57, Update: 0,
Delete: 47, Add: 59

– Instance NotInRepository: Read: 64,
Delete: 1

– Association TargetMinimum: Create: 1

– Entity MissingAssociation: Create: 1

– Instance AlreadyInRepository: Add: 1

– Entity UpdateImmutableType: Update: 3

– Association TargetMaximum: Create: 1

– Association SourceMaximum: Create: 1

Generated code passes: YES

Experiment 6

Test Model: TM003

Testing Strategy: State Coverage
3.2

Number of transitions: 300

Execution Time: 76.16 seconds

Number of instances created per entity:
Entity1: 22, Entity2: 21, Entity3: 21,
Entity4: 20, Entity5: 4

Number of instances added per entity:
Entity1: 20, Entity2: 18, Entity3: 17,
Entity4: 5, Entity5: 4

Action output:

– Success: Create: 88, Read: 30,
Update: 54, Delete: 36, Add: 64

– Instance NotInRepository:
Read: 27

– Entity UpdateImmutableType:
Update: 3

Generated code passes: YES

Experiment 7

Test Model: TM020

Testing Strategy: State Coverage 3.2

Number of transitions: 300

Execution Time: 45.75 seconds

Number of instances created per entity: En-
tity1: 26, Entity2: 25, Entity3: 24, Entity4:
22

Number of instances added per entity: En-
tity1: 23, Entity2: 16, Entity3: 17, Entity4:
6

Action output:

– Success: Create: 97, Read: 45, Update:
0, Delete: 48, Add: 62

– Instance NotInRepository: Read: 46

– Entity UpdateImmutableType: Update:
1

– Association TargetMinimum: Create: 1

– Entity MissingAssociation: Create: 1

Generated code passes: YES

Experiment 8

Test Model: TM033

Testing Strategy: State Coverage 3.2

Number of transitions: 400

Execution Time: 61.83 seconds

Number of instances created per entity: En-
tity1: 19, Entity2: 19, Entity3: 18, Entity4:
18, Entity5: 18, Entity6: 17, Entity7: 20

Number of instances added per entity: En-
tity1: 19, Entity2: 16, Entity3: 14, Entity4
9, Entity5: 9, Entity6: 8, Entity7: 18

Action output:

– Success: Create: 92, Read: 41, Up-
date: 21, Delete: 49, Add: 64

– Instance NotInRepository: Read:
32

– Association TargetMinimum: Cre-
ate: 1

– Entity MissingAssociation: Cre-
ate: 1

Generated code passes: YES
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Experiment 8

Test Model: TM065

Testing Strategy: State Coverage 3.2

Number of transitions: 600

Execution Time: 424.19 seconds

Number of instances created per entity: Entity1:
47, Entity2: 48, Entity3: 16, Entity4: 48, En-
tity4B: 13, Entity6: 5 , Entity7: 7

Number of instances added per entity: Entity1:
45, Entity2: 33, Entity3: 7, Entity4: 33, En-
tity4B: 2, Entity6: 5 , Entity7: 7

Action output:

– Success: Create: 184, Read: 102, Update:
0, Delete: 96, Add: 132

– Instance NotInRepository: Read: 81,
Delete: 1

– Instance AlreadyInRepository: Add: 2

– Association TargetMinimum: Create: 2

– Entity MissingAssociation: Create: 2

Generated code passes: YES

Experiment 9

Test Model: TM10001

Testing Strategy: State Coverage 3.2

Number of transitions: 300

Execution Time: 43.85 seconds

Number of instances created per entity: En-
tityA0 19:, EntityA1: 18, EntityA2: 15,
EntityB1: 19, EntityB2: 21

Number of instances added per entity: En-
tityA0: 19, EntityA1: 14, EntityA2: 8, En-
tityB1: 5, EntityB2: 18

Action output:

– Success: Create: 92, Read: 41, Up-
date: 21, Delete: 49, Add: 64

– Instance NotInRepository: Read:
32

– Association TargetMinimum: Cre-
ate: 1

– Entity MissingAssociation: Cre-
ate: 1

Generated code passes: YES

All experiments passed. The result is not surprising since the code generator is a mature
code generator that is in use for approximately five years. It would be of interest to see when
more peculiar features are used if the code generator still works correctly. E.g., the usage of
multiple domain interfaces, customized service realizations, and code generation for interprocess
communication. This has been left out of scope.

8.5 Discussion

We have shown different strategies to test DMDSL Models. It turned out that it is not easy to
create good strategies. An analysis is necessary to point out deficiencies of strategies. We have
seen that strategies can perform well for a certain kind of model, and less well on a different kind
of model. For example, the SC3 strategy worked well on the chain issue in 8.2 but not so well
on the issue in figure 8.9. One could try to fine-tune the strategy to a specific type of model,
but still, it is hard to draw general conclusions about the testing strategy. The creation, fine-
tuning, and analysis of strategies cost quite some time and effort. It is not easy to assess whether
sufficient analysis is done. It is also hard to get a good notion of the types of traces it produces,
and it requires research to investigate why the strategy induces certain behavior. It may depend
on your testing goal which strategy is appropriate. Sometimes, a combination of strategies might
actually be a good idea. There are uncountably many ideas possible in the creation of these testing
strategies. When the language or test models are changed, the strategies and analysis should be
reconsidered. At some point, this would open the debate to which extent MBT is still contributing
to a testing procedure that is less labor-intensive than writing manual unit tests.

We have seen that MBT was helpful in pointing out some of the issues that happen in the
translation process. The bugs discovered happened mostly when the pre-conditions of the Ac-
tion calls were not satisfied. We, therefore, finished by testing the test models with the State
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Coverage 3.2 strategy to see if the generated code does conform to the specification and if the
preconditions of the action calls are satisfied. All experiments passed. While this is not a proof
of the absence of bugs, it does provide us with more confidence that the code generator works
correctly under this assumption.
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Conclusions and Future Work

We will now conclude our work by answering the research questions, and then discuss future work.

9.1 Answers to Research Questions

RQ1. How is Model-Based Testing applied to improve the testing of code generators? Based on
the discussion of existing techniques, MBT can be considered an appealing strategy in the
testing of code generators. We have seen that MBT is able to generate testcases and their
oracles automatically. The techniques of MBT have the potential for an extensive testing
procedure. Not only in the generation of test models, but also in testing whether a test model
is correctly translated, MBT can be applied. The latter we have shown extensively in this
work in the context of the DMDSL language. By using MBT we tested whether generated
code of a test model behaves according to the semantics of the model. The architecture of
applying MBT in this context was visualized and addressed in chapter 4.

RQ2. How to assess which Model-Based Testing tool is suitable for a code generator? We have
proposed a practical procedure in the selection of an MBT tool. The procedure involved
identifying the modeling paradigm of the test models, identifying which formal notations
exist for this paradigm, and researching which formalism captures the dynamic semantics
of the test models in the best manner. It also involved the investigation of the underlying
theory and notation more carefully to identify whether it is possible to capture the dynamic
semantics on the desired abstraction level. The step involved encoding a small model in
the specification language of Model-Based Testing tools that rely on the selected formalism,
to see whether the specification language is sufficiently expressive and whether the Model-
Based Testing tool offered sufficient features. Furthermore, experimentation was needed to
get a notion if the tool is powerful enough to explore a test model.

RQ2.1 Which Model-Based Testing tool is suitable for the problem setting? We have identi-
fied that in the context of the DMDSL language, PyModel is an MBT tool that can
be used to test the DMDSL code generator. This tool allows encoding the model in
Python. Since, some of the DMDSL actions have quite some complexity in their ex-
ecution semantics, it turned out that expressing these in the Python language was
very convenient. Furthermore, PyModel allowed for specifying state-dependent finite
domains, which was very useful in our context where sensible arguments for the opera-
tions are dependent on the state variables. We also considered the Axini and TorXakis
tools. Both of these tools relied on the LTS/STS formalism which is a transition-based
paradigm. We saw that using locations did not contribute in specifying DMDSL models
in a sensible manner. Furthermore, we figured that Axini was not sufficiently expressive
to encode DMDSL models properly. We saw that TorXakis was sufficiently expressive,
however due to the underlying programming language, some of the operations could not
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be encoded in an efficient manner. Since a constraint solver runs in the background,
this put a burden on the tool that made exploration of the translated DMDSL models
in practice not feasible.

RQ3 How to apply a given Model-Based Testing tool to a code generator? To use PyModel to test
whether test models are correctly translated, we needed to to be able to express these test
models as a PyModel Model.

RQ3.1 How to make test models compatible with a Model-Based Testing tool? We answered
this question by expressing how the AST constructs of DMDSL and dynamic semantics
of a DMDSL test model can be translated into a specification language supported by
an MBT tool, the PyModel tool in particular. A model-to-text transformation from
DMDSL models to a PyModel specification has been written so that this can be done
automatically.

To continue with answering RQ3, we used PyModel to generate test sequences using the
PyModel model of a DMDSL test model as input. To manipulate how PyModel generates
the test sequences, we created different testing strategies. We saw how these could be written
in such a way that the tool applies Create operations on all entities, and tries to Add instances
of each Entity type to the repository. If the test sequence manages to reach both goals, this
gave some guarantee that the DMDSL model is explored until sufficient depth.

RQ3.2 How to create an adapter that can apply abstract test cases to generated code? To
apply these abstract test cases on generated code, we created an adaptor for DMDSL
code. By generating the adaptor for the provided DMDSL test model, we managed
to connect the adaptor to the correct interfaces, making the adaptor able to translate
abstract actions to concrete actions. Furthermore, the adaptor related concrete output
messages to corresponding abstract output actions. Using the adaptor, the MBT tool
PyModel was able to apply its abstract test cases on the IUT, and was able to decide
on a verdict of the test cases

RQ4 What are the benefits and drawbacks of applying Model-Based Testing on a code generator
in an industrial context? We can now answer this question by listing the benefits and
drawbacks encountered:

+ Forces defining semantics explicitly: The process of applying MBT started off by dis-
cussing the semantics of the DMDSL language. It turned out that it was sometimes
rather hard to express what aspects of a DMDSL model are supposed to mean, and
even misconceptions among employees existed in that regard. The fact that applying
MBT requires formalizing the semantics can be rather beneficial. We have seen in
section 8.4.1 that many of the identified issues are actually a result of not enforcing
the constraints at runtime. If the semantics were properly defined from the beginning,
and MBT would have been applied, these could not have been unwillingly neglected.
Before the software would have gone into production, the MBT tool would have pointed
this out. Implementing these constraint checks afterwards is not easy. In fact, users of
the generated code may in fact now rely on the fact that multiplicity checking is not
enforced. Hence, if it would be changed post-factum, it might break code of the users.
This problem is in fact an argument for applying MBT straight from the beginning of
the implementation of a code generator.

- Translating models to a different specification language is hard: We observed that
expressing the semantics of a DMDSL model required thoughts on which parts of the
semantics of these models should be covered in the translation, and how to express
them in a different specification language. In the context of PyModel, it even required
creativity on the finitization of the domains of the actions.
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+ Allows for very extensive testing: We observed that if the MBT architecture has been
created, it is possible to generate test cases for arbitrary test models without any mental
effort. Furthermore, it is possible to generate a large number of tests and their oracles
in a short time period.

- Guiding an MBT tool in generating test sequences is hard: We observed that to explore
DMDSL models properly, in order to generate interesting test cases, a specialized strat-
egy needed to be created. We saw how difficult it was to come up with strategies, and
how drawing general conclusions turned out to be rather hard. A strategy may perform
well on a certain kind of model but perform not so well on a different kind of model.
The creation and analysis of strategies cost some real effort. If the test strategies are
not general it might be the case that when new test models are created or the language
is changed, the strategies need to be adapted and analysis should again take place. If
the strategies are really general, the test sequences produced might be of less interests.

9.2 Future Directions and Conclusion

This thesis showed a structural approach to testing an industrial code generator using MBT. The
aspect that is not researched in this work is the generation of test models and integration in the
testing procedure. Currently the creation of test models requires creativity from the tester. It is
hard to manually get a good coverage of the modeling language, so that all transformation steps
of the code generator are properly tested. An interesting approach is to take Model-Based Testing
one step further and investigate the automatic generation of test models using the meta-model of
the input language. There has already been research in this area, but it would be interesting to
integrate this technique in the proposed MBT approach.

In the context of the DMDSL language, it is of interest to extend the formal semantics so that
domain interfaces are addressed in the formal semantics. Code generation using multiple domain
interfaces is not extensively tested by Capgemini. During regular meetings with Wilbert Alberts,
Niels Brouwers, and Ivan Kurtev, it has become clear that it is quite easy to come up with DMDSL
models, having multiple domain interfaces, of which it is actually unclear what the corresponding
behavior should be. Sometimes, the generated code was even uncompilable. The fact that some
obscure models lead to uncompilable code shows that also in the context of the DMDSL language,
the automatic generation of test models is an important research field.

In the work of Derasari, the dynamic semantics of DMDSL are checked for preserving Reposi-
tory Consistency using the Alloy tool. The fact that Alloy is not able to provide a counterexample
does not prove that the semantics are sound with respect to model consistency. Alloy relies on
the small-scope hypothesis. It would be of interest to mathematically prove that the semantics are
sound with respect to model consistency. By proving that model consistency is respected for all
possible initial states (Base), and showing that for an arbitrary state that respects model consis-
tency, all outgoing transitions lead to a state that preserves model consistency (Step), one would
potentially be able to prove inductively that the semantics are sound w.r.t. model consistency.

We have seen that MBT could be a valuable tool to test code generators. Even when applying
MBT post-factum we managed to find some issues for a code generator that is mature. We expect
that when MBT is applied directly from the beginning of the development process, it will be a very
valuable tool in preventing bugs from an early stage. Further research is required to determine
whether the costs of applying MBT is economically beneficial. Analysis needs to be done on
the time employees of Capgemini spend on the testing process, and how much time is needed to
apply MBT. Furthermore, research is required to find out what bugs could have been prevented
if MBT was applied from the beginning, by for example testing an earlier version of the tool.
Research could be done to determine what the ‘cost’ of these bugs are to answer the question
whether applying MBT is sensible from an economic perspective. This is not an easy analysis.
Answering this question is out of scope for this thesis, but is of interest for a further study to
better understand the benefits and drawbacks of testing a code generator in an industrial context.
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Appendix A

TorXakis

A.1 Model Translation

Figure A.1: Simple Model used for the TorXakis transformation in listing A.1

CHANDEF Channels ::=
CreateInput :: CreateOperation ;
ReadInput :: ReadOperation ;
DeleteInput :: DeleteOperation ;
AddInput :: AddOperation ;
Output:: OutputMessage

ENDDEF

TYPEDEF
Multiplicity ::= Tuple {min :: Int; max :: Int }

ENDDEF

TYPEDEF
AssociationEndProperty ::= AssociationEndProp {cascade :: Bool ;

multiplicity :: Multiplicity }
ENDDEF

TYPEDEF
Association ::= Assoc {source :: Entity; associationName ::

ValidAssociationName; target :: Entity; sproperty ::
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AssociationEndProperty; tproperty :: AssociationEndProperty }
ENDDEF

TYPEDEF
AssociationList ::= Nil | Cons { hd :: Association; tl ::

AssociationList }
ENDDEF

TYPEDEF
InstanceList ::= Nil | Cons { hd :: Instance; tl :: InstanceList }

ENDDEF

TYPEDEF
LinkList ::= Nil | Cons { hd :: Link; tl :: LinkList }

ENDDEF

TYPEDEF
EntityList ::= Nil | Cons { hd :: Entity; tl :: EntityList }

ENDDEF

TYPEDEF
Entity ::= Ent {enityName :: ValidEntityName; isConstructable ::

Bool; isMutable :: Bool; isDeletable :: Bool; multiplicity ::
Multiplicity }

ENDDEF

TYPEDEF
Link ::= Triple { source :: Instance; associationName ::

ValidAssociationName; target :: Instance }
ENDDEF

TYPEDEF
Instance ::= Instance { entityName :: ValidEntityName; id :: Int }

ENDDEF

TYPEDEF
CreateOperation ::= Create {entityName :: ValidEntityName; id ::

Int}
ENDDEF

TYPEDEF
ReadOperation ::= Read{id :: Int }

ENDDEF

TYPEDEF
DeleteOperation ::= Delete {id :: Int }

ENDDEF

TYPEDEF
AddOperation ::= Add {instance :: Instance }

ENDDEF
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TYPEDEF
LinkTarget ::= LinkTarget{association :: Association; target ::

Instance}
ENDDEF

TYPEDEF
LinkTargetList ::= Nil | Cons{hd :: LinkTarget; tl ::

LinkTargetList }
ENDDEF

TYPEDEF
OutputMessage ::= Success | Entity_MultiplicityMaximum |

Entity_MultiplicityMinimum | Entity_Unconstructable |
Entity_Immutable | Entity_Undestructable |
Entity_UnexpectedAssociation | Entity_MissingAssociation |
Association_SourceMaximum | Association_TargetMaximum |
Association_TargetMinimum | Link_TargetNotInRepository |
Instance_NotInRepository | Instance_AlreadyInRepositor y

ENDDEF

TYPEDEF
ValidEntityName ::= Dog | Person

ENDDEF

TYPEDEF
ValidAssociationName ::= Aowner

ENDDEF

CONSTDEF
dog :: Entity ::= Ent(Dog , True , False , False , Tuple (0,6)) ;
person :: Entity ::= Ent(Person , True , False , True , Tuple (0,8) )

ENDDEF

CONSTDEF
associationsGlobal :: AssociationList ::= Cons(Assoc (

getEntityByEntityName(Dog), Aowner , getEntityByEntityName (
Person), AssociationEndProp(True , Tuple (0,1)) ,
AssociationEndProp(False , Tuple (1,1))), Nil )

ENDDEF

STAUTDEF DmdslModel [CreateInput :: CreateOperation ;
DeleteInput :: DeleteOperation ;
AddInput :: AddOperation ;
ReadInput :: ReadOperation;
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Output :: OutputMessage ]() :: =
STATE initialState , outputState , Entity_Unconstructable_State ,

Entity_MultiplicityMaximum_State ,
Instance_NotInRepository_State_Delete ,

Instance_NotInRepository_State_Read ,
Entity_Undestructable_State ,

Instance_AlreadyInRepository_State ,
Entity_MultiplicityMinimum_State ,

successfulCreationState , successfulDeletionState ,
successfulAdditionState , successfulReadStat e

VAR instances :: InstanceList; repo :: InstanceList; links ::
LinkList; highestId :: Int

INIT initialState{ instances := Nil; repo := Nil; links := Nil
; highestId := 0 }

TRANS

{-BEGIN: CREATION -}
{-ERROR CREATION -}
initialState ->
CreateInput ? createInput
[[ isEntityUnConstructableError(getEntityByEntityName (

entityName(createInput))) /\ (id(createInput) == highestI d
)]]

{ }
-> Entity_Unconstructable_State

initialState ->
CreateInput ? createInput
[[ isEntityMaximumMultiplicityError(getEntityByEntityName (

entityName(createInput)), instances) /\ (id(createInput )
== highestId)]]

{ }
-> Entity_MultiplicityMaximum_Stat e

{-SUCCESFUL CREATION -}
initialState ->
CreateInput ? createInput
[[
not( isEntityMaximumMultiplicityError(getEntityByEntityName (

entityName(createInput)), instances) )
/\
not( isEntityUnConstructableError(getEntityByEntityName (

entityName(createInput))) )
/\ (id(createInput) == highestId )
]]
{ instances := Cons(Instance(entityName(createInput) ,

highestId), instances); highestId := highestId + 1 }
-> successfulCreationState

{-END: CREATION -}
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{-BEGIN: DELETION -}
{-ERROR DELETION -}

initialState ->
DeleteInput ? deleteInput
[[
isEntityDeleteOnUndestructableError(id(deleteInput) ,

instances) /\ isIdInInstanceList(id(deleteInput) ,
instances )

]]
{ }

-> Entity_Undestructable_State

initialState ->
DeleteInput ? deleteInput
[[
isInstanceNotInRepositoryError(id(deleteInput), repo )
]]
{ }

-> Instance_NotInRepository_State_Delete

initialState ->
DeleteInput ? deleteInput
[[
isEntityMultiplicityMinimumError(id(deleteInput), repo) / \

isIdInInstanceList(id(deleteInput), repo )
]]
{ }

-> Entity_MultiplicityMinimum_Stat e

{-SUCCESFUL DELETION -}
initialState ->
DeleteInput ? deleteInput
[[
not( isInstanceNotInRepositoryError(id(deleteInput), repo) )

/\
not( isEntityDeleteOnUndestructableError(id(deleteInput) ,

instances) /\ isIdInInstanceList(id(deleteInput) ,
instances) ) /\

not( isEntityMultiplicityMinimumError(id(deleteInput) ,
instances) /\ isIdInInstanceList(id(deleteInput) ,
instances) )

]]
{ repo := removeInstanceFromInstanceList(id(deleteInput) ,

repo);
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instances := removeInstanceFromInstanceList(id(deleteInput )
, instances) }

-> successfulDeletionState
{-END: DELETION -}

{-BEGIN: ADDITION -}
{- ERROR ADDition -}

initialState ->
AddInput ? addInput
[[
isInstanceAlreadyInRepositoryError(instance(addInput), repo )
]]
{ }
-> Instance_AlreadyInRepository_State

{- SUCCESFUL ADD -}

initialState ->
AddInput ? addInput
[[
instanceInList(instance(addInput), instances )
/\
not(isInstanceAlreadyInRepositoryError(instance(addInput) ,

repo))
]]
{ repo := Cons(instance(addInput),repo)}
-> successfulAdditionState

{-END: ADDITION -}

{-BEGIN: READ -}
{-ERROR READ -}
initialState ->
ReadInput ? readInput
[[
isInstanceOfIdDoesNotExistError(id(readInput), repo )
]]
{ }
-> Instance_NotInRepository_State_Read

{-SUCCESFUL READ -}
initialState ->
ReadInput ? readInput
[[
not( isInstanceOfIdDoesNotExistError(id(readInput), repo) )
]]
{ }
-> successfulReadState
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{-END: READ -}

Entity_Unconstructable_State -> Output ! Entity_Unconstructabl e
-> initialState

Entity_MultiplicityMaximum_State -> Output !
Entity_MultiplicityMaximum -> initialState

Entity_MultiplicityMinimum_State -> Output !
Entity_MultiplicityMinimum -> initialState

Instance_NotInRepository_State_Delete -> Output !
Instance_NotInRepository -> initialStat e

Entity_Undestructable_State -> Output ! Entity_Undestructabl e
-> initialState

Instance_AlreadyInRepository_State -> Output !
Instance_AlreadyInRepository -> initialStat e

Instance_NotInRepository_State_Read -> Output !
Instance_NotInRepository -> initialStat e

{- SUCCESS STATES -}
successfulCreationState -> Output ! Success -> initialStat e
successfulDeletionState -> Output ! Success -> initialStat e
successfulAdditionState -> Output ! Success -> initialStat e
successfulReadState -> Output ! Success -> initialStat e

ENDDEF

MODELDEF Model ::=
CHAN IN CreateInput , DeleteInput , AddInput , ReadInpu t
CHAN OUT Output
BEHAVIOUR DmdslModel [CreateInput , DeleteInput , AddInput ,

ReadInput , Output ]()
ENDDEF

{- CREATE ERRORS -}

FUNCDEF isEntityUnConstructableError(entity :: Entity) :: Boo l
::=

IF isConstructable(entity) THEN False
ELSE True
FI

ENDDEF

FUNCDEF isEntityMaximumMultiplicityError(entity :: Entity ;
instances :: InstanceList) :: Bool

::=
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IF numberOfTimesEntityInList(entity , instances) >= max (
multiplicity(entity)) THEN True

ELSE False
FI

ENDDEF

{- DELETE ERRORS -}

FUNCDEF isEntityDeleteOnUndestructableError(id :: Int; instances ::
InstanceList) :: Bool

::=
IF instances == Nil THEN False
ELSE

IF id(hd(instances)) == id THEN not(isConstructable (
getEntityByEntityName(entityName(hd(instances)))) )

ELSE isEntityDeleteOnUndestructableError(id, tl(instances) )
FI

FI
ENDDEF

FUNCDEF isInstanceNotInRepositoryError(id :: Int; repo ::
InstanceList) :: Bool

::=
IF isIdInInstanceList(id, repo) THEN False
ELSE True
FI

ENDDEF

FUNCDEF isEntityMultiplicityMinimumError(id :: Int; instances : :
InstanceList) :: Bool

::=
isEntityMultiplicityMinimumErrorAux(id, instances , instances )

ENDDEF

{- ADD ERRORS -}

FUNCDEF isInstanceAlreadyInRepositoryError(instance :: Instance ;
repo :: InstanceList) :: Bool

::=
IF instanceInList(instance , repo) THEN True
ELSE False
FI

ENDDEF

{- READ ERRORS -}

FUNCDEF isInstanceOfIdDoesNotExistError(identifier :: Int; repo : :
InstanceList) :: Bool

::=
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IF repo == Nil THEN True
ELSE

IF id(hd(repo)) == identifier THEN False
ELSE isInstanceOfIdDoesNotExistError(identifier , tl(repo) )
FI

FI
ENDDEF

{- AUXILIARY FUNCTIONS -}

{-
FUNCDEF getEntityByEntityName(entityName :: ValidEntityName) ::

Entity
::=

IF entityName == Dog THEN Ent(Dog , True , False , False , Tupl e
(0,1))

ELSE
IF entityName == Person THEN Ent(Person , True , False , True ,

Tuple (0,2))
ELSE Ent(Person , True , False , True , Tuple (0,2) )
FI

FI
ENDDEF
-}

FUNCDEF getEntityByEntityName(entityName :: ValidEntityName) ::
Entity

::=
IF entityName == Dog THEN dog
ELSE person
FI

ENDDEF

FUNCDEF numberOfTimesEntityInList(entity :: Entity; instanceList : :
InstanceList) :: Int

::=
IF instanceList == Nil THEN 0
ELSE

IF getEntityByEntityName(entityName(hd(instanceList))) ==
entity THEN 1 + numberOfTimesEntityInList(entity , tl (
instanceList))

ELSE numberOfTimesEntityInList(entity , tl(instanceList) )
FI

FI
ENDDEF
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FUNCDEF isIdInInstanceList(id :: Int; instances :: InstanceList) : :
Bool

::=
IF instances == Nil THEN False
ELSE

IF id(hd(instances)) == id THEN True
ELSE isIdInInstanceList(id, tl(instances) )
FI

FI
ENDDEF

FUNCDEF removeInstanceFromInstanceList(id :: Int; instanceList : :
InstanceList) :: InstanceList

::=
IF instanceList == Nil THEN Nil
ELSE

IF id(hd(instanceList)) == id THEN
removeInstanceFromInstanceList(id, tl (
instanceList))

ELSE Cons(hd(instanceList) ,
removeInstanceFromInstanceList(id, tl (
instanceList)))

FI
FI

ENDDEF

FUNCDEF instanceWithIdInInstanceList(identifier :: Int; instance s
:: InstanceList) :: Bool

::=
IF instances == Nil THEN False
ELSE

IF id(hd(instances)) == identifier THEN True
ELSE instanceWithIdInInstanceList(identifier , tl(instances) )
FI

FI
ENDDEF

FUNCDEF entityUndestructable(entity :: Entity) :: Bool
::=

IF not(isDeletable(entity)) THEN True
ELSE False
FI

ENDDEF

FUNCDEF instanceInList(instance :: Instance; instanceList ::
InstanceList) :: Bool

::=
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IF instanceList == Nil THEN False
ELSE

IF hd(instanceList) == instance THEN True
ELSE

instanceInList(instance , tl(instanceList) )
FI

FI
ENDDEF

FUNCDEF isEntityMultiplicityMinimumErrorAux(id :: Int ;
instanceIterator :: InstanceList; instances :: InstanceList) : :
Bool

::=
IF instanceIterator == Nil THEN False
ELSE

IF id(hd(instanceIterator)) == id THEN (
numberOfTimesEntityInList(getEntityByEntityName(entityName (
hd(instanceIterator))), instances )

== min(multiplicity (
getEntityByEntityName (
entityName(hd(
instanceIterator))))) )

ELSE isEntityMultiplicityMinimumErrorAux(id, tl (
instanceIterator), instances )

FI
FI

ENDDEF

Listing A.1: Simple TorXakis Model

A.2 Source cascade deletion

FUNCDEF ComputeDeletionSet(instances :: InstanceList; links : :
LinkList; returnList :: InstanceList) :: InstanceLis t

::=
IF instances == Nil THEN returnList
ELSE

concatenate(concatenate(returnList ,SCDPredecessorOfInstances (
instances , links , Nil)),

ComputeDeletionSet(SCDPredecessorOfInstances(instances , links ,
Nil), links , Nil))

FI
ENDDEF

FUNCDEF SCDPredecessorOfInstances(instances :: InstanceList; link s
:: LinkList; returnList :: InstanceList) :: InstanceLis t

::=
IF instances == Nil THEN returnList
ELSE

concatenate(concatenate(returnList , SCDPredecessorOfInstance(h d
(instances), links , Nil)), SCDPredecessorOfInstances(tl (
instances), links , Nil))

120 Testing an Industrial Code Generator With Model-Based Testing



APPENDIX A. TORXAKIS

FI
ENDDEF

FUNCDEF SCDPredecessorOfInstance(instance :: Instance; links : :
LinkList; returnList :: InstanceList) :: InstanceLis t

::=
IF links == Nil THEN returnList
ELSE

IF target(hd(links)) == instance /\ ( cascade(sproperty (
getAssociationByAssociationName(associationName(hd(links))) )
) == True )

THEN SCDPredecessorOfInstance(instance , tl(links), Cons (
source(hd(links)), returnList))

ELSE SCDPredecessorOfInstance(instance , tl(links), returnList )
FI

FI
ENDDEF

FUNCDEF concatenate(instances1 :: InstanceList; instances2 ::
InstanceList) :: InstanceList

::=
IF instances2 == Nil THEN instances1
ELSE

concatenate(Cons(hd(instances2), instances1), tl(instances2) )
FI

ENDDEF

Listing A.2: Proof of concept for determining deletion set in source cascade deletion.

FUNCDEF UnionInstanceLists(firstInstanceList :: InstanceList ;
secondInstanceList :: InstanceList) :: InstanceLis t

::=
IF secondInstanceList == Nil THEN firstInstanceLis t
ELSE

IF not(instanceInList(hd(secondInstanceList), firstInstanceLis t
)) THEN UnionInstanceLists(Cons(hd(secondInstanceList) ,
firstInstanceList), tl(secondInstanceList) )

ELSE UnionInstanceLists(firstInstanceList , tl (
secondInstanceList))

FI
FI

ENDDEF

FUNCDEF instanceInList(instance :: Instance; instanceList ::
InstanceList) :: Bool

::=
IF instanceList == Nil THEN False
ELSE

IF hd(instanceList) == instance THEN True
ELSE

instanceInList(instance , tl(instanceList) )
FI
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FI
ENDDEF

Listing A.3: Proof of concept for union operator
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Test Models

Figure B.1: The AME1437 test model.
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Figure B.2: The Bench test model.

Figure B.3: The IPCDv2 test model.
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Figure B.4: The SIRE01 test model.

Figure B.5: The TestOptional test model.
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Figure B.6: The TM003 test model.
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Figure B.7: The TM020 test model.

Figure B.8: The TM033 test model.
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Figure B.9: The TM065 test model.

Figure B.10: The TM10001 test model.
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Appendix C

Error Output

C.1 Read Output Messages

The reading of an instance using an identifier may fail. We create an error message for this, in
line with the described semantics:

1. ¬∃x[x ∈ s.REPO : x.identifier = identifier] =⇒ output = Instance NotInRepository

1 de f i s i n s t a n c e n o t i n r e p o s i t o r y e r r o r ( i d e n t i f i e r ) :
2 from Mode l Trans lat ion import repo
3 f o r i n s t ance in repo :
4 i f i n s t anc e . g e t i d ( ) == i d e n t i f i e r :
5 re turn Fal se
6 re turn True
7

C.2 Update Output Messages

Updating an Entity may fail. In the formal semantics it is described in what situations errors
might occur, and what the corresponding error output is. We will translate these to checks for
PyModel:

1. instance.Entity.Mutability = False =⇒ output = Entity UpdateImmutableType

1 de f i s en t i t y upda t e immutab l e t yp e e r r o r ( i n s t ance ) :
2 i f not i n s t ance . Ent ity . i s mutab l e :
3 re turn True
4 re turn Fal se
5

2. ∃l[l ∈ links : l.source = instance∧l.target /∈ s.REPO] =⇒ output = Link TargetNotInRepository

1 de f i s l i n k t a r g e t n o t i n r e p o s i t o r y e r r o r ( l i n k s ) :
2 from Mode l Trans lat ion import repo
3 t a r g e t s = { l i n k . t a r g e t i n s t a n c e f o r l i n k in l i n k s }
4 i f l en ( t a r g e t s . i n t e r s e c t i o n ( repo ) ) < l en ( t a r g e t s ) :
5 re turn True
6 re turn Fal se
7

3. ∃a[a ∈ instance.Entity.OutgoingAssociations : |{link ∈ Links | a = link.association}| <
a.TProperty.multiplicity.minimum] =⇒ output = Association TargetMinimum
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1 de f i s a s s o c i a t i o n t a r g e t m in imum e r r o r ( ins tance , l i n k s ) :
2 ou t a s s o c i a t i o n s = in s t ance . Ent ity . g e t ou t g o i n g a s s o c a t i o n s ( )
3 f o r a s s o c i a t i o n in o u t a s s o c i a t i o n s :
4 l i n k s c o r r e s p o nd i n g t o a s s o c i a t i o n = [ l i n k f o r l i n k in l i n k s i f l i n k .

a s s o c i a t i o n
5 == a s s o c i a t i o n ]
6 i f l en ( l i n k s c o r r e s p o nd i n g t o a s s o c i a t i o n ) < a s s o c i a t i o n .

t a r g e t a s s o c i a t i o n p r o p e r t y . mu l t i p l i c i t y . min :
7 re turn True
8 re turn Fal se
9

4. ∃a[a ∈ instance.Entity.OutgoingAssociations : |{link ∈ Links | a = link.association}| >
a.TProperty.multiplicity.maximum] =⇒ output = Association TargetMaximum

1 de f i s a s s o c i a t i o n ta r g e t max imum er r o r ( ins tance , l i n k s ) :
2 ou t a s s o c i a t i o n s = in s t ance . Ent ity . g e t ou t g o i n g a s s o c a t i o n s ( )
3 f o r a s s o c i a t i o n in o u t a s s o c i a t i o n s :
4 l i n k s c o r r e s p o nd i n g t o a s s o c i a t i o n = [ l i n k f o r l i n k in l i n k s i f l i n k .

a s s o c i a t i o n
5 == a s s o c i a t i o n ]
6 i f l en ( l i n k s c o r r e s p o nd i n g t o a s s o c i a t i o n ) > a s s o c i a t i o n .

t a r g e t a s s o c i a t i o n p r o p e r t y . mu l t i p l i c i t y . max :
7 re turn True
8 re turn Fal se
9

5. ∃a,i[a ∈ e.OutgoingAssociations∧i ∈ s.REPO∧i.Entity = a.target.Entity : |i.incomingLinks(a)∪
links(a, i)|] > a.SProperty.multiplicity.maximum =⇒ output = Association SourceMaximum

1 de f i s a s s o c i a t i o n sou r c e max imum er ro r ( ins tance , new l inks ) :
2 from Mode l Trans lat ion import in s tance s , l i n k s
3 ou t a s s o c i a t i o n s = in s t ance . Ent ity . g e t ou t g o i n g a s s o c a t i o n s ( )
4 l i n k s t ha t r ema in = [ l i n k f o r l i n k in l i n k s i f l i n k . s ou r c e i n s t an c e !=
5 i n s t anc e ]
6

7 f o r a s s o c i a t i o n in o u t a s s o c i a t i o n s :
8 f o r i n s t ance in i n s t an c e s :
9 numbe r o f e x i s t i n g l i n k s p o i n t i n g t o i n s t a n c e =

numbe r o f i n c om in g l i n k s t o i n s t an c e ( ins tance ,
10 a s s o c i a t i on , l i n k s t ha t r ema in )
11 numbe r o f n ew l i nk s po i n t i n g t o i n s t an c e =

numbe r o f i n c om in g l i n k s t o i n s t an c e ( ins tance ,
12 a s s o c i a t i on , new l inks )
13 i f n umbe r o f e x i s t i n g l i n k s p o i n t i n g t o i n s t a n c e +

numbe r o f n ew l i nk s po i n t i n g t o i n s t an c e
14 \
15 > a s s o c i a t i o n . s o u r c e a s s o c i a t i o n p r op e r t y . mu l t i p l i c i t y . max

:
16 re turn True
17 re turn Fal se

C.3 Delete Output Messages

Delete Error Messages Deleting an Entity may fail. In the formal semantics it is described
in what situations errors might occur, and what the corresponding error output is. Note that due
to cascade deletion, a single deletion call, can result in many instances being deleted. Using a
fixedpoint computation algorithm we can compute the set that should be deleted as a result of
the deletion. We will translate these to checks for PyModel:

1. instance /∈ repo =⇒ output = Instance NotInRepository
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1 i n s t anc e = g e t i n s t a n c e o f i d e n t i f i e r i n r e p o ( i d e n t i f i e r )
2 i f i n s t anc e == None :
3 re turn l i s t o u t p u t ({ ” Instanc e Not InRepos i to ry ” })
4

2. ∃y[y ∈ deletion set : y.deletable = False] =⇒ output = Entity DeleteOnUndestructable

1 de f i s e n t i t y d e l e t e o n u n d e s t r u c t a b l e e r r o r ( i n s t an c e s ) :
2 f o r i n s t ance in i n s t an c e s :
3 i f not i n s t ance . Ent ity . i s d e l e t a b l e :
4 re turn True
5 re turn Fal se
6

3. |{i ∈ s.REPO | i.entity = instance.Entity}\{i ∈ deletion set | i.Entity = instance.Entity}| <
instance.Entity.multiplicity.minimum =⇒ output = Entity MultiplicityMinimum

1 de f i s e n t i t y mu l t i p l i c i t y m in imum e r r o r ( i n s t an c e s ) :
2 from Mode l Trans lat ion import repo
3 type to in s tance s mapp ing = {}
4 f o r i n s t ance in i n s t an c e s :
5 i f i n s t anc e in repo :
6 i f i n s t anc e . Ent ity in type to in s tance s mapp ing :
7 type to in s tance s mapp ing [ i n s t ance . Ent ity ] . add ( in s t ance )
8 e l s e :
9 type to in s tance s mapp ing [ i n s t ance . Ent ity ] = { i n s t anc e }

10

11 f o r en t i t y in type to in s tance s mapp ing :
12 i n s t a n c e o f e n t i t y i n r e p o s i t o r y = s e t ( [ ] )
13 f o r i n s t ance in repo :
14 i f i n s t anc e . Ent ity ==(en t i t y ) :
15 i n s t a n c e o f e n t i t y i n r e p o s i t o r y . add ( in s t ance )
16 i f l en ( i n s t a n c e o f e n t i t y i n r e p o s i t o r y ) − l en (

type to in s tance s mapp ing [ en t i t y ] )
17 < en t i t y . mu l t i p l i c i t y . min :
18 re turn True
19

C.4 Add Output Messages

Adding an instance to the repository may fail. In the formal semantics it is described in what
situations errors might occur, and what the corresponding error output is.

1. instance ∈ s.REPO =⇒ output = Instance AlreadyInRepository

1 de f i s i n s t a n c e a l r e a d y i n r e p o s i t o r y e r r o r ( i n s t ance ) :
2 from Mode l Trans lat ion import repo
3 f o r element in repo :
4 i f e lement == in s tance :
5 re turn True
6 re turn Fal se

2. ∃link[link ∈ s.L : link.source = instance ∧ link.target /∈ s.REPO] =⇒ output =
Link TargetNotInRepository

1 de f i s l i n k t a r g e t n o t i n r e p o s i t o r y e r r o r ( i n s t ance ) :
2 from Mode l Trans lat ion import l i nk s , repo
3 f o r l i n k in l i n k s :
4 i f l i n k . s ou r c e i n s t an c e == in s tance and l i n k . t a r g e t i n s t a n c e not
5 in repo :
6 re turn True
7 re turn Fal se
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