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Abstract

Anomaly detection is the problem of finding unexpected patterns in data. With the growing
size of data being generated, it becomes increasingly difficult to detect anomalies, especially
when the data: (i) is given in a streaming fashion and needs to be processed in real-time or
using small space; (ii) is distributed among many many machines for which the communi-
cation bottleneck ought to be reduced. This thesis proposes the use of Random Shift Forest
(RSF), a simple yet powerful isolation-based anomaly detector, and discusses how it can
be extended to a wide variety of models and data. Various versions of streaming and dis-
tributed RSF are formalised, and their performance is analysed and empirically verified. In
doing so, this thesis develops a broadly applicable anomaly detection framework to use and
build upon.
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Chapter 1

Introduction

Random Shift Forest (RSF) was first introduced by Thijs Visser in his master’s thesis [65]. RSF
was designed to be implemented in the streaming and distributed settings. Visser was only
able to implement it in the offline setting. He benchmarked RSF on several toy and real
datasets and showed it to outperform Isolation Forest [45]; a state-of-the-art technique for
unsupervised anomaly detection in high-dimensional Euclidean spaces. He also presented
several arguments for why RSF could be a good candidate for detecting anomalies in the
streaming and distributed settings. No actual implementations were provided for these,
however.

This thesis builds upon Visser’s work by exploring a range of extensions and applications
for the RSF algorithm. In particular, an extension of RSF is proposed that can be imple-
mented in the streaming and distributed settings. This extended version is then applied to
detect anomalies in time series and graph data. The new extension of RSF is also bench-
marked against state-of-the-art anomaly detection algorithms.

The contributions of this thesis are as follows:

1. Streaming model: The extension of RSF for the streaming model using reservoir sam-
pling. The sliding-window model is also considered, where the goal is to detect anoma-
lies for the most recent data, as old data often becomes outdated in practical applica-
tions.

2. Distributed model: The extension of RSF for the MapReduce model, which is a de facto
model for the distributed setting. In this model, data is distributed among multiple
machines and the goal is to perform anomaly detection on all the data using low com-
munication cost. This is achieved through early anomaly selection and a size-reducing
sketch method for RSF.

3. Distributed streaming: The extension of RSF for the distributed streaming model is
also investigated. This model is a generalisation of the previous two models and is
explained later.

4. Benchmarking: A benchmark of RSF against (Extended) Isolation Forest [33] and Ro-
bust Random Cut Forest [31].

5. Time series data: The application of RSF for time series data, where shingling is impor-
tant to detect anomalous patterns in the data. The use of the Autoperiod [66] method
is proposed to automatically detect the period for use as the shingle size.

6. Graph data: The application of RSF for graph data using the SpotLight [27] method.
Here, different subgraphs of an underlying graph are revealed in different time inter-
vals and the goal is to detect those subgraphs that are believed to be anomalous.

Streaming and Distributed Anomaly Detection and its Applications 1
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Figure 1.1: An overview of the anomaly detection framework.

An overview of this generic anomaly detection framework built upon RSF is illustrated
in figure 1.1. The left column shows different types of input data. RSF is built for data in
high-dimensional Euclidean spaces. Special datasets (e.g., graphs or time series) must first
be converted (i.e., embedded) into high-dimensional datasets. Several embeddings are dis-
cussed in this thesis. The same approach can be applied to other data such as video and
audio. Once converted, data is fed into the RSF machinery, which associates anomaly scores
with the input points. The right column shows the newly proposed extensions of RSF can
also handle input data given in the context of a number of different models. An anomaly
detector that can handle all these different scenarios would be very appealing [41, 9].

The rest of this thesis is outlined as follows. Chapter 2 covers the necessary background
knowledge used for the algorithms and experiments. Chapter 3 formalises the various ver-
sions of RSF and provides some analysis. Chapter 4 contains all the experiments that were
performed. Chapter 5 gives a conclusion.

Streaming and Distributed Anomaly Detection and its Applications 2



Chapter 2

Background

This chapter covers the necessary background knowledge used for the algorithms and ex-
periments. Section 2.1 covers preliminaries, including the computational models considered
and performance metrics used for the experiments. Section 2.2 gives an overview of the field
of anomaly detection and briefly explains the state-of-the-art algorithms that are used for
benchmarking. Section 2.3 introduces the tools and techniques used for the development
of the new extensions of RSF, including Autoperiod [66]; SpotLight [27]; and distributed sam-
pling [17].

2.1 Preliminaries

2.1.1 Computational Models
Streaming. In the streaming setting [49], a machine receives many data entries at a high
rate. It is assumed a machine does not have enough memory to store all of its input. In
this model, entry i with value vi of the input data arrives in chronological order at a time t i .
There are several variations of the streaming model, including:

• Insertion-Only model [6]: The input data entries are revealed one at a time.

• Sliding-Window model [19]: Given a stream of the underlying data and a window size
W , the goal is to compute and maintain a function for the window of the most recent
W elements.

• Dynamic model [36, 29]: The stream consists of inserts and deletes of items, where
an item can be deleted if it was inserted before.

It further depends on how many passes over the data an algorithm takes. Streaming al-
gorithms are desired to have (poly)logarithmic storage and per-element runtime require-
ments.

Distributed. In the distributed setting, data and computation are divided over multiple
machines. One popular distributed model is MapReduce, formalised by Karloff; Suri; and
Vassilvitskii [38]. Here, an input of size n is initially distributed among t machines, each with a
local space of size s. Computation takes place in synchronous rounds in which each machine
performs local computation on its data and then sends messages to other machines. Input
consists of key-value pairs and a round consists of a mapper; shuffle; and reducer phase.
In the mapper phase, each key-value pair is mapped to a multiset of key-value pairs. In the
shuffle phase, entries with the same key are aggregated and distributed. In the reducer
phase, each list of values corresponding to the same key is mapped to a new list of values

Streaming and Distributed Anomaly Detection and its Applications 3



CHAPTER 2. BACKGROUND

(a) Mapper. (b) Reducer.

Figure 2.1: The mapper and reducer operators of the MapReduce model.

Figure 2.2: The two communication modes of the MapReduce model.

with that key. Figure 2.1 shows a diagram for a mapper and reducer. Many algorithms can be
parallelised by interleaving these kinds of parallel/sequential operations. The MapReduce
model can be further subdivided into the following models:

• Peer2Peer: When communication can occur between any two machines.

• Coordinator: When communication has to go through a dedicated machine called the
coordinator.

Figure 2.2 shows a diagram of both communication models. Several metrics are used in
determining the practicality of an algorithm in this model, including:

• Communication complexity: The number of communication rounds used to perform
a task.

• Space and time per machine: The space and running time used by a machine at each
stage of an algorithm.

• Total space: The sum of the space used per machine.

• Total time: The running time across all machines and rounds.

MapReduce algorithms are desired to use sublinear space per-machine (i.e., o(n)), sublog-
arithmic (i.e., o(logn)) communication complexity, and polynomial (i.e., nO(1)) work and time
per machine.

Distributed Streaming The distributed streaming model is introduced by Cormode, Muthukr-
ishan, Yi, and Zhang [18]. It can be seen as a generalisation of the streaming and coordinator
models. This model assumes a distributed platform of k sites (or machines) S1, · · · , Sk and a
coordinator C . Each machine has an input stream and can communicate with a coordinator

Streaming and Distributed Anomaly Detection and its Applications 4



CHAPTER 2. BACKGROUND

Figure 2.3: An overview of the distributed streaming model. Taken from figure 1 in [18].

Figure 2.4: The confusion matrix for a binary classifier. Taken from figure 1 in [63].

via one-way or two-way communication. Figure 2.3 shows a diagram of the model. It is easy
to see how the previous models can be obtained by varying the number of input machines
and space per machine.

2.1.2 Performance metrics
This thesis uses several performance metrics to evaluate the performance of RSF against
other anomaly detection algorithms. The base of all these performance metrics is the well-
known confusion matrix (see figure 2.4). The matrix consists of the True Positive (TP), False
Positive (FP), False Negative (FN), and True Negative (TN) classes.

An anomaly detection algorithm can be seen as a binary classifier. Given a dataset D of
data entries, the goal is to label every entry as True if it is an anomaly or False if it is a normal
instance. To evaluate the performance of a classifier, a ground truth labelling of the dataset
D is often provided. Then, in the confusion matrix, the classifier output is the predicted
class and the ground truth is the true/actual class. Based on the confusion matrix, define
the following basic measures:

• The False Positive Rate (FPR) or false alarm rate, given by F P
F P+T N .

• The True Positive Rate (TPR); recall; or hit rate, given by T P
T P+FN .

• The precision, given by T P
T P+F P .

Next is an explanation of each performance metric used in this thesis, based on the work
by Tharwat [63]:

Precision. Given is a dataset D of size n, of which n1 entries are labelled as anomalous and
n1 = n− n0 entries are labelled as normal data by a ground truth labelling. The contamina-
tion of the dataset is defined as c = n1

n . The F-measure or F-score is defined as the geometric

Streaming and Distributed Anomaly Detection and its Applications 5



CHAPTER 2. BACKGROUND

Figure 2.5: A schematic of the ROC curve (continuous). Taken from figure 5 in [63].

mean of the precision (p) and recall (r), and is given by (p + r)/pr. The anomaly detectors
considered here actually assign continuous anomaly scores to the dataset entries. These
are normalised between 0 and 1 and a higher score implies an entry is believed to be more
anomalous. To evaluate the F-measure, a discrete class division is required. In this thesis,
this is done by marking the n1 = cn entries with the highest anomaly score as the anoma-
lies and comparing those to the ground truth. As such, the F-measure will be used as an
indication of how contaminated an algorithm is given perfect knowledge of the frequency
distribution of the anomalous and normal classes. Note that this approach also means each
false positive implies a false negative. As a result, the precision and recall (and thus the F-
measure) will always be equal. For this reason, just the precision is reported.

ROC(AUC). The receiver operating characteristics (ROC) curve plots the TPR (y-axis) against
the FPR (x-axis) (see figure 2.5). Each combined (FPR, TPR) result is a point in the ROC space.
This means a single configuration of a binary classifier only constitutes one point. Using
the continuous anomaly scores, points can be created at every possible anomaly threshold
level. The area under the curve (AUC) is used as a summarising scalar value for the over-
all performance. This can be calculated by summing the trapezoids underneath the data
points, similar to a Riemann sum. The intuition of the ROCAUC score is to capture the de-
gree to which an algorithm can separate the negative and positive classes. It is not sensitive
to skewed class distributions, as both the TPR and FPR are ratios. This does make it dan-
gerous to compare the ROCAUC score between different datasets. Note that different ROC
curves can have the same AUC value.

PR(AUC). The precision-recall (PR) curve is similar to the ROCAUC curve, but instead plots
the precision (y-axis) against the recall (x-axis) (see figure 2.6). Note that both the ROC and
PR curve use recall (TPR), but on a different axis. The AUC value can be computed in a similar
way as with the ROC curve, resulting in the PRAUC score. In contrast to the FPR used for the
ROC curve, the precision can either increase or decrease for different threshold values. In
other words, the PR curve can fluctuate, while the ROC curve is concave. Using the precision
also makes the PR curve sensitive to skewed class distributions.
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Figure 2.6: A schematic of the PR curve (discrete). Taken from figure 10 in [63].

2.2 Anomaly detection
The amount of information shared digitally grows rapidly, and so does the need to develop
ways to cope with this massive data. One of the core concepts in analysing big data is the
concept of anomaly detection, also known as outlier detection. In the anomaly detection
field, the goal is to seek parts of data that are in some way different from the majority of the
data. Indeed, Chandola; Banerjee; and Vipin, in their extremely well-cited survey (p. 15) [16],
state:

Anomaly detection refers to the problem of finding patterns in data that do not con-
form to expected behavior.

There are many applications of anomaly detection, including:

• Removing outliers from a training dataset before the training phase to obtain more
accurate results in machine learning [25].

• Detecting anomalies in network traffic to find data that was sent by an attacking party
(intrusion detection) [53].

• Detecting potential cases of credit card fraud [11].

• Finding and removing noise from a dataset before performing analysis on the data to
ensure the validity of results [56].

Chandola et al. look at how various research areas, application domains, and problem char-
acteristics feed into the development of anomaly detection algorithms. What follows is a
review of the known anomaly detection algorithms, using their extensive coverage of the
topic:

Anomaly types. Anomalies can be classified into the following types:

• Point anomalies are the simplest type of anomaly, referring to a single point being
anomalous with respect to the rest of the data.

• Contextual anomalies are only anomalous within a given context. This can be through
contextual attributes like rainfall depending on location or through noncontextual at-
tributes like the global average rainfall being made up of single measurements.

• Collective anomalies are groups of points that form an anomaly only when considered
together.
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Figure 2.7: Two ground truth clusters (N1, N2), two point anomalies (o1, o2), and a microcluster
of anomalies (O3). The anomalies are with respect to the two clusters. Taken from figure 1
in [16].

This thesis will mostly consider point anomalies. Collective anomalies will be considered in
the context of graphs. Figure 2.7 shows an artificial example of a dataset with point and
collective anomalies.

Learning models.

• Supervised methods assume the data is split into train and test data. The train data
consists of anomalous and normal points, which are labelled in order to learn the ap-
propriate algorithm parameters to differentiate the two classes.

• Semisupervised methods use training data which only consists of normal points.

• Unsupervised methods do not require any sort of training data.

Clearly, each of these classes is applicable to an increasingly broad extent. This thesis will
only be concerned with unsupervised anomaly detection.

Algorithm classes. In general, anomaly detection algorithms can be divided into the fol-
lowing classes:

• Classification-based: These are methods that use training data to learn parameters
for some type of underlying classification model. Some examples of such models are
neural networks [14], Bayesian networks [47], support vector machines [44], and rule-
based models [22]. These models can provide good and efficient detection perfor-
mance, but good training data may not always be available or of limited relevance.

• Distance-Based: These are methods that rely on a distance metric between points.
One advantage of these types of anomaly detection algorithms is that they are unsu-
pervised and so, there is no need to provide labelled data. The class can be subdivided
as follows:

– Nearest-Neighbours: These methods use the distance of a point to its k-th near-
est neighbour or k nearest neighbours, or distance within some other local neigh-
bourhood as a measure of the anomalousness of a point. For example, the Local
Outlier Factor [12] uses the k-nearest-neighbours to compute a relative density
value for a point (using similar concepts as DBSCAN [26]) to avoid the problem of
varying densities between different clusters of normal data.

Streaming and Distributed Anomaly Detection and its Applications 8



CHAPTER 2. BACKGROUND

– Clustering: These methods try to cluster the data, leaving the points not belong-
ing to a cluster as anomalies. Well-known clustering algorithms that are used
include k-means [48] and DBSCAN [13].

The two classes share a number of similarities, among which is the assumed existence
of local neighbourhoods in the data. The performance also relies on the distance mea-
sure used.

• Statistical-based: This type of algorithm can be further subdivided into the following:

– Parametric: Techniques in this sub-class model datasets as being sampled from
some underlying statistical distribution. Concrete examples are the use of Gaus-
sian [43] or regression [58] models.

– Nonparametric: Techniques in this sub-class do not assume a specific statistical
distribution. Concrete examples are histograms [30] and kernel functions [40].

These categories provide robust methods that can provide statistical guarantees about
their results. However, the underlying data distribution and the interplay between
various features thereof can prove difficult to describe in practice.

More recently, a survey by Samariya and Thakkar [59] identifies three more classes:

• Ensemble-based [28]: This class of methods combine the results of multiple different
anomaly detectors and a consensus mechanism to come to a final anomaly labelling.
Provided these anomaly detectors do not suffer from the same drawbacks, these meth-
ods trade runtime complexity for robustness.

• Subspace-based: This class of methods perform anomaly detection on a number of
reduced subspaces of the full feature space. One example is to use random Gaus-
sian projection to obtain subspaces and then analyse these [20]. Although reported to
be better at finding ’hidden’ anomalies, considering many subspaces can involve high
computational costs while it may be irrelevant work.

• Isolation-based: The isolation-based anomaly detection algorithms are based on iso-
lating anomalies using early cuts from normal data. This will be explained in detail later
in this chapter. It has been shown empirically akin to Liu et al [23] that isolation-based
algorithms and models that use randomization techniques outperform other types of
anomaly detection algorithms such as distance-based [12, 62, 50, 37, 39] and density-
based [15, 60, 26] algorithms. Due to this reason, we consider the isolation-based
anomaly detection model in this thesis and develop various distributed and streaming
algorithms for it. Isolation Forest (iForest) [45] is the defining algorithm of this class.
Other variations of this algorithm have been proposed recently, including Extended
Isolation Forest (EIF) [33] and Robust Random Cut Forest (RRCF) [31]. These methods
have some of the greatest runtime performance but still lack in either accuracy or scal-
ability (or both). This will be explained later in this thesis as well.

Our contribution: The goal of this thesis is to develop an unsupervised isolation-
based anomaly detection algorithm that is scalable (i.e., it can be easily implemented
in the streaming and distributed models).

From here, section 2.2.1 introduces the iForest algorithm; section 2.2.2 discusses Ex-
tended Isolation Forest, which is a generalisation of iForest; and section 2.2.3 covers Robust
Random Cut Forest, a novel isolation-based method employed at Amazon. There are many
more iForest variants, but these are the state-of-the-art algorithms RSF is benchmarked
against here.
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2.2.1 Isolation Forest
Isolation Forest (iForest) was introduced by Liu, Ting and Zhou [45]. They mark the main
shortcoming of previous anomaly detection methods as focusing on building a profile of
normal data (e.g., clustering-based methods) rather than the anomalies. Many of these
algorithms involve a high computational cost in building these profiles as well.

The fundamental assumption behind iForest[45, 23] is that anomalies are "few and
different". That is,

• Majority assumption: The number of normal data points far outnumbers the
number of anomalies.

• Deviation assumption: The attribute values of anomalies deviate substantially
from that of normal data.

iForest Construction. Let P ⊂ Rd be a point set of n points in a d-dimensional Euclidean
space Rd . The iForest algorithm constructs an iForest data structure. The iForest data struc-
ture is an ensemble of t iTrees. For every iTree Ti for i ∈ {1,2, · · · , t}, a subset X i ⊆ P of size
ψ is sampled uniformly at random. Liu, Ting and Zhou [45] empirically show that a good
choice for the two parameters t and ψ would be ψ = 256 and t = 100. They showed that
these values are effective across a wide range of problems.

An iTree is built as a recursive binary partition tree on its subsample by repeatedly split-
ting among a uniformly random dimension at a random value. This random value is gener-
ated uniformly at random in the range of the current subset along the split dimension. The
splitting continues until only one point remains, being ’isolated’, or a depth limit is reached
(⌈log2ψ⌉ by default). An example is shown in figure 2.8.

Figure 2.8: An example of splitting until the depth limit is reached (left) and isolating a point
early on (right). Taken from figure 1 in [45].

The path length to the leaf that contains a point in an iTree corresponds to the number of
splits needed to isolate it. This is used as the measure of how anomalous a point is believed
to be; a lower depth being more anomalous (i.e., easier to isolate) and vice versa. When
the leaf is at the depth limit, a penalty score is added to compensate for the lack of further
splitting. The rest of the tree is modelled as a BST of the leaf’s points, and the average
search path length of a BST of that size is used as the penalty. Since it is normal data that is
supposed to end up lower in the tree, such an approximation is adequate. The main goal is
to isolate the anomalies from the normal data, not to differentiate normal data points from
each other.
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Scoring function for an iTree Ti: Let dep be the depth limit that is set for iTrees in
the iForest. Let x ∈ P be an arbitrary point. LetA (x , Ti) denote the anomaly score of
x for iTree Ti , computed as follows:

• If the leaf ℓx in the iTree Ti that contains x is at a level less than dep, then
A (x , Ti) = Level(ℓx), where Level(ℓx) is the level of the leaf ℓx in the iTree Ti .

• If the leaf ℓx in the iTree Ti that contains x is at level dep, then A (x , Ti) = dep +
c(n), where n is the number of points inserted into the leaf, and c(n) = 2H(n −
1)− 2(n− 1)/n.

Here, H(i) is the i-th harmonic number, approximated as ln(i) + γ, where γ ≈
0.5772156649 is the Euler–Mascheroni constant. c(n) is the average path length of
unsuccessful search in a BST of size n [54] (as cited by [45]).

iForest scoring. Once an iForest is constructed, it can be used to compute the anomaly
score of every point x ∈ P. Every point x ∈ P is fed into every iTree of the iForest and the
average score is computed. This average is compared to the average search path length one
would obtain if x was inserted into a ’normal’ BST of size ψ. The final score is normalised
such that a score of 0 indicates a normal point, and a score of 1 an anomalous point. It
should be mentioned that every point x ∈ P is fed into the iTrees, but not stored. It is only
used for scoring. Since the subsample size ψ and number of trees t are small constants,
the construction process is efficient and the scoring process is essentially linear in the size
of the input. In addition, construction and scoring can be easily parallelised on a per-tree
basis.

Scoring function for an iForest F : Let x ∈ P be an arbitrary point. Let H(x) =
E[A (x , Ti)] =
∑t

j=1A (x , Ti)/t be the average anomaly score of x among all the iTrees
of the iForest F . LetA (x , F) denote the anomaly score of x for iForest F , given by:

A (x , F) = 2−H(x)/c(ψ).

The sampling that is done for every iTree overcomes two problematic effects in the anomaly
detection task:

• Swamping: The swamping phenomenon refers to detecting a normal point as an
anomaly, i.e., a false negative. Normal data may be close to anomalous points, making
it harder to differentiate the two. Subsampling avoids sampling normal and anoma-
lous points that are close by.

• Masking: Masking refers to detecting an anomaly as a normal point, i.e., a false pos-
itive. Two anomalous points may be very close by, making it harder to isolate both.
This is again avoided by subsampling.

2.2.2 Extended Isolation Forest
As an improvement on iForest, Hariri; Kind; and Brunner introduced Extended Isolation For-
est (EIF) [33]. Through a number of examples, the authors try to highlight some of the prob-
lems of iForest and motivate the improvements they incorporated. Two of these examples
are shown in figure 2.9. For the first example with the two blobs, two interesting effects can
be spotted: axis-aligned rectangular regions of lower anomaly scores and ’ghost’ clusters
where these regions overlap. The expected pattern is two round regions around where the
blobs are, with scores sharply converging further from the two. Similar effects occur for the
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(a) Two blobs.

(b) Sine wave.

Figure 2.9: Score maps produced by iForest. Darker indicates more anomalous. Taken from
figures 2 and 3 in [33].

sine wave of the second example. Here, the overlapping rectangular regions cause very low
scores between the periods of the sine wave, while these are expected to be relatively high.
Of course, these are 2D examples that can be visualised well, and one may wonder how this
extends into higher dimensions with more complex data.

An explanation of the problems can be found by looking at the splits produced by iForest,
as shown in figure 2.10. The bias that iForest produces is grounded in the fact it uses axis-
aligned splits. These extend outwards horizontally and vertically. The effect of this is even
more striking when looking at the splits of all iTrees of an iForest together. Recall that the
anomaly score uses the average of the scores among all iTrees of an iForest.

As a remedy to these problems, the authors propose two different improvements:

1. Input rotation: Randomly rotating the data of each tree has the effect of randomly
rotating the axes along which is split. One disadvantage here is that it is not obvious
how this can be done in higher dimensions, though it is possible (e.g., see [10]).

2. Hyperplane splits: At each recursive step, the splitting procedure now picks a uni-
formly random pivot point in the range of the values of the current partition subset.
A corresponding direction vector is generated from a uniformly random point on the
N -dimensional unit sphere, where N is the dimension of the input. This should not be
done naively, as this can lead to a biased sample. Picking each vector component from
the standard normal distribution works.

Note that option 1 generalises iForest, which is obtained when using the identity matrix for
the rotation. Option 2 in turn generalises option 1, which is obtained when all hyperplanes
are aligned with the rotated axes.

Experiments show that both approaches lead to improved performance and less variance
between the scores among the trees of a forest. Using hyperplanes gives the best results.
Compare the splits of iForest shown in figure 2.10 to those of EIF shown in figure 2.11. The
authors note it is also possible to sample the hyperplane slopes among a reduced number
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(a) Splits of a single tree.

(b) Distribution of splits among a forest.

Figure 2.10: Splits produced by iForest for three toy problems. Taken from figures 6 and 7
in [33].

of dimensions of the unit sphere. This is referred to as the extension level of EIF. Using
N dimensions (extension level N − 1) gives the fully extended version of EIF, while exten-
sion level 0 (1 dimension) gives back the original iForest algorithm. Experiments show that
higher extension levels reduce the bias of iForest and that for high-dimensional data, the
fully extended version works best.

2.2.3 Robust Random Cut Forest
Motivated by the increasingly large ingress of data, Guha; Mishra; Roy; and Schrijvers in-
troduce Robust Random Cut Forest [31]. The goal of their study is twofold: to formalise
the definition of an anomaly and to develop an efficient detection algorithm that works for
dynamic streaming data. Similar to an iTree, a Robust Random Cut Tree (RRCT) recursively
partitions data using random splits. These splits, however, are now weighted according to
each dimension’s range. With an artificial example, the authors argue that many splits along
irrelevant dimensions are performed otherwise. Similar to an iForest, an RRCF consists of
an ensemble of independent RRCTs.

Before jumping to the anomaly score used by RRCF, it is useful to state the operations
that make it possible for RRCF to work on dynamic streaming data:

• Insertion: The insert operation works by walking down from the root of an RRCT. At
each node, the bounding box is updated. Using the new bounds, a split is generated. If
this split isolates the new point from the rest of the tree, a new parent node is created
with the existing tree and the new point as children. Otherwise, the previous split is
used and the process repeats at the appropriate child node.

• Deletion: The delete operation is simpler. It finds the isolating node of a point and
replaces its parent node with its sibling node. Afterwards, the bounding boxes are
updated upwards.
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(a) Splits of a single tree.

(b) Distribution of splits among a forest.

Figure 2.11: Splits produced by EIF for three toy problems. Taken from figures 9 and 10
in [33].

Figure 2.12: Right to left: During insertion, x was isolated from subtree c. Left to right:
deletion of x . Taken from figure 1 in [31].

Figure 2.12 shows a schematic of the effect of insertion and deletion. When a subsample
is maintained over a stream (e.g., using reservoir sampling), the updates to this subsample
can be directly applied to each RRCT using the operations.

RRCF uses the increase in model complexity as a result of insertion as a measure of
anomalousness. This works under the assumption that an anomaly itself is easy to describe,
but makes it harder to describe the rest of the data. This increase in model complexity is
defined as the displacement of a point Disp(p). It turns out their definition of displacement
coincides with the number of nodes in the sibling node of the isolating node of a point. What
is instead used is a more involved codisplacement CoDisp(p) value. The expected codisplace-
ment (averaged over the RRCTs) is the final anomaly score.

For a real-life application, it is shown how RRCF can be used in a streaming fashion with
time series data. RRCF is also shown to outperform iForest on an artificial experiment where
the goal is to detect a sudden flat section in a sine signal. Both experiments will come back
later.
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Figure 2.13: Construction of a frequency from randomly matched edge nodes. Taken from
figure 3 in [27].

2.3 Extensions
This section introduces the tools and techniques used for the development of the new ex-
tensions of RSF, including Autoperiod [66]; SpotLight [27]; and distributed sampling [17].

2.3.1 Graphs and SpotLight
Graph data is different from a stream of numerical data points. Many different algorithms
exist to perform anomaly detection on graphs specifically. Eswaran, Guha, and Mishra intro-
duce SpotLight [27]. The difference is that this is not an anomaly detection algorithm on its
own but instead enables anomaly detection on graphs using an existing anomaly detection
algorithm. The focus here is on weighted directed graphs that change over time. The goal
is to detect the sudden appearance of dense subgraphs in near real-time using sublinear
memory. An important application here is that of internet traffic. When modelling server
requests, attacks such as (D)Dos (sending an overload of requests to a single server) lead to
very dense subgraphs as compared to normal and lightweight usage by various individuals.

Density. Consider the input as a stream of graphs g1, ..., gn, which are each a part of the
complete evolving graph G. Each incoming graph consists of a list of edges made up of a
source node; destination node; and a positive non-zero weight. The anomalousness of an
incoming graph gi ⊂ G can be based on the distribution of the densities of its subgraphs.
Using the sum of the edge weights of each subgraph as a density measure, this results in
a vector of size 2|gi | to be used for anomaly detection. Of course, this is computationally
intractable.

SpotLight. The idea of SpotLight is to select a fixed number of K random subgraphs in-
stead. This is done with K independent pairs of hashing functions that select an edge’s
source and destination node with probabilities p and q, respectively. If both are selected,
the node weight is added to the sum corresponding to that pair of hashing functions. The
resulting K-dimensional density vector is a sketch for the incoming graph. An example is
shown in figure 2.13. The intuition is that each hash function pair is a spotlight highlighting
a random subgraph of the full graph. A sudden appearance of a dense cluster of edges is
expected to partially overlap with some of these subgraphs, and thus be reflected in the
sketched density vector. Algorithm 1 provides pseudocode for the SpotLight algorithm.

Properties. To strengthen the latter claim, the authors provide a theoretical analysis and
explain why this approach works well in tandem with an anomaly detection algorithm. De-
fine the SL-distance as the expected squared Euclidean distance between two SpotLight
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Algorithm 1 SpotLight
Require: rank decomposition k
Require: source hash probability p
Require: target hash probability q

procedure init
hp ← list of k functions hashing independently to 0 with probability p
hq ← list of k functions hashing independently to 0 with probability q

procedure next(graph G)
W ← 0-vector of size k
for each edge e in graph G do

for 1≤ i ≤ k do
if hp

i (e.source) = 0 and hq
i (e.target) = 0 then

Wi ← Wi + e.weight
return W

Figure 2.14: An overview of SpotLight’s steps. Larger and more local additions (simulat-
ing anomalies) lead to a larger distance between sketches, which can then be detected as
anomalies. Taken from figure 2 in [27].

sketches. Two such SL-sketches are ε-SL-far if their distance to the sketch of some other
graph differs by at least ε. Two properties are worked out, for which parameter settings
and their theoretical guarantees are provided:

1. Focus-Awareness: The smaller the region of a graph to which unit edges are added
uniformly at random, the larger its SL-distance to the original graph. As a conse-
quence, the appearance of star graphs leads to a higher SL-distance as compared to
the appearance of a matching graph. These two types of graphs are used as represen-
tatives of a focused attack and normal, more widespread communication.

2. Anomaly detection criterion: Consider two graphs obtained from a given original,
one where n edges are randomly added in a small n× n region and one where edges
are added throughout. The algorithm computes sketches that are ε-SL-far with respect
to the original with high probability.

A final overview of the steps, including the use of an anomaly detector at the end, is
shown in figure 2.14. In some experiments on real-world data, SpotLight is shown to out-
perform existing prior baseline detectors and provide interpretable and interesting results.
The experiments use RRCF as the anomaly detection algorithm. An extension of one of these
experiments will be performed in section 4.5.
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2.3.2 Shingling and Autoperiod
Shingling. Shingling is a technique where an input stream of points is changed to an input
stream of shingles, which are groups of consecutive points viewed as one single point. It
is equivalent to using a small sliding window, which emits a new point (resulting from con-
catenating its contents) after each shift. As such, shingling can be seen as another sketching
technique, providing a summary of local data. Some pseudocode to do this efficiently us-
ing a priority queue is given in algorithm 2. Shingling can be used to take into account
the context of data, albeit much smaller than the context that a sliding window or (time-
sensitive) sampling provides. The anomaly detection problem moves from being about in-
dividual points to one about recognising small patterns.

Algorithm 2 Shingling
Require: single size s

procedure init
Q← DoubleEndedQueue() ▷ back to front order

procedure next(point p)
if size(Q) < s then

pushFront(Q, p)
else

popBack(Q)
pushFront(Q, p)
return contents of Q as a single point

Time series. Shingling is an important tool to enable anomaly detection in time series
data, as the same values can occur at later times but in a different local (anomalous) pat-
tern. Think for example of a stable sine function that has a temporary frequency spike, while
maintaining the same amplitude. As suggested in [31], a good rule of thumb for the shingle
size is to use the ’natural’ periodicity of a signal. To automatically detect such periodicity is
no trivial matter. Assuming an input stream can assume only a fixed set of values, finger-
print sketching can be used to do it in one pass exactly with high probability and sublinear
memory [24]. This method also allows for efficient computation of the ’distance’ of a signal
to a given period. Real data, however, is often continuous and noisy, calling for a different
approach.

Autoperiod. One such approach is the Autoperiod method introduced by Vlachos, Yu, and
Castelli [66]. They mention how the use of periodicity is prevalent in many types of fields like
natural science, medicine, and transport-related industries. An overview of the method is
shown in figure 2.15. At the basis of their method is the Fourier transform, which represents
a signal as a linear combination of complex sinusoids. The Fourier transform can be used
to obtain two types of estimators of the Power Spectral Density (PSD) of a signal, which is
a distribution of the frequencies (and by extension, periods) occurring in the signal. The
estimators are:

1. Periodogram: The periodogram is obtained from the squared lengths of the Fourier
coefficients. It is easily interpretable but works on bins that get more coarse for higher
frequencies. It also suffers from ’spectral leakage’, where frequencies that are not mul-
tiples of the bin widths influence the whole spectrum.

2. Autocorrelation: The circular autocorrelation function (ACF) is a convolution between
shifted versions of the signal and can be computed as a dot product in the frequency
domain (the Fourier transform). It is harder to interpret, as peaks occur at multiples of
the frequency as well. High frequencies of low amplitude also weigh less.
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Figure 2.15: A schematic of Autoperiod. Taken from figure 3 in [66].

It is interesting to note that the ACF is the inverse Fourier transform of the periodogram,
making them duals. The idea of Autoperiod is to use the strengths of both. In the first
place, the periodogram is used to find candidate frequencies. The peaks are filtered out
by determining a threshold from several signal permutations that retain power levels but
lose periodicity information. Then the corresponding frequencies are checked to be a valley
(false alarm) or hill in the ACF. If it is a hill, the value of the hilltop is determined and used
instead to resolve the bin granularity problem. To do this reliably, linear regression is used
on local segments around the candidates.

The Fourier transform can actually be updated in streaming fashion using the incremen-
tal Momentary Fourier Transform (MFT) [51] (as cited by [66]). The authors note that this
makes it possible to translate this method to the streaming setting as well, with both a
growing and sliding window version of the MFT. The study further features some real-world
examples to showcase the effectiveness of the method. Recently, an improved version of
Autoperiod was published [55]. This method, called CFD-Autoperiod, includes some extra
steps to resolve issues for signals that are noisy or have multiple periodicities. However,
since there was no readily available implementation, the original Autoperiod method is used
for this study.

2.3.3 Distributed Sampling
Like iForest, RSF uses subsamples of the input to build its underlying tree data structures.
Chung, Tirthapura, and Woodruff [17] propose a message-optimal algorithm to perform
uniform random sampling (without replacement) in the distributed streaming model. Pseu-
docode for the machines and coordinator is provided in algorithms 3 and 4, respectively.

Let s be the sample size. The idea is to associate each incoming point with a random
weight. Each machine keeps a possibly outdated copy (um) of the s-th minimum weight of
the sampled points at the coordinator (uc). When the weight of an incoming is below the
s-th minimum weight, both the points and its weight are sent to the coordinator to update
the sample. If applicable, the coordinator sends back the new largest sample weight (only
to the machine received from).

Algorithm 3 DistributedSamplerMachine
procedure init

um ← 1.0
procedure update(weight uc)

um ← uc

procedure next(point p)
w← randNumber(0.0, 1.0)
if w < um then

emit((p, w)) ▷ to coordinator
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Algorithm 4 DistributedSamplerCoordinator
Require: sample size s

procedure init
uc ← 1.0
Q← PriorityQueue() ▷ key: weight, value: point

procedure update((point p, weight um))
um ← uc
insert(Q, um, p)
if size(Q) > s then

popMax(Q)
uc ←maxKey(Q)
emit(uc) ▷ to machine received from
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Algorithm

This section develops the Random Shift Forest (RSF) algorithm. First, section 3.1 presents
the offline algorithm in terms of its operators and configuration parameters. Next, sec-
tion 3.2 shows how these operators can be used to adapt RSF for the streaming setting in
various ways. Finally, section 3.3 discusses two ways in which the offline algorithm can be
distributed among multiple machines.

3.1 Offline RSF
For a large part, RSF follows similar ideas as those presented for Isolation Forest (iForest) in
section 2.2.1. The main difference is to use a deterministic splitting procedure and introduce
randomness through a translation of the input points. Rather than defining the algorithm
as a recursive partitioning of the input, it is defined in terms of point-wise operations. This
makes the construction and maintenance of RSF much more flexible while retaining the
same time and space complexity.

Random Shift Tree. The Random Shift Tree (RST) is the underlying tree data structure used
by RSF. Like an Isolation Tree (iTree), it is a partition tree with points stored in the leaf nodes.
Unlike an iTree, all internal nodes at the same level use the same split dimension and always
split their respective bounding box halfway along this dimension.

Let B be the axis-aligned bounding box (exactly) containing all of the input. The bounds
of the input are thus assumed to be known. Another possibility is to normalise all the input
and use the unit cube. Let B′ be the bounding box obtained by adding the range of B to
its upper bound along each axis. Each tree applies a random shift to its points, uniformly
sampled from the range of B along each axis. The resulting points are guaranteed to be
contained by bounding box B′. Figure 3.1 shows how B is obtained from B′, and how points
are randomly shifted.

Let d be the dimension of the input. Each tree fixes an order L of uniformly sampled
dimensions among which to split halfway at a given tree depth. A tree is initialised with a
maximum node capacity and maximum depth. Initially, it has an empty root node at depth
1 (level 0) with a bounding box B′. Figure 3.2 shows two examples of trees with the same
configuration but a different shift. Notice how the splits are similar but occur at different
places.

A tree supports the following operations:

• Insert: Find the leaf node with the bounding box containing input point p. If the leaf
node has not reached its maximum capacity, insert the point into the node. If it is
full, split the node’s bounding box among the split dimension corresponding to its
depth and distribute its points among the two new child nodes accordingly. Repeat

Streaming and Distributed Anomaly Detection and its Applications 20



CHAPTER 3. ALGORITHM

B

B' B' B'

Figure 3.1: B′ is obtained from B by adding its range to the upper bounds along every axis.
Points in B are randomly shifted to anywhere within B′.

B

B' B' B'

(a) Tree 1.

B

B' B' B'

(b) Tree 1.

Figure 3.2: Two trees with the same input and split order but different shifts.

the procedure at the next child node. If a node is at the maximum depth, always insert
the point. The complete pseudocode is given in algorithm 5.

• Delete: The delete operation is the direct inverse of the insert operation. First, find
the leaf which contains the point p to be deleted, and remove it from its list of points.
Next, to undo any of the invalid node splits that may now be present, traverse the tree
upwards from the leaf’s parent to the root. If a node has only leaves as children and
their total number of points does not exceed the maximum capacity, the children are
deleted and the parent becomes a new leaf with their combined points. Note that it is
not necessary to consider any other nodes in the tree, as an internal node is guaran-
teed to have more points in its subtree than the node capacity, since it is split and no
other points are removed. The complete pseudocode is given in algorithm 6.

• Score: Scoring works the same as for iForest. An anomalous point is interpreted as
one that is easier to isolate, i.e., is located higher up the tree. First, find the leaf with
the bounding box containing input point p. The basic anomaly score is the path length
to this node. Since the tree uses a maximum depth, an extra penalty is added to leaves
at this level, but only if they exceed the maximum node capacity. Let c(n) again denote
the average path length of an unsuccessful search in a BST of size n. Evaluate this
value for the number of points of the node as the additional penalty. It serves as an
indication of the additional path length if the node were further expanded as a BST.
The complete pseudocode is given in algorithm 7.

Example. Figure 3.3 shows example output of the splits of a tree for a number of 2D toy
datasets. The datasets are random subsamples of size 1024 of those introduced in sec-
tion 4.2. The trees are built on a random subsample of 128 points and use a node capacity
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Algorithm 5 Insert
Require: RandomShiftTree T
Require: point p

ps ← p+ T.shift
n← T.root
while not isLeaf(n) do ▷ find leaf

n← c in n.children where contains(c.boundingBox, ps)
while true do ▷ split as necessary

if n.depth < T .maxDepth and size(n.points) = T .maxPoints then
split(n, T .splits[n.depth])
n← c in n.children where contains(c.boundingBox, ps)

else
insert(n, ps)
return

Algorithm 6 Delete
Require: RandomShiftTree T
Require: point p

ps ← p+ T.shift
n← T.root
while not isLeaf(n) do ▷ find leaf

n← c in n.children where contains(c.boundingBox, ps)
delete(n, ps)
while hasParent(n) do ▷ contract as possible

n← n.parent
onlyLeaves← isLeaf(c) for all c in n.children
sizeSum← sum of size(c.points) for all c in n.children
if onlyLeaves and sizeSum < T .maxPoints then

pointSum← union of c.points for all c in n.children ▷ can contain duplicates
n.points← pointSum
clear(n.children)

else
return

Algorithm 7 Score
Require: RandomShiftTree T
Require: point p

ps ← p+ T.shift
n← T.root
while not isLeaf(n) do ▷ find leaf

n← c in n.children where contains(c.boundingBox, ps)
penalty← 0
if n.depth = T .maxDepth and size(n.points) > T .maxPoints then

penalty← c(size(n.points))
pathLength = n.depth - 1
return pathLength + penalty
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of 2.

(a) Blobs. (b) Circles. (c) Moons.

Figure 3.3: Example output on 2D toy datasets for RSTs configured subsample size 128 and
node capacity 2.

Random Shift Forest. Finally, a Random Shift Forest (RSF) is just an ensemble of a fixed
number of RSTs. The following parameters are used:

• Number of points: Also referred to as the sample size, the number of points n each
RST is expected to contain also dictates the maximum depth of a tree. Like with iForest,
it is simply set to ⌈log2(n)⌉.

• Number of trees: The idea of using multiple RSTs with random splits and shifts is to
avoid the bias from splitting deterministically, mimicking the random split values of
iForest. The final anomaly score of a point is the average of its scores among all RSTs.
Like is done for iForest, it will be useful to normalise this score to a value between 0
and 1. Given an average score s, the reported anomaly score follows as 2−s/c(n), where c
is again the average path length of an unsuccessful BST search and n the sample size.
As such, a score of 0 means a point is very unlikely to be anomalous, and a score of 1
means a point is very likely to be anomalous.

• Granularity: The maximum node capacity is determined by a granularity parameter
g. It works in such a way that the first ⌊k/g⌋ RSTs are set to a max of 1, the second
⌊k/g⌋ RSTs to a max of 2, and so forth till the last ⌊k/g⌋ RSTs with a max of g. A higher
max means that for some trees it takes more points to split a node, thus leading to
increased anomaly scores. This can aid in detecting microclusters of anomalies and
avoid the masking effect. Microclusters of anomalous points that are very close would
otherwise end up far down the tree with a low anomaly score.

The insertion and deletion operations on an RSF are simply repeated for each of its RSTs.

Complexity. Consider a subsample size n and maximum node capacity w. The maximum
tree height is set to h= ⌈log2 n⌉. For tree insertion, in the worst case, a node needs to be split
at each level, where at most w points need to be redistributed among the two new child
nodes. Such a case always occurs when the w points each have the same coordinates and
thus will never be split. The resulting runtime complexity of insertion is O (w log2 n). Regard-
less of the node capacity, however, a point is always involved in one node split at each level.
Thus, the amortised runtime complexity is O (log2 n). For tree deletion, a similar argument
applies. In the worst case, a parent node needs to be contracted at each level, where at most
w points are collected from its two child nodes. Again, a point can only be involved in the
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contraction of a node once at each level. This also gives a runtime complexity of O (w log2 n)
in general and O (log2 n) amortised. For tree scoring, in the worst case, a leaf node is situated
at the maximum depth. There are no further operations involving each point of a node, giv-
ing a runtime complexity of O (log2 n) in general. There are at most O (2h) = O (2log2 n) = O (n)
leaf nodes per tree. Together with the internal nodes and the n points themselves, this gives
a space complexity of O (n). An implementation may further reduce space by using a shared
point store. Note that the influence of the dimension on the point size and bounding box
is ignored. There is no further overhead in maintaining a forest of k trees, such that only
an extra factor k applies to all operations and storage, where the granularity g of a forest
determines the worst-case regarding the node capacity (when w= g).

RSQF. Visser [65] also proposed a special variant of RSF that can be more effective in 2D.
This variant’s 2D bounding box is always split among both its axes. This means each internal
node has four child nodes and there are no random split dimensions. The resulting data
structure is called a Random Shift Quad Tree (RSQT) as part of a Random Shift Quad Forest
(RSQF). Of course, it is not hard to imagine similar variants for higher dimensions, but this
quickly becomes intractable. RSQF is not further considered in this thesis, but can otherwise
be extended in the same way as RSF.

Example. Refer back to the RST output shown in figure 3.3. Figures 3.4 till 3.6 show the
normalised point scores, tree splits, and heatmaps for RSF on the full versions of the same
three toy datasets. RSF is configured for 64 trees of size 1024, using granularity 4. The
relatively large sample size is the tipping point after which RSF can differentiate the regions
between the moon and circle objects. The distribution of the splits may be hard to interpret
since each tree splits for a differently shifted input.

(a) Blobs. (b) Circles. (c) Moons.

Figure 3.4: Normalised point scores for RSF on three toy datasets.

Bias. Refer back to the discussion of Extended Isolation Forest (EIF) of section 2.2.2. It was
shown that the splitting procedure of Isolation Forest (iForest) leads to unwarranted regions
of increased anomaly scores. Figure 3.7 shows the output of iForest, EIF, and RSF on a sim-
ilar dataset of two blobs. The dataset is generated using the make_blobs function of the
Python package scikit-learn [52]. The two normal blobs of total size 10000 were generated
from two Gaussian distributions centred at (0,10) and (10,0), both with a standard devia-
tion 2. Anomalies are added as two Gaussian distributions of total size 50 centred at (0,0)
and (10,10), both with standard deviation 2. The algorithms are configured with 32 trees of
size 256. Like EIF, in contrast to iForest, RSF’s splitting procedure avoids the unwanted side-
effect of ghost clusters of higher anomaly scores. The problem with iForest is that splits of
different trees tend to be focused around the same normal data and extend into the same
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(a) Blobs. (b) Circles. (c) Moons.

Figure 3.5: Splits of RSF trees on three toy datasets.

(a) Blobs. (b) Circles. (c) Moons.

Figure 3.6: Heatmap of anomaly scores for RSF on three toy datasets.

direction. However, since RSF applies a random shift to the data, splits may be anywhere
within a range of the whole bounding box. Along every dimension, with respect to the first
split, all data may be either completely below or above the splitting value. This example also
shows that this impairs iForest’s ability to correctly detect anomalies. Compare these results
to figure 3.6 of the example above as well. Some bias of the axis-aligned splits still seems
to remain. Note that these results are based on just one random run. The experiments in
section 4.2 will further benchmark the performance difference.
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Figure 3.7: Heatmap of the anomaly scores and anomalies detected by iForest, EIF, and RSF
on a dataset of two normal and two anomalous point clusters of Gaussian noise.
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3.2 Streaming RSF
A subsample of the input data is used to build the RSF trees that are used for scoring. This
subset can be incrementally obtained and updated by sampling from a stream. What re-
mains is to keep RSF up to date with this sample. This section proposes three ways to do
this using the presented RSF operators, covering both the insertion-only and sliding-window
models. The dynamic streaming model is not considered.

Split sampling. Split sampling is the most straightforward sampling technique. The term
sampling is not really appropriate (but used for consistent naming anyway) since it is actually
deterministic. First, in the insertion phase, the first n incoming points are inserted into an
RSF, where n is the configured tree size. From there, in the scoring phase, all other incoming
points are scored using the built RSF. This is analogous to the train-test partitioning of data,
except that no random shuffling is applied. This is most useful when there is some sort of
ground truth data representative of all the normal data and mostly free of anomalies. When
anomalies occur in the insertion phase, it increases the anomaly score of similar anomalies,
making them harder to differentiate. The main drawback is that this approach assumes the
distribution of the data is static. For example, when a bus schedule is changed, the number
of trips at the new times is expected to spike, but this should not repeatedly be detected as
an anomaly. In addition, the old bus times should be ’forgotten’ to be normal data.

Algorithm 8 Split sampling
Require: tree size n

procedure init
F ← RandomShiftForest()

procedure next(point, index)
if index < n then

insert(F , point)
else

s← score(F , point)
return s

Reservoir sampling. To mitigate the issue of clean initial data, one idea is to keep a run-
ning uniform sample of the data. The effectiveness of taking a uniform sample was already
proven for the offline version of the algorithm implemented by Visser [65]. This task can be
performed using reservoir sampling. There are multiple correct ways to do this, and the one
presented here is just one. The most important thing is that a running sample is maintained
of the stream so far, instead of a sample that is only completed at the end of the stream.
After all, a stream may theoretically never and, and points are supposed to be scored based
on the input history so far (they cannot all be stored). Sampling can be done for each tree
separately or for the whole RSF together. Pseudocode to do the latter is given in algorithm 9.

Window sampling. Finally, to remedy the issue of changing distributions, a sliding window
approach may be applied. Here, the goal is to keep a running sample of only the last w
elements. The approach is to use hash functions that hash a point to 0 with a probability of
n/w. This means that in a window of w elements, there is an expected number of n points
that are hashed to 0. These are inserted into the tree. The points in the current window are
stored. When a point is replaced by a new one, it can again be hashed to check if it was
inserted. If so, it is removed. Again, this can be done for each tree separately (using k hash
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Algorithm 9 Reservoir sampling
Require: tree size n

procedure init
F ← RandomShiftForest()
L ← List() ▷ 0-based index

procedure next(point, index) ▷ 1-based index
if size(L) < n then

push(L, point)
insert(F , point)

else
s← score(F , point)
j ← randInt([0, index));
if j < n then

remove(F , L j)
L j ← point
insert(F , point)

return s

functions) or for the whole RSF together. Note that in the former case, the points still only
need to be stored once. Pseudocode to do the latter is given in algorithm 10.

Complexity. Consider RSF with k trees of size n and a stream of length s >> n. Take the
granularity to be a negligible small constant. For each of the streaming methods, it holds
that each point is only ever inserted, deleted, or scored once (per tree). For all practical val-
ues of k, n, s, the runtime and space requirement of RSF are logarithmic in the input size.
Thus, combined with the logarithmic complexity of the operations, it follows that the pro-
posed methods make up an efficient streaming algorithm. Split sampling requires no addi-
tional space outside of the RSF. Reservoir sampling takes up O (n) extra space for each forest
or tree to maintain the reservoir. This could be improved by using a shared point store. For
window size w, window sampling takes up O (w) extra space to maintain the points in the
current window (ignoring the hash functions). This can also be improved by only storing the
points that are inserted (in at least one tree). Also assuming s >> w, both do not incur sig-
nificant overhead for practical values and thus maintain the streaming algorithm efficiency.

Sine wave. Guha et al. [31] benchmark Robust Random Cut Forest (RRCF) against Isola-
tion Forest (iForest) using an artificial sine wave signal. This example showcases the various
streaming RSF versions on an adaptation of this signal and compares sampling per tree
(split) or for the forest as a whole (joint). The sine wave is given amplitude 50, period 100,
and vertical translation 100. It is sampled at each integer value along the x-axis. An anomaly
of 25 units is placed at a multiple of 100, where the wave is set to a fixed value of 80. This
experiment uses 1000 points with the anomaly placed at 700. This example also adds Gaus-
sian noise with mean 0 and standard deviation 5. The RSF parameters are set to 40 trees of
size 256. A shingle size of 4 is also used since the change point would not be detected oth-
erwise. This is because the flat signal is still within the normal range of the wave bounds. It
is the combination of the flat value jumping back to the normal wave value that constitutes
the anomaly. The experiments of section 4.4 elaborate on this topic.

Figure 3.8 show the results for joint and split sampling using the reservoir and window
sampling (size 512) methods. Split sampling is also included. RSF seems to produce compa-
rable anomaly scores, regardless of whether split sampling or split/joint reservoir/window
or sampling is used. There are some subtle differences due to the difference in methods.
Split sampling seems to show a bit more variability in its scores, and window sampling has
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Algorithm 10 Window sampling
Require: tree size n
Require: window size w

procedure init
F ← RandomShiftForest()
Q← PriorityQueue() ▷ back to front order
h← function hashing to 0 with probability n

w

procedure handleOld
(point, index)← popBack(Q)
if h(index) = 0 then

remove(F , point)
procedure handleNew(point, index)

pushFront(Q, (point, index))
if h(index) = 0 then

insert(F , point)
procedure next(point, index)

if size(Q) < w then
handleNew(point, index)

else
s← score(F , point)
handleOld()
handleNew(point, index)
return s

some additional smaller peaks. The difference may be explained by the fact that reservoir
sampling is always based on the whole history of the stream so far, thus taking more noise
into account. By default, experiments in this thesis will use sampling per tree individually, as
this should avoid masking and swamping effects from affecting a whole forest rather than
one tree.

Figure 3.9 shows the results of using split window sampling for shingle sizes 1, 4, and
16. Using a larger shingle size appears to have a slight dampening effect on the anomaly
scores. The anomalous event also leads to a widened peak, since more shingled points
involve the anomalous jump between values. This may seem disadvantageous, except that
this example also shows that the shingle size of 1 is too small and does not lead to the
desired results. In contrast to the other shingle sizes, there is no peak marking the end of
the flat line.
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(a) Split sampling.

(b) Reservoir sampling.

(c) Window sampling.

Figure 3.8: Joint vs. split sampling.
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Figure 3.9: Split window sampling with shingle sizes 1, 4, and 16.

3.3 Distributed RSF
Because RSF has a deterministic splitting procedure, it can be fully translated to the dis-
tributed setting. It is useful to generalise the notion of nodes to include sketches. Each
node corresponds to a subspace of the bounding box, and an inserted/deleted point always
follows the same path of nodes down a tree. Now, imagine each node contains a sketch that
keeps some information on the points it has seen. When two RSFs with the same configura-
tion but different input are combined, their sketches at each level are compatible. However,
for algorithms that use random splits and split values, this may not be the case. Visser [65]
formalised a similar argument where RSF is applied to a dynamic stream and nodes use
sparse recovery sketches.

In what follows, a simple sketching approach is proposed to reduce the communication
overhead of distributed RSF. Afterwards, two version of RSF for two different distributed
models will be introduced. The performance of these techniques and methods will be con-
sidered in the experiments of seciton 4.2. Note that for this experimental evaluation (i.e., to
evaluate the precision), these algorithms use the true number of anomalies n1. In practice,
this can of course be adapted (e.g., by using a threshold based on a tree depth or standard
deviation).

Sketching. To reduce the communication complexity of distributed RSF, a simple sketch
can be applied. The points in each leaf of each tree are reduced to a set of at most s weighted
points. This is done by simply taking the first s points and cyclically increasing the weights of
those points by the weights of the excess points. Pseudocode for the approach taken here
is given in algorithm 11. To support weighted point sets, only minor adjustments to the tree
operations are necessary. The insert operation tries to find a point and increase its weight
and otherwise inserts it as a new point with a weight of one. The delete operation tries to
find a point and decrease its weight by one, fully deleting it if its weight reaches zero. Node
capacity is now interpreted as the total point weight it may contain.

Assuming a tree size of n with maximum depth h = ⌈log2n⌉, the runtime complexity fol-
lows as O (log2n) since each point can only be removed once. This ignores maintaining cor-
rect weights. The weights could also just be ignored until the sketching operation is per-
formed. Equal points need not even be grouped. Assuming a leaf has c points, another
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Figure 3.10: A diagram of TwoWayDistrStreams.

possibility is to sample s points and give each a weight of ⌈c/s⌉.

Algorithm 11 Sketch
Require: Weighted point set L ▷ 1-based index
Require: Sketch size s

numOfPoints← size(L)
numOfExcess← numOfPoints - s
if numOfExcess > 0 then

for j ∈ {s+ 1, ..., numOfPoints} do
i ← j mod s
L[i].weight← L[i].weight + L[ j].weight

truncate(L, s) ▷ keep first s weighted points

TwoWayDistrStreams. This way of distributing RSF is implemented in the distributed stream-
ing model, with two-way communication and two passes over the input streams. A diagram
of the approach is shown in figure 3.10. Pseudocode is given in algorithm 12. Given is a
randomly or adversarially distributed set of m input streams. As the first pass over the in-
put, sample ψ points in distributed fashion using the method presented in section 2.3.3.
Construct an RSF using the sample, sketch it using algorithm 11, and distribute it to all the
machines. As the second pass over the input, at each machine, score all the points and send
the n1 most anomalous candidate points to the coordinator. At the coordinator, select the
n1 most anomalous among all the candidates and report those as the final anomalies.

OneWayCoordinator. This way of distributing RSF is implemented in the coordinator model,
with one-way communication and one pass over the input. A diagram of the approach is
shown in figure 3.11. Pseudocode is given in algorithm 13. Given is a randomly or adver-
sarially distributed input on a set of m machines. Let ψ the desired sample size. At each
machine, construct an RSF by sampling ψ/m points for each tree independently. Configure
each RSF as if it were for a sample of sizeψ. Each tree on each machine with the same index
uses the same shift and splits (same random seed). Score the input points using these partial
RSFs and select the n1 most anomalous points. Sketch the partial RSFs using algorithm 11.
Send sketched partial RSFs along with the most anomalous points of each machine to the
coordinator. At the coordinator, construct one full RSF by merging the trees with matching
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Algorithm 12 TwoWayDistrStreams
procedure pass1

Obtain sample Z of size n using algorithms 3 and 4.
On coordinator C , sketch RSF(Z) and send it to all the machines.

procedure pass2
On every machine Mi:

Score the incoming stream using RSF(Z).
Send the n1 most anomalous points to the coordinator.

On coordinator C :
Report the incoming points as the anomalies.

Figure 3.11: A diagram of OneWayCoordinator.

index bottom-up in pairs, inserting points of the one into the other. Use the full RSF to again
score the received candidate points. Select the n1 most anomalous points using these scores
and report those as the final anomalies.

Algorithm 13 OneWayCoordinator
procedure round1

On every machine Mi:
construct RSF Fi by randomly sampling m/n points from X i for each tree.
Score the points in X i using RSF Fi .
Let Yi be the n1 most anomalous points.
Sketch RSF(Zi) to obtain Si using algorithm 11.
Send Si and Yi to the coordinator.

procedure round2
On coordinator C :

Let Y =
⋃m

i=1 Yi be the set of points received.
Merge the sketches receives to obtain RSF S =

⋃m
i=1 Si .

Score the points in Y using S.
Report the n1 most anomalous points.

Complexity. Each machine performs offline RSF in some way on its local input. As shown in
section 3.1, this maintains the sublinear memory and polynomial runtime requirements for
distributed algorithms, as well as the sublogarithmic communication complexity. Although
the sketching operation does not give any further guarantees about the latter, it will be
empirically shown to make a significant difference in the experiments of section 4.3.
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Experiments

4.1 Experimental setup
Experiments were carried out on a Mac Mini (M1, 2020) with 128GB storage and 8GB mem-
ory, running MacOS Monterey. All performance measures are averaged over 32 repetitions
and reported as ’mean ± standard deviation’.

RSF. All source code for this thesis is available at GitHub [35]. This includes a Rust imple-
mentation of Random Shift Forest (RSF), Python code to download and generate the input
data, and Rust code to perform the experiments.

RRCF. The implementation used for Robust Random Cut Forest (RRCF) is the Rust port by
Amazon Web Services (AWS) available at GitHub [7].

EIF. The implementation used for Extended Isolation Forest (EIF) is a modified version of
the Rust port by Mandery. Both are available at GitHub [46] [34]. The modified version
resolves an issue that occurs for datasets with a bounding box with a range of zero along
some dimensions. EIF computes the bounds along each dimension and then uses these
to randomly sample pivot points for its splits. When the algorithm tries to sample from
an open range with equal bounds (which is empty), it crashes. In this case, the modified
algorithm instead returns the lower bounds. It is also important to note this algorithm is
offline, though it could be modified to be online. Since it does not support the use of a
predetermined bounding box, all experiments using EIF use normalised data, such that the
testing data used for scoring is not out of bounds with respect to the training data used to
construct the trees.

4.2 Classification
This experiment and some of those that follow make use of several toy and real datasets,
which are elaborated on below. Table 4.2 provides some general statistics of the datasets.
Figure 4.1 shows how the anomalies of the datasets are distributed.

Toy datasets. The toy datasets are generated using the Python package scikit-learn [52].
Each consists of 10,000 normal and 1000 anomalous points, randomly shuffled. The anoma-
lous points are sampled uniformly at random from the bounding box centred at the bound-
ing box of the normal data and scaled by a factor of 1.5. The datasets include:
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name points dimensions anomalies contamination

blobs 11000 2 1000 9.1%
circles 11000 2 1000 9.1%
moons 11000 2 1000 9.1%
s-curve 11000 3 1000 9.1%
swiss-roll 11000 3 1000 9.1%

Table 4.1: Toy datasets.
name points dimensions anomalies contamination

covtype 286048 54 2747 1.0%
http 623091 38 4045 0.6%
sat1 6435 36 703 10.9%
sat3 6435 36 2036 31.6%
shuttle 57990 9 3501 6.0%
smtp 96554 38 1183 1.2%

(a) Real datasets.

Table 4.2: General dataset statistics.

(a) Toy datasets. (b) Real datasets.

Figure 4.1: Dataset anomaly distributions.

1. Blobs: Generated using themake_blobs function, using centres (−3.0, 3.0) and (3.0, 3.0)
with standard deviations 0.5 and .5, respectively.

2. Circles: Generated using the make_circles function, using factor 0.5 and noise 0.02.

3. Moons: Generated using the make_moons function, using noise 0.02.

4. S-Curve: Generated using the make_s_curve function, using noise 0.05.

5. Swiss-Roll: Generated using the make_swiss_roll function, using noise 0.05.

Real datasets. The real datasets are obtained from the UCI Machine Learning Reposi-
tory [21]. The datasets include:

1. Covtype: Acquired from the Covertype dataset [2]. It consists of cartographic mea-
surements of 30m x 30m cells of several wilderness areas and their corresponding
forest cover types. Label 2 is the normal class. Label 4 is the anomalous class.

2. Http: Acquired from the KDD Cup 1999 dataset [3] entries with ’protocol_type’ of ’http’.
It is based on the 1998 DARPA Intrusion Detection Evaluation Program dataset [42]
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and contains features of internet connections with labels stating if the connection is
normal or the type of attack (an anomaly).

3. Sat1: Acquired from the Statlog (Landsat Satellite) dataset [4]. It consists of measure-
ments of 3 x 3 pixel cells of satellite images and the corresponding soil type of the
central pixel. Labels 1, 3, 4, 5, 6, and 7 are the normal class. Label 2 is the anomalous
class.

4. Sat3: Like sat1, but with 3 labels for the anomalous class. Labels 1, 3, 6, and 7 are the
normal class. Labels 2, 4, and 5 are the anomalous class.

5. Shuttle: Acquired from the Statlog (Shuttle) dataset [5]. It consists of a number of
numerical attributes of spacecraft flight. Labels 1 and 4 are the normal class. Labels 2,
3, 5, and 7 are the anomalous class.

6. Smtp: Like http, but now using entries with ’protocol_type’ of ’smtp’.

Experiment. Benchmark RSF against iForest (EIF with extension level 0); fully-extended
EIF; and RRCF. All algorithms are configured for 32 of size 256. RSF uses granularity 4. All
data is normalised, as is required for EIF. Each method uses the split sampling approach
of algorithm 8. The resulting ROCAUC, PRAUC, and precision metrics based on the scored
points are reported. For comparison, RSF using reservoir and (size 1000) window sampling
is also included. Both use sampling for each tree independently. Table 4.3 shows the results
for the toy datasets and table 4.4 shows the results for the real datasets.

Discussion. In general, in terms of all performance measures, RSF and RRCF are quite
close, iForest and EIF scoring similar or slightly worse. Though this might be expected since
each algorithm is isolation-based to some extent, it is still interesting to see that each of
the algorithms clearly scores best on one or two datasets. iForest and EIF also have an
occasional bad score, but it is unclear whether this is due to the underlying method itself
or implementation issues. For the toy datasets, the standard deviation of the scores is very
low, while it varies a bit for each algorithm when it comes to the real datasets.

Compared to the toy datasets, the real datasets show a greater variability of how well the
algorithms can detect anomalies. It seems this can be partially explained by the number of
anomalies at the beginning of the dataset, more anomalies being harder and vice versa.
This highlights the importance of clean training data.

For the toy datasets, using RSF with reservoir or window sampling does not make a signif-
icant difference compared to the split variant of RSF. For the real datasets, especially window
sampling shows degraded performance on some datasets. This might be because masking
and swamping effects are enhanced in a shorter window, especially when anomalies appear
close to each other. For reservoir sampling, there is probably no substantial distribution
change when iterating through the data that might give it the upper hand. Overall, it can
be concluded that RSF is on par with the state-of-the-art, but the effectiveness of sampling
is limited.
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algorithm rocauc prauc precision

iForest-split .96 ± .00 .87 ± .01 .79 ± .01
EIF-split .97 ± .00 .88 ± .01 .81 ± .01
RRCF-split .96 ± .00 .88 ± .00 .80 ± .01
RSF-split .97 ± .00 .89 ± .01 .81 ± .01

RSF-reservoir .97 ± .00 .89 ± .00 .81 ± .01
RSF-window .97 ± .00 .89 ± .00 .81 ± .01

(a) Blobs.

algorithm rocauc prauc precision

iForest-split .83 ± .00 .66 ± .01 .59 ± .01
EIF-split .84 ± .01 .66 ± .02 .59 ± .02
RRCF-split .87 ± .00 .70 ± .01 .62 ± .01
RSF-split .84 ± .00 .67 ± .00 .59 ± .01

RSF-reservoir .84 ± .01 .68 ± .00 .61 ± .01
RSF-window .83 ± .01 .66 ± .00 .59 ± .01

(b) Circles.
algorithm rocauc prauc precision

iForest-split .88 ± .01 .75 ± .02 .68 ± .03
EIF-split .90 ± .01 .78 ± .02 .71 ± .03
RRCF-split .94 ± .01 .85 ± .02 .76 ± .02
RSF-split .91 ± .01 .82 ± .01 .75 ± .02

RSF-reservoir .92 ± .01 .82 ± .01 .74 ± .01
RSF-window .91 ± .00 .81 ± .01 .73 ± .01

(c) Moons.

algorithm rocauc prauc precision

iForest-split .89 ± .01 .75 ± .02 .69 ± .02
EIF-split .87 ± .01 .68 ± .03 .62 ± .03
RRCF-split .92 ± .01 .81 ± .01 .74 ± .01
RSF-split .90 ± .01 .80 ± .01 .73 ± .02

RSF-reservoir .90 ± .01 .80 ± .01 .74 ± .01
RSF-window .90 ± .01 .80 ± .01 .74 ± .01

(d) S-Curve.
algorithm rocauc prauc precision

iForest-split .86 ± .01 .71 ± .02 .64 ± .02
EIF-split .85 ± .00 .67 ± .02 .61 ± .02
RRCF-split .89 ± .00 .77 ± .01 .70 ± .01
RSF-split .87 ± .01 .74 ± .02 .68 ± .02

RSF-reservoir .87 ± .01 .76 ± .01 .70 ± .01
RSF-window .87 ± .00 .76 ± .01 .70 ± .02

(e) Swiss-Roll.

Table 4.3: Anomaly detectors benchmark results for the toy datasets.

algorithm rocauc prauc precision

iForest-split .79 ± .10 .06 ± .08 .07 ± .10
EIF-split .74 ± .09 .03 ± .04 .03 ± .07
RRCF-split .95 ± .01 .14 ± .05 .17 ± .06
RSF-split .85 ± .13 .15 ± .17 .17 ± .19

RSF-reservoir .64 ± .05 .03 ± .02 .07 ± .06
RSF-window. .78 ± .05 .09 ± .03 .17 ± .05

(a) Covtype.

algorithm rocauc prauc precision

iForest-split .97 ± .02 .54 ± .14 .50 ± .12
EIF-split .90 ± .04 .12 ± .13 .14 ± .16
RRCF-split .95 ± .00 .47 ± .00 .44 ± .00
RSF-split .94 ± .01 .44 ± .05 .43 ± .02

RSF-reservoir .96 ± .01 .39 ± .11 .41 ± .05
RSF-window. .92 ± .01 .15 ± .02 .20 ± .03

(b) Http.
algorithm rocauc prauc precision

iForest-split .98 ± .00 .95 ± .01 .89 ± .02
EIF-split .99 ± .01 .95 ± .04 .89 ± .05
RRCF-split .98 ± .01 .89 ± .04 .85 ± .03
RSF-split .98 ± .00 .94 ± .02 .89 ± .02

RSF-reservoir .96 ± .01 .70 ± .09 .69 ± .06
RSF-window. .94 ± .01 .61 ± .07 .57 ± .06

(c) Sat1.

algorithm rocauc prauc precision

iForest-split .69 ± .01 .66 ± .02 .54 ± .02
EIF-split .68 ± .02 .64 ± .03 .51 ± .04
RRCF-split .66 ± .01 .64 ± .01 .50 ± .02
RSF-split .69 ± .02 .66 ± .02 .55 ± .03

RSF-reservoir .70 ± .02 .64 ± .03 .56 ± .03
RSF-window. .69 ± .02 .57 ± .04 .51 ± .03

(d) Sat3.
algorithm rocauc prauc precision

iForest-split .99 ± .00 .89 ± .05 .85 ± .06
EIF-split .98 ± .00 .89 ± .03 .86 ± .04
RRCF-split .99 ± .00 .83 ± .05 .79 ± .07
RSF-split .99 ± .00 .94 ± .02 .94 ± .02

RSF-reservoir .99 ± .00 .94 ± .02 .94 ± .04
RSF-window. .98 ± .01 .93 ± .06 .92 ± .07

(e) Shuttle.

algorithm rocauc prauc precision

iForest-split 1.00 ± .00 .94 ± .05 .93 ± .05
EIF-split .99 ± .01 .54 ± .22 .54 ± .25
RRCF-split 1.00 ± .00 .99 ± .00 .97 ± .00
RSF-split 1.00 ± .00 .98 ± .01 .96 ± .02

RSF-reservoir 1.00 ± .00 .99 ± .00 .96 ± .02
RSF-window. .99 ± .01 .50 ± .08 .45 ± .08

(f) Smtp.

Table 4.4: Anomaly detectors benchmark results for the real datasets.
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4.3 Distributed
Section 3.3 discusses how RSF can be generalised to the distributed setting. This section
compares the two versions of distributed RSF that were proposed and compares them to
each other and to the offline version of RSF. This includes TwoWayDistrStreams defined in
algorithm 12 and OneWayCoordinator defined in algorithm 13.

Experiment. Investigate the influence of varying the number of machines, sketch size,
and sample size on the performance of distributed RSF. By default, RSF is configured for 32
trees of size 256, using granularity 4 and 16 machines. The number of machines is varied as
1, 4, and 8. The sketch size is varied as 1, 2, 4, and 8. The sample size is varied as 128, 256,
512, 1024, and 2048.

The toy and real datasets of the classification benchmark experiment of section 4.2 serve
as the input. Given the number of machines m, the input is distributed by generating m− 1
splitting indices uniformly at random in the full list of data points. Note that this can gener-
ate any data partitioning possible, from completely balanced to completely balanced.

Next to the precision, each evaluation will report the average tree size (in terms of num-
ber of weighted points) of the sketched full RSF (after sampling for TwoWayDistrStreams;
after merging for OneWayCoordinator). The results are shown in tables 4.5 and 4.6, and fig-
ures 4.2 till 4.9. For comparison, the figures also include an offline baseline, which assumes
all data is on one machine; takes random samples for each tree; and applies no sketching.

Discussion. As evident from the tables, varying the number of machines and sketch size
does not seem to have any significant influence on the performance of distributed RSF. How-
ever, using fewer machines and a smaller sketch size both drastically decrease the average
tree size. This can be explained by fewer machines receiving more points, which (being
mostly the kind of normal data) leads to more points at the same leaf nodes being sketched.

As evident from the figures, varying the sketch size when varying the sample size does
not have a significant influence on the performance of distributed RSF either. In addition,
the performance of distributed RSF matches that of offline RSF. Varying the sample size
itself does have a varying influence on the performance. For the toy datasets, this is in
all cases positive. For the real datasets, it varies, being somewhat positive or negative. This
difference may be explained by the absence of the masking and swamping effects, occurring
to a lesser extent for the artificial uniform noise of the toy datasets. Also here it can be seen
that the sketch size has a dramatic effect on the average tree size. The savings are especially
pronounced for real datasets. Real data seems naturally more clustered in comparison to
the more stretched shapes of the toy datasets.

Note that these conclusions apply to both algorithms simultaneously. The performance
of both is very similar across all datasets. This shows that both are equally valid ways to dis-
tribute RSF for their respective domains. Only the average tree size of OneWayCoordinator
is somewhat higher. This difference may be due to TwoWayDistrStreams sketching a fully
built RSF, while OneWayCoordinator sketches partial trees and then merges these. Again,
the more points that are inserted together, the more end up being sketched together.
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m s avg. tree size precision
1 1 22.12 ± 1.59 .81 ± .01
1 2 38.32 ± 3.91 .81 ± .02
1 4 60.60 ± 4.09 .81 ± .01
1 8 92.78 ± 4.33 .81 ± .02
8 1 21.84 ± 1.93 .81 ± .01
8 2 37.30 ± 3.29 .81 ± .01
8 4 61.50 ± 3.93 .81 ± .01
8 8 92.74 ± 5.35 .81 ± .01

16 1 22.18 ± 1.91 .81 ± .01
16 2 37.52 ± 2.94 .80 ± .02
16 4 60.18 ± 4.50 .81 ± .01
16 8 92.33 ± 4.89 .81 ± .01

(a) Blobs.

m s avg. tree size precision
1 1 23.54 ± 1.24 .73 ± .02
1 2 44.42 ± 2.82 .73 ± .02
1 4 76.57 ± 3.74 .73 ± .02
1 8 129.23 ± 5.17 .73 ± .02
8 1 24.56 ± 1.14 .73 ± .02
8 2 43.34 ± 2.74 .73 ± .02
8 4 75.61 ± 3.79 .73 ± .03
8 8 128.30 ± 4.56 .73 ± .02

16 1 24.01 ± 1.53 .73 ± .02
16 2 43.82 ± 2.26 .73 ± .02
16 4 75.74 ± 3.50 .73 ± .02
16 8 130.78 ± 6.79 .73 ± .02

(b) S-Curve.

m s avg. tree size precision
1 1 5.26 ± 0.74 .48 ± .03
1 2 9.02 ± 1.03 .49 ± .06
1 4 15.78 ± 1.13 .50 ± .09
1 8 26.61 ± 2.03 .49 ± .05
8 1 5.40 ± 0.62 .49 ± .07
8 2 9.09 ± 0.97 .49 ± .04
8 4 16.10 ± 1.34 .48 ± .04
8 8 26.92 ± 1.54 .48 ± .04

16 1 5.54 ± 0.59 .49 ± .07
16 2 9.78 ± 0.96 .50 ± .04
16 4 15.95 ± 1.72 .50 ± .06
16 8 26.86 ± 2.38 .49 ± .04

(c) Http.

m s avg. tree size precision
1 1 3.06 ± 0.39 .92 ± .08
1 2 5.91 ± 0.59 .91 ± .11
1 4 11.44 ± 0.99 .94 ± .05
1 8 20.68 ± 1.60 .94 ± .05
8 1 3.09 ± 0.40 .93 ± .05
8 2 5.80 ± 0.45 .94 ± .03
8 4 11.30 ± 0.94 .91 ± .11
8 8 20.26 ± 1.23 .93 ± .08

16 1 2.96 ± 0.30 .94 ± .03
16 2 5.92 ± 0.45 .91 ± .09
16 4 10.91 ± 0.94 .93 ± .07
16 8 20.17 ± 1.29 .91 ± .12

(d) Shuttle.

Table 4.5: TwoWayDistrStreams results for varying number of machines m and sketch size s.
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m s avg. tree size precision
1 1 22.21 ± 0.60 .81 ± .01
1 2 38.74 ± 1.39 .82 ± .01
1 4 61.43 ± 2.03 .81 ± .01
1 8 92.93 ± 3.67 .82 ± .01
8 1 74.62 ± 2.80 .81 ± .01
8 2 123.06 ± 4.58 .82 ± .01
8 4 183.27 ± 7.08 .81 ± .01
8 8 228.09 ± 9.97 .81 ± .01

16 1 102.81 ± 3.48 .81 ± .01
16 2 167.20 ± 4.42 .81 ± .01
16 4 225.72 ± 4.66 .81 ± .01
16 8 252.22 ± 3.78 .81 ± .01

(a) Blobs.

m s avg. tree size precision
1 1 23.93 ± 1.26 .75 ± .01
1 2 43.98 ± 2.46 .74 ± .02
1 4 77.30 ± 4.02 .75 ± .01
1 8 129.38 ± 5.28 .74 ± .01
8 1 97.80 ± 3.34 .74 ± .02
8 2 166.38 ± 5.31 .74 ± .02
8 4 232.96 ± 5.37 .74 ± .01
8 8 253.08 ± 9.94 .74 ± .01

16 1 125.24 ± 3.67 .73 ± .02
16 2 199.67 ± 5.60 .74 ± .01
16 4 249.64 ± 4.70 .74 ± .01
16 8 252.40 ± 6.03 .74 ± .02

(b) S-Curve.

m s avg. tree size precision
1 1 5.22 ± 0.35 .49 ± .04
1 2 9.45 ± 0.82 .48 ± .04
1 4 16.11 ± 1.15 .48 ± .04
1 8 27.73 ± 1.20 .48 ± .04
8 1 19.54 ± 1.49 .49 ± .07
8 2 34.29 ± 2.84 .47 ± .02
8 4 60.91 ± 5.49 .47 ± .02
8 8 106.37 ± 8.41 .47 ± .03

16 1 31.99 ± 2.40 .48 ± .04
16 2 58.03 ± 3.47 .48 ± .05
16 4 102.46 ± 6.51 .47 ± .03
16 8 169.62 ± 6.50 .47 ± .01

(c) Http.

m s avg. tree size precision
1 1 3.00 ± 0.29 .95 ± .02
1 2 5.63 ± 0.43 .94 ± .02
1 4 11.15 ± 0.75 .93 ± .03
1 8 20.20 ± 1.67 .90 ± .09
8 1 19.11 ± 1.51 .94 ± .02
8 2 35.14 ± 2.76 .92 ± .08
8 4 62.74 ± 4.06 .94 ± .03
8 8 106.49 ± 5.54 .94 ± .06

16 1 34.17 ± 2.39 .94 ± .03
16 2 60.84 ± 3.42 .93 ± .04
16 4 104.57 ± 5.97 .94 ± .02
16 8 173.73 ± 7.98 .92 ± .04

(d) Shuttle.

Table 4.6: OneWayCoordinator results for varying number of machines m and sketch size s.
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(a) Blobs. (b) Circles. (c) Moons.

(d) S-Curve. (e) Swiss-Roll

Figure 4.2: TwoWayDistrStreams precision on toy datasets for varying sample and sketch
size.

(a) Covtype. (b) Http. (c) Sat1.

(d) Sat3. (e) Shuttle. (f) Smtp.

Figure 4.3: TwoWayDistrStreams precision on real datasets for varying sample and sketch
size.
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(a) Blobs. (b) Circles. (c) Moons.

(d) S-Curve. (e) Swiss-Roll.

Figure 4.4: TwoWayDistrStreams size on toy datasets for varying sample and sketch size.

(a) Covtype. (b) Http. (c) Sat1.

(d) Sat3. (e) Shuttle. (f) Smtp.

Figure 4.5: TwoWayDistrStreams size on real datasets for varying sample and sketch size.
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(a) Blobs. (b) Circles. (c) Moons.

(d) S-Curve. (e) Swiss-Roll.

Figure 4.6: OneWayCoordinator precision on toy datasets for varying sample and sketch
size.

(a) Covtype. (b) Http. (c) Sat1.

(d) Sat3. (e) Shuttle. (f) Smtp.

Figure 4.7: OneWayCoordinator precision on real datasets for varying sample and sketch
size.
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(a) Blobs. (b) Circles. (c) Moons.

(d) S-Curve. (e) Swiss-Roll.

Figure 4.8: OneWayCoordinator size on toy datasets for varying sample and sketch size.

(a) Covtype. (b) Http. (c) Sat1.

(d) Sat3. (e) Shuttle. (f) Smtp.

Figure 4.9: OneWayCoordinator size on real datasets for varying sample and sketch size.

Streaming and Distributed Anomaly Detection and its Applications 44



CHAPTER 4. EXPERIMENTS

Scalability. To also indicate the further scalability of distributed RSF, figure 4.10 shows the
precision; size; and time results for Http when further increasing the number of machines
for varying sample sizes. RSF is configured for 32 trees, granularity 4, and sketch size 2. The
sample size is varied as 256, 512, 1024, and 2048. The number of machines is varied as 16,
32, 64, and 128.

The results are what you would desire from a distributed algorithm. The running time
increases linearly and the memory increases sublinearly with the number of machines. The
relative difference between the sample size for the running time and average tree size re-
mains more or less the same. The precision stays the same across all configurations. Note
that these experiments were performed on a single 8-core machine. Hence, it is the over-
head of the distributed algorithm that is measured here, not the performance gains from
executing it in parallel (i.e., else there would ideally be a linear speedup). Still, the results
should serve as an indication of what to expect with the use of an actual cluster.
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Figure 4.10: OneWayCoordinator scalability on the Http dataset for varying number of ma-
chines and sample size.
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4.4 Time series
Section 2.3.2 discusses how Autoperiod can be used to automatically detect the period of an
input signal, and how shingling can be used to transform the task of anomaly detection to
work on patterns of points. This section combines RSF with Autoperiod to perform anomaly
detection on shingled time series datasets covering a wide range of use cases.

Numenta Anomaly Benchmark. The Numenta Anomaly Benchmark (NAB) repository [42]
is a sizeable repository with time series comprised of the following dataset classes:

• artificialNoAnomaly: Synthetic signal data.

• artificialWithAnomaly: Synthetic signal data.

• realAWSCloudwatch: Server resource metrics.

• realAdExchange: Advertisement click rates.

• realKnownCause: Real-World scenarios.

• realTraffic: Traffic metrics.

• realTweets: Company-related tweet frequency.

Each dataset belonging to these classes is one-dimensional with a constant sampling rate,
which need not be the case in general. If applicable, multiple signals can be combined into
one higher-dimensional signal, enabling anomaly detection on the combined values.

Experiment. Autoperiod is run on the first 1024 points of an incoming stream. The data
is shingled with the detected period as the shingle size. Note that the bounding box should
be altered accordingly. Then, training and scoring proceed as normal using RSF using (size
2048) window sampling for each tree separately. This includes the points on which Autope-
riod is run. RSF is configured with 64 trees of size 512. A dataset is excluded if any of the
following applies:

• There are no labels.

• Autoperiod is not able to determine a period.

• The first anomalous event occurs before enough data was seen to start scoring.

Some statistics on the included datasets are shown in table 4.7. The resulting plots are
shown in figures 4.11 till 4.15, grouped by each class. The plots are not the result of multiple
repetitions.

Discussion. Among the artificialWithAnomaly plots, subfigures 4.11d and 4.11e clearly
show the value of using shingling. Viewed as single values, the anomalies do not constitute
any abnormalities. The longer valley and increased density of spikes are still at the same
height as the other valleys and spikes. However, viewed in the context of the data period,
the patterns are completely different; a missing hill in one case and many more spikes in
the other. It is the increased absence or presence of these consecutive normal values that
can now be detected.

Though the various abnormal signal patterns of artificialWithAnomaly can be detected
very well, the realKnownCause plots show practice is a lot messier. The spikes of subfig-
ure 4.12a are regular but rare enough to be repeatedly seen as anomaly. Other data is very
flat with many irregular spikes. It should be noted that the provided labels are in no way ex-
haustive, so many false alarms may actually be applicable, depending on the context. One
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class name #points #anomalies period

realTraffic occupancy_t4013 2500 2 181
realAWSCloudwatch ec2_cpu_utilization_24ae8d 4032 2 3
artificialWithAnomaly art_daily_jumpsup 4032 1 288
realKnownCause cpu_utilization_asg_misconfiguration 18050 1 12
artificialWithAnomaly art_load_balancer_spikes 4032 1 35
realTraffic speed_t4013 2495 2 112
artificialWithAnomaly art_daily_jumpsdown 4032 1 288
realAWSCloudwatch ec2_network_in_5abac7 4730 2 264
realAWSCloudwatch ec2_disk_write_bytes_1ef3de 4730 1 316
realAWSCloudwatch ec2_cpu_utilization_ac20cd 4032 1 118
realTraffic speed_6005 2500 1 173
realTweets Twitter_volume_KO 15851 3 200
realTweets Twitter_volume_CRM 15902 3 288
realKnownCause nyc_taxi 10320 5 48
artificialWithAnomaly art_daily_nojump 4032 1 288
realKnownCause rogue_agent_key_updown 5315 2 292
artificialWithAnomaly art_daily_flatmiddle 4032 1 288
realTweets Twitter_volume_IBM 15893 2 250
realKnownCause machine_temperature_system_failure 22695 4 218
realTweets Twitter_volume_FB 15833 2 250
realTweets Twitter_volume_GOOG 15842 3 244

Table 4.7: Statistics of the included NAB datasets.

way to resolve this in practice could be to only sound an alarm when there is an increased
anomaly score for some small time window. Another issue is that Autoperiod sometimes
still reports a period form some very aperiodic data. These reported periods tend to be
quite high.

A great example of the combined power of window sampling and shingling is the nyc_taxi
plot, measuring taxi volume on a 5min basis. The anomalies correspond to events like New
Year’s Eve, a marathon, and some severe weather conditions. Each is detected clearly. In-
teresting is the first peak in the anomaly scores. Although it is not labelled, the distribution
visually changes, which is likely due to the transition from summer time to work and school
schedules. The weekly anomaly score peaks quickly diminish, showing that besides picking
up on the novelty, the time window also quickly catches on to the new pattern. Since the
window is not nearly a year long, the same would occur each year, which may be desirable
depending on the application.

The results for realTraffic all seem good but are a bit hard to fully judge given the smaller
sizes of the datasets. The results on realTweets seem good as well and provide further
proof of the effectiveness of using Autoperiod. Tuning the shingle size by hand proved quite
difficult, giving much messier results, while there are clear periodicities in the data. These
results with the automatically detected period are very clean.

In practice, acquiring the best results comes down to tuning the algorithm’s ability to
detect and remember short- and long-term patterns. Shingling and window sampling pro-
vide indispensable tools to do so. In addition, the automatically detected period using a
method like Autoperiod provides a very good starting point for the shingle size. Then, the
task comes down to fine-tuning this initial configuration using domain knowledge and in-
troducing additional transformations to handle problem-specific patterns that can occur.
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(a) art_daily_flatmiddle. (b) art_daily_jumpsdown.

(c) art_daily_jumpsup. (d) art_daily_nojump.

(e) art_load_balancer_spikes.

Figure 4.11: artificialWithAnomaly.
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(a) ec2_cpu_utilization_24ae8d. (b) ec2_cpu_utilization_ac20cd.

(c) ec2_disk_write_bytes_1ef3de. (d) ec2_network_in_5abac7.

Figure 4.12: realAWSCloudwatch.

(a) cpu_utilization_asg_misconfiguration. (b) machine_temperature_system_failure.

(c) nyc_taxi. (d) rogue_agent_key_updown.

Figure 4.13: realKnownCause.
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(a) occupancy_t4013. (b) speed_6005.

(c) speed_t4013.

Figure 4.14: realTraffic.
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(a) Twitter_volume_CRM. (b) Twitter_volume_FB.

(c) Twitter_volume_GOOG. (d) Twitter_volume_IBM.

(e) Twitter_volume_KO.

Figure 4.15: realTweets.
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4.5 Graphs
Section 2.3.1 discusses how SpotLight embeds a stream of graphs as a stream of points in
high-dimensional Euclidean space on which anomaly detection can be performed. This sec-
tion combines RSF with SpotLight. Another benchmark against RRCF is performed to further
compare the performance of both, and delve deeper into the effectiveness of SplotLight.
Another experiment applies the approach to Twitter data.

DAPRA. In the paper of its introduction [27], SpotLight is tested on the 1998 DARPA In-
trusion Detection Evaluation dataset [42]; available online [1]. This dataset is comprised of
the internet traffic of a simulated network in which a wide range of attacks was performed.
There are seven weeks of labelled data. After data cleaning and parsing (see [64]), there are
4342431 communication edges. The original experiment aggregates the edges on an hourly
basis, marking a graph as anomalous when it contains at least 50 anomalous edges, in this
way constructing a stream of graphs from the stream of edges. The graphs are sketched
and RRCF is used to perform the final anomaly marking.

Let d t be the aggregation time window and et be the anomalous graph edge threshold.
Investigate the performance of split RSF and RRCF (using split sampling) when varying d t
(as 300, 1800, and 3600) and et (as 10, 30, and 60). RSF and RRCF are configured with 50
trees of size 256. Spotlight is configured with K = 50 and p = q = 0.2. These parameters
correspond to the original experiment. Figure 4.16 shows how the anomalies are distributed
for each combination. To validate the necessity of SpotLight, this experiment also considers
two other input streams based on the same subgraphs. The first simply consists of the (1D)
edge counts of the input graphs. The second consists of the same SpotLight sketches, but
now with L1-normalization applied to them. This is to investigate which part of the results
can be explained by graph size, and what part by the relative weights of the sketch vector
entries. All of the results are shown in table 4.8.

The overall shape of the distribution of the anomalies is influenced by the parameters
only marginally other than stretching and scaling it. For the same edge thresholds, the
number of anomalies is roughly in the same ballpark. This is reflected in the scores, being
similar for the same time aggregations, at least for the application of normal SpotLight.

It seems RRCF is better able to detect anomalies for the smallest time aggregation. A
smaller time aggregation means more focused events instead of a culmination of small
events with a larger time aggregation. The latter may have a dampening effect on the spikes
occurring in the sketch vector. In contrast to RSF’s deterministic splitting procedure start-
ing from the middle of the bounding box, RRCF’s aggressive focus on isolating single points
early on may give it the advantage. RSF performs very similarly for all parameters. The
two algorithms are quite close for the larger time aggregations, though RRCF takes a slight
lead. It may also be problem-specific like with the classification benchmarks. Neither the
total edge counts nor the L1-normalised scores perform as well as normal SpotLight. It is
interesting to see that RSF scores slightly better using both of these approaches. Possibly it
is the combination where RSF lacks concerning RRCF here.

Finally, as a test of the parameter sensitivity of SpotLight, table 4.9 shows the results for
running d t = 3600, et = 60 with varying values of K (20, 50, 100, and 200) and p = q (0.01,
0.05, 0.1, and 0.2). Only RSF is used, with the same 50 trees of size 256. The performance
turns out to be very close across the whole range of parameter configurations. Only when
using p = q = 0.01 does the performance drop somewhat for the lower sketch sizes. This
shows SpotLight is quite robust and does not need much specific parameter tuning.

Streaming and Distributed Anomaly Detection and its Applications 53



CHAPTER 4. EXPERIMENTS

d t et rocauc prauc precision

300 10 0.92 (0.01) 0.79 (0.02) 0.72 (0.01)
300 30 0.94 (0.00) 0.81 (0.03) 0.78 (0.01)
300 60 0.95 (0.00) 0.82 (0.02) 0.79 (0.01)

1800 10 0.82 (0.01) 0.78 (0.01) 0.65 (0.00)
1800 30 0.86 (0.01) 0.79 (0.01) 0.66 (0.02)
1800 60 0.92 (0.01) 0.84 (0.01) 0.73 (0.02)

3600 10 0.79 (0.01) 0.80 (0.01) 0.67 (0.00)
3600 30 0.81 (0.01) 0.79 (0.01) 0.65 (0.01)
3600 60 0.85 (0.01) 0.82 (0.01) 0.68 (0.02)

(a) RRCF-split - normal.

d t et rocauc prauc precision

300 10 0.79 (0.09) 0.59 (0.12) 0.55 (0.12)
300 30 0.82 (0.09) 0.58 (0.11) 0.54 (0.11)
300 60 0.81 (0.11) 0.58 (0.14) 0.53 (0.14)

1800 10 0.72 (0.06) 0.70 (0.06) 0.62 (0.05)
1800 30 0.77 (0.05) 0.68 (0.06) 0.60 (0.05)
1800 60 0.84 (0.08) 0.73 (0.11) 0.64 (0.10)

3600 10 0.74 (0.02) 0.77 (0.03) 0.66 (0.02)
3600 30 0.75 (0.02) 0.75 (0.03) 0.63 (0.03)
3600 60 0.81 (0.03) 0.76 (0.04) 0.66 (0.04)

(b) RSF-split - normal.
d t et rocauc prauc precision

300 10 0.73 (0.02) 0.49 (0.01) 0.40 (0.01)
300 30 0.75 (0.02) 0.50 (0.02) 0.44 (0.01)
300 60 0.76 (0.03) 0.50 (0.02) 0.44 (0.01)

1800 10 0.65 (0.01) 0.60 (0.01) 0.49 (0.01)
1800 30 0.66 (0.01) 0.55 (0.01) 0.44 (0.02)
1800 60 0.70 (0.02) 0.56 (0.01) 0.49 (0.01)

3600 10 0.72 (0.01) 0.72 (0.01) 0.63 (0.01)
3600 30 0.75 (0.01) 0.71 (0.01) 0.61 (0.02)
3600 60 0.76 (0.01) 0.68 (0.01) 0.57 (0.02)

(c) RRCF-split - edge counts.

d t et rocauc prauc precision

300 10 0.78 (0.02) 0.53 (0.01) 0.44 (0.00)
300 30 0.82 (0.02) 0.55 (0.01) 0.46 (0.00)
300 60 0.83 (0.01) 0.56 (0.01) 0.47 (0.00)

1800 10 0.68 (0.02) 0.62 (0.01) 0.57 (0.00)
1800 30 0.72 (0.02) 0.59 (0.01) 0.51 (0.01)
1800 60 0.80 (0.02) 0.62 (0.01) 0.50 (0.00)

3600 10 0.70 (0.01) 0.71 (0.00) 0.64 (0.00)
3600 30 0.72 (0.01) 0.69 (0.00) 0.60 (0.00)
3600 60 0.76 (0.00) 0.68 (0.00) 0.61 (0.01)

(d) RSF-split - edge counts.
d t et rocauc prauc precision

300 10 0.72 (0.04) 0.32 (0.04) 0.37 (0.08)
300 30 0.70 (0.04) 0.27 (0.03) 0.31 (0.04)
300 60 0.70 (0.03) 0.26 (0.02) 0.30 (0.04)

1800 10 0.74 (0.02) 0.59 (0.03) 0.60 (0.03)
1800 30 0.75 (0.02) 0.52 (0.04) 0.53 (0.02)
1800 60 0.75 (0.03) 0.38 (0.03) 0.44 (0.04)

3600 10 0.68 (0.02) 0.61 (0.02) 0.62 (0.02)
3600 30 0.68 (0.02) 0.55 (0.03) 0.56 (0.02)
3600 60 0.70 (0.02) 0.50 (0.03) 0.51 (0.04)

(e) RRCF-split - L1-normalisation.

d t et rocauc prauc precision

300 10 0.73 (0.05) 0.37 (0.06) 0.40 (0.07)
300 30 0.75 (0.05) 0.34 (0.05) 0.36 (0.08)
300 60 0.71 (0.07) 0.30 (0.05) 0.34 (0.07)

1800 10 0.73 (0.03) 0.61 (0.04) 0.60 (0.03)
1800 30 0.76 (0.03) 0.55 (0.06) 0.54 (0.03)
1800 60 0.74 (0.05) 0.42 (0.06) 0.45 (0.06)

3600 10 0.69 (0.02) 0.65 (0.03) 0.63 (0.02)
3600 30 0.68 (0.02) 0.58 (0.03) 0.57 (0.02)
3600 60 0.70 (0.02) 0.54 (0.03) 0.54 (0.02)

(f) RSF-split - L1-normalisation.

Table 4.8: Results for the DARPA dataset using SpotLight for varying d t and et.
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Figure 4.16: Distribution of anomalies for the DARPA dataset for varying d t and et.

K p = q rocauc prauc precision
20 0.01 0.67 (0.10) 0.65 (0.10) 0.48 (0.15)
20 0.05 0.78 (0.08) 0.72 (0.10) 0.63 (0.09)
20 0.1 0.78 (0.06) 0.73 (0.08) 0.63 (0.07)
20 0.2 0.78 (0.05) 0.74 (0.07) 0.64 (0.06)
50 0.01 0.70 (0.09) 0.65 (0.10) 0.55 (0.11)
50 0.05 0.80 (0.02) 0.75 (0.04) 0.65 (0.03)
50 0.1 0.80 (0.04) 0.76 (0.05) 0.65 (0.05)
50 0.2 0.79 (0.04) 0.75 (0.06) 0.65 (0.06)

100 0.01 0.73 (0.08) 0.68 (0.08) 0.59 (0.10)
100 0.05 0.79 (0.06) 0.74 (0.07) 0.64 (0.07)
100 0.1 0.79 (0.04) 0.74 (0.05) 0.64 (0.04)
100 0.2 0.79 (0.05) 0.74 (0.06) 0.64 (0.06)
200 0.01 0.77 (0.06) 0.72 (0.07) 0.63 (0.08)
200 0.05 0.80 (0.04) 0.75 (0.05) 0.65 (0.04)
200 0.1 0.80 (0.04) 0.76 (0.05) 0.65 (0.04)
200 0.2 0.81 (0.02) 0.77 (0.03) 0.66 (0.03)

Table 4.9: RSF-split + SpotLight on the DARPA dataset for varying K , p, q.
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Twitter. This experiment applies the combination of SpotLight and RSF to the Twitter-
WorldCup2014 and TwitterSecurity2014 datasets from the Outlier Detection DataSets (ODDS)
library [57]. RSF is configured with 64 trees of size 64. It uses reservoir sampling for each
tree separately. SpotLight is configured with K = 50 and p = q = 0.2. Both datasets are
labelled, albeit only with dates in the case of TwitterSecurity2014 and with additional time
information in the case of TwitterWorldCup2014. The relevant 24h region is shaded for the
former, and the relevant 1h region for the latter. The results are shown in figure 4.17.

Other than the time specificity difference, the nature of the labels is also quite differ-
ent. Whereas TwitterWorldCup2014 is concerned with events like a red card during a soccer
match, TwitterSecurity2014 includes events with political weight. This additional specificity
difference may explain why the peaks in anomaly scores match up much better in the case
of TwitterSecurity2014. In contrast, the peaks for TwitterSecurity2014 are hard to trace back
to a specific label. Just using graph edge counts as input (as for the DARPA experiment) here
does lead to anomaly score peaks around the same peaks, but also incurs more false alarms,
which makes another case for the use of SpotLight.
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(a) TwitterWorldCup2014; 1790999 edges; 1791 graphs.

(b) TwitterSecurity2014; 2601834 edges; 1784 graphs.

Figure 4.17: RSF-reservoir + SpotLight on Twitter datasets.
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Chapter 5

Conclusions

The goal of this thesis was to extend the use of Random Shift Forest (RSF) to the distributed
and streaming settings and explore several ways this can be applied to various types of
inputs. This final chapter provides a summary of the results and lists the limitations of this
study with suggestions for future work.

Summary. Chapter 3 formalises RSF as a version of Isolation Forest (iForest) [45] where
instead of splitting the subsample at random values, the input is shifted randomly and the
splits are performed deterministically. In addition, rather than a recursive definition, a more
general incremental definition is given with insert and delete operators, while retaining the
same complexity bounds in terms of both storage and running time. RSF is also shown
to reduce the bias that iForest suffers from its axis-aligned splits. The operations allow for
constructing and updating RSF in a streaming fashion using either reservoir or window sam-
pling. The deterministic elements allow for the general application of RSF in the distributed
domain, for which various versions of RSF were proposed and analysed. In addition, it allows
for the use of sketching the underlying data structure of RSF. A simple sketch is proposed
to reduce the communication complexity of distributed RSF.

Chapter 4 provides experiments to empirically verify that RSF is on par with other state-
of-the-art unsupervised isolation-based anomaly detection methods for various toy and real
datasets. The implementation of two distributed versions of RSF are verified to have the
same detection capability as offline RSF. In addition, the sketching ability is put to use with
the simple sketch method proposed. The sketch is shown to drastically reduce the aver-
age RSF tree size without degrading performance. On a wide range of different time series
datasets, the usefulness of shingling in tandem with window sampling is argued as a way
to detect short-and long term signal pattern breakage. Autoperiod [66] is proven to suc-
cessfully automate the process of picking an appropriate shingle size. Finally, SpotLight [27]
was shown to enable the detection of anomalous subgraphs, albeit with varying success.
Yet, near real-time detection using small edge aggregation windows and detection for so-
cial media data were presented as possible use cases.

Limitations and suggestions. For Extended Isolation Forest (EIF), rotation and hyper-
plane splitting were proposed. Although hyperplanes seemed to work best, applying ro-
tation is compatible with the setup of RSF, and may introduce additional favourable ran-
domness. Every tree then applies a random shift and a random rotation matrix to its input.
Compared to sampling the direction vector for the hyperplanes, obtaining such a rotation
matrix is trickier. The work by Blaser and Fryzlewicz [10] provides a possible method. Early
efforts of implementing such a rotational RSF are included with the other code [35], but were
not fully worked out or investigated.
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It was not sufficiently shown where reservoir sampling is of the essence. It was argued
it is important in absence of clean training data, but this was not explicitly verified. Other
than that, only the insertion-only and sliding-window streaming models were considered.
Dynamic streaming was not considered. Maintaining a stream sample when both insertions
and deletions occur is a lot trickier. Techniques to sample dynamic streams do exist; see for
instance [29] (strict turnstile model) and [8] (non-strict turnstile model). The advantage of
the RSF algorithm presented here is that all methods can be used as long as the sample can
be synced with RSF through the atomic inserts and delete operations.

Autoperiod was only applied to the beginning of the time series datasets. The periodicity
structure and thus the shingle size may very a result of a change in the data distribution.
This would also mean a varying input dimension. What’s more, input bounds could also be
subject to change. It was not discussed how RSF could adapt to these situations. One an-
swer may be found in the work of Tan; Ting; and Liu [61], where a jumping window approach
is used. Here, each window of points is scored but also used as the input for the construc-
tion of a new forest for the next window, replacing the current. This gives the freedom to
reconfigure the algorithm completely, but it does introduce a granularity trade-off. In terms
of runtime, scoring remains the same, but reconstruction happens for each window, though
still incrementally in logarithmic time per element.

It was argued RSF’s determinism is essential for being able to distribute it, but cases
where other methods actually fail were not presented. The version of RSF for the distributed
streaming model used a 2-pass algorithm, while a 1-pass algorithm would be much pre-
ferred in always-online settings. This could be done by continuing the algorithm used for
the original sampling, but this has not been worked out further. Running RSF on an ac-
tual compute cluster was not performed either. For such work, see for instance [32], where
EIF is deployed on a Kubernetes cluster (popular runtime for distributed container-based
systems).

RSF was shown to be at the centre of a versatile anomaly detection framework. More
work remains to verify its usefulness for other types of data, improve its robustness, and
make it work in more dynamic contexts.
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