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Abstract

Fake news mitigation has been the main research direction for the network science and data mining
communities in the past few years. Several methods to solve this problem have been proposed,
however, none of these considers the fairness of the approach towards each community. These
approaches rely on heuristics that favour certain communities, which are more likely to occupy
these beneficial positions they select. This results in the exclusion of some other communities from
the benefits of the intervention, which can have important societal repercussions.

In this project, we will focus on developing a fairness-aware truth campaigning technique for
blocking the influence propagation of a competing entity, in this case with the use case of mit-
igating the spread of fake news. Truth campaigning consists in identifying a set of users in a
social network to begin the spreading of the fact. The spread of this real information will then
counteract the spreading of fake news. Educating users about the real fact will then avert them
from believing in the fake news. We then propose a solution that not only maximizes the number
of users being protected from the spread of this misinformation but a solution that also maximizes
the group- fairness objective to avoid disregard towards certain groups.

This proposed method is evaluated against existing benchmarks, extracted from previous work
in the area of information diffusion and some additionally proposed fairness benchmarks, in both
real and synthetic data sets. With this evaluation the unfairness of the existing methods and the
need for a fairness-aware alternative are presented. The proposed method aims then to fill this
void in research as it achieves higher fairness, but we also show that such fairness does not come
at a cost in the number of saved nodes. In fact, in most cases it works as a catalyst for achieving
better effectiveness, performing better than the state-of-the-art methods. Such work shall motiv-
ate the research of fairness-aware methods for solving the Influence Blocking maximization (IBM)
problem.

Keywords—Fake news, Fairness, WRR
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Notation

All utilized notation in this thesis, is presented in the following table.

Abbreviations

IBM Influence Blocking Maximization

FIBM Fairness-aware Influence Blocking Maximization

IM Influence Maximization

ICM Independent Cascade Model

OSN Online Social Networks

WRR Weighted Reverse Reachable

FWRRS Fairness-aware Weighted Reverse Reachable system

HICH-BA HIgh Clustering Homophily barabási-Albert

WC Weighted Cascade model

EV C Eigenvector centrality

CLTM Competitive linear threshold model

MCICM Multi-Campaign Independent Cascade Model

COICM Campaign Oblivious Independent Cascade Model

MIIA Maximum influence In-Arborescence

MIOA Maximum influence Out-Arborescence

DAG Directed Acyclic Graph

MC Monte Carlo

Variables

SN set of nodes in G that will start spreading the fake news

SP set of debunker nodes in G that will start spreading the counter
true information
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B(S,G, SN , SP ) blocking power of a set of nodes S, consists of the number of
additional nodes SP saves from being infected by SN if S is added
to SP .

s−(G,SN , SP ) number of nodes in G that will get negatively infected by SN if
SP spreads the counter information

M(G,SN , SP ) maximin value achieved in the communities of G given SN and
SP are spreading competing information.

WRRS Weighted Reverse Reachable System, consists of a pool of WRR
trees.

pu→v probability of node v believing the information being shared by
node u

k budget for the truth campaign consists of the maximum number
of nodes the set SP can have

commv community to which v belongs to

dv out-degree of node v

d inv in degree of node v

Neigh outv out neighbours of node v

Neigh inv in neighbours of node v

C set of non-overlapping communities that constitute the population
of G

pv defined within a WRR, is the probability of node v reaching the
root of the tree, with the information it is sharing

probsv approximated probability of node v getting infected by SN if no
intervention is made

pathsv set of paths throughout node v could be reached by SN

C inf communities that get infected in the WRRS

prob infv according to theWRRS, the probability of node v getting infected
by SN , given SP

init infc number of infections expected in community c if no intervention
is made

exp infc number of infections currently expected in community c with the
constructed SP

Bv[c] approximated blocking power of SP ∪ {v} in community c .

pct savedc expected percentage of avoided infections in community c

maximinv expected maximin value if node v were to join SP

total savv approximated blocking power of node v according to the WRRS

sav no helpv blocking power of node v within those communities which are
currently being neglected by the constructed SP , according to the
WRRS
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wgt sav below avgv weighted blocking power of node v within those communities
which currently have a pct savedc value below average, the weight
of a node w is set to (1−pct savedcommw

) according to theWRRS

saved minv blocking power of node v within those communities which are cur-
rently establishing the maximin value , according to the WRRS

S set of nodes expected to get infected within the FWRRS method

γ minimum probability of infection a node must have to be part of
S

ϵ approximation guarantee of the probabilities in the WRRs re-
turned by D-SSA, and thus, the allowed error along the FWRRS
method

desctsv descendant nodes of node v within a WRR

originalv original node in G that a node v in a WRR, refers to

sv distance from a node v to the root in a WRR

tmax upper-bound on number of iterations performed by D-SSA

Ŝk optimal solution for the Max− CoverageWRRS problem

Λ1 minimum coverage of WRRs that both SN and Ŝk should achieve

Ît(Ŝk) expected number of nodes in S that Ŝk reaches with its informa-
tion

community SN [c] proportion of SN nodes that belong to community c

takec number of nodes the Stoica method will select from community c

DecInfc(v) number of infections in community c if node v was to join SP

ExpInfc number of currently expected infections in community c with the
constructed SP .

apN (u, SN , SP ,MIIA) probability of infection of node u within the MIIA, given SN and
SP .

apN (u, t) probability node u being negatively infected by time step t within
a MIIA.

apP (u, t) probability node u being infected with the information SP is
spreading, by time step t within a MIIA.

pN (u, t) probability node u being negatively infected precisely at time step
t within a MIIA.

pP (u, t) probability node u being infected with the information SP is
spreading, precisely at time step t within a MIIA.

θ influence threshold used in the CMIA-O and MaximinCMIA −
Oalgorithms

NegS set of nodes that have a path to a node in SN that reaches them
with probability at least θ.

MIIA(u, θ) MIIA rooted at node u containing all paths to such node, that
have a probability of at least θ.
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MIOA(u, θ) MIIA rooted at node u containing all paths from such node, that
have a probability of at least θ.

Table 1: Notation Table
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Chapter 1

Introduction

This first chapter will introduce the problem covered in this project. A introduction of the context
of the problem is presented in Section 1.1, followed by the problem description, presented in Section
1.2 . The contribution of the research performed for this thesis is presented in Section 1.3 and
last, in Section 1.4 an outline of the structure of the remaining thesis is given.

1.1 Context

Long gone are the days of people getting their news information from the morning news or Sunday’s
newspaper. Consumers continue to shift away from these traditional media sources and are mov-
ing towards social media for their news consumption. This source of information has attracted
over 2.4 billion internet users [1] by easing access to not only textual content but also multimedia
and external websites with a potentially broad audience. In a perfect world, everything reported
would be based entirely on facts such that one could trust that the media consumed is reliable.
However, this is not the case. Misinformation and rumours are becoming highly prevalent and
such ease of access and fast dissemination of information on social media has unfortunately been
exploited for the spread of fake news.

An example of the impact of fake news in society is the US elections of 2016. Mark Zuckerberg
[2] admitted that 126 million Americans were exposed to Russian-backed, politically-oriented fake
news via Facebook during the presidential election campaign of 2016. In the aftermath of these
elections as the extent of fake news could be observed, three scientists from Ohio State University
[49] -Gunther, Beck, and Nisbet- explored whether people might have changed their vote due to
fake news. They interviewed a group of people who voted for Obama in 2012 and looked at their
votes in the 2016 election. The voters were asked how much they believed in three statements
that, according to independent analysis, had been promoted by fake news while being false. These
were: that Hilary was in poor health due to serious illness, that Pope Francis endorsed Trump and
that during Hilary’s time as Secretary of State, she approved weapon sales to Islamic Jihadists
like ISIS. Although the majority of people did not believe these assertions to be true, there was a
very substantial correlation between their beliefs and voting behaviour. The findings of this study
were summarized in Figure 1.1, which was extracted from the work of Gunther, Beck, and Nisbet.

Fairness-aware Influence Blocking Maximization for combating Fake News 1



1.1. CONTEXT CHAPTER 1. INTRODUCTION

Figure 1.1: Findings visualization of the Ohio State University research, values were extracted
from [49]

Among those voters who did not believe in any of the three statements, 89% did cast their vote
for Hilary in 2016; those who believed in just one of the items 61% voted for her, but from those
who believed in at least 2 of these fakes news only 17% supported Clinton. These results must
be taken with consideration, as this correlation does not imply the causality of Hilary’s defeat.
However, this shows how big the impact of fake news was on the election, and how misinformed
the voters who changed their vote were.

Fake news detection mechanisms have been extensively proposed in past years [67]. These meth-
ods have been proven to achieve very high accuracy in their predictions. For example, the work
of Antoun [7], who proposed a method with a precision of 98%. Our goal now is to determine
how to proceed once the fake news has been identified, namely focusing on the mitigation of such
misinformation.

Many researchers have studied the propagation of fake news over social media, proposing various
techniques to combat them, most are collected in the work of Saxena [68]. However, the proposed
methods do not consider fairness. In networks, different groups or communities are unequally
represented, and typically, minority groups are disproportionately absent from the advantageous
positions that these approaches cover, creating a diversity gap. This could result in the exclusion
of these communities from the benefits of the intervention, which can have important societal re-
percussions. This has motivated the research on fairness-aware fake news mitigation for this paper.

Given a set of nodes identified to be the source of the fake news propagation in the online social
network, as well as the network in which the information will be spread, we focus on the Influence
Blocking Maximization (IBM) problem. This consists of finding a set of users from whom counter
information will begin to propagate to block the negative spread as much as possible, this tech-
nique is known as truth campaigning.

It has long been pointed out that actively broadcasting the true information is much more effective
than merely immunizing some nodes or edges [70], also known as user blocking. Immunizing these
users by requesting them not to spread the fake news when encountered might have feasibility
problems, as the effectiveness of the method will rely on the willingness of the selected users to fol-
low our recommendation. The truth campaigning approach, on the other hand, might offer higher
feasibility than influence blocking, as users are more likely to accept and follow the recommenda-
tion as a result of the provided education about the real fact. Additionally, the goal of this work is
to overcome the unfairness current methods have towards certain communities. Since allowing the
impact of the fake news to be prominent within certain communities can have significant societal
repercussions, it must then be the goal of the campaign to avoid this scenario by enforcing the
fairness of the intervention. Thus the problem that is being solved will be a variation of the IBM,
where the second objective in terms of fairness among the communities will be included.

2 Fairness-aware Influence Blocking Maximization for combating Fake News



CHAPTER 1. INTRODUCTION 1.2. PROBLEM DESCRIPTION

The main research question of this study is then:

How do we achieve the trade-off between fairness and effectiveness for IBM problem?

To answer this question the following sub-questions will have to be studied

• What is an appropriate evaluation of fairness in the IBM problem?

• How fair are existing methods?

• How can the fairness of the truth campaign be guaranteed? For this, a novel fairness-aware
solution for IBM will be proposed.

• Does fairness come at a cost? If so, how could we overcome such a cost?

1.2 Problem Description

The problem being covered is the Influence Blocking Maximization (IBM) one, which is an op-
timization problem. It has as input a graph, G = (V,E), which may be directed or not, the
negative seed SN ⊆ V which are those nodes spreading the fake news and a positive integer k
representing the available budget for the mitigation campaign. We then aim to find the positive
seed set SP ⊆ V \ SN of size at most k, such that the expected number of negatively activated
nodes is minimized.

Equivalently we want to choose SP such that the number of nodes that are saved is maximized,
where saved nodes are those that would have been “infected” by the misinformation if it was not
for the truth campaign. We define then the blocking power of a node u, B(u,G, SN , SP ), to be the
number of nodes that would additionally be saved if this node was to be included in the positive
seed SP . The blocking power of a node u in a network G, given a negative seed SN and a positive
seed SP , is computed as follows:

B({u}, G, SN , SP ) = s−(G,SN , SP )− s−(G,SN , SP ∪ {u})

where s−(G,SN , SP ) represents the number of nodes that get infected in G if SN starts spreading
misinformation and SP spreading the truth. Thus, the goal is to choose those nodes with the
highest blocking power. In summary, the IBM problem is defined as:

maximize
SP

B(SP , G, SN , ∅) (1.1a)

subject to

|SP | <= k, SP ⊆ V \ SN (1.1b)

But in this case, we will be solving a fairness-aware alternative of the problem, which we define to
be the Fairness-aware Influence Blocking Maximization (FIBM) problem. The goal of the
problem is not only to maximize the blocking power of the positive seed but also to ensure that
the outcome of the truth campaign is fair.

In this work, the fairness of the campaign will be measured in terms of maximin, a choice that
will be introduced and motivated in Section 2.2. Maximin aims to avoid the scenario in which
some communities are disproportionately neglected from help, compared to the remaining popu-
lation. Thus, trying to maximize the minimum ratio of saved nodes that all communities have.
Let M(G,SN , SP ) define the maximin value achieved by SP in the graph G which contains com-
munities C, that is required to mitigate the information being spread by SN . The maximin value

Fairness-aware Influence Blocking Maximization for combating Fake News 3



1.3. CONTRIBUTION CHAPTER 1. INTRODUCTION

is computed as follows:

M(G,SN , SP ) = min
c∈C

s−c (G,SN , ∅)− s−c (G,SN , SP )

s−c (G,SN , ∅)

The optimization definition for this version of the problem is defined as follows:

maximize
SP

B(SP , G, SN , ∅) (1.2a)

subject to

SP ∈ argmax
S′
P

M(G,SN , S′
P ), (1.2b)

|S′
P | <= k, S′

P ⊆ V \ SN (1.2c)

In this version of the problem an additional constraint is included, namely 1.2b, this will guarantee
the fairness of the approach. The solution set SP shall then not only guarantee that the truth
camping is as effective as possible, by saving as many nodes as possible from believing the fake
news. But it shall also guarantee that the maximin value has also been maximized. Namely by
reducing the set of possible solutions to those that meet condition 1.2b, those that achieve the
maximum fairness value, and from that solution space choosing the set SP , that achieves such
desired maximum effectiveness.

1.3 Contribution

To solve the presented problem, this thesis proposes an algorithmic solution. The Fairness-aware
Weighted Reversible reachable system (FWRRS) method, relies on the structure of weighted
reversible reachable trees (WRR) to choose those nodes that will save, from the fake news, the
largest number of nodes while maximizing the least help that every community receives. Later
this method will be evaluated against numerous existing methods for solving the IBM problem.
Such will allow for evaluating not only the fairness of existing methods but also the cost of the
fairness of the proposed method. To make such evaluation more complete, as no existing bench-
mark considers fairness, we propose two extensions to existing methods, that aim at achieving a
fairer outcome.

The evaluation of the methods is performed in both real and synthetic data. The real data consists
of real social networks which are publicly available and have been extensively utilized in informa-
tion diffusion research. Additionally, they cover numerous types of social interactions. To be able
to control the characteristics of the networks and observe their impact on the performance of the
methods, a novel model to generate synthetic networks is presented. The HIgh Clustering Homo-
phily Barabási-Albert (HICH-BA) model generates networks that resemble the characteristics of
real-life social networks better than other existing models [23]. It guarantees a higher clustering
coefficient and a better-defined community structure than any other synthetic data model. The
methods are then evaluated in the constructed synthetic datasets.

To sum up, the contribution of this thesis is the following. A novel problem in the area of informa-
tion diffusion is introduced, a fairness-oriented version of the IBM problem. For this new problem,
the FWRRS method is proposed, which is evaluated with in-depth testing against numerous
benchmarks. In this evaluation, we show the need for fairness-aware methods to guarantee fair
interventions in society, as in most scenarios all benchmarks are extremely unfair. This method
additionally is shown to perform as the state-of-the-art for the IBM problem under the Independ-
ent cascade model, utilized to simulate the spread of the information. Thus not only is the need

4 Fairness-aware Influence Blocking Maximization for combating Fake News
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for fairness presented but its value beyond morality is also shown, as it offers higher effectiveness.

The implementation of the proposed methods as well as all mentioned benchmarks, network gen-
erator and propagation models can be found in the following repository: https://github.com/

cristinagub/master_project.git

1.4 Outline

The remaining of this document is organised as follows. In Chapter 2, the background knowledge
upon which this research is built is reported. This is followed by related work from literature
in Chapter 3. Next, in Chapter 4, the proposed methods are introduced. In this chapter, the
method FWRRS is explained, as well as some additional fairness-aware benchmarks to make the
later evaluation more complete. This evaluation is presented in Chapter 5, which is organized into
two subsections corresponding to the real datasets and synthetic datasets experiments. Last, the
conclusions, as well as limitations and future research, are then summarized in Chapter 6.
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Chapter 2

Preliminaries

In this section, we will introduce all additional theories upon which this work was built. The
notions presented in this chapter will be referenced in the remaining of the report. The chapter is
structured as follows, in Section 2.1 the notion of propagation models and the utilized independent
cascade model are introduced and in Section 2.2 the notion of Fairness in the area of information
diffusion, both crucial for achieving fair influence blocking maximization.

2.1 Independent cascade model

Understanding fake news propagation, is a crucial first step, to make an educated choice on how to
mitigate them, as well as to evaluate the performance of the chosen methods. It is then necessary
to model their spread within an online social network (OSN) such as Facebook or Twitter with
a propagation model. Diverse propagation models have been proposed to simulate the spread of
information, most of these were collected by Saxena et al. on the following survey [68].

The most commonly used model to simulate the spread of misinformation is the Independent
cascade model, presented by Herrmann [31]. The main idea behind the Independent Cascade
Model(ICM)[36] is that after a node is infected, meaning that it believes in the fake news, it tries
to infect all its neighbouring nodes in the next time step. These neighbours believe the information
with a certain probability, which has been allocated to the edge connecting them to the infected
node. The infected node will only try to infect its neighbours once, thus if in an iteration no new
nodes are infected, the spread is ceased, like in Figure 2.1. The author compares the diffusion
simulated by the model to various diffusion datasets extracted from Twitter and experimentally
shows how the proposed method and the real diffusion behave similarly.

This type of model has been extended for two competitive information propagates by Budak
et al. [14]. Budak proposed the Multi-Campaign Independent Cascade Model(MCICM) that
models the diffusion of two cascades evolving simultaneously in a network, each of which has its
propagation probabilities, which in this case differ. The Campaign-Oblivious independent cascade
model (COICM) is a type of MCICM, proposed by Wu [75] which assumes that both competitive
information spread simultaneously using the same cascade, thus sharing propagation probability
values. For the COICM in the case of a node being reached by both campaigns at the same step,
the user will be biased towards one of them. It is common to set all nodes to have a bias towards
the true information.

To be able to evaluate existing methods in terms of fairness, it was decided to work with the
most commonly used propagation model, the Independent Cascade Model (ICM). In this paper,
the IBM problem will be studied under the Campaign-Oblivious Independent Cascade Model
(COICM).
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Figure 2.1: Example of independent cascade model propagation

2.2 Fainess in information diffusion

The notion of fairness is notoriously difficult to define. To try and define fairness we will refer to
two different ethical frameworks. On the one hand is the consequentialist ethical framework,
which defines good actions as those that have good consequences, suggesting that fairness might
be viewed as equal impact. Under this category are the following definitions of fairness:

• Equality: focuses on the fair allocation of resources to the groups proportional to the size
of the group within the population. Measuring fairness on the allocations. This would
be achieved for the IBM problem by guaranteeing the population of the positive seed SP

resembles the one of the network population. However, such fairness might be difficult to
achieve, and may lead to wastage of resources [59].

• Equity: focuses on fair treatment among the groups proportional to their size in the popu-
lation. Measuring fairness in the outcome, like in the work of Stoica [72] for the IM problem.
Under this definition, for the IBM problem, it shall be guaranteed that the population of
the saved nodes resembles the real population distribution.

• Maximin: is closely related to equity, as it also measures fairness in the outcome. This
definition is based on the Rawlsian theory [60]. The difference is that maximin wants to
maximize the minimum relative influence received by any group. The objective is then to
maximize the percentage of nodes we save from the community that was saved the least.

• Diversity constraints: the key idea is that a community should not be better off on its
own. The campaign should guarantee a better outcome for all communities than the result
of assigning each community its proportional share of the resources and allocating them
internally. This constraint was introduced by [59] for the IM problem, but can also be
extended for the IBM one.

On the other hand, the deontological ethical framework, defines good actions as those that
accord with good norms, suggesting that fairness might be viewed as equal treatment. This view
suggests that fairness can only be achieved by algorithms that are agnostic to community affili-
ation or sensitive attributes when maximizing blocked influence. However as shown by Stoica [71],
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when using feature-blind mechanisms, the inequality based on sensitive features that exist in the
network propagates through the algorithmic design and affects the outcome.

In this work, we will focus on the definition of fairness as equal impact within the communit-
ies, as we strive to overcome the inequalities of the network and avoid its effect on the truth
campaign’s outcome. Further, since fairness should not come at a large cost, the maximin defin-
ition will be used. According to Farnad’s [28], the maximin approach not only has the highest
coverage for the most disadvantaged group in the IM problem, but it also has the lowest price of
fairness. Since the IBM problem has a goal to take advantage of the positive information coverage
to block the negative spread, we observe the close relationship between the IM and IBM problem.
Thus, we expect that maximin will help us overcome the cost of fairness in this problem too, since
other definitions that come at a cost in the IM problem will cause this cost also in the IBM problem.

In this project we will then measure fairness in terms of maximin, choosing SP to be the positive
seed that maximizes the minimum proportion of nodes saved from each community. This relates
to the legal notion of disparate impact, which states that a community has been unfairly treated
if its ”success rate” under a policy is substantially lower than that of the other communities [9].
Maximizing fairness, as defined by maximin, is therefore important to governmental or community
organizations which are under pressure to prevent this kind of disparity.

8 Fairness-aware Influence Blocking Maximization for combating Fake News



Chapter 3

Literature Review

In this chapter, related work to this project will be presented. This intends to cover the vast
majority of the publications in the area of our research. The chapter is structured as follows. In
Section 3.1 the previous work in the area of Influence Blocking Maximization is presented, and in
Section 3.2 fairness-aware solutions in the area of information diffusion are discussed.

3.1 Influence Blocking Maximization

The IBM problem is NP-hard and its objective function has been proven under most propagation
models to be monotone sub-modular. In the work of Lv et al. [43], this was proven for the COCIM,
which will be used in this thesis. This implies that there exists a greedy algorithm that offers a
solution with an approximation ratio of (1− 1/e− ϵ) to the optimal solution, where ϵ depends on
the accuracy of the influence range of each node, estimated using Monte Carlo (MC) simulations.
However, this greedy method is very slow as a consequence of the numerous and time-consuming
MC simulations that are required. This makes its use too expensive, especially for large networks
like those encountered in social media.

More scalable approaches for solving the IBM problem have been proposed in earlier work. These
can be grouped into two categories: heuristic methods and simulation-based methods.

On the one hand are the heuristic approaches. These rely on the characteristics of each node
to make the selection of the k most suitable ones for the truth campaign. Under this category,
we find Yao’s et al. work [79], which proposed to choose the seed of truth campaigners based
on eigenvector centrality (EVC) [82]. A high EVC value for a node means it is connected to
many nodes who themselves also have high EVC values. They show that under the Competitive
Linear Threshold Model (CLTM), it performs better than the state-of-the-art algorithm for such
propagation model, the CLDAG while also being faster. We also find other heuristics such as
degree, clustering coefficient [26], betweenness centrality [13] or percolation centrality [56]. The
performance of these metrics and some others were evaluated by Erd et al. [25] under two cost
functions. One of these considered a degree cost penalty making nodes with many connections
more expensive, and the other one considered equal cost across the network’s nodes. It was shown
that under the Multi-Campaign Independent Cascade Model (MCICM), degree, betweenness and
percolation offered the best performance. However, they required expensive nodes for their suc-
cess, thus under the degree penalty cost function, these methods did not perform as well.

Under the heuristic category, methods exploiting the structure of the network have also been pro-
posed. These rely on the community structure of the graph and will be considered as community-
based heuristic methods. These proposed methods include the work of Lv et al. [43] who al-
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located resources to each community proportional to the proportion of negative seed nodes within
that community and their power of infection. Similarly, the work of Arazkhani et.al [8] proposes
to select the nodes with the largest degree, betweenness and closeness centrality measures from
the largest k communities as truth campaigners. The community-based heuristic methods aim to
allocate resources to communities based on their risk of infection, this could lead to fairer outcomes
as resources are fairly divided, however, the approach might be unfair toward indirectly infected
communities.

Regarding simulation-based algorithms we find the state-of-the-art method under the CLTM,
the CLDAG algorithm [30]. The algorithm is characterized by restricting the influence compu-
tation of a node v to its local area to reduce the computation cost; and by carefully selecting
a local graph structure for v to allow efficient and accurate influence computation for v under
this structure. Such a method utilizes the properties of the CLTM propagation model, to solve
the problem. Along this line we also find the work of Wu et al. [75], who proposes two very
similar methods, CMIA-H and CMIA-O which instead exploit the characteristics of the MCICM
with high-effectiveness property (assuming the probability of positive transmission is 1 always)
and Campaign-oblivious independent cascade model (COICM) respectively. Their research shows
that these methods outperform the considered heuristic approaches, such as degree or proximity
while remaining fast. Despite the good efficiency of the CMIA-O, Lin et al. [42] shows that its
performance is far from optimal. The method relies on the construction of numerous subgraphs
and the consideration of a vast amount of nodes as candidates for the positive seed, which is
time-consuming. To solve this, they propose the BIOG approach, which claims to be significantly
faster than Wu’s one while performing similarly. Last, under this category, we find the TIB-Solver
proposed by Song et al. [70]. In this approach, they first find the set of nodes that might be
infected by the rumour and then calculate the threat of each of these nodes (threat of v is the
expected number of nodes that can be infected by v). They then rely on weighted Reverse Reach-
able (WRR) trees to greedily select k nodes that save the most nodes in a given deadline.

All previously mentioned work aims at solving the version of the IBM problem that we will be
considering. However, many researchers have extended this problem to consider more complex
scenarios. For example, the work of Nguyen et al. [48], who proposes to find the least cost set
SP , that can protect at least a predefined percentage of nodes, where the spread of fake news was
detected with some delay T . Under this category of IBM extensions, is the work of Hosni et al.
[32], who proposed to reduce the area in which the impact is measured to a predefined sub-sample
of the population. Here we also find the work of Song et al. [70], as they also evaluated their
method in an extended version of the IBM problem where a deadline for the campaign is defined.
[64, 66] proposed methods to identify truth-campaigners when the users have strong biases towards
competitive information propagation. Further is the work of Budak et al. [14], who also includes
a delay in detecting the rumour spread before taking action.

In Table 3.1, we summarize works in the area of the IBM problem that have been mentioned in
this section. This can be found in the next table. In this table, the following is included. For each
reference, we first mention the type of method that we proposed in this work and the method’s
name. Next, under complexity, we mention the proven complexity of the problem being solved. We
include which extensions of the problem were considered in each work. If a reference considered
budget, means that they included a parameter k in the optimization setting the maximum cost a
campaign could have. Prospective debunkers mean that the nodes for SP could only be selected
from a subset of nodes. Target nodes, on the contrary, mean that the goal is to maximize the
number of saved nodes from a subset of nodes of the graph. The decontamination ratio shows
if the authors aim at ensuring that θ% of the nodes do not get infected. Delay means that the
authors work in a scenario in which the infection is detected with some delay, and thus the fake
news has already started spreading. Deadline, if the authors aim at achieving the maximum
number of saved nodes, before a certain time step. Last, the propagation model that was utilized
as well as the benchmarks considered in the evaluation are also mentioned.

10 Fairness-aware Influence Blocking Maximization for combating Fake News



CHAPTER 3. LITERATURE REVIEW 3.1. INFLUENCE BLOCKING MAXIMIZATION

R
e
fe

r
e
n
c
e
s

T
y
p
e

M
e
t
h
o
d

C
o
m

p
le

x
it
y

B
u
d
g
e
t

P
r
o
s
p
e
c
t
iv

e

d
e
b
u
n
k
e
r
s

T
a
r
g
e
t

n
o
d
e
s

D
e
c
o
n
t
a
m

i-

n
a
t
io

n
r
a
t
io

D
e
la

y
D

e
a
d
li
n
e

P
r
o
p
a
g
a
t
io

n

m
o
d
e
l

B
a
s
e
li
n
e

h
e
u
r
is
t
ic

s

Y
a
o

e
t

a
l.

[7
9
]

H
e
u
r
is
t
ic

E
V
C

c
e
n
t
r
a
li
t
y

✓
C
L
T
M

R
a
n
d
o
m

,
C
L
D
A
G

a
n
d

D
e
g
r
e
e

E
r
d

e
t

a
l.

[2
5
]

H
e
u
r
is
t
ic

✓
M

C
IC

M

D
e
g
r
e
e
,
P
e
r
c
o
la

t
io

n

B
e
t
w
e
e
n
n
e
s
s
,
R
a
n
d
o
m

C
lu

s
t
e
r
in

g
a
n
d

P
a
g
e
R
a
n
k

L
v

e
t

a
l.

[4
3
]

C
o
m

m
u
n
it
y
-b

a
s
e
d

h
e
u
r
is
t
ic

C
B

IB
M

N
P
-H

a
r
d

✓
C
O

IC
M

R
a
n
d
o
m

,
d
e
g
r
e
e

a
n
d

p
r
o
x
im

it
y

A
r
a
z
k
h
a
n
i
e
t
.a

l
[8

]
C
o
m

m
u
n
it
y
-b

a
s
e
d

h
e
u
r
is
t
ic

C
e
n
t
r
a
li
t
y

IB
M

✓
M

C
IC

M
R
a
n
d
o
m

,
d
e
g
r
e
e

a
n
d

p
r
o
x
im

it
y

H
e

e
t
.a

l[
3
0
]

S
im

u
la

t
io

n
-b

a
s
e
d

C
L
D
A
G

✓
C
L
T
M

R
a
n
d
o
m

,
d
e
g
r
e
e

a
n
d

p
r
o
x
im

it
y

W
u

e
t
.a

l[
7
5
]

S
im

u
la

t
io

n
-b

a
s
e
d

C
M

IA
-O

a
n
d

C
M

IA
-H

✓
C
O

IC
M

a
n
d

M
C
IC

M

R
a
n
d
o
m

,
d
e
g
r
e
e

a
n
d

p
r
o
x
im

it
y

L
in

e
t
.

a
l[
4
2
]

S
im

u
la

t
io

n
-b

a
s
e
d

B
IO

G
✓

C
O

IC
M

C
M

IA
-O

,
R
a
n
d
o
m

,
d
e
g
r
e
e

a
n
d

p
r
o
x
im

it
y

S
o
n
g

e
t
.a

l[
7
0
]

S
im

u
la

t
io

n
-b

a
s
e
d

T
IB

-S
o
lv

e
r

N
P
-H

a
r
d

✓
✓

C
O

IC
M

P
a
g
e
R
a
n
k
,
L
S
M

I

,
la

r
g
e
s
t

in
fe

c
t
e
e
s

B
u
d
a
k

e
t
.a

l[
1
4
]

S
im

u
la

t
io

n
-b

a
s
e
d

T
IB

-S
o
lv

e
r

N
P
-H

a
r
d

✓
✓

✓
M

C
IC

M
D

e
g
r
e
e
,
e
a
r
ly

a
n
d

la
r
g
e
s
t

in
fe

c
t
e
e
s

N
g
u
y
e
n

e
t
.a

l[
4
8
]

S
im

u
la

t
io

n
-b

a
s
e
d

G
V
S

✓
✓

C
O

IC
M

a
n
d

C
L
T
M

D
e
g
r
e
e
,
P
a
g
e
R
a
n
k
,

r
a
n
d
o
m

a
n
d

D
is
c
o
u
n
t
IC

H
o
s
n
i
e
t
.a

l[
3
2
]

S
im

u
la

t
io

n
-b

a
s
e
d

N
P
-H

a
r
d

✓
✓

C
O

IC
M

D
e
g
r
e
e

a
n
d

r
a
n
d
o
m

T
ab

le
3.
1:

L
it
er
a
tu
re

re
v
ie
w

o
n
tr
u
th

ca
m
p
a
ig
n
in
g
ta
b
le

Fairness-aware Influence Blocking Maximization for combating Fake News 11



3.2. FAIR INFLUENCE BLOCKING MAXIMIZATIONCHAPTER 3. LITERATURE REVIEW

3.2 Fair Influence Blocking Maximization

To the best of our knowledge, fairness has not been considered for solving the problem of Influence
Blocking Maximization. In fact in the extensive surveys on fairness in graph mining [22, 63], no
existing work in this area was included. However, fairness has been considered in other related
areas of information diffusion, such as in solving the Influence Maximization (IM) problem.

The IM problem was first formulated by Kempe et al. [35] and focuses on identifying a set of
k initial adopters for maximizing the spread of certain information within a network. In the
area of fairness in IM is the work of Ali et al. [5], who proposed to greedily choose the node
that achieves the highest value for an objective function which balanced influence and fairness.
In this work, fairness was defined as achieving an equal fraction of influenced nodes across the
communities, also known as equity. Thus the objective function would punish nodes that would
cause the distance between the most and least influenced communities to be large, showing that
guaranteeing such fairness comes at the cost of a reduction in performance. Following this work,
Stoica et al. [71, 72] aims to examine the conditions under which diversity would not come at a
cost, but as a catalyst for maximizing outreach. This shows that when the seed set size is large
enough, promoting parity in the seed results in better parity in the outreach. Additionally, this
diverse seed set taps into inactivated communities that are hard to reach from central nodes, and
thus leads to a better outreach, proving the benefits of fairness beyond a balance in the output.
ElHalabi et al. [24] demonstrated empirically that fair solutions are often nearly optimal, meaning
fairness does not come at a significant cost (less than 15%). Additionally, they proved that the
algorithms that do not impose fairness constraints introduce significant bias.

Inspired by the necessity for fairness constraints in the area of IM for fair outcomes and their
positive impact, we will bring fairness into the IBM problem. In this report, we will evaluate the
fairness of multiple of the currently used IBM methods, and present a new approach that aims to
offer a fairer impact while offering a close to the optimal outcome.
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Chapter 4

Proposed methods

In this chapter, we cover the methods that were developed to solve the influence blocking max-
imization problem while remaining fair, in terms of maximin. The proposed method of this work
namely the Fairness-aware Weighted Reversible reachable system (FWRRS) method is introduced
in Section 4.1. Additionally, benchmarks utilized in the evaluation are presented in Sections 4.2
and 4.3, both consisting of adaptations of previous work in the area of Fairness in influence diffu-
sion and IBM respectively, to solve the FIBM problem. These will work as fairness benchmarks
in our evaluation in Chapter 5.

4.1 FWRRS method

The main possible drawback of the existing methods is that to some extent they simplify the
network for the corresponding estimation of blocking power, which can affect the effectiveness in
reality. The heuristic methods, in the extreme, reduce it to the characteristics of a node, and
the simulation-based ones, to some extent, to their local area. For example, CMIA-O and BIOG,
assume that information only spreads through maximum probability paths with a probability of
at least θ, which is typically set to 0.01 and TIB-Solver reduces the network structure to a DAG
to compute the blocking power of each node. To overcome such a drawback, the proposed method
will not oversimplify the network. We proposed to exploit the structure of weighted reversible
reachable (WRR) trees, an example of such structure is represented in Figure 4.1. In this figure,
a toy example network is represented on the left and an example WRR of such network is repres-
ented on the right. Each node in the WRR has a parameter p, which denotes the probability of
it reaching the root.

Figure 4.1: Example of a WRR (right) of a graph (left)
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The construction process for a WRR can be found in Algorithm 6. For the WRR in Figure 4.1,
this consisted of the following steps. First, a random node in the graph is chosen, in this case,
this was N5, and is added to the WRR as the root. From this node, we iterate over the graph, by
visiting nodes in a breadth-first search manner. After adding the root, we consider the neighbours
of N5, namely N4, N2, N3 and N1, which are added to the WRR with a probability equal to the
probability allocated to the edge connecting them to the node being considered. In this case,
this is 0.5 for all neighbours. Based on these probabilities only N3 and N1 were added, and their
p-values were set to 0.5. Next, the neighbours of N3 were considered similarly, resulting in the
inclusion of N2 whose p-value is now equal to the probability of the path, in the WRR, connecting
it to the root. The same process is repeated also for N1 where N2 and N3 were added to the WRR,
however since they were already present in this graph, a copy of them, N ′

2 and N ′
3 respectively

were added. This process is then repeated from every newly added node in the WRRR. This
is then done from N2, where no new nodes were added. Following we considered N ′

2 and from
this node, N4 which belongs to SN was added. In this case, when a rumour spreader node s is
added to a WRR no nodes with a distance from the root larger than the one from this node s are
added. Thus, we consider the node N ′

3 and add N6 in this case, but the process terminates here.
Additionally, we observe that all nodes in the WRR have a p-value larger or equal to the one of
N4 the rumour spreader node, so no further pruning is performed since those nodes with a lower
probability would normally be removed.

This structure aims at considering for each node all those other nodes which can reach it with
their information. Thus, if a path of diffusion is to be considered, a WRR is expected to cover
it, avoiding the oversimplification problem of all other benchmarks. Such structure can be gener-
ated very fast, allowing the methods to generate a large pool of WRRs trees that resemble how
information could diffuse in the network. The proposed method will also incorporate maximin as
its objective to solve the IBM problem while being fairness-aware.

The proposed method is presented in Algorithm 1. This algorithm takes 6 parameters as input.
The first one is G, which consists of the network in which the campaign will take place. This
network contains also the division of the population into communities C. Further, are the negative
set SN , and the budget k. The parameter γ represents the probability threshold to add a node
to S, which is the set of nodes we expect will get infected. Next, is parameter ϵ, which is one
of the input parameters of the D-SSA algorithm, set to a value of 0.1. This parameter will be
the approximation guarantee of the probabilities in the WRRs returned by D-SSA, and thus, the
error that will be allowed throughout the proposed method. Last, is iterations which consists of
the number of simulations that will be utilized to approximate the infection probabilities. Using
these parameters a pool of WRRs is constructed, with which the blocking power of each node per
community is approximated. Iteratively a node is selected and the blocking power approximations
are updated until the size of SP is equal to k. The selection of the node consists of the following
6 selection steps:

1. Select those nodes that maximize maximin, these are stored in a list called options 1

2. Remove from options 1 those nodes without blocking power in those communities that have
not been saved yet unless these communities are connected to the current SP and have a
very small expected number of infections.

3. Further, select those that maximize the weighted blocking power in those communities with
a saving ratio below average. The resulting subset of options 1 is stored in options 2

4. Then those that maximize the blocking power in those communities with a minimum saving
ratio are stored in a list called options 3

5. Those with a maximum blocking power are selected, if the previous sub-sampling 2-4 steps
caused a cost for effectiveness.

6. Last, select the node with maximum weighted out-degree.
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Following, the pseudocode of the algorithm in Algorithm 1 and a flow chart of the method in
Figure 4.2 are presented. In this figure, input parameters are represented in yellow, variables in
blue, decisions are in green and terminating states are in red.

Figure 4.2: Flow chart of the FWRRS method
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Algorithm 1 FWRRS (G, SN , k, γ, ϵ, iterations)

1: S, probs, paths← compute S(G(V,E,C), SN , γ, iterations)

2: WRRS ← D-SSA WRRS(G,S, probs, paths, SN , k, ϵ)

3: WRRSinf ←WRR ∈WRRs if WRR.has SN = True
4: init inf ← list of length |C| consisting of 0s

5: for v ∈ S do
6: countv ← #WRRs in WRRS with root v

7: prob infv ← count infv
#WRRs∈WRRSinfwith root v

8: init inf [commv]+ = prob infv

9: C inf ← [c ∈ C if init inf [c] > 0]

10: pct savedc ← 0 for c ∈ C inf , exp inf ← init inf

11: Bv ← list of length |C| consisting of 0s, for all v ∈ V , candidates← ∅, SP ← ∅, maximin value← 0
12: for WRR ∈WRRS inf do

13: r ← WRR.root

14: for v ∈WRR \ SN do Bv[commr] = +1/countr and add v to candidates

15: while |SP | < k do

16: maximinv ← min
c∈C inf

Bv [c]
init inf [c]

for all v ∈ candidates

17: options 1← [v ∈ candidates if maximinv ∈ (1± ϵ ∗ Φ1) ∗max
w∈V

maximinw]

18: total savv ←
∑

c∈C inf

Bv[c] for v ∈ options 1, list total sav ← [total savv for v ∈ options 1]

19: C no help← [c ∈ C inf if pct savedc = 0]

20: if |C no help| > 0 then
21: sav no helpv ←

∑
c∈C no help

Bv[c] for v ∈ options 1

22: if

∑
c∈C no help

exp inf [c]∑
c∈C inf

exp inf [c]
≥ ϵ ∗ |C no help|

|C inf | or ∃c∈C no help disconnected from SP then

23: options 1← [v ∈ options 1 if sav no helpv > 0]

24: C below avg ← [c ∈ C inf if pct savedc ≤
∑

c′∈C inf

pct savedc′/|C inf |]

25: wgt sav below avgv ←
∑

c∈C below avg

Bv[c] ∗ (1− pct savedc) for v ∈ options 1

26: options 2← [v ∈ options 1 if wgt sav below avgv ∈ (1± ϵ) ∗ max
w∈options 1

wgt sav below avgw +Φ2]

27: C min help← [c ∈ C inf if pct savedc ∈ (1± ϵ) ∗maximin value]

28: saved minv ←
∑

c∈C min help

Bv[c] for v ∈ options 2

29: options 3← [v ∈ options 2 if saved minv ∈ (1± ϵ) ∗ max
w∈options 2

saved minw +Φ3]

30: if max
v∈options 3

total savv ≤ max list total sav ∗ (1− ϵ) then

31: remove nodes in options 3 if total savv ̸∈ (1± ϵ) ∗ max
v∈options 3

total savv

32: u← argmin
v∈options 3

∑
w∈Neigh outv∪{v}

prob infw for v ∈ options 3

33: add u to SP

34: remove u from candidates
35: exp inf ← init inf −Bu, maximin value← maximinu, pct savedc ← Bu[c]

init inf [c]

36: for WRR ∈WRRS inf with u ∈WRR do
37: r ← WRR.root
38: prob infr− = 1/countr

39: for v ∈ candidates \WRR do Bv[commr]+ = 1/countr

40: remove WRR from WRRS inf

41: return SP

Selection step 1

Selection step 2

Selection step 3

Selection step 4

Selection step 5

Selection step 6
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Algorithm 1 is explained below in more detail.

1. Identify the subset of nodes with expected infection (Line 1). This subset consists
of those nodes that are reached by the information shared by a node in SN with a probability
of at least γ in the iterations simulations performed. In this work, the value of iterations
was set to 1000, as larger values did not show significant performance improvement, and
caused an increase in running time. These simulations are performed efficiently through the
construction of WFR (Weighted Forward Reachable) trees. The subset of nodes S and the
corresponding probabilities and paths of infection are obtained by calling compute S on G
and SN . The code for this computation is presented in the Algorithm 2.

The process of a call of compute S begins by generating a graph G extended. This consists
of a copy of G containing an extra node source. This node is connected to all infectees
with edges that have a probability of 1 (Lines 1:3). Utilizing G extended, we generate 1000
WFR trees rooted at source (Lines 6:11). These WFR trees are generated according to the
pseudo-code presented in Algorithm 3. Each WFR represents how the information, being
spread by the SN nodes, propagates and reaches other nodes in the network. For each node v
we keep track of the number of occurrences within the WFR trees. The proportion of WFR
trees in which a node v is present is then an estimate of the probability of v being reached
by SN , defined as probsv. We also keep track of the paths through which each node got
reached by SN , this list paths will then be used for pruning in the construction of the WRR
trees in Algorithm 6. This variable will allow us to avoid the construction of unnecessarily
large WRR trees. When all 1000 WFR trees are constructed, S is set to be those nodes
with a probability of infection of at least γ, such selection will help speed up the process of
generating WRRs in which nodes get infected. Then, probs, paths and S are returned.

Algorithm 2 compute S (G, SN , γ, iterations)

1: G extended← G

2: add node source to G extended
3: add edges (source,s) for s in SN to G extended, where probsource→s = 1

4: S ← ∅
5: probsv ← 0 for v ∈ V
6: for i=1:iterations do

7: Si, inf path← generate WFR(G extended)

8: for v ∈ Si do
9: probsv+ = 1/1000

10: pathsv add inf pathv

11: add s to S
12: S ← list of nodes s ∈ S with probss >= γ
13: return S, probs, paths

Each of these WFR trees is generated by calling generate WFR(G extended), a method
whose pseudocode is presented in Algorithm 3. The process of constructing a WFR tree
begins by initializing the set Si which will be containing the set of nodes that get infected
by SN in this WFR, to be an empty set (Line 1). Next, the node source is selected as the
root (Line 2). Then G extended is iterated over by adding to Si a neighbour v of the node
u currently being considered with probability pu→v (Lines 4:13). This is performed with
the use of a list A which includes those nodes to be considered next. In each iteration a
node u is extracted out of A and its neighbours are selected for being added to Si with the
corresponding probabilities (Lines 6:8). In the case of a node v being selected to be added
to Si, it is added to A also, for it to be considered in next iterations (Lines 9:13). Only
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nodes that are not in SN are added to Si since nodes in SN can not get infected (Line 12).
However, these nodes will be added to A to iterate through the graph. Additionally, nodes
are only considered once, since, under the ICM, nodes can only be negatively activated in
one time step. Thus, if a node v is to be added to Si but it is already in this set, then it will
not be added again into A. We also keep track of the nodes that needed to be negatively
activated to reach each node v in the WFR (Line 11), this is stored in the set inf pathv.
Once no more nodes are present in A, the WFR construction is completed and we return Si

and inf path. This process resembles taking a random sub-graph of G extended, where an
edge (u, v) is included with probability pu→v and including all nodes reachable from source
into Si. Under this analogy, inf pathv will then consist of the nodes encountered in the
shortest path from source to node v.

Algorithm 3 generate WFR(G extended(V,E))

1: Si ← ∅
2: r ← source

3: inf pathr ← ∅
4: A← [r]

5: while A ̸= ∅ do
6: u← take first element out of A

7: for v ∈ V such that the edge (u, v) ∈ E do

8: add v is True with probability pu→v else False

9: if add v and v ̸∈ Si then

10: add v to A

11: inf pathv ← inf pathu ∪ {v}
12: if v ̸∈ SN then

13: add v to Si

14: return Si, inf path

2. Generate a pool of WRR trees (Line 2). The pool of WRR trees utilized by the
FWRRS method is constructed using a version of the D-SSA sampling algorithm, which is
presented in Algorithm 4. This sampling algorithm was introduced by Nguyen [46], which
was evaluated to be 1200 times faster than the next best sampling method. It offers a scalable
solution for the class of hard optimization problems over samples/sketches with guarantees
in the estimated solution.

Algorithm 4 D-SSA WRRS(G,S, SN , k, ϵ)

1: n← |S|, δ ← 1
n

2: Nmax ← 8 1−1/e
2+2e/3 ∗Υ(ϵ, δ

6/
(
n
k

)
) ∗ n

k

3: tmax ←
⌈
log2(2Nmax/Υ(ϵ, δ

3 ))
⌉

4: Λ← Υ(ϵ, δ
3∗tmax

)

5: Λ1 ← 1 + (1 + ϵ) ∗Υ(ϵ, δ
3∗tmax

)
6: t← 0

7: WRRSt ← {WRR1, ...,WRRΛ2t−1}
generated using generate WRR(G,S, probs, paths, SN )

8: while |WRRSt| < Nmax do

9: t← t+ 1

10: WRR with SN ← number of WRR ∈WRRSt with WRR.has SN = True
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11: WRRS c
t ← {WRRΛ2t−1+1, ...,WRRΛ2t}

generated using generate WRR(G,S, probs, paths, SN )

12: Ŝk, Ît(Ŝk)←Max-Coverage(WRRSt, k, SN )

13: roots listct ← list containing WRR.root for all WRR in WRRS c
t

14: countct(r)← number of occurrences of r in roots listct for all r
15: for WRR in WRRS c

t do
16: if Ŝk ∩WRR ̸= ∅ then
17: r ←WRR.root
18: Ict(Ŝk)+ = 1/countct(r)

19: Cov WRRS c
t(Ŝk)← Ict(Ŝk)/|S| ∗ |WRRS c

t |
20: if Cov WRRS c

t(Ŝk) ≥ Λ1 then

21: ϵ1 ← Ît(Ŝk)/Ict(Ŝk)− 1

22: ϵ2 ← ϵ
√

n(1+ϵ)

2t−1Ict(Ŝk)

23: ϵ3 ← ϵ
√

n(1+ϵ)(1−1/e−ϵ)

2t−1Ict(Ŝk)

24: ϵt ← (ϵ1 + ϵ2 + ϵ1ϵ2)(1− 1/e− ϵ) + (1− 1/e)ϵ3

25: if ϵt ≤ ϵ then

26: roots listt ← list containing WRR.root for all WRR in WRRS c
t

27: countt(r)← number of occurrences of r in roots listt for all r
28: for WRR in WRRS t do
29: if SN ∩WRR ̸= ∅ then
30: r ←WRR.root
31: It(SN )+ = 1/countt(r)

32: if It(SN ) ≥ Λ1 then return WRRSt

33: WRRSt ←WRRSt ∪WRRS c
t

34: return WRRSt

Algorithm 5 Max-Coverage WRRS(WRRSt, k, SN )

1: Ŝk ← ∅
2: WRRS to cover ←WRRSt

3: roots list← list containing WRR.root for all WRRt in WRRS
4: countr ← number of occurrences of r in roots list for all elements in the list
5: coveragev ← 0 for all v ∈ V
6: for WRR in WRRSt do
7: for v ∈WRR do
8: r ←WRR.root
9: coveragev+ = 1/countr

10: Ît(Ŝk)← 0
11: for i=1:k do

12: v̂ ← argmaxv∈V \SN
coveragev

13: add v̂ to Ŝk

14: Ît(Ŝk)+ = coveragev̂
15: for WRR in WRRS to cover with v̂ ∈WRR do
16: for v ∈ V \WRR do
17: coveragev− = 1/countr

18: remove WRR from WRRS to cover
19: return Ŝk, Ît(Ŝk)

The general idea of the algorithm is to recursively double the amount of WRRs until certain
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conditions are met. Then the resulting WRRS (Weighted reversible reachable system) is re-
turned to be used by the F -WRRS method. In iteration t, the algorithm has generated Λ×2t
WRRs and divides them into two sets. The first one WRRSt = {WRR1, ...,WRRΛ2t−1} is
used to find a candidate solution Ŝk resulting from solving our version of the max-coverage
problem, defined in Algorithm 5, Max-Coverage(WRRst, k, SN ). This consists of choosing
a candidate set Ŝk ⊆ V \ SN of size k, with the highest coverage of S among the WRRs.
This set Ŝk is aiming at maximizing the number of nodes out of those expected to get infec-
ted that are reached by the positive information before the negative one, which is a way in
which we can achieve to save the most nodes. This is the logic behind all heuristic methods,
choosing the most influential nodes. The second set WRRS c

t = {WRRΛ2t−1 , ..., WRRΛ2t}
is used to verify the quality of the candidate solution Ŝk. If the qualifying conditions are
met, WRRSt is sufficient to obtain a good influence estimate, and thus a good blocking
power estimate for the WRRS method. Then the WRRS is returned. If the conditions are
not met in iteration t the process is repeated, with WRRSt+1 = WRRSt ∪WRRS c

t .

The quality conditions to be met are the following two. First the number of trees in WRRS c
t

shall be sufficient to guarantee a (ϵ, δ
3∗tmax

)-approximation of the influence power of Ŝk, where
tmax is defined as follows:

tmax = ⌈log2(
2 ∗Nmax

Υ(ϵ, δ/3)
)⌉

The computation of the parameters for this condition differs slightly from the original al-
gorithm since the WRRs are not rooted uniformly over the set S. We then keep track of the
frequency of the roots to compute a weighted version of the formulas.

If this first condition is met, it proceeds to estimate the best possible precision parameters
ϵ1, ϵ2, ϵ3. The second condition states that the combination of those precision parameters
has to be sufficiently small,i.e,

ϵt = (ϵ1 + ϵ2 + ϵ3)(1− 1/e− ϵ) + (1− 1/e)ϵ3 ≤ ϵ

When these conditions are met the returned set of WRRs, namely WRRst, is sufficient to
achieve a (1− 1/e− ϵ)-approximation of the influence power, with high probability.

We extend the D-SSA algorithm to contain a third condition that does not alter the validity
of the first two conditions. This third one is met when the number of WRRs that contains
a negative seed node is larger than Λ1. This ensures that the WRR trees shall be sufficient
to guarantee a (ϵ, δ

3∗tmax
)-approximation of the influence power of SN . This is necessary to

make accurate predictions on how to block such influence.

In the unfortunate event that the algorithm does not satisfy the conditions for any t, a
stopping criterion is defined. The algorithm will terminate when the number of WRRs
reaches a cap

Nmax = 8
1− 1/e

2 + 2e/3
∗Υ(ϵ,

δ

6
/

(
n

k

)
) ∗ n

k

where Υ(ϵ, δ) = (2+ 2
3e)∗ln(

1
δ ∗

1
ϵ2 ). This way it is guaranteed a O(log(n)) maximum number

of iterations. In this case, n is defined to be the number of nodes with expected infection,
thus the size of S.

Each WRR is generated by calling generate WRR(G,S,probs,SN ), presented in Algorithm
6.To further clarify this process a toy example was presented in Figure 4.1. First, a root r is
chosen at random from the set S using the probabilities in probs (Line 3). Including these
probabilities helps boost the performance of the method, as the FWRRS method is inter-
ested in those WRRs that include a negative seed node. The probability of choosing node
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v out of S is then probsv∑
w∈S

probsw
. From this node, we begin to visit G in a breadth-first search

manner. From the node u currently being considering we check all of its predecessors, and
for each v ∈ predecessors(u) we add v to WRR with probability pv→u. For every new node
v being considered for the WRR the probability of the path towards the root is stored in pv
(Lines 9:13). If v is already in WRR we add a copy of v (Lines 19:26). However, if any copy
of v is already present in the path between v and r we do not add it again, as in the ICM a
node can not activate twice and this path would not be possible (line 18). Once a node is ad-
ded to WRR we also add it to A which is a list of nodes to consider next. The process stops
when a node in SN is to be added to the WRR, in this case, we stop the iteration at the level
of G, as no nodes at a distance larger than this will be able to save r from getting infected.
In this case, the property .has SN of the WRR is True and the WRR is then returned,
after all, nodes in this last level are considered. In the other case that A is empty, meaning
we do not have more nodes to consider, the process also stops. The property .has SN of
the returned WRR is then False. Last, before returning the final WRR, nodes with a lower
probability of reaching the root than any negative seed in the tree are removed(Lines 36: 39).

The list paths was introduced to boost the performance of this algorithm under the following
scenario. When the probabilities of infection in the edges are large, the size of the WRR
trees can significantly increase, affecting the performance of the method. The number of
copies of nodes grows significantly with the number of paths through which information now
diffuses in this network. However, not all paths need to be considered. If a node is present
in a WRR it is assumed that its information will reach the root node, thus having multiple
copies of this node does give us any additional information. However, the inclusion of a copy
of this node might be necessary to cover a path through which the root can get infected.
We then have the variable pathsr which contains the paths through which the root r was
infected in the 1000 simulations previously performed. If a new node v is to be added to a
WRR, where already numerous copies of a such node are present, we use pathsr as follows.
If the path we are currently iterating over in the WRR, namely descendantsu ∪ {v}, does
not lead to the infection of the root, because it is not a subset of any path in pathsr we will
not consider it any further. This allows for the pruning of the WRR trees significantly as the
consideration of numerous unnecessary paths is avoided (Line 20). The maximum number
of copies is set to 10, and the method will then be considering at least 10 different paths
through which node v can inform r. Experiments show that a larger maximum number of
copies will not have a significant improvement for blocking power on all evaluated data sets,
in fact, under the Weighted cascade model (for each edge (u, v) ∈ E pu→v = 1/in-degree of
v ) it is rarely reached. Only when the probabilities become larger like under the Uniform
cascade (for each edge (u, v) ∈ E pu→v = p) with large values of p, comes the limit into
significant use.

Algorithm 6 generate WRR(G, S, probs, paths, SN )

1: WRR← empty graph, max depth←∞
2: WRR.has SN ← False

3: r ← random node in S chosen using the probabilities in probs

4: WRR.root← r
5: descts r ← ∅
6: A← [r]

7: originalr ← r , sr ← 0 , copiesr ← 0, prevr ← ∅
8: while A is not empty do

9: u← take first element out of A

10: if prevv = ∅ then
11: pv ← 1
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12: else
13: w ← prevv
14: pv ← poriginalw→originalv ∗ pw
15: if originalu ̸∈ SN then

16: if su ≤ max depth then

17: for v ∈ V such that the edge (v, originalu) ∈ E do

18: add v is True with probability pv→originalu else False

19: if add v and v ̸∈ desctsu then

20: if v ∈WRR then

21: if copiesv ≤ 10 or (descts u ∪ {v} ⊆ p for any p ∈ pathsr) then
22: copiesv ← copiesv + 1, i← copiesv
23: Add node v copyi and edge (v copyi, u) to WRR

24: descts v copyi ← descts u ∪ {u}
25: sv copyi

← su + 1

26: add v copyi to A

27: prevv copyi
← u

28: else
29: Add node v and edge (v, u) to WRR

30: descts v ← descts u ∪ {u}
31: sv ← su + 1

32: add v to A

33: prevv ← u

34: else
35: max depth← su
36: WRR.has SN ← True

37: min prob← max
v∈WRR∩SN

pv

38: for v ∈WRR do
39: if pv < min prob then
40: remove v from WRR
41: return WRR

3. Choose SP. In Algorithm 1 once the pool of WRRS has been generated, the infection
probability for each node v ∈ S according to the WRRS is computed (Lines 5:8). This is
equal to the ratio of WRRs rooted at v that includes a node in SN . Once the probability of
infection for all nodes in S is computed, the expected number of initial infections per com-
munity init inf has also been computed (Line 8). The initial expected number of infections
in community c is set to be the sum of the infection probabilities of all nodes v ∈ V with
commv = c, meaning the community of v is c. Further, the variable C inf is set to contain
those communities where infections take place (Line 9). Next, the percentage of saved nodes
per community pct saved is initialised to 0 and the number of infections currently being
expected, exp inf , is initialised to be equal to the initial ones (Line 11).

The blocking power of v per community, Bv, for all v ∈ V is then initialized to 0 (Line 12),
as well as the maximin value. In Line 12 the WRR trees in WRRSinf , which are those
with WRR.has SN = True, are iterated over. If any node v in a WRR were to be added
to SP the root r of this WRR would be expected to be saved from being infected within
such tree, as v would reach it with its information before the SN nodes. Thus, the number
of WRRs in which r gets infected reduces by 1, and the probability of infection of r reduces
by 1/number of WRRs rooted at r. This means that the value of Bv[commr] is increased
by 1/number of WRRS rooted at r. This logic is then applied to compute the blocking
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power in each community for any node. Additionally, to avoid iterating over the entire set of
nodes of the network, a set candidates is created to contain those nodes with blocking power.

Next, nodes for SP begin to be selected, which was initialized in line 11 to an empty set.
In each iteration, the node that achieves the highest maximin value, meaning that it saves
the highest percentage of all communities, is chosen, defined as selection step 1. But since
the infections probabilities are (ϵ)-approximations, the set of candidates is established to be
those nodes with a maximin value within a range of ϵ from the maximum possible (16:17).
In practice it was noticed, that such interval was too large, especially in later iterations,
where the maximin value becomes larger. To reduce the size of this interval, and force
the sub-sampling of candidates, a parameter Φ1 was introduced. The subset of candidates
options 1 is then set to be those nodes with a maximin value within a range of ϵ∗Φ1 from the
maximum possible. This parameter is set to be the ratio of initial infections that take place
in the community with a minimum percentage of saved nodes. The intuition behind this
parameter is that the error made is expected to be balanced throughout the network. In this
case, the expected error in the number of saved nodes in a community, should be proportional
to the expected number of infections that were taking place in such a community. Thus,

Φ1 = exp inf [c′]∑
c∈C inf

exp inf [c] , where c
′ is the community with the smaller proportion of saved nodes.

In the case in which multiple candidates are selected as options 1, especially in the initial
iterations where no single node can achieve a maximin value higher than 0, we break ties
as follows. First, we perform the selection step 2. In the case that some communities have
not been saved at all, those nodes that achieve some saving within these communities, are
selected. Such requirement shall help the method escape out of the current maximin-value
of 0 (Lines 19:23). In practice it was encountered that when the number of infections taking
place in these neglected communities was very low and these were already connected in some
way to SP , forcing their help came at a significant cost. The gain from forcing such help was
very low, as the number of infections is small, and in practice, the benefits of the intervention
would in some way reach these groups. Thus we decide to skip this sampling step in such
a scenario. This is the case when the portion of infections in these communities is smaller

than ϵ ∗ ( |C no help|
|C inf | ) and there exists a path from SP to all the neglected communities (Line

22).

Next, those candidates that save the most nodes from those communities that currently
have received the least help are selected, defined as selection step 3 (24:26). These com-
munities are defined to be those who have a saving rate below average. For each node in
options 1, the number of nodes that are saved from the communities with below-average
help is computed. In such computation, nodes have weights, inversely proportional to the
ratio of saved nodes in their community. Such weights shall enforce prioritizing saving
nodes from those communities with a saving ratio significantly below average over those
with a slightly below average saving ratio. Similar to the previous selection those can-
didates with a number of saved nodes in the range of ϵ from the maximum possible, are
sampled. but such selection becomes very restrictive, especially at later iterations when the
number of nodes that can be saved reduces. To overcome this, the selection is loosened
with the use of parameter Φ2 =

∑
c∈C min help

init inf [c] − exp inf [c] ∗ avg help, where

avg help =
∑

c′∈C inf

pct savedc′/|C inf |. The intuition, behind this parameter value, is

that as the number of saved nodes increases, the error to be made in the next steps reduces
since most of this approximation error has already been made. Thus, this parameter allows
for more room for selection in later iterations.

In practice the previous selections still give room for further subsampling, thus we perform
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the selection step 4 next. In this step, those nodes with the highest blocking power within
those communities with a saving ratio around the current maximin value are selected. Such
selection will help the method increase the maximin value since it tries to maximize the help
around those communities that might be causing such a low maximin value (Lines 27:29). In
this step Φ3 =

∑
c∈C min help

init inf [c]− exp inf [c] ∗ ϵ, this value follows the same intuition

as the previous Φ2. Last, in the case that the maximum blocking power of any node in
options 3 is low, we perform the selection step 5. We then guarantee that we choose a
node v ∈ options 3 with a blocking power within a range around the maximum possible,
by removing from options 3 those nodes that do not. The maximum blocking power is
considered small if this value is outside anϵ range around the maximum number of nodes a
candidate in options 1 could save, which was computed in line 18. With this, in the scenarios
in which the sub-sampling steps 2-4 caused the choice of nodes with limited blocking power,
we at least choose the node with maximum blocking power out of these candidates, limiting
the cost of fairness as much as possible.

The node u is chosen in the last selection step 6, to be the node out of the sub-sample of
candidates with the highest weighted out-degree. The weight of a node is its probability
of getting infected with the current SP . The selected node is then added to the positive
seed and removed from candidates (Lines 32:33). Once a new node u is added to SP , the
expected infections are then those after u becomes a truth campaigner. Moreover, the max-
imin value and ratio of saved nodes per community are also modified (Line 34). Next, the
blocking power of any other node is updated. This is done in Lines 35:39, where we iterate
over those WRRs ∈ WRRSinf in which the root r is expected to be reached by u. In
those WRRs covered by u, the root will remain saved and the expected number of saved
nodes of all those other nodes that were not present in this WRR is increased. Thus, the
expected infections of all those nodes that were not present in this WRR are reduced by
1/number of WRRS rooted at r. Further, this WRR is removed from the set of WRRs
that need to be covered, WRRS inf .

This process is repeated iteratively, by choosing a new node to add to SP in each iteration.
The process finalizes when the size of SP is k, and then the resulting set of truth campaigner
is returned.

4.2 Parity seeding for FIBM problem

The work of Stoica in the area of Fairness-aware Influence Maximization [71, 72], was introduced
in Section 3.2. She shows how the nature of the independent cascade model can be exploited to
achieve a better outreach by favouring parity. Including sensitive features in the input of the seed
selection substantially improves such parity and it is shown that often the efficiency is not affected
or even is proved a small gain. In Stoica’s work parity seeding is then defined for the IM problem
in a bi-populated network as follows:

Given the population, V of the network, consisting of red(R) and blue(B) nodes, the seed set’s S
population is based on two differential thresholds kR(n) and kB(n) as

SR
kR(n) ∪ SB

kB(n) = {v ∈ R|deg(v) ≥ kR(n)} ∪ {v ∈ B|deg(v) ≥ kB(n)}

such that |Sk(n)| = |SR
kR(n) ∪ SB

kB(n)| and
|SR

kR(n)|
|SB

kR(n)
∪ SB

kB(n)
|
=
|R|
|V |

.
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The main idea of this seeding method is that instead of choosing the nodes with the highest degree,
or equivalently those with a degree above a certain threshold k(n) (agnostic seeding), we set a
selection threshold per group. The thresholds are then defined in such a way that the ratio of
each group in the seed set is as in the general population while preserving the seed set budget. In
Figure 4.3, extracted from the work of Stoica [72], the different thresholds defined for the seeding
mechanisms are displayed. Here another mechanism diversity seeding, where the thresholds are
defined somewhere between the agnostic and parity seeding, is also plotted.

Figure 4.3: Differentiated thresholds for strategic seeding, extracted from [72]

To adapt this seeding mechanism to the IBM problem, we set the thresholds in such a way that the
seed set population resembles that of the negative seed set SN . This way the positive information
will be spread fairly and efficiently over the same communities that SN can reach. The adaptation
of the parity seeding for the IBM problem is defined in Algorithm 7.

Algorithm 7 Stoica(G(V,E),SN ,k)

1: num com← number of communities in G, defined as |C|
2: community SN ← list of length num com consisting of 0s
3: for s ∈ SN do
4: c← comms

5: community SN [c] += 1
|Sn|

6: SP ← ∅
7: takec ← ⌊community SN [c] ∗ k⌋ for c ∈ C

8: while
∑

c∈C takec < k do

9: c← argmax
c∈C

(community SN [c] ∗ k − takec)

10: takec += 1

11: for c ∈ C do
12: select takec number of nodes with the highest degree from community c
13: add them to SP

14: return SP

The process begins by computing the ratio of each community in the negative seed SN (Lines
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3:5). Next the equivalent ratio of k is allocated to each of the communities. To make sure we
do not go over the budget k the computations are floored (Line 7). Next, if resources are still
to be allocated, meaning there is still a budget left, we give these to those communities with the
biggest difference between population ratio in SN and SP . Once the number of truth campaigners
allocated to each community c ∈ C is defined, we select this amount of nodes with the highest
degree in C and add them to SP (Lines 11:13). The method finishes by returning SP .

4.3 Fairness-aware CMIA-O

A second fairness-aware benchmark for the IBM problem is introduced in this section. This is the
Maximin-CMIA-O, which is an extension of the work of Wu [75], shortly introduced in Section 3.1.

The presented approach CMIA-O was altered to have as an objective function maximin, instead
of maximizing the number of saved nodes. The remaining computations stayed the same. The
structural changes to be able to compute the maximin values efficiently are presented in the
pseudo-code of the new algorithm Maximin-CMIA-O in Algorithm 8.

Algorithm 8 Maximin-CMIA-O(G(V,E), SN , k, θ)

1: SP ← ∅, NegS ← ∅
2: DecInfc(v)← 0 for each node v ∈ V and c ∈ C
3: ExpInfc ← 0 for each community c ∈ C
4: for u ∈ SN do
5: construct MIOA(u,θ)
6: NegS ← NegS ∪ (MIOA(u, θ) \ SN )

7: for u ∈ NegS do
8: construct MIIA(u,θ)
9: compute apN (u, SN , SP ,MIIA(u, θ))

10: ExpInfc+ = pN (u, SN , SP ,MIIA(u, θ))
11: for v ∈MIIA(u, θ) do
12: compute apN (u, SN , SP ∪ {v},MIIA(u, θ))
13: c← commu

14: DecInfc(v)+ = apN (u, SN , SP ,MIIA(u, θ))− apN (u, SN , SP ∪ {v},MIIA(u, θ))

15: for i = 1 to k do
16: u← argmax

v∈V \(SP∪SN )

minc∈C
DecInfc(v)
ExpInfc

17: construct MIOA(u,θ)
18: for v ∈ MIOA(u,θ) do
19: c← commv

20: for w ∈MIIA(v, θ) do
21: DecInfc(w)− = apN (v, SN , SP ,MIIA(v, θ))− apN (v, SN , SP ∪ {w},MIIA(v, θ))

22: SP ← SP ∪ {u}
23: for v ∈ MIOA(u,θ)\{u} do
24: c← commv

25: compute apN (v, SN , SP ,MIIA(v, θ))
26: for w ∈MIIA(v, θ) do
27: compute apN (v, SN , SP ∪ {w},MIIA(v, θ))
28: DecInf(w)+ = apN (v, SN , SP ,MIIA(v, θ))− apN (v, SN , SP ∪ {w},MIIA(v, θ))

29: return SP

The process covered in Algorithm 8 consists of the following. First, the set of nodes expected to
get infected is computed, NegS. This consists of those nodes that have a path to any negative
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seed with a probability smaller or equal to θ. This set of nodes is obtained by constructing a
Maximum influence Out-Arborescence (MIOA) from each of the negative seeds, with the use of
an algorithm such as Dijkstra, where the length of an edge (u, v) is set to be −log(pu→v). Then
those nodes with a path length smaller than θ are included in NegS (Lines 4:6).

For each node v in NegS we then compute the probability of infection apN . This is performed
by constructing Maximum influence In-Arborescence (MIIA), from v, constructed similarly to
the MIOA but with forwarding edges instead of backward edges. The MIIA of v is then used
to compute the probability v will get infected by SN in this MIIA. This computation remains
unchanged from the one proposed byWu [75], which relies on the cascading effect of the information
over the tree. For clarity, we will cover an example, and compute apN of u over the MIIA visualized
in Figure 4.4, assuming all edges have probability 0.5 and that the negative seed includes nodes
a, d, j.

Figure 4.4: Differentiated thresholds for strategic seeding

The probability of infection of any node v in the MIA at any time step t is initialized to be 0,
pN (v, t) = 0, except for those nodes in SN which are initialized to 1 at time step 0. The probability
of any node being infected by time step t is then defined to be the sum of probabilities of it being
infected at any time step before, apN (v, t) =

∑
t′<=t

pN (v, t).

The node u has a direct neighbour who could be infected in the previous time step j since pN (j, 0)
is not 0 as it’s a negative seed. Then, at time step 1 u can get infected with probability 0.5, since
pj→u = 0.5, pN (u, 1) = 0.5. Similarly pN (f, 1) and pN (l, 1) are also set to 0.5.

At time step 2, l can attempt to infect u. The probability of infection at this time step is
computed as follows pN (u, 2) = (1 − apN (u, 1)) ∗ 0.5 ∗ pN (l, 1) = 0.125. The probability of u
being infected during time step 2 is equal to the probability of it not being infected before such
time step, multiplied by the probability of any of its neighbouring nodes being infected during the
previous step and reaching u. The probability of u not being infected before, during time step 1,
is 1− 0.5 = 0.5. The probability of it being reached by a node infected in the previous step is∑

v∈MIIA

pv→u ∗ pN (v, 1) = 0.5 ∗ pN (l, 1) = 0.25

Node f can also attempt to infect l and similarly pN (l, 2) = (1 − apN (l, 1)) ∗ 0.5 ∗ pN (f, 1) =
0.5 ∗ 0.25 = 0.125.

Last, node u can also be reached at time step 3 by l again, since this node could be infected at
time step 2. Then pN (u, 3) = (1 − apN (u, 2)) ∗ 0.5 ∗ pN (l, 2) = 0.0234. Since no more nodes can
get infected the process finishes. The total probability of infection of node u is then set to be the
probability of it being infected by time step 3, since this is the longest path from any negative
seed, and no further infections of u take place. This is sum of the probabilities of u being infected
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at each time step

apN (u, SN , SP = ∅,MIIA) = apN (u, 3) =
∑
t≥0

pN (u, t) = 0.5 + 0.125 + 0.0234 = 0.6484

In Algorithm 8, after we have computed apN (u, Sn, SP ,MIIA) for each node u in NegS, we can
compute the expected infections per community by summing them together (Line 10). This is
done to be able to compute the maximin values later on. Additionally, we compute the probability
of infection of each node u in NegS if any other node v in the MIIA from u was to be added to
SP . The decrease in infection probability is then added to the variable DecInfc(v), where c is
the community u belongs. This way we have computed the expected decrease in infections per
community for all our candidate nodes for SP , namely those that have a path with a probability
of at least θ from a node in NegS(Lines 7:14).

Then the node with the highest maximin value is iteratively chosen until the size of SP is of k.
When a new node u is chosen to be added to the positive seed, we then proceed to update the
DecInf values of all other nodes which might be affected by this new SP node. We update the
DecInf of all those nodes who were reaching any of the nodes we now expect will be reached by
the positive information that u will be spreading, those are the nodes in MIOA(u, θ). For each
of these nodes v, now reached by u, we iterate over the nodes w present in MIIA(v, θ), the nodes
that can also reach v. We remove the decrease in infection w had in node v(Line 21). We then
add u to SP (Line 22) and we recompute the DecInf of those same nodes, except for u, as this
does not change (Lines 23:28). Once SP consists of k nodes, the process stops and we return this
variable.

When a new node is added to SP the values of apN are recomputed. But, since now nodes also
spread the true information, thus blocking the spread of the negative one in some cases, the com-
putations change. We cover the same scenario as described previously in Figure 4.4, but with the
inclusion of a positive seed node, namely f .

The probability of infection by either positive or negative information of any node v in the MIA at
any time step t is initialized to be 0, pN (v, t) = 0 and pP (v, t) = 0, except for those nodes v ∈ SN

for which pN (v, 0) = 1 and those v′ ∈ SP for which pP (v′, 0) = 1.

At time step 1, since now f is part of the positive seed it can not be infected by a. The infec-
tion that still takes place in time step 1 is the one of node u , pN (u, 1) = 0.5 . Additionally, g
can negatively infect node l, but node l can also be positively infected in this step by node f ,
the computation is as follows. Since we assume a node will believe the positive information from
the negative one, pP (l, 1) = 0.5. On the other hand, pN (l, 1) = pg→l∗pN (g, 0)∗(1−pP (l, 1)) = 0.25.

In the next time step, l which could have been positively infected in the previous step, will try to
reach node u. The probability of succeeding in this time step is then

pP (u, 2) = (1− apP (u, 1)) ∗ (1− apN (u, 1)) ∗ (1−
∏

v∈MIIA

(1− pP (v, 1) ∗ pv→u))

= 1 ∗ 0.5 ∗ (1− (1− 0.5 ∗ pP (l, 1))) = 0.125

l could have also been negatively infected in the previous step, and could then try to reach node
u. The probability of node u getting negatively infected in this time step is then computed as
follows:
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pN (u, 2) = (1− apN (u, 1)) ∗ (1− apP (u, 1)) ∗ (1−
∏

v∈MIIA

(1− pN (v, 1) ∗ pv→u))

∗
∏

v∈MIIA

(1− pP (v, t) ∗ pv→u)

= 0.5 ∗ 1 ∗ (1− (1− pN (l, 1) ∗ 0.5)) ∗ (1− pP (l, 1) ∗ 0.5)
= 0.046875

This computation comes from the fact that node u becomes negatively activated during time
step 2 if at least one of its neighbours became negatively activated in the previous time step and it
successfully reaches u, while u was neither negatively nor positively activated already. Addition-
ally, no neighbour of u must have been positively activated and successfully reached u, since in
this case, u would then believe the positive information. As a result, the probability of u getting
infected is now

apN (u, SN , SP ,MIIA) = apN (u, 2) =
∑
t≥0

pN (u, t) = 0.5 + 0.046875 = 0.546875

In this case the value of DecInf(f) would be increased by 0.101525, as it reduces the probability
of u being infected by this much.
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Chapter 5

Experiments

In this chapter, we will experimentally analyze the performance of the FWRRS method. These
experiments shall evaluate the methods under real-life scenarios, for this a set of real data sets
which are publicly available, was used to observe this. To be able to understand how the character-
istics of the network might impact the methods’ effectiveness and fairness experiments in a set of
synthetic datasets generated with a proposed model, were performed. The chapter is organized as
follows, first, in Section 5.1 the experiments performed in real data sets are introduced. This Sec-
tion first presents the dataset used in Section 5.1.1 , later the actual experiment settings in Section
5.1.2 and later the results 5.1.3. Next in Section 5.2 the experiments performed in synthetic data
sets are introduced. In section 5.2.1 we introduce the need for a novel model for the generation of
networks that resemble social network characteristics, such a model is presented in Appendix B.
Next in section 5.2.2, the characteristics of the generated networks for the experiments as well as
the evaluation findings on such networks are presented.

5.1 Real datasets experiments

5.1.1 Datasets

In this subsection, each data set that will be utilized in the experiments is introduced, and the
characteristics of these social networks are summarised in Table 5.1. The chosen datasets consist
of two friendship networks, namely Facebook and Twitter, three collaboration networks, NetPH,
NetHEPT and NetASTRO, and a communication network, Enron-Email. Such a variety of
networks aims at covering multiple types of social interactions to observe the performance under
different social networks.

• Facebook: consists of a snapshot of the online social network Facebook containing 4039
nodes and 88234 undirected edges, which are represented with bidirectional edges, bringing
the total number of directed edges to 176468. In the directed version of this network, the
average out-degree is 43.69, the clustering coefficient is 0.6055, the average shortest path is
3.69 and the diameter is 8. The degree distribution is plotted in Figure 5.1(a), where we
observe heavy tail characteristics of a power-law distribution. However, this dataset’s degree
distribution has top concavity, which might suggest this network is not purely scale-free.
This dataset is commonly used in previous research on the IBM problem [83, 76, 80, 81],
was extracted from the work of Mcauley [44] and is available in SNAP datasets [39].

• Twitter: consists of a snapshot of the social network of Twitter with 81306 nodes and
1768149 edges. It was also extracted from the work of Mcauley [44] and is available in
SNAP datasets [39]. This network has a diameter of 7, an average degree of 21.74, a clus-
tering coefficient of 0.5653 and an average shortest path of 4.131. It has also been utilized
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in previous research on fake news mitigation such as [73, 64]. In this social media platform,
friendships are not bidirectional, thus an edge between any pair of nodes (u, v), translates
into u is a friend of v, thus the resulting graph is directed.

• NetPHY: is a co-authorship network created using publications in the Physics section of
the e-print arXiv [3]. This dataset has been used in research some examples are the following
[18, 30, 69] and is publicly available under the research of Wei Chen [16]. In this network,
two authors are connected by an edge if they have a publication together. It contains 37149
nodes and undirected 231584 edges, but since in our networks we do not allow for multiple
edges, the resulting number of directed edges is 174161. The resulting network consists then
of disconnected subgraphs. For the largest component, the average shortest path is 6.26, the
average out-degree of 9.376 and the diameter of 19. The clustering of the component is 0.75
and the degree distribution is plotted in Figure 5.1(c).

• NetHEPT: is also a co-authorship network created using publications in the High En-
ergy Physics section of the e-print arXiv [3] and is publicly available under the research
of Wei Chen [16]. This network is disconnected, the biggest component has a diameter of
19, an average shortest path of 5.779, an average degree of 4.1205 and a clustering coeffi-
cient value of 0.49. Additionally, the degree distribution is plotted in Figure 5.1(d). The
dataset contains 15235 author nodes and a total of 58891 undirected connections between
them, where two authors are connected with they share a publication. After removing re-
peated edges the total number of directed edges is 62776. This network has been extensively
used in the study of fake news mitigation, some examples are the following publications
[30, 18, 69, 27, 53, 54, 47, 17].

• NetASTRO: is a collaboration network extracted from the e-print arXiv [3]. It represents
scientific collaborations, where the nodes are authors and an edge between them resembles
that they published a paper together in the category of Astro Physics. This network con-
sists of an undirected graph of 18772 nodes and 396160 edges. The diameter of the biggest
connected component is 14, the clustering coefficient is large, 0.6305, as well as the average
degree, is 21.10. The average shortest path remains small, characteristic of social networks,
at 4.19. The degree distribution, which resembles a power-law distribution, is plotted in
Figure 5.1(e). This dataset was extracted from the work of Leskovec [38] and is publicly
available in SNAP datasets [39].

• Enron-Email: is a communication network covering all email communication within a
dataset of approximately half a million emails [37]. In this graph, the nodes represent the
email addresses and all edges between u and v represent that u and v established email
communication at least once. This way the network consists of 36692 nodes connected via
183831 undirected edges, with an average out-degree of 10.02. The nodes out degree follows
a strong power law distribution, characterized by its linear appearance in the log-log scale, as
represented in Figure 5.1(f), where we observe a stronger power law distribution than in the
previous datasets. The network is not connected, the biggest component has a high cluster-
ing coefficient of 0.4969, a diameter of 13 and an average shortest path of 4.02. This dataset
was extracted from the work of Leskovec [40] and is publicly available in SNAP datasets [39].
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(a) Facebook (b) Twitter

(c) NetPHY (d) NetHEPT

(e) NetASTRO (f) Enron-Email

Figure 5.1: Degree distribution of the datasets
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Data set Nodes Edges Diameter
Clustering

Coefficient

Average

degree

Average

shortest path

Number of

communities

Facebook 4039 176468 8 0.6055 43.69 3.69 16

Twitter 81306 1768149 7 0.5653 21.74 4.13 74

NetPHY 37149 231584 19 0.75 9.38 6.26 3959

NetHEPT 15235 62776 19 0.49 4.12 5.78 1821

Enron-Email 36692 367662 13 0.4969 10.02 4.02 1245

NetASTRO 18772 396160 14 0.6305 21.10 4.19 322

Table 5.1: Datasets characteristics

5.1.2 Experiment settings

In this section, the characteristics of the various experiments to be performed are introduced. As
stated in previous sections, the propagation model utilized for the diffusion of information is the
ICM. The parameters which are then left to define are SN and the edge probabilities.

For these experiments, the Weighted Cascade (WC) model will be used to generate propagation
probabilities. This is a model that resembles numerous of the characteristics of real-life diffusion
and is extensively used for evaluation in IBM research, some examples are [15, 46, 83]. The impact
of other models to define the probabilities will also be evaluated later in this section by evaluating
the performance of some data sets under the Uniform model, utilized by previous researchers
such as [25] .

The Uniform model sets all edge probabilities to a constant value, in this case, this is p = 0.05.
Larger values of p, cause all methods’ effectiveness to converge for very low values of k. Since
information diffuses very easily, the choice of SP does not have a significant impact on the diffusion
of the true information, and as result, all methods save the majority of the graph from infection.
This phenomenon is shown in Figure A.1, which can be found in Appendix A. To be able to
overcome such insensitivity to different methods, we then choose a smaller p-value.

The WC model, on the other hand, introduced by Kempe [35] sets the probability for every
edge (u, v) to be pu→v = 1/d inv where d inv is the in-degree of node v. It defines the probability
of a node v believing the information another node u is sharing, to be proportional to the number
of sources of information v has. The least informed a node is, the more vulnerable it will be to
believing the information from one of its neighbouring nodes. The independent cascade model
with uniform probabilities in the edges has the property that nodes with a high degree not only
have a chance to influence many other nodes but also to be influenced by them. This is then
corrected in the WC model. The WC model then introduces the famous ”celebrity effect” which is
observed in real life, He [30] showed that on Twitter this effect drives the diffusion of information
through retweets. This effect states that the trustworthiness of a node is directly related to its
popularity. Such an effect is often exploited through marketing campaigns. Under the WC the
ICM resembles the linear threshold model, another extensively used propagation model, in that
the expected number of neighbours who would succeed in activating a node v is 1.

For the evaluation, the negative seed SN is set to consist of 50 nodes. To evaluate the performance
under various seeds, and observe the performance of the methods disregarding the choice of ru-
mour spreaders, we evaluate the methods under 2 scenarios. The first one is in which the negative
seed is chosen at random. And another scenario in which the choice of SN is powerful, namely we
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choose the nodes with the highest degree.

Additionally, since in all experiments the communities detected by the Louvain algorithm are
used as ground truth communities, the impact of using other community detection methods is
evaluated. For this, the performance change in fairness and percentage of saved nodes of all meth-
ods is measured when using various algorithms.

All experiments were executed under the same conditions, as they were performed in a server with
the following characteristics:

• CPU: 1x Intel Xeon E5-2698v4 @ 2.2GHz (40 hyperthreads)

• RAM: 256GB

• GPU: 4x Nvidia Tesla V100 (16GB RAM, 2560 tensor cores, 10480 CUDA cores, compute
capability 7.0)

5.1.3 Experiments Evaluation

5.1.3.1 Evaluation under the WC model with random negative seed

In this section, we will be introducing the results of the experiments under the WC model with a
random negative seed. The results of these experiments are visualized in Figure 5.2, Figure 5.3,
Figure 5.4, Figure 5.5, Figure 5.6 ,and Figure 5.7.

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.2: Experimental analysis in the Facebook dataset under the WC model with Random
SN
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(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.3: Experimental analysis in the Twitter dataset under the WC model with Random SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.4: Experimental analysis in the NetPHY dataset under the WC model with Random SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.5: Experimental analysis in the NetHEPT dataset under the WC model with Random
SN
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(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.6: Experimental analysis in the NetASTRO dataset under the WC model with Random
SN

(a) Evaluation on Number of saved nodes, with vary-
ing k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.7: Experimental analysis in the Enron-Email dataset under the WC model with Random
SN

Under the WC with random set SN we observe the unfairness of the existing methods. Under
these experiments, the only methods that achieve a maximin value above 0, overall datasets,
are those with a fairness-aware objective. These are the methods being proposed in this thesis,
Maximin-CMIA-O, Stoica and FWRRS. This means that the existing methods tend to neg-
lect communities when solving the IBM problem, showing the need for fairness-aware methods.
It is only under the Facebook dataset that other benchmarks, CMIA-O and BIOG, achieve a
maximin value higher than 0. The low number of communities in this dataset 16, followed by
the high average degree 43.69, makes spreading the true information within all communities more
accessible for any method. Additionally, this network, in particular, is connected, thus the help
provided to a community could potentially also reach other communities, whereas in disconnected
graphs resources need to be split between infected components. As a result all communities that
get infected, are reached by these methods, without the need for a fairness-aware objective. But
such a scenario is not repeated in any of the other datasets, where the number of communities is
significantly larger. In these other data sets, the number of small communities is larger and so
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is the number of which get infected. As a result, the existing methods are more likely to neglect
such minority communities for the larger good, a larger percentage of saved nodes over the whole
network. In these experiments, it can be observed that FWRRS offers the highest fairness value
in overall datasets.

Regarding the total percentage of saved nodes, we observe the inconsistency in performance
between the methods. In Figures 5.2(a), 5.3(b), 5.6(a) and 5.7(a) we observe the power of se-
lecting SP based on the degree of the nodes. For these datasets, Facebook, Twitter, NetASTRO
and Enron, the best performing method, after the proposed FWRRS, is generally Stoica. The
high value of the degree of the most connected nodes results in high coverage of the positive
information. Consequently, most paths of diffusion of negative information are blocked. The
maximum degree in Facebook, Twitter, NetASTRO and Enron is significantly above average,
with 1045, 1205, 504 and 1383 respectively. Additionally, in these data sets, the average degree
is quite large, as a result, information spreads through numerous paths. Hence, reducing the net-
work to maximum probability paths, like the CMIA-O method, causes sub-optimal effectiveness,
as in reality, information diffuses throughout many other paths. However, in the networks, Net-
Hept and Net-Phy the best performing methods are CMIA-O and Maximin-CMIA-O. These
methods benefit from the low average degree since in this case the number of paths through with
information diffuses is reduced significantly. Blocking the maximum probability paths results in
the blocking of most propagation paths. Under these networks, degree and Stoica, do not perform
as well as in other graphs, due to this characteristic. The low value of the highest degree as well
as the low average degree of these two collaboration networks, causes the selected SP to be less
powerful than in other networks. Reducing the number of paths of negative information diffusion
that they successfully block.

Despite the clear impact of the network characteristics in the considered benchmarks’ effectiveness,
the proposed method FWRRS seems to perform best overall networks. The introduction of a
fairness objective does not negatively impact the number of saved nodes. In fact for a sufficiently
large budget k, it works as a catalyst for effectiveness. Enforcing the true information to reach all
communities, which otherwise would have been affected by the spread of the fake news, guarantees
that the intervention reaches communities that otherwise would have been neglected. This way
we overcome the overlapping influence spheres that the nodes being selected by the other methods
have, and reach minority communities that are otherwise hard to reach from these central nodes.

For low budget values, the performance is similar or superior to the next best performing method.
It is only in Figure 5.6(a) and Figure 5.7(a) that we observe some cost of fairness, as degree
outperforms FWRRS for low values of k. However, the cost of such fairness is very low, the
percentage of saved nodes is only 2% lower in the worst case. This cost comes from trying to reach
all communities in need with a low number of truth spreaders. It can be observed that this initial
effort becomes valuable for larger k values, where the FWRRS achieves a better performance
than all other benchmarks.

In summary, we can observe the power and need for a fairness-aware method such as the proposed
FWRRS. Not only is this method the fairest overall of the evaluated methods, but it also
consistently achieves the highest percentage of saved nodes.

5.1.3.2 Evaluation under the WC model with highest degree negative seed

Next the impact of the seed, on the performance of the methods, was measured. In the previous
evaluations, the seed was chosen at random so that the results would be extendable to all scenarios.
However, by choosing the nodes at random the expected population of SN over the communities
is proportional to their size. To cover other alternative scenarios, we consider the case in which
SN is chosen to be the set of nodes with the highest degree.
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(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.8: Experimental analysis in the Facebook dataset under WC model with the highest degree SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.9: Experimental analysis in the Twitter dataset under WC model with the highest degree SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.10: Experimental analysis in the NetPHY dataset under WC model with the highest degree SN
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(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying
k values

Figure 5.11: Experimental analysis in the NetHEPT dataset under WC model with the highest degree
SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying
k values

Figure 5.12: Experimental analysis in the NetASTRO dataset under the WC model with the
highest degree SN

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying
k values

Figure 5.13: Experimental analysis in the Enron-Email dataset under the WC model with the
highest degree SN
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In this scenario, in most data sets, the majority of the negative information spreaders belong to
one large community, causing the majority of the infections within this group. Additionally, due
to the influential power of the high-degree nodes, the number of infections significantly increases as
opposed to the previous evaluation, where SN was chosen at random. This causes more minority
communities to be slightly affected, whereas in the previous scenario a smaller number of minority
communities would be more moderately affected. It is expected that methods will be less fair in
this case, since more minority communities which are likely to be neglected are being infected.
The effort to reach all these small communities might come as a cost since a significant part of
infections do not take place within these communities. The findings of the evaluations are presen-
ted in Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13.

Under this scenario, indeed it can be observed that methods become less fair. More often, the
proposed FWRRS is the only method to achieve a maximin value above zero. Due to the charac-
teristics of the seed, the portion of infections taking place in minority communities is significantly
reduced. The majority of the negative seeds belong to the biggest communities, causing the major-
ity of the infections in these groups. This leads methods to choose nodes with high saving capacity
within these communities, neglecting the smaller groups. Additionally heuristic methods, such as
degree, will choose less powerful nodes, as the highest degree nodes already belong to SN . As a
result, these nodes are less likely to reach smaller communities. The FWRRS specifically tries
to avoid this scenario, and thus, achieves consistently the highest maximin value in all datasets.
Despite this, in some datasets, as can be observed in Figures 5.9(b) and 5.13(b), even the FWRRS
struggles to achieve a high value of maximin. The current implementation tries to avoid the scen-
ario in which increasing maximin would cause a large cost. In addition to this, in this scenario
in which negative information diffuses strongly over the network due to the nature of SN , saving
nodes is quite expensive. Numerous paths need to be blocked to guarantee to save a node from
being reached by the fake news. Thus the reduction in the percentage of saved nodes as posed to
the random negative seed experiments. As a result, saving nodes from all the small communities
is resource expensive and might not increase significantly the percentage of total saved nodes, as
the majority of infections take place elsewhere.

Regarding the percentage of saved nodes, the better performance of the FWRRS is more visible
in this scenario. In all datasets evaluated, the proposed method saved a larger percentage of nodes
from infection in the network. Since negative information diffuses in the network throughout nu-
merous paths, the WRR structure allows us to identify and block most of them. The number of
WRR trees to be considered is larger in this scenario, as the probability of a tree containing a
negative seed node is higher, allowing us to cover a significant amount of infection paths. Blocking
maximum probability paths like CMIA-O and Maximin-CMIA-O, is then not very effective in
most cases, as information can diffuse through many other paths. Further, as previously men-
tioned heuristic methods like degree or Stoica, tend to choose less powerful nodes, as the ones
with the highest degree already believe the fake news.

In summary, we can observe from this experiments, that even in a scenario in which the negative
seed is very powerful, as it aims at maximizing the spread of the negative information, the FWRRS
performs best in terms of fairness and percentage of saved nodes. In this case, fairness is more
difficult to be achieved by other methods, highlighting the need for fairness-aware methods for
truth campaigns with a significant impact on society, as the unfairness of these other methods
grows with the number of infections. Additionally, the value of the FWRRS methods in terms
of saved nodes is demonstrated, as its performance, compared to other methods, improves as the
number of infections grows.
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5.1.3.3 Evaluation under alternative cascade models

To be able to observe the differences between the methods, a value of p not too large had to be
chosen. Further, as it was observed in the evaluation performed in Appendix A, with a large value
of p = 0.1 most methods do not scale well to large diffusion cascades. But such a value could not
be too small, this would result in the number of infections being low and all methods succeeding
in saving a large portion of the graph by only including some infected nodes in the positive seed.
The value of p = 0.05 was then established for this evaluation, this way a large number of nodes
do get infected, and all benchmarks could be included in the evaluations, as they would terminate
within the limited running time of 24 hours.

This evaluation was performed in the NetPHY dataset, which is a network with a relatively large
size. The evaluation under this network aims at offering an understanding of the impact the
probabilities have on the blocking power of the methods, as well as their fairness. The conclusions
drawn in this section shall be extendable to all other datasets. Further, the negative seed was
then chosen at random for this evaluation.

(a) Evaluation on Number of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.14: Experimental analysis in the NetPHY dataset under the Uniform model

Under this alternative propagation model, it can be observed the difference in performance between
two groups of methods. BIOG, Maximin-CMIA-O and Stoica seem to perform worse than all
remaining methods. We observe that those methods that succeed in spreading the truth the most
in the network, perform all very similarly good. CMIA-O, spreads the truth through maximum
probability paths, degree spreads it to a significant number of neighbours and TiB-Solver spreads
it to those nodes that could spread the negative information the most, thus, those that can spread
the positive one the most too. Last our method FWRRS spreads the truth over those paths that
the negative influence might reach, thus also succeeding in spreading the truth powerfully, as the
negative influence is expected to reach a vast majority of the graph in this model.

The superior maximin value achieved with our method can also be observed in this scenario. Even
though we observe how other methods are fairer under this scenario, due to the ease of access to
minority communities, the FWRRS method still achieves the best overall fairness value.

The proportion of the graph that gets infected under this experiment is quite large since it consists
of practically the complete population. Thus, increasing the number of nodes directly connected
to SN will not change the considered scenario. Thus, the conclusions drawn in this section shall
also be applicable when the negative seed consists of those nodes with the highest degree.
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5.1.3.4 Evaluation under different community detection methods

The detection of network communities is not our focus in this work, so far these were computed
using the Louvain algorithm. Such an algorithm consists on the state of the art method for
community detection, as proven in the evaluation performed by Mothe [45]. This method offers
high effectiveness, as it detects the communities with the highest modularity, which measures the
density of connections within a community. Groups with a high modularity value have many
interconnections within a community and a few pointing outwards to other communities. This
approach also offers high efficiency, as it has a running time of O(n log(n)). The scalability and
effectiveness of this algorithm make it the go-to choice in community detection for social networks.
In this section, the impact of the detection of the communities on the fairness and effectiveness of
the methods is evaluated.

The selection of methods aims at covering all different types of approaches utilized for community
detection. These are the following:

• Louvain: This algorithm was introduced by Blondel [12]. It initially finds small-sized
communities by optimizing modularity locally and then aggregates such nodes into the com-
munities iteratively until the modularity is maximized. In each iteration, for each node
v ∈ V , it considers its neighbouring nodes and evaluates the gain in the modularity of re-
moving it from the current community they belong to and placing it in the community of
v.

• Greedy modularity: this approach was presented by Clauset [19]. The method begins by
setting each node to belong to a different community. It then iteratively chooses the pair of
nodes that when set to belong to the same community, increases modularity the most and
joins them. This is repeated until modularity can no further increase.

• Walktrap: this other community discovery method, introduced by Pons [57], is based on
random walks, in which distance between nodes is measured through random walks in the
network. This algorithm has an O(mn2) running time, where m is the number of edges
and n is the number of nodes in the graph. The fundamental premise of this approach is
that random walks tend to get trapped in densely connected regions, corresponding in the
network to communities. Communities are then aggregated in a bottom-up manner using
these random walks.

• Infomap: was first introduces by Rosvall and Bergstom [61]. The procedure followed by
this method is very similar to that of Louvain, with the difference that the objective function
is the so-called map equation instead of modularity. This map equation goal is to use the
community partitions of the graph as a Huffman code [33] that compresses the information
about random walks in the graph. The map equation code structure is designed to compress
the descriptive length of the random walk when this one takes place for extended periods
within a certain region of the network.

• Label propagation: unlike all other community detection mechanisms, label propagation
does not optimize any given objective function and requires no prior information about
the network structure. Such a method was presented by Raghavan [58]. Initially, each
node carries a label that represents the community to which they belong. Throughout the
iteration within the network, each node will update its label according to the labels of its
neighbour nodes. Choosing for the next iteration the label with the highest frequency within
its neighbours. The process repeats until no further label changes are made.
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To measure the impact of the use of the different community detection methods, the methods’
performance in terms of percentage of saved nodes as well as maximin value with the detected
partitioning of the network will be evaluated. The network chosen for this evaluation is NetPHY.
It is a network with a relatively large size, as well as having a large number of communities,
as detected by Louvain in the previous sections. The large number of communities present in
this network gives room for the community detection methods to differ. Achieving then, the
desired environment to measure their impact. The difference in the number of communities and
modularity are summarized in Table 5.2. For this evaluation, the negative seed consists of 50
nodes at random and the diffusion probabilities are set according to the WC model. The budget
value in these experiments is fixed to the value of 100. To be able to observe the impact on the
fairness of the methods, a large budget value was chosen. In fact, in Figure 5.14(b), fairness in
other methods other than the proposed FWRRS is only observed for such large values of k.

Community detection method Number of communities Modularity value

Louvain 3957 0.9253

Greedy modularity 4085 0.8717

Label propagation 6159 0.8584

Infomap 5430 0.8490

Walktrap 6491 0.8438

Table 5.2: Performance of the different community detection algorithms

The superiority of the Louvain method is made clear in Table 5.2, as it achieves the largest value
of modularity by detecting the least number of communities within the network. The remaining
methods, perform well as the modularity value remains high, however, this value differs between
the methods. Our findings on the impact of less accurate communities are presented in Figure
5.15 and Figure 5.16

Figure 5.15: Percentage of saved nodes of the methods under different community detection al-
gorithms in NetPHY under the WC model, with k=100
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Figure 5.16: Maximin value of the methods under different community detection algorithms in
NetPHY under the WC model, with k=100

In Figure 5.15 it can be observed how the percentage of nodes saved from infection of each method
is barely altered by the change in the community detection method. Slight variations are observed,
for example, the percentage of saved nodes of the Maximin CMIA-O method drops 1%, compared
to the Louvain algorithm, under the greedy modularity algorithm and increases by 1% in the
label propagation case. These variations do not necessarily come from the change in community
detection method, they could be inaccuracies in the measurements, caused by the limit of 1000
simulations being used, especially given the small magnitude of this variation. Such variations
are also observed in methods that do not take as input the communities, and thus, shall not be
affected by them. For example, TIB-Solver, which has an increase of close to 1% under the
Infomap algorithm compared to all other algorithms.

In Figure 5.16 a similar scenario is observed, the methods seem to achieve similar values of max-
imin across the different community detection methods. The variations, in this case, are a bit
larger, with a maximum difference across algorithms of 13%. Some of this variation, as stated
earlier can be associated with the inaccuracies caused by the simulations. This variation is then
more prominent when looking at smaller portions of the network, namely a community. Addi-
tionally, the drop in modularity introduced by other algorithms might cause information within
a community to diffuse less powerfully, possibly causing the drop from 42% maximin value in
Louvain or greedy modularity for the FWRRS method to 29% in the Walktrap one.

Overall we can conclude that the community detection method used does not seem to have a clear
impact on the performance of the methods. In most cases, the values of the methods barely differ
across algorithms and the FWRRS remains the best performing in terms of saved nodes and
fairness under all scenarios, thus it can be applied in combination with any desired algorithm.

5.2 Synthetic datasets experiments

5.2.1 Synthetic network model

The methods will all be evaluated under various synthetic networks with different characteristics.
The proposed model to generate such networks will be extending the homophily preferential at-
tachment model. The well-known model of preferential attachment was proposed by Barabási et.
al [4], who also proposed a weighted version, the fitness model, with Bianconi [11]. Next Karimi
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[34] extended the fitness model to include homophily as a weighting parameter in the model. Ho-
mophily measures the tendency of the user to connect to others similar to them, creating thus
communities. The proposed model in this section further extends this model to ensure the char-
acteristics of real social networks are met.

Social networks are known for having the following three properties as presented by Sallaberry et.
al [62]:

• Small world property. As defined by Watts et.al [74] a small world network is one with
high clustering coefficient and an average distance between nodes that scales proportionally
to the logarithm of the number of nodes. The most well-known manifestation of the concept
of short average path length is the ”six degrees of separation” presented by social psychologist
Stanley Milgram, who concluded that most pairs of people in the United States had a path
of acquaintances with a typical length of about six between them. Thus, in the constructed
network G(V, E) the average shortest path between any pair of nodes A and B should be
small. The average shortest path of G is denoted as Lg and is computed using Equation 5.1.

Lg =
∑

A,B∈V

d(A,B)

|V | ∗ (|V | − 1)
(5.1)

where d(A,B) is the shortest path from A to B.

The other concept is the average clustering coefficient, Cg, which is based on the idea that
a friend of your friend is likely to also be your friend. Mathematically, it is defined as in
Equation 5.2

Cg =
1

|V |
∑
v∈V

cv and cv =
2 ∗ T (v)

deg(v) ∗ (deg(v)− 1
(5.2)

where T(v) is the number of pairs of neighbours of v that are also neighbours.

A network G with n nodes and m edges is a small-world network if it has a similar path
length but a greater clustering coefficient than a random graph with the same n and m.
Formally, let Lg define the average shortest path length of G, and Lrand that of the random
graph. Further, Let Cg and Crand denote the clustering coefficient of the two graphs. Then,
for G to be a small-world network, Lg ≥ Lrand and Cg ≫ Crand must hold.

• Scale free property is met by that network with a very high degree distribution, mean-
ing a small number of nodes have a large degree and many nodes are connected to a small
number of nodes. The degree distribution in most networks is believed to follow a Poisson
distribution, however real-world networks have severely skewed degree distributions. Thus,
scale-free networks, are those with a degree distribution that follows a power-law distribu-
tion, or at least asymptotically.

• Community structure property is defined as the natural division of the nodes into
densely connected subgroups such that inter-groups connections (between different groups)
are sparse, while intra-groups connections (within the same subgroup) are dense. In this
work we define the communities to be a disjoint partitioning of the network. This means
that every node in V belongs to a community and only one community, an example of a
disjoint community structure is depicted in Figure 5.17.
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Figure 5.17: Example of disjoint community structure

To evaluate the strength of the community structure in a network the assortativity coefficient
is commonly utilized. It measures the similarity of connections in the graph concerning the
community they belong to, also known as homophily. Mathematically, this is defined as in
Equation 5.3, where M is the mixing matrix. The mixing matrix is a two-dimensional cross-
classification of edges based on the community of the sender and the receiver, meaning that
Mij denotes the proportion of edges from a node in community i to a node in community j.

H =

∑
i

Mii −
∑
i

aibi

1−
∑
i

aibi
, ai =

∑
j

Mij and bi =
∑
j

Mji (5.3)

However, the assortativity coefficient does not consider the the overall structure of the graph,
as it reduces the entire graph into a matrix, losing much of the intricate complexity of the
network [50]. Thus, we will be using the average Weighted External-Internal Index (WEI
index) as defined in the book ”Introduction to mathematical sociology” [20]. This notion is
defined in Equation 5.4

avg WEI =
1

|V |
∑
vinV

en
wn
− in

en
wn

+ in
(5.4)

Let en represent the number of inter-edges of node n and in the number of intra-edges. Also,
wn is set to be equal to the ratio of the number of nodes outside the community n belongs
to and the number of nodes within this community. The inclusion of such weight allows us
to balance the number of external (inter) edges with the proportion of external nodes. For
example, let G consist of 200 nodes, where 180 belong to community one and the remaining
20 to community two. Then consider two nodes n1 and n2, which belong to communities
one and two respectively and are both connected to a node in each of the communities. If
the weight of the nodes was to be 1 in all cases, the WEI value of both nodes would be
0. However, common sense suggests that n2 exhibits a greater amount of homophily since
there are few other nodes in community two that it could connect to. This is corrected with
the inclusion of wn, in this example the value of wn1

= 20
180 = 0.11 and wn2

= 180
20 = 9.

The appropriate values of WEI are then 0.8 and −0.8 for the nodes n1 and n2 respectively,
observing that node n2 has strong homophily, as the WEI value is close to −1 while n1 has
a strong heterophily value, as the WEI value is close to 1.

Under this definition a strong homophilic network would have an average WEI value of −1
while networks that do not demonstrate homophily tend to have a value of 0.
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The Homophily BA model [34], previously introduced, meets the scale-free and community struc-
ture properties, however, the clustering coefficients are extremely low. To be able to guarantee
higher values if desired, the proposed model includes a clustering parameter pt, to control the level
at which friends of a node will be friends. Another contribution is that it includes a parameter pPA,
that controls the probability with which a node chooses to connect based on the preferential at-
tachment or imposingly at random. Accordingly, the HIgh Clustering Homophily Barabási-Albert
(HICH-BA) model, is presented in Algorithm 9, which is found in Appendix B.

5.2.2 Experiments and evaluation

Using Algorithm 9 we will perform a sensitivity analysis of the methods. This analysis aims to
determine how the approaches’ performance and fairness are affected based on changes in the
network characteristics. For this, we will evaluate the methods under varying homophily values
as well as varying pPA values, which resemble the proportion of preferential attachment edges.
The average degree will also be altered, as this parameter showed importance in the previous
chapter evaluation. This parameter is controlled by increasing the value of m. The characteristics
of the five generated synthetic networks are summarized in Table 5.3. Additionally, the degree
distributions of these networks are visualized in Figure 5.18, where the scale-free property of the
networks can be observed. For all generated synthetic datasets the population of the communities
r is set to be [0.54, 0.3, 0.15, 0.005, 0.005]. This consists of 5 communities of varying sizes, where
we can find very small minority communities and 3 larger groups of different sizes.

Synthetic

dataset
n m h pt pPA

Average

degree
WEI

Assortativity

coefficient

Clustering

coefficient

SG1 10000 200000 0.9 0.9 0.9 20.398 -0.909 0.714 0.626

SG2 10000 40000 0.9 0.9 0.9 5.3394 -0.982 0.955 0.351

SG3 10000 100000 0.9 0.9 0.1 9.797 -0.886 0.760 0.379

SG4 10000 100000 0.9 0.2 0.9 9.659 -0.875 0.788 0.177

SG5 10000 100000 0.2 0.9 0.9 8.968 -0.579 0.356 0.388

Table 5.3: Synthetic datasets characteristics

The first synthetic network SG1, consists of a network with a high clustering coefficient of 0.626.
The average degree is also large, namely 20.398 and the WE index has a value of −0.909, showing
strong homophily. This network is supposed to represent all the favourable conditions for the
degree or Stoica method. As it was observed in the real datasets experiments, these methods
benefit from a high average degree, since due to the power-law distribution the degree follows,
this translates to the nodes they choose having a very large number of neighbours. Further, since
most connections are established according to preferential attachment, high-degree nodes will be
very powerful, as other nodes will tend to connect to them. Last a high clustering coefficient,
translated to information propagating strongly in the local area of selected nodes since this area
will be very interconnected. Since nodes can spread information to many other nodes, CMIA-
O underperforms, as information spreads through many other paths than maximum probability
paths. The results of this evaluation in this dataset are visualized in Figure 5.19.
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(a) SG1 (b) SG2

(c) SG3 (d) SG4

(e) SG5

Figure 5.18: Degree distribution of the synthetic datasets
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Indeed in Figure 5.19(a) we observe that after the FWRRS method, the best-performing methods
are degree and Stoica, whereas CMIA-O is less powerful. Due to the large average degree, the
positive information propagates throughout many paths in the network, thus the benefits of the
intervention tend to reach all communities, except CMIA-O and TIB-Solver which underper-
form significantly. Since they do not save many nodes, this is also seen for the maximin value,
which is quite low. However, the proposed method FWRRS still achieves the largest value, being
the fairest and best-performing method as observed in Figure 5.19(b). Further, we can observe
that despite CMIA-O performing so poorly in this case, its fair alternative performs quite good.
Spreading the information fairly over the communities seems to cover a larger portion of the
propagation paths, and leads to better blocking the negative information, showing the value of
fairness even for poorly performing methods.

(a) Evaluation on percentage of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.19: Experimental analysis in the SG1 dataset under WC model with random SN

The SG2 network, on the other hand, aims to favour the conditions where CMIA-O andMaximin-
CMIA-O perform best. This is the case when information does not propagate through many
paths. This can be achieved by setting the average degree to a low value. The remaining para-
meters of the model are left unchanged, to explore the exact impact of the average degree alone.
However, this reduction in average degree has some indirect impact on the clustering coefficient
and homophily. As a result of the reduction in the number of edges being added to the network,
it is more difficult to keep the clustering coefficient high. Every time a new node arrives in the
network numerous new open triangles are created, however, a lower portion of them is closed as
fewer edges for such purpose are generated. The homophily, on the other hand, increases. We
drastically reduce the number of inter-community edges that are added from the majority com-
munity, since the majority of the added edges will be for the such community, thus homophily is
positively affected by this.

In Figure 5.20(a) we observe the change in performance of the methods. In this case, CMIA-O
performs significantly better as opposed to the previous synthetic network. The negative inform-
ation propagated throughout fewer paths, and thus, blocking the maximum probability paths is
very effective. Further, degree and Stoica, perform well for low budgets, but for larger budgets,
they become outperformed by other methods. In this network, those nodes with the highest degree
do not reach as many nodes as in the previous network, as their degree is lower.
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(a) Evaluation on percentage of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.20: Experimental analysis in the SG2 dataset under WC model with random SN

The change in performance of the methods is also seen in Figure 5.20(b). We can observe how the
CMIA-O achieves a larger maximin value than in the previous case, as well as how the degree
and Stoica values are lower. The proposed method FWRRS shows to be unaltered by this change
in the network characteristics. It consistently achieves the highest number of saved nodes as well
as maximin value, adapting its selection of seeds to this change in average degree.

Next, we evaluate the impact the randomness of the graph has on the way methods perform.
For this, we generate SG3. In this network, 90% of the edges were established at random, while
still maintaining the homophilic preference. This means that nodes would still connect with a
probability of 0.9 to nodes in its community and otherwise to a node outside this group. In
Figure 5.18(c), we observe that the degree distribution is more convex than when most of these
connections were established using the preferential attachment. Those nodes with high-degree are
less often chosen to be connected to, and thus other nodes become more powerful. As a result,
the distribution slope is less steep. This leads us to believe that in real-datasets randomness is
present, as this curve feature of the distribution was observed in Figure 5.1.

(a) Evaluation on percentage of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.21: Experimental analysis in the SG3 dataset under WC model with random SN

In Figure 5.21(a), we observe that most methods tend to perform similarly, especially for larger
values of k. The randomness of the graph allows for any node to possibly reach another user with
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their information. However, FWRRS still seems to perform best followed by degree and Stoica,
and eventually Maximin-CMIA-O. Because of how the network is constructed, nodes that join
the graph in an early iteration will be chosen more times by other nodes for connection, since only
those nodes currently present in the graph can connect. As a result, those nodes will tend to have
a higher degree, and additionally will be connected to random portions of the graph, leading to
their information reaching a large portion of the network.

In Figure 5.21(b) we can observe that all methods tend to be fairer. The randomness of the graph
encourages information to spread randomly and reach all communities eventually. Regardless,
those methods that explicitly consider the fairness objective, FWRRS and Maximin-CMIA-O,
achieve the highest fairness values.

The fourth synthetic network SG4 is a graph in which the value of pt is significantly smaller.
With this network, we want to evaluate the impact the clustering coefficient has on the methods’
performance. In all previous graphs, we maintained a relatively high clustering coefficient, which
is characteristic of social networks. However, in this case, the clustering coefficient is only 0.177.
Because now a significantly larger portion of edges are established according to pure preferential
attachment, the degree distribution seems to be steeper, as visualized in Figure 5.18(d). Now,
fewer nodes with a medium degree can be found, as nodes tend to be connected to the same subset
of highly connected nodes.

(a) Evaluation on percentage of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.22: Experimental analysis in the SG4 dataset under WC model with random SN

In Figure 5.22(a), we observe the power of degree and Stoica, which intuitively comes from the
strength of preferential attachment in this network. Since nodes tend to connect to highly con-
nected nodes, which are those being selected by these two methods, the truth is highly spread.
As a result, they reach many nodes and avoid many infections. Despite this power of high degree
nodes, FWRRS still performs better than degree and Stoica, achieving a portion of saved nodes
close to 10% higher.

Something that can be noticed in Figure 5.22(b) is the difference in fairness between FWRRS
and all remaining methods. The low clustering coefficient of the graph causes information within
communities to spread less powerfully. This means, that the little positive information that was
reaching those least helped communities now reaches lesser nodes in this group. To achieve a
higher portion of saved nodes in these communities, more than just reaching the community is
required. Since FWRRS considers the maximin value explicitly, we then guarantee that the least
help received by all communities is maximized, achieving a significantly larger value of maximin.
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Last we generated SG5, consisting of a network with low homophily. In this graph, the WEI
value is only −0.579 and more dramatically the assortativity coefficient has a low value of 0.356.

(a) Evaluation on percentage of saved nodes, with
varying k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure 5.23: Experimental analysis in the SG5 dataset under WC model with random SN

In Figure 5.23, we perceive a very similar performance to the one observed in Figure 5.22. Be-
cause now nodes prefer to connect to others outside their community, the clustering coefficient
within the communities is quite low. This leads to methods, being less fair than in previous syn-
thetic networks. Further, since the number of inter-edges increases, the number of paths between
communities also increases. CMIA-O as a result fails to contain the spread of fake news, which
negatively affects both its fairness and effectiveness. Explicit consideration of the fairness ob-
jective is then required, as FWRRS and Maximin-CMIA-O achieve the highest fairness and
effectiveness out al all methods.

In summary, in this evaluation we were able to observe the impact the network characteristic have
on the fairness and performance of the methods. High average degree and reach of the highest
degree nodes are crucial aspects for methods such as degree and Stoica, to achieve good results.
on the other hand for the CMIA-O method, the opposite is required, as it benefits from fake news
spreading through a small number of paths. We can also conclude that the TIB-Solver method,
does not perform as well as claimed, in most cases. It is only when information spreads strongly
through the network, like under the uniform model described in Figure 5.14. Overall we show the
power of the proposed method FWRRS, as it consistently achieves a larger percentage of saved
nodes. Further, this method achieves such a successful outcome for the intervention, while being
the fairest.
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Chapter 6

Conclusions

As described in Section 1.2, this research aimed to develop an algorithm for solving the IBM
problem in a fairness-aware manner. For defining fairness in this area, a novel problem namely
the FIBM problem, which relies on maximin to measure the fairness of the methods. The main
challenges of this goal were to define fairness in the area of information blocking as well as overcome
the expected cost that fairness has on the number of saved nodes. In this chapter, we summarize
the findings of this work, reflect on its limitations and explore possible future research.

6.1 Main contributions

In this thesis a novel problem in the area of information diffusion was introduced, the FIBM prob-
lem, which is defined in Section 1.2. This is a fairness-aware variant of the well-known problem of
influence blocking maximization of a rumour with the use of debunkers. These debunkers will be
spreading the true information to counteract the spread of fake news. The novelty of the type of
research performed in this thesis, as to the best of our knowledge, no work that addresses fairness
in IBM has been proposed, shall motivate the research in this area, showing its benefits beyond
moral aspects.

Relating to the research questions for this work, we evaluated the fairness of numerous exist-
ing methods, covering different types of proposed approaches, like heuristic or simulations based.
Given that, to the best of our knowledge, no previous work in fairness-aware IBM has been per-
formed, we also proposed some fairness benchmarks for the performed evaluation. For this, two
extensions to existing methods were proposed in Sections 4.2 and 4.3. On the one hand, the
Stoica method, a fairness-aware IM method, was extended to the IBM problem. On the other
hand, the Maximin-CMIA-O method, an IBM method, was adapted to have as objective max-
imizing fairness. The resulting pool of benchmarks then established a complete evaluation setting
for analysing the fairness and effectiveness of the proposed FWRRS method.

The experimental analysis under the real-life social networks, presented in Section 5.1, showed the
need for fairness-aware methods for the IBM problem since existing methods carry the inequalities
in the network structure into the outcome. This leads to entire communities being left outside
of the benefits of the truth campaign intervention. It was also observed that the performance of
these methods was not consistent and strongly depended on the characteristics of the network.
Methods such as degree or Stoica would benefit from a high value of average and upper bound
of degree as well as a high clustering coefficient, for example, the experiment performed in Figure
5.3. As a result the selected nodes, those with the highest degree, would be very powerful, as they
would reach a significant portion of the graph. On graphs where the clustering coefficient and
average degree were lower, we observe that methods such as CMIA−O or BIOG perform better,
like in Figure 5.4, since the negative information propagates through fewer paths. Blocking max-
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imum probability paths shows to be a powerful strategy under these characteristics. However, the
proposed method FWRRS remains unaltered to the characteristics of the graph and is observed
to perform best overall, in both fairness and percentage of saved nodes. To further evaluate the
impact of the network structure on the performance of the methods, we also generated synthetic
networks with controlled characteristics.

The need for a model to generate synthetic networks that better resemble the characteristics of
real-life social networks were also presented. A new modelHICH-BA was introduced in Appendix
B, which achieves a higher clustering coefficient, characteristic of social networks, than most ex-
isting models. Additionally, it allows us to define the strength of the community structure present
in the graph. The methods were also evaluated under these controlled networks, showing under
which circumstances each model performs best. This evaluation also confirmed the instability of
the performance of the methods, and showed the value of the proposed method FWRRS, as it
consistently performs best, disregarding the network characteristics.

In this evaluation the proposed method FWRRS, not only performs as the state of the art concern-
ing fairness, but it also in all cases performs best in terms of saved nodes. Meaning it outperforms
the current state-of-the-art methods for IBM under the ICM propagation model. This shows, that
full filling this need for fairness does not come at a cost, in fact in most cases it is beneficial for the
effectiveness of our mitigation campaign. Thus, in this thesis, we solve the main research question
of this work, how to achieve the desired trade-off between fairness and effectiveness. Enforcing
fairness like in the FWRRS method was shown to be a catalyst for effectiveness, by exploiting
the community structure of the social networks.

6.2 Limitations and future work

This work aimed at showing the possibilities of including fairness in the process of debunkers
selection for the IBM problem. The novel research performed in this work counts with some
limitations and shall motivate future research. Some ideas on further research directions are
presented in this section.

Adaptation to alternative propagation models

To focus on the impact such fairness would have on the performance of the methods, we chose to
simulate information diffusion utilizing one of the most well-known propagation models, the ICM.
Deciding on this model, allowed us to include most research in the areas of IBM, as these proposed
methods assume information diffused according to a cascade. However, many other extensions of
the ICM model [65], as well as completely different propagation models [55, 78, 6] , can be utilized.

While the nature of the independent cascade model favours diversity in maximizing the number
of saved nodes, another model may not do the same. An interesting future step would be to study
how a method such as FWRRS would perform under models such as the linear threshold model
or the SIR model. Adaptations to the way the WRR trees are constructed would need to be made,
to resemble how information now diffuses under these propagation models.

Scalability of the method

The focus of this study was on the fairness and effectiveness of the method, however, its running
time was also considered. The FWRRS is shown to scale better than most methods currently in
use, as well as being significantly faster than the greedy algorithm that approximates the optimal
seed. Especially in cases where a large portion of the network is to be infected, the method is
shown to perform faster opposed to most other benchmarks, which failed to complete within 24
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hours.

The method was evaluated in numerous datasets with varying sizes and characteristics. An in-
depth evaluation of the methods’ running times would be an interesting next step, to understanding
how the characteristics of the graph impact their efficiency. Another interesting next step would
be to evaluate its performance in a million-scale network, which is the common size of social
networks where the interventions would take place. We anticipate the good performance of the
method would only be enhanced in this case. Since as we observed in the experiments, as the
number of infections grows, the performance of the FWRRS method improves. As we already
showed, other methods do not scale well to an increased number of nodes considered, thus the value
of this proposed method is also good in terms of running time, as it consists of a more scalable
alternative for solving this problem. Additionally, the design of the proposed method allows for
parallelization, which has not been considered yet, in steps such as generating the WFRs, the
WRRs or in iterating over such tree structures, which will further improve the running time of
the method.

Balancing fairness and effectiveness differently

The current implementation of the FIBM aims at maximizing the blocking power of such a truth
campaign such that the outcome of this campaign is fair, measured in terms of maximin. Addi-
tionally, the proposed methods show to successfully achieve this. The fairness is maximized and
such a goal does not cause a reduction in blocking power, meaning that in most cases the number
of saved nodes is also being maximized. However alternative desired scenarios could be considered
in the evaluation of the other methods. The condition 1.2b, could be removed and the objective
could be altered to be a balancing function of fairness and effectiveness, as presented in Equation
6.1

maximize
SP

α ∗M(G,SN , SP ) + (1− α) ∗ B(SP , G, SN , ∅) (6.1)

With this new objective function, different levels of importance of both variables could be con-
sidered. For example, in the scenario in which fairness is our only goal, as we want to achieve
the highest value of maximin possible, despite its effect on the performance, then α would be set
to 1. It would be of interest to study how the value of α affects the number of saved nodes in
other methods, to further study how to achieve the trade-off between fairness and effectiveness
with them. Further parameters would have to be inputted into the algorithms.

Considering overlapping communities

In this work, communities were considered and detected to be non-overlapping. This means that
it was approached as a partitioning of the population, i.e. a node must belong to one and only
one community. However, it is intuitive that elements can participate simultaneously in several
groups. For example, a user can be deeply connected to their family, while also be related to their
sports team-mates and coworkers.

Many methods have been proposed to detect overlapping communities. Some proposed methods
that could be considered are CFinder proposed by Palla et al. [51], Demon by Cocia et al. [21],
COPRA proposed by Gregory [29] or Bigclam by Leskovec et al [41]. These detected communities
could then be directly used as input for the proposed methods. Studying the importance of these
overlapping vertices for the performance and fairness of the methods would be an interesting
direction for future research.
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Applicability to other problems

The method proposed in this research was specifically designed to solve the FIBM problem, how-
ever, it could be easily extended to solve many other problems in the area of information diffusion,
to also introduce fairness-aware methods in these areas of research. Some examples are presented
next.

• Temporal influence blocking maximization: consists of an extension of the classical IBM
problem, with the inclusion of a deadline, and was introduced in the work of Song [70]. The
number of saved nodes wants to be maximized within a limited time frame. The FWRRS
could then be extended to this problem by setting the maximum depth of a WRR tree
to be of such a deadline. No infections taking place after such time frame would then be
considered, and we would strive to save as many nodes as possible that get infected before
the predefined deadline.

• Targeted influence blocking maximization: this version of the IBM problem aims at maxim-
izing the number of saved nodes within a selected set of nodes. This problem was introduced
in the work of Zhu [83]. A simple change would be required for this other problem, namely
the set S of nodes to consider would be the inputted target group. This way the WRR trees
would resemble how these nodes could be infected and we would strive to save only these
from such infection.

• Competitive influence maximization: for this problem the goal is to maximize the spread
of certain information where multiple types of information are competing within a social
network. This problem is presented by Bharathi [10]. The proposed method currently only
considers those WRR trees in which a SN node is present. The method aims at guaranteeing
that the opponent information will intercept this negative one, saving the node from being
infected. However, for this problem, we could consider all WRR trees and select the node
that spreads the truth the most, instead of the one that saves the most nodes. The remaining
fairness conditions would remain the same, but maximin would be in terms of the portion
of nodes informed per community instead of the portion saved.

• Influence Blocking Maximization under uncertain sources: this problem was introduced in
the work of Chen [15]. It considers the scenario in which the negative seed SN is unknown,
instead, their distribution is known. Adapting the method for this problem would require
more extensive changes, however, the structure of WRR trees could be very beneficial for
covering and considering all these cases of infection. We would have to keep track of all
possible scenarios given by the negative seed distribution, to make our choices within the
WRRs, which would have to be considered more than once. Since now SN is unknown
multiple paths within a single WRR might have to be covered.

• Budgeted influence blocking maximization: this alternative version of the IBM was studied
by Erd [25], inspired by the work of Pham [52] who studied the budgeted version of the IM
problem. The main concept is that each node has a cost associated with them, and thus we
have to choose a positive seed SP that maximizes the number of saved nodes, such that the
commutative cost is within our budget. This problem could be solved by using the FWRRS
method, by evaluating the worthiness of selecting a node, balancing its cost with the number
of nodes it saves or the increase in maximin it causes. A formula for this evaluation would
have to be designed, and then the method could be utilized.

• Rumor containment with user or edge blocking: The method could also be adapted for the
alternative method to mitigate misinformation, namely blocking users, like in the work of
Wu [76] or edges, like in the work of Yan [77], from sharing it when encountered. Instead of
choosing the node present in most WRR, we would then choose the node or edge present in
most paths from a SN node to the root. These choices should then also consider maximin,
as that is our objective.
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Appendix A

Uniform model evaluation

In this Section, we include the evaluation of the methods under the uniform model with random
negative seed SN , where the edge probability values are set to be p = 0.1. This evaluation
was performed on the Facebook network. We notice that because numerous nodes need to be
considered in this scenario, as many nodes can reach each other with a relatively high probability,
most methods scaled very poorly. For this reason, we chose a network with relatively small size
4039 nodes, but even in this case methods like TIB, CMIA-O and Maximin-CMIA-O failed
to complete within 24 hours. In Figure A.1, we visualize then the efficiency and fairness of the
remaining 3 benchmarks and the FWRRS method.

(a) Evaluation on Number of saved nodes, with vary-
ing k values

(b) Evaluation on maxi-min value, with varying k val-
ues

Figure A.1: Experimental analysis in the Facebook dataset under the Uniform model (p=0.1) with
Random negative seed SN

Under this propagation model, all methods perform similarly. Since information spreads easily
through the network, due to the high edge probabilities, the truth can reach a vast majority of the
nodes that were otherwise going to be infected. As a result, we observe in Figure A.1(a), even for a
low budget such as k = 40 that all methods saved close to 100% of the population. Additionally, it
can be observed that already with a low budget of k = 20, most methods achieve their maximum
number of saved nodes, as their percentage curve flattens for larger budgets. However, such high
effectiveness does not apply to the group level or community level. In Figure A.1(b) the maximin
values are visualized, and it can be observed that only the proposed methods FWRRS and Stoica
achieve a value above 0.1. All benchmarks neglect at least one community, even when saving nodes
is as easy as under this propagation model. However, FWRRS achieves the highest maximin value
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overall. Additionally, this fairness does not come at a cost, the percentage of saved nodes is very
similar to the best-performing method.

64 Fairness-aware Influence Blocking Maximization for combating Fake News



Appendix B

Synthetic network generator
model

In this section we introduce the HIgh Clustering Homophily Barabási-Albert (HICH-BA) model
which generates the synthetic networks used in Section 5.2.1. The model is described in the fol-
lowing Algorithm 9.

Algorithm 9 HICH-BA (n, m, r, h, pt, pPA)

1: num com← length of r
2: G← empty undirected graph
3: for i:1 to num com do
4: add a new node v to G with commv = i

5: pN ← 2n/m
6: while number of nodes in G < n do
7: add node is set to True with probability pN else to False
8: if add node then
9: add new node source to G

10: source chooses its community c at random with probability in rc
11: options← nodes w in G with commw = commsource and w ̸= source
12: preferential attachment is set to True with probability pPA else to False
13: if preferential attachment then weightv ← degv for v ∈ options
14: else weightv ← 1 for v ∈ options

15: else
16: close triangle is set to True with probability pt else to False
17: if close triangle then
18: with probability pPA weightv ← degv + 1 else weightv ← 1 for v ∈ V
19: v ← random node in G with degv ≥ 2 according with probability weightv
20: source← random neighbour of v
21: intra-edge is set to True with probability h else to False
22: if intra-edge then
23: options← nodes w in Neigh inv \Neigh outsource with commw = commsource

24: else
25: options← nodes w in Neigh inv \Neigh outsource with commw ̸= commsource

26: preferential attachment is set to True with probability pPA else to False
27: if preferential attachment then weightv ← degv + 1 for v ∈ options
28: else weightv ← 1 for v ∈ options

29: else
30: with probability pPA weightv ← degv + 1 else weightv ← 1 for v ∈ V
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31: source← random node in G according with probability weightsource
32: intra-edge is set to True with probability h else to False
33: if intra− edge then
34: options← nodes w in G with commw = commsource and w ̸= source
35: else
36: options← nodes w in G with commw ̸= commsource

37: preferential attachment is set to True with probability pPA else to False
38: if preferential attachment then weightv ← degv for v ∈ options
39: else weightv ← 1 for v ∈ options

40: normalize list weight
41: choose a node target out of options with probability weighttarget
42: add edge to G between source and target

43: return G

The HICH-BA model takes as input 6 parameters. Parameters n and m denote respectively the
number of nodes and edges desired in the network. The parameter r is a list containing probab-
ilities, each entry ri corresponds to the probability of a new node belonging to the community i.
The homophily parameter h defines the probability a node will establish an internal connection
in its community over an external one. Next, the parameter pt is the probability with which a
new edge will be chosen to close an existing triangle, the higher the value of this parameter the
larger the resulting clustering coefficient will be. Last pPA denotes the probability with which a
new edge will be established using the preferential attachment, or at random otherwise.

As shown in Algorithm 9, the network is initialized to contain as many nodes as the number of
communities in r, defined as num com, since G initially contains a node belonging to each com-
munity. (Lines 1:4). Once the graph has been initialized, the probability of adding an edge or a
node is computed. This variable pN will control if in an iteration an edge is added or if a node
is added, making sure that the resulting graph has the expected number of nodes n and edges
m. Since every time a new undirected edge is added, this results in two new directed edges being
included, the probability is set to be 2n/m (Line 5).

In every iteration pN denotes if a new node or a new edge is to be added to the graph. In the
scenario that a new node source arrives into the network the following is executed. The new node
source first chooses the community to which it will belong, this is done according to the probabil-
ities in the list r (Line 11). It will then be connected to the remaining graph with one edge. The
nature of this edge is defined next. This node will connect to the community it chose to belong
to, and the set of candidate nodes is gathered in the list options. Next, it is defined if the edge
will be at random or according to the preferential attachment. This choice is made with the use
of pPA. With probability 1− pPA the edge is at random, so the weight of any node from options
is set to be 1. On the other hand, with probability, pPA, the edge is performed by preferential
attachment. In this case, a node will prefer to connect to a node with more connections, thus, the
weight of a node v in options is set to be degv + 1. The weights are later normalized in line 40 so
that they become probabilities.

In the scenario that an edge is to be added to the graph the following is executed. Two different
cases are differentiated. With probability pt the new edge will be used to close an existing triangle
and with probability 1 − pt the edge will just connect two randomly chosen nodes. Under the
first case, a random node v with a degree of at least 2 is chosen. This requirement is set, so
that two nodes can be selected next. Additionally, v is chosen either based on its degree, with
probability pPA or at random otherwise. A random node source out of the neighbours of v is
chosen, and the nature of the edge is next defined. First, if the edge will be inter-community or
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intra-community is defined with the use of h. The subset of neighbours source can then connect
to, is set to options (Lines 22:25). Second, we choose if the choice will be performed according to
preferential attachment with probability pPA or else at random, setting the weights accordingly.
In the second case, where a new edge will be added to the graph, we repeat the same procedure as
before, with the only difference that the source and target are chosen at random from all nodes
instead of those within a neighbourhood.

In each iteration a source, a set of options and their corresponding weights are defined. In line
40 these weights are then transformed into probabilities by normalizing them against their sum.
This means that

weightv =
weightv∑

w∈options

weightw

Using these probabilities and options, a weighted random choice is made, to choose target. Then
an undirected edge between source and target is established, and the procedure continues. The
process finalizes when the number of nodes in the graph is the one desired, n. Then the resulting
graph G is returned.
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