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Abstract

In this project, we discuss proportional symbol maps, which represent a
quantitative variable shown in the size of the symbol. For these maps, it is
of importance that individual symbols can be recognized distinctly and that
their relative sizes can be judged. An undesirable yet common occurrence
is the overlap between symbols, which we aim to completely prevent. One
approach is to minimize the displacement of the symbols so that there is
no overlap, leaving the corresponding represented feature unchanged. We
approach this problem by allowing the shape of the corresponding repre-
sented feature to be transformed. We first model the problem and then we
design and implement an algorithm, which we then evaluate through various
experiments.
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Chapter 1

Introduction

Proportional symbol maps are commonly used to visualize numerical data
associated with geographic locations by placing a symbol on a map, where
the size of the symbol represents the numerical value. These locations can
be interpreted as coordinate points that reasonably represent the location
of a geographic feature on the chosen map scale, such as cities on the scale
of the world map. Another interpretation is that each location represents
an aggregated district of regions, instead of any point therein, such as a
country. In this thesis, we will consider the latter and work with maps of a
set of countries.

The primary goal of proportional symbol maps is to enable users to
accurately judge the sizes of the symbols, both in comparison to the legend
to estimate the data values, and in comparison to each other to judge relative
size. To achieve this goal, we want to prevent the overlap of symbols, as
obscured symbols make it difficult to fully grasp its actual size. Additionally,
the ratio between symbol sizes should be large enough such that the symbol
size difference is evident to the map reader. Otherwise, most of the symbols
look nearly the same size and the map ends up being rather uninformative.

However, in practice most proportional symbol maps have overlap be-
tween symbols, typically in regions with a high density of features or around
the largest symbols. This leads to errors in size interpretations and large
numbers of symbols obscure the underlying geographic reference map, mak-
ing it difficult to recognize which feature each symbol represents. Preventing
such overlap can be done by optimizing symbol sizes or by omitting a min-
imal number of symbols, which is NP hard, even for circular symbols of
the same size [7]. However, these solutions are not particularly effective in
providing a complete and legible visualization with many symbols. Opti-
mizing symbol sizes may reduce its sizes such that the differences between
symbol sizes becomes negligible on the map, making the detection of spatial
patterns difficult and omitting symbols means that the output map is in-
complete. An alternative is to displace symbols with minimal displacement
such that there is no overlap, and additionally the geospatial characteristics
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should carry over to the new positions [32].
We aim to deal with this problem from another perspective by trans-

forming the boundary or shape of the underlying geographic feature that
corresponds to each symbol in such a way that the entire symbol is fully
contained within the feature. This will prevent symbol overlap because
geographic features do not overlap each other. Additionally, we wish the
transformation of the shape to be such that we obtain a large range of sym-
bol sizes, in other words, every geographic feature must be able to contain
a large circle. Finally, we want to maintain the topology of the features
in terms of adjacency, which comes at the cost of distortion of the feature
shapes. Thus, the transformation should aim to maintain the feature’s shape
for ease of recognition.

The secondary goal of proportional symbol maps include aesthetic appeal
and a symbol shape that is easy to interpret. Although these symbols can
be of any shape, it is common to use simple geometric shapes such as circles
or squares whose relative sizes are easier to judge, especially in dense areas
with overlapping symbols. Among the geometric symbols, the predominant
shape has been circles as they are relatively easier to distinguish when they
overlap [13]. Thus, we shall also use circle shapes for our symbols.

1.1 Contributions and organization

The primary contribution is to present an algorithm that outputs a pro-
portional symbol map that has no symbol overlap and aims to provide a
large range of symbol sizes for the visualization. We discuss our algorithm
design decisions as well as their experimental results in hope of inspiring
new algorithms to consider this novel approach.

In Section 1.2 we give an overview of related work regarding manag-
ing symbol overlap and shape distortion. Followed by the preliminaries in
Chapter 2. In Chapter 3 we define the problem model and in Chapter 4 we
present our algorithm along with a discussion behind the design decisions.
We discuss the setup of the experiments and evaluation of our algorithm in
Chapter 5 and finally in Chapter 6 we review future work to our approach.

1.2 Related work

Symbol overlap The general consensus is that allowing some overlap is
acceptable, as eliminating all overlap often requires a significant reduction
in symbol sizes to the point where its size is difficult to judge. The allowance
of symbol overlap is often paired with the use of opaque symbols due to user
preference, despite obscuring other symbols and the underlying map [18].
Nandanari [35] visualizes multi-dimensional data by merging overlapping
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symbols based on the similarity of represented attributes and the ratio of
their overlapping area.

Another approach that allows overlap is to arrange the order in which
the opaque symbols are visible. Here, we consider two types of drawings
of symbol arrangements. Physically realizable drawings can be seen as a
drawing constructed from symbols cut out from sheets of paper, we can
interleave them without breaking physical restrictions such as cutting the
symbols. Stacking drawings are obtained by layering symbols on top of each
other. The quality of the drawing depends on how well it enables the viewer
to judge the symbol sizes, which is proportional to the portion of visible
symbol boundaries. This leads to two possible optimization problems: max-
imizing the minimum visible boundary length of each symbol (the max-min
problem) or maximizing the total visible boundary length over all symbols
(the max-total problem). Cabello et al. [5] have shown both problems to be
NP-hard for physically realizable drawings and they present an algorithm
that solves the max-min problem for stacking drawings in O(n2 log n) time,
while the complexity for the max-total problem remained open. Kunigami
et al. [25] present integer linear programming (ILP) models to solve the
max-total problem for stacking drawings. They then evaluated their results
against the max-min heuristic of Cabello et al. [5], which still performs well
in terms of the max-total objective, and they show that their ILP solutions
are significantly superior to the best heuristic solutions of Cabello et al.

In this thesis, we are concerned only with completely preventing symbol
overlap in our proportional symbol map.

Symbol overlap removal In the context of graph layout, we can look at
algorithms designed to remove node overlaps, which bears strong similarity
to our case of removing symbol overlap. Here, we can consider our symbols
to be nodes with no edge connections.

Dwyer et al. [10] present a constrained optimization algorithm that
generates a linear number of constraints and then finds a solution to these
constraints. Marriot et al. [30] have also presented quadratic programming
algorithms that solve these constraints. Meulemans [32] removes overlap for
square symbols with minimal displacement while maintaining the orthogonal
order by rotating the squares 45 degrees using constraint programming as
well.

Another approach is the use of force-based algorithms including cluster
busting. The cluster busting procedure iteratively relocates nodes in a graph
according to some measurable criteria. Lyons et al. [28] present a Voronoi
cluster busting algorithm that iteratively forms a Voronoi diagram from the
current graph layout and then moves each node to the center of its Voronoi
cell until no overlaps remain. However, the nodes in the final drawing are
unlikely to bear resemblance to the original graph layout due to the homoge-
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neous distribution. Huang et al. [21] present a heuristic method that applies
forces to the overlapping nodes such that they push each other away. Lamb
[26] displaces nodes based on the amount of overlap between neighboring
nodes and preserves the location of non-overlapping symbols by modifying
a proximity stress model algorithm designed for graph layouts with overlap-
ping nodes. Gansner and Hu [14] also use a stress model algorithm, where
iteratively start with a Delaunay triangulation on the node centers and build
the stress model on the edges of the triangulation. Nachmanson et al. [34]
present an algorithm that, similarly to the previous paper, also starts with
Delaunay triangulation, but it builds a minimum spanning tree on this tri-
angulation to be used for removing node overlaps by letting the tree ”grow”.
In other words, for each child node of some parent node it extends the edge
connecting the parent and child if they overlap. Here, we keep the parent
in a fixed location, but we translate the sub-tree of the child node.

Symbol size range Our intention of providing a large range of symbol
sizes implies that we wish for each geographic feature to be able to contain
a circle that is as large as possible. This is similar to the circle packing prob-
lem of fitting multiple uniformly sized and non-overlapping circles within a
rectangle such that their radius cannot increase without causing overlap.
Demaine et al. [9] show that such circle packing problems are NP-complete
and because there are no deterministic solutions for NP-complete problems,
we have to approximate a solution using metaheuristics such as genetic algo-
rithms [8]. As geometric packing problems typically contain a large number
of locally optimal solutions, the use of iterative improvement algorithms is
ineffective because they become trapped in these local optima. We want to
approximate the globally optimal solution by escaping these local optima.
Theodoracatos and Grimsley [39] solve the packing of circles in a square
using the simulated annealing technique [24], which is a metaheuristic to
approximate a globally optimal solution in a large search space for an op-
timization problem. The main idea behind simulated annealing is that it
iteratively attempts to modify the current solution by performing a move
to improve the quality defined by an objective function. If this move im-
proves the quality, then it is accepted; otherwise it may still be accepted
with a random chance based on how many iterations have passed and the
quality difference between the old and new solution. In addition to solv-
ing the circle-packing problem with simulated annealing, they also solve the
packing of arbitrary simple polygons in a rectangular area by introducing
various enhancements to their simulated annealing approach.

Transforming geographic shapes Similar to proportional symbol maps,
an area cartogram is also a thematic map in which we portray numerical
data for comparison between geographic places using visual size. Here, the
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geographic size of a region feature is altered instead of using symbols, which
trivially introduces shape distortion. We can broadly categorize area car-
tograms into three classes regarding the preservation of shape and topology
[29]: contiguous (preserves topology, distorts shape), non-contiguous (pre-
serves shape, but distorts topology), and diagrammatic (distorts both).

Our problem follows conditions similar to those of a contiguous shape-
warping cartogram, also called irregular cartograms [29], as we scale and
deform the shape of each region while maintaining adjacent edges. House
and Kocmoud [20] present an algorithm for the construction of contigu-
ous area cartograms by viewing the construction as a constrained optimiza-
tion problem. Their approach follows that of simulated annealing and their
scheme alternates goals of achieving correct region areas and adjusting re-
gion shapes, allowing for the balancing between statistical accuracy and
shape accuracy. However, the algorithm converges quite slowly and can
cause significant deformation of the global shape. Gastner and Newman
[16] construct a contiguous cartogram by expressing the problem as an iter-
ative diffusion process, where quantities are free to flow from one country to
another until the density is the same everywhere. This approach allows for
minimal cartographic error while keeping the region shapes recognizable.

For our proportional symbol map, not every region in the input will
be shaped nicely to accommodate a relatively large inscribed circle to act
as the symbol, so we must transform such region shapes without causing
too much distortion. Van Dijk and Haunert [40] have presented an algo-
rithm that enlarges a focus region on a map without removing parts of the
map that lie outside this focus region, while minimizing distortion by solv-
ing a least-squares optimization problem. Their algorithm is fast enough
to be used in real-time interactive applications, is capable of avoiding edge
crossings, and can apply the enlargement to multiple areas on a map. The
enlargement of the focus region depends on the boundary of the focus region
as well as a zoom level parameter. However, when we individually enlarge
multiple adjacent regions to accommodate relatively large inscribed circles,
we may encounter difficulties with overlapping focus regions which presum-
ably partially undo the enlargement. Alternatively, setting a single focus
region containing these adjacent regions would maintain each individual re-
gion shape, but those may not be shaped to accommodate large inscribed
circles.
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Chapter 2

Preliminaries

Polygon A polygon P is a cyclic sequence of vertices in R2.

Simple polygon A polygon P is called a simple polygon if it adheres to
the following properties: each vertex has exactly two edges, the number of
edges is equal to the number of vertices, and we have no intersecting edges
except for adjacent edges with a common endpoint.

Regular polygon A regular polygon is an n-sided polygon that is both
equiangular and equilateral. The former means that all vertex angles are
equal and the latter means that all edges are of equal length.

Largest inscribed circle (LIC) Given a simple polygon P , the LIC of P is
the largest circle that can fit inside P . Here we allow the boundary of the
circle to touch the boundary of the polygon.

Bounding box Given a set of 2-dimensional objects, the bounding box is
the smallest axis-aligned rectangle that encloses the set.

Doubly-connected edge list (DCEL) A doubly-connected edge list con-
sists of three collections of records [33]. The vertex record of a vertex v
stores the coordinates of v in a field called Coordinates(v) as well as a
pointer IncidentEdge(v) to an arbitrary half-edge with v as its origin. The
face record of the face f stores a pointer OuterComponent(f) to some half-
edge on its outer boundary. We do not consider holes in the faces, as there
are very few countries that lie entirely within another country, also known
as enclaves. Here, we use the example of countries to represent the faces, as
they are the input we use in our thesis. And finally, the half-edge record of
the half-edge e stores a pointer Origin(e) to its origin, a pointer Twin(e) to
its twin half-edge, and a pointer IncidentFace(e) to the face it bounds. We
choose the origin such that IncidentFace(e) lies to the left of e when it is
traversed from the origin to destination; in other words, we walk the face’s
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vertices counterclockwise. This record also stores the pointers Next(e) and
Prev(e) to the next and previous edge on the boundary of IncidentFace(e).
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Chapter 3

Problem model

Input We assume that our input is a map represented as a connected collec-
tion of polygonal regions Pinput, that is, every pair of regions P,Q ∈ Pinput

is connected directly through adjacency adj(P,Q) or transitively through
other adjacent regions ∃K ∈ Pinput(adj(P,K) ∧ adj(K,Q)). For example,
in Figure 3.1 the set of countries in Africa without Madagascar forms a
connected collection of polygonal regions, as Madagascar is not connected
to any other country. We also exclude polygonal regions with exactly one
adjacent region.

Figure 3.1: Set of countries in Africa, where Madagascar is the disconnected
red island.

Constraint motivations Directional relations between adjacent polygons
can prove useful, as relative positions help with the recognition of deformed
geographic areas. For example, it should be clear that Denmark lies to
the north of Germany, even if the shape of Denmark has been distorted.
There have been many studies on directional relation models using various
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references such as centroids [19], surface areas [37], and bounding boxes
[1, 17, 36]. Forwarding to Section 4.2, we have decided on an approach
that iteratively modifies the position of one vertex at a time. Due to these
arbitrary transformations to the polygon shapes and unpredictable positions
of the LIC in our output, we choose not to use the retention of directional
relation as a constraint.

Similarly to contiguous cartograms, our constraint is to preserve the
topology by ensuring that the adjacencies of polygons in the input remain
unchanged in the solution. In other words, if we consider the input drawing
as a planar graph, then the solution must be a planar embedding of the
graph with the same cyclic order of edges for the same vertices. To create a
relatively bad (mirrored) directional relationship between a reference poly-
gon and some target polygon, we would have to rotate the target around
the reference which causes a visual swirl effect as shown in Figure 3.2. Due
to the preservation of topology, we would have to move vertices of polygons
adjacent to the target and reference polygons to even reach such state. This
requires a large overhead in terms of rotating many vertices of different poly-
gons around such reference polygon, which is unlikely to happen within an
approach using randomization. Thus, the topology preservation constraint
decreases the odds of a significant directional relation distortion throughout
the solution as opposed to not having the constraint.

Figure 3.2: Example of the swirl effect on of West-Europe

Finally, we include a bounding box constraint that constrains the output
polygons Poutput to a specified allowed region B. Without this, the optimum
solution would be to scale everything uniformly, resulting in a huge drawing.
We set the allowed region B to the bounding box of the connected collection
of polygons Pinput.

Constraints In summary, we have the following constraints for our model:

• Each symbol s is fully contained within its corresponding polygon
P ∈ P, where we allow the symbol s to touch the boundary of P .
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• All polygon adjacencies of Poutput remain unchanged compared to the
polygon adjacencies of Pinput.

• All polygons of Poutput are drawn entirely inside the bounding box B.

Quality measure motivations Now that we have specified what makes a
valid solution, we now discuss when said solution can be considered as a
good solution. The region with the smallest LIC will form the bottleneck
to how large our range of symbol sizes can be. We refer to this by LICmin

and thus our quality measure would be to maximize the radius of LICmin.
As we also modify the shape of the geographic areas associated with

the symbols, we must take into account the shape similarity of the out-
put polygons Poutput compared to the input polygons Pinput. Most existing
approaches to shape similarity measures are focused on only one type of
geometric feature from the perspective of a mathematical representation,
but this does not capture the complete shape from a visual perspective. For
example, region based methods such as grid-based descriptors [27] represent
shapes of polygons by focusing on statistically significant features that re-
flect global information, but reliance on region information leads to loss of
the finer contour details. Fan et al. [11] proposed a shape similarity measure
based on cognitive levels of the Gestalt psychology [41] using the context
and texture of the polygons, as they are the basic elements of visual per-
ception. Here, the context is a statistical grid that provides information on
the relative positions of vertices of the contours and the texture information
represents the spatial arrangement of intensities in a raster consisting of a
matrix of cells organized into a grid. Their approach first extracts the con-
tour on multiple scales and represents it as the context feature, which is then
used in a texture analysis method to express its texture. The shape simi-
larity is then obtained by comparing these texture features. They have also
shown that their proposed shape similarity measure has superior accuracy
over that of the commonly used turning function and Fourier descriptor.
Using this measure, we aim to maximize the shape similarity of each output
polygon compared to its input polygon.

Quality measures Our quality measures are as follows:

• Maximize the radius of LICmin.

• Maximize the shape similarity between the input polygons Pinput and
output polygons Poutput.

We see that these two measures contradict each other, as the increase
to LICmin radius implies the deformation of some polygon’s shape which in
turn decreases its shape similarity to its input polygon. We pay attention to
this trade-off in the design of our algorithm to allow for a controlled balance
between the two measures.
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Chapter 4

The algorithm

In this chapter we first provide a high level overview of our algorithm and
then discuss our design decisions to satisfy the constraints of the problem
model. We shall use the term of faces and polygons interchangeably as
they imply the same thing. In the subsequent sections we will discuss our
approach to the quality measures of the problem model in more detail.

Overview Given a map consisting of connected polygonal regions as input,
we first simplify the map by removing vertices and edges whose removal
does not change the topology of the map and store their positions relative
to the remaining simplified edges. We then transform the polygons by itera-
tively modifying the location of one vertex at a time following the simulated
annealing technique. Here, the objective is to increase the LICmin radius
as well as somewhat retaining the shape similarity between the simplified
and transformed polygon. Once the simulated annealing terminates, we set
every polygon’s LIC radius to that of the LICmin and we reconstruct the
shape by reinserting the removed vertices and edges without causing any
overlap. For our final step, we recompute and update all the LICs once
more, as this can only further increase the radius of LICmin, which is then
used as the maximum symbol radius for the proportional symbol map.

Design decisions Our problem model’s first constraint is that all symbols
must be fully contained within its corresponding polygon. This is always
satisfied due to the definition of a polygon’s LIC and the symbol size cannot
exceed that of the LICmin.

Next, we want all polygon adjacencies to remain unchanged in our solu-
tion. For every face, we know its adjacent faces by walking over the boundary
and looking at the incident face of the twin half-edge. At the same time, we
know in which order these adjacent faces appear and we can maintain the
adjacencies by keeping at least one half-edge per adjacent face. We do not
add additional vertices to a face, as it would function as a vertex interpola-
tion that splits edges into smaller edges that are collinear, which does not
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improve the shape similarity of the solution as the shape is essentially still
the same. But it could be used to enable the LIC to become larger for poly-
gons with very few vertices, as regular polygons with more vertices trivially
have a better ratio of area to LIC radius compared to regular polygons with
fewer vertices, since their shape becomes closer to that of a circle. However,
since we use countries as input, it is highly unlikely that any of our input
regions have a boundary of less than say five vertices, therefore we neglect
this possibility. In fact, adding more vertices means that we will have a
larger search space of vertices to move to another location to maximize the
LICmin and it also increases the time needed to compute a polygon’s LIC.
Thus, for map simplification, we would like to have the minimal number
of vertices per polygon while still maintaining its adjacent polygons in the
correct order to lower the search space for simulated annealing. For every
moved vertex, we would also have to recompute the LIC of all faces incident
to the moved vertex, which can become quite computationally expensive,
as we will require a large number of the said moves in later steps of our
algorithm.

Now, we want to move vertices to increase the radius of LICmin. If we
were to disregard the polygons and only consider circles as the LICs, we
would see that the optimal solution to maximize the LICmin is the circle
packing problem of finding the maximum radius of n uniform sized and
non-overlapping circles and their arrangement such that they fit within a
rectangle. As discussed in Section 1.2, this problem has been solved using the
simulated annealing technique. However, our situation is more complex, as
our circles are defined as the LIC of every polygon, and we also maintain the
adjacencies of every polygon. We take care of these additional complexities
by taking them into account in the objective function as well as in the
iterative moves, and thus we also make use of simulated annealing.

At the end of our simulated annealing algorithm, we set every polygon’s
LIC radius to that of LICmin and lock its position. This represents the case
where all regions have the same numerical value and hence have the same
symbol proportions. Now, we want to reconstruct the original shapes of the
underlying geographic areas for the shape similarity quality measure. We do
this by reinserting the vertices that were removed during the map simplifi-
cation to the locations they were at relative to the simplified edge. However,
many vertices cannot be placed at such locations without overlapping the
symbols or creating edge crossings. Our solution is to define a unique free
space polygon Pfree for every simplified edge such that the reinsertion of
the original vertices within Pfree will not break our model constraints. We
then reconstruct the shape of the original border within this Pfree with an
image resizing approach. Once we have performed this shape reconstruction
for all simplified borders, we terminate our algorithm. Now we can use the
drawing of the resulting DCEL as our geographic map and every polygon’s
symbol can be resized for the display of some numerical data.
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We see that the simulated annealing and shape reconstruction steps deal
with the two quality measures of the problem model. These two measures
contradict each other, as we want LICmin to take up as much area as possible
within the bounding box, but at the same time, this decreases the total
available free space for shape reconstruction. In Section 5.2, we will evaluate
this trade-off and discuss its results.

4.1 Map simplification

We begin with our input which is a set of countries that will be represented
as a DCEL and we define our bounding box for this input. Some countries
consist of multiple disconnected landmasses, such as the United Kingdom
or Italy. In these cases, we simply take the largest polygon of the country
to represent the country itself. There are more extreme cases, such as the
Philippines and Indonesia, where there is no visible larger polygon to rep-
resent the country. We consider this to be an edge case along with the case
when we have islands in our input.

Figure 4.1: Calculation of the parallel and perpendicular offsets for vertex
p w.r.t. simplified edge e.

So the first step of our algorithm is to lower the number of vertices in
every face by simplifying its shared borders with adjacent faces. Consider a
shared border as a consecutive sequence of half-edges, where all half-edges
point towards the same incident face and their twin half-edges also point
to a same incident face. The simplified shared border e consists of a single
half-edge whose endpoints are the first and last vertex of the shared border.
For every simplified border e, we store the offset position of every removed
vertex p relative to e in a list Vrm. So, for every removed vertex p ∈ Vrm we
calculate the parallel vector w and the perpendicular vector u with respect
to the simplified border e as shown in Figure 4.1, and we store the relative
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parallel and perpendicular distances W = ||w||
||e|| and U = ||u||

||e|| . These values
will be used later in the shape reconstruction step in Section 4.3.

4.2 Simulated annealing

Our objective is to maximize the LICmin radius using the simulated an-
nealing technique by iteratively moving the vertices in the DCEL to new
positions. We shall refer to such iterations as epochs. Our initial solution is
the state of ourDCEL after the map simplification step and our requirement
is that the drawing of this DCEL remains valid, that is, there must be no
edge crossings and all vertices must be contained within the bounding box.
Following the standard practice for simulated annealing approaches, we use
a linear cooling schedule based on the iteration count [23]. Let the quality
of the current and new solutions be q and q′ respectively. The probability of
accepting the new solution is 1 if q′ < q, otherwise it is exp(− q′−q

T ). Here,
T is the temperature variable whose value decreases based on the cooling
schedule.

Design choices The amount of surface area we have within our bounding
box is limited, we want the LICmin to take up as much space as possible,
but all LICs are contained within some simple polygon P that trivially
has a larger surface area. To increase the radius of a LIC, we would need
to increase the area of P or reshape the perimeter of P to be a regular
polygon. Simply increasing the area of the polygon does not necessarily
increase the LIC radius. For example, consider a simple square polygon
whose area we can infinitely increase by stretching it horizontally while the
LIC radius remains the same. Regular polygons have the maximum ratio
of area(LIC)

area(P ) , as the number of vertices in a regular polygon increases, it
naturally approaches the shape of a circle. Thus, it is desirable to move the
vertices so that the polygons approach the shape of a regular polygon.

Trivially, concave polygons stray further away from regular polygons in
terms of their shape and the ratio of area(LIC)

area(P ) gets worse the more concave a
polygon is. To discourage such moves that make polygons more concave, we
include polygon concaveness in our measures. We do not want this measure
to be scale invariant, as the concaveness of a large polygon can have a larger
impact on the LIC radius compared to a small polygon. This means that
the value range of this measure can be arbitrarily large for different inputs.

Now consider the case where all the polygons in our current solution are
regular polygons, but the area sum of these polygons is merely a fraction
of the area of the bounding box. Any vertex moves made to increase a
polygon’s LIC will deliver a worsened quality to the new solution due to
the regularity measure and possibly the concaveness measure as well. To
encourage this move, we consider increasing the ratio of area sum of all LICs
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and the area of the bounding box as an improvement to the new solution.
During the initial iterations of simulated annealing, we are likely to ac-

cept moves that may cause polygons to become rather concave as part of
escaping a local optimum. At the same time, this opens possibilities to posi-
tion vertices such that their incident edges form rather narrow angles. This,
in turn, will severely limit the available locations to which we can move ad-
jacent vertices in subsequent iterations. We also generally do not desire the
presence of narrow angles in our DCEL, as the smallest angle that a regular
polygon can have is π

3 for a triangle, and this increases monotonically with
the more vertices a regular polygon has. Therefore, we consider an angle
to be narrow if it is smaller than π

6 . However, it may be the case that the
polygons already contain narrow angles after map simplification, but for the
sake of increasing the radius of LICmin we still aim to remove them.

Finally, as the iterations pass, we get polygons whose regular shape does
not accurately reflect its simplified shape after map simplification. We end
up with a solution that indeed has a larger LICmin radius, but the recog-
nizability of the polygons suffers. We will try to maintain some similarity
between the polygon shape before and after simulated annealing. The shape
similarity measure used in our problem model would be excessive for the few
vertices that the polygons have here, as it performs an in-depth computation
of the shape similarity by viewing its shape at multiple scales from global to
local view. Instead, we use a turning function measure for shape similarity
between two polygons, as it is reasonably easy to compute and its answers
match that of human intuition [2]. This works for both convex and concave
polygons, and it is translation, scale, and rotation invariant. A drawback
of this shape measure is that it is highly sensitive to noise in the form of
relatively small spikes in the contour. However, noise will not occur in our
case as we always compare two polygons with the same number of vertices.

Quality measures We measure the quality of our solution as a weighted
sum of the following quality measures, all values are non-negative and we
consider lower values approaching zero to be of higher quality:

C.1: The maximum area that each polygon’s LIC can have is upper bounded
by A = area(boundingbox)

n , where n is the number of polygons and
0 < area(LICmin) < A. To maximize the LICmin, we want its
area to approach the maximum area it can be. Thus, we measure
A−area(LICmin)

A , where the value ranges from (0, 1).

C.2: We measure the area difference X between the bounding box and the
area sum of all polygon’s LICs denoted by S, normalized to the bound-
ing box area. X = area(boundingbox)−S

area(boundingbox) , where the value ranges from

(0, 1).
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C.3: Let P denote a convex polygon and n the number of vertices in P ,
we measure a polygon’s regularity using the area and perimeter ratio
[6] as 1 − area(P )

(perimeter(P ))2
4ntan(πn). This returns a value within the

range [0, 1), where zero means that P is a regular polygon. We do not
apply this measure to concave polygons, as the measure is derived from
alternative definitions of area(P )

area(R) , where R is a regular n-gon with the
same perimeter as P . Thus, we return a value of 1 for every concave
polygon and use the concaveness quality measure (C.4) to evaluate
concave polygons. We then take the average regularity measure for all
polygons.

C.4: Let P denote a polygon and CH denote the convex hull of P . We
measure the concaveness of each polygon on the basis of the differ-
ence between its convex hull perimeter and the polygon’s perime-
ter. perimeter(P )−perimeter(CH)

perimeter(CH) returns a value within the range [0, ∞),
where zero means that the polygon is not concave. We then take the
average concaveness measure for all polygons.

C.5: For every vertex u ∈ V , we compute the angles that are formed by
its incident edges. If an angle α is smaller than π

6 , then our measure

returns ( (π/6)−α
π/6 )2 with a value range of [0,1), where narrower angles

approach value 1. Otherwise, for angles greater than or equal to π
6 , we

return zero. This measure then returns the sum of these narrow angle
values.

If we used linear scaling here, we would set the weight to a high value,
so that we would only allow narrower angles to be formed when the
temperature was high. As the temperature decreases, it would become
nearly impossible to ever accept a move that forms even the slightest
narrower angle due to the high weight value. Using a lower weight
value would enable acceptance of such moves, but it allows for ex-
tremely narrow angles to be created at high temperatures which will
severely restrict subsequent moves. So instead, with quadratic scal-
ing and a low weight, we will prevent extremely narrow angles to be
created at high temperatures and yet allow moves that create slightly
narrower angles when the temperature is lower. We only use this for
the narrow angles measure, as narrow angles are prone to blocking our
search for the optimal solution for subsequent epochs.

C.6: For each polygon P , we compare its turning function ΘP with the
turning function of its simplified polygon after map simplification ΘP ′ .
The shape similarity is measured by computing the distance between
the two turning functions, minimized with respect to the rotation of
the polygons [2]. The value ranges from [0,∞), where zero means that
their shape is identical. We return the sum of these turning function
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distances for all polygons.

Initial solution We start by computing the quality of the initial solution,
that is, the DCEL after map simplification. To compute the LIC of every
polygon, we need the following definition. The center of a polygon’s LIC
is also known as the pole of inaccessibility, which is the point that is the
most distant from any point on the boundary of the polygon. This can
be computed exactly for convex polygons using linear programming [31],
but since we also work with concave polygons and do not require exact
solutions, we look towards the randomized method. Garcia-Castellanos et
al. [15] have presented an approximation algorithm that calculates this
point by probing the polygon with points placed on an arbitrary sized grid
distributed in the bounding box for the polygon. It then calculates the
distance for every point to the polygon’s boundary, selects the point with
the longest distance, and repeats the process until the desired precision is
achieved. In our implementation, we use a library inspired by this paper
that gives us the center and radius of the LIC, but uses quadtrees instead
by recursively subdividing cells and probing them for a better solution1. We
compute this LIC for every face in our DCEL and store its center position
and radius in the face itself. We can find the LICmin by sorting by radius
and we store this reference in the DCEL. The temperature T is set to the
maximum temperature Tmax and we calculate the quality of the solution
with all our quality measures.

Modification To modify the current solution to a new one, we need to
select a vertex to move to another position. We refer to this modification
as an epoch. After every epoch, temperature T decreases as per the linear
cooling schedule. When the temperature is high, we pick an arbitrary vertex
in our DCEL to move, but as the temperature decreases we increase the
likelihood of selecting a random vertex that lies on the boundary of the face
with LICmin or a vertex adjacent to this. Let k be a randomly generated
number between (0,1) and let face fmin be the face containing LICmin, we
regenerate k and select to move a random vertex if k < 0.05 + ( T

1.2Tmax
)2.

If this condition fails, we select to move a random vertex adjacent to any
vertex of fmin if k < 0.05 + ( T

1.1Tmax
)2. Otherwise, we select a random

vertex of fmin. Observe that we always have at least a five percent chance
to select a vertex that is not part of fmin, this choice was made to still
allow shape modifications at low temperatures of faces that are not fmin.
This is in accordance with the principles of simulated annealing, where lower
temperatures make the technique behave as a greedy approach, yet we still

1A new algorithm for finding a visual center of a polygon. V. Agafonkin.
https://blog.mapbox.com/a-new-algorithm-for-finding-a-visual-center-of-a-polygon-
7c77e6492fbc Date of access: 13-03-2022.
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maintain some degree of randomness.
Once we have selected a vertex p to move, we must compute the positions

to which it can be moved so that no edge crossings occur. In other words,
the vertex p must be in a location that is visible directly from all adjacent
vertices. Let padj denote some vertex adjacent to p. We want to compute
the visibility polygons Pvis for all padj without edges incident to padj and
take their intersection, any location within the resulting polygon Pres can
be used to reposition vertex p without creating edge crossings.

Calculating the visibility polygon can be done in O(n) time for simple
polygons [22], however, we do not have a simple polygon if padj is incident
to the outer face as shown in Figure 4.2.

Figure 4.2: Visibility polygon example where vertex padj is not in the interior
of a simple polygon, but in a polygon (grey) with a hole. The red edges define
the interior and exterior boundaries of the polygon.

Instead, we use the angular plane sweep algorithm of Asano [3]. This
algorithm runs in O(n log n) time and O(n) space and uses line segments as
input. First, we get the set of line segments L that are possibly visible from
padj , these are the perimeter segments of the faces incident to padj as well
as the bounding box itself. To retrieve L, we take a half-edge e of padj and
walk its boundary until we have e.destination == padj , then take the twin
half-edge e = Twin(e) and repeat the process until we have handled the
boundaries of all incident faces. We also add the four sides of the bounding
box to L and we remove segment (p, padj) from L. Given this set L of
line segments, we must provide a viewpoint z that lies in general position,
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that is, not on any vertices in L. However, we always compute Pvis where
z == padj , so we slightly nudge the position of z towards p as a workaround.
A faster approach that does not require this workaround would be to use
the triangular expansion algorithm by Bungiu et al. [4], which has a worst
case complexity of O(n2), but in practice its average runtime is two orders
of magnitude faster than the sweep algorithm. We leave this open for future
works to improve the runtime of simulated annealing.

Next, we move vertex p to a random point inside Pres. We determine
this point by sampling random points in the bounding box for Pvis until
it is inside Pvis. After moving the vertex, we efficiently update the quality
measures by only recomputing the affected objects and taking the measure
differences into account for our values. For LICmin and area difference
we recompute the LIC of the polygons incident to the moved vertex p and
update LICmin. We also recompute the measures of regularity, concaveness,
and turning function distance for the incident faces. Finally we update
narrow angles by computing the narrow angles for vertex p and all of its
adjacent vertices padj .

4.3 Shape reconstruction

Now that we have handled the quality measure of maximizing the LICmin,
we focus on the quality measure of maximizing the shape similarity of the
polygons in the output drawing compared to the input. Our goal is to
retrieve the shape features back in the simulated annealing output polygons
PSA.

Definitions Recall that each edge e of polygon P ∈ PSA represents a sim-
plified shared border with another country or the sea. Let estart,eend denote
the start and end points of the edge e, and let e⃗∥,e⃗⊥ denote the direc-
tion vectors parallel and perpendicular (rotated π

2 counterclockwise) to the
edge e respectively. The original shape of each border is restored by rein-
serting the vertices in Vrm that were removed during map simplification in
Section 4.1, back into edge e. For every reinsertion vertex p ∈ Vrm, we
calculate its position as estart + (e⃗∥ · p.U · ||e||) + (e⃗⊥ · p.W · ||e||), where
p.U and p.W are the relative distances parallel and perpendicular to e.
We define path T = (p1, ..., pn) of n = ||Vrm|| consecutive reinsertion ver-
tices and the entire reconstructed border including its endpoints is the path
Tfull = (estart, p1, ..., pn, eend).

Free space polygon As we wish to reconstruct the original shape by rein-
serting these vertices to their relative positions, it is important that we do
not cause any edge crossings or overlap any symbols. To ensure that we do
not break these constraints, we compute a free space polygon Pfree for every
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edge e such that the intersection of all free space polygons is empty and e
is inside Pfree as shown in Figure 4.3.

Figure 4.3: To the left we have partial view of the DCEL and to the right
we see the green outlines of the free space polygons for every edge. The free
space polygon Pfree of edge e is marked red.

Each edge e has two adjacent free space polygons Pf1, Pf2 that join at
e, one for each incident polygon. Free space polygon Pfree is the union of
Pf1, Pf2 and will be used for the shape reconstruction. To compute Pf1, we
look at edge e in the context of one incident polygon and observe that its
free space is either limited by the polygon’s symbol or by another edge in
the polygon. We temporarily disregard the polygon’s symbol and focus on
creating a planar subdivision of the polygon where each edge of the polygon
belongs to exactly one unique face in the subdivision. To divide the free
space for adjacent edges somewhat evenly, we take the interior bisector of the
polygon’s vertices to define the subdivision faces with. This idea coincides
with the concept of the medial axis, which is a set of all points having more
than one closest point on the polygon’s boundary. Equivalently, it can be
seen as the points that can be the center of a circle that lies entirely within
the polygon and touches the polygon’s boundary in at least two places.
However, the medial axis of concave polygons can have curves which have
compatibility issues in our implementation. In addition, we will have to
create a planar subdivision for the polygon using the medial axis so that
every edge is assigned a unique face. Therefore, we choose to use straight
skeletons instead.

The straight skeleton of a polygon is defined by shrinking the polygon
by translating each of its edges inwards parallel to themselves at a fixed
rate. As the polygon shrinks, the vertices also move at a rate depending on
the angle of the vertex. Once a moving vertex collides with a non-adjacent
edge, the polygon is split in two by the collision and the shrinking process
continues in each part. The straight skeleton is thus the set of curves traced
out by the moving vertices during this shrinking process. It is identical to
the medial axis for convex polygons, but for concave polygons the straight
skeleton has fewer edges than the medial axis, and all of its edges are line
segments. To compute the straight skeleton we use an algorithm by Felkel
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and Obdrzálek [12] that supports both convex and concave polygons as well
as polygons with holes. We then define Pf1 as the face incident to edge e
in the planar subdivision formed by the straight skeleton, minus the area
of the polygon symbol. Here, we have set every polygon symbol radius to
be equal to 99% of the LICmin radius, because if we use the full radius of
LICmin some polygons will have their LIC touching its boundary, which
causes a split in the free space polygon Pf1. We follow the same process for
computing Pf2. When we need to compute the free space in the outer face
of our DCEL we can consider an enlarged version of the bounding box as
the polygon and the floating component as the hole.

Figure 4.4: Medial axis (left) compared to the straight skeleton (right).

Now that we have Pfree for the edge e, we want to create Tfull such that
all its edges are inside Pfree. Ideally, if the vertices and edges of T fit inside
Pfree as well as edges (estart, v1), (vn, eend), then we can simply reinsert T .
Otherwise, we look at two options in which we can make use of this free
space for the shape reconstruction. The first is based on the technique of
image resizing, and the second is based on image warping. The former is
implemented in our algorithm, whereas the latter remains open for future
work due to difficulties with its approach.

Image resizing Let BT be the bounding box of path T and consider BT

to be an image with T as its contents. We compute the largest inscribed
rectangle LIR within Pfree with the following two constraints. First, the
LIR must touch or intersect the edge e. Second, the LIR must be aligned
to the edge e. The width of the LIR is at most equal to the length of edge
e, whereas the height is limited by the bounding box. In most cases, the
width of BT ends up being close to or larger than that of the LIR. Thus, we
resize the width of BT to that of the LIR. The height is then set based on
the aspect ratio of BT , however if this height exceeds that of the LIR, we
will set it to the height of the LIR instead.

Now that we have resized the dimensions of BT , we know that path
T is entirely contained within Pfree. However, we still need to create
edges (estart, p1), (pn, eend) to obtain Tfull and these could cause a cross-
ing with Pfree. If height(BT ) < height(LIR) we can translate BT in the
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direction perpendicular to edge e to create more visually appealing edges
(estart, p1), (pn, eend). That is, we translate BT such that we minimize the
sum of distances of v1, vn perpendicular to edge e.

Figure 4.5: Example of resizing BT given an edge e (blue), a path T (red),
and a LIR (grey). (1) Initial size and position of BT . (2) Resized the
dimensions of BT to fit in the LIR. (3) Translated the position of BT .

However, to guarantee that there will be no crossings created for edges
(estart, p1), (pn, eend), they must both be parallel to edge e since we know that
e is always inside Pfree. This is not always possible, as the endpoints of e are
locked in position. Instead, we add two intermediate vertices pk, pl that are
both on edge e to replace (estart, p1) with (estart, pk), (pk, p1) and (pn, eend)
with (pn, pl), (pl, eend). Vertex pk is the closest point on the boundary of BT

to estart and similarly vertex pl is the closest point from BT to eend. We
can see a clear downside to this approach when the distance of pk and pl
perpendicular to e is rather large, causing a sudden spike in our contour as
shown in Figure 4.6.

Figure 4.6: Example of a spike after shape reconstruction using intermediate
vertices pk, pl (black) to connect to path T (red), where free space polygon
Pfree for edge e is shown with the green boundary and its LIR == BT is
shown in grey.

The possibility of a crossing is now only present for edges (pk, p1) and
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(pn, pl). We have a crossing between two edges (a, b), (c, d) if c, d lies on
opposite sides of (a, b) and a, b also lies on opposite sides of (c, d). We
perform this crossing check for edge (pk, p1) to find the last crossing edge
(pi, pi+1) for i = 1, ..., n−1, and then we remove vertices (p1, ..., pi) to connect
(pk, pi+1) instead which has no crossings. Similarly for edge (pn, pl), except
we have i = n, ..., 2, we remove vertices (pn, ..., pi), and we connect (pi−1, pl).

The downside of this shape reconstruction technique is that the LIR does
not optimally utilize the area of Pfree when Pfree is not quite rectangular,
and consequently we could significantly downscale BT such that we lose out
on the visibility of the finer details of the shape. Also, as shown in Figure
4.6, this approach is prone to causing spikes in the reconstructed shape.

Image warping The other approach follows the idea of image warping,
where we do not restrict the transformation of BT to maintain a rectangu-
lar shape and it can be of the same shape as Pfree. Swart [38] presents an
algorithm that allows the warping of an arbitrary shaped image to that of
a different arbitrary shape. This can cause more distortion in the recon-
structed shape as we fully utilize the shape of Pfree which can cause the
reconstructed shape to follow the shape of Pfree more than the original T .

The idea behind the image warping algorithm is that we create a mesh
overlay of, for example, 16 x 16 points for BT and Pfree. Here, we consider
the mesh over BT to be the source mesh that is a square lattice with its
points evenly distributed over BT , and the target mesh is the mesh over
Pfree. Initially, the target mesh is the same as the source mesh, but we
mark every point of the mesh that lies on the mesh boundary as a bound-
ary point. These boundary points are always placed on the boundary of
Pfree. We then change the shape of the target mesh into that of Pfree, by
iteratively taking a random point in the mesh and setting it to the average
position of its neighboring points. For boundary points, we also compute
the average position of its neighbors, but set it to the closest point on the
boundary of Pfree. Once the algorithm has converged, we map the points
from the quadrilateral faces in the source mesh to the target mesh, using
some convenient interpolation scheme.

Although this algorithm works well for most arbitrary shapes according
to the paper, we notice that it fails to create a target mesh that covers
narrow areas of a polygon. As boundary points are always set to the closest
point on the target polygon’s boundary, it fails to expand the mesh point
towards narrow areas as we can see in Figure 4.7. Locking boundary points
to specific parts of the boundary would have to be done in a sophisticated
manner, as its positioning and the density of points around certain contours
will define the mesh.

Another problem we encounter is that the quadrilaterals of the target
mesh are not always fully contained within Pfree, especially around concave
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Figure 4.7: Example where the warped mesh cannot cover narrower areas.

parts of the polygon as we can see in Figure 4.8. To prevent the mapping
of points in the source mesh to the target mesh from ending up outside
the target polygon, we would need additional case handling for whichever
interpolation scheme we choose to use.

Figure 4.8: Example where quadrilateral faces of the target mesh are not
fully contained within the target polygon.

Despite these issues, we have decided to leave this approach open for
future works, as it seems like an interesting approach to fully utilize the free
space polygon for shape reconstruction.
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Chapter 5

Evaluation

In this chapter we discuss the experiments we have performed to evaluate
the results obtained with the simulated annealing step and the shape recon-
struction step. At the end of each section, we observe and discuss the visual
quality of the output.

5.1 Simulated annealing

For the evaluation of our simulated annealing approach, we experimented
with how weights influence the results, as well as how the quality measures
interact with each other.

Data We run the experiments on a subset of countries in Western Europe,
South-America and the Middle-East as shown in Figure 5.1. These sub-
sets consist only of connected countries, that is, there are no islands. For
the Western Europe dataset, the smallest few countries are surrounded by
other countries and they are not directly adjacent to the outer face. For
these countries to expand in size to accommodate a larger LIC, the simu-
lated annealing technique must move the neighboring countries away. In the
South-America dataset, we see the opposite, where the smallest countries
are adjacent to the outer face and can expand their area in that direction.
For the Middle-East dataset, we observe that it has relatively many narrow
angles after map simplification and its overall shape is quite concave.

Quantitative evaluation We ran the simulated annealing for 30,000 epochs
with different weight values. Due to randomization, we repeat every exper-
iment 5 times. The execution time per experiment takes about 8 to 12 s on
a 3.6 GHz AMD Ryzen 5 3600 CPU.

Weights We first set a default value for every weight and then vary these
weights to evaluate its influence on the various quality measures. As the

27



Figure 5.1: The data sets used for experimenting where the top is the original
input and the bottom is after map simplification. We have subsets of West-
ern Europe (left), South-America (middle), and the Middle-East (right).

parameter space is too large to experimentally explore, we set the default
weights based on informal trials where we observed the visual results.

Measure Weight Measure Weight

C.1 LICmin Diff 600 C.4 Concaveness 10
C.2 Area Diff 10 C.5 Narrowness 500
C.3 Regularity 10 C.6 TF Distance 400

Table 5.1: Default weights of the quality measures.

Our primary goal is to maximize the LICmin, but we limit our chances
of reaching the global optimum if many narrow angles are created, which
subsequently cause the availability of new vertex locations within the epoch
to decrease substantially. Therefore, we set a high weight on narrow angles
(C.5) to avoid these scenarios.

Our secondary goal is to have the resulting polygon’s shape being similar
to that of the simplified polygon for a better shape reconstruction in the next
step of our algorithm. To effectively allow the increase of the LICmin radius,
we need to expand out polygons to take up space in the outer face. These
iterative moves will negatively impact the shape of the polygons (C.6) at the
time of the epoch and are therefore discouraged; to counteract this, we use
the area difference measure (C.2) that encourages the expansion of polygons.

Alternatively, we can completely disregard the simplified polygon shapes
and focus only on the primary goal. This means that we would want every
polygon to approach the shape of its regular polygon to allow maximum
efficiency in the ratio of area and LIC. For this, we have the regularity (C.3)
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Figure 5.2: Varying weight of LICmin

(C.1).
Figure 5.3: Varying weight of Area
Diff (C.2).

and concaveness measures (C.4).
We validate our weights by varying each weight exponentially in an inter-

val around our chosen default value, while keeping the other weights fixed.
In Figures 5.2 and 5.3 we see some results in which we plot the unweighted
value of the quality measure as a function of the corresponding weight. Ob-
serve that setting the weight higher for C.1 does not necessarily improve its
value anymore starting from a weight around 9000. This is because within
each epoch we can only see improvements to this measure if we were to move
a vertex that is incident to the face fmin containing LICmin, but to increase
this LICmin we may need to move surrounding polygons first to enable fmin

to become larger. In general, as we increase the weight of a quality mea-
sure, its unweighted value is expected to become lower (improve). We see
the same pattern of converging and stabilizing values as the weights increase
for the other quality measures as well, see Appendix A for the full figure.
For our chosen weights, we see that the values are not quite stable, but we
shall not simply increase the weight to the point where it starts to stabilize,
as we expect there to be trade-offs between the measures. Instead, we will
look at the dependencies between the quality measures by looking at how
the change of one measure’s weight affects the unweighted value of another.

Quality measure dependencies There are many quality measure pairs
where changing the weight of one has a visible effect on the value of an-
other. We explore these dependencies by looking at plots in which we vary
one weight at a time and how it impacts the unweighted value of every other
quality measure. The full figures for all plots are available in the Appendix
A.

We start by varying the weight of LICmin (C.1), here we see that increas-
ing the weight causes a noticeable increase (deterioration) in other quality
measure values except for area difference (C.2). In fact, we observe a cor-
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Figure 5.4: Effect of varying LICmin weight (C.1) on TF Distance (C.6)

relation between the value of LICmin and area difference when we look at
Figures 5.2 and 5.3. This is expected, since increasing the radius of LICmin

implies a greater area sum of LICs. For the other measures of (C.3) to (C.6),
we generally see an increase in value starting from around a weight of 8000.
Interestingly, from this weight on we have reached relatively stable values for
LICmin and the further increase in weight only negatively impacts measures
(C.3) to (C.6). In particular, we see an inverse correlation between LICmin

in Figure 5.2 and the turning function distance (C.6) in Figure 5.4. As we
place a greater emphasis on purely increasing the LICmin, we see that con-
sequently the shape of the polygons will show more distortion. Thus for the
LICmin weight, we should set its weight somewhere in the range of below
8000 as well as balance it against the turning function distance measure.

Figure 5.5: Effect of varying area difference weight (C.2) on LICmin value
(C.1)
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Figure 5.6: Effect of varying Area Diff (C.2) on narrow angles (C.5 left) and
TF Distance (C.6 right)

When we vary the weight of the area difference (C.2), one might expect
its correlation with LICmin (C.1) to be present as shown above. However,
this is not necessarily the case since an improvement in the area difference
does not directly impact the LICmin radius, because an epoch can expand
any other polygon area besides the one containing LICmin. We see this
in Figure 5.5, where significantly higher weights will slowly show a more
stable deterioration in the value of (C.1). The effect on regularity (C.3)
and concaveness (C.4) shows no clear pattern, while narrow angles (C.5) are
more prevalent at weights above 40,000 and the turning function distance
value (C.6) slightly increases starting around a weight of 10,000 in Figure
5.6. Overall, varying the weight of the area difference does not appear to
have much of an effect on other measures by itself.

For regularity (C.3) and concaveness (C.4), there are no clear dependen-
cies other than the fact that the turning function distance trivially increases
in value as the polygon shapes become more regular, as they may not have
been regularly shaped after map simplification. Nudging epochs towards
moving vertices to make its incident faces in the shape of a regular polygon
does not necessarily increase the polygon area, thus its LIC radius does not
increase much and there are no significant dependencies. As our default
weight for these two measures are already set quite low, we have increased
the range to which we vary its weight by a factor hundred, yet we see no
dependency of other measures.

Recall that in Section 4.2 we have stated that narrow angles (C.5) would
prevent reaching good values for the LICmin measure. In Figure 5.7 we
observe that from weight 800 on we barely end up with any narrow angles
in our output. As we get rid of the occurrence of narrow angles, we see
regularity and concaveness improve slightly, whereas the turning function
distance worsens particularly for the Middle-East dataset, whose polygon
shapes contain many narrow angles after map simplification. As we prefer
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Figure 5.7: Effect of varying narrow angles (C.5) on itself (top left), turn-
ing function distance (C.6) (top right), regularity (C.3) (bottom left), and
concaveness (C.5) (bottom right).

convex polygons over concave polygons during simulated annealing, we shall
set the weight of narrow angles around 1500 such that we prevent narrow
angles from occurring.

Lastly, we look at the dependencies of the turning function distance
(C.6). In Figure 5.8 we this measure clearly making trade-off with the
LICmin as well as the area difference measure.. As we use a higher weight,
we are less likely to allow large distance movement of a vertex in an epoch,
as it will distort the shape of the incident polygons. At some point, the
weight is set so high that we are never able to accept any epoch moves any
more and none of the quality measure values change compared to the start
of simulated annealing. As we have seen with varying the weight of LICmin,
we need to balance the weight between these two measures. We do so with
visual inspection on how the output drawing turns out in the qualitative
evaluation, where we look at the overall shape recognizability of the output
compared against the shapes we obtain after map simplification as well as
how much larger our LICmin radius has gotten.
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Figure 5.8: Effect of varying turning function distance weight (C.6) on
LICmin (C.1) (top left), area difference (C.2) (top right), and itself (bot-
tom).

Qualitative evaluation For this evaluation, we will primarily look at the
effects of changing the weights on the Western Europe dataset. Each country
is given a color for ease of recognition in the figures. Here, the face with the
LICmin is Luxembourg, which is surrounded by other faces and we cannot
simply extend its surface area towards the outer face. With the default
weights, we can see in Figure 5.9 that the output manages to significantly
increase the LICmin radius by a factor of 6.9 times compared to the LICmin

radius in the simplified drawing. However, this happens at the cost of the
shape similarity and we wish to retain more of the shape for the upcoming
step of shape reconstruction.

We observe that the shapes of the countries individually does not end up
looking similar to its shape after map simplification, which is what we always
compare against. This is particularly the case for polygons with a higher
vertex degree such as Germany (DE) and Austria (AT), so experiment with
raising the turning function distance weight to 800 (case A) which should
decrease the LICmin radius but bring back some of the shape similarity. In
Figure 5.10 we can see that it causes the global shape of Europe to be brought
back somewhat compared to filling up the entire bounding box with polygon
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Figure 5.9: Drawing of Western-Europe dataset as input (left), after map
simplification (middle), and after simulated annealing with default weights
(right).

Figure 5.10: Outputs of Western-Europe after simulated annealing for cases
A,B,C,D, where Germany and Austria are marked by DE and AT respec-
tively.

surface area with the default weights. Here, our radius of the LICmin has
increased by a factor of 5.3 times compared to 6.9 times previously.

Looking closer at the individual countries shapes, we see that some are
rather concave which is not present in our simplified shape nor makes good
use of the polygon’s area for the LIC. So we raise the concaveness weight
to 40,000 (case B) which should nearly prevent the presence of concave
shaped polygons to enable a better shape for countries like Germany. We
see that the LICmin radius consequently increases to a factor of 6.5 times
as expected; however, simply making the polygons convex is not sufficient
to obtain a larger LIC as well as a better shape similarity.

Observe that there are multiple polygons whose shape is relatively long,
but narrow, in other words it is far from being a regular polygon. Thus, we
also increase the weight of the regularity to 40,000 (case C) and see that we
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Figure 5.11: Drawing of the Middle-East (top) and South-America (bot-
tom) dataset where we have the input (left), shape after map simplification
(middle), and the output with the new weights (right).

are getting better shapes for the countries in the east. Unfortunately, our
LICmin radius factor decreases from 6.5 to 4.0 times and we also see that
Germany (DE) and Austria (AT) seem to become rather concave again due
to the narrow angles formed by itself or its neighboring countries.

Therefore, we also increase the weight of narrow angles to 1500 which
should effectively nearly prevent the occurrence of narrow angles (case D).
Our resulting output looks quite similar to the simplified shape and our
LICmin radius ends up to be increased with a factor of 3.7 times. The
weights we end up with are quite different than the default weights, which
had a larger emphasis on increasing the LICmin radius and did not succeed
in keeping the resulting polygon shapes rather similar to the simplified poly-
gons. With our new weights, we have shown a balance between increasing
the LICmin radius and obtaining better polygon shapes.

Using these new weights, we also see similar results for the Middle-East
and South-America datasets in Figure 5.11.
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5.2 Shape reconstruction

In this section we evaluate our method of shape reconstruction through
image resizing. Recall from Section 4.3 that we use 99% of the LICmin radius
for all polygon symbols and that these symbols remove an area of Pfree.
We experiment with how changing this LICmin radius affects the shape
similarity value between the original shape and the reconstructed shape.
We also discuss the shape similarity values with respect to the observed
reconstructed shapes.

Data We run the experiments on the output of simulated annealing, where
we had three datasets: Western Europe, South-America and the Middle-
East. Due to randomization in the simulated annealing output, we run our
shape reconstruction on 10 different simulated annealing outputs for each
dataset, and measure the shape similarity for every country.

Figure 5.12: Comparing the original shapes of Western Europe (left) against
our shape reconstruction output (right).

Results Let us first consider the Western Europe dataset, we look at the
boxplot of the shape similarity values between the original shapes and the
reconstructed shapes using 99% of the LICmin radius in Figure 5.13, where
the whiskers denote the minimum and maximum values. The value of the
shape similarity measure ranges between (0, 1], where 1 means that both
shapes are identical. We see that the shapes generally achieve a similarity
value around 0.65, which is decent if we observe the shapes we end up with
in Figure 5.12.

To see the variance in polygon shapes for different simulated annealing
output, we look in Figure 5.14 at minimum, median, and maximum value
shapes of Switzerland (CHE) as it has a large similarity value ranges be-
tween (0.48, 0.89). Here, we see improvements to both the local and global
shapes of the polygon that contribute to a higher similarity value. The re-
constructed global shape of Switzerland depends on the output shape after
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Figure 5.13: Shape similarity measure boxplot of the Western Europe
dataset, where each country it denoted by its three-letter code.

simulated annealing, unlike Italy, where the majority of its global shape is
defined by its ”boot” shape, which is only retrieved during the shape re-
construction. We can see in Figure 5.12 that this ”boot” shape of Italy is
retained nicely, although it is down-scaled so that it may no longer define
the countries global shape.

Figure 5.14: Polygon shape of Switzerland (CHE) with similarity values of
0.48, 0.70, 0.89, 1.0 (input) from left to right.

To see the effects of lowering the LICmin radius on the shape similarity
values, we set the polygon symbol sizes to 10% of the LICmin radius, which
makes the symbol have a negligible effect on removing an area from the free
space polygon. The differences in similarity value that we obtain compared
to having 99% of the LICmin radius are shown in Figure 5.15. Unfortunately,
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we see that decreasing the LICmin radius overall has no significant impact on
the shape similarity. We expected similarity improvements, as the smaller
the LICmin becomes, the larger the Pfree becomes and consequently the
LIR can also become bigger so we do not have to downsize the reconstructed
shape as much.

Figure 5.15: Shape similarity differences between using 10% of the LICmin

radius instead of 99% for the Western Europe dataset.

However, upon visual inspection of the changes that are made to the free
space polygons and the LIR when we set all polygon symbols to 10% of the
LICmin radius in Figure 5.16, we see that most of the LIR do not change.
Some free space polygons do not have a LIR as the corresponding simplified
edge has no reinsertion vertices. When the LIR does change, its aspect ratio
may change to become narrower and taller instead, which covers a larger
surface area, but might also end up ”compressing” the reconstructed shape
for a worse similarity value. So we see that our LICmin radius is generally
too small to affect the Pfree area significantly, and also that the bottleneck
to our shape reconstruction is rather the area of Pfree that is available to
reinsert vertices in.

We perform the same experiments for the South-America and Middle-
East datasets and observe their reconstructed shape in Figure 5.17. Again,
we see that reducing the LICmin radius has little overall impact on the shape
similarity for both datasets and the experiment results are generally similar
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Figure 5.16: Example of the free space polygons for the Western Europe
dataset, each in a different color with their LIR (red). On the left we have
symbols (green) that are 99% of the LICmin radius, and on the right they
are 10%.

to that of Western Europe. The full figures are available in the Appendix
B. For the South-America dataset, we particularly notice the shape change
to Chile, which originally had a long narrow shape that inefficiently accom-
modates a LIC, and in our output it lost all of its shape and become rather
rectangular. Its border shape with the sea became significantly compressed
such that the finer details are no longer visible.

Overall, we see that the shape reconstruction method of image resiz-
ing provides decent results when the LIR is relatively large enough for the
reinsertion vertices. However, this LIR does not utilize the full free space
polygon area and this remains open as a possibility for improvement upon
the shape reconstruction.
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Figure 5.17: Comparing the original shapes (left) of South-America (top)
and the Middle-East (bottom) against our shape reconstruction output
(right).
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Chapter 6

Conclusion

In this thesis, we have presented an algorithm that transforms the bound-
aries of the underlying geographic map to prevent symbol overlaps for pro-
portional symbol maps. We first simplified the map by removing vertices
and storing their relative position to the resulting simplified edge. Using
the simulated annealing technique, we have transformed the simplified map
so that the LICmin has increased by several factors, while still maintaining
a sense of recognizability for the polygon shapes by experimenting with the
quality measures used in the simulated annealing. Finally, we reconstruct
the original shapes of the polygons by reinserting the removed vertices back
to their relative positions. To prevent any crossings during this process, we
have defined the notion of free spaces in which the entire reconstructed shape
will be contained, and we evaluated the shape similarity between the original
polygons and our output polygons. The last step of our algorithm sets the
maximum symbol size to the radius of LICmin. As shown in Figures 6.1, 6.2,
6.3, our resulting geographic maps clearly allow a larger symbol to be used
for the smallest countries, while keeping the map relatively recognizable.

Figure 6.1: Comparing the LICmin of the input polygons (left) to the output
polygons (right) for the Western Europe dataset.

There is still room for improvement in our approach. After the map sim-
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Figure 6.2: Comparing the LICmin of the input polygons (left) to the output
polygons (right) for the South-America dataset.

plification step in Section 4.1, our simplified polygons may not accurately
represent a simplified shape of the original polygon. As one of our quality
measures in simulated annealing relies on maintaining this simplified shape,
improving the polygon simplification to be of a similar shape to the origi-
nal should lead to better global shape similarity in the shape reconstruction
step. Our simulated annealing quality measures do not include a notion
of directional relationship between polygons and relies only on the topol-
ogy preservation to prevent significant overall directional distortion. We see
with our results that the directional relationships in our output maps are
generally quite good, with few exceptions where the relation between some
reference and target countries changed from, for example, east to southeast.
The introduction of some directional relationship model that does not cate-
gorize relationships in a small set of compass directions and is also not too
restrictive as a quality measure in simulated annealing, could ensure even
less directional distortion appearing in the output map. In Section 4.3, we
have mentioned the technique of image warping to be an example where we
utilize the entire free space polygon more effectively than the technique of
image resizing. Other methods can be proposed here, and the comparison
to our image resizing technique is done by comparing the shape similarity
value differences for the same datasets.

42



Figure 6.3: Comparing the LICmin of the input polygons (left) to the output
polygons (right) for the Middle-East dataset.
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A century of gestalt psychology in visual perception: I. perceptual
grouping and figure-ground organization. Psychological bulletin, 138
6:172–217, 2012.

47



Appendix A

Simulated annealing
experimental results

This appendix shows extended figures of the trial results for all quality
measures presented in Section 4.2.

Figure A.1: Varying the weight of a quality measure in the objective func-
tion, showing the resulting unweighted value for the quality measure whose
weight is varied.
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Figure A.2: Varying weight of LICmin (C.1), showing the resulting un-
weighted value for (C.1) to (C.6) from left to right, top to bottom.
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Figure A.3: Varying weight of area difference (C.2), showing the resulting
unweighted value for (C.1) to (C.6) from left to right, top to bottom.
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Figure A.4: Varying weight of regularity (C.3), showing the resulting un-
weighted value for (C.1) to (C.6) from left to right, top to bottom.
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Figure A.5: A significantly larger varying weight of regularity (C.3), showing
the resulting unweighted value for (C.1) to (C.6) from left to right, top to
bottom.
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Figure A.6: Varying weight of concaveness (C.4), showing the resulting un-
weighted value for (C.1) to (C.6) from left to right, top to bottom.
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Figure A.7: A significantly larger varying weight of concaveness (C.4), show-
ing the resulting unweighted value for (C.1) to (C.6) from left to right, top
to bottom.
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Figure A.8: Varying weight of narrow angles (C.5), showing the resulting
unweighted value for (C.1) to (C.6) from left to right, top to bottom.
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Figure A.9: Varying weight of turning function distance (C.6), showing
the resulting unweighted value for (C.1) to (C.6) from left to right, top to
bottom.
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Appendix B

Shape reconstruction
experimental results

This appendix shows the experiment results for the three datasets presented
in Section 5.2.

Figure B.1: Shape similarity measure boxplot for the Western Europe
dataset, where each country is denoted by its three-letter code.
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Figure B.2: Shape similarity measure boxplots for the South-America
dataset, where each country is denoted by its three-letter code.
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Figure B.3: Shape similarity measure boxplots for the Middle-East dataset,
where each country is denoted by its three-letter code.
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Figure B.4: Shape similarity differences between using 10% of the LICmin

radius instead of 99% for the South-America dataset.
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Figure B.5: Shape similarity differences between using 10% of the LICmin

radius instead of 99% for the Middle-East dataset.
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