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Abstract

There is a popular trend to implement control systems on field-programmable gate array platforms
for optimal hardware resources and fast computing speeds. Norm optimal iterative control is a
high-complexity control algorithm which is hard to implement on a resource-constrained FPGA
because it involves matrix operations. This project focuses on implementing a norm optimal
iterative learning control algorithm on FPGA through programming with MATLAB and aims
on providing an improved model with lower cost of lookup tables, flip-flops and digital signal
processors.
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Chapter 1

Introduction

The complexity and performance of field-programmable gate arrays (FPGAs) have been growing
exponentially. Due to its high loop rates (tens to hundreds of MHz) and its parallel execution
model, the FPGAs are also increasingly being employed as a control system deployment platform
[52]. In 2022, the FPGA chips in Kintex UltraScale+ series are equipped with up to 1.2M con-
figurable logic blocks [17], far exceeding the XC2064, the first FPGA product [20]. The FPGAs
consist of a series of grid blocks, which can be programmed. The designed circuits on the chips can
be modified by designers to programme specific arithmetic operations. Even though CPUs have
faster clock rates, FPGAs have higher throughput because FPGAs are designed for single func-
tions that perform parallel calculations, whereas CPUs lack sufficient parallel processing support.
Graphics processing units (GPUs) excel at parallel execution, but they are both expensive and
power-hungry. Because of the additional delay on the logical block and inner routing, FPGAs, in
general, are slower than GPUs. However, Shuichi Asano has shown that when all the processing
units are busy with operations, FPGAs are able to perform comparable number of operations per
time unit as GPUs [23]. In addition, the FPGAs consume much less power than GPUs when
they perform the same function [34]. Application-specific integrated circuits (ASIC) are another
option because they outperform GPUs and FPGAs in arithmetic operations. However, they are
pricey and cannot be reconfigured like FPGAs. As a result, rather than being used during the
design process, ASICs are typically used after the designed processes have been completed. Fur-
thermore, FPGAs typically allow connection to almost any external device, whereas GPUs do not.

The FPGAs are programmed using hardware programming languages, eg, VHDL or Verilog,
which require designers to be experienced in hardware programming and knowledgeable in the
architecture of logical blocks and memories. Hardware programming languages require not only
logical thinking but also basic knowledge of hardware circuits. Furthermore, these languages can
handle not only sequential instructions but also concurrent executions. These characteristics make
hardware languages more complicated than higher-level programming languages such as C. MAT-
LAB allows designers to generate the hardware configurations without deep knowledge of VHDL
or Verilog. MATLAB generates the hardware projects and interfaces based on Simulink models.
When writing code, designers usually take a long time to debug while automatic code generation
would have almost no syntax error but achieve the same function. Furthermore, Simulink provides
many models on different levels, from lookup tables (LUTs), the basic logical units in the FPGAs,
to User-Defined Functions which could be customized by designers. As a popular and common
tool, MATLAB and Simulink are useful to designers, e.g. control engineers, who are often not
skilful in hardware programming.

Control systems are widely applied in modern society from electrical devices in daily life to
high-speed, high-precision machines in industries. Actuators in control systems are typically ex-
pected to maintain a stable state or to accurately meet requirements. A control system is designed
to control machines or systems to fulfil requirements [43]. The most popular controller is propor-
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tional–integral–derivative (PID) controller, which was first mathematically analysed by Nicolas
Minorsky (1922) based on his observation of how helmsmen steer, which is based on the current
direction error, the error in the past, and the rate of change of error [58]. Nowadays, actuators
which require high precision are mostly controlled by feedback systems, especially in high precision
industries. A feedforward signal can be added to reduce error. Feedforward control systems can
be designed based on prior knowledge of the control target [59].

Iterative learning control (ILC) is first proposed by Murray Garden in 1967 [42] and it became
widely known since 1984. The ILC algorithm generates a feedforward signal to improve control
performance [61]. When a system performs the same task repeatedly, it is assumed that the er-
ror is also repetitive. ILC is able to trace this error and reduce it to smaller errors after some
iterations. Thus, for a repetitive input, ILC helps systems to achieve higher accuracy and reduce
settling time. Gunnarsson and Norrlöf minimizes the ILC algorithm in 2001, where the input does
not have to be repetitive, allowing a small variation for motion tasks [45], Jin (2018) provided a
novel ILC algorithm permitting iteratively varied input and random initial position [50]. Norm-
optimal iterative learning control (NOILC) is one extension of ILC algorithms which optimizes
the 2-norm of error [63]. It consists of two filters represented as two-dimensional matrices whose
sizes are dependent on the number of data samples in each iteration [75]. These two filters are also
designed by adjusting three weighting matirces to achieve different targets [27][72]. The output
feedforward signal calculation for the next iteration is based on filtering the error signal and the
previous feedforward signal.

Including ILC, there exist many control algorithms that use matrix operations in their calcula-
tion such as quadratic dynamic matrix control [65], dynamic matrix control [35], linear quadratic
regulator control [41], and multiple-input-multiple-out PID control algorithms. Because matrices
operations are frequently of high complexity, these control algorithms with matrix operations fre-
quently encounter resource issues while implemented on the FPGA platforms. As a result, they
are usually implemented on computers with a lot of memory, however, the real-time ability of a
control system may lose by CPU implementation. Due to the time limitation, even though there
exist other similar algorithms, in this project only NOILC is implemented.

The main purpose of this project is to implement the ILC algorithm on an FPGA. Besides the
implementation, the resource utilization for the ILC model is reduced, allowing a system with a
large number of samples to be implemented on the chosen FPGA and the resource utilization is
predicted before the final implementation by a proposed model.

2 FPGA-based Advanced Motion Controller Development and Design Automation



Chapter 2

Problem Statement

Because of the high computational complexity of the matrix multiplication in NOILC algorithm,
when the scalar of an NOILC is larger, like sampled for more than hundreds of or even thousands
of times for one tried signal, the implementation of NOILC requires huge resources including
memory and logic units. However, FPGAs are usually not designed with huge resources. There
do exist FPGAs with a large number of resources but they are typically more expensive. Thus,
implementing NOILC on a relatively cheap FPGA is a challenge. In addition, the actual resource
utilization is not provided until the final implementation when the HDL code is generated by
MATLAB. As a result, generating a complete project every time the designer wanted to know the
amount of resources used would be extremely time consuming. To solve these problems, there are
two main contributions in this thesis:

1. The improved NOILC algorithm which utilizes fewer resources on the board but achieves
the same functions.

2. The resource model for the improved and classical NOILC algorithms to estimate the resource
utilization in the design process in MATLAB.

FPGA-based Advanced Motion Controller Development and Design Automation 3





Chapter 3

Related work

3.1 Computation load reduction of NOILC

The ILC algorithm cannot avoid utilizing two square matrices as filters for computation. Because
of its high complexity O(n2) [30], the computation load would increase sharply with the rising in
the number of samples. With assuming the number of samples to be N , 2 × (N2 +N) elements
joint the computation and 2×N2 multiplications are required to complete the NOILC algorithms
[30]. Thus, for a large project, the required resource would increase to an affordable number.

A recent study on decreasing the computation load for norm-optimal ILC algorithm for both
linear time-invariant (LTI) and linear time-varying (LTV) systems is published in 2016 [75] by
Zunder, Bolder, Koekebakker and Oomen. They propose a resource-efficient ILC reducing the
computational load from O(N3) to O(N) by exploiting state-space descriptions and inversion
techniques. They have shown that the new approach is able to generate the same control signal
with a much lower computational cost. Moreover, this approach has been successfully executed
on a host computer with a large task where the number of samples is 100000 by the same group
[74]. Unfortunately, in this approach, its state-space update in real-time may cost much more
power than the traditional norm-optimal ILC algorithm since not only the input signal, position
error, is transmitted from ARM to FPGA but also the updated state-space. For every sample,
the space-state has to be recomputed. In addition, a part of the calculation is inverse, from time
N to time 1, providing difficulty in the calculation. When compared to the method proposed in
this report, much more power is consumed because more data is communicated between the ARM
and FPGA, and it is more complex, making implementation more difficult.

3.2 ILC Implementation on FPGA

Fei et al. have implemented a combination of model predictive control (MPC) and ILC in a digital
signal processing/field programmable gate array (DSP-FPGA)-based azimuth axis platform of a
telescope to control a permanent magnet synchronous motor [39]. The propose of this paper is
to minimize the speed ripple. The reason why they choose ILC algorithms is to suppress periodic
torque pulsations because the onset of torque pulsation in permanent magnet synchronous motor
control systems is primarily related to rotor position, which results in periodic oscillations in motor
torque and speed. In this paper, they do not improve the ILC algorithm, and the resource used is
not mentioned. Qiu et al. have implemented a combined disturbance-observer-based control and
iterative learning control design on an FPGA platform for pulsed superconducting radio frequency
cavities [64]. They demonstrated that combining the ILC algorithm speeds up the system’s con-
vergence. Similarly, they did not mention of the ILC’s resource consumption or the algorithm’s
improvement. They emphasized on the system’s convergence speed.

FPGA-based Advanced Motion Controller Development and Design Automation 5



3.3. MATRIX MULTIPLICATION

Awan in 2012 implemented the NOILC algorithm on an FPGA applying it to a Gantry robot
proving that the calculation time is reduced from 830ms (implemented on the FPGA) to 1.47ms
(implemented on software) [24]. The FPGA-based implementation is several hundred times faster
than the software. However, the controller requests a large storage space to store the trial data,
the input signal for each iteration, which is restricted by the design and cost of chips. The authors
have not improved the storage or resource utilization of NOILC during the implementation. They
mentioned that the limitation of memory and power should be solved in the future while the aim
of this thesis is to solve the restriction of resources.

3.3 Matrix Multiplication

3.3.1 Timing and Power Improvement

Considering that in most situations, ILC cannot avoid matrix operation. Matrix multiplication
is the most expensive computation in ILC. Thus, decreasing the resource utilization would be
helpful for ILC implementation. Many previous works on implementing matrix multiplication
on an FPGA have focused on reducing latency and power consumption [48][22][56]. To achieve
shorter latency or less power consumption it always sacrifices some area which means higher re-
source utilization [48]. There are exceptions, however, and the methodology proposed by Campbell
and Khatri in 2006 can reduce not only the computation time but also the resources utilization [31].

Parallel computing is that multiple computations or processes are executed at the same time
by employing more than one processing units. It is effective in reducing computational latency
[47]. The basic idea is to use multiple processors to collaboratively solve the same problem, i.e.
the problem to be solved is broken down into several parts, each of which is computed in parallel
by separate processors.

Pipelining is parallel execution at the instruction level which is a significant method in per-
formance optimization especially in decreasing the execution time for a loop which repeats one
instruction many times [21] which is taken off in 1969 [44]. Pipelining results in quasi-parallel
implementation of a program in which multiple instructions are simultaneous executed. Because
pipelining increases the throughput by executing multiple data-independent instructions at the
same time, it is not efficient if only one instruction is executed. But for multiple instructions who
do not read the output data of other instructions when they are simultaneous executed, using the
parallelism principle of pipelining can actually increase the throughput by several times. Each
pipeline stage has its own combined logical datapath within it, with no multiplexing of resources
between them, so the area overhead is relatively high. But the effect of pipelining is achieved by
allowing different pipeline stages to do different things at the same time, improving performance,
optimising timing and increasing throughput rates.

Pipelining is helpful in increasing the throughput but the crucial restriction in ILC implement-
ation is that the resource on a FPGA may not enough for ILC implementation.

3.3.2 Resource Utilization Optimization

Fox, Otto and Hey 1987 proved that decomposing matrices into smaller square sub-matrices is
efficiently matrix multiplication [40]. The PUMMA algorithm proposed by Choi et al. in 1994
extended the Fox algorithm to a two-dimensional block curtain data distribution. It solves the
problem of GPU based matrix multiplications where the sizes of matrices are usually larger than
the shared memory of GPUs [33]. In 1995 van de Geijn and Watts proposed a simpler and more
efficient matrix product algorithm called SUMMA [70] which achieves overlapping between com-
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3.4. HIGH-LEVEL SYNTHESIS

puting and communications. Different from CANNON [32] which restricts that the matrices have
to be a square matrix with the same size, SUMMA allows arbitrary sizes of matrices to do mul-
tiplication operations. This algorithm has been enhanced to support 64-bit floating-point FPGA
matrix multiplication (Dou, Vassiliadis, Kuzmanov & Gaydadjiev, 2005) [37] which is acceptable
for arbitrary matrix sizes [70]. During the calculation, matrices are split into sub-matrices and
parallelly process these sub-matrices. By doing so, matrices with large sizes are able to be im-
plemented on a resource-constrained platform and shorten the computation time from sequential
block matrix multiplication. The floating-point operations per second in this design [37] are at
least 1.7 times faster than the related design in [69] and up to 18 times faster than the design in
[66], assuming they implemented on the same chip.

Lin, So and Leong (2011) have shown that dense and sparse matrix multiplications based on
an FPGA are restricted by different factors. The sparse matrix multiplication is constrained by
the input/output memory while the computation of dense matrices is limited by the computation
limitation [57]. Kestur, Davis and Chung provided a new coding encoding method in 2012 which
decreases the memory accesses by 25% on average compared with compressed sparse row format
for the sparse matrix examples [53]. The storage requirement is decreased significantly due to the
new encoding method, however, the problem of limited computational units cannot be solved by it.

Decomposing matrices into smaller sub-matrices is helpful in implementing ILC algorithms be-
cause it decrease the memory accesses and restricted the usages of multipliers which are the goal
of this project. The method proposed in this report also decomposes the matrices into columns
for calculations based on the particularity of matrix-vector multiplication.

3.4 High-Level Synthesis

High-Level Synthesis (HLS) is an automated design process that takes an algorithm description as
input to create the digital hardware that implements the required functionality [62]. Control al-
gorithms are typically written in higher-level programming languages such as C, but the platforms
that run these control algorithms frequently require HDLs. High-level programming languages are
frequently more user-friendly than hardware languages. As a result, when using FPGAs or ASICs
for data path implementation, HLS has emerged as an alternative to HDL[28]. Although HLS
allows for rapid prototyping of any stochastic algorithm, there are limitations in terms of perform-
ance, memory bandwidth, and the number of logics when compared to manual design by domain
experts [54]. Considering that HLS is able the partly restrict the performance of HDL codes by
instructions in the high-level languages which MATLAB cannot achieves. The codes generated by
HLS may has higher performance on latency, area, power, etc. However, MATLAB has a distinct
advantage in that the designer can view the entire system model more intuitively.

3.5 FPGA programming by MATLAB Simulink

Haldar et al. (2001) used MATLAB to assist in the generation of HDL code, reducing design time
from days to minutes [46]. Siwakoti and Town have designed FPGA-based digital controllers in
MATLAB Simulink [67]. Different from the traditional manual HDL coding method, they gener-
ate the code by using the HDL generator provided by MATLAB. Jiang and Mangharam (2013)
have utilized MATLAB and Simulink to create the first-of-its-kind electrophysiological model of
the hear. They generated the VHDL code of this model directly through MATLAB and Simulink
and implemented it on the real-time hardware for testing. The generated VHDL code is efficient
and helps them to achieve the implementation of multiple versions of the model on the FPGA [49].
Weinmann created embedded MEDUMAT Transport software for healthcare workers in 2014 by
creating the model in MATLAB and generating the HDL code through MATLAB after verifying
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3.5. FPGA PROGRAMMING BY MATLAB SIMULINK

the simulated result was correct. He found that with the help of MATLAB, the code development
and review were accelerated by 50%, meanwhile more versions of the model are developed [38].
When designers are unfamiliar with hardware languages, FPGA programming through MATLAB
has been shown to be easier for designers to implement models and may be more efficient than
traditional programming methods in the design process. In terms of resource utilization, latency,
energy consumption and etc., no evidence has been found that MATLAB-generated HDL code
outperforms hand-written code by professional engineers. FPGA programming by MATLAB is
more helpful for those who are not familiar with hardware languages and try to implement an
operational hardware project.

8 FPGA-based Advanced Motion Controller Development and Design Automation



Chapter 4

Proposed approach

The NOILC contain two matrix multiplications which are used to filter the input signal, position
error, and the feedforward signal from the current iteration. Due to the high complexity of the
matrix multiplication and other matrix operations in the NOILC, NOILC is hard to be implemen-
ted on the FPGA.This chapter aims to introduce two methods to implement the NOILC algorithm
on the FPGA and predict the resource utilization of these two methods.

4.1 Preliminary

An arbitrary matrix named A with m rows and n columns is represented in bold, A ∈ Rm×n. One
element in the kth row (1 ≤ k ≤ m) and lth column (1 ≤ l ≤ n) of matrix A is indicated as Ak,l.
The kth row of matrix A is 1 by N vector Ar,k and the lth column of matrix A is N by 1 vector
Ac,l.

A =
[
Ac,1 Ac,2 . . . Ac,l . . . Ac,n

]
(4.1)

=



Ar,1

Ar,2

...
Ar,k

...
Ar,m


(4.2)

=



A1,1 A1,2 . . . A1,l . . . A1,n

A2,1 A2,2 . . . A2,l . . . A2,n

...
...

. . .
...

. . .
...

Ak,1 Ak,2 . . . Ak,l . . . Ak,n

...
...

. . .
...

. . .
...

Am,1 Am,2 . . . Am,l . . . Am,n


(4.3)

The NOILC system implemented in this project is a single-in, single-out (SISO) linear control
system. The design is in a discrete-time domain where the sample period for the input and output
are both Ts and the sampling frequency is fs = 1/Ts. For the NOILC system in this project,
the input of the system is a repetitive signal. In this project, the repetitive signal is the reference
position signal. This signal is repeatedly entered until the system stops. Each repetition is called
as one iteration. The length of the input signal in one iteration is assumed as N , where N ∈ Z+.
The vector constructed by all samples of an arbitrary signal s in iteration j is sj ∈ RN where the
ith sample of the signal is the ith element of the vector. The ith sample of the signal s with length
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4.2. NORM-OPTIMAL ITERATIVE LEARNING CONTROL

Figure 4.1: Block diagram of basic feedback control system with a feedforward signal

N in the jth iteration is denoted as sj [i], i = 1, 2, . . . , N . Iterations are indexed as a positive
integer j without an upper bound considering that a system can run forever, j ∈ {1, 2, . . .∞}.

sj =



sj [1]
sj [2]
...

sj [i]
...

sj [N ]


(4.4)

Figure 4.1 depicts a classic feedback control model in the discrete-time domain. The feedback
controller is Cfb in the z-domain and the plant is P also in z-domain. The input signal of the
feedback control is the reference position (θr,j [i]) and the output is the encoder measurement
(θj [i]). The reference position is the expected trace of the actuator and the encoder measurement
is the measured position of the actuator. The signal position error, ej [i], is the difference between
θr,j [i] and θj [i], calculated by Equation 4.5. The output signal of the feedback controller is called
ufb,j [i], the feedforward signal is uff,j [i] and the sum of them is the control signal uj [i]. The
reference position has a finite length, and the length for each execution remains constant. The
goal of this control system is to minimize the position error, ej [i]. As the input signal of the
controller, ej [i] is calculated after the signal θr,j [i] input to the system from the outside. The
output signal of the feedback controller, ufb,j [i], can be added with a feedforward signal uff,j [i] to
help with speeding up the convergence. The sum of them is the control signal uj [i] which will be
applied to the plant. The output of the plant is measured to compute the current position error
forming a close loop.

ej [i] = θr,j [i]− θj [i] (4.5)

4.2 Norm-optimal Iterative Learning Control

The input signal of a single-in-single-out NOILC in this project is repetitive. The input signal in
this thesis is the position error ej from the jth iteration, and the output signal is the feedforward
signal uff,j+1 which will be added to the feedback control signal ufb,j+1 in the j+1th iteration. In
the discrete-time domain, both input and output are one-dimensional signals. The sample periods
of these two signals are both Ts. In each iteration, the number of output samples should be the
same as the input samples which is the scalar of the input, N ∈ N+. The aim of this NOILC
system is to generate a feedforward signal helping the control system to decrease the error and
speed up the convergence.

L is a learning filter and Q is a robustness filter [29]. For simplicity, two matrices are two
N by N matrices which are calculated offline, L,Q ∈ RN×N . The values of these two matrices
are based on three weighting matrices, We,Wf and W∆f [29] [72] and the impulse response PS
of the close-loop from uff,j to θj in Figure 4.1. We is set to determine the weighting of error.
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Figure 4.2: Block diagram of ILC control [73]

W∆f controls the convergence speed and the sensitivity to iteration varying distributed and Wf

influence the robustness with respect to model uncertainty [29]. In discrete-time domain, the
process sensitivity function in Equation 4.6 can be represented by convolution matrix PS which is
constructed by the impulse response data PS(i) of the close-loop system from uff,j to θj , where
i is time, i = 0, 1, . . . N − 1 [26].

θj(s)

uff,j(s)
= PS(s) =

P (s)

1 + P (s)Cfb(s)
(4.6)

PS =

 PS(0) 0
...

. . .

PS(N − 1) . . . PS(0)

 (4.7)

With assuming the input and output as θj and uff ,j, the response of the system is in Equation
4.8 and Equation 4.9, where θj and uff ,j are vectors composed by signals θj and uff,j in the jth

iteration.

θj = PS · uff ,j (4.8) θj(0)
. . .

θj(N − 1)

 =

 PS(0) 0
...

. . .

PS(N − 1) . . . PS(0)


 uff,j(0)

. . .
uff,j(N − 1)

 (4.9)

The objective is to find the uff ,j with the minimizes the cost function ȷ in Equation 4.10 [73].

ȷ = eTj+1Weej+1 + uT
ff ,j+1Wfuff ,j+1 + (uff ,j+1 − uff ,j)

TW∆f (uff ,j+1 − uff ,j) (4.10)

With the knowledge ej+1 = ej −PS(uff ,j+1 − uff ,j), the cost function can be rewrite as

ȷ =[ej −PS(uff ,j+1 − uff ,j)]
TWe[ej −PS(uff ,j+1 − uff ,j)]

+ uT
ff ,j+1Wfuff ,j+1 + (uff ,j+1 − uff ,j)

TW∆f (uff ,j+1 − uff ,j).
(4.11)

When the cost function is minimized, ∂ȷ
∂uff,j+1

= 0. The optimal feedforward signal in the j+1

iteration is represented as

uff ,j+1 = [(PS)T ·We ·PS+Wf+W∆f ]
−1{(PS)T ·We ·ej+[(PS)T ·We ·PS+W∆f ]uff ,j}. (4.12)

FPGA-based Advanced Motion Controller Development and Design Automation 11



4.2. NORM-OPTIMAL ITERATIVE LEARNING CONTROL

Figure 4.3: Original ILC working flow

Based on Equation 4.12, L and Q can be calculated based on the Equation 4.13 and Equation
4.14 [73].

L = [(PS)T ·We ·PS+Wf +W∆f ]
−1[(PS)T ·We] (4.13)

Q = [(PS)T ·We ·PS+Wf +W∆f ]
−1[(PS)T ·We ·PS+W∆f ] (4.14)

With the knowledge of matrices L and Q, the ILC algorithm can be simply considered as a
sum of two products of matrix multiplications. uff,j+1 is the sum of filtered ej in the current
iteration and the filtered uff,j in the current iteration. The NOILC update equation is presented
in the Equation 4.15.

uff ,j+1 = L · ej +Q · uff ,j (4.15)

The ILC control diagram is presented in Figure 4.2. The two buffers in the diagram is used
to converge two one-dimension signals ej [i] and uff,j [i] into two N by 1 vectors ej and uff ,j.
After buffering the position error in the jth iteration into an N by 1 vector, ej ∈ RN , it is right
multiplied by L. At the same time, the feedforward signal in the jth iteration is also buffered to
an N by 1 vector, uff ,j and right multiplied by Q. The sum of these two results is the vector of the
feedforward signal, uff ,j+1 ∈ RN , which is added to the control signal in the (j+1)th iteration after
uff ,j+1 being serialized into the one-dimension signal uff,j+1. The whole workflow is presented in
Figure 4.3.
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4.3 NOILC with Classical Method

4.3.1 Definition of Matrix Multiplication

The classical matrix multiplication takes O(n3) computations [76] to calculate two matrix with
O(n2) elements. Considering the inputs of the computation to be a m by p matrix A and a p by
n matrix B, the result matrix C will be an m by n matrix.

C = A×B (4.16)

(4.17)

Figure 4.4: classical Matrix Multiplication Operation

During the computation, each element in matrix C is concerned with one row in matrix A
and one column in matrix B like Figure 4.4 presented. For any element Ci,j , in the kth row and
lth column equals to the sum of dot products of the whole kth row of matrix A and the whole lth

column of matrix B shown in Equation 4.18. Thus, p multiplications and additions are required to
compute one element in the output. In total p×m×n multiplications and additions are required
to complete a matrix multiplication.

Ck,l = Ak,1 ×B1,l +Ak,2 ×B2,l + . . .+Ak,q ×Bq,l + . . .+Ak,p ×Bp,l, q ∈ {1, 2, . . . , p} (4.18)

=

p∑
q=1

Ak,q ×Bq,l (4.19)

4.3.2 Matrix Multiplication Computation in Parallel

To ensure sufficient computing time, all calculations are designed to be performed simultaneously
by employing multiple processing units. The number of employed processing units equals to the
number of multiplications for each iteration. Each processing unit performs the required multi-
plication operations at the same time. Based on the multiple DSP cores on the FPGA, the FPGA
is able to break the matrix multiplication, into separate scalar multiplications. Each DSP core
executes one scalar multiplication. Thus, scalar multiplication operations in a matrix multiplic-
ation are able to be processed at the same time rather than waited to be processed in series.
The computation time could be saved but a lot of DSP cores are employed to achieve the matrix
multiplication. Since the number of required DSP cores may exceed hundreds or even thousands
where only tiny FPGAs are designed with such a number of DSPs and these FPGAs are usually
expensive [4], all multiplication operations can be performed at the same time, but it is costly.

For one matrix multiplication in the ILC system, N2 multipliers are required. This number
increases to a huge scalar with the rising of N . Moreover, ILC operates two matrix multiplica-
tions which double the utilization of multipliers. Generally, FPGAs are not designed with so many
DSPs, XC7Z100 in the Zynq-7000 family contains the maximum number of DSPs which is 2020
[19]. There exist FPGA boards with thousands of DSPs but those are much more expensive [4].
When the system has a small N , it is possible to implement the NOILC by the method mentioned
in this section.
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Figure 4.5: Diagram of classical NOILC Implementation

4.3.3 Resource utilization Model

The diagram in Figure 4.5 is a NOILC system constructed with the classical matrix multiplication
in parallel. Signal ej and uff,j have to be buffered into a vector for computation. Thus, in the
buffering step also called deserializing step, at most 2N samples need to be saved in the chip.
Assuming the bit-width of ej and uff,j is bW , 2bW · N bits need to be saved in storage blocks.
The vector can be either stored in a block RAM or in distributed memory in an FPGA directly.
Commonly saving a large vector in block RAMs would be an advisable choice since distributed
memory in an FPGA is restricted. However, considering that all the elements have to be com-
puted at the same time, it is hard to send hundreds of or even thousands of elements from block
RAMs to operational blocks in a relatively short period of time. Thus, these elements would be
better stored in the distributed RAMs in the FPGA. The deserializing step would be achieved by
adopting flip-flops (FFs).

Figure 4.6: The functional diagram of a deserializer when N = 4, bit-width = 1

The deserializer constructed in this step must be able to buffer a scalar stream into a N by 1
vector and output all elements in the vector after receiving the final element. Therefore, as the
bit-width is bW , there should exist N · bW of data FFs connected with a clock enable signal which
guarantees elements in the vector output at the same time and additional N−1 FFs help to buffer
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the earlier elements like Figure 4.6 shown. Thus, bW (2N − 1) FFs are required to achieve the
buffering function for one matrix multiplication in the ILC algorithm. To realize the number of
input elements and prevent the deserializer outputting until enough elements have been buffered,
it needs an adder to count the number of elements N and a comparer to compare the result of
the adder with N . ⌈log2(N)⌉ FFs and ⌈log2(N)⌉ LUTs constitute an adder and ⌈log2(N)⌉ FFs
constitute a comparer. The ⌈x⌉ rounds the element x to the nearest integer which is greater or
equal to itself. The clock enable signal for the FFs in the deserializer mentioned before should not
be an external signal. It should be calculated based on the input sample period and the size of
buffered vector. An adder and a comparer are required to calculate the clock enable signal and
an additional LUT might be required to control the level of the clock enable signal applied to the
FFs. A deserializer does not need any digital signal processing (DSP) blocks and required the
total number of FFs, LUTs are:

ULUT = 2× (1 + 4× ⌈log2(N)⌉)
UFF = 2× (bW × (2×N − 1) + 2× ⌈log2(N)⌉)

UDSP = 0.

(4.20)

(4.21)

(4.22)

There are more efficient deserializer designs. The two sets of adders and comparers, for example,
perform the same purpose. A deserializer can be designed with just one adder and one comparer.
The suggested constitution is nearly the worst case scenario, utilizing as much resources as possible.
As a result, if the actual resource on the platform is more than the calculated resource, the design
will not fail due to a lack of resources. There do exist the designs of the deserializer which consumes
more resources like the design in Figure 4.7 where the signal output from the first FF in the first
line is same with the output of the FF in the fourth line. The six FFs output of the first line are
repeating the same behaviours of the FFs in the first line. The weakness of the design like this is
able to be optimized by the synthesis tool. Thus, the design in Figure 4.7 is not considered to be
the worst design and the resource utilization is not predicted based on it.

Figure 4.7: A terrible design of a deserializer when N = 4, bit-width = 1

To guarantee that two matrix-vector multiplications in ILC output their results simultaneously,
2×N ×N multipliers are required to achieve this parallel execution since there exist two vector-
matrix multiplications in 4.15. There exist two buffered vectors, two matrices which can be either
saved in block RAM or distributed RAM in the FPGA. Usually, such a large amount of data
should not be stored in distributed memory but in the worst situation, MATLAB may design to

FPGA-based Advanced Motion Controller Development and Design Automation 15



4.4. NOILC WITH IMPROVED METHOD

store these elements in distributed memory because matrices are not changed by time and all of the
elements join the multiplications in every iteration. To consider the worst situation, two matrices
are assumed to be saved in distributed memory built up by LUTs. For 2 × N × N elements,
bW × 2×N ×N LUTs are cost, and each multiplier needs one DSP to complete operation. The
resources required for the multiplication part are:

ULUT = bW × 2×N ×N

UFF = 0

UDSP = 2×N ×N.

(4.23)

(4.24)

(4.25)

Table 4.1: The resource utilization assumption for the classical NOILC implementation

LUTs FFs DSPs
Deserializer (2) 2(1 + 4⌈log2(N)⌉) 2(bW (2N − 1) + 2⌈log2(N)⌉) 0

Matrix multiplication (2) 2× bW ×N2 0 2N2

Total 2(bW ×N2 + 1 + 4⌈log2(N)⌉) 2(bW (2N − 1) + 2⌈log2(N)⌉) 2N2

According to the above assumptions, the total resource utilization before serializing is in the
Table 4.1. According to the table, it is clear that the utilization of DSP is quadratically increasing
with N . When the FPGA platform does not have enough physical DSPs, to achieve the function
of the design, MATLAB might allowed one DSP to process more than one multiplications in series.
Because the input data cannot be processed directly, part of them have to be stored and wait to
be processed until the physical DSPs finish the previous multiplications. So does the output of
DSPs must wait for all products computed. Thus, more data has to be stored for waiting, more
FFs are employed to achieve the storage. Moreover, more selections are made to decide which
multiplication or addition is going to be performed and more LUTs are utilized for the selection.
Thus, when N rises to a large number resulting insufficient DSPs, this process leads to the surge
in the utilization of LUTs and FFs. The actual resource utilization becomes unpredictable. To
achieve an ILC system running on cost-optimized devices or mid-range devices, the utilization of
DSPs has to be decreased.

4.4 NOILC with Improved Method

The number of elements of position error, N , in factories ranges from hundreds to thousands. In
the last section, it is proved that when more than one multiplications have to share one physical
DSP to achieve computations, with the increase of N , the required LUTs and FFs may increase
to a huge number. This number is probably larger than the number of FFs and LUTs the board
actually has leading to the system cannot be executed on the selected FPGA platform. Therefore,
in order to ensure that the algorithm can operate even with a large N , the resource utilisation of
the algorithm should be improved.

4.4.1 Matrix Multiplication by Column Combination Method

Because the dramatic increase in LUTs and FFs occurs when there are not enough DSPs, for the
current algorithm, the core of resource utilization reduction should be reducing the DSP usage.
In the previous approach, with the increase of N , the usage of the DSPs is quadratic growth
(DSPs=2N2). Thus, it is better to limit the growth of DSP utilization to linear growth or even
slower.

Block matrix multiplication mentioned in Section 3.2 decreases the actual resource utilization
on the FPGA. Considering that in NOILC, only when enough of elements are entered, the vector
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can be buffered by these elements. The N-size-vector buffering process requires Ts(N − 1) to
complete. Block matrix multiplication still needs to buffer a smaller vector spending time in an
iteration. The best solution is that the system would not waste time in buffering.

If elements from the input position error and feedforward signals in the current iteration, ej [i]
and uff,j [i] can be processed in time rather than waiting until all samples are buffered into two
vectors, the computation time would not be as narrow. Thus, the allowable computation time for
all multiplications increases from Ts to N × Ts, the length of one iteration.

Figure 4.8: Right vector-matrix multiplication

For one matrix multiplication, L multiplying with the position error ej, in ILC system, we
assume its result as an N by 1 vector Aj. There is an N by 1 vector on the right side of
multiplication, visualizing from Figure 4.8, the ith element of ej is only operated with the ith

column of L. Thus, the result vector Aj can be represented by Equation 4.26.

Aj =

N∑
i=1

(ej [i]× Lc,i) (4.26)

where Lc,i is the ith column of matrix L.

L =
[
Lc,1 Lc,2 . . . Lc,i . . . Lc,N

]
(4.27)

Lc,i =



L1,i

L2,i

...
Li,i

...
LN,i


,Lc,i ∈ RN (4.28)

4.4.2 NOILC Implementation by Improved Method

According to Equation 4.26, if at the time when ej [i] enters the ILC system, the corresponding
vector Lc,i is selected to operate with ej [i] while the product is buffered for later accumulation. It
works the same on the Q filter part. Because the matrices L and Q are calculated off-line, the val-
ues are available to be stored before the system starts working. Thus, elements from the position
error and feedforward signal do not need to be buffered into two vectors and the computations do
not need to wait until the last Ts in each iteration.

When the column combination is performed, the number of multipliers required grows linearly
with the number of items in one iteration (N). N multipliers are utilized to compute ej [i]× Lc,i.
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To decrease the number of multipliers, the multiplication between ej [i] and Lc,i is arranged in
series by decreasing the sample time of ej [i] from Ts to Ts/N , multiplying ej [i] with N elements
in Lc,i serially. The allowable computation time for each matrix multiplication becomes Ts/N .
When the sampling frequency is 10 kHz and the number of elements N is 1000 samples per itera-
tion, the allowable computation time for one multiplication should be 100 ns. Therefore, the clock
frequency must be larger than 10 MHz which is supported by almost all FPGA boards. In this
case, as long as the computation time for each multiplication operation is within the limitation of
selected FPGAs, only one multiplier is required for one matrix multiplication. The DSP utilization
is restricted to a very small range which would not increase with N . The number of DSPs on a
platform would not limit the implementation of NOILC on FPGA.

The buffered product of each column should be added together and output as the feedforward
signal after being serialized. If the addition process does not start until the last product result is
calculated in one iteration, N ×N elements need to be stored. Because the signal ej [i] does not
need to be buffered, the multiplications between ej [i] and element in Lc,i are processed immedi-
ately after receiving ej [i]. The addition operation in matrix multiplication does not need to wait
for the completeness of the multiplication operation. Thus, the accumulation and multiplication
can be processed synchronously.

uff ,j+1 = L · ej +Q · uff ,j (4.29)

uff,j+1[1]
uff,j+1[2]

...
uff,j+1[i]

...
uff,j+1[N ]


=



∑N
k=1(ej [k]× L1,k)∑N
k=1(ej [k]× L2,k)

...∑N
k=1(ej [k]× Li,k)

...∑N
k=1(ej [k]× LN,k)


+



∑N
k=1(uff,j [k]×Q1,k)∑N
k=1(uff,j [k]×Q2,k)

...∑N
k=1(uff,j [k]×Qi,k)

...∑N
k=1(uff,j [k]×QN,k)


(4.30)



uff,j+1[1]
uff,j+1[2]

...
uff,j+1[i]

...
uff,j+1[N ]


=



∑N
k=1(ej [k]× L1,k + uff,j [k]×Q1,k)∑N
k=1(ej [k]× L2,k + uff,j [k]×Q2,k)

...∑N
k=1(ej [k]× Li,k + uff,j [k]×Qi,k)

...∑N
k=1(ej [k]× LN,k + uff,j [k]×QN,k)


(4.31)

Because the products from one column do not interact with each other and are computed
sequentially, they can be buffered into a N by 1 vector and added with other buffered products.
After storing the first column’s product vector into distributed memory, the vector is allowed to
be updated, becoming the product vector of the next column in the following sample time by
reusing the same storage. The updated vector is then added to the stored vector, and the sum of
them is saved in the same memory location as the stored vector. By doing so, the accumulation
is completed after N repetitions of the same process. The accumulation is the final result of this
matrix multiplication at the last sample time in each iteration, after the last column products
being added. N adders are required for accumulation, and the permitted calculation time for one
matrix multiplication in NOILC becomes N ·Ts; additionally, only 2N elements must be arranged
to store in the chip.

Based on the Equations (4.29 - 4.31) it is clear that the kth element of uff,j+1 equals to

the sum of N times addition (uff,j+1[i] =
∑N

k=1 ej [k] · Li,k + uff,j [k] · Qi,k). By breaking
the multiplication and addition in matrix multiplication into two parts, this method provides
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an opportunity to perform the multiplication of ej [i + 2] and elements Lc,i+2 and addition

ej [i + 1] · Lc,i+1 +
∑i

k=1(ej [i] · Lc,k) at the same time. According to Equation 4.31, adding
the two products before buffering them into vector and then buffering them into a vector for ac-
cumulation has the same result with adding the two accumulated vectors. The benefit of adding
two products before buffering is that N adders for one matrix multiplication would be saved and
the storage for the 2N elements would not need to be arranged anymore.

The workflow of the ILC system implemented by the column combination method is shown
in Figure 4.9. Since the matrices L and Q are known and would not be changed anymore for a
specific system, these two matrices can be preloaded into block RAMs, otherwise, saving these
two matrices in distributed memory would waste a lot of FFs, even use up all FFs when N is
large. After the system start, elements of ej enter the ILC system with sample period Ts. Then
the sample period of ej reduces to Ts/N to multiply with the N elements from the corresponding
column of matrix L sequentially. At the same time, the sample period of the feedforward signal
uff,j also reduces from Ts to Ts/N and multiplies with the elements in the corresponding column
of the matrix Q. The products from ej [i] and N elements of Lc,i are added with the products
of uff,j [i] and N elements of Qc,i. These N additions will be buffered into a N by 1 vector for
accumulation. At the start of each iteration, the adding factor should be initialized to zero. After
N addition operations in the accumulation process, the result is the vector of the feedforward
signal which needs to be serialized and output with sample time Ts.

4.4.3 Resource Utilization Model

By using the column combination method described in Section 4.4.2, only two DSPs are utilized
for two matrix multiplications regardless the value of N . The utilization of DSPs would not in-
crease with the growth of N . Thus, for a system with a large N , the number of DSPs on the
FPGA is also sufficient. The addition of two products needs one adder. Considering the bit-width,
bW LUTs are required for the adder. To buffer the sum of two products into a N by 1 vector, a
deserializer is necessary which requires 1 + 4⌈log2(N)⌉ LUTs and bW (2N − 1) + 2⌈log2(N)⌉ FFs
as mentioned in Section 4.3.3. The elements of matrices L and Q can be stored in block RAMs
because the elements are used sequentially.

Only N adders are required for accumulating the sum of products. The total number of LUTs
required is bW × N . To achieve the loop of accumulation, the system needs a switch, a counter
and a constant 0. The constant 0 is to initialize the storage at the start of each iteration. An
another switch is required to identify whether output the final result at the end of each iteration.
To count for number N , it needs 2× ⌈log2(N)⌉ LUTs and ⌈log2(N)⌉ FFs as described in Section
4.3.3. One LUT is necessary for constant 0. The inputs and outputs of two switches are both N
by 1 vectors, therefore each switch needs to do N selections which requires bW ×N LUTs.

Table 4.2: The resource utilization assumption for the improved NOILC implementation

LUTs FFs DSPs
Deserializer 1 + 4⌈log2(N)⌉ bW (2N − 1) + 2⌈log2(N)⌉ 0
Multiplier(2) 0 0 2

Adder of products bW 0 0
Counter 2⌈log2(N)⌉ ⌈log2(N)⌉ 0

Constant 0 1 0 0
Adders for accumulation bW ·N 0 0

Switch (2) 2bW ·N 0 0
Total 3bW ·N + 6⌈log2(N)⌉+ bW + 2 bW (2N − 1) + 3⌈log2(N)⌉ 2
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Figure 4.9: Improved ILC working flow by using Column Combination Method
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Table 4.3: Comparison of resource usage of the classical and the improved methods

LUTs FFs DSPs
Classical method 2(bW ×N2 + 1 + 4⌈log2(N)⌉) 2(bW (2N − 1) + 2⌈log2(N)⌉) 2N2

Improved method 3bW ·N + 6⌈log2(N)⌉+ bW + 2 bW (2N − 1) + 3⌈log2(N)⌉ 2

The total resource cost for the improved method is in Table 4.2. Compared with the classical
implementation method in table 4.1, the rise of LUTs becomes a linear with the development of
N, and the use of DSPs is a constant. In this project, only 2 DSPs are utilized. The usage of FFs
linear increases with the growth of N. Since the computation time for multiplication is related to
the number of elements in one iteration, for a system with a huge N , the computation time for
multiplication may decrease to 10−10s which is almost impossible to be processed. In this case,
more multipliers should be utilized to do multiplications in parallel, reducing calculation time.
Another disadvantage of this design is that the sample frequency of the output feedforward signal
may not be fs. The sample frequency of the output signal uff,j+1 is possible to be faster than fs
because the sampling frequency of the signals ej and uff,j in the previous step is raised in order
to achieve multiplication. Before adding the feedforward signal with the feedback control signal,
the sampling frequency of uff,j+1 must be decreased to fs by downsampling.
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Chapter 5

Experimental Setup

An FPGA is required to process the projects while constructing a NOILC system on an FPGA
platform. To simulate execution, control systems should be constructed in MATLAB Simulink.
When the simulation results show that the systems converge and that the feedforward signals
created by ILC help in reducing error and speeding up convergence, the HDL projects of ILC
algorithms are generated via the FPAG programming process provided by MATLAB. Finally, the
project may be executed on the selected FPGA board, and the actual resource utilization can be
checked in the project files.

5.1 Platform

Not all the FPGA devices on the market are supported by the FPGA programming of MATLAB.
Zedboard is one of the supported hardware devices, meanwhile, meanwhile, at $475, Zedboaed is
not prohibitively pricey [18]. Zedboards can process designs based on Linux, Windows, and other
real-time operating systems [18]. The Zynq chip can be divided into two parts, processing system
(PS) and programmable logic (PL) [19]. PS is a traditional processor equipped with a dual-core
ARM Cortex-A9 processor, memory, timer, various communication interfaces for external devices,
etc. Zedboard is designed with Xilinx XC7Z020 as a programmable logic device which contains
53200 LUTs, 106400 FFs, 220 DSP slices and 4.9Mb total block RAM [19]. PS is interconnected
with PL via internal high-speed buses.

Figure 5.1: The chosen platform: Zedboard

FPGA-based Advanced Motion Controller Development and Design Automation 23



5.2. NOILC WITH CLASSICAL MATRIX MULTIPLICATION

5.2 NOILC with Classical Matrix Multiplication

5.2.1 NOILC Implementation

A traditional feedback control system is made up of two major components: a controller and
a plant. This control system’s objective is to ensure that the actuator controlled by the motor
goes to the specified position. As a result, the plant in this project is a continuous actuator
directed by a motor. The signal θj , on the other hand, is the measured encoder position in the
discrete-time domain, reading data based on the sampling frequency. Because MATLAB is more
likely to report errors when developing HDL projects for hybrid systems than when developing
projects for exclusively discrete systems. Thus, despite the fact that the plant should be designed
in the continuous-time domain, the simulated plant is constructed in the discrete-time domain.
The feedback control system is constructed based on a given simulated model with a sampling
frequency 16 kHz.

In order to buffer the one-dimensional input signal ej [i] and output signal uff,j [i] into two
N by 1 vectors, two buffers are required. In Simulink, the component Buffer is able to achieve
this function [5]. The component Gain [12] is able to perform multiplication with provided gain
factors which can be either scalars, vectors or matrices. These gain factors are kept in distributed
memory and are connected to the same clock signals as the multipliers. Thus, the input signals
are multiplied by these factors as long as the multiplications are processed. These gain factors are
accompanied by the multipliers to guarantee that as long as the input signal comes, multiplications
would be processed. Two Gain components achieve the vector-matrix multiplications by providing
matrices L and Q as gain factors. After adding the two products, the final vector uff ,j should
be converted into a one-dimensional signal again, which is also achievable by Buffer. However,
Buffer does not support the HDL code generation in MATLAB. The substitutes for buffers are
Deserializer1D [9] and Serializer1D [14] who convert a one-dimensional signal into vectors and
vectors into lower dimension signal respectively.

5.2.2 Number of Samples Reduction

The reference signal contains 650 samples at 16 kHz sampling frequency in each iteration (Figure
5.2 (a)), which cannot be implemented on the chosen Zedboard because the number of expected
multipliers (422500) is much greater than the number of DSPs a Zedboard has (220). To imple-
ment the current NOILC algorithm on the chip, the number of samples has to be reduced without
influencing the convergence of the system.

Currently, after reaching the predicted location from the initial position, the trace of the
reference position remains in the current state for a short time before returning to the initial
position to await movement in the next iteration. However, ILC cannot identify whether the
command position is back to the initial position or not since once the control system converges,
the signal ej reduces to almost zero and the input signal to ILC is the position error. Therefore,
the reference position does not have to return to the initial position but increases directly based
on the convergence state forming as a stair-step signal. The number of required samples to achieve
convergence becomes only half of the original one as 325 as figure (b) in Figure 5.2.

5.2.3 Word Width

The NOILC is implemented on the FPGA while the feedback control part is programmed on the
ARM. The communication between these two parts is based on the AXI4 interfaces arranged by
Simulink. Because the datatype is not specified by the designer during the simulation, MATLAB
utilises double precision as the datatype. To transmit data between ARM and FPGA, the signal
ej and uff,j would be better to be converted to a signed fixed-point data type. With the help of
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Figure 5.2: Two reference position signals with different lengths

the feedforward signal generated by NOILC, the error starts to reduce and gradually approaches
a value of 0 from the second iteration. Thus, the maximum difference between the reference
position signal and encoder measurement signal should be in the first iteration. In contrast, the
signal uff,j remains at 0 in the first iteration and it has the computed output from the second
iteration. The values of uff,j [i] remain stable after the system becomes convergent which may
take several iterations. Based on the maximum values and the minimum values of signal ej and
uff,j measured in the simulation, the shortest word length to ensure the system working correctly
can be confirmed. But overflow easily happens because the result from the hardware cannot be
totally the same with the simulation result. In this project, to preserve the storage on FPGA, the
shortest world width is chosen. The minimum and maximum values of ej and uff in 10 iterations
are:

• max ej : 394.7204

• min ej : -368.8130

• max uff,j : 1223.8462

• min uff,j : -1560.7651.

The data type must be signed and it needs at least 11 bits for the integer part (log2(1560) =
10.60733031). After measuring the fractional part, the word width of signals is 24 bits with 12
bits of fraction, 11 bits of integer and 1 signed bit. According to Figure 5.3, the signal in fixed
point is almost overlapping with the signal in double precision. The maximum difference in 10
iterations is around 1 um which is acceptable. Thus, the NOILC part is implemented with 24 bits
signed fixed-point format.
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Figure 5.3: The feedforward signal uff,j with different data types

5.3 NOILC with Improved Matrix Multiplication

To construct the improved model described in Section 4.4.2 in MATLAB Simulink, two RAMs are
required to store the elements of matrices L and Q. Two Product [13] components are utilized as
multipliers. An adder is followed by the multipliers outputting the sum of products. A Deserial-
izer1D described in Section 5.2.1 is utilized as a buffer to convert the one-dimensional sum to a
N by 1 vector. Two Switch [15] components, an Adder [3], a UnitDelay [16] for storing the sum
of all computed column products, a Counter [8] and a Constant 0 [7] constitute a for loop for
the accumulation of all the column products in one iteration. The output of the loop is the final
result uff ,j. The loop initializes the storage as zero at the start of each iteration, making sure that
the values in the previous iteration would not affect the calculation in the current iteration. The
vector uff ,j is converted into one-dimensional signal uff,j by the Serilizer1D after downsampling.
The signal uff,j is added to the control signal before the plant and multiplied with elements in Q
in the next iteration. It is worth noting that MATLAB Simulink does not allow the interaction of
two signals with different sample rates, such as addition and multiplication, otherwise, MATLAB
reports errors. If all of these signals have a relationship and their sample rates vary, the sampling
rates in Simulink must be altered until they are constant. Thus, two upsampling components and
one downsampling component are used to ensure that the output signal has the same sampling
frequency as the input signal.

Figure 5.4: Diagram of NOILC implementation with improved method
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5.4 Matrix Multiplication Utilization Test

The implementation of NOILC is based on two vector-matrix multiplications with the exact same
method and processes. NOILC’s total resource utilisation is the double of one signal vector-matrix
multiplication with the same size matrix and vector plus an additional adder. Therefore, it is suf-
ficient to analyse only one vector-matrix multiplication. The Downsampling component reports a
lot of errors while creating HDL project via MATLAB. Nevertheless, the downsampling function
is not hard to be achieved by hardware language. For example, the hardware interface of the
Simulink, which is an interface allowing models in Simulink to communicate with the design in
the hardware, only supports single-rate blocks for concurrent execution while Downsampling is a
multi-rate block.

Figure 5.5: The design of improved method without Downsampling

By connecting the second input, s2, of the Switch2 in Figure 5.5 to output of itself, out1,
with one sample-time delay in between, Switch2 is able to repeating output the vector uff,j for
N · Ts duration. Thus, out1 remains uff,j until uff,j+1 is computed. The signal output from
out1 in Figure 5.5 and the signal output from the Downsampling, dout, in Figure 5.4 have the
same numerical value but the out1 has higher sampling rate than the dout. For the Serializer in
Simulink, the sample time of the input signal has to be N times larger than the output signal when
converting an N by 1 vector to a one-dimension signal [14]. Thus, even though the out1 has the
same value of dout, the sample rate of the out1 has to be decrease. The downsampling process,
as well as the block Downsampling, cannot be avoided in the Simulink design. But the down-
sampling design in the HDL design would not be a challenge. It could be achieved by adding FFs,
which are connected with a lower rate clock enable signal, connected with the out1. Therefore, to
avoid the negative influence of Downsampling, this component would not be utilized for analysis.
Due to the influence of Downsampling, Serializer which follows the Downsampling would not be
utilized for analysis. Thus, in the classical model analysis, the Serializer would not be considered
either. The analysis of the classical model only involves a Deserializer for buffering and a Gain
for multiplication.

Because for the classical design only one matrix multiplication is analyzed, only one matrix
multiplication is analyzed with the improved model. The entire NOILC only requires one more
multiplier and one more adder compared with the one matrix multiplication test. Because of the
problems caused by Downsampling component in Simulink, Downsampling and Serializer would
not be considered for the the improved model either. The inputs of the improved model are two
one-dimension signals and the output is an N by 1 vector. In addition, it outputs the N by 1 vector
only in the last Ts of an iteration and outputs 0 in the rest of the same iteration. The improved
model contains a multiplier, a Deserializer, an adder, a UnitDelay, two switches, a counter and a
constant 0.
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The bit-width (bW ) for resource utilization testing is set as 12 bits unsigned fixed-point without
a fraction part for the matrix multiplication test. The vectors and matrices for their resource util-
ization analysis are consisted of randomly generated 12-bit integers. The reason is that there exist
a lot of zeros in matrix L and Q. MATLAB may not consider the multiplication with these zeros
as operations but constants 0. The tested recourse utilization cannot accurately represents the
growth trends of the LUTs, FFs and DSPs. Thus, randomly generated 12-bit unsigned fixed-point
data are selected for resource analysis in one matrix multiplication.

Considering that xc7z020clg484-1 Artix-7 FPGA only contains 220 DSPs, when N is larger
than 14 (152 = 225), the number of expected DSPs for the classical matrix multiplication becomes
larger than the maximum value it contains. The chip for analysing is changed to xcku5p-sfvb784-
1LV-i which has 1824 DSPs allowing the value of N increases to at least 42 (

√
1824 = 42.7083).

5.5 HDL Properties Setting Up

To determine the details of HDL code generation and improve performance on time, power, and
area, MATLAB gives a lot of distinct properties for various components and designed subsystems.
For RAMs in Simulink, for example, RAMDirective in HDL properties permits the designer to
specify whether the RAM is a block RAM or a distributed RAM. The two chosen properties in
this project are Adaptive Pipelining and Clock-rate Pipelining.

Adaptive Pipelining This property is able to combine certain blocks to reduce the area on
the FPGA chip. For components specified by MATLAB, Adaptive Pipelining rearranges their
designs and deployments providing the opportunity for resource sharing and area optimization [2].
This property is usually utilized with ShareFactor which tries to share the Num operation with
1 physical resource on FPGA where Num is a designed integer number. For example, for a Gain
component which multiplies a signal with a scalar gain factor, the generated project in register
transfer level with selecting Adaptive Pipelining or not are presented in Figure 5.6 and Figure 5.7.
When the Adaptive Pipelining is selected the Gain is separated into two parts, a constant gain
factor and a multiplier allow this Gain to share the physical multiplier with other multiplication
if the designer allows the sharing. However, when Adaptive Pipelining is set as off, the compon-
ent Gain is considered as a single component which refuses to share any resources with other
components. The drawback of Adaptive Pipelining is also noticeable where registers are applied
to input and output ports of the components which may cause additional delay and more FFs
utilization. Thus, Adaptive Pipelining does not always optimize on area and timing, sometimes,
it may make the situation worse. For example, if there exist only one Gain and some selection
components in the design, Adaptive Pipelining cannot help to share the physical multiplier with
other multiplication but add addition registers with the ports of all components which lengthen
the latency of the system.

Figure 5.6: HDL generation for a Gain block
without chosen Adaptive Pipelining

Figure 5.7: HDL generation for a Gain block
with chosen Adaptive Pipelining

Clock-rate Pipelining When Clock-rate Pipelining is selected, registers in the designed sub-
system are connected to the fastest clock to limit the latency in the system [6]. The delay designed
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in the subsystem by using components would not be affected by Clock-rate Pipelining. The syn-
thesis tool may plan some resisters to the design during the FPGA programming process when
some properties are selected like [6]. These registers have the same data rate with the components
on the same path by default. Thus, if there exist multiple paths with different data rates, the
registers arranged on the slower path extends the latency from the input of the subsystem to
the output. By selecting theClock-rate Pipelining, the registers added in the slower path will be
connected with the clock in the faster path to reduce the delay caused by the additional arranged
registers. Considering the additional registers added by Adaptive Pipelining, choosing Clock-rate
Pipelining helps to reduce the negative influence of additional delay caused by Adaptive Pipelining.

Considering that the matrix multiplication utilizes many multipliers and when N is a large
number, the number of physical DSP on the FPGA may not be sufficient. The design should allow
multiple multiplications to share one physical DSP. Thus, Adaptive Pipelining is selected. There
exist multiple data rates in both the classical method and the improved method. To reduce the
additional delay caused by Adaptive Pipelining, Clock-rate Pipelining is also selected.
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Chapter 6

Performance Evaluation

6.1 NOILC Simulation

With the knowledge of the provided plant and controller, the impulse response data of the close-
loop system from uff,j to θj could be computed directly [71]. With the help of the impulse in
MATLAB [11], the the impulse response data is presented in Figure 6.1 the convolution matrix
PS can be constructed based on the Equation 4.7. The three weighting matrices mentioned in
Section 4.2 are determined according to the tuning guidelines provided by Barton and Alleyne
[25]. After adjustment, We = IN×N , Wf = 0.01 · IN×N and Wδf = 0 · IN×N where IN×N is
a N × N identity matrix. With the knowledge of three weighting matrices and the convolution
matrix, matrices L and Q becomes known before the system starts working.

Figure 6.1: The impulse response data of the close-loop system from uff,j to θj

The simulation result of NOILC is shown in Figure 6.2, where the learning process is performed
for 20 iterations. The reference position signal is a stair-step signal which does not have to return
to the initial position since the input signal ej reduces to almost zero after convergence. The first
figure presents the reference position signal θr,j in the blue line and the measured position signal
θj in the red line which are the input signal and output signal of the feedback control system.
The duration of each iteration is 0.020375s and the distance between the destination and the start
position is 20um on Z axis. The start position of the first iteration is 0. The start position of the
jth (j > 1) iteration is the destination of the (j − 1)th iteration. With the help of the feedforward
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Figure 6.2: The simulation result of NOILC in Simulink

signal output by the NOILC, from the second iteration, the maximum position error, presented
in the second figure of Figure 6.2, is decreased to less than 1 um, which is less than the half of the
maximum error in the first iteration without the help of the NOILC. When the value of θj meets
the ±2% of the value difference of θr,j and stays in this range, the output is settled and the time is
called the settling time of the system [68]. With the help of the NOILC, the settling time reduces
from 10.0625 ms in the first iteration to less than 1.8500 ms after the second iteration. The third
figure is the feedforward signal uff,j whose value in the first iteration is zero. The output of ILC is
valued and affects the control system from the second iteration. These three figures show that the
designed NOILC works and positively affects the performance of the control system. It reduces
not only the position error but also assists to speed up the convergence.

The improved model should have the exact same output as the classical model as presented
in Figure 6.3 because the two methods are theoretically equivalent based on the equations from
Equation 4.29 to Equation 4.31. Two feedforward signals from different models completely overlap
with each other showing that the improved model works correctly.
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Figure 6.3: Feedforward signals of NOILC model with classic matrix multiplication and improved
model

6.2 Resource Utilization Analysis

6.2.1 Classical Matrix Multiplication

Based on the assumption table 4.1 in Section 4.3.3, the required resources for a Deserializer and
a Gain are: 

ULUT = bW ·N2 + 1 + 4⌈log2(N)⌉
UFF = bW · (2N − 1) + 2⌈log2(N)⌉

UDSP = N2.

(6.1)

(6.2)

(6.3)

The numbers of required FFs and LUTs has to be integers, the estimated number has to be
rounded into the nearest integer which is greater or equal to themselves by ⌈x⌉. With the selected
N , the actual resource utilization for the classical model is in the table 6.1. The estimated re-
quirements of LUT, FF and DSP are based on the Equation 6.1, Equation 6.2 and Equation 6.3.
From the table, we could see that when a small number of DSPs are required (N ≤ 5), the actual
number of DSPs utilized is the same as the estimated one. With the increase in DSP requirement,
the actual DSP utilization becomes slightly less than the computed one. This can happen for
more than one reason. Firstly, because the vector and matrix are randomly generated, it cannot
avoid generating elements with special values like 0, 1 or powers of 2. The synthesis tool may not
arrange DSPs for multiplication with these numbers as LUTs could achieve the functions. The
second reason might be that the resource of multipliers in DSPs is not completely utilized. The
bit-width for the data is 12 while the size of the multipliers on the chip is 25 × 18 [1]. When the
number of required multipliers rises, the synthesis tool may split part of the 12×12 multiplications
into several smaller multiplication groups based on the Baugh-Wooley multiplication algorithm
[55] to fully utilise multipliers. By increasing the bit-width to 18, the number of required DSP is
increased from 35 to 36 which is the estimated number when N = 6. When N = 14, the number of
required DSP increase from 175 to 184. Although, this number is still less than the estimated num-
ber (196), the number of required DSP rises when the bit-width becomes larger. The third reason
might be that the multiplication is transferred into addition by Karatsuba-Of-man algorithm [51]
[60]. With the help of this algorithm, the karatsuba algorithm reduces the multiplication size by
half with each use, reducing the cost of DSPs.
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Figure 6.4: The DSP utilization of classical matrix multiplication

Figure 6.5: The LUT utilization of classical matrix multiplication

Figure 6.6: The FF utilization of classical matrix multiplication
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Table 6.1: Resource utilization of classical matrix multiplication

N 2 3 4 5 6 7 8 9 10 11 12 13

LUT
Estimated 53 117 201 313 445 601 781 989 1217 1469 1745 2045
Actual 53 77 180 187 343 343 552 550 811 804 1116 1105

FF
Estimated 38 64 88 114 138 162 186 212 236 260 284 308
Actual 39 65 89 115 139 163 187 213 237 261 285 309

DSP
Estimated 4 9 16 25 36 49 64 81 100 121 144 169
Actual 4 9 16 25 35 48 62 76 99 111 134 158

N 14 15 16 20 24 28 32 40 48 56 64

LUT
Estimated 2369 2717 3089 4821 6933 9429 12309 19225 27673 37657 49177
Actual 1470 1455 1872 2843 4210 5354 6924 10579 15766 54570 96277

FF
Estimated 332 356 380 478 574 670 766 960 1152 1344 1536
Actual 333 357 381 479 575 671 768 961 1385 9157 17323

DSP
Estimated 196 225 256 400 576 784 1024 1600 2304 3136 4096
Actual 175 210 240 352 517 680 885 1338 1824 1824 1824

Figure 6.4 presenting the relationship of N with the number of utilized DSPs. The estimated
model is based on the Equation 6.3. Even though, the number of actual utilized DSPs is less than
the estimated number. The possible causes of this phenomenon were discussed in the preceding
paragraph. When the demand for DSPs exceeds the available DSP number on the chips, the num-
ber of actually used DSPs does not vary. The number of available DSPs here is 1824 represented
in the dash-dotted line. When N is larger than 42, the actual utilized DSP would not be changed
since it meets the maximum. Thus, all data with N equals a power of 2 (N < 42) are selected as
a fitted set and the others are selected for verification.

Quadratic model in polynomial regression models is selected while doing least squares. The
reason why to choose the quadratic model for fitting is that the number of actual utilized DSPs is
a little less than the estimated model (N2) but the increasing trend does not vary a lot. A data
set to be fitted contains n points (xi, yi), n = 1, 2, . . . , n, where xi is the independent variable
and yi is the dependent variable. Residuals (ri) are the difference between observation values (yi)
and the fitted values f(xi,β) as Equation 6.4 presented [36]. Least squares finds the matched
regression function for data set by minimising the sum of the squares of the residuals (S) [36].

ri = yi − f(xi,β) (6.4)

S =

n∑
i

r2i (6.5)

RMSD =

√∑
k(fit[k]− verification[k])2

length
(6.6)

NRMSD =
RMSD

verification
(6.7)

MATLAB provides a function fit [10] helping to do the polynomial regression. Thus, a lot
calculation processes of least squares could be saved. The fitted model found by MATLAB
(UDSP = 0.8027 · N2 + 2.206 · N − 4.253) is the red line in the Figure 6.4 which is almost
fitted with the experimental data in table 6.1 for all N less than 42. This model computes the the
cost of DSP with the increase of N when the bit-width is 12. To calculate the errors of the fitted
model, in the verified set only the parameters when N < 42 are considered. The root-mean-square
deviation (RMSD) between the fitted model and the verified data is 8.7498 calculated based on
the Equation where k is the value of N in the verified set and the length is the total number of
verified sets. The Normalization root-mean-square deviation (NRMSD) is 0.0160 calculated based
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Figure 6.7: The structure of a configurable logical block on FPGA

on the Equation 6.7 where verification is the mean of verified data. The error of the fitted model
is 1.6% which is acceptable. Overall, for the classical matrix multiplication, the actual utilized
DSPs quadratically increase with the scalar N and the fitted model is dependable.

The estimated cost of LUT for the classical implementation is based on the Equation 6.1.
However, compared with the data in table 6.1, the actual utilized LUT is roughly the half of the
expectation for N ≤ 42. The reason of this difference might be the configurable logic block (CLB)
in FPGA which is constructed by a LUT, a FF and a MUX. The structure of CLB is shown in
Figure 6.2.1 where the LUT implements the combinational logical function, FF stores the output
of LUT and MUX implements the selection logic. The CLB allows one single LUT to implement
two logic functions. Without the construction of CLB, the LUT in the Figure with 4 inputs could
only achieve the logic with at most 4 inputs to 8 inputs. For an eight inputs logic, the inputs are
split into two groups, four inputs as a group. The logical output of one group is stored in the FF
and then output to the MUX and the logical output of the other group is output to the MUX
directly for the selection. Due to the structure of CLB, the number of inputs to the LUT increases
from at most 4 to at most 8 in this example. The number of actual utilized LUT is decreased.

By selecting the same fitted set as the DSP analysis, the rest sets are selected for verification.
When there are enough DSPs on the chip, the fitted model computed by using the fit function
(ULUT = 6.04 ·N2 + 25.67 ·N − 24.93) is fitted with the verification data as presented in Figure
6.5. The RMSD for the fitted model of required LUT is 115.3192 and the NRMSD is 0.0096 for
N < 42. However, when the number of DSPs is insufficient (N > 42), the actual number of LUTs
used skyrockets because additional multipliers are constructed with CLBs by the synthesis tool.
Thus, a lot LUTs are consumed. As a result, the usage of LUTs grows to a very high level. If
the number N continues to grow, the LUTs on the chip will all be used. With the increase of N ,
when the number of DSP is sufficient, the growth of the actual utilized LUT should be increased
by a power of 2 since the fitted model is almost same with the half of the estimated model when
N < 42. In addition, since the NRMSD of the fitted model is small enough, the output of the
fitted model is almost same with the number of actual utilized LUT in the classical design.

The number of required FFs from computation is based on the Equation 6.2. The actual
number of required FFs is almost the same as the estimated number when the number of DSP is
sufficient. After doing the polynomial regression with the fitted data in Figure 6.6, the fitted model
is almost the same as the estimated model and fitted with all verification data when N < 42. The
RMSD of the fitted model is 1.5849 and the NRMSD is 0.000792. The differences between the fitted
model and the verified data are small enough to be neglected. Same with the situation of LUTs,
when the number of DSP is insufficient, the number of actual required FFs rises dramatically.
The required FF linearly grows with the increase of N when DSP is sufficient. When the number
of DSPs is insufficient, the number of required FFs and LUTs skyrockets, soon consuming all
available chip resources.
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Table 6.2: Resource utilization of improved matrix multiplication model

N 2 3 4 5 6 7 8 9 10 11 12 13 14

LUT
Estimated 80 122 158 200 236 272 308 350 386 422 458 494 530
Actual 66 64 106 103 157 139 221 194 273 231 321 267 369

FF
Estimated 63 102 138 177 213 249 285 324 360 396 432 468 504
Actual 65 110 146 196 244 292 324 359 399 435 473 510 551

DSP
Estimated 1 1 1 1 1 1 1 1 1 1 1 1 1
Actual 1 1 1 1 1 1 1 1 1 1 1 1 1

N 15 16 20 24 28 32 40 48 56 64 80 96 112

LUT
Estimated 566 602 752 896 1040 1184 1478 1766 2054 2342 2924 3500 4076
Actual 303 415 519 615 710 805 778 924 1069 1210 1517 1804 2107

FF
Estimated 540 576 723 867 1011 1155 1446 1734 2022 2310 2889 3465 4041
Actual 586 626 769 917 1065 1214 1513 1809 2105 2401 2997 3604 4199

DSP
Estimated 1 1 1 1 1 1 1 1 1 1 1 1 1
Actual 1 1 1 1 1 1 1 1 1 1 1 1 1

N 128 160 192 224 256 320 384 448 512 640 768 896 1024

LUT
Estimated 4652 5810 6962 8114 9266 11576 13880 16184 18488 23102 27710 32318 36926
Actual 3164 3951 3581 4175 6300 7883 7149 10984 12543 11834 18820 21940 25062

FF
Estimated 4617 5772 6924 8076 9228 11535 13839 16143 18447 23058 27666 32274 36882
Actual 4779 5964 7147 8333 9521 11895 14254 16634 19010 23739 28495 33249 38003

DSP
Estimated 1 1 1 1 1 1 1 1 1 1 1 1 1
Actual 1 1 1 1 1 1 1 1 1 1 1 1 1

6.2.2 Improved Matrix Multiplication

The analysis of the improved model contains a multiplier, a Deserializer, an adder, a UnitDelay,
two switches, a counter and a constant 0 which already mentioned in Section 5.4. All the tested
data are presented in table 6.2. All data sets with N equals a power of 2 are selected as a fitted set
and the others are selected for verification. Based on the table 4.2 in Section 4.4.3, the calculated
required resources for the improved model are:

ULUT = 3bW ·N + 6⌈log2(N)⌉+ 2

UFF = bW (2N − 1) + 3⌈log2(N)⌉
UDSP = 1.

(6.8)

(6.9)

(6.10)

The estimated number of DSP is only 1 which should not increase with the growth of N . Based
on the table 6.2, the number of required DSP remains 1 for all N . The fitted model is also the
same as the estimated model fitting all the verification data for the number of DSP utilization in
the improved model.

The estimated model of the cost of LUTs in the improved model is based on the Equation
6.8. The actual cost of LUT is around two thirds of the estimated number which might be caused
by the CLB blocks mentioned above. The reason for this mismatch is that the two switches and
adder in the improved model employ the most LUTs in the design. The CLB structure, on the
other hand, would not reduce the number of required LUTs required by the Switch2 because
the number of its inputs is the same as the number of its outputs, and these output signals are
exported simultaneously. The required LUTs of Switch2 cannot be reduced. The fitted model
in Figure 6.9 overlaps with two thirds of the estimated model but does not perfectly fit with
the verification data. There exist some points underneath the fitted model but most data fits
with the fitted model. The fitted model (ULUT = 24.24 · N − 171.4) is a linear model, however,
according to the computation, there also exist logarithmic calculations for LUT utilization. The
fitted model is overlapped with the two third of the estimated model. The linear model cannot
perfectly fit with the validation data. In addition, there exist four points which are far away from
the fitted model. The data does not alter after multiple repetitions of the same test. Thus, the
gaps between these points and the fitted model is not caused by the values of randomly generated
vectors and matrices. Although I am not sure about why these problematic points are generated,
the fitted model can still be used to predict the cost of LUTs. The reason is that these points are
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Figure 6.8: The DSP utilization of improved matrix multiplication

Figure 6.9: The LUT utilization of improved matrix multiplication

Figure 6.10: The FF utilization of improved matrix multiplication
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less than the estimated value. The implementation based on this prediction would not influence
the performance of a project. Due to these problematic points, the error of this model is larger
than other models. The RMSD of the usage of LUT in the improved design is 947.0165 and the
NRMSD is 0.2217. Because the NRMSD is larger than 20%, this fitted model cannot accurately
predict the actual LUT usage. Even though there exist fluctuations, in the improved model, the
number of utilized LUT linearly increases with the growth of N .

The estimated model of FF in the improved model is based on the Equation 6.9. The data in
table 6.1 shows that the actual utilized FF is a little higher than the estimated number and the
gap rises with the increase of scalar N . The reason might be that AdaptiveP ipelining adds some
additional registers at the input and the output ports of the components which are represented
by FFs. In the classical design, there are only two components. The influence of the additional
registers is not apparent. But in the improved design which has 8 components, the influence of ad-
ditional registers becomes apparent. After fitting a model based on the selected data, the models
and data are presented in Figure 6.10 where the fitted model almost fits with the verification data.
The RMSD of the fitted model is 20.5661 and the NRMSD is 0.0029, which are so minor that can
be ignored. No matter for the fitted model or the computed model, the number of utilized FF is
linearly increasing with the scalar N . But the gap between the fitted model and the estimated
model becomes larger with the growth of N due to the FFs connected between components.

6.2.3 The Comparison of the classical Model with the Improved Model

When the number of DSPs on the chip is sufficient, the usages of LUT and DSP in the improved
design are significantly lower than those in the classical design. The number of utilized FFs in
the improved design is slightly more than the number of utilized FFs in the classical design when
DSP is sufficient. The reason might be the influence of Adaptive Pipelining which adds additional
registers in the design. When N = 40, the number of used LUTs in the classical design is similar
to the number of used LUTs in the improved design when N = 448. The gaps in the use of
LUT and DSP in the two models widen as N grows. This is because the growth pattern of the
utilized DSP is reduced from quadratic growth to constant, and the growth pattern of the used
LUT is lowered to linear. There will be no spikes in LUT and FF usage due to the DSP’s resources
running out because the DSP utilization is controlled to a range which can be decided by designers.

Although the classical design utilized significantly more resources than the improved model,
the NOILC implementation would double the utilization for the same N in the classical design
since NOILC contains two matrix multiplications. The NOILC implementation with the improved
model, on the other hand, requires roughly the same resources as the single matrix multiplication
test, plus a multiplier and an adder. As a result, the improved model has much higher resource
utilization efficiency, allowing a NOILC system with a larger N to be executed on an FPGA plat-
form.

6.3 NOILC implementation on FPGA

To test the performance of NOILC when N = 325 on the hardware, MATLAB provides an inter-
face, FPGA-in-the-Loop (FIL), which connecting the simulator with the real hardware to verify
the function of HDL code. MATLAB generates a simulation model on the register transfer level
(RTL) based on the design in Simulink during the HDL generating process. During the process of
HDL generation, MATLAB creates a simulation model on the RTL based on the HDL code.
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Figure 6.11: The testing result of the improved NOILC in the hardware by FPGA-in-the-loop


ULUT = 2× bW ·N2 + 1 + 4⌈log2(N)⌉

2
+ bW = 2542837

UFF = 2× (bW · (2N − 1) + 2⌈log2(N)⌉) = 31188

UDSP = 2N2 = 211250

(6.11)

(6.12)

(6.13)

By providing the same inputs of the simulation model in Simulink, the outputs signals from the
simulation, the model on the RTL and the verification in FIL are presented in Figure 6.11. Three
signals are overlapped with each other showing that these three signals are exactly the same. The
function of the improved model implemented on FPGA is correct. Based on the tests and model
fittings of matrix multiplication models, the resources of the NOILC implemented by improved
method and classical method is able to be predicted. The bit-widths of the signals in the NOILC
system are 24 bits as presented in Section 5.2.3. When the NOILC is implemented with the
classic method, the cost the double of the vector-matrix multiplication plus an additional adder.
According to the fitted model of LUTs cost implemented the classic method, the predicted LUTs
cost is half of the estimated model described by Equation 6.1. The fitted model of FFs is almost
same with the estimated model. Thus, Equation 6.2 could predict the FF cost of vector-matrix
multiplication. The fitted model of DSP cost is less than the estimated model. When Equation
6.3 is used to predict, the actual DSP cost will not exceed the prediction. The predicted cost is
presented in the Equation 6.11, Equation 6.12 and Equation 6.13. The cost of DSP should be
211250, the cost of LUT should be 2535061 and the cost of FF should be 31188.


ULUT = ⌈2

3
(3bW ·N + 6⌈log2(N)⌉+ 2)⌉+ bW = 15662

UFF = bW (2N − 1) + 3⌈log2(N)⌉ = 15603

UDSP = 2.

(6.14)

(6.15)

(6.16)

The cost of NOILC implemented by the improved method is same the cost of vector-matrix
multiplication but pulse an additional adder and an additional multiplier. The fitted model of
LUT cost for the improved method is around two third of the estimated model. The predicted
LUTs cost is two third of the estimated model described by Equation 6.8 plus an adder (bW ).
The cost of FF can be predicted by the estimated model (Equation 6.9) and there should be 2
multipliers in NOILC system. The predicted cost is presented in the Equation 6.14, Equation 6.15
and Equation 6.16. The predicted cost of DSP decreases from 211250 to 2, from an impossible
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value to an achievable value. The predicted cost of LUT reduces from 2535061 to 15662 which is
only 0.62% of the classical method. The predicted cost of FF reduces from 31188 to 15662 around
half of the classical method. The costs of LUT, FF and DSP all decreases a lot with the improved
method.
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Chapter 7

Conclusion

The project focused on implementing a norm optimal iterative learning control algorithm on FPGA
through FPGA programming with MATLAB. The NOILC system is created in MATLAB Sim-
ulink using the available feedback control model in ASM to test its performance. This research
proposes an improved NOILC model that generates the same feedforward signal as the classical
NOILC model but with significantly higher resource utilization efficiency. The growth trend of
the required number of DSPs is reduced from the quadratic growth to a constant. The growth
trend of the required number of LUTs is decreased from the quadratic growth to the linear growth.
The utilization of FFs in the improved design is similar to the utilization of FFs in the classical
model. Except for the usage of LUT in the improved design which constrains some fluctuation,
the NRMSD of the other trained models, either in the classical designs or improved designs, are
less than 2%. These trained models can be utilized to predict the resource utilization for mat-
rix multiplications. With these prediction model, the resource utilization of NOILC with these
two implementation methods could be realized in the simulation step rather than known until
the HDL project is generated by MATLAB. The time required to generate HDL projects varies
for different projects. Hours may be spent for a large project. In addition, designers are able
to realize that whether the resource on the hardware is enough to process the designed systems
and alter the designs in time. Thus, the prediction models would save a lot time for designers.
The improved model has been validated in simulation as well as on hardware. Because fewer
multipliers are utilized, the high-complexity algorithm NOILC can be implemented on an FPGA
with limited DSP resources, even though the number of elements in one iteration is a large number.

There are some unavoidable issues with FPGA programming with MATLAB, ranging from
property settings to performance analysis. Inappropriate property settings may cause the model
to perform poorly, such as longer latency and more resource utilization, when operating on hard-
ware. The clock rate specified via MATLAB is limited to a specific range (between 5MHz and
500MHz) rather than the full range that FPGAs can provide. Due to the multiplication oper-
ated serially, for a project with a very large number of elements in one iteration like 10 thousand
samples, the clock rate of the current Zedboard cannot support the execution as fast as the pro-
ject needs. FPGAs with faster clock rates and more resources are available, although they are
often much more expensive. Although the current model does not yet operate a real motor via an
FPGA, it does allow for the implementation of a NOILC using a resource-constrained FPGA.

The FPGA programming provided by MATLAB allows engineers who do not familiar with
hardware programming to create hardware projects and load them on hardware platforms. In
addition, engineers are able to monitor the feedback signals from the hardware by the interface
provided by MATLAB. This approach decreases the difficulty for designers who are unfamiliar
with hardware languages to implement models.
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