
 Eindhoven University of Technology

MASTER

A Real-time Network for a Solid-State Transformer

Felkaroski, Nikola

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/45098a4b-ab86-43fd-b44f-ab840dee69af

A Real-time Network for
a Solid-State Transformer

Graduation project
MSc Embedded Systems

30 ECTS

Nikola Felkaroski

Department of Electrical Engineering
Electrical Energy Systems Research Group

Assessment committee:

Assistant Professor Dr. Vladimir Ćuk
Full Professor Dr. Korneel Wijnands
Associate Professor Dr. Mircea Lazar

Doctoral Candidate ir. Bram van Dam

Version 1.0

Eindhoven, August 2022

Abstract

Solid-state transformers (SSTs) are recognized as a potential solution for numerous grid chal-
lenges caused by the emergence of renewable energy sources, electromobility, and growing energy
demands. The SST, a power electronics-based replacement for the conventional transformer, in-
troduces control and intelligence into the network through power management, reactive power
compensation, power quality regulation, and additional fault protection. However, the benefits of
the SST come at the expense of high complexity, which is often mitigated through modularity.
Consequently, modular SSTs require real-time control and synchronization to operate correctly,
necessitating real-time networks (RTNs). This work recognizes the gap in the literature concerning
real-time network requirements for SSTs. Furthermore, it contributes to the field by introducing
a requirement analysis and a proposed real-time network design supporting full integration and
interface with Simulink to facilitate further SST research and development. The identified and
proposed SST RTN requirements include network performance, synchronization, data frame, net-
work topology, transmission medium, scalability, fault tolerance, and ease of use. The proposed
design utilizes the module controller architecture to decouple communication and control to en-
able Simulink integration and increase determinism. Finally, the design is verified on a pragmatic
SST prototype developed at the TU/e. Experimental measurements and analysis show that the
proposed real-time network can support up to 35 modules, i.e. a 94.4% increase compared to the
original 18-module design, without impacting its performance.

A Real-time Network for a Solid-State Transformer iii

Acknowledgement

I would like to express my deepest gratitude to my graduation supervisor, Vladimir Cuk, and the
assessment committee members for their excellent guidance, support, and feedback throughout
this project. Furthermore, this endeavour would not have been possible without the guidance
of Bram van Dam, my graduation tutor, who generously provided his knowledge, expertise, and
moral support. Bram, I cannot overstate how much I enjoyed working with you and how much
I am grateful for everything. You have been an outstanding mentor and a friend, and I hope we
will be colleagues again in the future.

Lastly, I would like to thank my family for their unlimited support throughout my journey
and for helping me overcome all my problems and worries. The last two years have been very
challenging for me given all the circumstances, but their belief in me has kept my spirits and
motivation high during this process.

iv A Real-time Network for a Solid-State Transformer

Contents

Contents v

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 The TU/e Solid-state transformer . 2

1.1.1 System design . 2
1.1.2 Control . 3
1.1.3 Operation . 4
1.1.4 Research constraints . 4

1.2 Real-time networks . 5
1.3 EtherCAT . 6

2 Research question definition 8
2.1 State-of-the-art analysis . 8
2.2 Problem description . 9

3 Determining requirements 10
3.1 Introduction . 10
3.2 Functional requirements . 10

3.2.1 Performance . 10
3.2.2 Data frame . 11
3.2.3 Synchronization . 12
3.2.4 Transmission medium . 13
3.2.5 Network topology . 14

3.3 Non-functional requirements . 15
3.3.1 Scalability . 16
3.3.2 Fault tolerance . 17
3.3.3 Ease of use . 18

3.4 Summary . 19

4 Design and implementation 20
4.1 Introduction . 20
4.2 Communication model . 20
4.3 Simulink integration . 21
4.4 System design overview . 23

4.4.1 Module controller . 24
4.4.2 System sensor board controller . 26
4.4.3 System controller . 26
4.4.4 Integration . 27

4.5 Summary . 29

A Real-time Network for a Solid-State Transformer v

CONTENTS CONTENTS

5 Analysis and verification 30
5.1 Introduction . 30
5.2 Experimental setup . 30
5.3 Network performance . 31

5.3.1 Communication delay . 31
5.3.2 Control delay . 32
5.3.3 Jitter . 34
5.3.4 Cycle time analysis . 35

5.4 Synchronization . 37
5.5 Scalability . 37
5.6 Further discussion . 38

5.6.1 Data frame . 38
5.6.2 Transmission medium . 39
5.6.3 Fault tolerance . 39
5.6.4 Ease of use . 39

5.7 Summary . 39

6 Conclusions and future work 40

Bibliography 41

Appendix 43

A The TMS320F2837xD architecture block diagram 44

vi A Real-time Network for a Solid-State Transformer

List of Figures

1.1 The SST module design. 2
1.2 The full TU/e SST modular design. 2
1.3 Simplified module-level control . 3
1.4 Simplified system-level control . 4
1.5 A real-time network connecting nodes within a distributed real-time system. 6
1.6 EtherCAT ‘on the fly‘ processing (simplified). 6
1.7 Structure of an Ethernet frame with EtherCAT protocol data. 7

3.1 Compensating for higher harmonics . 11
3.2 Comparison of synchronization modes for message data processing. 13
3.3 Media converters enable communication through the 50kV isolation barrier. 14
3.4 Physical versus logical topology of EtherCAT . 14
3.5 EtherCAT’s cycle time with respect to the data frame size. 17
3.6 EtherCAT’s data frame growth with respect to the increase of variables (18 mod-

ules). 17
3.7 EtherCAT’s cycle time growth with respect to the increase of modules (128 byte

frame). 18

4.1 Communication data exchange block diagram. 20
4.2 Proposed EtherCAT Simulink interface . 21
4.3 EtherCAT slave stack software architecture [1] . 22
4.4 User application execution order in the EtherCAT slave stack 22
4.5 A system design diagram for RTN Simulink integration 23
4.6 The proposed module controller software architecture. 25
4.7 The proposed module controller task schedule. 25
4.8 Abstracting the SSB as part of the system controller (separate EtherCAT network). 26
4.9 The proposed system sensor board controller task schedule. 27
4.10 Simulink integration and firmware deployment for the system controller 27
4.11 The SST RTN architecture. 28
4.12 The proposed system level schedule . 29

5.1 The prototype SST RTN architecture. 31
5.2 Communication delay measurement diagram. 32
5.3 Average communication delay measurement (oscilloscope) 32
5.4 Control delay measurement diagram. 33
5.5 Message to control delay. 33
5.6 Communication jitter measurement. 34
5.7 Communication jitter measurement with DC enabled. 34
5.8 Jitter variation measurement. 35
5.9 Communication delay jitter distribution. 35
5.10 Code profiling method used for measurements. 36
5.11 Limits of the module task execution time for module scalability. 38

A Real-time Network for a Solid-State Transformer vii

LIST OF FIGURES LIST OF FIGURES

5.12 Trade-off of the system and module tasks’ execution times (18 modules). 38

A.1 The TMS320F2837xD dual-core architecture block diagram. [2] 45

viii A Real-time Network for a Solid-State Transformer

List of Tables

1.1 A summary of preselected hardware and concepts for various SST parts. 5

3.1 The communicated control data through the real-time network. 12
3.2 Summary of equation terms for propagation delay calculation 15
3.3 Comparison of EtherCAT topologies including media converters 15
3.4 Typical approximate EtherCAT times and bandwidth. 16

5.1 Measured average task execution times. 36

A Real-time Network for a Solid-State Transformer ix

Abbreviations

AC Alternating current
ADC Analog to digital converter
CHB Cascaded H-bridge
CPU Central processing unit
DAB Dual-active bridge
DC Direct current
DMA Direct memory access
ePWM Enhanced pulse width modulator
ESC EtherCAT Slave Controller
FET Field-effect transistor
GPIO General purpose input/output
HFT High-frequency transformer
HVDC High-voltage DC
IGBT Insulated-gate bipolar transistor
IPC Interprocessor communication
INT16 16-bit signed integer
I/O Input/output
LFT Low-frequency transformer
LSB Least significant bit
LV Low voltage
MMC Multilevel modular converter
MSB Most significant bit
MV Medium voltage
PLC Programmable logic controller
PWM Pulse width modulation
SSB System sensor board
SSC EtherCAT Slave software stack
SST Solid-state transformer
TI Texas Instruments
TU/e Eindhoven University of Technology

x A Real-time Network for a Solid-State Transformer

Chapter 1

Introduction

The emergence of renewable energy sources to solve increasing energy demands brings new chal-
lenges to existing electrical grid infrastructure. Moreover, the gradual shift from centralized to
distributed energy production introduces additional unpredictability and fluctuations in the gen-5

erated energy. Conventional low-frequency transformers (LFTs) are used as passive interfaces
between the low-voltage (LV) grid and the medium-voltage (MV) grid. Therefore, fluctuations in
power quality at one side of the LFT are also coupled to the other, which may cause problems
and possibly breach limits of voltage, power, and frequency levels. Furthermore, traditional LFTs
cannot achieve desired requirements such as power flow control and further transmission losses.10

The Solid-State Transformer (SST) is introduced as a potential solution to several significant
issues that conventional transformers exhibit. The conceptualization of a power electronics-based
transformer started nearly 60 years ago [3, 4] and various terminology has been used such as ‘elec-
tronic transformer,’ ‘energy router,’ ‘power electronics transformer.’ The SST solution replaces
the bulky LFT with a high-frequency transformer (HFT) and power electronics. The power elec-15

tronics interface introduces control and intelligence to the SST, allowing for power management,
reactive power compensation, power quality regulation, and added fault protection [5]. The inclu-
sion of such features makes the SST an enabling technology for the proposed ‘energy internet’ [6].
Additionally, the gradual improvement of the used power electronic components would eventually
make the SST preferable for weight and volume-constrained applications.20

Recognizing the significance of the SST technology, the Eindhoven University of Technology
(TU/e) is building a prototype of its own to enable further research and possibly build a dis-
tribution network-ready solid-state transformer. This proposed graduation project is part of the
ongoing TU/e SST research project conducted by Bram van Dam, a doctoral candidate.

Many variations and topologies of the SST have been proposed in the literature, in which a25

common trend is the use of modularity to cope with higher voltages than the available ratings
of currently available semiconductor switches such as SiC FETs and Si IGBTs. Even with the
inevitable developments and improvements in the semiconductor industry, modularity is still very
desirable in SSTs as it allows expansion and adjustments of the SSTs to higher power demands
and introduces redundancy. However, the cost of modularity is the increased complexity and ne-30

cessity for control. Due to the vulnerability of available semiconductor components to unbalanced
high voltages or currents, the control application is time-critical. Therefore, a real-time network
enabling module communication and control is necessary to operate a modular SST properly.

This study is organized as follows: chapter 1 introduces the TU/e SST and the concepts of
real-time networks, specifically EtherCAT. In chapter 2, a literature review of the state-of-the-35

art is presented and the research problem is defined. Next, in chapter 3, the requirements for
real-time networks in SSTs are investigated and defined. Then, chapter 4 presents the proposed
design and implementation of the SST real-time network, and chapter 5 demonstrates experimental
verification and analysis of the result. Finally, chapter 6 summarises conclusions and future work.

A Real-time Network for a Solid-State Transformer 1

1.1. THE TU/E SOLID-STATE TRANSFORMER CHAPTER 1. INTRODUCTION

1.1 The TU/e Solid-state transformer40

1.1.1 System design

The TU/e Solid-state transformer (from now on referred to as the SST) is a proposed SST design,
uniquely developed to comply with the grid standards for conventional MV transformers, i.e., the
IEC60076-3 standard. The design is modular to handle the high MV voltage and power using
power electronics, containing six modules per phase, or 18 total, as proposed in [7]. Each module45

contains three stages: an input rectifier stage, an isolation stage, and an output inverter stage.
The fundamental electrical design of the SST module is shown in Figure 1.1. As seen in the
figure, the first stage is a cascaded H-bridge (CHB) composed of 4 IGBTs that rectifies the input
voltage. The second stage includes a dual-active bridge (DAB) and a high-frequency transformer.
As a result, power can be transferred from the MV isolation side to the LV side with up to 97.5%50

efficiency [7]. The third stage is an inverter which converts the LV DC voltage to LV AC voltage.
The design emphasis of the modules in the TU/e SST project is on the input rectifier and isolation
stages, whereas the inverter stage is implemented using off-the-shelf conventional inverters. The
presented module is part of the three-phase modular design depicted in Figure 1.2.

Figure 1.1: The SST module design.

Figure 1.2: The full TU/e SST modular design.

2 A Real-time Network for a Solid-State Transformer

CHAPTER 1. INTRODUCTION 1.1. THE TU/E SOLID-STATE TRANSFORMER

1.1.2 Control55

The control strategy of the TU/e SST is hybrid, meaning that parts of the control are done
locally by the module controllers, and another part is done on a system level. While selecting a
control strategy is out of this project’s scope, it significantly influences the real-time network’s
requirements.

At a module level, the module controller is responsible for controlling the voltages, currents,60

and transferred power through the module. Various sensors measuring these parameters are read
through the controller’s ADCs. In addition, the switches are interfaced to the GPIOs of the
module controller, allowing for various controllable switching patterns. Each SST module has
two independent local control loops. The first control loop regulates the input current iCHB

through the CHB and the voltage Vcap in the capacitor banks between the CHB and the DAB.65

The capacitor voltage is controlled through PWM switching patterns for the input current. The
second control loop regulates the DC bus voltage VDCbus to a reference voltage of 700V under
different load conditions through phase-shift control. As a result, power flows through the two
sides of the bridge with a phase angle difference, which can be adjusted to control the amount of
transferred power. A simplified module-level control diagram is presented in Figure 1.3.

Figure 1.3: Simplified module-level control

70

At a system level, a system controller implements two additional control loops to ensure the
proper operation of the entire SST. Figure 1.4 shows a simplified diagram of the two system-level
control loops by separating the inputs and outputs for both loops.

The first control loop, the MV voltage loop, regulates the input current incoming to each
module through PWM (in conjunction with the local CHB current loop) and ensures a sinusoidal75

drawn current from the grid. Additionally, the control loop ensures that the MV voltage is equally
divided between the participating modules in a single phase., i.e., each module generates 1

n ·VMVgrid
,

where n is the number of modules in a phase. Finally, the system controller reads the grid voltage
and current and sends a sinusoidal PWM to the modules, synchronizing the local CHB control.

The second system-level control loop ensures balancing between the MV capacitors of the80

modules in a phase since a significant imbalance could lead to a catastrophic cascading failure of
the modules due to the voltage and power limitations of the switches. The system controller reads
the actual MV capacitor voltages of the modules and sends a capacitor voltage setpoint for each
module so that the local voltage control loop can adjust the voltage.

The main impact on the real-time network requirements and design comes from the system-85

level control. The frequencies of system-level sensing and actuation directly influence the required
network performance and synchronization. chapter 3 contains the analysis and definition of these
requirements concerning the control strategy.

A Real-time Network for a Solid-State Transformer 3

1.1. THE TU/E SOLID-STATE TRANSFORMER CHAPTER 1. INTRODUCTION

Figure 1.4: Simplified system-level control

1.1.3 Operation

The SST aims to replace a conventional MV transformer in the power grid. While the complex90

structure of an SST makes it considerably more expensive and introduces numerous additional
points of failure, it could significantly stabilize the power grid.

The TU/e SST aims to convert a three-phase 10.5kV medium voltage grid (MV) to a three-
phase 230V low voltage grid (LV). By design, an intermediate step transforms the 10.5kV AC
voltage to a 700V DC voltage, i.e., a DC bus. Each phase of the MV is to be individually95

controlled by strings of 6 modules in series per phase. Each module takes a peak voltage of 1.6kV ,
which is rectified by an H-bridge composed of high-power IGBTs. Next, the rectified voltage is
transformed to 700V using a DC/DC converter known as a dual active bridge (DAB), isolating
the MV and LV sides through a high-frequency transformer. Finally, the 700V DC voltage of
the connected module outputs in parallel is inverted to a 230V AC voltage using one or several100

industrial off-the-shelf inverters.
The switching frequency of the cascaded H-bridge is fCHB = 1.6KHz. The dual-active bridge,

on the other hand, is fsw = 20KHz. The switching patterns are generated using the module
controllers.

1.1.4 Research constraints105

The proposed project is part of ongoing research and development of an SST prototype. As a
result, some hardware and software design decisions have been established and are treated as
research constraints. The preselected concepts include hardware, software, and communication
protocols. A summary of the preselected concepts is presented in Table 1.1.

4 A Real-time Network for a Solid-State Transformer

CHAPTER 1. INTRODUCTION 1.2. REAL-TIME NETWORKS

Most importantly, the real-time industrial fieldbus EtherCAT has been selected as the net-110

work protocol, and relevant hardware has been acquired. This decision choice can be justified by
EtherCAT’s high performance, integrated synchronization mechanism, and low jitter, as discussed
in section 2.1. Furthermore, the system controller’s hardware has been preselected. The module
controllers and the system sensor board controller are based on the F28379D controlCARD from
Texas Instruments. The F28379D controlCARD is a development board for the F28379D MCU,115

which includes memory components and peripherals such as ADCs. In addition, EtherCAT Slave
Controllers (ESC) piggyback boards (based on Beckhoff ET1100) are available and have been
acquired for the F28379D controlCARD. The selected system controller is the Beckhoff CX2040
Embedded PC, including a two-port EtherCAT switch (Beckhoff EK1122). Since the SST mod-
ules include a 50kV isolation barrier, fibre optics must be selected as the transmission medium.120

Consequently, fibre optic communication requires media converters (Beckhoff CU1561).
Moreover, the envisioned TU/e SST prototype is highly integrated with Mathworks Simulink

as a development environment and interface. Texas Instruments provides libraries and tools for
programming the F28379D through code generation from Simulink models.

Table 1.1: A summary of preselected hardware and concepts for various SST parts.

SST part Preselected concept (constraints)

Real-time network protocol EtherCAT
System controller Beckhoff CX2040 Embedded PC
Module controller Texas Instruments F28379D controlCARD
System sensor board controller Texas Instruments F28379D controlCARD
Real-time network medium Fiber optics (Beckhoff CU1561 Media converters)
Development environment and interface Mathworks Simulink
Control strategy Hybrid control (module-level and system-level)

1.2 Real-time networks125

The term real-time network describes any communication network used in real-time distributed
systems. The ‘real-time’ distinction comes from the timeliness and data validity requirements im-
posed on the communication protocol. While general-purpose communication networks focus on
throughput and bandwidth, real-time networks prioritize deterministic and predictable commu-
nication. The strictness of the real-time network requirements is contingent on the requirements of130

the underlying distributed real-time system. Typically, real-time systems are classified in literature
as either soft, firm, or hard real-time, depending on the criticality of the timeliness requirement.
In hard real-time systems, a missed or incorrect operation, e.g., because of a missed message, may
lead to catastrophic events for the system and possibly its environment. On the other hand, soft
or firm real-time systems will only suffer a quality downgrade but should be able to recover and135

continue regular operation. Therefore, real-time networks must comply with the requirements of
the system they are servicing [8].

A real-time network is composed of a number of communicating nodes such as controllers,
sensors, and actuators, connected through a physical link and communication interfaces, or layers,
which translate the raw signals into meaningful data interpreted by the network protocol. A high-140

level abstracted example is shown in Figure 1.5. The role of the nodes in a real-time network
is usually predetermined to ensure predictability in the flow of data. Typical real-time network
performance requirements are bounded latency and jitter, system level synchronization, short
communication cycles and cabling redundancy. However, various combinations of requirements
exist for different applications. Real-time networks for industrial distributed control systems are145

commonly referred to as fieldbuses. Examples of industrial fieldbuses for real-time distributed
systems include EtherCAT, CANopen, PROFINET, and SERCOS.

A Real-time Network for a Solid-State Transformer 5

1.3. ETHERCAT CHAPTER 1. INTRODUCTION

Figure 1.5: A real-time network connecting nodes within a distributed real-time system.

1.3 EtherCAT

EtherCAT is an Ethernet-based real-time industrial communication protocol initially developed
by Beckhoff Automation and later standardized in IEC61158 as a suitable communication pro-150

tocol for hard and soft real-time requirements in automation technologies. EtherCAT uses the
physical layer and standardized frames of the Ethernet standard (IEEE 802.3), but it addresses
additional concerns and requirements for industrial automation, such as rapid response times,
synchronization, minimal device requirements, reduced overhead, and low cost.

Apart from sharing the physical and data layers, the EtherCAT protocol significantly deviates155

from Ethernet. The operating principle of EtherCAT is based on a master/slave1 configuration.
The EtherCAT master is the sole initiator of communication, which will actively send EtherCAT
frames to the rest of the network. The EtherCAT slaves (nodes) are only forwarding the frame
down- or upstream. Instead of sending separate frames to each EtherCAT node, only one Eth-
erCAT frame is sent to the whole network simultaneously, containing data for each addressed160

node. The nodes are only operating on their respective parts of the frame (reading or writing
the appropriate values) ‘on the fly’, which means that the local processing is decoupled from the
communication to avoid potential delays and guarantee real-time capabilities. The decoupling is
achieved through dedicated low-cost EtherCAT slave hardware. A simplified abstract version of
the ‘on the fly’ communication method is shown in Figure 1.6. A common analogy to describe the165

EtherCAT operating principle is a moving train, where the EtherCAT slaves serve as ‘stations’ to
load and unload passengers (data). The propagation delay introduced at each slave is typically
less than a microsecond.

Figure 1.6: EtherCAT ‘on the fly‘ processing (simplified).

The EtherCAT protocol embeds its data into the standardized Ethernet frames by conserving
the Ethernet headers and inserting its own EtherCAT frame into the Ethernet data portion of170

1This unfortunate terminology is pervasively used in EtherCAT documentation and general computing but shall
be replaced with system/module respectively, where possible in later chapters.

6 A Real-time Network for a Solid-State Transformer

CHAPTER 1. INTRODUCTION 1.3. ETHERCAT

the frame, as shown in Figure 1.7. The EtherCAT master configures each device’s payload during
startup, which allows variable data exchange with each EtherCAT slave, ranging from 1 bit up to
a almost 2 kilobytes of data.

Figure 1.7: Structure of an Ethernet frame with EtherCAT protocol data.

One of EtherCAT’s advantages is its flexibility regarding the network topology. It supports a
range of typical topologies such as line, tree, star, ring, mesh, and hybrid combinations. Depending175

on the chosen topology, additional hardware such as I/O switches might be required. An additional
advantage is an ability for uninterrupted operation even if part of the network, or a particular
node, is disconnected. EtherCAT supports up to 65535 devices connected to one segment, meaning
that a network expansion is almost unlimited.

EtherCAT includes a high-precision synchronization mechanism known as distributed clocks180

(DC). High-precision synchronization might be required in applications where a simultaneous
action is required, such as coordinating servo axes movements for motion control. The principle
is based on using multiple local clocks within the EtherCAT slaves and a chosen reference clock
(typically belonging to the first node in the segment). The time of the reference clock is transmitted
to all other nodes using the EtherCAT frame so that the EtherCAT slaves can adjust their local185

clocks according to the reference time. The EtherCAT master measures the propagation delay for
each node and embeds the information into the frame, indicating how the EtherCAT slave should
adjust their local clock. The synchronization frames are sent periodically to compensate for jitter.

The discussed EtherCAT features are supported by dedicated hardware for EtherCAT slaves,
known as EtherCAT Slave Controllers (ESCs). The hardware is interfaced with a host microcon-190

troller which indirectly participates in the EtherCAT network. The host microcontroller period-
ically accesses the EtherCAT data from the ESC’s memory, usually locally synchronized through
interrupts. Apart from an ‘incoming data’ interrupt, the ESC includes two more interrupt lines
to support the DC mechanism. The EtherCAT slaves can be configured to several modes of
synchronization using a combination of the available interrupts generated by the ESC, such as195

free-run, synchronous with SM-events (receipt of frame), synchronous with SYNC-events (distrib-
uted clocks).

EtherCAT’s performance is considered exceptional compared to other industrial real-time net-
work protocols [9]. For typical applications of up to 50 nodes, cycle times can be lower than
250 µs, with bounded jitter in the range of few hundreds of nanoseconds. A common industry200

general-principle for the maximum EtherCAT (100 Mbit) frequency is 8 KHz, or 125 µs cycle
time.

Due to its performance, flexibility, and robustness, EtherCAT is widely used in the automa-
tion industry for various products ranging from robotics, assembly systems, offshore applications,
automated guided vehicles, power plants, and many others.205

A Real-time Network for a Solid-State Transformer 7

Chapter 2

Research question definition

2.1 State-of-the-art analysis

Solid-state transformers are extensively investigated and researched as a promising technology
expected to be essential in future smart grids, distributed generation sources, and modern traction210

systems. In addition to their primary role as transformers offering galvanic isolation between two
AC systems, SSTs offer many advantages over conventional transformers: voltage stabilization
and regulation, reactive power compensation, active harmonic filtering, controllability, isolation,
and fault protection, and increased power quality [10]. Many SST topologies have been proposed
in the literature [11][12], commonly composed of input, isolation, and output stages. A common215

characteristic found in many proposed variations is the modularity [13], as currently available
IGBT or SiC switches are not distribution voltage rated. Additionally, modularity is desired as
it increases the reliability of SSTs towards the desired 100% uptime within the grid, and allows
expansion of the SST to higher power ratings. The most popular input rectifier stage topologies
used in SSTs are cascaded H-bridges (CHBs) and multilevel modular converters (MMCs), both220

inherently modular. A comparative study of CHB and MMC topologies has been conducted in
[14].

However, a proper control strategy must be employed to prevent unbalanced modular voltages,
overvoltages, and overcurrents which can stress the power electronic switches and cause a break
down of the SST system. In [15], a systematic control strategy for a three-phase modular cascaded225

SST is proposed and verified, showing that the problems introduced by modularity can be avoided
using a suitable control strategy. Similarly, in [16], a current control strategy for a star-connected
cascaded H-bridge (CHB) based SST is proposed, proving that voltage and power imbalances
between phases or modules can be mitigated using control strategies.

Both centralized and distributed control schemes have been applied in CHB and MMC-based230

MV applications. In [17], the authors argue that distributed control is superior to centralized
control for CHB or MMC-based applications such as SSTs due to higher computing and fast
real-time network demands. Additionally, the use of local processors in submodules allows for
full modularity and less wiring. Moreover, in [18] the control design of an MMC-based SST is
presented, showing the advantages of distributed as opposed to centralized control. In a complex235

application such as the SST, a centralized control would mean that a single controller must acquire
and act upon all power electronic components using numerous AD converters while dealing with
various switching and acquisition frequencies in real-time. Therefore, the literature suggests that
distributed control is more suitable for SST applications. However, the control schemes in SSTs
may benefit further from combining the two approaches into a hybrid control scheme, where240

part of the control is realized by distributed module controllers, and part is done on a system
level by a central controller. The control architecture is typically in a master-slave configuration,
but the amount of control delegation may vary between schemes. For example, [17] proposes
a coordinate control system organized as a minimum data exchange master-slave configuration,

8 A Real-time Network for a Solid-State Transformer

CHAPTER 2. RESEARCH QUESTION DEFINITION 2.2. PROBLEM DESCRIPTION

which would allow higher control frequencies without the need for complex network protocols and245

higher hardware costs.
A hybrid control system can only be realized by a real-time communication network that

provides sufficient bandwidth, speed, and synchronization. Many modular HVDC applications use
a form of hybrid control which requires real-time communication due to the time-sensitive control
tasks [19, 20]. In [21], a dedicated hybrid communication topology and protocol is proposed for250

such applications, which would allow the use of low-speed real-time communication. However,
the most popular high-speed real-time communication protocol used in HVDC applications is the
high-speed industrial protocol EtherCAT, which is successfully used for control in [22, 23, 24,
25]. EtherCAT is based on a master-slave communication model. A thorough comparison of
several high-speed communication networks for power electronics converters is conducted in [26],255

showing that EtherCAT has significant advantages for power electronics control applications. In
addition, EtherCAT is equipped with a synchronization protocol known as the Distributed Clocks
mechanism [27] and communication cable fault tolerance [20], suitable for the demands of modular
distributed control.

The existing SST literature is mainly concerned with electrical topologies and their imple-260

mentation using control strategies wherever necessary. However, little research investigates the
requirements and aspects of real-time networks used to enable communication and control. In [28],
the authors have highlighted the lack of discussion and research in communication, specifically for
(hybrid) distributed control of MMCs. They discuss the transmission media, synchronization ac-
curacy, and network topology when designing a distributed control architecture for MMCs and265

verify their importance using simulations. While the concept investigated in the paper is similar
for SSTs, no specific and thorough investigation of real-time network requirements for control and
communication in SSTs exists, to the best of our knowledge.

Therefore, this work contributes to the gap in existing research concerning requirements of
real-time networks in solid-state transformers, recognizing the importance of SSTs in the future270

of electric grids.

2.2 Problem description

While a good amount of related work focuses on control and power balance between modules in
SSTs or similar power electronic converters, there is only a limited discussion on the communication
aspects. Therefore, the lack of clearly defined requirements for real-time networks in solid-state275

transformers should be investigated, which leads to the following research question.

How to design, implement, and verify real-time networks for solid-state trans-
formers?

Furthermore, the TU/e SST prototype aims to enable and facilitate future SST research
through a uniform commercial development environment, Simulink. Therefore, communication280

through the real-time network should also be controllable through Simulink. The SST prototype,
which will become fully operational through a real-time network, can be used to verify and validate
the real-time network and its requirements.

The research problem’s methodology is as follows: the real-time network requirements are
first investigated mainly concerning the predefined SST requirements such as control strategy,285

communication protocol, and Simulink integration. Next, a communication model is defined to
abstract and facilitate design decisions for each SST controller type (module, system, and system
sensor board). Finally, tests are introduced and executed to experimentally verify quantifiable
requirements on a down-scaled SST prototype (three instead of the original 18-module design).
Finally, the results of the tests are analyzed to validate whether the proposed design satisfies the290

defined requirements.

A Real-time Network for a Solid-State Transformer 9

Chapter 3

Determining requirements

3.1 Introduction

This chapter investigates the requirements for real-time networks used in modular Solid-state295

transformer applications. Specifically, the requirements will focus on the SST developed at the
TU/e; however, they can be generalized.

3.2 Functional requirements

The functional requirements of the real-time network for the SST should specify criteria that
enable the correct function of the SST. The real-time network cannot be used in the SST without300

satisfying the functional requirements, as it would not enable proper operation. This section
identifies and discusses the following requirements: performance, data frames, synchronization,
transmission medium, and network topology.

3.2.1 Performance

The real-time network performance requirements for Solid-state transformers can be derived from305

the control architecture and the higher harmonic compensation requirements. SST control ar-
chitectures can generally be centralized, distributed, or hybrid. In a centralized architecture,
a system controller is responsible for all sensing, control, and actuation, which would require
significant bandwidth and communication frequency as the size and complexity of the system in-
crease. On the other hand, a distributed control architecture omits a central system controller310

in favour of autonomous local controllers distributed throughout the system. As mentioned in
section 2.1, many modular SSTs utilize a hybrid control architecture, in which the system has
a semi-autonomous controller for each module and a system controller for high-level control and
synchronization.

The TU/e SST too uses a hybrid control architecture. To derive the real-time network per-315

formance requirements, the local (module-level) and central (system-level) control responsibilities
were investigated and separated, as discussed in section 1.1.2. The module-level and system-level
control diagrams are presented in Figures 1.3 and 1.4, respectively.

The real-time network studied in this work connects the system controller with its system
sensor board controller and all module controllers. Since the module controller directly interfaces320

the sensing of electrical signals and the actuation of switches, its performance is considered in-
dependent of the real-time network’s performance. However, the module controller must handle
the communication rate of the system-level real-time network, meaning that the local sensing and
actuation should not block the receipt or delivery of central messages, i.e., not impose unbounded
jitter on the system-level communication.325

10 A Real-time Network for a Solid-State Transformer

CHAPTER 3. REQUIREMENTS 3.2. FUNCTIONAL REQUIREMENTS

The system controller is responsible for sensing the grid characteristics and determining the
required voltage for each module. The Dutch Grid code describes harmonic distortion up to the
40th harmonic (NEN-EN50160 standard). However, compensating for distortion up to the 50th

harmonic introduces greater applicability. With the fundamental frequency being 50Hz, the limits
for the amplitudes of higher harmonics can be described up to 2500 Hz. According to the sampling330

theorem [29], the MV grid voltage must be sampled and actuated upon at a minimum of 5000Hz
to theoretically compensate for the 50th harmonic. However, a factor of 10 is recommended as
a rule of thumb to sufficiently sample a sine wave, meaning that the sampling rate should be
25kHz. The proposed switching frequency of the cascaded H-bridge in the TU/e SST is 1.6kHz.
However, by combining six modules per phase using interleaved switching, the actual frequency335

would become six times 1.6kHz, or 9.6kHz. Additionally, through unipolar switching instead of
bipolar, the frequency is doubled to 19.2kHz, closer to the pragmatic 25kHz for compensating
the 50th harmonic.

Therefore, the minimum communication frequency should be at least twice the frequency of the
50th harmonic, i.e., 5kHz. In other words, the cycle time for the fully connected real-time network340

should be less than 250µs
Figure 3.1 shows the 50th harmonic with respect to the fundamental frequency. It can be

seen that the base CHB frequency of 1.6kHz is not enough to compensate for the 50th harmonic
alone (without unipolar interleaved switching), but that the high harmonic could be theoretically
sampled and communicated within a frequency of 8kHz.345

Figure 3.1: Compensating for higher harmonics

As mentioned in section 1.1.4, EtherCAT is the preselected choice of communication protocol
and is treated as a research constraint in this work. Furthermore, EtherCAT is known to be capable
of cycle times as low as 100µs, which means it could satisfy the communication performance
requirements of the TU/e SST.

3.2.2 Data frame350

The control data exchange through the real-time network must be considered to define the com-
munication data frame for the TU/e SST. Additionally, the data frame should fit spare auxiliary
data to be transferred if necessary and as a form of readiness for future development or control
loop expansion.

As discussed in section 1.1.2, the SST system controller sends and receives control data from355

two system-level control loops, with the possibility of further expansion since the SST is an ongoing
project. All system-level communication is to be transmitted through the real-time network. The
identified control data is presented in Table 3.1, including its origin, destination, representation
and quantity.

The minimum required digital representation is 16-bit signed integers (INT16), as no value360

may theoretically exceed the [−32768, 32767] range. It can be argued that floating point numbers
would improve the precision and performance of the control loops. However, depending on the
precision, floating point numbers require 32 or 64 bits, making the potential frame two to four

A Real-time Network for a Solid-State Transformer 11

3.2. FUNCTIONAL REQUIREMENTS CHAPTER 3. REQUIREMENTS

times larger. Moreover, floating point calculations are generally slower than integer calculations.
Using an INT16 representation for the given data in Table 3.1 would require a data frame size of365

128 bytes. The 16-bit integers could be used to represent voltage directly, e.g., a decimal value
of 256 represents 256 V , or the range of values could be used as quantization levels. For a 16-bit
integer, where the MSB is used as a sign, there are 216 − 1 = 65535 quantization levels, with a
quantization step of Qstep = (vmax− vmin)/2

16, where vmax and vmin are the largest and smallest
possible value, respectively. Representing analog values as digitized integer requires rounding off370

operations, which introduces a rounding error of up to:

Maximumroundingerror =
vmax − vmin

2(2n)
(3.1)

For example, using the full possible decimal range representable by a 16-bit integer, where the
LSB represents the quantization step of Qstep = 1V , the maximum introduced rounding error is
0.5V . However, the error could be reduced if a smaller range of values is represented instead,
i.e., the LSB represents a smaller value increment than 1. For example, by using the maximum375

theoretical voltage of vmax = 10.5kV , the maximum rounding error would be 0.16V .
Given that the ADCs used in the SST have a 16-bit resolution, an inherent quantization error

is not improved by using larger data representations such as floating point numbers or larger
integers.

Table 3.1: The communicated control data through the real-time network.

Data Origin Destination Representation Quantity Description

VMV System sensor board System controller INT16 1 The medium voltage on the grid side of the filter
VMVconverter

System sensor board System controller INT16 1 The medium voltage on the converter side of the filter
IMV System sensor board System controller INT16 1 The current of the medium voltage grid
VDCbus

System sensor board System controller INT16 1 The voltage of the DC-bus
VLVA

System sensor board System controller INT16 1 The voltage of phase A on the LV-side
VLVB

System sensor board System controller INT16 1 The voltage of phase B on the LV-side
VLVC

System sensor board System controller INT16 1 The voltage of phase C on the LV-side
ILVA

System sensor board System controller INT16 1 The current of phase A on the LV-side
ILVB

System sensor board System controller INT16 1 The current of phase B on the LV-side
ILVC

System sensor board System controller INT16 1 The current of phase C on the LV-side
Vcapspn System controller Modules INT16 18 The capacitor set point for module n
Vcapn

Modules System controller INT16 18 The actual capacitor voltage of module n
PWM leveln System controller Modules INT16 18 The PWM level for the CHB of module n

Therefore, for the proposed SST design at the time of writing, the data frame size must be a380

minimum of 128 bytes.
EtherCAT’s maximum data frame size of 1486 bytes far exceeds this requirement. However,

increasing the data has a negative effect on EtherCAT’s cycle time, i.e., the performance.

3.2.3 Synchronization

The system-level control within the SST includes MV voltage control and module MV capacitor385

balancing, which require a level of synchronization between the received message and the module
response.

Locally, the modules control the input current, capacitor voltage levels, and power transfer.
However, the system controller supplements the local control loops by ensuring a sinusoidal input
current and correct capacitor voltage set points, as discussed in section 1.1.2. The control data390

transmitted from the system controller consists of the PWM level for the module’s CHB and a
voltage and/or power set point. Therefore, the module should timely (within the same communic-
ation cycle) provide the required control data such as actual capacitor voltage back to the system
controller.

As the system controller regulates and corrects the module-level control loops, synchronization395

should ensure that each module has used the incoming data and sent its data back within the
same communication cycle. However, since the SST operates on a 50Hz fundamental frequency
and up to 2500Hz harmonics, sub-microsecond synchronization might be unnecessary.

12 A Real-time Network for a Solid-State Transformer

CHAPTER 3. REQUIREMENTS 3.2. FUNCTIONAL REQUIREMENTS

The inherent propagation time of data with communication protocols such as EtherCAT means
that to ensure synchronization, the communication initiator (i.e., the EtherCAT master for Ether-400

CAT) should simultaneously broadcast a signal that all nodes have received the messages. Upon
the receipt of the synchronization signal, the nodes could simultaneously, i.e., with insignificant
jitter, start processing the data. Figure 3.2 shows how the propagation time affects the data
processing start times without synchronization (left image) and how this can be mitigated using
a synchronization signal (right image). For example, the receipt of the message ‘m1’ cannot be405

simultaneous due to inherent propagation time, but the data processing task ‘Process m1’ can be
synchronized using an external signal.

(a) Without process synchronization. (b) With process synchronization signal.

Figure 3.2: Comparison of synchronization modes for message data processing.

In the case of the SST, the data processing task is associated with the local module control
loops. So at a module level, the control loop start must be synchronized to the receipt of the control
data. As long as the control loops’ execution times fit within the communication cycle,410

the SST can be considered appropriately synchronized in both scenarios presented
in Figure 3.2 since all modules would process the data from the same communication cycle
and consequently would be ready for the next communication cycle. Therefore, the proposed
synchronization requirement in this work is as follows:

The receipt of the control data should be synchronized with the control loop start on a mod-415

ule level, whereas on a system level, abstracting the propagation time through synchronization is
unnecessary.

EtherCAT’s distributed clocks mechanism supports the scenario presented in Figure 3.2b, as
discussed in section 1.3, but at the cost of increased cycle times.

3.2.4 Transmission medium420

The TU/e SST is designed to comply with the IEC60076-3 standard, which governs the require-
ments for conventional power transformers in electricity grids. One of the tests necessitated by
the standard is the AV - Applied voltage test, which verifies whether a power transformer can
withstand alternating voltage or fundamentally verify the galvanic isolation between the primary
and secondary sides of a transformer. From the perspective of the SST, the AV test would verify425

the galvanic isolation between the power electronics on the MV and the LV sides. To achieve
isolation, the SST architecture envisions fibre optics as a communication bridge between the LV

A Real-time Network for a Solid-State Transformer 13

3.2. FUNCTIONAL REQUIREMENTS CHAPTER 3. REQUIREMENTS

and the MV sides. The isolation requirement also translates to the real-time network, as each SST
module has a 50kV isolation barrier.

Figure 3.3: Media converters enable communication through the 50kV isolation barrier.

Therefore, the real-time network must use optical fiber as a physical medium for communica-430

tion.

3.2.5 Network topology

The choice of network topology is dependant on multiple factors, such as propagation delay,
redundancy, hardware requirement, etc. It can have a significant impact on the scalability and
fault tolerance of the system, which is why this requirement is interdependent. EtherCAT networks435

support flexible topologies and configurations such as ring, line, and star. However, despite the
physical connection type, EtherCAT logically uses a ring topology. For example, to create a
star connection that is traditionally a popular Ethernet topology, specialized EtherCAT junctions
are required to reroute the traveling packet to the next node in the ‘logical ring’. This logical
transformation is depicted in Figure 3.4.440

Figure 3.4: Physical versus logical topology of EtherCAT

Therefore, when choosing a physical topology, the logical connection must be considered to
calculate the expected propagation delays introduced by the topology.

14 A Real-time Network for a Solid-State Transformer

CHAPTER 3. REQUIREMENTS 3.3. NON-FUNCTIONAL REQUIREMENTS

Considering EtherCAT’s logical communication, an analysis is conducted for three popular
topologies: star, ring, and line. The topologies are compared by three criteria: propagation delay,
fault tolerance, and cabling and hardware requirements. Propagation delay is calculated with the445

general formula:

τprop = tfwM +
∑

network

tcable +
∑

network

tdMC +
∑

network

tfwS (3.2)

The terms in Equation 3.2 are summarized in Table 3.2. If an EtherCAT switch (junction) is
necessary for the topology, an additional switch propagation delay tfwSW

is introduced. Further-
more, if a node is the last in a physical connection, it has to close its Tx port and reroute the
packet to its predecessor, which introduces a marginally larger delay than a regular node, denoted450

as tfwSend .

Table 3.2: Summary of equation terms for propagation delay calculation

Equation term Description

tfwM
Forwarding propagation delay introduced by the EtherCAT master node

tfwS
Forwarding propagation delay introduced by the EtherCAT slave nodes

tcable Cable propagation delay
tdMC Media converter (fibre optics/copper) forwarding delay
tfwSW

EtherCAT switch forwarding delay
tfwSend Forwarding propagation delay of the last EtherCAT slave node in the network

Fault tolerance in EtherCAT is possible as long as there exists a (redundant) physical connec-
tion to the rest of the nodes. A topology is single-fault tolerant if the failure of one node does
not disrupt communication with other nodes. Cabling and hardware requirements suggest the
necessity for additional equipment to enable the topology, introducing additional costs and points455

of failure. For the SST specific fault tolerance requirement, see section 3.3.2. A comparison of
the three topologies is presented in Table 3.3, where n represents the number of EtherCAT slave
nodes. From the comparison in Table 3.3, it can be concluded that the ring topology introduces
the slightest propagation delay to the overall network performance, it requires less hardware and
cabling than a star topology, and it offers a single-fault tolerance. On the other hand, the star460

topology is exclusively superior if higher redundancy and therefore fault tolerance is required.

Table 3.3: Comparison of EtherCAT topologies including media converters

Propagation delay Fault tolerance Cabling and hardware

T
o
p
o
lo
g
y Line τline = tfwM + 2n · tdMC + 2 · 3n · tcable + (n− 1) · tfwS + tfwSend no guarantees minimal

Ring τring = tfwM + (n+1)
2 · tdMC + (3n+ 3) · tcable + n · tfwS

single fault tolerant + 2 media converters, 3 cables

Star τstar = tfwM
+ 2n · tdMC

+ 2 · (3n+ 1) · tcable + n · tfwSend + τfwS
n-fault tolerant + dedicated EtherCAT switch(es), cable(s)

The requirement for the network topology significantly depends on the envisioned fault toler-
ance of the system and the network performance, as each topology has potential strengths and
weaknesses.

Therefore, no topology requirement could be defined or generalized for SST RTNs without look-465

ing at performance, hardware, and fault tolerance requirements.

3.3 Non-functional requirements

The non-functional requirements, as opposed to the functional requirements, specify criteria re-
garding the quality of operation of the SST system. While there are many possibilities for judging

A Real-time Network for a Solid-State Transformer 15

3.3. NON-FUNCTIONAL REQUIREMENTS CHAPTER 3. REQUIREMENTS

Table 3.4: Typical approximate EtherCAT times and bandwidth.

EtherCAT parameter Typical value

tpM
8 µs

tfwM
9 µs

tfwS
0.3 µs

tdMC
1 µs

BWEC 100 Mbit/s

the operation of the SST, only the seemingly most important non-functional requirements are470

investigated in this section.

3.3.1 Scalability

The modular design of the SST allows for future-proofing the SST for higher power ratings. The
functional requirements so far have been investigated and defined for the current SST design
consisting of 18 modules. However, the potential and likely addition of modules to increase power475

rating should be analysed from the aspect of the real-time network, i.e., the impact on performance,
bandwidth, and synchronization. Moreover, the investigation of scalability should also encompass
the increase of bandwidth in the network due to new data for improved or additional control loops
and various safety information required by the system controller.

As discussed in section 3.2.2, the system-level control loops dictate the amount of data that480

needs to be transmitted through the real-time network each cycle. However, as the TU/e SST
is an ongoing project, new data might be introduced into the system to extend the control loops
or introduce new ones. As seen in Table 3.1, while most of the distinct variables originate from
the system sensor board, 75% of the data frame is dedicated to the communication between
the system controller and the modules. Using a data frame containing the variables listed in485

Table 3.1, the introduction of each new module would increase the data frame size by 4.68%,
i.e., by 6 bytes. However, the amount of data in Table 3.1 is conservative, as it is only the
minimum requirement. Therefore, auxiliary data should be considered within the communication
frame between the system controller and the modules to enable scalability and future-proofing,
especially for enabling future research which might require additional data to be transmitted.490

Introducing auxiliary data means that for every additional variable (considering 18 modules), the
frame size would increase by 28.125% from the original.

Two limitations must be considered for scalability: the maximum EtherCAT frame size and
the cycle time. The maximum EtherCAT frame size is 1486 bytes. It is still possible to send
larger amounts of data, but EtherCAT will split it into multiple frames, which must be sent in495

different cycles. The EtherCAT cycle time depends on the bandwidth, frame size, the number and
type of devices in the network, the frame processing times, and the physical propagation time.
Additionally, as discussed in section 3.2.4, the real-time network’s required use of fibre optics and,
consequently, media converters will increase the propagation delay due to the latter.

An approximation of the EtherCAT cycle time TECn for n devices, i.e., modules, using a frame500

with size Sframe can be calculated using the following equation:

TECn
= tpM

+ tfwM
+ 2n(tfwS

+ tdMC
) +

Sframe

BWEC
(3.3)

where tpM
is the EtherCAT master application processing time, tfwM

is the forward delay from
the EtherCAT master controller to the EtherCAT hardware, tfwS

is the forwarding delay of the
EtherCAT slave devices (assuming they are identical), tdMC

is the media converters delay, and
BWEC is the bandwidth of the EtherCAT network expressed in Mbit/s.505

With 18 modules and the typical approximate values presented in Table 3.4, the calculated
EtherCAT cycle time is presented in Figure 3.5 as a function of the frame size. As can be seen on
the graph, for a pragmatic 8kHz frequency, which is equivalent to 125 µs cycle time, the frame size
should not exceed 765 bytes. A graph which shows the frame size growth by scaling the number of

16 A Real-time Network for a Solid-State Transformer

CHAPTER 3. REQUIREMENTS 3.3. NON-FUNCTIONAL REQUIREMENTS

system-to-module (or vice versa) variables is depicted in Figure 3.6. It shows that for 18 modules,510

the data frame presented in Table 3.1 can be extended with up to 17 system-to-module 16-bit
integer variables, 8 single precision floating point variables, or 4 double precision floating point
variables.

Figure 3.5: EtherCAT’s cycle time with respect to the data frame size.

Figure 3.6: EtherCAT’s data frame growth with respect to the increase of variables (18 modules).

With the minimum required frame size of 128 bytes, according to section 3.2.2, Figure 3.7 shows
the effect of module scaling on the cycle time. An EtherCAT real-time network that complies with515

the functional requirements in section 3.2 can scale up to 37 modules, or slightly more than 100%.
The scalability requirement for the SST real-time network can be defined as follows: the real-

time network should support at least 100% data increase and at least 20% increase in the number
of modules.

3.3.2 Fault tolerance520

The complexity of the TU/e SST and its numerous electronic components introduce many pos-
sibilities for failure, which could be mitigated through proper fault management. The modular

A Real-time Network for a Solid-State Transformer 17

3.3. NON-FUNCTIONAL REQUIREMENTS CHAPTER 3. REQUIREMENTS

Figure 3.7: EtherCAT’s cycle time growth with respect to the increase of modules (128 byte
frame).

design of the SST allows for the MV grid voltage and power to be divided among the participating
modules. Therefore, a failure of a module within a phase would mean that the remaining modules
would incur both larger voltages and power. Since the SST is over-dimensioned by a factor of525

two to comply with the IEC60076-3 standard, the voltage incurred by limited module failure can
be tolerated. However, the power must be redistributed over the remaining modules in a module
failure scenario. The power redistribution could bring the SST to a thermal criticality depending
on the number of failed modules and the power output of the SST. While conventional trans-
formers are typically oversized in practical applications for both overloading and future-proofing530

(a combined factor of 4), the current cost and lifetime of SSTs render such over-dimensioning
infeasible. Therefore, the failure should be limited to a few modules simultaneously.

A pragmatic and safe solution would be to design the system as a single-fault tolerant, such that
a failure would lead to a safe system shut down to prevent further damage. However, considering
that conventional transformers in electrical grids are very reliable with minimal downtime, the535

much more complex SST should also be able to deliver power even during partial failure to increase
competitiveness. Therefore, the real-time network should offer n-node failure tolerance. The main
factor in RTN fault tolerance is redundancy, i.e., how the nodes are connected. Therefore, choosing
a suitable network topology and protocol is crucial to fault tolerance.

As discussed in the section 3.2.5, EtherCAT supports various network topologies, but only the540

star-topology is n-fault tolerant. While due to the logical operation of EtherCAT, a star-topology
would accrue the highest propagation delay, it exclusively offers the amount of redundancy and
tolerance required by the SST.

Therefore, the real-time network for the SST must be n-fault tolerant of potential failure of
several modules.545

3.3.3 Ease of use

The TU/e SST project is both a prototype and a research platform for further SST-related re-
search. Even though it does not directly influence functionality, ease of use is an essential require-
ment for this project. Specifically, the SST project requires complete integration with Simulink,
a model-based graphical programming and simulation environment. While it might seem unre-550

lated to the real-time network, the Simulink integration has significant consequences on the design
choices and implementation of the network.

The integration with Simulink would allow the system to be reprogrammed graphically through
Simulink code generation available for the specific hardware. In addition, the Simulink integration

18 A Real-time Network for a Solid-State Transformer

CHAPTER 3. REQUIREMENTS 3.4. SUMMARY

allows researchers to focus on the design of algorithms rather than their low-level implementation.555

The real-time network would require an interface to send and receive messages in Simulink, which
is not a typical use of such networks. In general, real-time protocols such as EtherCAT are not
intuitive to be used without low-level development.

The real-time network should fully support the integration with Simulink as a development
environment for the SST.560

3.4 Summary

This chapter identifies and describes the real-time network’s functional and non-functional require-
ments to comply with the TU/e SST design. The functional requirements relate to the criteria
necessary for the proper network function and, consequently, the SST. The functional requirements
include performance, data frame definition, synchronisation, transmission medium, and network565

topology, for which it has been determined:

• The performance requirement for the SST real-time network is determined to be a minimum
communication rate of 5kHz, which could be satisfied using EtherCAT’s typical 8kHz.

• The minimum data frame size requirement to satisfy the control data communication using
16-bit signed integer representation is 128 bytes.570

• The receipt of control data must be synchronized with the control loops on a module level,
whereas on a system level, each module must receive and process the data from an incoming
frame within the same communication cycle.

• The SST real-time network must use fibre optics as a communication transmission medium
to satisfy SST isolation requirements.575

• The choice of network topology depends on the desired fault tolerance, hardware require-
ments, and propagation overhead. Therefore, no strict topology requirement has been
defined.

On the other hand, the non-functional requirements describe the criteria for the system’s qual-
ity of operation. The identified and described requirements relate to the scalability, fault tolerance,580

and ease of use of the SST w.r.t. the real-time network, for which the following conclusions have
been made:

• The SST real-time network must support the scaling of both data and the number of modules
by at least 100% and 20%, respectively. The network can support up to 37 modules using
the current control design and data frame requirement. Alternatively, using the proposed585

18 modules, the maximum data frame size can be 765 bytes.

• The SST, and consequently the SST real-time network, must be n-fault tolerant of potential
failure of several modules. This requirement can be satisfied by using an EtherCAT star
topology.

• The real-time network should fully integrate within the Simulink development environment590

for the SST.

A Real-time Network for a Solid-State Transformer 19

Chapter 4

Design and implementation

4.1 Introduction

The real-time network is an essential part of the overall SST system, so its design must be incor-595

porated into the overall SST system design. It is impractical to completely isolate the network as
a distinct entity without considering the communication model of the SST. Moreover, as determ-
ined in the requirements in chapter 3, the real-time network must support and enable Simulink
integration.

This chapter defines the communication model and explains how the real-time network is integ-600

rated into the overall system design according to the defined requirements, including implementing
the communication layer which supports the communication protocol, EtherCAT.

4.2 Communication model

To correctly analyse whether the EtherCAT-based real-time network can satisfy the requirements,
the communication model of the system must be defined.605

Three levels of communication can be defined within the SST: module-level, SSB-level, and
system-level communication. The module-level communication is between a module controller and
local sensors and actuators on the SST module. Similarly, the SSB-level communication is between
the system sensor board controller and the sensors on the SSB through external ADCs. Finally, the
system-level communication is the highest level of communication between the system controller,610

the SSB controller, and all of the module controllers. The communication model described in this
section is based on system-level communication as the main focus of this work.

Figure 4.1: Communication data exchange block diagram.

20 A Real-time Network for a Solid-State Transformer

CHAPTER 4. DESIGN AND IMPLEMENTATION 4.3. SIMULINK INTEGRATION

Figure 4.1 depicts a block diagram of the communication data exchange on a system level, as
defined in sections 1.1.2 and 3.2.2. As can be seen, apart from the system-level communication,
each controller executes one or several tasks, e.g., the system-level control loops on the system615

controller.
For each controller, we can define a periodic communication task Taskcomm which processes

the system-level communication, i.e., reads and writes data to the communication bus. The
communication Taskcomm has a period of Tcomm , and an execution time ecomm . The period Tcomm

must be equal to the system-level communication period Tnetwork, i.e., Tcomm = Tnetwork = 125µs620

for an 8KHz communication frequency, on all controllers. The execution times ecomm may vary
from controller to controller, but it must satisfy the following:

ecomm ≤ Tcomm −
k∑

i=0

ei (4.1)

where
∑k

i=0 ei is the sum of the execution times of all other local tasks on the controller which
have a higher priority than Taskcomm . This strict requirement ensures that the communication
task will finish execution before its next iteration, i.e., the task will meet its implicit deadline625

Dcomm = Tcomm .
To analyse timing behavior and scheduling at a system level, the relative start and end times

of the total execution cycle for each module n are defined as tnstart
, and tnend

, respectively.
Specifically, tnstart

represents the time the module n receives a message from the RTN (relative
to the start of the frame), and consequently its Taskcomm begins to execute, which globally can630

be denoted as Taskcommn . The end time of all remaining processing tasks within a module is
denoted with tnend

. The following condition must be true to ensure that each module will receive
and process the message from the same RTN communication cycle:

tnend
− t1start

≤ Tnetwork (4.2)

where n is the last module in the network.

4.3 Simulink integration635

The software for all components of the SST, including the module controllers, the SSB controller
and the system controller, is developed using the graphical simulation environment and program-
ming language Simulink. The Simulink blocks are translated into the target-specific firmware with
code generation with target-specific libraries and compilers.

As the real-time network is based on EtherCAT, to fully enable programming the controllers640

using Simulink and code generation, Simulink requires a dedicated interface for EtherCAT trans-
mitting and receiving. A proposed interface is depicted in red in Figure 4.2. However, neither
Simulink nor Texas Instruments Simulink libraries include EtherCAT slave interfaces, as the only
available EtherCAT blocks are intended for the EtherCAT master.

Figure 4.2: Proposed EtherCAT Simulink interface

A Real-time Network for a Solid-State Transformer 21

4.3. SIMULINK INTEGRATION CHAPTER 4. DESIGN AND IMPLEMENTATION

An additional complication is the EtherCAT slave stack software for the TI-based controllers.645

The host microcontroller requires special firmware enabling the connection between itself and the
dedicated EtherCAT slave hardware chip (ESC) to participate in the EtherCAT communication.
Moreover, the EtherCAT protocol includes a state machine whose transitions must be dictated
by the host microcontroller, as well as various protocol handlers. The complexity of creating
EtherCAT slave stack software is recognized by the EtherCAT Technology Group (ETG), which650

is why they provide a code generation tool to facilitate the process called EtherCAT Slave Stack
Code (SSC) [1].

The generated software stack using SSC is generic, except for a hardware abstraction layer
and the user application. The software architecture of the EtherCAT slave stack is presented in
Figure 4.3. As previously discussed in chapter 1, EtherCAT supports on-the-fly communication,655

i.e., the ESC read/writes data from the incoming EtherCAT frame. However, the EtherCAT slave,
i.e., the host controller, further processes the data and executes calculations. Therefore, to enable
data transfer between the ESC and the host microcontroller, a hardware abstraction layer (HAL)
is required, which enables correct reading and writing of the ESC’s registers, as well as supporting
synchronization through several interrupts. Texas Instruments supply the HAL for the controllers660

used in the SST project.

Figure 4.3: EtherCAT slave stack software architecture [1]

The user application is split into three parts: output mapping (data originating from the
EtherCAT master, copied from the ESC to the host microcontroller), input mapping, and Ether-
CAT application. The three parts are executed in the order presented on Figure 4.4. In typical
use-cases, the EtherCAT application would contain the control algorithm. However, given the665

requirement for Simulink integration, the use of the generated EtherCAT slave stack code is very
limited in this work.

Figure 4.4: User application execution order in the EtherCAT slave stack

The finalized EtherCAT software stack, including the user application, is then compiled and
loaded into the host microcontroller. However, the problem becomes apparent as the control
firmware must go through the same code generation, compilation, and loading process onto the670

microcontroller. From a design perspective, the ideal scenario would be automatically placing the
generated Simulink code into the EtherCAT application. However, this is practically infeasible

22 A Real-time Network for a Solid-State Transformer

CHAPTER 4. DESIGN AND IMPLEMENTATION 4.4. SYSTEM DESIGN OVERVIEW

without manual intervention, given the complexity of the generated Simulink code.
The design question is how to integrate the EtherCAT communication and its stack with

Simulink-generated firmware without requiring manual intervention (adhering to the ‘ease of use’675

requirement).

4.4 System design overview

The proposed system design, including the real-time network integration, is presented in Figure 4.5.
The firmware for all controllers, including an EtherCAT interface, is to be developed in the Sim-
ulink environment and cross-compiled to the suitable controller using Simulink code generation680

and support libraries. In the hardware/software integration stage, the compiled firmware should
be integrated to execute together with an appropriate EtherCAT software stack, which includes a
controller-appropriate hardware-abstraction layer to communicate with EtherCAT hardware. In
the RTN hardware stage, the proposed physical connection can be seen. The system controller
utilizes an EtherCAT switch to form a star topology. Media converters are used to ensure isolated685

communication through fibre optics.

Figure 4.5: A system design diagram for RTN Simulink integration

The system sensor board can be abstracted as part of the system controller and decoupled
from the real-time network of the 18 modules, as it would technically become the 19th node
otherwise. A suggestion is to use a dedicated EtherCAT network between the SSB controller and
the system controller. This network division would enable potentially higher cycle frequencies690

without affecting the main real-time network. A further discussion is included in section 4.4.2.

A Real-time Network for a Solid-State Transformer 23

4.4. SYSTEM DESIGN OVERVIEW CHAPTER 4. DESIGN AND IMPLEMENTATION

The proposed design completely abstracts the real-time communication with Simulink inter-
faces. However, the diagram does not show the inner controller integration and scheduling of the
Simulink-generated firmware and the EtherCAT software stack. These concepts are explained in
the following subsections.695

4.4.1 Module controller

The proposed system design in section 4.4 specifies two different software applications within the
Module controller. The first application is the entire SST-related firmware which contains the
module-level control loops, ADC and GPIO configurations, and ePWM peripheral configurations.
The second application contains the entire software stack to support the EtherCAT protocol and700

communication with the dedicated EtherCAT ESC board (attached to the module controller)
through an asynchronous external memory interface. Both applications are generated as distinct
codebases with appropriate dependencies through Simulink code generation (supported by TI
libraries) and through SSC (as discussed in 4.3). The diagram in Figure 4.5 also shows a software
connection between the two applications, realised through the so-called ‘EtherCAT Transmit’ and705

‘EtherCAT Receive’ blocks in Simulink.
There are two significant challenges to solve to enable this design. The first challenge is

integrating the two separate codebases, and the second is to realise the Simulink EtherCAT blocks
since no such blocks are intended for EtherCAT slave devices.

An apparent solution for the first challenge of codebase integration would be to merge the two710

codebases into a larger codebase, such that the various application functionalities are separated into
distinct tasks, as discussed in 4.2. However, the problem with this approach is the noncompliance
with the ‘ease of use’ requirement since any change in the SST firmware would require a significant
amount of work outside of the Simulink environment. Furthermore, the complexity of merging
two proprietary codebases and implementing a rudimentary operating system to schedule tasks is715

out of scope for this project.
The module controller is based on the TI TMS320F2837xD architecture (TI C2000 family

of devices), which utilises a dual-core architecture. The microcontroller architecture [2] shows
that the two CPUs are relatively independent with separate timers and interrupt lines, but share
most peripherals such as ADCs, ePWMs, and GPIOs. As detailed in [2], CPU1 acts as a master720

processor, which means that it configures all peripherals and grants ownership to CPU2 explicitly.
The full TMS320F2837xD architecture block diagram is included in Appendix A.

Since both the Simulink-generated SST firmware and the EtherCAT software stack are single-
core applications, the proposed design is to deploy each application on its CPU. The Interpro-
cessor Communication module (IPC) can be used to bridge the communication between the two725

processors. Moreover, the TI C2000 Simulink library includes ‘IPC receive‘ and ‘IPC transmit‘
Simulink blocks, which can be repurposed to serve as the ‘EtherCAT receive‘ and ‘EtherCAT trans-
mit‘ blocks proposed in section 4.4. The proposed software architecture is presented in Figure 4.6.
The orange-coloured blocks on CPU2 represent the application generated in Simulink. However,
since the SST module firmware utilises peripherals owned by CPU1 (such as ePWM modules and730

GPIOs), some configuration code needs be present on CPU1, as well as remote peripheral call
functions, which are also communicated through IPC.

The operational idea of the proposed architecture is to dedicate CPU1 to Ether-
CAT communication and remote peripheral calls, whereas CPU2 will only execute
the Simulink-generated module-level control loops and the rest of the SST firmware735

functionalities. The ‘ease-of-use’ requirement will be satisfied since any changes to the SST
firmware will only affect CPU2 ; Simulink-generated code can be deployed immediately.

The IPC module can be configured to use interrupts for message signalling, which can be used
to synchronise the two CPUs. As defined in section 4.2, the communication task Taskcomm will
include ESC data processing within the EtherCAT software stack and the IPC communication740

between the two CPUs. Taskcomm is scheduled on CPU1 and is to be triggered by incoming
EtherCAT frames at the communication frequency, i.e., 8KHz. Apart from Taskcomm , no other
periodic task is scheduled on CPU1.

24 A Real-time Network for a Solid-State Transformer

CHAPTER 4. DESIGN AND IMPLEMENTATION 4.4. SYSTEM DESIGN OVERVIEW

Figure 4.6: The proposed module controller software architecture.

The module firmware which includes the control loops can be abstracted as a single task to be
executed periodically at the same 8KHz frequency, while satisfying the performance requirements745

discussed in section 3.2.1. Therefore, we define the task Taskmodule , with a period Tmodule =
Tcomm = 8KHz, and execution time emodule . As discussed in section 4.2, Equation 4.1 must be
satisfied in order to ensure that all tasks can be scheduled and meet their deadlines.

Since both CPUs are utilised to complete the communication-control cycle, a timing diagram
including both CPUs and their interaction represents the schedule, shown in Figure 4.7. This750

means that Equation 4.1 must be further defined such that
∑k

i=0 ei (where emodule is included) is
the sum of the execution times of all tasks dependent on Taskcomm within the controller.

Figure 4.7: The proposed module controller task schedule.

The Taskcomm must be implemented on CPU1 outside of the Simulink environment but is
considered as a one-time setup; thus, it will not impact the ‘ease-of-use’ criteria. As discussed in
section 4.3 the EtherCAT software stack requires implementation of the user application, i.e., the755

functions shown in Figure 4.4. The Output mapping function reads the ESC’s registers containing
the latest incoming frame data and stores the data in memory. The EtherCAT application will
pack the data and send it to CPU2 through the IPC driver. Additionally, it will read the IPC
buffer to check for data originating in CPU2, i.e., data that must be sent back to the system
controller. The Input mapping function will store any outbound data into the ESC registers,760

which will be collected with the next EtherCAT frame.

A Real-time Network for a Solid-State Transformer 25

4.4. SYSTEM DESIGN OVERVIEW CHAPTER 4. DESIGN AND IMPLEMENTATION

4.4.2 System sensor board controller

The system sensor board controller controls the external ADCs which sample voltages and currents
from both the MV and the LV sides of the SST. The SSB’s primary role is to send its sampled and
processed data to the system controller, as shown in Figure 4.1. Furthermore, the SSB implements765

a PLL loop which takes the MV grid voltage and generates a stable fundamental representation
of it, i.e., it removes harmonic distortion from the grid voltage. The SSB is designed to sample
and process the data periodically, with a period equal to the real-time network communication
frequency, i.e., 8KHz.

However, the SSB can be viewed as part of the system controller, which happens to also770

use EtherCAT for communication, which is a common industry practice. The real-time network
discussed so far in this work excludes the SSB from the requirements definition in chapter 3.
Furthermore, it is possible that the ADC sampling frequency might be increased in the future,
i.e., oversampling. Therefore, it is proposed to abstract the SSB as part of the system controller,
which uses a separate EtherCAT real-time network for communication. The proposed abstraction775

is depicted in Figure 4.8.

Figure 4.8: Abstracting the SSB as part of the system controller (separate EtherCAT network).

The SSB controller is based on the same hardware as the module controllers, i.e., the Texas
Instruments TMS320F28379D microcontroller. To enable both EtherCAT communication and
programmability in the Simulink environment, the same approach presented in section 4.4.1 is
used.780

Similarly, a communication task Taskcomm can be defined which handles EtherCAT and se-
quentially IPC communication, with a period Tcomm which may be equal or greater to the system-
level communication frequency of 8KHz, i.e., Tcomm ≥ Tnetwork = 8KHz, and an execution time
ecomm . The two other SSB functionalities, i.e., the ADC sampling and the PLL loop, can be
abstracted as one task, since they sequential and synchronized to the communication task through785

IPC interrupts. Therefore, the task Taskssb is defined with a period Tssb = Tcomm , and execution
time essb . The proposed schedule is presented in Figure 4.9.

4.4.3 System controller

The system controller’s responsibility includes initiating real-time communication and implement-
ing the system-level control loops described in section 1.1.2. The system control has the role of790

the EtherCAT master in the real-time network. Since the EtherCAT protocol enlists dedicated
ESC hardware to process and correctly sort the data within the frame, the EtherCAT master is
straightforward and uninvolved in frame processing. Because of the simplicity, an EtherCAT mas-
ter only requires an Ethernet interface, usually implemented using DMA, which means that there
is little overhead for the EtherCAT interface so that the CPU can be almost entirely dedicated to795

other tasks.
Unlike all other controllers in the SST system, the SST system controller is based on the

26 A Real-time Network for a Solid-State Transformer

CHAPTER 4. DESIGN AND IMPLEMENTATION 4.4. SYSTEM DESIGN OVERVIEW

Figure 4.9: The proposed system sensor board controller task schedule.

Beckhoff CX2000 architecture, which is a multi-CPU Embedded PC. Using TwinCAT [30], a
software system developed by Beckhoff, any general-purpose PC can be transformed into a real-
time computer for automation applications such as PLCs or any runtime system. The Beckhoff800

CX2040 system controller contains two Ethernet interfaces, which can be used for EtherCAT.
Moreover, the I/O interface can be extended using EtherCAT switches.

The system controller hardware inherently supports Simulink integration through I/O blocks
available in Simulink. However, instead of generating native code through cross-compilation, Sim-
ulink generates code for a so-called TwinCAT target for MATLAB®/Simulink®. The TwinCAT805

target uses the generated C++ code to create a TwinCAT Object Model, i.e., a TcCOM object,
which exhibits the same I/O behaviour as the Simulink model. Finally, the TcCOM object can be
loaded into the TwinCAT software, configured to run as a periodic task, and executed in real-time
on a certain resource. The entire Simulink-to-execution process is shown in Figure 4.10, where
the generated TcCOM object is contextualised as a task and scheduled to execute periodically on810

CPU1. Since the TcCOM object contains both the Simulink firmware and the EtherCAT data
mapping, the two tasks can not be decoupled. Therefore, a single task Tasksys is defined, with a
period of Tsys = Tnetwork .

Figure 4.10: Simulink integration and firmware deployment for the system controller

4.4.4 Integration

The previous sections discussed and proposed how to adapt all controllers individually for com-815

munication using the real-time network integrated with Simulink. All the internal processing has
been modelled as tasks within each controller, typically split into a communication task and an
SST processing task. The communication task abstracts all EtherCAT-related processing and IPC
communication when necessary. The remaining processing related to SST specific applications has
been abstracted into one task, since all processing is sequentially synchronized to the system level820

communication.

A Real-time Network for a Solid-State Transformer 27

4.4. SYSTEM DESIGN OVERVIEW CHAPTER 4. DESIGN AND IMPLEMENTATION

The complete proposed RTN architecture is presented in Figure 4.11. The system controller
participates in two EtherCAT real-time networks: the main system RTN, and the auxiliary system
sensor board RTN. The rationale behind the network division, discussed in section 4.4.2, is the
system controller abstraction and potential for higher frequency sampling using the SSB. The825

system RTN uses a star topology with fibre optics as a transmission medium to comply with both
the fault tolerance and transmission medium requirements.

Figure 4.11: The SST RTN architecture.

The proposed individual designs have been accompanied by local controller schedules presented
in Figure 4.7 for the module controllers and Figure 4.9 for the SSB controller. However, at a
system level, a global schedule is needed to reflect the integrated operation of all controllers.830

Figure 4.12 depicts a proposed schedule for the main system network at a global level. Individual
controller schedules are positioned relative to the system controller schedule and inherent RTN
propagation time. The RTN frame propagates after Tasksys completes execution on the system
controller. The first module’s ESC interrupts its CPU1 to start the new cycle’s execution, i.e.,
the Taskcomm1

. Since the ESC hardware is decoupled from the module controllers, the frame835

continues to propagate while Module 1 is still processing Taskcomm1
, and later Taskmodule1

. After
an inherent propagation delay tprop, the frame reaches Module 2 and triggers the same behaviour
as the first module. The message propagates and reaches the final module after a total propagation
time of n · tprop. As discussed in section 4.2, the proposed design must satisfy Equation 4.2, i.e.,
the end time tnend

relative to the start of the frame must be reached before the start of the next840

frame. As defined in section 3.2.3, the synchronization requirement is satisfied with this schedule
since all modules operate on the data from the same cycle.

EtherCAT’s distributed clocks mechanism was not utilized in this design due to hardware

28 A Real-time Network for a Solid-State Transformer

CHAPTER 4. DESIGN AND IMPLEMENTATION 4.5. SUMMARY

Figure 4.12: The proposed system level schedule

limitations with the chosen communication frequency of 8KHz. However, if distributed clocks is
used, tasks Taskmodulek

, k ∈ [1, n], would start at tsync = tnstart + ecommn + dDC , where dDC is845

a small necessary delay.

4.5 Summary

This chapter presents the design decisions for integrating and implementing the SST real-time
network based on a defined communication model. Furthermore, the section includes the design
implications of the Simulink integration requirement on the overall system design. Each controller850

is designed to enable participation in the RTN communication and an interface to the network
through Simulink. The RTN Simulink interface can connect incoming and outgoing data to the
SST control loops on all communication. The seamless Simulink integration has been achieved by
utilizing the dual-core architecture of the Module and SSB controllers, i.e., by dedicating CPU1
for EtherCAT, and CPU2 for Simulink-generated firmware, bridged through IPC communication.855

A Real-time Network for a Solid-State Transformer 29

Chapter 5

Analysis and experimental
verification

5.1 Introduction

This chapter describes the validation of the real-time network for the TU/e SST through ana-860

lysis and experimental verification of relevant requirements defined in chapter 3. The included
experimental tests are related to measurable and quantifiable requirements such as network per-
formance (communication delay, control delay, jitter, and cycle time analysis). In addition, the
synchronization and scalability requirements are verified analytically using the network perform-
ance measurements. Finally, requirements which cannot be experimentally verified, or are satisfied865

by design, are discussed qualitatively.

5.2 Experimental setup

The TU/e SST prototype has been down-sized and de-scoped from the original three-phase 18-
module design, which was the system of interest for this study. However, almost all require-
ments have been generalized for an arbitrary number of modules. The current TU/e prototype870

is composed of a single-phase three-module design, but all design principles should apply to the
down-sized system.

A significant change in the experimental setup compared to the original design is the change
of topology for the real-time network. Instead of using a star topology to comply with the fault
tolerance requirement described in section 3.3.2, a ring topology is used. The change was due to875

hardware and timing constraints, specifically the lack of a sufficiently large EtherCAT switch for
the system controller. However, the difference in propagation time should be negligible for the
small number of connected modules. Using a ring topology instead of a star topology will reduce
the system’s fault tolerance from n-fault to 1-fault tolerant. For the experiments conducted in
this study, a 1-fault tolerant network is sufficient.880

The system architecture used for the experiments presented in this chapter is shown in Fig-
ure 5.1; it is mainly similar to the design architecture proposed in section 4.4.4 except for the
number of modules and the system RTN topology.

Another consequence of the down-scaled system is a smaller EtherCAT data frame, which
should result in a shorter cycle time, as explained in section 3.3.1. However, the data frame was885

appended with ten auxiliary system-to-module variables to keep propagation times in line with
calculations for 18 modules and to future-proof the research-oriented SST prototype.

30 A Real-time Network for a Solid-State Transformer

CHAPTER 5. ANALYSIS AND VERIFICATION 5.3. NETWORK PERFORMANCE

Figure 5.1: The prototype SST RTN architecture.

5.3 Network performance

Network performance in the context of this work has been defined as the achievable communication
cycle time, i.e., communication frequency. The performance requirement defined in section 3.2.1890

is based on sufficient sinusoidal sampling to allow the SST higher harmonic compensation, and
was determined to be a minimum of 250µs cycle time. The selected frequency during design and
implementation, as described in chapter 4, was 125µs, i.e. 8KHz frequency, which exceeds the
minimum required cycle time. However, it has to be verified whether the cycle time of 125 µs is
sufficient to allow all SST-related processing to be completed before the next cycle. Furthermore,895

this section defines the network communication delay, control delay, and jitter to aid in the analysis.

5.3.1 Communication delay

The communication delay τcd is defined as the amount of time it takes for a data packet to hop
from one node to the next, or in this case, from one module to the next. If the data packet i
reaches module controller n at time tncd, and then module controller n+ 1 at time tn+1

cd , then the900

communication delay is measured as:

τcd = tn+1
cd − tncd (5.1)

The measurement is performed as shown in Figure 5.2, i.e., when the data packet i reaches the
ESC of module controller n, a PDI interrupt is generated, which is detected using an oscilloscope.
The difference between the arrival of the PDI interrupts in the two modules is then calculated to
result in the communication delay.905

A Real-time Network for a Solid-State Transformer 31

5.3. NETWORK PERFORMANCE CHAPTER 5. ANALYSIS AND VERIFICATION

Figure 5.3 shows an oscilloscope measurement based on Figure 5.2 using the three modules of
the SST prototype. The receipt of the interrupts shown in Figure 5.2 toggle a specific GPIO on
the module controller which is measured using an oscilloscope. The average communication delay
was measured to be τcd = 1.66µs.

Figure 5.2: Communication delay measurement diagram.

Figure 5.3: Average communication delay measurement (oscilloscope)

5.3.2 Control delay910

Another type of delay can be defined as the control delay τctr, or the amount of time from the
arrival of a data packet in the module until the start of the control loop. Measuring the control
delay is important since the task Taskmodule containing the Simulink-generated SST control loops
is triggered by an IPC interrupts during the execution of the communication task Taskcomm. The
control delay measurement is performed as shown in Figure 5.4. When the EtherCAT message in915

packet i reaches the ESC of module controller n, a PDI interrupt is generated at time tim which
triggers Taskcomm. During the execution of Taskcomm, the message data is transferred from
CPU1 to CPU2 using IPC, so an IPC interrupt is generated at time tic which triggers Taskmodule.

32 A Real-time Network for a Solid-State Transformer

CHAPTER 5. ANALYSIS AND VERIFICATION 5.3. NETWORK PERFORMANCE

The control delay for packet i is calculated with the following equation:

τctr = tic − tim (5.2)

Figure 5.5 depicts the results of the average control delay measurement using an oscilloscope920

on the SST prototype, i.e., τctr = 14.2µs. The control delay is measured on the second module
where the orange falling-edge represents the receipt of the EtherCAT packet on CPU1, and the
red falling-edge represents the start of the control loop after the data has been received through
IPC on CPU2. Unrelated, the blue and green pulses represent the duration of the communication
tasks for the first and third modules, respectively.925

Figure 5.4: Control delay measurement diagram.

Figure 5.5: Message to control delay.

A Real-time Network for a Solid-State Transformer 33

5.3. NETWORK PERFORMANCE CHAPTER 5. ANALYSIS AND VERIFICATION

5.3.3 Jitter

The communication delay defined in section 5.3.1 is susceptible to jitter for multiple reasons in-
cluding media converters and interrupt latencies. Jitter represents the time variation of the com-
munication delay. The jitter can be represented as a probability distribution of the communication
delay τcd.930

Jitter was observed during the measurements for the communication delay, as shown in Fig-
ure 5.6, which appears to be bounded, as expected. The measurement was repeated with the
distributed clocks mechanism (at 16KHz communication frequency instead of 8KHz) to verify
that the jitter was not caused from lack of explicit synchronisation. The results from the oscillo-
scope shown in Figure 5.7 show that even with distributed clocks, jitter was present, but centered935

to the signal of the reference module.

Figure 5.6: Communication jitter measurement.

Figure 5.7: Communication jitter measurement with DC enabled.

The jitter of the communication delay τcd was measured using an oscilloscope which measures
the delay between the rising edges of two signals (a rising edge represents the start of interrupt

34 A Real-time Network for a Solid-State Transformer

CHAPTER 5. ANALYSIS AND VERIFICATION 5.3. NETWORK PERFORMANCE

execution on the receipt of a EtherCAT message). The results were plotted in a series using a
built-in oscilloscope history function, as presented in Figure 5.8.940

Figure 5.8: Jitter variation measurement.

The communication delay data was extracted and plotted as a probability distribution, shown
in Figure 5.9. The probability distribution appears to be multimodal with a significant peak
around the average of 1.537µs. If the distribution is approximated as a standard distribution, the
standard deviation is σ = 0.301µs. The worst-case observed communication delay value within
5385 measurements is τcdmax = 2.21µs.945

Figure 5.9: Communication delay jitter distribution.

5.3.4 Cycle time analysis

The communication delay, control delay, and jitter can be used to calculate the network cycle time.
Additionally, further measurements are required since the cycle time in this context includes the
execution time of all SST-related processing. The proposed design of the integrated communication
system was based on task-based modelling, as described in section 4.2, and depicted on Figure 4.12.950

However, the duration of the presented tasks is arbitrary and only driven by assumptions. All
task execution times were measured using code profiling through GPIOs, to ensure the proposed
design can support the target cycle time of 125 µs. Figure 5.10 shows an example of execution

A Real-time Network for a Solid-State Transformer 35

5.3. NETWORK PERFORMANCE CHAPTER 5. ANALYSIS AND VERIFICATION

Task Average execution time Task description

Taskcomm 25.6µs EtherCAT stack, ESC communication, and user application (IPC communication).
Taskmodule 24 µs Simulink-generated SST module firmware containing sensing, local control loops, actuation, and IPC communication (to EtherCAT)
Tasksys 8.8 EtherCAT master stack, and Simulink-generated SST system controller firmware containing data mapping
Taskssb 23.6 Simulink-generated SST system sensor board firmware containing sensing, a PLL control loop, and IPC communication (to EtherCAT)

Table 5.1: Measured average task execution times.

time profiling for the arbitrary TaskM . To measure the the execution time of TaskM , a GPIO
toggling command is issued before the task is executed, and a second toggling command directly955

after. The measurement-related GPIO is connected to an external oscilloscope, and a pulse formed
by the two toggling moments t1 and t2 should be visible. The pulse width is equal to the execution
time etaskM

of TaskM . It is important to note that higher priority interrupts must be disabled
during measurements to measure the best-case execution time. The worst-case execution time can
be measured if all periodic higher priority interrupts are triggered during the task execution time.960

However, since the SST and the RTN are considered firm real-time, measurements are related to
the average execution time.

Figure 5.10: Code profiling method used for measurements.

The results of the average execution times of the tasks defined in chapter 4, measured using
the described method, are presented in Table 5.1. The measurement results presented in the table
are subject to change during the SST research and development, as the firmware implementa-965

tion, which is out of the scope of this work, may change. However, the real-time network limits
the execution times of the tasks, such that the average cycle time Tcycleavg must be less than
the communication period of 125µs. Section 5.5 details these limits depending on the system
scalability.

The average cycle time Tcycleavg
can be calculated with the following equation:970

Tcycleavg
= esys + 3 · τcd + τctr + emodule (5.3)

where esys, and emodule are the average execution times (given in the second column of Table 5.1)
of Tasksys and Taskmodule, respectively. Since the processing tasks start last in the third module,
only its execution times are calculated into the equation. The result of the cycle time for the SST
prototype setup is 51.98 µs.

Equation 5.3 does not include the measured jitter into the cycle time calculation. By including975

the jitter in the equation, the cycle time Tcycle would become a probabilistic variable. However,
the jitter (contained in the maximum of the communication delay), and the maximum of task
execution times can be used to calculate the maximum cycle time by adapting the equation:

Tcyclemax
= esysmax

+ 3 · τcdmax
+ τctrmax

+ emodulemax
(5.4)

The system sensor board task is not included in calculations since it operates on its own
dedicated EtherCAT network, as explained in section 4.4.2.980

36 A Real-time Network for a Solid-State Transformer

CHAPTER 5. ANALYSIS AND VERIFICATION 5.4. SYNCHRONIZATION

5.4 Synchronization

As defined in section 3.2.3, the synchronisation requirement ensures that all modules process the
data from the same incoming EtherCAT frame within a communication cycle. By design, the
start of the module-level control loops is synchronized to the receipt of an EtherCAT message, as
shown in Figure 4.7. Furthermore, measurements presented in section 5.3 verified that the module985

control loop completes execution before the end of the communication cycle, i.e.:

τctr + emodule = 38.2µs ≤ Tnetwork = 125µs. (5.5)

therefore, according to the requirement, the modules are sufficiently synchronized.
While further synchronization using distributed clocks could theoretically synchronize the start

of the control loops on each module within a few hundred nanoseconds, the measured jitter was in
the range of 1µs (see Figure 5.7). Furthermore, distributed clocks at the chosen communication990

frequency of 8KHz was not permitted due to hardware constraints.

5.5 Scalability

The scalability of the SST prototype cannot be experimentally verified due to hardware constraints.
However, using the performance measurements defined in section 5.3, scalability can be determined
analytically. Scalability implies that the SST real-time network can support the addition of new995

modules without disrupting communication, i.e., the total communication cycle time Tcycle must
remain less than the network communication period of 125µs. Using the obtained measurements
in section 5.3 and Equation 5.3, the average cycle time for 18 modules is 76.88µs. However, when
determining scalability, the worst-case values should be considered (including the jitter); therefore,
using Equation 5.4, the maximum cycle time for 18 modules is 86.78µs. The result proves that the1000

experimental setup of three modules can be extended to the original 18 modules without exceeding
the communication cycle time of 125µs.

The maximum scalability of the SST real-time network, i.e., the maximum amount of modules
which can be supported by the proposed SST RTN, can be analytically defined as a simple integer
programming problem:1005

maximize n
subject to esysmax

+ n · τcdmax
+ τctrmax

+ emodulemax
≤ 125µs

n ∈ Z+
(5.6)

The solution to the integer problem defined in Equation 5.6 is 35, meaning that the real-time
network can support up to 35 modules given the experimental measurement data. The solution
closely aligns with the analytically predicted result in section 3.3.1. The task execution times
in the constraint in Equation 5.6, i.e., esysmax

and emodulemax
, are treated as constants obtained

from the measurements presented in Table 5.1. While the execution times of these tasks are out1010

of this work’s scope, their limits concerning scalability can be determined by analyzing the integer
problem in Equation 5.6. For example, the module task execution time emodulemax

to determine
its limits for any number of modules in the range of n ∈ [3, 35]. The graphical solution to the
integer problem is presented in Figure 5.11, where the possible execution time emodulemax value
can be found on the vertical lines for any (integer) number of modules.1015

For the original proposed design of 18 modules, the limits of the execution times for the
system and module tasks, i.e., esysmax

and emodulemax
respectively, can be found in the solution

space presented in Figure 5.12, which means that the growth of any execution time has an impact
on the limits of the other task’s execution time. The solution space can be extended if one of the
tasks is simplified or optimized, so its execution time is lower than the currently measured one.1020

A Real-time Network for a Solid-State Transformer 37

5.6. FURTHER DISCUSSION CHAPTER 5. ANALYSIS AND VERIFICATION

Figure 5.11: Limits of the module task execution time for module scalability.

Figure 5.12: Trade-off of the system and module tasks’ execution times (18 modules).

5.6 Further discussion

Some of the requirements defined in chapter 3 are inherently unquantifiable, already satisfied by
design, or out of scope for this work.

5.6.1 Data frame

The data frame requirement is determined by the amount of data required by the SST control1025

loops and algorithms, and is incorporated into the proposed design in chapter 4. The impact of
the data frame size is reflected onto the network performance. Since the data frame presented
in Table 3.1 is determined on the basis of 18 modules, the requirement can be scaled down to
a minimum of 38 bytes. However, the decision was to pad the minimal frame with 5 auxiliary
system-to-module outputs, and 5 auxiliary system-to-module inputs, i.e., a total of 30 variables1030

of size INT16. Therefore, the total data frame size is 98 bytes, or approximately 2.5 times the
minimum required size.

38 A Real-time Network for a Solid-State Transformer

CHAPTER 5. ANALYSIS AND VERIFICATION 5.7. SUMMARY

5.6.2 Transmission medium

The transmission medium is an inherited real-time network requirement from the SST isolation
requirement. The choice of fibre optics as a transmission medium is out of this work’s scope but1035

impacts the network’s performance. The transmission medium requirement is satisfied by design,
but its effect on isolation can only be verified through complete prototype testing, which is out of
this project’s scope.

5.6.3 Fault tolerance

Due to the necessary topology change for the SST prototype described in section 5.2, the defined1040

fault tolerance requirement cannot be satisfied. As a result, the ring-topology is single-fault tol-
erant rather than n-fault tolerant. However, a single-fault tolerance has been deemed satisfactory
in the limited three-module prototype. Moreover, due to the physical separation of the module
controllers and their ESC hardware, the prototype is n-fault tolerant to software faults since ESCs
can still forward EtherCAT frames as long as they are powered on. If a complete power failure1045

occurs in one of the modules, the remaining two can still be reached due to the ring topology’s
redundancy.

5.6.4 Ease of use

The ease of use requirement relates to Simulink integration, which would enable the development
of the SST firmware within a relatively familiar graphical environment. The design decisions in1050

chapter 4 were significantly impacted by this requirement. A real-time network Simulink interface
for sending and receiving data was abstracted through IPC communication blocks. Furthermore,
the communication layer on the controllers is not impacted by changes in the Simulink firmware.

From a researcher’s point of view, they can experiment with the SST or further develop it
without the necessity to get familiar with the real-time network implementation, which arguably1055

satisfies the ease of use requirement.

5.7 Summary

This chapter presents the experimental validation of the proposed real-time network for the TU/e
SST. The real-time network is implemented in a down-sized three-module SST prototype which is
used as a verification platform for the requirements defined in chapter 3. The real-time network1060

is instrumented to measure its performance in terms of communication delay, control delay, jitter,
and cycle time. The measurements are used to analytically predict the network’s scalability and
compare it to earlier analyses and define the limits of the system and module tasks’ execution times.
The analysis shows that the real-time network can support up to 35 modules while satisfying its
functional requirements. Furthermore, unquantifiable requirements are discussed and analyzed to1065

complete the validation.

A Real-time Network for a Solid-State Transformer 39

Chapter 6

Conclusions and future work

The work identifies the necessity for a real-time network in modular solid-state transformers and
recognizes the gap in the literature concerning its requirements. Although some discussions for1070

communication aspects in related power electronics applications exist, the research should be
extended to the case of solid-state transformers as a potential solution for future grid challenges.

This graduation project investigates and defines the requirements for a real-time network in
a modular solid-state transformer developed as a research platform at the Eindhoven University
of Technology. The proposed requirements include network performance, synchronization, data1075

frame, transmission medium, network topology, scalability, fault tolerance, and ease of use. Next,
a real-time network design based on EtherCAT is proposed, which enables seamless integration
with Simulink as a development environment for the SST firmware. The proposed design decouples
the communication and control by utilizing the dual-core architecture of the module controllers.
The Simulink integration facilitates research and further development of the SST by providing a1080

communication interface and abstracting the low-level firmware development through graphical
programming in a relatively familiar environment. The pragmatic design is implemented and
integrated with an existing TU/e SST prototype, which is later used to verify and validate the
proposed real-time network according to the defined requirements. Experimental measurements
and analysis show that the proposed real-time network can support up to 35 modules without1085

impacting its performance.
The contributions of this graduation project are towards the literature gap on real-time net-

works for solid-state transformers by introducing a requirement investigation and validation on
a pragmatic SST prototype. Furthermore, the work proposes a design enabling full Simulink
integration to facilitate the research and development of the SST.1090

This work can be extended and improved in several ways. First, the real-time network re-
quirements discussion is limited to the EtherCAT protocol, a research constraint. However, their
analysis and definition should be protocol agnostic to generalize the requirements for broader
application. Second, EtherCAT’s distributed clocks should be incorporated into the proposed
design to improve synchronization and determinism. While the currently defined synchronization1095

requirement is sufficient for the proper function of the TU/e SST’s control loops, it could poten-
tially limit control algorithms which inherently require synchronized actuation. Third, simulations
could be used to verify further some requirements such as scalability and fault tolerance which
are inherently bounded by hardware constraints. However, it can be argued that for this use case,
it is infeasible to closely model all influences on the network’s performance, such as propagation1100

delays, interrupt latencies, and media converter delays. Moreover, the experimental tests could be
extended to produce more detailed measurements, e.g. the communication delay could be decom-
posed into frame preparation delay, frame data transfer time, media converter delay, and interrupt
latency. Consequently, by extracting the frame data transfer time, an analysis of the impact of
data scaling can be conducted.1105

40 A Real-time Network for a Solid-State Transformer

Bibliography

[1] William Mcmurray. Power converter circuits having a high frequency link, 1968. 1

[2] James L. Brooks, Roger I. Staab, James C. Bowers, and Harry A. Nienhaus. Solid state
regulated power transformer with waveform conditioning capability, 1980. 1

[3] J. W. Van Der Merwe and H. Du. The solid-state transformer concept: A new era in power1110

distribution. IEEE AFRICON Conference, 2009. 1

[4] Alex Q. Huang and Jay Baliga. FREEDM System: Role of power electronics and power
semiconductors in developing an energy internet. Proceedings of the International Symposium
on Power Semiconductor Devices and ICs, pages 9–12, 2009. 1

[5] Bram van Dam. Medium Voltage Solid-State Transformer: An IEC60076-3 based design.1115

PhD thesis, Eindhoven University of Technology, 2022. Unpublished doctoral dissertation. 2

[6] M.A. Livani, J. Kaiser, and W.J. Jia. Scheduling hard and soft real-time communication
in the controller area network (can). IFAC Proceedings Volumes, 31(14):13–18, 1998. 23rd
IFAC/IFIP Workshop on Real Time Programming 1998 (WRTP ’98)., Shantou, China, 23-25
June. 51120

[7] Gunnar Prytz. A performance analysis of ethercat and profinet irt. In 2008 IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation, pages 408–415, 2008.
7

[8] Hamed Shadfar, Mehrdad Ghorbani Pashakolaei, and Asghar Akbari Foroud. Solid-state
transformers: An overview of the concept, topology, and its applications in the smart grid.1125

International Transactions on Electrical Energy Systems, 31(9):1–24, 2021. 8

[9] Ahmed Abu-siada, Jad Budiri, and Ahmed F Abdou. Solid State Transformers Topologies ,
Controllers , and Applications : State-of-the-Art Literature Review. 2018. 8

[10] Mahammad A. Hannan, Pin Jern Ker, Molla S.Hossain Lipu, Zhen Hang Choi, M. Safwan Abd
Rahman, Kashem M. Muttaqi, and Frede Blaabjerg. State of the art of solid-state trans-1130

formers: Advanced topologies, implementation issues, recent progress and improvements.
IEEE Access, 8:19113–19132, 2020. 8

[11] Sixifo Falcones, Xiaolin Mao, and Raja Ayyanar. Topology comparison for solid state trans-
former implementation. IEEE PES General Meeting, PES 2010, pages 1–8, 2010. 8

[12] Fernando Briz, Mario López, Alberto Rodŕıguez, and Manuel Arias. Modular Power Elec-1135

tronic Transformers. IEEE Industrial Electronics Magazine, (december):6–19, 2016. 8

[13] Zhiyu Zhang, Hengyang Zhao, Shihang Fu, Jianjiang Shi, and Xiangning He. Voltage
and power balance control strategy for three-phase modular cascaded solid stated trans-
former. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition
- APEC, 2016-May(51277162):1475–1480, 2016. 81140

A Real-time Network for a Solid-State Transformer 41

BIBLIOGRAPHY BIBLIOGRAPHY

[14] Sebastian Stynski, Marta Grzegorczyk, Cezary Sobol, and Radek Kot. Current control
strategies for a star connected cascaded h-bridge converter operating as mv-ac to mv-dc
stage of a solid state transformer. Energies, 14(15), 2021. 8

[15] Jintong Nie, Liqiang Yuan, Qing Gu, Jianning Sun, and Zhengming Zhao. A Coordinate
and Distributed Control Scheme for Multilevel and Multi-Stage Medium Voltage Solid State1145

Transformer. 2018 International Power Electronics Conference, IPEC-Niigata - ECCE Asia
2018, (51577100):2963–2968, 2018. 8

[16] Mario López, Alberto Rodŕıguez, Enrique Blanco, Mariam Saeed, Ángel Mart́ınez, and
Fernando Briz. Design and implementation of the control of an MMC-based solid state
transformer. Proceeding - 2015 IEEE International Conference on Industrial Informatics,1150

INDIN 2015, pages 1583–1590, 2015. 8

[17] Tommi Laakkonen. Distributed control architecture of power electronics building-block-based
frequency converters. PhD thesis, Lappeenranta University of Technology, 2010. 9

[18] Paul Dan Burlacu, Laszlo Mathe, Marcos Rejas, Heverton Pereira, Ariya Sangwongwanich,
and Remus Teodorescu. Implementation of fault tolerant control for modular multilevel1155

converter using EtherCAT communication. Proceedings of the IEEE International Conference
on Industrial Technology, 2015-June(June):3064–3071, 2015. 9

[19] Hua Geng, Shuzhen Li, Chao Zhang, Geng Yang, Lei Dong, and Babak Nahid-Mobarakeh.
Hybrid communication topology and protocol for distributed-controlled cascaded H-bridge
multilevel STATCOM. IEEE Transactions on Industry Applications, 53(1):576–584, 1 2017.1160

9

[20] Raimarius Delgado, Byoung Wook Choi, and Hwachang Song. Application of EtherCAT
in Microgrid Communication Network: A Case Study. 2018 International Conference on
Platform Technology and Service, PlatCon 2018, pages 1–6, 2018. 9

[21] Jan Henrik Fey, Frank Hinrichsen, Gyde Carstens, and Regine Mallwitz. Development of1165

a modular multilevel converter demonstrator with EtherCAT communication. Proceedings
- 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power
Engineering, CPE-POWERENG 2019, pages 1–6, 2019. 9

[22] C. L. Toh and L. E. Norum. A high speed control network synchronization jitter evaluation
for embedded monitoring and control in modular multilevel converter. 2013 IEEE Grenoble1170

Conference PowerTech, POWERTECH 2013, 2013. 9

[23] H. H.H. De Silva, D. K.J.S. Jayamaha, and N. W.A. Lidula. Review on design and control
of solid state transformer based microgrids. AIMS Energy, 7(6):901–923, 2019. 9

[24] C. L. Toh and L. E. Norum. A performance analysis of three potential control network for
monitoring and control in Power Electronics converter. 2012 IEEE International Conference1175

on Industrial Technology, ICIT 2012, Proceedings, pages 224–229, 2012. 9

[25] Paul Dan Burlacu, Laszlo Mathe, and Remus Teodorescu. Synchronization of the distributed
PWM carrier waves for modular multilevel converters. 2014 International Conference on
Optimization of Electrical and Electronic Equipment, OPTIM 2014, pages 553–559, 2014. 9

[26] Tomas P. Correa, Luis Almeida, and Francisco J. Rodriguez. Communication aspects in the1180

distributed control architecture of a modular multilevel converter. Proceedings of the IEEE
International Conference on Industrial Technology, 2018-Febru(Section III):640–645, 2018. 9

[27] C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
jan 1949. 11

[28] EtherCAT Technology Group. Ethercat slave stack code (ssc) et9300. 221185

42 A Real-time Network for a Solid-State Transformer

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Kenneth W. Schachter. The tms320f2837xd architecture: Achieving a new level of high
performance. Technical report, Texas Instruments, 02 2016. 24, 45

[30] Beckhoff Automation GmbH Co. KG. Twincat: Automation software. 27

A Real-time Network for a Solid-State Transformer 43

Appendix A

The TMS320F2837xD1190

architecture block diagram

44 A Real-time Network for a Solid-State Transformer

A
P
P
E
N
D
IX

A
.
T
H
E

T
M
S
3
20
F
2837X

D
A
R
C
H
IT

E
C
T
U
R
E

B
L
O
C
K

D
IA

G
R
A
M

Figure A.1: The TMS320F2837xD dual-core architecture block diagram. [2]

A
R
eal-tim

e
N
etw

ork
for

a
S
olid

-S
ta
te

T
ran

sform
er

45

	Contents
	List of Figures
	List of Tables
	Introduction
	The TU/e Solid-state transformer
	System design
	Control
	Operation
	Research constraints

	Real-time networks
	EtherCAT

	Research question definition
	State-of-the-art analysis
	Problem description

	Determining requirements
	Introduction
	Functional requirements
	Performance
	Data frame
	Synchronization
	Transmission medium
	Network topology

	Non-functional requirements
	Scalability
	Fault tolerance
	Ease of use

	Summary

	Design and implementation
	Introduction
	Communication model
	Simulink integration
	System design overview
	Module controller
	System sensor board controller
	System controller
	Integration

	Summary

	Analysis and verification
	Introduction
	Experimental setup
	Network performance
	Communication delay
	Control delay
	Jitter
	Cycle time analysis

	Synchronization
	Scalability
	Further discussion
	Data frame
	Transmission medium
	Fault tolerance
	Ease of use

	Summary

	Conclusions and future work
	Bibliography
	Appendix
	The TMS320F2837xD architecture block diagram

