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Abstract

Letters, notes, websites, and other forms of official government communication can be difficult
for many Dutch citizens to understand. This makes it difficult for them to function effectively as
citizens and users of government services. Requests from the government to citizens frequently call
for significant tasks that must be completed, and as a result, the requests must be communicated
clearly and effectively. This thesis focuses on automatically detecting these requests – these calls to
action – in text using machine learning methodologies. The Dutch Tax Administration’s internal
datasets were labeled and used to train various machine learning pipelines, including novel deep
learning methods such as fine-tuning BERTje. By fine-tuning BERTje on an in-house labeled
dataset, we achieved an accuracy of 96.4%, which suggest that detecting calls to action might be
feasible in other domains as well.
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AI artificial intelligence
AUC area under the curve
BERT bidirectional encoder representations from transformer
CBOW continuous bag-of-words
CNN convolutional neural network
CTA call(s) to action
DNN deep neural network
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TP true positives
UDA unsupervised data augmentation
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Chapter 1

Introduction

This chapter begins by explaining the project’s topic and scope. Next, the formal objective and
the research question are presented. Finally, we discuss the remainder of the paper’s structure.
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CHAPTER 1. INTRODUCTION

1.1 Topic and Context

Numerous Dutch citizens have difficulty understanding letters, notes, websites, and other types
of official communication [24]. This impairs their ability to perform effectively as citizens and
consumers of government programs. Clarity in government-to-citizen communication is critical
not only for citizens but also for government entities. Texts that are easily understood can result
in cheaper processing and fewer complaints overall. As a result, various government entities,
including the Dutch Tax Administration, seek to improve communication between citizens and
the government. However, improving communication is a difficult issue to address as individuals
communicate with one another in a variety of ways.

In everyday conversation, people are attuned not only to the sentences they exchange but
also to the speech acts that those utterances perform: apologies, warnings, invitations, promises,
requests, and the like [26]. In linguistics, a speech act is something that is expressed by an
individual, conveys information, and also performs an action [4]. For instance, the phrase “I
would like the Shoyu ramen; could you please make it for me?” is considered a speech act as it
expresses the speaker’s desire to obtain ramen, and it presents a request that someone make the
ramen for them. While such acts are ubiquitous in communicative life, they did not become a
sustained subject of study until the mid-twentieth century, at least in the English-speaking world
[49]. Since that time, speech act theory has gained traction in a variety of scholarly disciplines
including linguistics, psychology, legal theory, and artificial intelligence (AI) [26].

Requests from the government to citizens frequently involve quite significant tasks that must
be completed, and so the requests must be communicated effectively and plainly. A request is a
directive speech act whose purpose is to persuade the hearer to do something in circumstances
where it is unlikely that he or she will do so in the normal course of events [54]. The more
straightforward the request, the more transparent it is and the less burdensome it is to understand
for the recipient. One way to mitigate the effects of this imposition is to employ indirect rather
than direct strategies. The directness scale can be classified into three strategies [56]:

I Direct (explicitly designated as requests)

I’d like to ask you to clean the bathroom.

Clean up the bathroom.

I really wish you’d clean up the bathroom.

You’ll have to clean up the bathroom.

I’m asking you to clean up the bathroom.

II Conventionally indirect (referring to the preconditions necessary)

Could you clean up the bathroom, please?

How about cleaning up?

III Non-conventionally indirect (referring to an object in light of its context)

I have a boyfriend (in response to a persistent harasser).

You have left the bathroom in a right mess.

Each year, the Dutch Tax Administration sends thousands of letters and emails to citizens
with multiple requests each. The government has the vision to make these calls to action (CTA)
more direct and transparent so that citizens understand precisely what they are being asked to do.
To improve the transparency and directness of the CTAs, they must first be classified. However,
manually classifying these sentences is a lengthy process that requires a high level of linguistic
expertise. This is the primary reason for our desire to find an approach that automatically identifies
these CTAs.

2 Detecting Calls to Action in Text Using Deep Learning



CHAPTER 1. INTRODUCTION

1.2 Focus and Scope

Natural language processing (NLP) is a subfield within AI resulting from a century of research
in computational linguistics, statistical modeling, and more recent advances in machine learn-
ing. NLP capabilities have improved dramatically in recent years as a result of advances in deep
learning algorithms and the invention of transformer-based models such as bidirectional encoder
representations from transformers (BERT) [20], ELMO [23], and XLNet [65]. Prior to the ad-
vancements in transformer models, state-of-the-art models of the time such as LSTM [30] models,
had difficulty capturing the true meaning of words. These transformer models may theoretically
be effective for detecting CTAs as they are a type of text classification that is heavily context
dependent. Therefore, the focus of this study is on machine learning methodologies.

NLP techniques have been primarily developed in the English language. However, the focus
of this study is detecting CTAs in Dutch-language letters and emails sent by the government to
citizens. The majority of advances in NLP are biased toward English. As a result, additional steps
must be taken to ensure the use of these state-of-the-art transformer models.

Despite extensive research into speech act recognition in a variety of fields, developing CTA
recognition for Dutch-language letters and emails sent by the Dutch Tax Administration is chal-
lenging. A major challenge is that emails and letters usually have no labeled data for training
statistical speech act recognizers [31]. Labeled data is available in other domains such as meeting
and telephone conversations. However, this data is not labeled for directness and is presented in a
different language (English). In addition, the domains are too dissimilar in terms of language use
to that on which this research is conducted. Therefore, the only data used is that made available
by the tax authorities. The project’s scope is limited to detecting CTAs and not on making the
CTAs clearer and more transparent.

1.3 Objective

Our objective is to develop a method for recognizing CTAs in Dutch-language letters and e-mails.

1.4 Formalization

Given a document D = {x1, x2, ..., xn} where xi refers to a text segment, each text segment xi is
associated with a class label y ∈ Y = {1, 2}, such that 1 = CTA and 2 = other. The objective is
to find a model f , with a prediction function f(x) = ŷ, such that ŷ ∈ Y , and preferably y = ŷ.

Area under the curve (AUC), accuracy, running time, and F1-score are four classification
metrics we use to assess the model’s performance. The accuracy measure provides a percentage
of how many samples were correctly classified out of the entire dataset, and the F1-score is an
aggregate metric that takes into account the precision and recall of the model. The AUC metric
shows how well the model performs under various classification thresholds.

1.5 Research Question

The research question for this study is as follows:
Is it possible to identify calls to action in Dutch letters and emails (written by the Dutch Tax

Administration) using current state-of-the-art NLP approaches?

1.6 Outline

The remaining parts of this work are broken down into the following Chapters. An examination
of the relevant literature is provided in Chapter 2. The materials and the various experiments
are broken down in detail in Chapter 3. The findings of the experiments are presented and then

Detecting Calls to Action in Text Using Deep Learning 3
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discussed in Chapter 4. In Chapter 5, we summarize and reflect on the research and answer the
main research question.
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Chapter 2

Literature Review

In the literature review, we first elaborate on the field of NLP and deep learning. Thereafter, we
examine weakly supervised learning, which is a subfield of machine learning that deals with inexact,
incomplete, and inaccurate data. Next, we discuss several frameworks for text classification based
on transformer models and advanced data augmentation. Finally, we summarize our findings from
the review.

Detecting Calls to Action in Text Using Deep Learning 5



CHAPTER 2. LITERATURE REVIEW

2.1 Natural Language Processing

NLP is a subfield of AI, which is concerned with teaching computers to understand text and spoken
words similarly to how humans accomplish this task. There are many ambiguities in language,
making it challenging to create software that accurately assesses intended meaning. For natural
language-driven applications to be useful, developers must teach them to recognize and understand
sarcasm, idioms, metaphors, grammar, and the like. Several NLP tasks assist the computer to
understand human text and voice input. The following are some of these tasks [38]:

• Speech recognition: The technique of accurately turning auditory data into text, often
known as speech-to-text. Speech recognition is required for any application that responds
to verbal requests or commands.

• Part of speech tagging: The practice of determining the part of speech of a word or
passage of text based on its usage and context is also known as part of speech tagging.

• Named entity recognition: (NER) refers to the process of classifying words or phrases
as entities. For instance, NER recognizes the word “Eindhoven” as a geographical location.

• Text classification: alternatively referred to as text tagging or text categorization, divides
text into specified classes. Text classifiers can analyze text automatically and then categorize
it using a set of predefined categories or tags. In general, text classification can be applied
at one of four levels: document, paragraph, sentence, or subsentence.

Over the last few decades, text classification problems have been extensively studied and
addressed in a variety of real-world applications [32, 36, 37]. The majority of text classification
systems can be broken down into five stages: preprocessing, feature extraction, dimensionality
reduction, classifier selection, and evaluation [38]. We depict these five stages as a pipeline in 2.1.

2341255,
1231232,
9832282 [    ]

2341255,
1231232,
9832282 [    ]

234255,
123232,
983282[    ]

Text Corpus Preprocessing Feature Extraction Dimensionality
Reduction Classification Evaluation

Figure 2.1: Traditional text classification pipeline

Preprocessing: Texts and documents, in general, are unstructured data sets. However, when
mathematical modeling is used as part of a classifier, it is necessary to turn these unstructured
text sequences into a structured feature space. To begin, the data must be preprocessed into a
format that is more structured, so that the machine learning model can understand it. This can be
accomplished through the use of techniques such as stop-word removal, lower casing, punctuation
removal, stemming, and the like. Subsection 2.1.1 details each of these techniques.

Feature Extraction: Most machine learning algorithms generate output for test data by learn-
ing from a predefined set of features in the training data. However, the primary issue with
language processing is that machine learning algorithms cannot work directly on raw text. As
a result, techniques are required for converting text to a matrix (or vector) of features. Term
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frequency (TF) [52], Term frequency - inverse document frequency (TF-IDF) [52], and Word2Vec
2.1.2 are frequently used feature extraction techniques. In Subsection 2.1.2, we discuss these
popular techniques.

Dimensionality reduction: Due to the fact that text or document datasets frequently contain
a large number of unique words, feature extraction steps can be slowed by excessive time and
memory requirements. Dimensionality reduction is a frequently used approach for resolving these
issues. Dimensionality reduction, or dimension reduction, transforms high-dimensional data into
a low dimension while keeping important features of the original data. Section 2.1.3 discusses the
most frequently used techniques for dimensionality reduction.

Classification: The most critical step in the pipeline is selecting the optimal classifier, and
the most efficient model for a text classification application cannot be determined without a
complete conceptual understanding of each algorithm. In Section 2.1.4, we discuss traditional text
classification techniques. Deep learning classifiers are discussed later in Section 2.2.

Evaluation: Numerous techniques exist for evaluating supervised techniques. In Section 2.1.5,
we discuss the various methods for evaluating classification algorithms.

2.1.1 Preprocessing

Most text datasets contain numerous superfluous words such as stop-words, misspellings, and
slang. Noise and superfluous features can have a detrimental effect on the performance of many
algorithms, particularly statistical and probabilistic learning algorithms. Fortunately, numerous
methods exist for extracting or correcting these features from text. This subsection discusses these
methodologies.

Lowercasing: Lowercasing all data is a straightforward and effective method of text prepro-
cessing. It is applicable to the vast majority of text-mining and NLP problems and can help
significantly with expected output consistency in cases in which the dataset is not very large.

While lowercasing is a common practice, there are times when it is critical to maintain capit-
alization, for instance in a system where abbreviations can be important: the abbreviation “US”,
which stands for United States, is distinct from the term “us”. Lowercasing the two makes them
identical, resulting in a loss of critical predictive features in the classifier.

Stopword Removal: “Stop-word” is a general term referring to a collection of frequently used
words in any language, not merely English and Dutch. Stop-word removal is critical for many ap-
plications because it places the focus on important words rather than on words that are frequently
used in a given language.

When we performed text classification and sentiment analysis in this study, stop-words had
to be eliminated because they added no information to our model; however, when performing
language translation, stop-words are useful because they must be translated alongside other words

Stemming: Stemming is the practice of reverting words with inflections (e.g. connect, connec-
ted, connection, connections, connects) to their base form (e.g. connect). It is possible that the
word is not a true base word, but rather a canonical variant of the original word. There are various
stemming algorithms. The snowball stemmer [45] on of the most prevalent algorithm, which is
also recognized to be beneficial for the Dutch language.

Tokenization: Tokenization is the process of dividing a text string into small units called tokens.
A token can be a single word, a segment of a word, or simply characters such as punctuation marks.
Most text classification techniques require the use of a parser to tokenize the documents. Consider
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the following sentence: “I enjoy Shoyu ramen!” If we use a word tokenizer to tokenize this sentence,
we get the following output: “I,” “enjoy,” “Shoyu,” “ramen,” “!”.

Lemmatization: Lemmatization is superficially comparable to stemming in that the objective
is to delete inflections and transfer a word to its base form. The primary distinction between
the two is that lemmatization does not accomplish this by simply cutting things off; it actually
converts words to their base form, for instance “better” corresponds to “good.” It appears as
though lemmatization is superior to stemming, but this is frequently not the case. Depending on
the algorithm used, it may be significantly slower than when a very basic stemmer is used, and
the part of speech of the target word might need to be known in order to obtain a correct lemma.

Normalization: Text normalization is the process of turning a text into its standard (canonical)
form. For instance, the words “2morrow” and “2mrw” can be transformed into the standard form
“tomorrow.” Another example is the reduction of nearly identical terms such as “data set” and
“dataset” to the singular “data set.”

Normalization is critical for noisy texts such as text messages, blog comments and social media
comments that frequently contain misspellings, abbreviations, and the use of out-of- vocabulary
words. Ranjan et al. [53] improved the accuracy of sentiment analysis on Twitter messages by
applying only normalization.

Spelling correction: Texts and documents frequently contain spelling mistakes. Numerous
methods and techniques are available for this purpose, including spelling correction via the Trie
and Damerau-Levenshtein distance bigram [11] as well as hashing-based and context-sensitive
spelling correction [22].

Noise removal: Noise removal is the process of removing digits, characters and fragments of
text that might obstruct the text analysis. Noise removal is a critical step in the preprocessing of
text, and it is highly domain specific.

Text augmentation: A way to address the issue of limited data is to perform various trans-
formations on the available data in order to generate new data. The act of synthesizing new data
from existing data is referred to as “data augmentation.”

Data augmentation can be used to address both the requirement for and quantity of training
data. Apart from these two applications, augmented data can also be used to address the problem
of class imbalance in classification tasks. This is a fairly complex subject that will be discussed in
greater detail in Section 2.3.2.

2.1.2 Feature Extraction

A word is naturally represented by a character sequence. However, using raw character sequences
to represent words is inefficient and ineffective. First, words with variable lengths are difficult to
process in machine learning. Character sequences are also very sparse as only a few arrangements
are meaningful. For example, Dutch words are usually composed of 1–15 characters from the Dutch
alphabet, but most possible character combinations, for example “qqqqqqq,” have no meaning.

Another way to represent words is through one-hot representation, which assigns each word
a unique index. However, this is not an appropriate method of representing words because it
cannot capture the semantic relationship between words. In addition, one-hot representation is
an inefficient, sparse, high-dimensional representation that is extremely inflexible when it comes
to dealing with new words, which requires assigning new indexes and altering the representation’s
dimensions.

Machine learning algorithms require input to be in the form of floats with fixed lengths and
dimensions. As a result, representing a word as a vector plays a crucial role. Text must be in
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meaningful floats in order to effectively train machine learning models. This subsection discusses
various techniques for extracting features and representing words as vectors

One hot encoding: A one-hot is a group of bits in which the only valid value combinations are
those that contain a single high (true/1) bit and in which all other bits are low (false/0). Given
a vocabulary V = {w1, w2, ..., w|V |}, the main idea is to represent each word w as a unique and
distinct one-hot such that all words w have length |V |.

Term frequency–inverse document frequency: TF-IDF [48] is a metric used in statistics
to determine the relevance of a word to a document in a given corpus. Expanding the one-hot
encoding representation is one way this metric works. Since, all words w ∈ V hold the |w| = |V |
constraint, this idea can be extended to represent a given sentence s = {w1, w2, ..., wn} with n
words as:

s =

n∑
i=1

wi (2.1)

Therefore, the sentence s is the sum of all one-hot representations of all the words in the sentence.
Consequently, each element in s represents the TF of the corresponding word, that is the number
of times the word appears in the sentence. The issue with this straightforward representation is
that it does not take into account the relative importance of various words. For example, words
such as ”the,” ”so,” and ”what” often appear in different sentences and carry little meaning. As
a result, the inverse document frequency (IDF) is applied to determine the significance of wi as
follows:

idf(wi, D) = log
|D|

df(wi, D)
(2.2)

where df(wi, D) represents how often the word appears in a given gorpus D. The TF-IDF rep-
resentation can now be determined by taking the element wise product of s and idf(wi, D). More
formally, the TF-IDF of s can be computed as follows

tfidf(s, wi, D) = s× idf(wi, D) (2.3)

Word2Vec: Mikolov et al. [42, 41] introduced word-to-vector (Word2Vec) representation as
an enhanced word-embedding architecture in which linguistic terms such as “dog” and “cat”
are measurably similar. Word2Vec is a shallow neural network with two layers that is trained
to reconstruct the linguistic contexts of words. Each unique word in the corpus is allocated a
corresponding vector in the vector space, which typically has several hundred dimensions. These
word vectors are positioned in the vector space in such a way that words with common contexts
in the corpus are close neighbors in the space.

When algebraic operations are performed on these word embeddings, it is possible to obtain
a close approximation of word similarity. For instance, the vector of “sir” minus the vector of
“man” plus the vector of “woman” yields a vector very close to that of “madam.” An example of
an algebraic operation on word embeddings is as follows:

[5, 3]− [2, 1] + [3, 2] = [5, 4] (2.4)

where [5,3] = sir, [2,1] = man, [3,2] = woman, and [5,4] = madam. Word2Vec comes in two
versions: skip-gram and continuous bag of words (CBOW). These models are similar in terms
of algorithmic complexity. Figure 2.2 illustrates a simple skip-gram model that attempts to find
words that may occur near each word, whereas the CBOW model attempts to find a word based
on previous words.
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Figure 2.2: The Skip-gram and the continuous bag-of-words (CBOW) architecture.

FastText: One significant disadvantage of word-embedding techniques such as Word2Vec is
their inability to handle out-of-corpus words. These embedding techniques consider a word to be
the smallest entity and attempt to learn its associated embedding vector. Thus, if a word does
not appear in the corpus, Word2Vec will fail to obtain its vectorized representation. FastText
[34] considers each word to be made up of n-grams; that is, if the value of n is 3, the n-gram
representation of the word “ramen” is ”ra,” “ram,” “ame,” “men,” “en.” For the word “ramen”
can be inferred the entire vector as the sum of all the characters’ n-gram vector representations.

For instance, suppose a word commonly appears in the testing dataset but does not appear
in the training set, but the training set includes a vector representation of each of its n-grams.
As a result, the vectorized representations of all the word’s constituent n-grams can simply be
averaged.

2.1.3 Dimensionality Reduction

There are frequently too many factors in text classification problems on the basis of which the
final classification is made. These variables are referred to as features. The more features there
are, the more difficult it is to visualize and work with the training set. Occasionally, the majority
of these characteristics are correlated and thus redundant. The most frequently used techniques
for dimensionality reduction in the text classification domain are principal component analysis
(PCA) [50], nonnegative matrix factorization (NMF) [39], linear discriminant analysis (LDA) [5],
random projection [47, 15], autoencoders [40], and t-distributed stochastic neighbor embedding
(t-SNE) [58].

2.1.4 Classification

From the 1960s to the 2010s, text classification models based on shallow learning were dominant.
Shallow learning models, for example support vector machine (SVM) [12], K-nearest neighbor
(KNN) [44], and naive Bayes (NB) [51], are based on statistics. In this section, these shallow
learning methods are explained. The more novel deep learning methodologies are discussed in
greater detail in Section 2.2.

PGM-based methods: Probabilistic graphical models (PGMs) combine probability and graph
theory. Bayesian networks [27], NB, and hidden Markov models [57] are three examples of PGMs
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that are frequently utilized in practice due to their simplicity. However, these models’ simplicity
has limitations in some circumstances as they do not perform well on text that requires context.
Gaussian NB is an example of a common PGM-based approach in which it is assumed that the
values associated with each class follow a Gaussian or normal distribution.

KNN-based methods: All the techniques in this group are based on the KNN algorithm [13],
which is a fundamental though often overlooked classification technique in machine learning. It is
a subset of supervised learning and is widely used in pattern recognition, data mining, and text
classification. It is extensively applicable in real-world circumstances since it is nonparametric,
meaning that no underlying assumptions about the distribution of data are made. However, when
solving large-scale problems, KNN can be limited by data storage constrains [61, 38].

SVM-based methods: Cortes and Vapnik proposed the SVM [12] to address the binary classi-
fication problem in pattern recognition. Joachims [33] applied the SVM method to text classifica-
tion by representing each text as a vector. Originally, SVM was developed for binary classification
tasks. However, many researchers use this technique to solve classification problems involving
multiple classes.

To obtain more accurate results, SVMs can be stacked on top of one another; this is referred
to in the literature as stacking support vector machines (SSVM). As illustrated in Figure 2.3, the
SSVM model employs a hierarchical classifier with multiple layers.

Request 
Classifier

SVM

Input

Other
Directness 
Classifier 

SVM

Direct CI NCI

Figure 2.3: Stacking support vector machines

DT-based Methods. The decision trees (DT) based methodologies [43] constitute a recursive
supervised tree structure learning method. The basic idea is to create a tree for categorized
datapoints based on their attributes. However, the primary difficulty with a DT is determining
which feature or attribute should be at the child level and which should be at the parent level
of the tree. To address this primary difficulty, De Mántaras [17] introduced statistical modeling
methodology for feature selection. The DT-based methods are quite fast, but they are particularly
sensitive to slight changes in data and are prone to overfitting [25].

A random forest (RF) [28] is an approach that is comprised of many decision trees. The number
of decision trees is a metric that you select based on your data and the surrounding context. Each
decision tree is trained on a random subset of data. By ultimately integrating these distinct and
hence ’random’ decision trees, you avoid outliers from having a (bad) impact on the prediction’s
outcome and its repercussions.
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Regression-based methods When the output variable is a continuous or real value, such as
“salary” or “weights,” a regression problem may exist. There are numerous available models, the
simplest being linear regression. It attempts to match data with the optimal hyperplane that
traverses the points.

Using logistic regression (LR), you can develop a predictive model to estimate the likelihood
of a positive outcome for a categorical dependent variable. This is possible with one or several
independent variables. Here, the categorical variable is often dichotomous, but a variable with
more than two categories is also feasible. This means, for instance, that you forecast the likelihood
of a positive outcome.

2.1.5 Evaluation

Measurable evaluation metrics are available to compare different methodologies. Due to the fact
that the underlying mechanics of these vary, it is critical to understand what each of these metrics
represent. Accuracy, precision, recall, AUC, and F-measure are a few examples of these metrics.
True positives (TP), true negatives (TN) , false negatives (FN), and false positives (FP) are used
to compute these metrics.

Accuracy: The ratio of correctly predicted observations to the total number of observations.

accuracy =
TP + TN

TP + TN + FN + FP
(2.5)

Precision: The ratio of correctly predicted true positives to all true positives.

precision =
TP

TP + FP
(2.6)

Recall: The proportion of known positives that are predicted correctly

precision =
FP

FP + FN
(2.7)

F1-score: An aggregated metric that takes the model’s precision and recall into consideration.

F1 =
2× (precision× recall)

precision + recall
(2.8)

Receiver operating curve (ROC): An ROC is a graph that illustrates the performance of a
classification model across all classification thresholds. This curve depicts the relationship between
recall and precision. By lowering the classification threshold, more items are classified as positive,
leading to an increase in both true positives and false positives.

Area under the ROC curve (AUC): AUC is an aggregated metric that measures the per-
formance of all possible classification thresholds. More precisely, the entire two-dimensional area
under the ROC curve is measured by the AUC. A classification model that has an AUC close
to 1 demonstrates a high degree of separability. A model with an AUC close to 0 has the worst
possible measure of separability.

2.2 Deep Learning

As discussed in the previous section, traditional models require good sample features to use them
for classical machine learning algorithms. As a result, the method’s effectiveness is determined
largely based on feature extraction. Deep learning, unlike traditional machine learning models,

12 Detecting Calls to Action in Text Using Deep Learning



CHAPTER 2. LITERATURE REVIEW

adds feature engineering into the model-fitting process. This is accomplished through the use of a
set of nonlinear transformations that help directly map features into outputs. A typical pipeline for
deep learning text classification is similar to the traditional one depicted in Figure 2.1. However,
the deep learning pipeline can perform the steps of feature extraction, dimension reduction, and
classification in a single step. This is visualized in Figure 2.4.

Text Corpus Preprocessing Deep Learning Model Evaluation

Figure 2.4: Standard, deep learning pipeline for text classification

These deep learning models have delivered state-of-the-art results in many domains, including
a wide variety of NLP applications. Prior to deep learning, many conventional machine learning
methods required handcrafted feature extractors built by experts with domain knowledge. Deep
learning for text and document classification spans multiple architectures. The most important
architectures are described in this subsection.

DNN-based methods: Deep neural networks (DNNs) are designed to learn through multiple
layer connections, with each layer receiving connections only from the previous layer and providing
connections only to the next layer. The input layer may be constructed using Word2Vec, FastText,
TF-IDF or another method for obtaining features. Figure 2.5 illustrates the structure of a typical
DNN. For multi-class classification, the output layer is equal to the number of classes; for binary
classification, it is equal to one. Given a set of example pairs (x, y), the objective is to learn a
function f : x → ŷ, such that ŷ is a probability score that ideally aligns with y. In a neural
network setting, f represents the whole neural network, which contains the network parameters
(weights and biases of the network). During the training process these network parameters are
tuned using, for example, stochastic gradient descent (SGD).

RNN-based methods: The recurrent neural network (RNN) is an additional neural network
design utilized for text classification and mining by researchers. A RNN provides greater weights
to preceding datapoints in a sequence. Therefore, this network is an effective way for classifying
sequence, string, and text data. RNNs are able to conduct more precise semantic analysis because
they take into account the data from the nodes that came before them in an effective manner.
RNNs for text classification mostly works by using gated recurrent unit (GRU) or long short-term
memory (LSTM). Figure 2.6 depicts a standard RNN, which contains an input layer, hidden layers,
and an output layer. Despite these advantages, RNNs are susceptible to the exploding gradient
and vanishing gradient problems [6].
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Figure 2.5: Standard, (fully connected) deep neural network (DNN)
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Figure 2.6: Standard, GRU/LSTM network

CNN-based methods: Convolutional neural networks (CNNs) [1] employ convolution filters
and where initially proposed for image classification to extract characteristics from images. How-
ever, CNNs can also be used for a variety of NLP applications, including text classification. CNNs
are distinguished by a sequence of convolutional layers followed by nonlinear and pooling layers.
The convolutional layer generates the next feature map by performing a series of convolutional
operations on the input feature maps using a learnable filter. These learnable filters enable the
CNN to learn local patterns within the feature maps. Then, by extracting the most significant
characteristics from a feature map, a pooling layer can be utilized to reduce the dimensionality of
the feature map. Finally, a fully linked layer is frequently used to predict the category as a vector.
Figure 2.7 depicts the architecture of a typical CNN.

BERT-based methods: In 2017, Vaswani et al. [62] invented a new sort of neural network
design called a transformer. The transformer architecture was initially developed to solve the
language translation problem. This model consists of an encoder-decoder structure combined
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Figure 2.7: Standard, Convolutional Neural Network (CNN)

with a multihead self-attention mechanism, and it obtained state-of-the-art results, outperforming
existing CNN- and RNN-based methods. A significant advantage of this model (over other neural
networks) is that it considers a word’s extended context in a more computationally efficient manner
[62, 46].

The transformer’s architecture is depicted in Figure 2.8. The encoder on the left side of the
transformer’s (highlighted in green) architecture is responsible for mapping an input sequence to
a sequence of continuous representations, which is subsequently given to a decoder. On the right
side of the architecture (highlighted in red), the decoder receives the encoder’s output along with
the decoder’s output from the previous step to form an output sequence.

Consider a scenario in which a Dutch text is to be translated into English with the use of
a transformer model. The encoder’s task is to take the Dutch words and convert them to word
embeddings. Then, the decoder takes these Dutch word embeddings from the encoder along
with the previously generated English words from the decoder and uses them to predict the next
English word. The decoder predicts the English words one at a time until the end of the phrase
is predicted.

Abstractly, the encoder learns Dutch, while the decoder learns the relationship between Dutch
and English. Both the encoder and decoder have an underlying understanding of language. Be-
cause of this, the transformer architecture can be disassembled to create new models. BERT is
fundamentally a language transformer model with changeable encoder layers and self-attention
heads. The architecture is nearly identical to the implementation of the original transformer in
Vaswani et al [62].

Two models exist for the original English-language BERT: [20] BERTLARGE contains 24 en-
coders with 16 bidirectional self-attention heads, and BERTBase contains 12 encoders with 12
bidirectional self-attention heads. These models are depicted in figure 2.9. Both models are pre-
trained on unlabeled data gathered from the 800 million-word BooksCorpus[67] and the 2.500
million-word English Wikipedia [2].

BERT was pretrained on two tasks: next sentence prediction and language modeling. It
acquires contextual embeddings for words during the training process. Following a computationally
intensive pretraining phase, BERT can be fine-tuned using fewer resources on smaller datasets to
optimize its performance on specific tasks [67].

As an alternative to fine-tuning, the document representation provided by the output layer
of the entire network can be extracted, and then the classification task using classical machine
learning classifiers can be performed. This allows comparing the performance of the BERT neural
network model when used as a classifier versus a feature extractor.
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Figure 2.8: The original transformer architecture [62]

Figure 2.9: Architecture of BERTBASE and BERTLARGE

Because BERT is trained on a English corpus, its application to a Dutch corpus is dubious.
To address this issue, BERT has been retrained on 104 different language corpora and named
mBERT [20]. It was specifically trained on Wikipedia articles with a shared vocabulary across all
languages. Small languages were oversampled and large languages were undersampled to combat
the imbalanced content of Wikipedia. Dutch is one of the 104 different languages.

BERTje [18] is a BERT model trained exclusively on a dutch corpus of 2.4 billion words. It was
trained using a variety of genres to ensure that it is more representative of general Dutch language
use. The model was trained on Wikipedia text as well as fiction novels, Dutch news articles,
and articles from a multigenre reference corpus. The resulting model outperformed mBERT on
downstream NLP tasks such as NER, sentiment analysis, and part-of-speech (PoS) tagging.
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2.3 Beyond Supervised Learning

A large number of training examples are used to construct predictive models using supervised
learning techniques. Each training example has a label indicating the output of the ground truth.
Despite the fact that current supervised methodologies have achieved considerable success, it
should be noted that, in many tasks, strong supervision information is difficult to obtain. There-
fore, it is desirable for machine-learning approaches to be able to operate with limited (weak)
supervision. Zhou [66] distinguishes between three types of limited (weakly) supervised learning
techniques, which includes inaccurate, incomplete and inexact supervision. Each of the three types
is explained in detail below.

2.3.1 Inexact

Inexact supervision is based on training models that include some supervision information but not
quite enough. A typical problem is when only coarse-grained label information is available, such
as in the multiple-instance learning (MIL) classification problem [21]. This classification problem
is defined as follows: consider a bag B which contains n instances i1, ..., in, such that B is negative
if all instances of B are negative and B is positive if at least one instance in the bag is positive.
The problem is that the dataset is labeled at a bag level rather than at an instance level, making
this an inexact, weakly supervised problem. MIL-classification problems are typically solved in
one of two ways: aggregating the instance-level predictions or constructing a bag-level feature
representation for classification.

2.3.2 Incomplete

Incomplete supervision refers to a situation in which there is an insufficient quantity of labeled data
to train a functional learner, despite the availability of large amounts of unlabeled data. More form-
ally, the objective is to learn a function f : X → Y from a dataset D = {(x1, y1), . . . , (xl, yl), xl+1, . . . , xm},
where there are l number of labeled training examples and u = m−l number of unlabeled instances.

Incomplete supervision encompasses two primary techniques: active and semisupervised learn-
ing [55]. Active learning requires the presence of a human so that the machine learning algorithm
can query the human to obtain labels for the unlabeled data. On the other hand, semisupervised
learning requires no human intervention; the algorithm attempts to learn from both labeled and
unlabeled data

Unsupervised data augmentation (UDA): In general, the more data available, the higher
the performance will be. However, annotating a large amount of training data is far too time
consuming. As a result, proper data augmentation is necessary to improve the model’s perform-
ance. Data augmentation has shown great potential in reducing the need for more labeled data,
although it has thus far been deployed predominantly in supervised situations with modest suc-
cess. By augmenting labeled and unlabeled data, UDA [64] works as a semisupervised learning
strategy that provides state-of-the-art outcomes on a number of visual and language tasks.

MixText: MixText [10] is a semisupervised text classification method that makes use of the
newly developed data augmentation technique TMix. By interpolating text in hidden space,
TMix generates a large number of augmented training samples. In addition, it utilizes current
developments in data augmentation to produce labels with low entropy for unlabeled data. This
enables the usage of unlabeled things as labeled data. MixText greatly surpasses state-of-the-
art semi-supervised and fully supervised learning approaches, such as UDA and BERT, on mul-
tiple benchmarks for text classification. The improvement is most noticeable when supervision
is severely restricted. For example, the MixText model, which was trained using only 20 labeled
examples form the IMDb dataset, outperformed the BERT model, which was trained using all
25, 000 labeled examples [10].
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2.3.3 Inaccurate

Inaccurate supervision refers to a situation in which the supervision data is not always accurate.
A typical problem is when an algorithm relies on data labeled by multiple workers: the same
input by two or more workers could potentially be labeled differently due to a difference in human
judgment. In practice, the basic idea is to identify mislabeled samples and then attempt to rectify
the situation by either relabeling or removing the sample.

2.3.4 Unsupervised

Unsupervised learning, commonly referred to as unsupervised machine learning, uses machine
learning algorithms to evaluate and cluster unlabeled information. The goal of these algorithms
is to find hidden patterns or data clusters without requiring human intervention. Their capacity
to identify similarities and contrasts in data makes them a good choice for exploratory data
analysis. There are three primary applications for unsupervised learning models: dimensionality
reduction, clustering, and association. In this subsection, only unsupervised clustering algorithms
are discussed.

Clustering: Clustering is a technique for data mining that organizes unlabeled data based on
their similarities or differences. Several types of clustering algorithms exist including overlapping,
exclusive, hierarchical, and probabilistic. Exclusive clustering is a method of grouping in which
a datapoint can reside in only one cluster. This method is also known as hard clustering. K-
means [3] clustering is a frequent instance of an exclusive clustering approach in which datapoints
are assigned to k groups, where k is the number of clusters depending on the distance from
each group’s centroid. The datapoints closest to a specific centroid are grouped into the same
category. A greater k-value indicates smaller groupings with greater granularity, while a lower
k-value indicates larger groupings with less granularity.

The issue with K-means clustering is that the algorithm’s user does not know beforehand how
many clusters exist in the dataset. This emphasizes the need to execute K-means multiple times
to determine which k clusters the dataset the best. Evaluation criteria such as the silhouette score
are crucial for achieving this goal.

The silhouette coefficient quantifies how similar an object is to its own cluster (cohesion)
relative to other clusters (separation). The silhouette varies from −1 to +1, with a high value
indicating that an object is well suited to its own cluster but poorly matched to nearby clusters.
If the majority of objects have high values, the clustering design is suitable. If a large number of
points have low or negative values, the clustering configuration may contain too many or too few
clusters. The abstract formulas below illustrate how the silhouette coefficient s(p) is calculated
for a given point. After computing the silhouette coefficient for each point, averaging them out
results in the silhouette score.

a(p) = The average distance of point p from all other points in the same clusters (2.9)

b(p) = The average distance of point p from all the points in the closest cluster to its cluster
(2.10)

s(p) =
b(p)− a(p)

max(b(p), a(p))
(2.11)

2.4 Part-of-Speech Taggers

Until now, we have addressed machine learning models whose ultimate objective is to recognize
CTA in text. However, there is also a language method for identifying CTA. For instance, a
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rule-based system can be created to determine whether particular words are included. Sentences
containing action verbs such as “send,” “click,” or “download” in e-mail traffic have a high like-
lihood of containing CTA. Depending on the corpus and the number of rules that have been
established, creating an algorithm based on words and their parts of speech may provide accept-
able results. However, this requires a precise PoS tagger and the linguistic competence to establish
the rules. In this section, we restrict the discussion to PoS taggers that can be implemented in
rule-based systems.

A PoS tagger identifies the function of words in a particular language by assigning them to one
of several categories. In English, there are nine different parts of speech: conjunction, preposition,
interjection, adjective, pronoun, adverb, verb, article, and noun. This section discusses popular
Dutch PoS taggers.

Frog: Frog [7] is an integration of NLP modules developed for Dutch. It performs tokenization,
PoS tagging, lemmatization, and morphological segmentation of word tokens. The PoS tagger
employs the tag set of Corpus Gesproken Nederlands (CNG). The PoS tagger in Frog is based
on a memory-based tagger-generator and tagger (MBT) [14] trained on a large Dutch corpus of
10,975,324 words in 933,891 sentences. This corpus constitutes a mix of several manually annotated
corpora, but about 90% of the data comes from the transcribed CNG of about nine million tokens
[59].

SpaCy: SpaCy [29] is an open-source software package for NLP that includes prebuilt pipelines
with Dutch PoS taggers. The PoS tagger employs the tag set of CNG; it is trained on the Dutch
UD Lassy small [60] dataset containing 6,641 sentences and uses FastText as a backbone. SpaCy
provides multiple pretrained pipelines featuring PoS taggers; however, nl core news lg is the most
accurate pipeline as of now.

Other: A PoS tagger classifies a word in a sentence; therefore, the pipelines discussed in Section
2.3 can also be utilized to develop a custom PoS tagger. For example, the creators of BERTje
also benchmarked BERTje as a PoS tagger and achieved state-of-the-art results on the UD Lassy
small dataset [60].
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Chapter 3

Materials and Methods

In this chapter, we first elaborate on the datasets used to train various models to detect CTAs.
Thereafter, we examine the methodologies that can be used to detect CTAs. Finally, we present
the hardware and software packages used to train the presented models.
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3.1 Materials

This section provides a detailed description of the datasets used in the experiments described in
Section 3.2.

3.1.1 GDC

GDC is a letter generation system used by the Dutch Tax Administration. The GDC dataset
consists of all possible template letters that can be generated with the XML-based building blocks
of the GDC system. After personalisation these letters can be sent to Tax Service customers
in a massive process. Because of the lack of labeled data for this dataset at the start of the
project, a small percentage of it was manually labeled during the course of the project. To
ensure the most equitable selection of labeled data, an unsupervised clustering method was used.
Following that, samples were collected from these clusters. Section 3.2.1 describes the rationale
and methodology behind this clustering. This dataset for training and validating the models
consists of 1233 sentences and we use an independent test set of 248 sentences, see table 3.2

Table 3.1: Number of sentences in the GDC dataset used for training, validating and testing.

Dataset CTA Non-CTA Unlabeled

Train/validation 621 621 0
Test 124 124 0
Rest 0 4975 476856

3.1.2 GDB

GDB is a document management system of the Dutch Tax Administration which has been de-
veloped for the purpose of order registration, development of (re)productions, (web)publication,
distribution and management of documents for a broad range of Tax Service processes. It con-
tains standard documents for external and internal purposes, among which letters, forms and
attachments, often containing detailed information about fiscal matters. Additionally, the dataset
is labeled using the same methodology as for the GDC dataset. This dataset consists of 4284
sentences and we use an independent test set of 856 sentences, see table 3.2.

Table 3.2: Number of sentences in the GDB dataset used for training, validating and testing.

Dataset CTA non-CTA Unlabeled

Train/validation 2142 2142 0
Test 428 428 0
Rest 0 9159 2237104

3.1.3 BD

The BD dataset contains the content of the Dutch Tax Administration’s web pages. Due to the
small size of the dataset, clusters were manually selected. Although the BD dataset is extremely
small, it is of high quality. This is because it has been labeled by a panel of linguistic experts
during a workshop given at Utrecht University. This small dataset consists of 54 sentences and
we use an independent test set of 12 sentences, see table 3.3.
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Table 3.3: Number of sentences in the BD dataset used for training, validating and testing.

Dataset CTA non-CTA Unlabeled

Train/validation 27 27 0
Test 6 6 0
Rest 0 140 0

3.1.4 UD Dutch Lassy Small

This corpus contains sentences from the Lassy Small treebank’s Wikipedia section [60]. A treebank
is a parsed text corpus that contains annotations for semantic or syntactic sentence structure in
linguistics. The Lassy Small treebank is a manually checked Dutch treebank annotated with
phrasal nodes and dependency labels. The dataset contains 16 universal PoS tags and is already
split into test, train, and validation sets. This dataset is used to train and evaluate a PoS tagger.
As not all content in the Lassy Small treebank may be freely accessible, UD Dutch Lassy Small
only contains the content from Wikipedia.

Table 3.4: Sentences from the The Lassy Small Treebank’s Wikipedia section [60]

Dataset Train Validation Test

UD Lassy 6641 350 350

3.2 Methods

This section describes in detail how the data labeling technique and text classification methodo-
logies are carried out.

3.2.1 Equitable Selection

Because only a tiny portion of the dataset is labeled, it is crucial that the labeled portion accurately
represents the full dataset. If the dataset is randomly selected, there is a high likelihood that not
enough of each letter type will be included. As a result, it was decided to cluster the datasets
unsupervised so that samples from each cluster could be selected and labeled to ensure that the
sub-dataset is as representative as possible. It is critical to note that speed and simplicity take
precedence over accuracy (given the size of the datasets and limited time of the project).

Preprocessing: Each text document first goes through a preprocessing phase in which lower-
casing, noise removal, and stop-word removal are central. The steps involved in preprocessing are
listed below.

• Documents with fewer than 100 characters are excluded from the dataset.

• A replace command is used to remove extraneous white space.

• All words with fewer than two characters are omitted.

• Stop-words are removed from the document. This is accomplished by utilizing the Dutch
stop-word list, which is included in the Python NLTK package

• The text is tokenized using the Python NLTK package.

• The tokens are stemmed using the snowball stemmer for the Dutch language.
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Feature Extraction: To extract the features of a series of tokens, the TF-IDF metric is used.
This metric was calculated using the scikit-learn implementation.

Unsupervised Classification: Due to the limited time available for the project, the size of the
dataset, and the availability of computing resources, the dependable and quick K-means++ [3]
algorithm was chosen to cluster the dataset. This is performed for all values of k from 2 to 20.

Evaluation: For all k from 2 to 20, the elbow method and the silhouette score are used to
determine how many clusters the datasets can be divided into.

3.2.2 Equitable Labeling

After constructing a representative dataset, it is essential that the data be appropriately and
accurately labeled. However, there is a significant problem in that the definition of a CTA is am-
biguous and therefore subjective. The dataset was labeled by a single individual, so the likelihood
of a substantial bias in the labeled dataset is almost certain. To quantify this bias, the BD dataset
was labeled entirely by this individual and then again by a group of four experienced linguistic
experts, and the results were compared.

3.2.3 Traditional Text Classification

To compare the various feature extractors and classifiers, we created a text classification pipeline
in which only the feature extractors and classifiers were modified. This is to ensure that a fair
comparison can be made later. This pipeline accepts short texts, typically a sentence, that are
either labeled as a CTA or not. Table 3.5 contains the global configurations for these pipelines. To
extract features from a series of tokens, we have three options: TF-IDF, Word2Vec, and BERTje.

Table 3.5: Global configurations for traditional text classification pipelines

Step Setup

0: Corpus
GDC
GDB
BD

1: Preprocessing

Noise removal
Tokenization
Stemming
Stop-word removal

2: Feature extraction
TF-IDF
Word2Vec
BERTje

3: Dimensionality reduction N.A.

4: Classification

NB
RF
LR
SVM

5: Evaluation

Accuracy
F-Score
AUC
Running time
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BERTje: We use BERtje as a feature extractor for a variety of reasons. Due to the environment’s
limited computing power, fine-tuning the model takes a long time. However, by using BERTje as
a feature extractor, we only need to perform a forward pass through the network and read the
output layer with 768 neurons, which requires relatively little computing power. Additionally, this
procedure only needs to be performed once, after which the vectors can be saved. As a result, no
backpropagation is used in this approach, and BERTje’s parameters remain frozen.

In the case of BERTje as a feature extractor, little preprocessing is required. This is because
BERTje employs byte-pair encoding (BPE) to reduce the size of its vocabulary, which means that
words like “run” and “running” are eventually decoded as “run” + “ing.” Additionally, BERTje
is a cased model, which means that during training, this pretraining language model encountered
capital letters, eliminating the need for lowercasing. Additionally, removing high-frequency words
is not needed as BERTje employs attention mechanisms that ensure that the focus is only on
important words.

Word2Vec: The CBOW algorithm was used to train the Word2Vec model on the GDC and GDB
letters. We ran two variants of the Word2Vec model, one with lowercasing, stemming (snowball),
and punctuation removal and one without. Additionally, a vector/feature count of 768 was chosen
as this is the vector size used by BERT models. This helps level the playing field between the two
models. Additionally, the minimum word count was set to 40; the downsampling parameter was
set to 10−3, and the window size was set to 10. The letters were converted to sentences with the
help of spaCy’s sentencizer and then used to train the model

TF-IDF: Additionally, we convert the documents to TF-IDF features using scikit-learn’s TD-
IDF vectorizers, and use these as features for the rest of the pipeline.

Classification. We used gaussian NB, RF, and LR as our traditional machine learning classifiers.
We used scikit-learn’s implementation of all of the above-mentioned classifiers. Utilizing grid
searching, the hyper parameters were obtained, all these classifiers’ hyperparameters are listed in
appendix A.

Evaluation. A five-fold cross-validation was performed, and accuracy, F1-score, running time,
and AUC were evaluated.

3.2.4 Deep Learning Text Classification

Although BERTje was used as a feature extractor in the previous method, the entire network can
also be used as a classifier with the use of fine-tuning. The global configurations for these pipelines
are listed in Table 3.6. Figure 3.1 illustrates the model overview when BERTje is fine-tuned as a
text classifier. As depicted, a feed-forward layer is added on top of BERTje, followed by a sigmoid
layer to predict the correct class label. By maximizing the log probability of the correct label
using binary cross-entropy loss [16], we fine-tuned all BERTje’s parameters and the parameters
for the feed-forward layer simultaneously. The fine-tuning was performed utilizing the ADAM [35]
optimizer. Grid-searching for a good set of hyperparameters was unrealistic due to the absence of
computational resources. This is why the spaCy package was used to implement a linear warm-up
strategy. All parameters for fine-tuning BERTje and the linear warm-up are listed in appendix
A.5. To evaluate the pipeline, a five-fold cross-validation was performed, and accuracy, F1-score,
running time, and AUC were evaluated.

3.2.5 Part-of-Speech Tagging

For the development of a rule-based method to identify CTA, it is crucial to have an effective PoS
tagger. Frog and nl core news lg are the two primary Dutch PoS taggers currently available in the
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Figure 3.1: Fine-tuning BERTje for the detection of CTAs

Table 3.6: Global configurations for deep text classification pipeline

Step Setup

0: Corpus

GDC
CAV
GDB
BD

1: Preprocessing Noise removal

2: Classification BERTje (Unfrozen)

3: Evaluation

Accuracy
F-Score
AUC
running time

department in which the research is being performed. However, both methods utilize non-state-
of-the-art algorithms. BERTje has shown promising benchmarks for PoS tagging. As a result, we
trained our own custom PoS tagger with BERTje as a backbone. Since PoS tagging is in essence
a multiclass classification problem, we can use the same pipeline created in the previous section
to train a PoS tagger. The main difference is that we replace the sigmoid function in Figure 3.1
with a softmax function. The UD Lassy Small dataset is used to train the PoS tagger, which is
then evaluated against other relevant Dutch PoS taggers.

3.2.6 MIXText

Due to the lack of labeled data, a semisupervised method that utilizes both labeled and unlabeled
data could outperform the previously mentioned fully supervised methods. In this experiment,
MixText was modified to be compatible with the Dutch language. This was accomplished by
replacing the MixText backbone BERT with BERTje. MixText uses back-translation to aug-
ment data. Due to the limitations of the development environment, we replaced this with easy
data augmentation (EDA) [63] techniques. The unaltered code for MixText can be found on
https://github.com/GT-SALT/MixText.
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3.3 Tools

All code was executed on a shared virtual machine on a very restricted environment with the
following specifications:

Table 3.7: Hardware configuration for the shared virtual machine.

Operating System CPU GPU RAM

Linux Intel(R) Xeon(TM) 12 cores @ 2.80 GHz None 128GB

All experiments were carried out in Python 3.6. Within Python, the libraries given in table
3.8 were used.

Table 3.8: The Python packages used for replicating this study

Package Version

spaCy 3.1
scikit-learn 1.0.2
pandas 1.3.5
numpy 1.21.6
nltk 3.7
fairseq 0.12.1
matplotlib 3.2.2
nlpaug 1.1.10
transformers 4.20.1
torch 1.11.0+cu113

26 Detecting Calls to Action in Text Using Deep Learning



Chapter 4

Evaluation

In this chapter, we first present the results of our text classification experiments. Next, we assess
the model’s performance using the AUC, accuracy, running time, and F1-score metrics, which are
widely used in classification tasks. Last, we elaborate on the results within the context of the
project’s scope.
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4.1 Equitable Selection

Figure 4.1 shows the silhouette coefficient for each k from 2 to 20 for the GDB and GDC datasets.
The value of k for which this coefficient has the greatest value is deemed the optimal number of
clusters for the unsupervised learning algorithm.

For the GDB dataset, there is a upward trend from k = 2 to k = 18, followed by a downward
trend after k = 18. Hence, the optimal number of clusters based on this experiment is 18 with a
silhouette coefficient of 0.0744.

For the GDC dataset, there is a distinct spike at k = 17. In addition, there is a upward trend
to k = 13, with k = 8 being an outlier. Furthermore, there is a declining trend from k = 13 to
k = 17 and from k = 18 to k = 20, thus indicating that k = 17 with a silhouette coefficient of
0.778 is a suitable number of clusters for the GDC dataset.
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Figure 4.1: Silhouette coefficient of unsupervised clustering for each k from 2 to 20 for the GDB
dataset.

We calculated the average vector per cluster and determined which words were most closely
associated with a given word. Table 4.1 lists the leading terms for each cluster in the GDB dataset.
This table reveals that the top terms for each cluster are expected and have little overlap. However,
we observe that the top terms in Clusters 1 and 6 are notably different. Cluster 1 contains English
terms as top terms, indicating that the dataset is not entirely composed of Dutch letters as was
initially believed. In addition, Cluster 6 still contains words like “textblock,” which, according to
additional research, are the letters generated by the GDB system that contain XML.

Table 4.1: Leading top terms per cluster for the GDB dataset

Cluster # Word 1 Word 2 Word 3

1 the you to
2 vdp innovatiebox dd
3 aftrek vrag woning
4 bezwar brief gaa
5 aangift btw hebt
6 textblock tekstblok test
7 douan goeder vergunn
8 beslag belastingdienst geacht
9 scherm getoond formulier
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10 greken rekeningnummer wij
11 zeker nederland vooraf
12 korting heffing lon
13 toeslagpartner toeslag zorgtoeslag
14 convenant partij belastingdienst
15 accijn accijnsgoeder olie
16 werkgever werknemer verwijs
17 artikel inkomstenbelast bedoeld
18 bpm motorrijtu bestelauto

Table 4.2 displays the top terms for each cluster in the GDC dataset. This table demonstrates
that the top terms are quite logical and have minimal-to-no overlap. In addition, there are no
anomalies such as unparsed XML files or the use of other languages.

Table 4.2: Leading top terms per cluster for the GDC dataset

Cluster # Word 1 Word 2 Word 3

1 clint blijkt gegeven
2 kwijtscheld verlen clint
3 onderteken handteken plat
4 informatie vrag belt
5 adres docvariabl omzetbelastingnummer
6 beslag zak hebt
7 bedrag vastgesteld beslagvrij
8 formulier stur verzoek
9 uitstel betal verschuldigd
10 soort verzoek belastingplicht
11 aanslagnummer openstaand aanslag
12 fiscal recht person
13 bezwar brief bezwaarschrift
14 belastingdienst ondertekenar belastingdeurwaarder
15 loonheff aangift besliss
16 aansprak ingevolg afgekocht
17 douan bpm brief

The left-hand sides of Figures 4.2 and 4.3 display the silhouette score for each sample per
cluster, allowing a visual evaluation of cluster density and separation. Clusters with higher scores
have wider silhouettes, whereas less cohesive clusters fall below the average score across all clusters,
which is represented by a red, vertical dashed line. We utilized the PCA dimensionality reduction
technique to reduce the vectors to two dimensions. This was plotted on a graph to illustrate the
density and separation per cluster, where each color represents a distinct cluster, and the colors
correspond to the colors used in the left-hand figure. The plot is visible on the right side of Figures
4.2 and 4.3.

Figure 4.2 depicts the graphs associated with the GDB dataset. Clusters 0, 1, 5, 11, 12, and 16
are remarkable in that the silhouette coefficients are quite high and thus have little overlap with
the remaining clusters. Furthermore, Cluster 4 is not distinct and has substantial overlap with
other clusters since the silhouette coefficient is negative for most datapoints in the cluster. Table
4.1 reveals that the top terms for Cluster 4 are quite generic and thus can be in any Dutch letter,
which could cause the overlap.
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Figure 4.2: Visual representation of the silhouette score of each sentence in the GDB dataset

Figure 4.3 depicts the plots for the GDC dataset. Clusters 1, 2, 3, 4 all score high and thus have
little overlap with the remaining clusters, and they are all quite distinct. However, this cannot be
said for Clusters 5, 6, 7, and 8. Quite a few clusters overlap with the rest of the data, but in Table
4.2, it appears that the top three terms are indeed quite unique. Therefore, the precise reason
that these clusters overlap cannot be determined at this time and requires further study. We do
not discuss this further because there are also a large number of datapoints in these overlapping
clusters with relatively high silhouette coefficients.

Figure 4.3: Visual representation of the silhouette score of each sentence in the GDC dataset

After unsupervised clustering of both datasets, 1% of each cluster was extracted to produce a
subset that accurately and fairly represents the entire dataset.

4.2 Equitable Labeling

A group of four experienced linguists and one other individual labeled the BD dataset separately.
During the labeling of the dataset by the linguistic group, there was an extraordinary amount
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of debate regarding what constitutes a CTA and what does not. This suggests that the dataset
of the linguistic group may contain a substantial amount of bias due to the fact that a CTA is
a subjective speech act, thus its definition is quite vague. Therefore, we cannot use the dataset
of linguistic expertise as the absolute truth but only as an indication. The linguistic experts
identified 35 CTA in the BD dataset containing 208 sentences, while the individual identified 29
in the same set of sentences. The confusion matrix is shown in Table 4.3. It is remarkable that
nearly all errors are false positives. The majority of false positives involved more complex and
indirect CTA. It is essential to note that this experiment was conducted only after the GDC and
GDB datasets were labeled.

Table 4.3: Confusion matrix of the equitable labeling experiment

Linguists
Positive Negative Total

Individual Positive 28 1 29
Negative 7 172 179

Total 35 173 208

4.3 Traditional Text Classification

In this section, we elaborate the findings of our experiments using NLP techniques along with
classical machine learning classifiers for the prediction task.

TF-IDF: Table 4.4 displays the outcomes of experiments in which TF-IDF was utilized as a
feature extractor in conjunction with conventional machine learning classifiers. What is remarkable
is how poorly the NB classifier performed in comparison to the other methods. The standard
deviation of the NB classifier is also quite high, indicating that the results are highly variable;
however, the classifier converges faster than the others. The F1-score and accuracy of the SVM are
significantly higher than those of LR, whereas the AUC is lower. This is due to the fact that the
SVM classifier in this experimental setup has a high number of false negatives at the expense of
good performance on the positive classes. In addition, it is evident that the RF model outperforms
the other methodologies with the exception of the time metric.

Table 4.4: Results of the traditional machine learning pipeline with TF-IDF as feature extractor
on the GDC, GDB and BD datasets.

Model Accuracy F1-score AUC Time (s)
TD-IDF + SVM 0.88 ±0.01 0.92 ±0.01 0.95 ±0.01 0.1 ±0.2
TD-IDF + LOR 0.90 ±0.01 0.94 ± 0.01 0.92 ±0.01 0.1 ±0.3
TD-IDF + NB 0.81 ±0.03 0.87 ±0.03 0.81 ±0.03 0.01 ± 0.0
TD-IDF + RF 0.91 ± 0.01 0.94 ± 0.01 0.96 ± 0.01 0.1 ±0.1

Word2Vec: In Table 4.5, the outcomes using Word2Vec as a feature extractor in conjunction
with traditional machine learning models are compared. This again demonstrates that the NB
classifier is faster than the other classifiers; however, the model performed significantly worse
than the other classifiers on the remaining metrics. Furthermore, LR clearly outperformed the
SVM in this instance. In contrast to accuracy and F1-score, the AUC score of the SVM is still
relatively high. Thus, the phenomenon observed in Table 4.1, in which the AUC score of the SVM
is higher than that of the logistic regression, is reflected to a small degree here. The RF and LR
classifier have comparable scores, with the exception of the AUC score, where the RF classifier
scored slightly higher. RF also appears to be the best algorithm based on the experiment, but
this cannot be determined with certainty due to the 0.1 standard deviation in the AUC score.
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Table 4.5: Results of the traditional machine learning pipeline with Word2Vec as feature extractor
on the GDC, GDB and BD datasets.

Model Accuracy F1-score AUC Time (s)
Word2Vec + SVM 0.91 ±0.01 0.95 ±0.01 0.94 ±0.01 0.1 ±0.1
Word2Vec + LOR 0.93 ± 0.01 0.96 ± 0.01 0.96 ±0.01 0.1 ±0.1
Word2Vec + NB 0.67 ±0.04 0.71 ±0.03 0.79 ±0.04 0.01 ± 0.00
Word2Vec + RF 0.93 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.1 ±0.1

Table 4.6: Results of the traditional machine learning pipeline with BERTje as feature extractor
on the GDC, GDB and BD datasets.

Model Accuracy F1-score AUC Time (s)
BERTje (FE) + SVM 0.90 ±0.01 0.94 ±0.01 0.94 ±0.01 0.1 ±0.2
BERTje (FE) + LOR 0.90 ±0.01 0.94 ±0.01 0.94 ±0.01 0.1 ±0.1
BERTje (FE) + NB 0.72 ±0.01 0.82 ±0.01 0.69 ±0.01 0.01 ± 0.0
BERTje (FE) + RF 0.94 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.1 ±0.1

BERTje (FE): Table 4.6 displays the outcomes after applying the BERTje transformer model as
a feature extractor alongside some traditional machine learning classification techniques. The NB
classifier was the worst performer, excluding running time, as was the case in previous experiments.
Compared to the other feature extractors, the standard deviation was quite low this time around.
The most notable aspect in this table is that the RF classifier outperformed all other feature
extractors, except running time, by a significant margin.

Running times: Table 4.7 displays the amount of time required to convert the datasets to
vectors for input to the traditional machine learning classifiers. In light of this, we conclude that
the running time of the traditional machine learning classifiers is negligible compared to the time
required to extract the features.

Table 4.7: Running times of the feature extractors on the GDC, GDB and BD datasets

Feature Extractor Time (s)

BERTje (FE) 894
TDF-IDF 2
Word2Vec 1

4.4 Transformer Text Classification

In this section, the results of fine-tuning BERTje as a classifier are discussed and compared to
the best performing pipelines from the previous section. The model stopped converging after 44
epochs with a final accuracy of 96% on the test set. This comparison is summarized Table 4.8.
Since the model is trained on a CPU, lengthy execution time was to be expected. Despite this,
it scored higher on all other evaluation metrics. The most notable difference between this model
and others is the significant improvement in accuracy.

Table 4.8: Results of fine-tuning BERTje on the GDC, GDB and BD datasets.

Model Accuracy F1-score AUC Time (s)
TD-IDF + RF 0.91 ±0.01 0.94 ±0.01 0.96 ±0.01 0.1 ± 0.1
Word2Vec + RF 0.93 ±0.01 0.96 ±0.01 0.97 ±0.01 0.1 ± 0.1
BERTje (FE) + RF 0.94 ±0.01 0.96 ±0.01 0.97 ±0.01 0.1 ± 0.1
BERTje 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 55010 ±6802
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4.5 Part-of-Speech Tagging

In this section, we compare part-of-speech pipeline with BERTje as a language model with other
relevant part-of-speech taggers. The model stopped converging after 22 epochs, and Figure 4.9
depicts the accuracy per epoch, with a final accuracy of 96.4. mBERT is a multimodal language
that outperforms all other PoS taggers on the UD Lassy dataset, which is surprising given that all
other PoS taggers employ underlying models optimized for the Dutch language. We also note that
our model scored higher than did BERTje in the original paper. Since the train and validation sets
of all scores are identical, we believe it is a matter of choosing the appropriate hyperparameters.
The model is trained using spaCy, which employs the linear warum pretraining strategy, beginning
with a very low learning rate and gradually increasing it. In addition, we utilized the same Adam
optimizer.

Table 4.9: POS tagging on UD Lassy small

Model Accuracy

nl core news lg [29] 95
Frog [19] 91.7
mBERT [19] 96.5
RobBERT [19] 96.4
BERTje [18] 96.3
BERTje (our) 96.4

4.6 MixText

The MixText experiment was terminated because the algorithm took too long to execute on a
single CPU as MixText uses unlabeled data and BERTje for semi-unsupervised learning. This
means that the entire dataset is used multiple times for training, and only 1% of the dataset is
labeled.
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4.7 Discussions

The results of the experiments in this chapter are further discussed in this subsection.

4.7.1 Equitable Selection

Using K-means++, we clustered the dataset and analyzed the significance of the cluster. We found
that the created cluster is as expected and logically interrupts the dataset, allowing us to sample
from this cluster and thus create representative training, validation, and test sets that accurately
represent the entire dataset. We also discovered through this process that the dataset contains
some English terms/letters, so the option of using a multilingual model like mBERT might be
useful since these letters are also within the target domain.

4.7.2 Equitable Labeling

Due to the fact that the GDC and GDB datasets were labeled by a person with limited linguistic
expertise, this experiment revealed that there is most likely a substantial bias in these datasets.
This can significantly affect the practical application of trained models that detect CTA.

4.7.3 Traditional Text Classifcation

In this experiment, BERTje (FE) and Word2Vec outperformed TF-IDF by a significant margin,
and they produced results that are comparable. In contrast to BERTje, Word2Vec has the advant-
age of being trained on the entire GDC and GDB datasets. We think that BERTje’s performance
as a feature extractor could be enhanced if it were additionally pretrained on tax authority-specific
language. Furthermore, we observed that the bottleneck in terms of performance is not due to the
classifiers, but rather to the feature extraction.

4.7.4 Transformer Text Classification

Fine-tuning BERTje produced the best outcomes, excluding running time. The fine-tuning of
BERTje took 15 hours on average. However, this does not mean that the model cannot be used
since after training, only a forward pass on the network is required, which would yield roughly
the same speed as BERTje (FE). A problem could occur, for example, if the entire dataset were
labeled since the fine-tuning would take about 1,500 hours, assuming that the training time scales
linearly with the size of the dataset.

4.7.5 Part-of-Speech tagger

We trained a BERTje-based PoS tagger, which is now accessible in the client’s environment.
Frog and nl core new lg are the two additional PoS taggers currently available in the client’s
environment. Our benchmark on the UD Lassy small dataset demonstrates that our PoS tagger
outperforms the other two PoS taggers, but Frog was trained on a much larger dataset. Doing
this for our PoS tagger would improve its practical performance in domains other than the UD
Lassy small dataset. Furthermore, we see that the multilingual model mBERT outperformed all
other models, which is a reason to replace BERTje with mBERT.

Contrary to rule-based software, machine learning and deep learning algorithms it is hard to
track back to the previous if and else statement. We refer to this lack of transparency in deep
learning as the ”black box” [9] problem. This gives reason to investigate a rule-based method
using the trained PoS tagger from this experiment.
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CHAPTER 4. EVALUATION

4.7.6 MixText

Due to the fact that MixText uses augmented labeled and unlabeled data with BERTje as a
backbone, the execution time on a CPU was far too long and had to be terminated. After roughly
one day, no epoch was concluded.
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Chapter 5

Conclusions

In this chapter, we summarize and reflect on the research and results of the experiments. Then,
we restate the research question and answer it. Next, we make recommendations for future work
on the topic. Finally, we state what new knowledge has been contributed through this project.
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CHAPTER 5. CONCLUSIONS

In order to detect CTA in letters written by the Dutch Tax Authority, we examined tradi-
tional machine learning and deep learning models including Gaussian NB, LR, RF, and SVM in
combination with Word2Vec, BERTje, and TF-IDF as feature extractors. In addition to using
BERTje to extract features, we fine-tuned the model and obtained promising results. The best-
scoring traditional machine learning pipeline consisted of BERTje as a feature extractor and RF
as a classifier, receiving accuracy, F1, and AUC scores of 0.94, 0.96, and 0.97, respectively. The
average execution time, including the time required to extract the features, was 894.1 seconds.

The best-scoring model was the deep learning classification pipeline with BERTje fine-tuned
as its backbone. It scored 0.96, 0.97, and 0.98 on accuracy, F1-score, and AUC, respectively. How-
ever, this model’s training phase is significantly longer than that of traditional machine learning
pipelines.

The data used to train the models is a subset of the total data; we attempted to make the
subset as representative as possible by unsupervising the cluster using the K-means++ algorithm.
Then, samples were taken from this cluster to obtain representative training, validation, and test
sets. Although the subset selection is representative, we cannot conclude that the labeled dataset
is of sufficient quality for this research. We learned from the equitable labeling experiment that
there is most likely a significant bias in the dataset because a CTA can be quite subjective, and
the data was labeled by a single person with little linguistic knowledge.

In addition, we modified the semisupervised MixText methodology by converting the BERT
backbone to BERTje and the data augmentation technique to EDA. Due to the lengthy duration
of this experiment’s execution, we are unable to report any results.

Our primary research question, as defined in Section 1.5, is as follows:
Is it possible to identify calls-to-action in Dutch letters/emails (written by the

Dutch Tax Administration) using current state-of-the-art NLP approaches?

The best-performing pipeline was that in which we fine-tuned BERTje; it achieved an accuracy
of 0.96, which is significantly higher than random guessing. However, we cannot answer the
research question due to the high potential for bias in the labeled dataset. We determined this
high potential for bias in the data through the experiment on equitable labeling.

5.1 Future Work

5.1.1 MixText

Due to the lack of computational resources, we were unfortunately unable to run the modified
MixText methodology. We recommend doing this in the future since MixText performed well on
similar tasks in which the labeled data was severely restricted. For example, the MixText model,
which was trained using only 20 labeled examples form the IMDb dataset, outperformed the BERT
model, which was trained using all 25, 000 labeled examples [10].

5.1.2 mBERT

We found that mBERT outperformed BERTje for PoS tagging on the UD Lassy small dataset,
as shown in Table 4.9. In addition, we observed that Dutch is not the only language in the text
corpus; therefore, we suggest loading mBERT into the environment and conducting the same
relevant experiments with mBERT instead of BERTje.

5.1.3 Context-Based Approach

Whether or not something is a CTA can depend on the context of the previous or following
sentences, so we recommend trying methodologies that take the previous and following sentences
into account. Such as an RNN with 3 utterances in context [8].
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5.1.4 Rule-Based System

Since the models may be used to detect CTAs in official government correspondence, ethics play a
crucial role. Due to the black box problem, it can be challenging to determine which parameters
machine learning models employ to classify CTAs. This transparency can be provided by a rule-
based system, so we recommend investigating these systems with the PoS tagger that we trained
in this study.

5.1.5 Relabeling

Due to the fact that the dataset was labeled by a person with limited linguistic expertise, we con-
cluded from the equitable labeling experiment that the labeled dataset may contain a substantial
amount of bias. Therefore, we recommend that a group of linguistic experts relabel the data and
rerun the relevant experiments.

5.2 Contributions

To our knowledge, we are the first to investigate CTA detection in Dutch text using deep learning.
In this regard, we investigated NLP techniques alongside traditional machine learning algorithms
and state-of-the-art deep learning methods.

5.2.1 Text Classification Pipelines

We also set up text classification pipelines for the client to detect CTA. However, they can also
be used for any other type of text (multi)classification task, including PoS tagging.

5.2.2 MixText

In addition, we have modified the MixText methodology so that it should work better with Dutch-
language text; however, this has not been tested due to a lack of computational resources.

5.2.3 PoS Tagger

We’ve trained a BERTje-based PoS-tagger that is currently the most advanced PoS-tagger in the
client’s environment.
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Appendix A

Model Parameters

A.1 Logistic Regression

A grid of various parameters was established, and the optimal parameters for each feature ex-
traction method was chosen. The selected parameters for TF-IDF, Word2Vec, and BERTje in
combination with logistic regression are displayed in table A.1, and the range of parameters used
for grid searching is listed below.

Penalty: L1,L2 and none.

C: 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75 and 3.0

Table A.1: Parameters for the logistic regression model with TF-IDF, Word2Vec and BERTje as
feature extractor.

Parameter TF-IDF Word2Vec BERTje (FE)

Penalty L2 L1 L2
C 3.0 1.25 2.25
Solver lbfgs lbfgs lbfgs

A.2 Random Forest

The optimal parameters for each feature extraction method were selected from a grid of various
parameters. The selected parameters for TF-IDF, Word2Vec, and BERTje in combination with
random forest are displayed in table A.2, and the parameter range used for grid searching is
detailed below.

Estimators: 100, 500, 1000, 1500, 2000, 2500 and 3000.

Max depth: 8, 16, 32 and none.

Table A.2: Parameters for the random forest model with TF-IDF, Word2Vec and BERTje as
feature extractor.

Parameter TF-IDF Word2Vec BERTje (FE)

Estimators 2500 2000 2500
Max depth none none none
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A.3 Gaussian naive Bayes

A grid of different parameters was made, and for each method of feature extraction, the best
parameters were chosen. The selected parameters for TF-IDF, Word2Vec, and BERTje with
Gaussian naive Bayes are shown in table A.3, and the parameter range used for grid searching is
shown below.

Variable smoothing: 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3 and 10−2.

Table A.3: Parameters for the gaussian naive Bayes model with TF-IDF, Word2Vec and BERTje
as feature extractor.

Parameter TF-IDF Word2Vec BERTje (FE)

Variable smoothing 10−5 10−7 10−9

A.4 Support Vector Machine

The best parameters for each feature extraction method were selected from a grid of different
parameters.The range of parameters used for grid searching is mentioned below, and the chosen
parameters for TF-IDF, Word2Vec, and BERTje in conjunction with the support vector machine
model are shown in table A.4.

C: 0.1, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75 and 3.0

Table A.4: Parameters for the support vector machine model with TF-IDF, Word2Vec and BERTje
as feature extractor.

Parameter TF-IDF Word2Vec BERTje (FE)

C 2.0 0.25 0.5

A.5 BERTje

Table A.5 displays the model parameters for fine-tuning BERTje with spaCy.

Table A.5: Parameters for fine tuning BERTje with spaCy

Parameter Value

optimzer Adam.v1
beta1 0.9
beta2 0.999
l2 0.01
dropout 0.1
warmup steps 250
initial rate 0.00005
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[17] R López De Mántaras. A distance-based attribute selection measure for decision tree induc-
tion. Machine learning, 6(1):81–92, 1991. 11

[18] Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van
Noord, and Malvina Nissim. Bertje: A dutch bert model. arXiv preprint arXiv:1912.09582,
2019. 16, 33

[19] Pieter Delobelle, Thomas Winters, and Bettina Berendt. Robbert: a dutch roberta-based
language model. arXiv preprint arXiv:2001.06286, 2020. 33

[20] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018. 3, 15, 16

[21] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple
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