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Abstract

Accurate sea state predictions are essential for offshore operations’ safety and indicating
vessels’ operability. A crucial parameter to indicate the sea state is the significant wave
height (SWH). In recent years, deep learning models have shown an advantage over
numerical models in forecasting such weather conditions. These deep models need less
computational power and no specific domain knowledge. However, these models require
sufficient training data, which is not always available. Previous work has failed to address
the difficulty of forecasting the SWH while limited data is available. Furthermore, they
failed to address the usability of obtained accuracy. In this work, we comprehensively
analysed the use of recurrent deep models by experimenting with different architectures
and parameter settings. In our experiments, no models were found that could produce
an usable SWH forecast. To enhance the predictive capabilities of these models, we
explored transfer learning. This was not feasible with the current state of deep models
for SWH forecasting. Finally, we proposed two frameworks which use empirical mode
decomposition (EMD). This decreases the complexity of the data and therefore increases
the interpretability for the models. However, both methods were unable to increase the
models’ performance. This thesis provides future studies a starting point and research
directions for forecasting the SWH using deep learning models.
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Chapter 1

Introduction

In this thesis, we studied deep learning frameworks to forecast the significant wave height
(SWH). This chapter introduces the research field of forecasting the SWH, outlines the
research performed and summarises the findings. First, the context around forecasting
the SWH is discussed in section 1.1. The literature in this field is briefly discussed in
section 1.2. In section 1.3 the specific goals in this thesis are addressed, and in section 1.4
the research approach is summarised. Finally, the results and findings are summarised in
section 1.5.

1.1 Context and topic

For offshore operations, efficient and good planning are essential to ensure personal, en-
vironmental and equipment safety. The ability to plan marine operations is decisive for
the economic viability of any project. Therefore, strategies and methodologies that im-
prove these operations’ planning are of interest to increase safety and financial feasibility.
Offshore operations frequently encounter hazardous and dangerous conditions caused by
heavy equipment, dangerous materials, and treacherous weather [2, 3]. Weather condi-
tions have a significant impact since these cannot be controlled and influence the safety
of offshore operations. Therefore weather conditions are a crucial aspect of whether and
when specific operations can be performed. A 5 to 7-day forecast window is usually
necessary for safe and efficient planning of operations.

An example of an offshore operation would be to operate a floating production, storage
and offloading (FPSO), a vessel used by the offshore oil and gas industry. This vessel
cannot be operated under certain weather conditions and needs to evacuate to the closest
harbour. Disconnecting and evacuating this platform takes approximately two days,
meaning a weather forecast is necessary. Evacuating early causes unnecessary operational
and downtime costs, while evacuating late could be disastrous for personal and equipment
safety. For small construction and maintenance operations, e.g. wind farms, more short-
term forecasting horizons are desired. These operations are executed by smaller vessels,
which could abort and start operations on short notice.

Coastal areas influenced by coastal waves could also benefit from these weather fore-
casts [4]. Many coastlines worldwide are protected by coastal defence systems such as
dikes. These systems attenuate waves and reduce the likelihood and volume of waves
passing [5]. Waves passing these systems could lead to dangerous situations, such as
sweeping people into the oceans or damaging coastal constructions. Accurate forecasts
could give early warnings and prevent accidents from happening.
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To identify hazardous periods, multiple factors of the weather conditions must be
considered, e.g. the wind, the waves and the temperatures. With some criteria for these
factors, a decision can be made whether an operation is feasible in a specified time slot.
One crucial factor to evaluate is the prognosis of wave heights, or more specifically, the
SWH. Since waves constantly vary in length, height and period, the SWH is used. The
SWH at a location is a parameter approximately equal to the highest one-third of all
waves passing. The SWH has proved to be an important indicator for safe and successful
offshore operations.

To produce a forecast of the SWH, nowadays numerical models are used (e.g. WAM
[6] and SWAN) [7]). These models use a grid of local measurements to simulate the
underlying physics. However, these physical processes, especially wave generation by
wind, are uncertain, complex, non-linear and non-stationary, increasing the difficulty of
forecasting with numerical models [8]. In summary, these models are complex, time-
consuming, and not always reliable, and there is a necessity for domain knowledge [9].

In recent years, machine learning and deep learning techniques have increasingly been
used to forecast numerous time series, including SWH predictions, e.g. [10, 11, 12]. These
models generally require fewer input variables, do not need domain-specific knowledge,
require less computational effort and are still able to find complex patterns. Therefore,
these models can be efficiently used for different geographical locations.

A disadvantage of these deep models is the requirement for a considerable amount of
historical data for training. However, this is not always available for specific locations
where operations are planned. This lack of data would limit the use of deep models
by decreased accuracy. However, some methods are known to assist a deep model once
limited data is available. In this thesis, we are interested in forecasting the SWH for
locations with such limited data. A visual representation of an example of this problem
is given in the fig. 1.1. Four buoys can be seen in the figure, where we would be interested
in producing a forecast for the buoy at location B-3.

1.2 State of the art for forecasting the significant wave
height

This section summarises the current state of the art for SWH forecasting, details about
literature can be found in section 2.2.

In recent years, there have been a rising number of studies in forecasting the SWH
using deep models. Especially many papers are published using neural networks (NNs)
[8, 14, 15, 9, 16, 17]. However, NNs assume independence of input variables, which is not
valid for time series. Sequential deep models are able to process time series and seem to
outperform the NNs [18, 19, 20]. In the literature, predominantly univariate models are
used for SWH forecasting. However, there is a variety of geographical and meteorological
data available. In Li and Liu [21], they leverage this data by causal modelling and obtain
similar results as the deep sequential models.

A well-known technique in computer vision and Natural language processing (NLP) to
overcome limited data is transfer learning, where data is leveraged from a source dataset.
This particular technique could be interesting, since data is available at nearby buoys.
However, this technique applied to time series is a niche in the literature and treacherous
since accuracies could drop [22, 23, 23].

In the literature various papers apply empirical mode decomposition (EMD) to in-
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Figure 1.1: An example of four buoys in the Gulf of Mexico, only a limited dataset is
available at B-3. Where we would be interested in creating a model to forecast the SWH
at B-3. The figure is adapted from [13]

crease the forecast accuracy of the deep recurrent models [24, 25, 26, 27, 28, 29, 30]. EMD
is a method that decomposes the signal in multiple intrinsic mode functions (IMFs), these
IMFs are then individually forecasted and summed for an SWH forecast. However, we
must note that these papers use decomposition before splitting the dataset into training
and test sets. Therefore information is leaked from the test set to the training set.

1.3 Problem definition and research questions

In the current literature, numerous papers have been published discussing the use of
deep sequential models to forecast the SWH. These papers show and discuss the results
these models could achieve. However, all these papers assume sufficient data to train the
models. There is a gap in the literature concerning the forecasting of the SWH while
using limited datasets. In this thesis, we investigate using deep models while limited
data is available. A formal description of this problem can be found in section 3.3. We
investigate two methods to use deep recurrent networks at locations where only a limited
amount of historical SWH measurements are available. The problem definition leads to
the following research questions with sub-questions:

• Can transfer learning improve forecasts for the significant wave height at a location
where limited data is available?

– What geographical, meteorological features indicate which source buoys are
suitable to transfer information for forecasting the significant wave height?

• Can empirical mode decomposition be used in a machine learning framework to
enhance the forecasting of the significant wave height?
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1.4 Method and approach
Here we briefly discuss the methods and approaches used in this research. Details about
the methods and approaches can be found in the relevant chapters.

To investigate any enhancement techniques for deep learning frameworks, we first set
a baseline for the performance of deep models in chapter 4. Two buoys, 414046 and
414047, located east of the Bahamas, are used for all experiments. These datasets are
preprocessed and exploratorily analysed in section 4.2, which enables us to determine
(hyper-) parameters for the architectures and training methods.

In section 6.2, three different deep recurrent models are proposed to forecast the SWH:
a recurrent neural network (RNN), a gated recurrent unit (GRU) and a long short term
memory (LSTM) network. Experiments are run using various model builds and hyper-
parameters to determine the effectiveness of different models and their parameters. In
total 720 experiments are run for each buoy, which are evaluated compared to a baseline
using the root mean squared error (RMSE), the symmetric mean absolute percentage
error (sMAPE) and the Pearson correlation (PCC).

Once the baseline of the deep models is known, we consider transfer learning in chap-
ter 5. This method is applied to overcome a lack of training data. In section 5.1, we
discuss three different methods to transfer weights between the models. The models are
trained on a source buoy, where we freeze and fine-tune various weights to forecast the
target buoy.

In chapter 6, we investigate the possibilities of using EMD to enhance model perfor-
mance. And we propose two frameworks which use EMD in a deep learning framework
in section 6.2.

1.5 Findings
The results for the established baseline for the deep recurrent models are shown and
interpreted in sections 4.4 and 4.5. The deep models could produce a slight improvement
over the baseline’s performance. However, these improvements were negligible, and the
models learn behaviour similar to this baseline. The models could not produce a feasible
forecast for the SWH.

The results for transfer learning are shown and interpreted in sections 5.2 and 5.3.
No improvements were obtained by applying transfer learning, and there was no change
in the forecasting behaviour. The models could learn the same behaviour with only two
months of data, implying that the amount of data is not a problem to forecast the SWH.

The results for the deep EMD frameworks are shown and interpreted in sections 6.3
and 6.4. Both frameworks decreased the accuracy and could not produce a valid forecast
for the SWH. The set baseline outperformed both frameworks, rejecting the usability of
the proposed frameworks.
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Chapter 2

Background

This chapter contains the preliminary theory necessary to understand the context of this
work. First, in section 2.1 basic concepts are explained. And in section 2.2 the related
work, including the state-of-the-art, is discussed.

2.1 Description of essential concepts

In this section, the significant wave height (SWH) is discussed in more depth to give
insights into what we are trying to forecast. Furthermore, the concept of artificial neurons
and the networks that can be constructed with them are explained.

2.1.1 Significant wave height

The SWH (Hs) characterises the sea state, including winds and swell. The sea state is
the general condition of the surface over a large body of water at a certain time and
location. This state is predominantly determined by wind waves and swells, a series of
mechanical waves propagating over the surface under the influence of gravity. The SWH
is a mathematical expression to estimate the average wave height for an observer at sea
[31]. Originally the SWH was defined as the average of the highest one-third of all passing
waves; in practice, this only differs a few percentages compared to the current definition.
Which is defined as

Hs = 4 · √m0, (2.1)

where m0 is the wave displacement’s variance, which is four times the surface elevation’s
standard deviation [32]. m0 can be calculated by

m0 =

fu∑
fl

S(f) · d(f), (2.2)

where the sum of spectral density, S(f), is the over all observed frequency bands, from
the lowest frequency fl to the highest frequency, fu, of the non-directional wave spectrum.
And d(f) is the bandwidth of each observed band. Note that if a continuous signal is
used an integral is necessary to calculate m0.

The SWH approximately follows the Rayleigh distribution [33]. Figure 2.1 shows a
Rayleigh distribution of waves and the derivation of SWH from this distribution. Note
that the SWH is significantly higher than the mean of all incoming waves.
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Figure 2.1: The statistical distribution of ocean wave heights, approximated by the
Rayleigh distribution. The dashed red line indicates the SWH, which is the fourth line
from the right.

2.1.2 Neural network

A neural network (NN) is a machine learning framework inspired by the functioning and
structure of the human brain. This network consists of multiple artificial neurons, which
transform (multiple) inputs into an output. The inputs are multiplied by weights w to
create a calculated sum of the inputs, which is then offset by a bias b term. Each neuron
has its own weights and biases, altogether denoted by θ.

Over this weighted sum the neuron applies an activation function ϕ to produce an
output oθ(x). This ϕ can be any activation function but is usually non-linear (e.g. tanh,
sigmoid or softmax). Every single neuron computes

oθ(x) = ϕ

(∑
i

wixi + b

)
= ϕ

(
wTx+ b

)
. (2.3)

Given a certain input, this computation is graphically represented in fig. 2.2.
The network must find the “best” values for the neuron parameters θ to produce good

outcomes. To find these parameters, the model will adjust its parameters during training
to minimise the error specified by a loss function. The loss function is a function over
the actual and the predicted outcomes L(yi, ŷi). This will indicate how far the network’s
prediction is off. Therefore, a suitable loss function should be chosen for the problem.
The network will try to minimise this loss function, also known as the empirical risk:

θbest = argmin
θ

1

N

N−1∑
i=0

L (yi, ŷi)

= argmin
θ

1

N

N−1∑
i=0

L (yi, oθ (xi))

(2.4)

Multiple optimisation methods can achieve the minimisation of eq. (2.4). The most
commonly used method is gradient descent. Gradient descent calculates the gradients
for the chosen loss function concerning the model parameters θ. These gradients can be
computed by a method called backpropagation [34], which is based on the chain rule of
derivatives. These gradients give the direction of change, and the parameters are adjusted
by a learning rate γ.
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Figure 2.2: Graphical representation of an artificial neuron. The figure shows the inputs
x, the weights w, the bias b and an activation function ϕ applied, to produce an outcome
oθ(x).

Figure 2.3: Graphical representation of a MLP with multiple hidden layers. The input
x is fed through the model’s hidden layers, and some bias is added to produce an output.

The multilayer perceptron (MLP) is introduced to enable the mapping of more com-
plex non-linear mappings. The MLP combines multiple neurons into a network. Neurons
are stacked to form layers of multiple neurons; a graphical representation is given in
fig. 2.3.

It must be noted that a single fully connected layer can achieve the same level of
complexity using sufficient neurons. However, the number of parameters to achieve similar
complexity is significantly higher. The same principle of backpropagation is used to
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update the parameters for the MLP.

2.2 Forecasting time series using deep learning models

Lately, there has been an increase in research towards deep learning-based frameworks
to forecast temporal data. This increase can also be seen in the field of oceanography.
However, forecasting time series is generally considered harder to solve than pattern
recognition problems [35]. There are various methods to forecast or improve forecasting
using deep models. As a starting point, one could increase the accuracy of current
numerical models. In Londhe and Panchang [9] NN are used to forecast the numerical
error. However, such hybrid methods are still based on numerical models, so a numerical
model must be run for every new forecast.

2.2.1 Forecasting the significant wave height using deep learning
models

Forecasting time series is a common problem in all industries, which many authors have
tried to solve by employing neural architectures. Oceanography’s first efforts using deep
models are based on using NNs. Deo et al. [8] published one of the first papers using NNs
to produce SWH forecasts. A sequence of wave data is fed into the input layer to produce
multiple outputs. With increasing computational power and optimisation techniques,
NNs are a frequently used method to produce SWH forecasts [8, 14, 15, 9, 16, 17]. All
papers suggest that the NNs have sufficient accuracy, are highly fault-tolerant and can
deal with the complexity of the underlying physics.

In these studies, they tend to conserve some temporal dependencies while using NNs,
i.a. by varying the number of neurons per input. However, NNs are not known for
their capability of interpreting sequential data. A NN might save sequential information
in its weights; however, this cannot be controlled. To save sequential dependencies,
recurrent models were introduced, e.g. recurrent neural network (RNN), gated recurrent
unit (GRU) and long short term memory (LSTM). Especially LSTMs are frequently
seen in the metocean literature [18, 19, 20]. LSTMs outperform the other models such
as NNs, extreme learning machines (ELMs), support vector machines (SVMs), residual
neural network (ResNet) and random forest (RF). The improvement can especially be
seen for higher lead times, which could be explained by the memory mechanism available
in these cells.

The accuracy of deep models is highly dependent on their architecture and is built by
trial and error, educated guesses, empirical arguments and data characteristics. Further-
more, proven model builds are for specific datasets and give no guarantee of effectiveness
on other datasets. Therefore it is important to consider multiple architectures. Push-
pam P. and Enigo V.S. [19] compares three different LSTM architectures. However, it
must be noted that the exploration is limited to a single architecture of vanilla, stacked
and bidirectional model.

Papers mostly focus on univariate models to forecast the SWH. However, there is a
variety of geographical and meteorological data available which affects the SWH [36].
Li and Liu [21] leverage these variables by causal modelling [37]. A dynamic Bayesian
network (DBN) is proposed, a method of causal modelling over multiple time steps [38].
The structure learned can be seen in fig. 2.4.
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Figure 2.4: The DBN structure to forecast the SWH (referred to as WVHT). Other
parameters depicted in this figure are the wind speed (WSPD), the gust speed (GST),
the average wave period (APD) and the air temperature (ATMP). The figure is adapted
from [38].

The proposed method proves to give better results compared to NNs, SVMs and RF,
achieving similar results as papers using recurrent deep models.

2.2.2 Transfer learning for deep recurrent models

Handling machine learning models with limited data is a well-researched topic in the lit-
erature. Different techniques and models have been developed to overcome this problem.
Known solutions in literature are, e.g. few-shot learning, augmentation, and transfer
learning [39]. Transfer learning leverages data from other datasets to increase perfor-
mance. This seems suitable for the problem at hand, since we can leverage nearby buoys
with sufficient data.

Transfer learning, or domain adaptation, is a technique where the model is trained
on a source distribution to enhance the accuracy of a target distribution [40]. In fig. 2.5
a schematic representation is given. Transfer learning is a frequently used technique for
computer vision and Natural language processing (NLP) tasks [41]. However, there are
some essential differences between spatial, NLP and temporal datasets. Deep models
learn hierarchically; the first layers will learn more general patterns, e.g. shapes of ob-
jects, whereas deeper layers will learn more specific features, e.g. small curves. These
hierarchical insights are not available for deep temporal models.

The lack of clear hierarchical representation in time series is an important factor in the
transferability of a dataset. If the source and target domains are not interpreted similarly
by a NN, it could lead to negative transfer, meaning the accuracy will drop. Research on
the transferability of spatial data is still novel and even more sparse for temporal data
[43, 22]. In Fawaz et al. [42], Wen and Keyes [44], Ye and Dai [23] experiments are run
for time series classification using convolutional neural networkss (CNNs). However, the
results revealed no evident conclusion on transfer learning for time series. Despite this,
a transfer of weights could potentially significantly increase the accuracy of given models
[45, 46]. In these papers, a model is pre-trained on a large dataset, and the fully connected
layer is transferred and fine-tuned on the target data. In figure table 5.1, the results are
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Figure 2.5: A schematic representation of transfer learning process for deep models,
applied to buoy data. The weights of a model trained on a source buoy are transferred
to forecast at a target buoy in a different location. The figure is adapted from [42].

Figure 2.6: Performance comparison of LSTM models between training with single time
series and training with transfer learning. The x-axis is the training size; the y-axis is
symmetric mean absolute percentage error (sMAPE), where a lower sMAPE indicates
better performance. The red curve (top at the left side) represents a time series-trained
NN, the blue curve (bottom at the left side) represents a NN using transfer learning
and the orange curve (middle at the left side) represents the HoltWinters’ baseline used.
The performance gap is huge for short training sizes. When training size increases,
the performance difference shrinks. The error bar illustrates the standard deviation of
sMAPE over 58,000 customers. The figure is adapted from [45].

shown for transfer learning applied on a LSTM framework to forecast residential scale
electricity loads at hourly granularity from Pacific Gas and Electric Company. Especially
for smaller training sizes, a significant improvement can be seen.
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2.2.3 Signal decomposition for optimising model performance

Model accuracy can be improved by increasing the interpretability of the original signal.
This can be done by pre-analysing the signal and feeding these findings into the model.
Well-known methods for analysing signals tools are Fourier [47] and wavelet [48] decom-
positions. A Fourier transformation will tell what frequencies are available in the signal.
A wavelet transform will tell what frequencies are available where. By locating the fre-
quencies, wavelets can be used to increase performance [49, 50, 51]. However, wavelets
assume stationarity of the signal, which is often not true.

Empirical mode decomposition (EMD), a technique first introduced by Huang et al.
[52], is able to analyse non-stationary signals. EMD decomposes (or sifts) the signal into
multiple Intrinsic mode functions (IMFs) and a residual. These IMFs are a complete set
of basis functions, whose amplitude and frequency may vary over time (non-stationarity)
[53]. The two most common variations to this algorithm are; ensemble empirical mode
decomposition (EEMD), which adds white noise to the initial signal [54], and complete
ensemble empirical mode decomposition (CEEMD), which adaptively adds white noise
for every sifting iteration [55].

In literature, various research fields introduce EMD as a hybrid combination to en-
hance forecasting. Such as the metro passengers, the tourist industry, wind speed, ground
temperatures, including the SWH [24, 25, 26, 27, 28, 29, 30]. These papers’ results sig-
nificantly outperformed the baseline set, especially for longer forecasting horizons. All
papers use a similar framework shown in fig. 2.7.

However, none of these papers considers the empirical nature of EMD. All authors
decompose the signal before splitting the dataset into train and test (or validation) sets.
The sifting process is based on splines between the maxima and the minima of the whole
signal. Details about this process can be found in section 6.1. Since the dataset is not split
before EMD, the maxima and the minima of the testing set will be used to determine each
IMF. So information from the test set is leaked to the training set via EMD, introducing
bias in the model.
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Chapter 3

Problem exposition

This chapter gives more context to put this research in a broader perspective and give
insight into the decision for the research direction. This thesis is performed in collabora-
tion with Fugro, their interest in this research will be covered first in section 3.1. Then
the available data will be discussed in more depth in section 3.2. Finally, a formalisation
is made in section 3.3, to clarify the problem.

3.1 Business context
Fugro is a global company founded in the Netherlands that specialises in collecting and
analysing geographical data. Fugro tries to gather data-driven insights to enhance safety
in diverse geographical fields. They are predominantly active in the infrastructure and
energy industries for onshore and offshore projects. Fugro provides offshore weather
forecasts for these industries. These forecasts enable companies to take informed decisions
and plan efficiently for offshore operations.

Fugro uses oceanographers and meteorologists with metocean models to provide ac-
curate site-specific forecasts. These models are run four times a day and include wind,
temperature and wave parameters for any global location. The forecasts are tailored to
specific locations and are adjusted and tested with locally measured inputs. To acquire
and assimilate data, Fugro uses a variety of sources:

• Data buoys, terrestrial radar and recorded observations

• High-resolution global atmospheric and wave model data from several global mod-
elling suites and in-house models

• Real-time high-resolution geostationary and polar-orbiting satellite imagery

• Synoptic upper-level actual and Global Telecommunications System (GTS) bul-
letins

As mentioned in section 1.1, these numerical models are computationally expensive,
which carries an associated cost for every run. Furthermore, they compute the significant
wave height (SWH) over a large grid and are not site-specific. Machine learning techniques
could overcome these disadvantages. These only require computational resources during
training but are computationally cheap when in use. This would eliminate the execution
costs and allow the model to execute at any time. Moreover, these models can forecast
specific locations using buoy data.
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Fugro is interested in producing forecasts at any given (offshore) location. However,
most operations occur in shallow waters (up to 500 meters). Therefore, Fugro slightly
prefers forecasting wave heights with a water depth of at most 500 meters, especially
since these shallow waters are hard to predict for the numerical models due to increased
seabed friction over the water column. However, it must be noted that this thesis does
not specifically focus on shallow water.

3.2 Data understanding
As mentioned in section 3.1 Fugro has various ways of obtaining their data. However,
these datasets are not publicly available and are bound to confidentiality. In this thesis,
the use of data is restricted to publicly available data by the National Buoy Data Center
(NBDC) [57], located in the United States. We considered solely data which is acquired
via in-situ measurements from buoys. For this study, we focus on wave buoys since
these in-situ devices could be deployed at a site of interest. This has the advantage
of getting specified geographical data at the site of interest. Furthermore, these in-
situ measurements provide accurate local measurements, in contrast to, e.g. satellite
measurements over several square kilometres.

The NBDC provides the following information regarding the buoys; buoy specific,
meteorological, wave-specific and oceanic data. These are given in the appendix, respec-
tively in tables A.1 to A.4. The equipment can directly measure most features with a
given accuracy. For the equipment accuracy, we would like to refer to the site of the
NBDC [57]. However, some features are calculated based on measurements and require
some assumptions. In this thesis, we will solely discuss the calculation of the SWH; for
other features, we would like to refer to the NBDC site [57]. As discussed in section 2.1.1
in eq. (2.2) a summation of the frequency bandwidths is necessary to calculate the SWH.
NBDC systems sum over a range of 0.0325 to 0.485 Hz and use an interval of length from
0.005 to 0.02Hz for the frequency bandwidths.

The NBDC maintains many measurement stations publicly available. However, the
availability of data strongly varies per buoy location. Some stations have a lot of missing
data and do not measure specific parameters. Therefore it is a necessity to make a
selection of buoys to use. The scarcity of the data in the NDBC dataset is closely similar
to the problem in which we are interested in this thesis: Enhancing a SWH forecast.

3.3 Formalisation of the problem
Let us define a set of measured sequences

Xb = {Xb
1 . . . , X

b
M}, (3.1)

where b is the specified buoy and M is the number of measured variables. The variables
Xb represent all measurements at buoy b with

Xb
i ∈ R|T1| for all i ∈ {1, . . . ,M}, (3.2)

where T1 is the set of timestamps. Furthermore, let us define Y as the SWH with

Y b ∈ R|T2|, (3.3)
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where T2 is the set of time steps following T1.
Now let us consider buoy k where |T1| = 4382, corresponding to half a year of hourly

data points. A model f with parameters ψk is used to generate a forecast for Y k as

Ŷ k = fψk

(
Xk
)
. (3.4)

This thesis focuses on improving the forecast generated by the model. Two different
approaches are explored; by leveraging model parameters obtained from a different train-
ing set (ψb), to produce Ŷ k. And by decomposing the SWH into multiple intrinsic mode
functions (IMFs), and producing a model to forecast each IMF individually.
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Chapter 4

Forecasting the significant wave height
using deep recurrent networks

To apply techniques to improve the significant wave height (SWH) forecast, we first
have to set a baseline for the deep models to improve. Therefore, we start with analysing
models using sufficient data. In section 4.1, we discuss the theory necessary to understand
the models and their usage. Then the available datasets are analysed and discussed in
section 4.2. The data analysis is used to create the experimental setup in section 4.3.
Finally, the results will be shown in section 4.4, which will be interpreted in section 4.5.

4.1 Theory for forecasting models

This section will discuss the necessary theory relevant to this chapter. First, deep recur-
rent networks are discussed. Then the autoregressive (AR) model is discussed, which is
used as an extra baseline. Finally, the accuracy metrics used to evaluate all the models
are discussed.

4.1.1 Recurrent neural network

Neural networks (NNs) are based on the assumptions that the input data are independent
samples. However, this does not hold for time series. Therefore a variation of the NN
is introduced; the recurrent neural network (RNN), designed to exploit sequential infor-
mation. An RNN processes the input orderly and stores memory of previous elements.
RNNs try to select and retain relevant information, allowing them to capture temporal
dependencies.

An RNN cell receives two inputs, one external and one via a feedback connection. For
each recursion in a cell, the cell receives a new input value xt and the hidden state ht−1

from the previous time step. Then the hidden state of the cell is updated, and finally, an
output ot is given. For this process, the RNN uses three different weight matrices, and
the outputs can be calculated according to

ht = ϕ1 (Uxt +Wht−1 + bh)

ot = ϕ2 (V ht + bo) .
(4.1)

Where U represents the weights between the input and hidden layer, W are the weights
for the feedback loop between the two hidden states, and bh is a bias term. To generate
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(a) An RNN displayed as a single layer, where
the black square indicates a delay. (b) An RNN displayed unrolled.

Figure 4.1: A graphical representation of an RNN cell. With X the input matrix, H
the hidden state matrix, O the output matrix and U , W , and V the weight matrices.
Figure (b) shows a rolled-out version of a similar network. Note that the input and the
hidden state are lowercase for figure (b), which concerns single vectors. Furthermore, the
bias term to compute the hidden state and the output are not shown in this figure.

the output, a weight matrix V is used with a bias term bo. Furthermore ϕ1 and ϕ2 are
the activation functions. A graphical representation of the flow of information through
an RNN is given in fig. 4.1.

The gradients for an RNN are, similarly to a NN, computed via backpropagation.
However, the recursive nature of an RNN leads to exploding or vanishing gradients [58].
This compromises the ability to learn long-term dependencies.

Long short term memory

To resolve exploding and vanishing gradients a long short term memory (LSTM) cell is
introduced [59]. These cells use a memory cell with a gating mechanism, which protects
the state of the RNN H. This memory cell decides what, when and how to process
information. This allows the model to train the parameters of the cell efficiently, especially
for long-term dependencies.

In the LSTM memory cell C is introduced for the gating mechanism, where the
information can be controlled based on the hidden state and the input. The LSTM cell
uses a memory cell in combination with three gates; a forget gate, an add gate and an
output gate. These gates multiply the cell values with a weight vector W . This vector
consists of zeros and ones and is therefore able to “remember” and “forget” values. The
values of this vector are specified by the input xt and the hidden state ht−1:

ft = σ (Wf [ht−1, xt] + bf ) , (4.2)

where σ is a logistic sigmoid function. The add gate creates a vector of candidate values
C ′
t, based on the input xt and the hidden state ht−1

C ′
t = tanh (WC [ht−1, xt] + bC) . (4.3)

These candidate values are then processed by the add gate, where the decision is made
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Figure 4.2: Schematic representation of the LSTM cell and its gating mechanism. The
cell receives an input Xt, the hidden state ht−1 and the Ct−1 to process. These inputs are
processed via the gate’s weights W and an activation functions σ and tanh to produce
the outcomes for the next recurrence.

whether to add a value or not, similar to the forget gate;

it = σ (Wi [ht−1, xt] + bi) . (4.4)

The forget and the add gate together produce the new cell state by

Ct = ft · Ct−1 + it · C ′
t. (4.5)

This new cell state is again gated by the values of the input xt and the hidden state ht−1;

ot = σ (Wo [ht−1, xt] + bo) . (4.6)

Where finally, the output is produced by

ht = ot · tanh (Ct) . (4.7)

A schematic overview of this process within an LSTM cell is given in fig. 4.2.

Gated recurrent unit

A popular variation to the LSTM cell is the gated recurrent unit (GRU), which also
solves the gradient problem by gating [60]. The GRU uses two gates; an update gate z
and a reset gate r. The update gate preserves what information should be updated, and
the reset gate determines what should be ignored from the previous hidden state. These
gates have two weight vectors W and U , one for the hidden state and one for the input.
The update and the reset gate can be computed as

zt = σ (Wuht−1 + Uuxt + bu) ,

rt = σ (Wrht−1 + Urxt + br) .
(4.8)

Then the update as proposed by the cell is computed as

h̃t = tanh (Wc (rt · ht−1) + Ucxt + bc) . (4.9)
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Figure 4.3: Schematic representation of the GRU cell and its gating mechanism. The
cell receives an input Xt and the hidden state ht−1 to process. These inputs are processed
through the gate’s weightsW via activation functions σ and tanh to produce the outcomes
for the next recurrence.

With this update, the new value for the hidden state can be computed as

ht = zt · ht−1 + (1− zt) · h̃t. (4.10)

A schematic overview of this process within an GRU cell is given in fig. 4.3.

Recurrent Architectures

Recurrent cells can be stacked into multiple layers L, where the input of Lth layers
xt equals the previous layers’ hidden state. Next to that, the recurrent network can
be bidirectional, where the data is processed in both directions [61]. The network can
simultaneously process future and past elements by encoding the sequence in the opposite
direction. The output depends on two hidden states; the forward hft and the backward
hbt . In fig. 4.4 a stacked bidirectional RNN is given, where the model creates output
vector Ot for every time step t. Note that both LSTM and GRU cells can be fit in this
example. Regardless of the architecture used, the output produced by the recurrent cell
requires some interpretation to obtain a (output) vector of the desired length, typically
done using a NN.

4.1.2 Autoregressive model

An AR model builds on the assumption that the current observation is correlated to a
weighted sum of the past p values. The model tries to find weights φi and a constant c.
The AR model is defined as

Xt = c+

p∑
i=1

φiXt−i + εt, (4.11)

with some white noise ϵt.
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Figure 4.4: Schematic representation of a three-layer stacked bidirectional RNN. The
superscript of the hidden states depicts the direction of information flow. The input is
depicted as X and the output as O.

4.1.3 Accuracy metrics

Three accuracy metrics quantify the difference between the actual value yi and the fore-
casted value ŷi. The root mean squared error (RMSE) is defined as

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2. (4.12)

The symmetric mean absolute percentage error (sMAPE) is defined as

sMAPE =
1

n

n∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|) /2

. (4.13)

And the Pearson correlation (PCC) is defined by

PCC =

∑n
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)√∑n
i=1 (yi − ȳ)2 ·∑n

i=1

(
ŷi − ¯̂y

)2 , (4.14)

where the bar indicates the sample mean.

4.2 Exploratory data analysis
Two buoys were selected east of the Bahamas in the Northern Atlantic Ocean. These
buoys are relatively close (508 km) and can be considered in the same climate. Further-
more, these two buoys have sufficient data to capture the variability caused by climate
patterns such as El Niño and La Niña. The buoys provide measurements at an hourly
resolution for 2017 until 2020. This exploratory analysis will focus on the SWH and
the correlation with other parameters. Further measurement characteristics and basic
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Figure 4.5: A histogram for all SWH observations for buoys 414046 and 414046. The
histogram uses a bin size of 0.1.

information, for respectively buoy 414046 and 414047, can be found in the appendix in
tables B.1 and B.2. However, it is notable that the basic characteristics of both buoy
measurements are similar.

An overview of the SWH observations and their missing values are given in table 4.1.
The proportion of missing values is not significant. However, most missing values are in
consecutive order due to maintenance or equipment failure. The monthly distribution
for the missing values can be seen in the appendix in fig. B.1. Salient missing values are
for buoy 414046 in May 2019 since no data is available from 29 April 2019 until 08 May
2019.

Buoy No. of No. of Percentage
observations missing values missing values

414046 34 427 637 0.018%
414047 34 826 238 0.007%

Table 4.1: The number of available SWH observations for buoy 414046 & 414047 and
their missing values.

The distribution of available observations for both buoys is shown in fig. 4.5. Both
distributions are skewed to the right and have a positive kurtosis. A Shapiro-Wilk test
confirms the rejection of normality (appendix table B.3). Box-Cox transformations could
increase normality, resulting in variance stabilisation, increased stationary behaviour, and
better performance of some classical time series models [62]. However, normality could
not be achieved by applying a Box-Cox transformation (appendix fig. B.2 and table B.3).

A visual representation over 2017 until 2020 for the SWH can be seen in fig. 4.6.
The SWH experience similar temporal wave patterns at the two locations. Considering
the year and month plot, we can see that the SWH are correlated. Peak values can be
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linked to local hurricanes, e.g. September 7, 2017 - Hurricane Irma and September 1,
2019 - Hurricane Dorian. Furthermore, we can see some yearly seasonal variations; the
SWH near July seems to have relatively low waves. Considering the whole signal, it
seems stationary, with no systematic changes in mean and variance. Whether the signal
is stationary is checked by performing an augmented Dickey-Fuller (ADF) test, using
a null hypothesis of the signal being non-stationary. The test is executed over linear
interpolated data with a significance level of 0.05. The test rejects the null hypothesis,
suggesting a stationary signal for both buoys (appendix in table B.4).

For this research, we are interested in forecasting the SWH with a small interval
(up to two days). If we consider the monthly plot, the signal seems more erratic. The
fluctuation of the variance is greater compared to the yearly plot. Furthermore, we
can see shifts in the average, indicating non-stationary behaviour. We can analyse this
behaviour by applying the ADF test to smaller time intervals. Changing the interval
also influences the ADF since smaller intervals exhibit less reversion to the mean. The
null hypotheses for semi-annually and annually intervals are still rejected; however, they
cannot be rejected for monthly or weekly intervals. The details of all the ADF tests are
shown in the appendix in table B.4.

The focus of this thesis lies in the use of deep models. However, classical time series
models could be as effective and require less computational power. Therefore we consider
these models as an extra baseline for the deep models. These models are based on a
correlation of the signal with their lagged versions. To determine what classical models
would suffice for forecasting, we consider the autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots given in figs. 4.7 and 4.8. The ACF measures the
direct and indirect correlation between lagged versions. The PACF tries to correct the
indirect correlation by removing already found relations. Besides indicating what type
of time series model would be viable, the correlations are also relevant for the input of
deep recurrent models. NNs could be seen as autocorrelation functions since they linearly
map an input to an output. The significance of lagged values indicates the importance
of sequence length for the input. Finally, ACF and PACF check for randomness and
indicate the amount of random noise.

In the ACF, the correlation tails off (geometric decay) with increasing time lag. If
the lag increases even further the function will follow a damped sine function (appendix
fig. B.3). The ACF suggest that the most recent values affect the current value the
most. According to Bartlett’s test the function loses its statistical significance after
approximately 1100 hours (roughly 1.5 months) for both signals. If we study the PACF,
we can see that the residual correlation is negligible. The PACF plot gives correlation for
the first two lagged values and is cut off after. Both plots indicate correlations meaning
the data does not entirely consist of white noise. Furthermore, we could observe that the
most recent observations contain significantly more information about the current time
step than larger lags.

The correlation between the SWH and other available measurements is analysed via
the PCC. In table 4.2 the three most significant correlations are given. these correlations
match the direct causal relations found in Li and Liu [21], seen in fig. 2.4. In the appendix
a heat map for all correlations is given in fig. B.4.
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Figure 4.6: Time series of 4 years of SWH observations for buoy 414046 and 414047.
Three different intervals are given; the whole dataset, one year of observations and one
month of observations. The dashed line indicates where the cut is made for the zoomed
intervals.
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Figure 4.7: The ACF plot for the SWH for buoy 414046 and 414047. The coloured cone
depicts the 95% interval according to Bartlett’s test and is an indicator of the significance
threshold. Anything outside the cone can be seen as statistical significant.
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Figure 4.8: The PACF plot for the SWH for buoy 414046 and 414047. The coloured
cone depicts the 95% interval according to Bartlett’s test and is an indicator of the
significance threshold. Anything outside the cone can be seen as statistical significant.

Buoy gust speed average wave period wind speed
(GST) (APD) (WSPD)

414046 0.66 0.65 0.55
414047 0.60 0.64 0.61

Table 4.2: The three most significant correlations between the SWH and available
measurements for buoys 414046 and 414047.
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4.3 Experimental setup

In this section, the experimental setup is discussed. First, the models used are discussed
and then their parameters and input values in section 4.3.1. Then we will discuss the
data preparation and all training details in section 4.3.2.

4.3.1 Model architectures

As discussed in section 4.2, a half-year signal seems stationary, the ACF is damped sinus,
and the PACF shows two lagged correlations. Therefore suggesting that an AR model
would suffice. Since the second lag is already considerably lower, both AR(1) and AR(2)
models will be considered. These models are applied to subsets of the whole set containing
half a year of measurements (4382 data points), and all the forecasts will be averaged.
These subsets are polynomially interpolated, and we ignore subsets with missing values
in the last 48 hours.

In this thesis three different types of deep sequential models are used: RNNs, GRUs
and LSTMs. As discussed in section 6.1, LSTM and GRU cells are more suitable to
capture long term relations. While the mechanics of the cells are quite similar, they tend
to outperform each other for different datasets [63]. Similar architectures and training
procedures are used for all three models to compare the performance.

The length of the hidden state determines how many ways the model could interpret
the input. However, increasing the size of the hidden state does not necessarily increase
accuracy and generates extra computational costs. The most common hidden sizes are
32, 64, 128 and 256, which all are used for the task at hand. The output of the recurrent
cells is fed to a fully connected layer to generate a singular forecast from the hidden
states. However, a single layer could have difficulty interpreting the hidden state with
increasing size. Therefore we experiment with multiple fully connected layers. Further-
more, we implement stacking cells (L ∈ {1, 2}) and bidirectional training. This results
in 40 different variations for each recurrent network. An overview of the basic model
architectures can be seen in table 4.3. Note that all these architectures are also built
stacked and bidirectional.

Model No. Hidden FC layer FC layer FC layer FC layer
size 1 2 3 4

1 32 32 - - -
2 64 64 - - -
3 64 64 32 - -
4 128 128 - - -
5 128 128 64 - -
6 128 128 64 32 -
7 256 256 - - -
8 256 256 128 - -
9 256 256 128 64 -
10 256 256 128 64 32

Table 4.3: The architectures for the experiments with the deep recurrent models. The
hidden size for the RNN, GRU and LSTM and the number of neurons for the fully
connected layer are given. The last fully connected layer outputs a singular forecast.
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The recurrent deep models can process multivariate datasets. However, sequential
models use an iterative process to produce multiple forecasts. This is a restrictive factor
for multivariate modelling. Each iteration would need a forecast for each input variable
which accumulates uncertainty. Therefore the multivariate models are limited to forecast-
ing one value. We limited the multivariate models to a 3 hour forecast, using training se-
quences with a step size of three ({3k|k ∈ [0, 16]}). Experiments are run with three differ-
ent inputs, using four variables based on their correlation with the SWH (table 4.2). The
training sets will be; {SWH,GST}, {SWH,GST,APD} and {SWH,GST,APD,WSPD}.
We limit the multivariate experiments to the best-performing architectures found by the
univariate experiments.

4.3.2 Data preparation and training details

The sequence length of the input is limited by vanishing gradients. A longer input will not
harm the accuracy itself; however, longer sequences result in smaller training sets which
could harm the accuracy. The ideal sequence length depends on which model, the model
parameters and the complexity of the data. Recurrent models could process relatively
simple signals (e.g. a regular sinusoïde) or sentences in Natural language processing (NLP)
up to 1000 steps [64]. However, the longer the sequence, the more context is lost. For
NLP sequential models can distinguish context sharply up to 50 tokens [65].

The underlying physical processes causing wave generation are complex and based on
multiple environmental factors. The deep models only use historical data of the SWH and
a few other variables to produce a forecast. Since we do not use all physically relevant
variables, we lose information. Therefore, the models need to acquire more (complex)
information from the given variables to generate a forecast. Therefore, we choose a small
sequence length to enable the models to still find complex patterns in the data.

The ACF plots showed that the first two days have the most significant auto-correlation.
Furthermore, the PACF showed that smaller time lags have a greater correlation. There-
fore, a two-day sequence ([0, 48]) is used as a training sequence. A smaller training set
is also introduced to prevent losing information by vanishing gradients. This training set
covers the last two days, including a step size of three hours (3k|k ∈ [0, 16]). Each se-
quence in the training sets is labelled with the subsequent values to construct a supervised
training set.

During the training of the deep recurrent models, we discard sequences with more than
two consecutive values missing. The remaining sequences are polynomial interpolated,
note that we do not extrapolate. The data is split into a training (70%), validation
(20%), and test set (10%). In section 4.2, we found that the SWH observations are
not normally distributed. Therefore we use normalisation to improve convergence and
generalisation of the deep recurrent models [66].

Training details deep models

All models are trained on a training set fed in batches of 64. The mean squared error
(MSE) is monitored on the validation set during training. Once this value does not in-
crease for 5 epochs (patience of 5), the training is stopped, and the best-performing
weights are saved. The models are optimised using an Adam optimiser with β =
(0.9, 0.99). We experimented with three different learning rates γ 10−3, 10−4 and 10−5.
The training times per epoch varied from 3 s up to 7 h for the most complex models. The
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models are run on an AMD Ryzen 9, 5900x 12-Core processor, with 32GB RAM and
a NVIDIA GeForce GTX 1070. In total 720 univariate models for each buoy, resulting
in a total of 1440 training runs. Furthermore, 12 experiments are run with multivariate
models. All deep learning models are implemented and run using python 3.9.7 using the
PyTorch library [67].

Evaluation metrics

Multiple error metrics are used to evaluate and compare model performances. The RMSE
is used, which is easy to interpret due to their scale dependency. The RMSE has some
bias towards larger errors and is frequently dominated by errors on peak values. Since we
are especially interested in forecasting peaks, this property is not restrictive. As a non-
dimensional (or percentage metric) the sMAPE is used. Furthermore, the PCC is used
to measure the similarity between the forecast and the actual observation. These metrics
are all compared to a naive baseline, a persistence algorithm which naively predicts the
last seen value. If the AR models outperform the persistence algorithm, the AR models
will be set as the new baseline.

Each model is evaluated on average performance per given variable for the two buoys.
A summary of the number of training procedures/architectures is given in table 4.4.

Model variable No. experiments
Model type 3

Input-sequence 2
Stacked cells 2

directional training 2
learning rate 3

Model architecture 10

Table 4.4: Summary for the number of experiments for the deep recurrent univariate
models. In total, 720 experiments were run for each dataset 414046 and 414047.

4.4 Results

This section presents the results for forecasting the SWH. First, we will discuss the results
of the univariate models. Then, the results of the multivariate models will be discussed.

4.4.1 Univariate forecasting

First, we will discuss the persistence model and the two AR models to set a (naive)
baseline to validate the effectiveness of the models. The results for these three models
are given in table 4.5. For all models the RMSE, sMAPE and PCC are determined over
the testing set, containing data over the period 7 August 2020 till 1 January 2021.

The persistence model outperforms the AR models for the RMSE and PCC, only for
a higher forecasting horizon we see some improvement for the AR models. If we consider
the sMAPE, the AR model gives a slight improvement. However, we can explain this
because the ARs are bounded by their coefficients. When the model encounters outliers,
it will move towards its constant. This could also explain the models’ difference between
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Persistence AR(1) AR(2)

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%) (m) (%)

414046

1 0.14 5.2 0.98 0.15 5.1 0.98 0.15 4.8 0.98
3 0.19 6.6 0.97 0.20 6.6 0.96 0.20 6.4 0.96
6 0.26 9.2 0.93 0.28 8.89 0.90 0.27 8.5 0.92
12 0.38 13.6 0.86 0.39 12.5 0.83 0.39 12.0 0.84
24 0.54 20.6 0.71 0.53 17.56 0.67 0.54 17.0 0.67
48 0.73 28.2 0.48 0.66 22.6 0.39 0.67 22.2 0.42

414047

1 0.14 5.5 0.99 0.17 5.3 0.98 0.17 4.8 0.98
3 0.18 6.6 0.98 0.23 7.1 0.96 0.23 5.6 0.96
6 0.26 9.1 0.96 0.32 9.8 0.93 0.32 8.5 0.92
12 0.38 13.6 0.91 0.45 14.3 0.86 0.45 12.0 0.84
24 0.57 20.1 0.80 0.62 20.3 0.69 0.64 17.34 0.68
48 0.84 28.9 0.57 0.80 26.6 0.42 0.83 22.2 0.42

Table 4.5: The accuracy metrics for the persistence, the AR(1) and the AR(2) models.

larger forecasting horizons. Since the models arguably perform similarly, the persistence
model will be used as a baseline to evaluate the experiments.

Model types

All results are averaged per variable of interest to analyse the effectiveness of the model
variables. In table 4.6 the results of three different recurrent cells are given. The results
are relative to the persistence model in such a manner that positive values represent
improvement concerning the persistence model. Note that negative zeros are given due
to rounding.

The RNN and GRU models produce similar results as the persistence model for buoy
414046. The accuracy for buoy 414047 is worse, especially considering longer lead times.
Overall, the LSTM generates better results, while performance increases with increasing
lead time.

Input sequence

Now let us consider the difference between the two input sequences; successive and
stepped. In table 4.7 the relative metrics are given. Note that the stepped input can-
not produce a forecast at the first hour. There is a significant difference between the
two datasets for the successive input. However, this difference is not clearly visible for
the stepped input. Furthermore, the stepped input models show improvement for both
buoys, while the successive show equal or worse accuracies.

Stacking cells

To evaluate the effectiveness of stacking recurrent cells, let us consider the results in
table 4.8. Both datasets perform similarly, where the stacked model performs negligibly
better than a singular layer.
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RNN LSTM GRU

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%) (m) (%)

414046

1 0.01 0.2 0.00 -0.00 -0.1 -0.00 0.01 0.3 0.00
3 -0.01 -0.4 -0.00 -0.01 -0.7 -0.01 -0.00 -0.3 -0.00
6 0.01 0.1 0.02 0.01 -0.0 0.01 0.01 0.3 0.01
12 0.03 0.4 0.03 0.04 1.3 0.03 0.03 0.7 0.03
24 0.03 0.3 0.09 0.09 3.8 0.08 0.03 0.5 0.08
48 0.02 -1.6 0.14 0.13 5.5 0.15 0.01 -2.1 0.12

414047

1 -0.02 -0.7 -0.02 -0.00 0.2 -0.00 0.00 0.4 -0.00
3 -0.03 -1.7 -0.02 -0.02 -1.1 -0.00 -0.01 -0.6 -0.00
6 -0.02 -2.0 -0.00 0.00 -0.9 0.00 -0.00 -0.8 0.01
12 -0.03 -4.1 0.01 0.03 0.1 0.02 -0.01 -2.4 0.03
24 -0.12 -10.9 0.05 0.10 2.2 0.06 -0.05 -7.8 0.07
48 -0.37 -23.7 0.14 0.18 4.8 0.15 -0.20 -20.6 0.14

Table 4.6: The average accuracy metrics relative to the persistence model, for the RNN,
LSTM and GRU models. Note that positive values indicate improved performance.

Successive Step
{0, . . . , 48} {3k|k ∈ [0, 16]}

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%)

414046

1 0.0 0.1 0.0 - - -
3 -0.0 -0.2 -0.0 -0.01 -0.7 -0.01
6 -0.0 -0.3 0.0 0.03 0.5 0.02
12 -0.0 -0.4 -0.0 0.08 2.0 0.07
24 -0.0 -0.3 0.0 0.11 3.3 0.17
48 -0.0 -1.0 0.0 0.11 2.2 0.27

414047

1 0.07 2.7 -0.50 - - -
3 -0.02 -1.0 -0.01 -0.02 -1.2 -0.01
6 -0.03 -1.7 -0.01 0.02 -0.8 0.01
12 -0.07 -3.7 -0.01 0.06 -0.6 0.04
24 -0.15 -8.8 -0.00 0.11 -2.2 0.12
48 -0.39 -18.5 0.00 0.12 -7.8 0.28

Table 4.7: The average accuracy metrics for the deep recurrent models using different
input sequences. Note that positive values indicate improved performance.
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Single recurrent cell Stacked cell
L = 1 L = 2

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%)

414046

1 0.00 0.1 0.00 0.00 0.2 0.00
3 -0.01 -0.5 -0.01 -0.01 -0.4 -0.01
6 0.01 0.1 0.01 0.01 0.2 0.01
12 0.03 0.7 0.03 0.04 0.9 0.03
24 0.05 1.4 0.09 0.05 1.6 0.08
48 0.05 0.6 0.14 0.06 0.7 0.14

414047

1 -0.01 -0.2 -0.01 -0.00 0.2 -0.01
3 -0.02 -1.3 -0.01 -0.02 -1.0 -0.01
6 -0.01 -1.4 -0.00 -0.00 -1.1 0.01
12 -0.00 -2.3 0.02 -0.00 -2.0 0.02
24 -0.02 -5.8 0.06 -0.02 -5.2 0.06
48 -0.13 -13.7 0.14 -0.13 -12.6 0.14

Table 4.8: The average accuracy metrics for the deep recurrent models using single and
stacked cells. Note that positive values indicate improved performance.

Uni- and Bidirectional training

Similar results are obtained for the unidirectional and bidirectional models, shown in
table 4.9. However, in contrast to multiple layers, increasing the complexity of the model
is disadvantageous. The bidirectional models have a slight disadvantage over the unidi-
rectional models.

Unidirectional Bidirectional training

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%)

414046

1 0.00 0.1 0.00 0.00 0.1 0.00
3 -0.01 -0.5 -0.01 -0.01 -0.4 -0.01
6 0.01 0.1 0.01 0.01 0.2 0.01
12 0.04 0.8 0.03 0.04 0.8 0.03
24 0.06 1.6 0.09 0.05 1.4 0.08
48 0.06 0.7 0.14 0.05 0.5 0.14

414047

1 -0.01 0.0 -0.02 -0.01 -0.1 -0.00
3 -0.02 -1.0 -0.00 -0.02 -1.2 -0.01
6 -0.00 -1.1 0.00 -0.01 -1.3 0.00
12 0.00 -2.0 0.02 -0.01 -2.3 0.01
24 -0.01 -5.3 0.07 -0.03 -5.7 0.06
48 -0.11 -12.5 0.15 -0.16 -13.8 0.14

Table 4.9: The average accuracy metrics for the deep recurrent models using uni- and
bidirectional training. Note that positive values indicate improved performance.
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Learning rates

In table 4.10 the results for the learning rates are given. The accuracy for buoy 414046
is consistent over the learning rates, where 10−5 has a slight improvement for a 48-hour
forecast. For buoy 414047, the performance is considerably worse. The first two learning
rates show a decrease in accuracy compared to the persistence model, and the last learning
rate matches its accuracy.

γ = 10−3 γ = 10−4 γ = 10−5

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%) (m) (%)

414046

1 0.01 0.3 0.00 0.01 0.3 0.00 -0.00 -0.1 -0.00
3 -0.00 -0.2 -0.00 -0.00 -0.2 -0.00 -0.02 -0.9 -0.01
6 0.02 0.2 0.02 0.02 0.3 0.02 0.01 -0.1 0.01
12 0.04 0.8 0.03 0.03 0.7 0.04 0.04 0.8 0.03
24 0.05 1.4 0.09 0.04 1.0 0.09 0.07 2.2 0.08
48 0.04 -0.2 0.14 0.04 -0.5 0.14 0.09 2.6 0.14

414047

1 -0.01 -0.2 -0.01 0.00 0.3 -0.02 -0.01 -0.2 -0.00
3 -0.02 -1.1 -0.02 -0.01 -0.6 0.00 -0.03 -1.7 -0.00
6 -0.01 -1.1 -0.00 0.00 -0.8 0.01 -0.01 -1.8 0.00
12 -0.01 -1.8 0.01 0.00 -2.0 0.03 0.00 -2.6 0.02
24 -0.05 -4.9 0.05 -0.03 -6.6 0.07 0.01 -5.0 0.06
48 -0.25 -12.4 0.13 -0.16 -18.2 0.15 0.02 -8.9 0.14

Table 4.10: The average accuracy metrics over all timestamps relative to the persistence
model, for varying learning rates γ 10−3, 10−4 and 10−5. Note that positive values indicate
improved performance.

Model architectures

The results for the ten different architectures, as discussed in section 4.3.1, are shown
in table 4.12. For buoy 414046, the sMAPE slightly improves with model complexity.
Nevertheless, overall the architectures seem to have similar accuracy. However, for buoy
414047, the opposite effect is visible for the sMAPE, model complexity seems to increase
the error. A similar pattern can be seen for the PCC.

Best performing models

The results indicate that stepped input outperforms the successive input models. How-
ever, all results are averaged and give no insights about outliers. Therefore the distri-
butions of average error over all time steps are considered. The insights are discussed
here, and the distributions can be seen in the appendix in figs. C.1 and C.2. All the
models using the successive input are outperformed by the persistence model for all three
accuracy metrics. Therefore the models using successive inputs will be excluded from
further analysis.

The LSTM model indicated better performance than the other recurrent models. If
we consider the distributions (appendix figs. C.3 to C.5) we can still see RNN and GRU
models perform better then the baseline. However, LSTM models show a greater number
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Buoy Model No. RMSE sMAPE PCC Model No. RMSE sMAPE PCC(m) (%) (m) (%)

414046

1 -0.00 -0.7 0.03 6 0.05 1.4 0.05
2 0.00 -0.5 0.04 7 0.02 0.0 0.05
3 0.04 1.2 0.04 8 0.04 0.8 0.05
4 0.02 -0.0 0.04 9 0.03 0.9 0.05
5 0.02 -0.0 0.04 10 0.02 0.2 0.04

414047

1 -0.04 -4.3 0.03 6 0.00 -1.4 0.04
2 -0.05 -5.1 0.04 7 0.01 -2.4 0.04
3 -0.01 -1.5 0.04 8 -0.08 -7.2 0.04
4 -0.01 -3.3 0.04 9 -0.08 -5.6 0.03
5 -0.01 -3.3 0.04 10 -0.05 -5.5 -0.00

Table 4.11: The average accuracy metrics for the deep recurrent models using different
model architectures, according to table 4.3. Note that positive values indicate improved
performance.

of models improving the baseline, while the RNNs and GRUs have a long tail which
includes models with poor performance.

Now let us consider the best performing models consistent with the majority of LSTM
builds. Therefore we consider models with a smaller RMSE of 0.33 for both buoys,
which is an average performance gain over the baseline of 0.04 and 0.07 for 414046 and
414047. In fig. 4.9, an overview of the frequency of all model variables is given. All shown
architectures have an average RMSE in the range of {0.33, . . . , 0.30}

As we could expect from earlier results, the RNNs and GRUs are outperformed by
the LSTMs. All variations on the LSTM model are included for architecture eight.
Furthermore 6, 9 and 10 are also well represented within the top models. The amount
of layers and directional training does not seem to impact the models’ outcome. A lower
learning rate seems only to increase performance for more complex models.

Let us consider the average results produced by these models, shown in table 4.12.
The models seem to perform better on all accuracy metrics. There is a clear trend
of improving accuracy with an increased forecasting horizon relative to the persistence
model. However, it is salient that the three-hour forecast performs slightly worse.

414046 414047
Lead RMSE Smape PCC RMSE Smape PCCtime (m) (%) (m) (%)

3 -0.00 -0.2 -0.00 0.00 -0.4 0.00
6 0.05 1.3 0.03 0.04 0.4 0.01
12 0.12 3.8 0.07 0.11 2.6 0.05
24 0.20 8.1 0.18 0.23 6.4 0.13
48 0.27 11.2 0.30 0.38 10.8 0.30

Table 4.12: The average accuracy metrics relative to the persistence model, for best
performing models (RMSE < 0.33). Different models are used for each buoy No. and
accuracy metric. Note that positive values indicate improved performance.

Now let us consider a 24 and 48-hour forecast by a model outperforming the baseline,
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Figure 4.9: A quantitative heatmap for models with a RMSE < 0.33, outperforming
the baseline for buoy 414046 and 414047. A total of 54 model architectures are shown.
Model types and parameters are given on the y-axis and the architectures are given on
the x-axis.
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given in fig. 4.10. In the figure, it becomes clear that the models’ forecast closely mimics
the actual values, with a time lag taken into account. The behaviour is equal for the 24
and 48-hour plots, similar to the persistence model; however, some deviations cause a
slight performance increase.

In fig. 4.11, we plot the same time interval with all forecasts from a single point in
time. We can observe a slight deviation between the persistence and the LSTM model.
The persistence model can only produce a straight line, while the LSTM first shows
small deviations and then converges to a straight line, which deviates from the last seen
point. No clear pattern can be seen when the model tends to increase or decrease the
convergence value in contrast to the last seen data point.

4.4.2 Multivariate forecasting

For the multivariate models, experiments are run with a LSTM model using architecture
eight with (L ∈ {1, 2}) and uni- and bidirectional training. The results are averaged and
shown in table 4.13. All models, including individual performances, do not show any im-
provements over the baseline. Compared to the univariate architecture, the performances
are even worse.

414046 414047
Input RMSE Smape PCC RMSE Smape PCCfeatures (m) (%) (m) (%)

{SWH,GST} 0.0 -0.1 -0.0 0.01 -0.5 0.0
{SWH,GST,APD} 0.0 -0.4 -0.0 -0.03 -4.1 0.0

{SWH,GST,APD,WSPD} 0.0 -0.2 -0.0 -0.03 -4.2 -0.0

Table 4.13: The average accuracy metrics for a three-hour forecast relative to the
persistence model, for multivariate LSTMs using architecture eight with (L ∈ {1, 2}) and
uni- and bidirectional training. Note that positive values indicate improved performance.

4.5 Interpretation of the results
The search for model parameters gave some insights into what models produce the best
accuracy. First, we found that the LSTM model got the best accuracy. Moreover, the
effect of the input sequence was quite considerable. Furthermore, the model architectures
did not significantly impact the accuracy, since all architectures could produce similar
errors. However, it must be noted that this was averaged over all other model parameters.
If we excluded another parameter, we could see that architecture eight in combination
with an LSTM cell performed the best. In this architecture, all builds performed similarly.
Despite some models producing better results, the accuracies were similar, and within a
margin wherein the error difference was almost negligible.

With an increase up to 46%, 37% and 53% for buoy 414046, at first sight the results
seem quite significant. However, these numbers are treacherous due to their relativity
and should be put into perspective of the baseline. The persistence model’s prediction
is not usable for forecasting in general, being unable to forecast any future change in
slope. Secondly, an improvement can only be seen for larger lead times, indicating some
averaging effect. The deep models are not as susceptible to gradient changes, while these
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Figure 4.10: 24 and 48-hour forecast for the second semi-month of September 2020 for
buoy 414046 and 414047. Using a singular unidirectional LSTM cell with architecture
eight and a learning rate of 0.0001.
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Figure 4.11: Multiple 48-hour forecasts from a single point in time for buoy 414046.
Using a singular unidirectional LSTM cell with architecture eight and a learning rate of
0.0001.

dominate the persistence algorithms’ accuracy. The persistence algorithm performs worse
for a more erratic signal, which can be seen in the performance at buoy 414047. Since
deep models are not as susceptible, the performance increase is more significant at buoy
414047.

Considering the differences seen in fig. 4.10, we could see the forecast and the baseline
roughly following the same trend. Minor deviations made by the model cause increased
performance. The model seems to recognise some patterns and slightly deviates the value
of convergence as we saw in fig. 4.11. This deviation is small, and we could not conclude
a structural convergence value. However, this effect is similar to averaging the signal and
likely causes the LSTM model to produce the best performance. The model with the
best long-term memory profits most from this strategy; therefore, the models also profit
most from a stepped input.

The multivariate models show no improvements and even a decrease in accuracy
compared to the univariate models. Furthermore, these models are more computationally
demanding. They can only produce a single forecast. Therefore, these models seem less
interesting in forecasting the SWH, and the focus will shift solely to univariate models in
the following chapters.
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Chapter 5

Transfer learning for the significant
wave height forecast to enhance model
performance

As seen in chapter 4, various deep recurrent models were not capable of forecasting the
significant wave height (SWH). A possible reason for poor model performance is the
lack of training data. Transfer learning is a technique that is often used to overcome
this problem. Although the results in the previous chapter suggest that increasing the
amount of training data does not lead to better model performance, this chapter aims to
explore this issue further. Transfer learning will be used to improve model performance or
exclude a lack of data as a possible cause for bad model performance. The experimental
setup is discussed in section 5.1, the results in section 5.2 and finally these results are
interpreted in section 5.3.

5.1 Experimental setup
For all experiments in this chapter, a singular unidirectional long short term memory
(LSTM) cell with architecture eight (table 4.3), a stepped input and a learning rate of
0.0001 is used. First, the data usage of current models is explored by forecasting using
different training sizes. The model is trained on sets of {1, . . . , 24} months of data, the
size for the validation and test sets are kept equal to the previous chapter, respectively
20% and 10% of the total size.

In figure fig. 5.1 the time average (3, 6, 12, 24 and 48 hour) outcome for all the root
mean squared error (RMSE), the symmetric mean absolute percentage error (sMAPE)
and the Pearson correlation (PCC) are given for all training sets. Using two months of
data, the models can produce similar results as if trained on the whole training set. This
indicates that the lack of data does not cause the bad performance of the models.

To confirm this indication, we run experiments with transferring information between
the models. There are roughly two ways to apply transfer learning for a recurrent deep
model; the weights of the recurrent cell and the weights of the fully connected layer could
be transferred. These parts of the model consist of multiple weight matrices, as discussed
in section 4.1, and the matrices could be transferred individually. However, we restrict
our search to transferring the whole recurrent cell or the fully connected layer.

For these experiments, we train the model on the dataset from a source buoy. The
recurrent cell or the fully connected layer for this trained model is then frozen, so they
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Figure 5.1: Average accuracy for a model trained with limited datasets. The no. months
displays how many months of training data is used for the models. A singular unidirec-
tional LSTM cell with architecture eight and a learning rate of 0.0001

do not gain gradient updates via backpropagation if trained. This model is then fine-
tuned (trained) on the dataset of the target buoy with a patience of 5 epochs. We also
experiment with freezing the whole model, which means no training for the target buoy.
These experiments are run for 414046 as a source buoy and 414047 as a target buoy,
and vice versa. The results are compared for the average RMSE, sMAPE and PCC over
forecasting horizons 3, 6, 12, 24 and 48. For all experiments, further training details and
data preparation is kept the same as section 4.3.

5.2 Results

The model trained and tested on the source buoy is used as a baseline for these exper-
iments. These results are given in the appendix in table C.1. The results discussed are
relative to this baseline in that positive values represent improvement concerning the
persistence model. Note that negative zeros are given due to rounding.

The results for transferred models can be seen in table 5.1. The transferred models
show no or negligible improvement over the original models. Furthermore, the differences
between all transfer methods are negligible.

5.3 Interpretation of the results

All obtained models in chapter 4 closely mimic the last seen value with some small
deviations. In this chapter, we have shown that the models could reproduce this behaviour
with small amounts of training data. This implies that increasing the available data would
not improve the current models. We reinforced this implication by experimenting with
three different weight transfers over the models. All three proposed transfer methods did
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Fine-tuned layers
Source buoy

↓
Target buoy

Lead
time (h)

Neither Recurrent cell Fully connected
RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCC(m) (%) (m) (%) (m) (%)

414046
↓

414047

3 -0.00 0.4 -0.0 -0.00 0.3 -0.0 -0.00 0.4 -0.0
6 0.00 1.3 -0.0 0.00 1.2 -0.0 0.00 1.5 -0.0
12 0.00 2.1 -0.0 0.00 1.5 -0.0 0.00 2.3 -0.0
24 -0.01 1.6 -0.0 -0.01 1.0 -0.0 0.01 1.9 -0.0
48 -0.02 0.9 -0.0 -0.02 0.8 -0.0 0.01 1.0 -0.0

414047
↓

414046

3 0.00 0.0 -0.0 -0.00 0.0 -0.0 0.00 0.0 -0.0
6 0.01 0.0 -0.0 0.01 0.0 -0.0 0.01 0.1 -0.0
12 0.01 0.1 -0.0 0.01 0.1 -0.0 0.01 0.2 -0.0
24 0.02 0.4 -0.0 0.02 0.3 -0.0 0.02 0.4 -0.0
48 0.03 0.8 -0.0 0.02 0.6 -0.0 0.03 0.8 -0.0

Table 5.1: The accuracy metric for transferred models for buoy 414046 and 414047 in
both directions. Three different scenarios for weight freezing are applied. The model is
initially trained on the source buoy’s data, and then the fine-tuned layers are trained on
the target buoy’s data. The accuracy metrics are relative to the baseline of table C.1.

not improve the accuracy, and the transferred models showed the same behaviour as the
initial models.

The performance, the behaviour and the limited data necessary to learn this behaviour
suggest the deep recurrent models cannot find and learn relevant correlations within the
data. Therefore, the model finds a similar behaviour to the persistence model, which
could be applied to all signals. Forecasting the SWH using deep recurrent models does
not seem to be a problem of data quantity.
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Chapter 6

Signal decomposition for the significant
wave height to enhance model
performance

In previous chapters, we found that various deep recurrent models could not produce a
viable forecast for the significant wave height (SWH) and that the amount of data is
not the bottleneck. The models do not seem to find any underlying correlations in the
historical data. We could help the model interpret the data through data manipulations to
enhance performance. The simplest known class of examples are preprocessing methods
such as normalisation. In this chapter, empirical mode decomposition (EMD) is analysed
and used to assist the interpretability of the data by decomposing the signal into multiple
signals with lower frequency. First EMD and its complications are discussed in section 6.1,
then the experimental setup is discussed in section 6.2. Finally, we give the results in
section 6.3 and interpret them in section 6.4.

6.1 Empirical mode decomposition
EMD is essentially defined by an algorithm and dynamically derives basis functions from
a signal. The algorithm recursively finds these basis functions from high to low frequency,
known as sifting. The functions resulting from the ’sifting’ algorithm are called intrin-
sic mode functions (IMFs). The outcome of the sifting process depends on local data
characteristics and is not pre-determined as in wavelet transformations [48].

The sifting algorithm of EMD can be seen as six individual steps that lead to the
sifting of signal x(t), such that

x(t) =
n∑
i=1

IMFi(t) + r(t), (6.1)

where r(t) is the residual and IMFi is ith intrinsic mode. The steps taken are given below:

1. Identify all the extrema of signal x(t).

2. Interpolate between minima and the maxima, resulting in two envelopes emin(t) and
emax(t).

3. Compute the mean envelope m(t) = emin(t)+emax(t)
2

.
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Figure 6.1: A graphical representation of the sifting process for the EMD algorithm.
x(t) is the signal starting the sifting procedure, m(t) is the mean envelope, h(t) is the
candidate IMF and c(t) is a valid IMF function.

4. Subtract this mean envelope from the original signal, to obtain a candidate IMF
h(t) = x(t)−m(t).

5. If h(t) does not satisfy the criteria of an IMF, repeat above steps on h(t).

6. If h(t) satisfies the criteria, the first IMF is found, depicted as c(t) = h(t). And we
repeat the process on the residual r(t) = x(t)− c(t).

7. This iteration is stopped when the stopping criteria are reached, and we have a
residual r(t) left.

A flowchart of the algorithm described above can be seen in fig. 6.1.
Two criteria determine whether the candidate IMF h(t) is a valid IMF.

1. The number of zero-crossings and extrema may differ by at most one.

2. m(t) must be close to or exactly zero, according to some set criterion ϵc.

The sifting process will stop when the residual r(t) is a monotonic or constant function
where we cannot subtract an IMF. Or when the standard deviation is between 0.2 and
0.3

Any interpolation method would suffice; however, cubic splines are preferred since
they minimise the amount of sifts [52, 68]. Other methods tend to “overdecompose” the
signal and spread characteristics over multiple IMFs.
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Empirical mode decomposition applied to forecasting

Since EMD is a dynamic process and there is no analytical formulation available, we can
not make a theoretical analysis of the performance (beforehand). Evaluation requires
simulation experiments, and the outcome will depend on the data itself [68]. Experi-
menting for forecasting tends to be even more difficult since the number and behaviour
for each IMF varies per decomposed signal.

When applying EMD, caution is necessary to prevent data leakage from the test set to
the train set. EMD needs to be applied after splitting the dataset; otherwise, EMD does
not produce valid results. EMD subtracts an envelope based on all the maxima and the
minima in a signal. The distance between these extrema varies with a high probability
for every sifting iteration. Therefore the interpolated line can extend into the test set.
Furthermore, the cubic spline interpolation is applied over multiple points, which could
lead to overlapping splines between the train and test set. However, this leakage is not
always consistently prevented in literature [24, 25, 26, 27, 28, 29, 30]. This has led to the
unsubstantiated conclusions that EMD could be used for significant improvement to the
model’s performance.

The effect of this data leakage for buoy 414046 can be seen in fig. 6.2. The figure
shows three weeks of data divided into a test and train set. In this smaller set, the same
effects can be seen as in the whole signal, and the difference for the earlier IMFs are easier
to observe. In the appendix, in fig. D.1, a similar effect can be seen for the whole dataset.

For earlier IMFs, the differences between the sets are smaller and are mainly caused
by the interpolation boundaries. For later IMFs, the differences become more significant,
e.g. IMF three, where a gap can be seen between the train and test set. Especially the
residual effect is of influence; these values have the largest weight, almost equal to all
summed IMFs. The residual for the whole set shows a gradual increase of the SWH, while
the training residual indicates a decrease for the last week.

In the example, the decomposed signals do not contain the same amount of IMFs. Let
us consider the number of siftings necessary for subsets of 414046 and 414047. The subsets
are created with a step size of three, {3k|k ∈ [0, 367]}, with the length approximately
equal to the statistical significance of lagged versions (1.5 months) as found in section 4.2.
The results over the training set are given in table 6.1.

No. IMFs
Buoy 5 6 7 8
414046 725 13 609 6893 18
414047 677 14 520 6017 31

Table 6.1: The number of IMFs obtained for the training data, using a sequence length
of 1100 and a step size of three.

The variance for the number of IMFs is small for the SWH signals, and we can see
that six sifting iterations are the most frequent. This variability in the number of IMFs
causes extra complexity for deep forecasting models since these models generally presume
a constant number of features. We can limit the number of siftings, which affects the
outcome. Most likely, the residual’s complexity will increase, increasing the difficulty for
the models to interpret.

Since forecasting time series is a supervised learning problem, labelled targets are
necessary. However, these target values cannot be included in the decomposed signal,
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Figure 6.2: EMD for the three weeks, a training set (two weeks) and a test set (one
week) for buoy 414046 for the hourly SWH data. The black line represents the original
signal, the blue line the decomposition of the three weeks, the red line the decomposition
of the training set and the green line the decomposition of the test set.
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since this will change the IMFs with high probability. The uncertainty is caused by
the dynamic nature of EMD. Therefore, the successive value for each individual IMF is
unknown. This causes that creating a labelled set is not straightforward. In the next
section, two frameworks are proposed to create a supervised learning problem such that
EMD is viable in a deep learning framework.

6.2 Experimental setup
We ran experiments using two frameworks to solve the supervised problem. The first
framework uses the value of the original signal as the target value for each IMF. Using
the SWH as the target value requires a bias addition in the models since the IMF values
are lower than the SWH. For each individual IMF level a separate long short term mem-
ory (LSTM) is trained. Despite the bias, we intend the model to learn characteristics
influencing the outcome. This format assumes sufficient subsets to construct training sets
for each IMF. Table 6.1 showed a lack of training data for IMF eight, therefore we limited
the EMD algorithm to seven siftings.

The second framework assumes that IMFs negligibly change if an extra data point is
included. This framework is introduced to avoid the extra bias in framework one. For this
procedure we applied EMD two times; over the sets {1, . . . , t}, {1, . . . , t + 1}. The last
value t + 1 is then extracted as a target value for each IMF. To forecast each individual
IMF an LSTM will be trained separately. This method could lead to a different amount
of IMFs per decomposed set. If this occurs, EMD will be limited to the lowest number
IMFs. Besides this limit, the sifting algorithm is overall limited to seven.

Both frameworks produce a forecast for each IMF, where we should average the IMFs
for the first framework and sum for the second for a final forecast. However, in both pro-
cedures, variations are made such that the IMFs may be skewed. Therefore all outcomes
are fed into a neural network (NN) to correct the error to produce a SWH forecast. In
fig. 6.3, a graphical representation of both frameworks is given. The figure also depicts
the training and target sets for the deep models.

The outcome produced by proposed frameworks relies on several assumptions. These
are quite restrictive and could have a significant impact on the outcome. These assump-
tions are:

1. Each IMF contains predictive characteristics for future values of the SWH.

2. IMFs of the same order, IMFs i and IMFk i, of signal s and signal k, contain similar
predictive characteristics.

3. higher IMFs can be summed to a single IMF, where similar predictive characteristics
can be found.

Framework two relies on another assumption that the decomposed signals for the signal
{1, . . . , t} and {1, . . . , t+ 1} are similar.

Note that multivariate recurrent models would be able to process all the IMFs together
to produce an outcome for every IMF. However, these models include the relations be-
tween all input variables (IMFs). Therefore, univariate models are chosen in the discussed
framework to reduce the complexity of the recurrent cells.

For these experiments singular unidirectional LSTM cells are used, and we use archi-
tecture eight (table 4.3). The NNs, which map the IMFs into a single value, consists of
one fully connected layer of seven neurons.
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Figure 6.3: Graphical representation two EMD deep learning frameworks. X is the
training set, Y is the target set, n depicts the number of samples, and m is the number
of IMFs. The superscript depicts for which model the sets are created and over which set
EMD is applied. The subscript depicts the set number and timestamp.

Data preparation

For the EMD, we use data with a time-lag up to 1100 hours. Which matches the statistical
significance found in section 4.2 for both buoys. We use similar sizes for the train,
validation and test set; 70% 20% and 10%. However, the validation and test set are
lengthened with 1100, to ensure we forecast the same time interval as in previous chapters’
results.

With these splits we create samples with {3k|k ∈ [0, 367]}. The step size is already
introduced before the EMD algorithm is applied to increase the number of training sam-
ples. Furthermore, we exclude sequences that have missing values in the last 48 hours.
To make a training dataset, the samples will be decomposed by EMD. For the second
framework, proposed EMD is applied two times similarly to framework one over the sets
{1, . . . , t}, {1, . . . , t + 1}. The last value for each IMF(t + 1) from the decomposed set
{1, . . . , t+ 1} is set as the target value.

Training details & evaluation metrics

The training details and evaluation metrics are kept the same as in section 4.3. However,
only one learning rate is used and set to 1 × 10−4. Furthermore, we use the standard
stopping criteria ϵc of 0.005 [69]. EMD is implemented using the package of Quinn et al.
[69].
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6.3 Results

As a naive baseline, the persistence algorithm is used, found in table 4.5. All results shown
are relative to the persistence algorithm and can be seen in table 6.2. All evaluation met-
rics for framework one show decreased performances, except for a negligible improvement
at 48 hours for buoy 414046. Framework two shows a significant improvement over frame-
work one. However, this framework is still outperformed by the persistence model. Solely
a small improvement can be seen at 48 hours.

Framework one Framework two

Buoy Lead RMSE sMAPE PCC RMSE sMAPE PCCtime (h) (m) (%) (m) (%) )

414046

3 -0.56 -23.4 0.60 -0.25 -14.4 0.15
6 -0.28 -14.8 -0.24 -0.27 -16.2 -0.24
12 -0.20 -12.2 -0.25 -0.16 -10.4 -0.15
24 -0.10 -5.8 -0.19 -0.04 -5.8 -0.09
48 0.02 -0.9 -0.06 0.11 1.6 0.09

414047

3 -0.75 -29.1 0.67 -0.38 -23.3 0.18
6 -0.44 -21.6 -0.27 -0.40 -23.3 -0.25
12 -0.37 -19.2 -0.26 -0.27 -17.0 -0.17
24 -0.24 -12.9 -0.27 -0.12 -12.3 -0.12
48 -0.02 -6.4 -0.15 0.14 -3.2 0.10

Table 6.2: The accuracy metrics relative to the persistence model for the two EMD
frameworks. Note that positive values indicate improved performance.

In fig. 6.4, framework two’s 24 and 48-hour forecasts are given for the semi-month of
September 2020, including both buoys. The behaviour of the forecast is locally erratic
and underestimates the period of higher waves. Furthermore, the model seems to follow
the slope direction last seen in the data.

In fig. 6.5, we plot the same time interval with all forecasts from a single point in
time. We can see that the produced outcome looks erratic and varies greatly from the
persistence model. The persistence model can only produce a straight line, while the
EMD framework shows various slope changes. Initially, the model seems to follow the
last slope of previous values. With a higher lead time, no clear pattern can be seen in the
forecasted values. Similar behaviour can be observed for framework one in the appendix
in fig. D.2.

6.4 Interpretation of the results

Both EMD frameworks are outperformed by the persistence algorithm. The models’ pre-
dictions overshoot for the smallest lead time and then show erratic oscillatory behaviour.
Furthermore, framework two follows the data trend with a greater time lag than the per-
sistence model. Indicating the model is not as susceptible to changes in trend. Overall,
both models could not produce valid forecasts for the SWH. Nevertheless, it is interest-
ing to note that the proposed frameworks do not converge to a constant value and show
multiple slope changes.
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Figure 6.4: 24 and 48-hour forecast of the EMD framework two for the second semi-
month of September 2020 for buoy 414046 and 414047.
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Figure 6.5: Multiple 48-hour forecasts from a single point in time for buoy 414046 using
EMD framework two.

The difference between the two frameworks could be caused by “persistence” behaviour
by the deep models. For framework one, it is not viable to forecast the last seen value
since the LSTM has to overcome an extra bias. However, the second framework can
adopt such behaviour. The variances for the summed IMFs of one-time step are bounded
by the variance of similar time steps of the SWH. The max variance for one time step
for the SWH is equal to the max variance for the difference between the last values of
decomposed signals {1, . . . , t} and {1, . . . , t + 1}. This enables the second framework to
adopt similar behaviour as the persistence model.

It must be noted that both frameworks are based on numerous assumptions. The
results indicate that some of these assumptions lack validity and negatively impact the
models’ performance. Besides the fact that we do not know the predictive capabilities
of EMD, we expect that the predictive characteristics are not similar for the same level
IMFs. When the sea state is calm EMD will meet the stopping criteria earlier than rough
behaviour. Therefore, the frequency of similar levels of IMF will vary due to the state of
the sea. In section 4.2, we observed non-stationary behaviour for monthly subsets. This
behaviour likely results in a greater variance in the distance between maxima and minima,
which impacts the frequency of the produced IMFs. Which would cause the IMFs not to
contain similar predictive characteristics and therefore “polluting” the training set. This
pollution makes it even harder for the models to find relations in the data and causes
decreased accuracy.
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Chapter 7

Conclusion and discussion

This thesis investigated the possibilities of using deep learning frameworks to forecast
the significant wave height (SWH). First we investigated the use of recurrent neural
networks (RNNs), long short term memorys (LSTMs) and gated recurrent units (GRUs).
We experimented with various model builds and considered two different methods to
enhance forecasting. We experimented with transfer learning by leveraging information
from other buoys and frameworks using empirical mode decomposition (EMD) to enhance
the model’s signal interpretation. This chapter concludes this thesis by summarising the
work done and answering the research questions.

In chapter 4, we ran 720 experiments using different model builds on two datasets and
compared them to the persistence algorithm. These experiments did not indicate that
deep recurrent models alone would suffice to forecast the SWH using historical data. For
some models, we saw increased accuracies for longer lead times for all accuracy metrics
used; the root mean squared error (RMSE), the symmetric mean absolute percentage
error (sMAPE) and the Pearson correlation (PCC).

Although these models produced “good” accuracy scores, they are not capable of
forecasting the SWH. Slight deviations to the persistence behaviour achieved the increase
in performance. Moreover, this increase should be put in perspective of the baseline;
since this accuracy is the bare minimum, the models should outperform. The persistence
algorithm cannot initiate any shift in trend; therefore, the error increases with every
change. The deep recurrent models could not forecast any trend shift in our experiments,
which limits their predictive capabilities.

The accuracy of these models highly depends on the modelling choices made and
which dataset is used. Therefore it is impossible to draw definitive conclusions about the
effectiveness of the models. However, the experiments were extensive, and all common
variations were tested. Although we did not test all the same datasets as the papers
[18, 19, 20], we are confident that the papers published on this subject overestimate the
effectiveness of their models and wrongly suggest feasibility.

In chapter 5, transfer learning is considered to enhance model performance. We first
analysed the behaviour of the current models for different training data sizes. These
experiments showed that the models had already reached their maximum performance
using two months of data. Applying three different weight transfers did not increase
both datasets’ performance and displayed the same behaviour. This suggested that the
models cannot interpret the data correctly or that the historical relationship is insufficient
to forecast the SWH. We found no indication that transfer learning could enhance the
performance of current deep recurrent models by leveraging data from other locations.

58 Department of Mathematics and Computer Science



Eindhoven University of Technology Master thesis

Therefore, we could not analyse any geographical and meteorological features to select
suitable source buoys.

In literature, various papers proposed an EMD framework to enhance the accuracy of
the deep recurrent models. In these papers, EMD was applied before splitting the data.
In chapter 6, we have shown that this method most likely led to information being leaked
from the testing set to the training set, thus resulting in higher accuracy. We proposed
two new EMD frameworks to prevent leakage, using two different target sets to train
the models. Both frameworks failed to increase the performance of the LSTM models
and even decreased the accuracy significantly. We found no indications substantiating
the assumption that intrinsic mode functions (IMFs) contains predictive characteristics
for future values of the SWH. Therefore we could not use EMD in a machine learning
framework to enhance the forecasting of the SWH.

This work investigated different methods to forecast the SWH using deep learning
frameworks. Although no successful method was found, we comprehensively analysed
the current state of deep learning frameworks, which gave good insights into the standing
of current literature for SWH forecasts. There are still many improvements and fine-
tuning possible to extend this analysis. Some points of discussion and suggestions for
further research are proposed below.

While we concluded that transfer learning is unsuitable for the current state-of-the-
art deep recurrent models, this does not exclude the effectiveness of future frameworks.
While literature currently does not provide any effective deep models for forecasting
the SWH, future research may enable this method to enhance accuracy. Finally, we only
experimented with three weight transfers. One could experiment with more sophisticated
transfers by transferring specific model components.

In this thesis, solely the final forecast was evaluated and discussed for the deep EMD
frameworks. A more extensive evaluation of the models’ behaviour could give more insight
into the predictive capabilities of EMD. For example, analysing the forecasts produced
by the LSTMs for each IMF. Furthermore we did not experiment with any variations
to EMD, e.g. ensemble empirical mode decomposition (EEMD) and complete ensemble
empirical mode decomposition (CEEMD), which could be more promising [70].

Both EMD frameworks used are based on multiple assumptions necessary to enable the
production of a supervised learning set. For future research, we suggest treating this as an
unsupervised problem to drop the assumptions necessary to produce a supervised training
set. This can be achieved by training a new (multivariate) model for each decomposition
and producing unsupervised forecasts. This means that training, validation, and test sets
can be retrieved after applying EMD for each decomposition. A newly trained model’s
accuracy and confidence interval can then be obtained via bootstrapping.

In this thesis, we comprehensively investigated deep learning frameworks to forecast
the SWH. Although many papers have been published about this subject, we could not
find a deep learning framework capable of producing a usable SWH forecast. Nevertheless,
we gave future studies a good starting point and research direction.
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Appendix A

NDBC measurement data

Description Unit
Station number -

Coordinates ◦

Site elevation (above sea level) m
Air temperature height ◦C

Anemometer height (above site elevation) m
Barometer elevation (above sea level) m

Sea temperature depth (below water line) m
Water depth m

Watch circle radius yd

Table A.1: Buoy Data by the National Data Buoy Centre [1].
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Quantity Abbreviation unit Description
Wind

direction
WDIR ◦ Wind direction (the direction the wind

is coming from in degrees clockwise
from true north) during the same pe-
riod used for WSPD.

Wind speed WSPD ms−1 Wind speed averaged over eight min-
utes for buoys and two minutes for land
stations. Reported hourly.

Gust speed GST ms−1 Peak five or eight-second gust speed
(measured during the eight-minute or
two-minute period).

Significant
wave height

WVHT m Significant wave height is calculated as
the average of the highest one-third
of all wave heights during a 20-minute
sampling period.

Dominant
wave period

DPD s Dominant wave period is the period
with the maximum wave energy.

Average
wave period

APD s Average wave period of all waves during
a 20-minute sampling period.

Mean wind
direction

MWD ◦ The direction from which the waves at
the dominant period (DPD) are com-
ing. The units are degrees from true
north, increasing clockwise, with north
as 0 (zero) degrees and East as 90 de-
grees.

Sea level
pressure

PRES hPa Sea level pressure for C-MAN sites and
Great Lakes buoys.

Air
Temperature

ATMP ◦C Air temperature for sensor heights on
buoys.

Sea surface
temperature

WTMP ◦C Temperature of the water at the sea
surface.

Dewpoint
temperature

DEWP ◦C Dewpoint temperature is taken at the
same height as the air temperature
measurement.

Visibility VIS M (1852m) Station visibility. Note that buoy sta-
tions are limited to reports from 0 to
1.6 M.

Pressure
tendency

PTDY hPa Pressure Tendency is the direction (plus
or minus) and the amount of pressure
change for a three-hour period ending
at the time of observation.

Tide TIDE ft The water level in feet above or below
Mean Lower Low Water.

Table A.2: Standard Meteorological Data and their abbreviations by the National Data
Buoy Centre [1].
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Quantity Abbreviation unit Description
Significant
wave height

WVHT m Significant Wave Height is the average height
(meters) of the highest one-third of the waves
during a 20-minute sampling period.

Swell height SwH m Swell height is the vertical distance between
any swell crest and the succeeding swell wave
trough.

Swell Period SwP s Swell Period is the time that it takes successive
swell wave crests or troughs to pass a fixed
point.

Wind Wave
Height

WWH m Wind Wave Height is the vertical distance
(meters) between any wind-wave crest and the
succeeding wind-wave trough (independent of
swell waves).

Wind Wave
Period

WWP s Wind Wave Period is the time that it takes
successive wind-wave crests or troughs to pass
a fixed point.

Swell wave
direction

SwD ◦ The direction from which the swell waves at
the swell wave period (SWPD) are coming.
The units are degrees from true north, increas-
ing clockwise, with north as 0◦ and East as 90◦.

Wind waves
direction

WWD ◦ The direction from which the wind waves at
the wind wave period (WWPD) are coming.
The units are degrees from true north, increas-
ing clockwise, with north as 0◦ and East as 90
degrees.

Steepness STEEPNESS - Wave steepness is the ratio of wave height to
wavelength and indicates wave stability. When
wave steepness exceeds a 1/7 ratio; the wave
becomes unstable and begins to break.

Average
wave period

APD s Average Wave Period is the average period (s)
of the highest one-third of the wave observed
during a 20min sampling period.

Mean wave
direction

MWD ◦ The direction from which the waves at the
dominant period (DPD) are coming. The units
are degrees from true north, increasing clock-
wise, with north as 0 (zero) degrees and East
as 90◦. See the Wave Measurements section.

Table A.3: Detailed Wave Data and their abbreviations by the National Data Buoy
Centre [1].
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Quantity Abbreviation unit Description
Depth - m Depth at which measurements are taken.
Ocean

Temperature
OTMP ◦C The direct measurement of the Ocean Tem-

perature (as opposed to the indirect mea-
surement (see WTMP above)).

Conductivity COND µS cm−1 Conductivity is a measure of the electrical
conductivity properties of seawater.

Salinity SAL - Salinity is computed by a known functional
relationship between the measured electri-
cal conductivity of seawater (CON), tem-
perature (OTMP) and pressure. Salinity is
computed using the Practical Salinity Scale
of 1978 (PSS78) and reported in Practical
Salinity Units.

Oxygen Con-
centration

O2 % Dissolved oxygen as a percentage.

Oxygen Con-
centration

O2PPM - Dissolved oxygen in parts per million.

Chlorophyll
Concentra-

tion

CLCON µg L−1 Chlorophyll concentration.

Turbidity TURB - Turbidity is an expression of the opti-
cal property that causes light to be scat-
tered and absorbed rather than transmit-
ted in straight lines through the sample
(APHA 1980). Units are Formazine Tur-
bidity Units (FTU).

pH PH - A measure of the acidity or alkalinity of the
seawater.

Eh EH mV Redox (oxidation and reduction) potential
of seawater

Table A.4: Oceanic data and their abbreviations by the National Data Buoy Centre [1].
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Appendix B

Data analysis

Buoy: 414 046 Depth: 5549m location: 23.822 °N 68.384 °W
Variables Minimum Mean Maximum
Wind direction (WDIR) (◦) 0 68.6 98.0
gust speed (GST) (ms−1) 0 5.9 28.8
significant wave height (SWH)(m) 0 1.7 9.4
gust speed (GST) (ms−1) 0 7.5 35.5
Dominant wave period (DPD) (s) 3.1 9.0 19.1
average wave period (APD) (s) 3.3 6.1 13.4
Mean wave direction (MWD) (◦) 0 57.8 98.0
Sea level pressure (PRES) (hPa) 974.8 1018.0 1029.0
Air Temperature (ATMP (◦C) 18.9 26.6 31.7
Sea surface temperature (WTMP) (◦C) 18.7 27.4 30.9
Dewpoint temperature (DEWP) (◦C) 11.1 22.4 28.4

Table B.1: Information and data characteristics from buoy 414046 for 2017 until 2020.

Buoy: 414 047 Depth: 5547m location: 27.465 °N 71.452 °W
Variables Minimum Mean Maximum
Wind direction (WDIR) (◦) 1.0 61.9 98.0
gust speed (GST) (ms−1) 0 5.8 26.7
significant wave height (SWH) (m) 0.47 1.7 12.3
gust speed (GST) (ms−1) 0 7.4 37.6
Dominant wave period (DPD, s) 3.3 8.9 19.1
average wave period (APD) (s) 3.8 6.2 11.7
Mean wave direction (MWD) (◦) 0 54.7 98.0
Sea level pressure (PRES) (hPa) 986.1 1020.8 1035.3
Air Temperature (ATMP) (◦C) 16.4 25.2 31.0
Sea surface temperature (WTMP) (◦C) 21.8 26.2 32.4
Dewpoint temperature (DEWP) (◦C) 6.1 20.3 27.1

Table B.2: Information and data characteristics from buoy 414047 for 2017 until 2020.
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Lambda Buoy test statistic P-value
−3 414 046 0.80 5.2× 10−18

414 047 0.80 1.4× 10−18

−2 414 046 0.84 2.0× 10−8

414 047 0.81 6.1× 10−10

−1 414 046 0.87 3.2× 10−5

414 047 0.86 6.5× 10−7

−0.5 414 046 0.90 5.5× 10−5

414 047 0.88 6.5× 10−7

0 414 046 0.92 4.8× 10−5

414 047 0.90 1.0× 10−6

0.5 414 046 0.92 5.8× 10−5

414 047 0.91 1.2× 10−6

1 414 046 0.92 5.0× 10−5

414 047 0.90 1.0× 10−6

2 414 046 0.90 4.3× 10−5

414 047 0.90 8.8× 10−7

3 414 046 0.87 3.8× 10−5

414 047 0.87 7.8× 10−7

Table B.3: Normality tests for the significant wave height and Box-Cox transformations
for Lambdas:−3, −2, −1, −0.5, 0, 0.5, 1, 2 and 3. The tests are conducted 100 times
using 1000 random samples. Note that a lambda equal to one is the original distribution

Period Buoy test statistic P-value NO of lags considered
4 years 414 046 −13.5 3.6× 10−25 49

414 047 −14.2 1.7× 10−26 52
1 year 414 046 −8.2 7.0× 10−10 ±24

414 047 −7.6 9.3× 10−10 ±34
6 months 414 046 −5.9 1.2× 10−5 ±18

414 047 −6.0 4.8× 10−5 ±18
1 month 414 046 −2.8 0.11 ±9

414 047 −3.0 0.10 ±8
1 week 414 046 −1.6 0.48 ±4

414 047 −1.7 0.44 ±5

Table B.4: Augmented Dickey-Fuller tests for the significant wave height for buoys
414046 and 414047. The results given are averaged over a split of the given period over
the full dataset. The number of lags is rounded into integers.
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Figure B.3: The autocorrelation function (ACF) plot for the SWH for the whole signal
of buoy 414046 and 414047. The coloured cone depicts the 95% interval according to
Bartlett’s test and is an indicator of the significance threshold. Anything outside the
cone can be seen as statistical significant.
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Figure B.4: A Heatmap for the correlation with the significant wave height for available
measurement variables for buoy 414046 and 414047.
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Appendix C

Model performances
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Figure C.1: The distribution of averaged performance over all time steps for all models
using sequential input for buoy 414046 and 414047. The histograms use bin sizes of 0.01,
1 and 0.01 and the dashed line represents the accuracy of the persistence model. Note
that smaller RMSE and sMAPE are desired, and a larger PCC.
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Figure C.2: The distribution of averaged performance over all time steps, for all models
using stepped input for buoy 414046 and 414047. The histograms use bin sizes of 0.01,
1 and 0.01 and the dashed line represents the accuracy of the persistence model. Note
that smaller RMSE and sMAPE are desired, and a larger PCC.

414046 414047
Lead RMSE Smape PCC RMSE Smape PCCtime (h) (m) (%) (m) (%)

3 0.18 6.7 0.97 0.18 6.6 0.98
6 0.21 7.7 0.96 0.21 7.6 0.97
12 0.26 9.3 0.93 0.26 9.3 0.96
24 0.33 12.1 0.89 0.34 12.4 0.93
48 0.46 16.8 0.78 0.48 17.4 0.87

Table C.1: Accuracy for a singular unidirectional LSTM cell using architecture eight
with a stepped input and a learning rate of 0.0001.
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Figure C.3: The distribution of averaged performance over all time steps for the RNN
models using stepped input for buoy 414046 and 414047. The histograms use bin sizes
of 0.01, 1 and 0.01 and the dashed line represents the accuracy of the persistence model.
Note that smaller RMSE and sMAPE are desired, and a larger PCC.

Department of Mathematics and Computer Science 71



Master thesis Eindhoven University of Technology

0.2 0.4 0.6 0.8 1.0

RMSE (m)

0

10

20

30

F
re

qu
en

cy

Distribution for the LSTM model performances
Persistance 414046

Persistance 414047

414046

414047

0 20 40 60 80 100

Smape (%)

0

20

40

F
re

qu
en

cy

Persistance 414046

Persistance 414047

414046

414047

0.2 0.4 0.6 0.8 1.0

PCC

0

25

50

75

100

F
re

qu
en

cy

Persistance 414046

Persistance 414047

414046

414047

Figure C.4: The distribution of averaged performance over all time steps for the LSTM
models using stepped input for buoy 414046 and 414047. The histograms use bin sizes
of 0.01, 1 and 0.01 and the dashed line represents the accuracy of the persistence model.
Note that smaller RMSE and sMAPE are desired, and a larger PCC.
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Figure C.5: The distribution of averaged performance over all time steps for the GRU
models using stepped input for buoy 414046 and 414047. The histograms use bin sizes
of 0.01, 1 and 0.01 and the dashed line represents the accuracy of the persistence model.
Note that smaller RMSE and sMAPE are desired, and a larger PCC.
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Appendix D

Decomposition plot
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Figure D.1: EMD for the whole signal, a training set (70%) and a test set (30%) for
buoy 414046 for the hourly SWH data. The black line represents the original signal,
the blue line the decomposition of the whole set, the red line the decomposition of the
training set and the green line the decomposition of the test set. Note that the training
set only has 12 IMFs.
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Figure D.2: Multiple 48-hour forecasts from a single point in time for buoy 414046
using EMD-framework one.
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