
 Eindhoven University of Technology

MASTER

Random Generation of Markov Random Fields

Ding, Ke

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/24ea1aff-6dff-43d9-89da-75d98d661b2f

Random Generation of
Markov Random Fields

Ke Ding

Department of Mathematics and Computer Science
Uncertainty in AI Research Group

Supervisors: Cassio de Campos

Eindhoven, May, 2022

Abstract

Probabilistic graphical models are a class of frameworks in machine learning, including rep-
resentation, inference, and learning. It combines the graphical models with the probabilities
of observations. Markov random fields are a case of probabilistic graphical models, which are
undirected graphs with factors representing relationships among random variables within the
graph. This thesis proposes an algorithm for the random generation of Markov random fields.
Our algorithm can generate undirected graphs as benchmarks of the treewidth task and pair-
wise Markov random fields as benchmarks to evaluate the inferences of Markov random fields.
The Markov random fields datasets are created to integrate the partial k-trees technique as
the structure of Markov random fields with several sampling methods to generate the factors
on the graphs. The method used to generate the partial k-trees has two steps: uniformly gen-
erating k-trees by the bijective code technique and removing some edges. For benchmarking,
the precise results of queries can be produced efficiently by the variable elimination inference
with the perfect orderings known by us but unknown to others. This property results from
the perfect ordering being recorded in the construction process but being hard to retrieve
from the graph itself. The tasks of answering queries and finding the best elimination orders
are NP-hard. Hence, we can build complicated benchmarks to assess the inferences of Markov
random fields proposed by others. Besides, increasing the treewidth and the size of graphs
improves the difficulty of answering queries on the graphs.

Keywords: partial k-trees, Markov random fields, the perfect ordering, variable elimination
inference

Random Generation of Markov Random Fields iii

Preface

As my graduate studies come to an end, I would like to thank all the professors, teammates
and friends who have supported me during this process. Two years have passed by. Although
the epidemic and other external factors have brought many barriers to the study process,
I am still very grateful for this experience that taught me to be consistent in a changing
environment.

First, I would like to thank my supervisor, Dr. Cassio De Campos. He is the professor with
whom I communicated the most during my two years of study. I am very appreciative of his
patient, guidance, ideas, recommended papers, and introduction of new technologies during
the thesis process. I benefited a lot from every meeting with him.

Secondly, I would love to thank my parents for supporting me both spiritually and financially
over the past two years and for encouraging me to complete my studies from 7,500 kilometers
away. Besides, I hope to express my gratitude to my friends for their accompany and for the
happy times I shared with them.

Finally, thank myself for never giving up.

Random Generation of Markov Random Fields v

Contents

Abstract iii

Preface v

Contents vii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Outline . 3

2 Preliminaries 5

2.1 MRFs . 5

2.2 Variable Elimination Inference . 7

2.2.1 Partition Function . 7

2.2.2 Most Probable Explanation . 7

2.2.3 An Example . 8

2.3 K-trees and Treewidth . 10

3 Literature Review 13

3.1 The Probabilistic Graphical Models . 13

3.2 Random Generation of Markov Random Fields 14

3.3 Inference . 14

3.4 Benchmark . 16

4 Implementation 17

4.1 Preparation . 17

4.2 Methodology . 18

4.2.1 Construction of K-trees . 18

4.2.2 Sum-Product Variable Elimination . 19

4.2.3 Max-Product Variable Elimination . 20

4.3 The Benchmark Algorithm . 20

4.4 Results . 23

4.5 Evaluation . 25

4.5.1 Structure of K-trees . 25

4.5.2 Sampling Methods . 29

4.5.3 The Removal Rate . 29

Random Generation of Markov Random Fields vii

CONTENTS

5 Experiments 33
5.1 Treewidth Heuristic Algorithms . 33
5.2 Elimination Orders Comparison . 35
5.3 Randomly Generate MRFs by Adding Edges 42
5.4 Factors on K-cliques . 43
5.5 Benchmark the Exact Inferences . 45

5.5.1 Junction Tree . 45
5.6 Benchmark the Approximate Inferences . 46

5.6.1 Approximate Inference using Sampling 46

6 Discussion 49

7 Conclusions 51
7.1 Contributions . 51
7.2 Future work . 52

Bibliography 53

Appendix 56

A Code of the benchmark algorithm in Python 57
A.1 Create a Markov random field as a benchmark for the UAI competition . . . 57
A.2 Create a Markov random field as a benchmark for the tree-width competition 70
A.3 Find the elimination orders from Markov random fields by the straightforward

intuition . 72
A.4 Translate a Markov random field to a Bayesian Network 74
A.5 Read a Markov random field from UAI file . 75

viii Random Generation of Markov Random Fields

Chapter 1

Introduction

1.1 Background

Markov random fields (MRFs) are a class of probabilistic graphical models (PGMs) widely
used to represent and rationalise uncertainty in the real world. For example, handwriting
recognition, telecommunication network diagnosis, and object recognition in images [1, 2, 3].
The problems are generally solved by answering queries over multiple random variables in
MRFs. The two common types of queries are probability and maximum a posteriori (MAP)
queries [4]. The methods applied to answer queries are called inference. There are two
categories of inferences: the exact inference, such as variable elimination, belief propagation
and junction tree algorithm, and the approximate inference, such as sampling-based inference
and variational inference [5].

The queries and inferences are intriguing to researchers and the hot topics in uncertainty in
artificial intelligence (UAI) competitions [6]. For example, the conference on UAI holds a UAI
competition every two years. These competitions focus on computing the partition function,
the marginal probability distribution over a variable given or not given evidence, the cliques
marginals, the most likely assignment to all variables, and the most likely assignment to a
subset of variables given or not given evidence. The first three tasks are probability queries,
and the rest are MAP queries. The use cases selected for these competitions are from diverse
domains, such as medical diagnosis and protein-protein interaction. During the challenges,
competitors proposed capable solvers and the performance of these solvers were measured
and compared within 20 seconds, 20 minutes, and 1 hour time limits.

However, query tasks are NP-hard for the inferences on PGMs [7]. This study is interested
in variable elimination inference. It takes O(nkd+1) time to answer queries exactly, where n
is the number of variables in the MRF, k is the maximum number of values taken by random
variables — or the maximum cardinality of random variables — and d is the maximum number
of variables in a factor during the process of variable elimination [8]. Since variable elimination
is a specific case of dynamic programming, the elimination order matters; therefore, some
elimination orders are more efficient than others. Unfortunately, finding the best elimination
order is also an NP-hard problem. If MRFs are constructed utilising a particular routine, it
would be possible to obtain the best orderings of vertices in the graphs during construction.

Random Generation of Markov Random Fields 1

CHAPTER 1. INTRODUCTION

Technically speaking, the probabilistic graphical models, consisting of probabilities and graph
structures, are graphs. The d in the time complexity of the variable elimination inference is
also the treewidth of this graph. The treewidth is an essential parameter of graphs and a
crucial question in parameterised algorithms and computational experiments (PACE) [9, 10].
This challenge is held annually with one or two tracks about graphs; it aims to enhance the
relationship between parameterised algorithms and practical issues. However, finding the
treewidth of a graph is NP-hard [11]. Additionally, graphs with treewidths of exactly k are
called k-trees and can be created recursively; therefore, they have the perfect elimination
orderings.

1.2 Motivation

Many inference algorithms for answering queries on MRFs are introduced yearly. The per-
formances of these inference algorithms must be evaluated; therefore, benchmarks are needed.
This study aims to benchmark two tasks of queries on the MRFs. Specifically, it focuses on
computing the partition function and the most probable explanation of MRFs. With the
variable elimination inference, solving the partition function problem and the most probable
explanation function takes the same time and space complexity. A detailed explanation of
the partition function and the most probable explanation can be found in Chapter 2.

This study is only interested in computing the partition function and the most probable
explanation of MRFs out of the five query types because they are the basis of other queries. In
probability queries, computing the partition function is equivalent to a sum-product problem.
The marginal probability distribution over a variable given or not given evidence and the
cliques marginal are the ratio of two sum-product problems. For the MAP queries, computing
the most probable explanation is identical to an optimisation problem; calculating the most
likely assignment to a subset of variables given or not given evidence is the combination of an
optimisation problem and a sum-product problem. Overall, the partition function task and
the most probable explanation task are the essential parts of queries.

This study proposes an algorithm to randomly generate binary pairwise MRFs. The structure
of the MRFs is based on partial k-trees - or subgraphs of k-trees [12], and the factors are
sampled by certain distributions on edges. The perfect elimination orders of these MRFs are
recorded during the construction process of k-trees. Then the algorithm removes a subset
of edges from MRFs, making retrieving the ideal elimination orders challenging. Therefore,
the perfect elimination orders of generated MRFs are known, and the tasks of computing the
partition function and the most probable explanation can be solved efficiently as benchmarks.
On the contrary, for people who do not know the perfect elimination order in advance, com-
puting the partition function and the most probable explanation of these generated MRFs is
still complicated. The MRFs generated by our algorithm can be available for the UAI com-
petition. They mentioned in their post-competition summary that they would require more
challenging networks and standardised benchmarks. Since they reported that the Markov
networks are harder than Bayesian networks, our algorithm that generates MRFs is valuable
for creating the datasets and benchmarks satisfying their demand.

In addition to the UAI competition, the generated MRF without factors can also be applied as

2 Random Generation of Markov Random Fields

CHAPTER 1. INTRODUCTION

benchmarks in the PACE challenge. Even though the treewidth of a k-tree is accessible, when
utilising beneficial strategies of removing edges to k-trees, the treewidth of the partial k-tree
becomes problematic to obtain. Besides, uniformly generating k-trees enables the unbiased
validation of algorithms that compute treewidth.

1.3 Outline

The remainder of this thesis is as follows: In chapter 2, the definition of MRFs, variable
elimination, k-trees, and treewidth are discussed. Chapter 3 reviews the current research
situation in the domains of PGMs, MRFs, inference, treewidth, and benchmarks. Our al-
gorithm is described in detail, including the methods, process, results, and performance in
chapter 4. Then, chapter 5 examines various experiments, such as comparing different elim-
ination order generation approaches, factors on k-cliques, and benchmark applications. The
advantages, disadvantages, and other implications of this algorithm are presented in chapter
6. Finally, the contributions and future work are summarised in chapter 7.

Random Generation of Markov Random Fields 3

Chapter 2

Preliminaries

2.1 MRFs

MRFs are also called Markov networks or undirected graphical models (UGMs), an alternat-
ive to Bayesian networks (BNs) - or directed acyclic graphical models. Both are probabilistic
graphical models, and the graph formalism for compactly modelling joint probability distribu-
tions and dependence or independence relations over a set of random variables. One advantage
of MRFs compared to Bayesian Networks is that they are symmetric, thus making it easy to
represent the mutual influence relationship. However, the parameters are consequently less
interpretable and less modular [4, 13, 14, 15].

This section provides the definition and properties of MRFs.

Definition 1 Given an undirected graph G = (V, E), where V is a set of vertices and E is
a set of edges in the graph G, a set of random variables X = (Xv)v∈V indexed by V form a
MRF with respect to G if they satisfy the local Markov properties.

Property 1 Pairwise Markov property
Any two non-adjacent variables u, v are conditionally independent given all other variables:

Xu ⊥⊥ Xv|XV \{u,v}.

Property 2 Local Markov property
A variable v is conditionally independent of all other variables given its neighbours:

Xv ⊥⊥ XV \N [v]|XN(v),

where N(v) is the set of neighbours of v and N [v] = v ∪N(v).

Property 3 Global Markov property
Any two subsets of variables A and B are conditionally independent given a separating subset
V \A ∪B:

XA ⊥⊥ XB|XV \A∪B.

Figure 2.1 gives an example from [15] to illustrate the differences between Bayesian net-
works and Markov networks. There are seven nodes in the graphs presenting seven variables
X1, ..., X7.

Random Generation of Markov Random Fields 5

CHAPTER 2. PRELIMINARIES

Figure 2.1: (a) A Bayesian network; (b) the corresponding MRF

The joint distribution represented by the Bayesian network (BN) in Figure 2.1(a) is

p(X1, X2, X3, X4, X5, X6, X7) =

p(X1)p(X2|X1)p(X3|X1)p(X4|X2)p(X5|X2, X3)p(X6|X3, X5)p(X7|X4, X5, X6), (2.1)

where p(Xi) is the distribution of the random variable Xi and p(Xi|Xj) is the conditional
distribution of the random variable Xi given the random variable Xj (the parents in the graph
for BNs). Here, p(Xi) ∈ [0, 1] and p(Xi|Xj) ∈ [0, 1]. We refer to textbooks for more details
on BNs [4].

The joint distribution represented by the MRF in Figure 2.1(b) is

p(X1, X2, X3, X4, X5, X6, X7) =

1

Z
ϕ(X1, X2, X3)ϕ(X2, X3, X5)ϕ(X2, X4, X5)ϕ(X3, X5, X6)ϕ(X4, X5, X6, X7), (2.2)

where Z =
∑

X1,...,X7
ϕ(X1, X2, X3)ϕ(X2, X3, X5)ϕ(X2, X4, X5)ϕ(X3, X5, X6)ϕ(X4, X5, X6, X7)

and ϕ(Xi, Xj) is a factor describing the relation between Xi and Xj ; or

p(X1, X2, X3, X4, X5, X6, X7) =
1

Z
ϕ(X1, X2)ϕ(X1, X3)ϕ(X2, X3)ϕ(X2, X4)ϕ(X2, X5)

·ϕ(X3, X5)ϕ(X3, X6)ϕ(X4, X5)ϕ(X4, X6)ϕ(X5, X6)ϕ(X5, X7)ϕ(X4, X7)ϕ(X6, X7), (2.3)

where Z =
∑

X1,...,X7
ϕ(X1, X2)ϕ(X1, X3)ϕ(X2, X3)ϕ(X2, X4)ϕ(X2, X5)ϕ(X3, X5)ϕ(X3, X6)

·ϕ(X4, X5)ϕ(X4, X6)ϕ(X5, X6)ϕ(X5, X7)ϕ(X4, X7)ϕ(X6, X7) as a pairwise MRF, and ϕ(Xi, Xj)
is a factor describing the relation between Xi and Xj . To be noted, different from Bayesian
Networks, here, ϕ(X) ∈ [0,+∞).

An example to indicate the different relations described by a BN and a corresponding MRF
is in Figure 2.1(a), X1 ⊥⊥ X4|X2, while in Figure 2.1(b), X1 ⊥⊥ X4|X2, X3 (which also holds
for the BN).

Moreover, this study mainly focuses on the binary pairwise MRFs, because this kind of MRFs
is powerful and high-order MRFs can be transformed into binary pairwise MRFs for further
analysis. Additionally, the case that the binary MRFs with factors on cliques is investigated
in Section 5.4.

6 Random Generation of Markov Random Fields

CHAPTER 2. PRELIMINARIES

2.2 Variable Elimination Inference

2.2.1 Partition Function

The partition function (PR) of an undirected graph G = (V,E) is,

Z =
∑
X

∏
ϕi∈Φ

ϕi, (2.4)

where X is the set of random variables on the vertices V ,ϕi ∈ [0,+∞) is a factor, and Φ is
the set of factors of the graph G. It is also known as the normalizing constant and guarantees
that the distribution of the MRF sums to 1. In Formula (2.2) and in Formula (2.3), Z is the
partition function of the MRF in Figure 2.1(b) with different factor sets, respectively.

In practice, to alleviate the underflow and overflow problems caused by the finite precision of
the computer, the log-sum-exp trick is applied [4] that all computation is performed in log-
space. Therefore, the main operations in the variable elimination inference, multiplication and
addition, are replaced by addition and log-sum-exponential operations. Here is an example.
Let ui = log(ϕi). Then

Z =
∑
X

∏
ϕi∈Φ

ϕi =
∑
X

∏
ui∈log(Φ)

eui =
∑
X

exp(
∑

ui∈log(Φ)

ui). (2.5)

The concept of the log-sum-exp operation is that For ea + eb = ec and the values of a and b
are known, the value of c can be calculated by the following formula

c = log(ea + eb) = a+ log(1 + eb−a). (2.6)

Combining Formula (2.5) and Formula (2.6), the final result of the partition function is log(Z).

2.2.2 Most Probable Explanation

The most probable explanation (MPE) is one special case of the maximum a posterior infer-
ence (MAP). Given W = X \ E and the evidence E = e, the most likely assignment to the
variables in W is

MAP (W|e) = argmax
w

P (W|E = e), (2.7)

MPE(X) = argmax
x

P (X)

= argmax
x

1

Z

∏
ϕi∈Φ

ϕi

= argmax
x

exp(
∑

ui∈log(Φ)

ui)

= argmax
x

∑
ui∈log(Φ)

ui. (2.8)

The log-sum-exponential strategy also works for calculating the most probable explanation,
as Formula (2.8).

Random Generation of Markov Random Fields 7

CHAPTER 2. PRELIMINARIES

2.2.3 An Example

Figure 2.2: The Markov random field example regarding getting cold or getting COVID-19

The following example illustrates the meanings of the partition function and the most probable
explanation. Figure 2.2 presents a binary pairwise MRF with six vertices to model a simple
case according to the following facts: the most common symptoms of Covid-19 are fever,
coughs, and loss of taste or smell; having coughs and headaches probably indicates getting
cold; headaches are one of the symptoms of fever. The probabilities are shown in Table 2.1-
2.6. The simplified relations and the distributions over random variables are designed only
for demonstration purposes.

ϕ(Cold, Headaches) Headaches = 0 Headaches = 1

Cold = 0 10 1

Cold = 1 0.5 0.1

Table 2.1: The factor over random variables Cold and Headaches

ϕ(Cold, Coughs) Coughs = 0 Coughs = 1

Cold = 0 10 2

Cold = 1 3 0.1

Table 2.2: The factor over random variables Cold and Coughs

8 Random Generation of Markov Random Fields

CHAPTER 2. PRELIMINARIES

ϕ(Headaches, Fever) Fever = 0 Fever = 1

Headaches = 0 10 0.01

Headaches = 1 2 0.05

Table 2.3: The factor over random variables Headaches and Fever

ϕ(Coughs, Covid-19) Covid-19 = 0 Covid-19 = 1

Coughs = 0 10 1

Coughs = 1 2 0.1

Table 2.4: The factor over random variables Coughs and Covid-19

ϕ(Fever, Covid-19) Covid-19 = 0 Covid-19 = 1

Fever = 0 10 1

Fever = 1 2 0.1

Table 2.5: The factor over random variables Fever and Covid-19

ϕ(Covid-19, Loss of taste or smell) Loss of taste or smell = 0 Loss of taste or smell = 1

Covid-19 = 0 10 0.02

Covid-19 = 1 1 0.1

Table 2.6: The factor over random variables Covid-19 and Loss of taste or smell

Here is a short explanation of Table 2.6. The value of the factor when a person has taste and
smell and does not get Covid-19 is 10, which is much greater than the rest three cases. It
indicates a strong relationship between not getting Covid-19 and not losing taste or smell.

Given X = {Cold, Headaches, Fever, Coughs, Loss of taste or smell, Covid-19}, in our ex-
ample, the probability of getting Covid-19 is

p(Covid-19 = 1)

=
1

Z

∑
X\Covid-19

ϕ(Cold, Headaches, Fever, Coughs, Loss of taste or smell, Covid-19 = 1)

≈ 0.0010,

Random Generation of Markov Random Fields 9

CHAPTER 2. PRELIMINARIES

where Z =
∑

X ϕ(Cold, Headaches)ϕ(Cold, Coughs)ϕ(Headaches, Fever)ϕ(Coughs, Covid-
19)ϕ(Fever, Covid-19)ϕ(Covid-19, Loss of taste or smell) ≈ 1080137.5129.

The most probable explanation is that MPE(X) = argmaxx ϕ(X). The results in Table 2.7
show that most of the time, people are healthy without any symptoms of diseases. The
probability of this case is p(MPE(X)) ≈ 0.9258.

Random Variable Cold Headaches Fever Coughs Loss of taste or smell Covid-19

Assignment 0 0 0 0 0 0

Table 2.7: The MPE results of this example

2.3 K-trees and Treewidth

K-trees are a class of graphs with treewidth of k. The informal explanation of the treewidth
is a parameter measuring the size of graphs (in comparison to trees). There are several
exchangeable formal definitions of treewidth; however, they are out of the scope of this thesis,
and can be found in [16, 17, 18] for interested readers. Partial k-trees are graphs with treewidth
at most k. Both k-trees and partial k-trees are appealing generalizations of trees since they can
solve NP-complete problems in polynomial time [19]. For example, Cédric Bentz proved that
determining the existence of a colour list on node-weighted k-trees and partial k-trees, which
is an NP-complete problem, can be completed in polynomial time [20]. Moreover, k-trees have
perfect orderings [17]. One application of these orderings is computing the numerical solution
of linear equations, specifically, in sparse positive definite systems [21]. After associating the
parameters’ matrices of linear systems with undirected graphs, the decomposition process can
be formulated as eliminating vertices in graphs.

Before introducing the formal definition of k-trees, recall the definition of clique in graph
theory [22].

Definition 2 A clique in a graph is a set of pairwise adjacent vertices.

To be specific, if there is an undirected graph G=(V, E), where V is the set of vertices and
E is the set of edges, a clique C in graph G is a subset of the vertices C ⊆ V, such that every
two distinct vertices are adjacent eij = (vi, vj) ∈ E, ∀vi, vj ∈ C, i ̸= j.

A clique of size k is called a k-clique. The definition of k-tree is as follows [23].

Definition 3 A k-tree is defined in the following recursive way:
1. A k-clique is a k-tree.
2. If T

′
k = (V,E) is a k-tree, K ∈ V is a k-clique and v /∈ V , then Tk = (V ∪{v}, E∪{(v, x)|x ∈

K}) is a k-tree.

The perfect elimination order comes from its recursive construction process. When the perfect
ordering and construction of a tree from the k-tree is followed, each tree vertex is a subset

10 Random Generation of Markov Random Fields

CHAPTER 2. PRELIMINARIES

of the k-tree vertices. Therefore, the maximum size of the subset in the tree is k+1, which
reveals the treewidth of this k-tree is k. This process is also called tree decomposition.

There are two straightforward approaches to finding the perfect ordering and constructing a
tree from a k-tree. One is Min-Neighbours, and the other is Min-Fill. The Min-Neighbours ap-
proach finds the vertex with the minimum degree in the current graph and updates the graph
by removing the found vertex and connecting its neighbours until all vertices are removed
from the graph. The treewidth of the graph is the maximum degree of a vertex established
during the process. The Min-Fill approach finds the vertex that, after removing it, the min-
imum number of edges are added when updating the current graph and then updates the
graph until all vertices are removed. The order of vertice removal from the graph using the
Min-Fill approach, combined with tracking the degree of vertices during removal, gives the
maximum degree, which equals the treewidth of the graph.

Random Generation of Markov Random Fields 11

Chapter 3

Literature Review

This section provides an overview of the research in the probabilistic graphical models’ do-
mains, MRF random generation, inference, and benchmarks. First, the recent studies on the
probabilistic graphical models are discussed. Although Bayesian networks are the popular re-
search topic in this domain, MRFs are an exciting and worthy object with vast potential. This
budding interest is why this project investigated the MRFs, specifically randomly generating
MRFs. The latest research about this subject is presented in Section 3.2, including random
generation of graphs, networks, Bayesian networks, and MRFs. In this project, the structure
of MRFs is k-trees. The other exciting findings of k-trees are also reviewed. Moreover, the
intention of generating MRFs based on k-trees is to compute the partition function and the
most probable explanation efficiently. The current approaches to solving these tasks are in-
troduced in Section 3.3. Finally, the last goal is to evaluate the inference of MRFs; therefore,
several investigations of general benchmark methods are given in Section 3.4.

3.1 The Probabilistic Graphical Models

The earliest research on the probabilistic graphical models is from Pearl in the 1980s [24,
25]. This class of models combines the knowledge of probability theory and graph theory;
therefore, the dependencies and probability relationships can be described by employing the
networks. The main research focuses are network representations, inference, and learning
[26, 15]; inference remains a hot topic in this domain.

In 2022, Singh et al. [27] proposed an effective inference algorithm to solve filtering problems
in the probabilistic graphical models, which are built on aggregated data from many individu-
als. Their algorithm combines the Sinkhorn algorithm and the standard belief propagation
algorithm, guaranteeing global convergence with polynomial computational complexity. It
shows excellent performance in the bird migration and human mobility datasets with hidden
Markov models.

There is another application of the probabilistic graphical models in sequential credit card
fraud detection using deep neural networks. Forough et al. [28] noticed the fraud problem
rising with the prevalence of electronic banking. They proposed a two-step model consisting
of an LSTM network and a conditional random field. This model achieved outstanding
performance compared to baseline models, such as LSTM, ANN and GRU, on two processed

Random Generation of Markov Random Fields 13

CHAPTER 3. LITERATURE REVIEW

credit card fraud detection datasets using their novel undersampling algorithm.

3.2 Random Generation of Markov Random Fields

Several methods randomly generate graphs; however, the domain of random generation of
MRFs is still unexplored. One possible structure of MRFs is the K-tree, which provides
several helpful inherent features.

In 2002, Ide et al. [29] built a heuristic algorithm to randomly generate Bayesian networks.
Their ideas come from Melancon et al. [30], who proposed a simple algorithm based on a
Markov chain to create acyclic digraphs with a given number of vertices uniformly at random.
The procedure takes the number of nodes and iterations at the beginning, then builds a simple
tree with one parent and begins to iterate. Inside the loop, the process starts with the random
selection of two nodes, i and j, then chooses one option from three: add the arc (i, j), delete
the arc (i, j) or keep everything the same. After exiting the loop, a Bayesian network is
created. The Markov chain backs up the algorithm, and Dirichlet distributions are used as
the conditional distributions for each node. The authors also developed a Java program for
this algorithm and produced some experimental results to indicate the correctness of the
algorithm.

In 2006, Britton et al. [31] gave four approaches for generating simple undirected graphs:
the erased configuration model, the repeated configuration model, the generalized random
graph, and the directed graph with removed directions (DGRD) theoretically. The following
four distributions are discussed to control the degree distribution: power law, Poisson, mixed
Poisson, and compound Poisson distributions. Mathematically examining the four approaches
reveals that the exact forms of the desired distributions are not yet achievable. However, based
on certain assumptions, the asymptotic distributions are reachable. At the end of the work,
the time complexity is considered, and the generalized random graph model requires the
fewest operations and scales as O(n). The four approaches to generating simple undirected
graphs have not been implemented, but there are similar works on developing random graphs
[32, 33].

In 2010, Caminiti et al. [19] introduced a new bijective code for labelled k-trees, or undirected
graphs, shown in Figure 2.3. The procedure produces the coding and decoding algorithms
running in linear time with respect to the size of the k-tree. With theoretical support, four
steps are needed in the coding and decoding processes. Generalized Dandelion Code is used
in the coding process for the perfect ordering. It provides a method to present k-trees with
codes, which makes k-trees easy and efficient to display with strings, which are then easily
deciphered into graphs.

3.3 Inference

The estimation of marginal probabilities and the most probable states of variables sets is
called inference in the domain of the probabilistic graphical models [34]; it is also a difficult
task. The complexity of different tasks and the summary of common inferences are described
below.

14 Random Generation of Markov Random Fields

http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator/

CHAPTER 3. LITERATURE REVIEW

Most theoretical analyses of the complexity of inference algorithms are done on Bayesian
networks since they can be treated as a special version of MRFs while maintaining the same
presentation size. The complexity of Bayesian networks is equivalent to that of MRFs.

The inference tasks in the probabilistic graphical models are NP-hard, which means in the
worst case, exponential time is needed. However, in practice, the worst case does not always
occur. The exponential blowup can be avoided by finding a good elimination order — a better
case [4].

In 2005, Campos et al. [35] provided an overview of the inferential complexity of Bayesian and
Credal networks with proofs. Table 3.1 summarizes the inferential complexity of Bayesian
network tasks from this paper. Five inferences are mentioned, but the focus here is on the
first two with bounded induced width. However, the third task can be solved with the result
of the first two. Therefore, our algorithm can also address it, but it doubles running time.
The PP-Complete refers to probabilistic polynomial time, and the NP-Complete refers to
nondeterministic polynomial-time complete.

Problem Polytree Bounded induced-width Multiply-connected

BN-PR Polynomial Polynomial PP-Complete

BN-MPE Polynomial Polynomial NP-Complete

BN-MPEe Polynomial Polynomial PP-Complete

BN-MAP NP-Complete NP-Completel NPPP-Complete

BN-MmAP
∑P

2 -Complete
∑P

2 -Complete NPPP-Hard

Table 3.1: Complexity results of Bayesian networks

In 2011, Ishikawa [36] proposed a method to transform higher-order MRFs into pairwise
MRFs without message loss. This method, also known as higher-order reduction, is generally
used in computer vision. It helps to address inferences of higher-order MRFs fast and with
less space. The reduced MRFs with the fusion-move and QPBO algorithms can solve energy
minimization problems in the computer vision domain. Similar methods such as the binary
energy reduction and Potts model are compared.

In 2014, Fix et al. [37] improved Ishikawa’s method by utilizing the underlying hypergraph
structure of the MRFs. Two steps are needed. Firstly, eliminate all higher-order positive
terms. Then, reduce negative coefficients term-by-term. In the worst performance case, the
number of new variables is n + O(td), and the number of submodular terms is O(td2). The
greatest number of non-submodular terms is n, where n is the number of variables in an MRF,
d is the degree of nodes, and t is the number of positive terms.

Random Generation of Markov Random Fields 15

CHAPTER 3. LITERATURE REVIEW

3.4 Benchmark

One application of our algorithm is to benchmark inference methods of MRFs. There are
few works regarding network benchmark design through sampling datasets from deliberately
constructed benchmark algorithms.

In 2013, Trabelsi et al. [38] designed a 2-TBN generation algorithm to benchmark dynamic
Bayesian networks and suggested a novel metric (i.e., the structural Hamming distance) for
evaluating the performance of 2-TBN structure learning algorithms. The 2-TBN generation
algorithm using the tiling approach has been implemented by Matlab and can generate large
and realistic 2-TBNs, which can then be employed to create new datasets. The structural
Hamming distance can compare the structure of dynamic Bayesian networks by integrating
temporal knowledge. Additionally, the authors indicated that any background knowledge
needs to be considered for the structural Hamming distance metric. However, no case study
was conducted to test the performance of their 2-TBN algorithm.

In 2016, Ishak et al. [39] did similar work as [38] based on [29], relating to data mining
problems. They provided two algorithms, one for random generation of the relational schema
and the other for random generation of the probabilistic relational models (PRMs), to bench-
mark these PRMs. Database generation contains four steps: creating the database schema,
determining data distribution, generating it, and loading all these components into the data-
base system. After these algorithms were designed, the authors implemented them in C++;
the complexities of the generation processes have been discussed.

Furthermore, the previous UAI competitions have numerous benchmarks to measure the
inference solvers submitted by competitors. The summary of these benchmarks can be found
here, including statistical descriptions of these networks and the results of inference tasks.
There are almost eleven benchmarks from diverse domains, including MRFs and Bayesian
networks.

16 Random Generation of Markov Random Fields

Chapter 4

Implementation

4.1 Preparation

In order to generate MRFs, the main parts of MRFs, namely, the structures and the para-
meters, are constructed sequentially. The structures of MRFs in our algorithm are partial
k-trees, while the parameters of factors on these MRFs are randomly sampled from different
distributions.

There are seven methods in our consideration. All of them are distributions, i.e., the Dirichlet
distribution, the exponential distribution, the Beta distribution, the chi-square distribution,
the uniform distribution over [0, 10), the uniform distribution over [0, 1) and the logarithmic
normal distribution. Table 4.1 shows the property, parameters and interval of these methods
[40] used in our algorithm.

Name Property Parameters Interval

Dirichlet distribution
∑k

i=1 xi = 1, αi = [1, 1, 1, 1], xi ∈ (0, 1)

p(x) ∝
∏k

i=1 x
αi−1
i k = 4

Exponential distribution p(x; 1
β) =

1
β e

(− x
β
)

β = 1 xi ∈ (0,+∞)

Beta distribution p(x; a, b) = 1
B(α,β)x

(α−1)(1− x)(β−1), α = 2, xi ∈ [0, 1]

B(α, β) =
∫ 1
0 t

(α−1)(1− t)(β−1)dt β = 3

Chi-square distribution p(x) =
(1
2
)
df
2

Γ(df
2
)
x(

df
2
−1)e(−

x
2
), df = 2 xi ∈ [0,+∞)

Γ(x) =
∫ −∞
0 t(x−1)e(−t)dt

Uniform distribution over [10, 100) p(x) = 1
(b−a) a = 10, xi ∈ [10, 100)

b = 100

Uniform distribution over [0, 1) p(x) = 1/(1− 0) xi ∈ [0, 1)

Logarithmic normal distribution p(x) = 1
σx

√
2π
e(

−(ln(x)−µ)2

2σ2) µ = 0.0, xi ∈ (0,+∞)

σ = 1.0

Table 4.1: The summary of selected sampling methods

Random Generation of Markov Random Fields 17

CHAPTER 4. IMPLEMENTATION

The idea of the selecting these proper factor generation methods is as diverse as possible.
Therefore, the intervals of these sampling methods are almost different. The only requirement
for the values of factors on the MRFs is that the values should be greater than or equal to 0.
All selected methods are satisfied.

4.2 Methodology

4.2.1 Construction of K-trees

The recursively generated k-trees described in Section 2.3 tend to be star-shaped because
the early generated k-cliques have higher probabilities of being selected and connected by
the newly added vertex. Therefore, the earlier the k-cliques are generated, the greater their
degrees of connection when converted to the tree shape.

This algorithm is inspired by Caminiti et al. [19], who introduced a bijective code to encode
and decode k-trees, tailoring it to generate k-trees and MRFs uniformly. Caminiti et al. coded
every labelled k-tree as an adapted Generalized Dandelion Code and proved that the code
is bijective. Thus, our algorithm implements and utilizes their idea, randomly generating an
adapted Generalized Dandelion Code (Q,S). Here, Q is a set of beginning k vertices, or the
first k-clique, of the k-tree, and S is a string of the Generalized Dandelion Code regarding
the relations of edges in the k-tree. With the decoding process, the k-tree is reconstructed.
The set of the adapted Generalized Dandelion Code is

An
k =

(
[1, n]

k

)
× ({(0, ε)} ∪ ([1, n− k]× [1, k]))n−k−2. (4.1)

The decoding process with the input (Q,S) is as follows:

Step 1: Compute a mapping that maps the original labels of vertices to the labels of
a Rényi k-tree according to Q and find the largest leaf and the smallest vertex that does
not belong to the first k-clique.

Step 2: Insert the pair (0, ε) into S, which indicates the position of the largest leaf
after mapping and decoding the string to obtain the directed characteristic tree.

Step 3: Reconstruct the Rényi k-tree by the directed characteristic tree, and record
the ordering and the k-cliques of this Rényi k-tree.

Step 4: Remap the Rényi k-tree labels to the original k-trees and the ordering and
the set of k-cliques.

Figure 4.1 from this paper shows the process of coding. The code of this k-tree in Figure 4.1(a)
is ([2, 3, 9], [(0, ε), (2, 1), (8, 3), (8, 2), (1, 3), (5, 3)]), where [2, 3, 9] is the first k-clique in the k-
tree, (0, ε) means for the vertex labelled 3 in Figure 4.1(e), its parent is vertex labelled 0 and
the edge label between its parent and itself is ε. The another example, (2, 1) represents the
vertex labelled 4, its parent is vertex labelled 2 and the edge label between its parent and
itself is 1. The details of the bijective code can be found in [19].

18 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

Figure 4.1: (a) A 3-tree with 11 nodes and the first k-clique 2, 3, 9. (b) The Rényi k-tree of
this 3-tree. (c) The skeleton of this 3-tree. (d) The characteristic tree of this 3-tree. (e) The
transformed directed tree of this 3-tree.

4.2.2 Sum-Product Variable Elimination

The method used to compute the partition function is the sum-product variable elimination.
Below is the pseudocode of this method.

Algorithm 1 Sum-Product Variable Elimination

Require: Φ, Xo ▷ Φ is the set of factors and Xo is the set of ordered variables to be
eliminated

1: for xi ∈ Xo do
2: Φre ← {ϕ ∈ Φ : xi ∈ Scope{ϕ}}
3: Φunre ← Φ \ Φre

4: ψxi ←
∏

ϕ∈Φre
ϕ

5: τ ←
∑

xi
ψxi

6: Φ← Φunre ∪ {τ}
7: end for
8: return Φ

The inputs of Algorithm 1 are the set of factors of this MRF and the ordered variables to be
eliminated. The order of all eliminated variables is the elimination order. Afterwards, input
variables are removed in this order one by one. At first, find all factors related to the variable.
Then, multiply all related factors and eliminate the variable by adding the factors according
to the value of the variable. Next, update the factor set by uniting the unrelated factors of
the variable and the new factor after eliminating this variable from the product of all related
factors. Lastly, since all eliminated variables are handled, the factor set contains one value,
which is the partition function of the MRF.

As discussed in Section 3, the elimination order of variables is essential in Algorithm 1, which
significantly influences this algorithm’s complexity. Because the k-trees are built recursively,
the elimination order of a k-tree is easy to record and retrieve. The retrieval method is
the minimum degree algorithm [21] (i.e., the Min-Neighbors approach). However, if some
edges are removed, the elimination order would be unable to retrieve by the minimum degree
algorithm. Since we create these k-trees, it is still accessible for us to record the elimination
orders, and they are valuable even for these partial k-trees.

Random Generation of Markov Random Fields 19

CHAPTER 4. IMPLEMENTATION

4.2.3 Max-Product Variable Elimination

The Max-Product Variable Elimination is also called MAP inference. It can be seen from the
name that this method is similar to the previous one. However, the max-product variable
elimination has two parts. Foremost, find the highest probability value. Then retrieve the
most likely assignment for each random variable, i.e., the most probable explanation. The
pseudocode is below.

Algorithm 2 Max-Product Variable Elimination

Require: Φ, Xo ▷ Φ is the set of factors and Xo is the set of ordered variables to be
eliminated

1: Ψ← ∅
2: Assign← ∅
3: for xi ∈ Xo do
4: Φre ← {ϕ ∈ Φ : xi ∈ Scope{ϕ}}
5: Φunre ← Φ \ Φre

6: ψxi ←
∏

ϕ∈Φre
ϕ

7: τ ← maxxi ψxi

8: Ψ← Ψ ∪ {ψxi}
9: Φ← Φunre ∪ {τ}

10: end for
11: un ← argmaxxn ψxn ▷ xn is the last variable in the elimination order
12: Assign← Assign ∪ {(xn, un)}
13: for xi ∈ X̄o \ {xn} do ▷ X̄o is Xo in the reverse order
14: ui ← argmaxxi ψxi(xi+1 = ui+1)
15: Assign← Assign ∪ {(xi, ui)}
16: end for
17: return Assign

There are two differences between Algorithm 1 and Algorithm 2. The first one is in Line 7;
the process of summing factors over variables is replaced by maximizing factors. Additionally,
in Line 8, the factors after the multiplication and the maximization operations are saved for
tracing back the assignment of each eliminated variable. The trace back procedure is from
Line 11 to the end, based on the reverse elimination order. Since the assignment of the
previous variable is decided, the fixed value of the variable determines the next one.

4.3 The Benchmark Algorithm

The methods and configurations are discussed in the previous sections. Next, the procedure
of our algorithm will be presented. Figure 4.2 provides an overview of our algorithm, and the
code is attached in Appendices A.

The benchmarking algorithm can be split into two parts. The first part is benchmarking
treewidth algorithms, including creating k-trees, removing edges and generating benchmarks.
The second part is to benchmark inferences regarding MRFs, which has three steps. The left
part in Figure 4.2 is the first step, random generation of MRFs; the second step in Figure 4.2

20 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

Figure 4.2: The procedure of the algorithm

below is to benchmark the partition function and the most probable explanation. Ultimately,
MRFs, their partition functions and the most probable explanations are saved to files.

The interpretation of the benchmark algorithm in detail is as follows.

Create a k-tree. According to Section 4.2.1, given the number of vertices and the value of
k, a k-tree and its perfect ordering will be returned by deciphering an adapted Generalized
Dandelion Code. With the specific number of vertices n and the treewidth k, the number of
k-trees is |T n

k | =
(
n
k

)
(k(n − k) + 1)n−k−2. The difference between these k-trees comes from

that the k-clique connecting to the inserted vertex being randomly selected, as in Definition
3. However, for the bijective code, our algorithm that randomly generates the adapted Gen-
eralized Dandelion Code can uniformly generate k-trees over the k-tree space with a specific
treewidth k and the number of vertices n in the graph.

Remove edges. As mentioned before, the Min-Neighbours approach can effortlessly find the
perfect ordering of k-trees. Therefore, some edges are removed from k-trees and partial k-trees
are created to hide the perfect ordering. In our code, the users can select either randomly
removing edges or removing edges such that their constituents have larger degrees. The first
edge removal strategy reveals that each edge has the same probability of being removed,
while the second changes the removed probability of each edge in different cases. Besides,
the number of removed edges is controlled by the removal rate. The removal rate depends on
the density of graphs, section 4.5 assesses how different choices of the removal rate affect the
performance of the benchmark algorithm.

Random Generation of Markov Random Fields 21

CHAPTER 4. IMPLEMENTATION

Treewidth instances. This step generates instances for treewidth tasks. Since the partial
k-trees are created in the previous step, they can be saved in .gr files as instances of treewidth
tasks. The first line in the .gr file states: ”p” means this is a problem; ”tw” means treewidth;
the following two numbers are the number of vertices and the number of edges, respectively.
The rest part is two columns where each row represents an edge.

Tree decomposition. The solutions to the instances generated in the previous step are saved
in the .td file with the same file name. The first line in the .td file states: ”s” means this is
a solution; ”tw” means treewidth; the following three numbers are the number of vertices in
the tree mapped from a k-tree, the treewidth of this graph, and the number of vertices in the
graph, respectively. Then, each line is a bag of vertices. The last is the decomposed tree with
bags as vertices.

Create factors. After the graph’s structure is ready, the factors of the graph will be sampled
for each pair of edges. There are seven sampling methods in Table 4.1. Generally, a chosen
method produces all values of factors in a graph, though applying different sample methods
for certain factors in a graph is feasible. Our code employs the former approach. The influence
of different sample methods is tested in Section 4.5.

Compute the partition function. With the structure of the graph and parameters, an
MRF is generated. Applying Algorithm 1, the partition function will be computed. In our
code, we adapted the source code of the query function from a Python package pgmpy [41]
because it does not use the log-sum-exponential strategy. With the inherent elimination order,
such as the perfect ordering of the k-trees, the computing process of the partition function is
fast compared to other elimination orders. The comparison is presented in Section 5.

Compute the most probable explanation. The method used to compute the most
probable explanation is in Algorithm 2. As discussed, there are two steps in computing
the most probable explanation. The function max marginal in pgmpy helps to calculate the
maximum probability in the joint distribution over all variables, which is the first step of
computing the most probable explanation. In comparison, the second step is implemented
in-house. It has the same question as the query function; therefore, the log-sum-exponential
strategy is added here also. Overall, the source code of function max marginal is modified
and these two steps are combined in a function called cal mpe.

Save MRFs and corresponding partition functions and most probable explana-
tions to files. All files are saved in UAI format, which is also done by pgmpy. An MRF saved
in a file with the ”.uai” suffix obeys the following instructions. The first line is the type of
the graph, ”MARKOV” or ”BAYESIAN”. The second line indicates the number of vertices
in the graph, followed by the cardinality of each variable. After that, the number of factors
is presented, followed by lines with the number of random variables in this factor and the
indices of these variables. The last part is the values of factors. The corresponding partition
functions are saved in the file with the same name as the MRFs but added ”.PR” suffix. The
first line states the content of this file, which is ”PR”. The second line is the log 10 value
of the partition function for evaluation purposes. Last is the most probable explanation file.
The file’s structure begins with ”MPE” and follows the number of vertices in the graph and

22 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

their assignments in the following line. The suffix of the most probable explanation files is
”.MPE”.

4.4 Results

There are five datasets with different kinds of MRFs and their partition functions and the
most probable explanations, which have been uploaded to GitHub. The total number of
MRFs is 392. The summary of some settings of the datasets is listed in Table 4.2. One
requirement to generate MRFs in the datasets is that the running time of computing both
the partition function and the most probable explanation of one network is at most 30 seconds
(for the sake of time in this project).

#N Value of K Sample method Removal rate #MRFs

Dataset 1 {100, 110, ..., 200} [14, 18] 1 0 55

Dataset 2 {200, 400, ... 2000} [6, 10] 1 0 50

Dataset 3 {300, 500, ..., 1300} 13 [1, 7] 0 42

Dataset 4 {95, 105, ..., 135} [15, 19] 2 [0.1, 0.5] 125

Dataset 5 {900, 1100, ..., 1900} [8, 11] 2 [0.1, 0.5] 120

Table 4.2: Datasets summary

The first dataset is a dataset with dense graphs. There are 55 MRFs in this dataset, with the
number of vertices from 100 to 200. The range of treewidth is from 14 to 18. The sampling
method is Dirichlet distribution, and the removal rate is set to be 0, which means this is a
dataset of k-trees.

The second dataset is a dataset with sparse graphs. Compared to the first dataset, there are
50 larger MRFs in this dataset, with the number of vertices from 200 to 2000. The range of
treewidth is from 6 to 10. Large graphs with more vertices and smaller treewidth result in
sparse graphs. The sampling method and the removal rate are identical to the first dataset,
which is Dirichlet distribution and 0, respectively.

The third one is designed to compare MRFs with different sampling methods. There are 42
MRFs with several vertices from 300 to 1300. The treewidth is fixed as 13, and no edges are
removed. It consists of MRFs with the same k-tree structure but different sampling methods.

The fourth dataset is a collection of dense graphs with 95 to 135 vertices and treewidths from
15 to 19. As opposed to the dense graphs collection in Dataset 1, the MRFs in this dataset
are not based on the k-trees but the partial k-trees because edges are removed. The removal
rate is changed from 0.1 to 0.5. Besides, the sampling method is the exponential distribution.
There are 125 graphs in total.

The last dataset is similar to Dataset 2 with sparse graphs. There are 120 MRFs with 900 to

Random Generation of Markov Random Fields 23

https://github.com/Keee-y/Random-Generation-of-Markov-Random-Fields

CHAPTER 4. IMPLEMENTATION

1900 vertices and treewidths from 8 to 11. The sampling method is exponential distribution,
and the range of the removal rate is from 0.1 and 0.5, which are the same as in Dataset 4.

The density of graphs is shown in Figure 4.3. Since there are many more graphs in Dataset 4
and Dataset 5 compared to Dataset 1 and 2, Figure 4.3 merely presents the density of graphs
before removing edges. The darker colour represents the denser graphs, and the lighter colour
represents the sparser graphs. The heatmaps of Datasets 1 and 4 have a more prominent dark
blue area, while the heatmaps of Datasets 2 and 5 look almost all celadon. It reveals that
Datasets 1 and 4 have dense graphs with fewer vertices and larger treewidth. In contrast,
Datasets 2 and 5 have sparse graphs with a higher number of vertices and lower treewidth.

Figure 4.3: The graph density in Datasets 1, 2, 4 and 5

24 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

4.5 Evaluation

This section analyses the performance of our algorithm using the structure of k-trees, the
sampling methods, and the removal rate. The datasets described in Section 4.4 will be used
to execute and measure the running time change for different cases.

4.5.1 Structure of K-trees

4.5.1.1 Construction Comparison

As mentioned in Section 2.3, based on Definition 2 and 3, the k-trees can be generated
recursively. The recursive process of generation of k-trees is described in Algorithm 3.

Algorithm 3 An algorithm for the Generation of k-trees

Require: k > 0, N ≥ k ▷ N = #vertices
1: V ← ∅
2: E ← ∅
3: k cliques← ∅
4: i← 0
5: K ← ∅
6: ordering ← ∅
7: while i < k do
8: V ← V ∪ {N}
9: K ← K ∪ {N}

10: N ← N − 1
11: ordering ← ordering ∪ {i}
12: i← i+ 1
13: end while
14: E ← E ∪ {(ei, eo)|ei, eo ∈ K, ei > eo}
15: k cliques← k cliques ∪ {K}
16: while i ̸= N do
17: V ← V ∪ {N}
18: K ← K ∈ k cliques
19: E ← E ∪ {(N, x)|x ∈ K})
20: ordering ← ordering ∪ {i}
21: for x ∈ K do
22: k cliques← k cliques ∪ {K \ {x} ∩ {N}}
23: end for
24: i← i+ 1
25: end while
26: return G = (V,E), k cliques, ordering

Before creating a k-tree, the value of parameter k and the number of vertices in this k-tree
should be given. For a reasonable k-tree, the number of vertices in the graph should be greater
than or equal to the value of parameter k. Then, from Line 1 to Line 5, the vertex set, the
edge set, the set of all k-cliques, an index, the first k-clique of the graph, and the ordering
are initialized, respectively. Lines 6 to 11 indicate that k vertices are chosen in the first loop

Random Generation of Markov Random Fields 25

CHAPTER 4. IMPLEMENTATION

to form the first k-clique. In Line 12, add all edges in the first k-clique to the edge set. Since
the final output is an undirected graph, the edges created in this graph are undirected. The
edges are saved as the vertex with a smaller label, followed by the vertex with a greater label.
Next, the first k-clique is combined with the set of all k-cliques. The following loop is to insert
the rest vertices into the graph. In Line 16, randomly select a k-clique from the k-cliques
set and connect the selected k-clique to the inserted vertex. Meanwhile, other k k-cliques are
generated and combined with the k-cliques set. Eventually, until all vertices are inserted in
the graph, return the vertex set and the edge set as a created k-tree and the ordering.

Table 4.3 illustrates the differences between k-trees generated by the recursive way and the
bijective code. There are nine kinds of k-trees. They are compared based on the graph’s
maximum vertex degree, minimum vertex degree, longest path in the k-tree, shortest path
in the k-tree, longest path in the skeleton of the k-tree, maximum clique, largest circle, and
smallest circle. The last three features of the graphs are the same for the k-trees generated by
both methods; therefore, they are excluded from the table. For each kind of k-tree, 100 k-trees
are generated by a specific method. The values of features are average over the 100 k-trees.
The maximum degree of a vertex is identical to the treewidth over all kinds of k-trees with two
methods. In contrast, the k-trees generated by the recursive method have a higher average
of the maximum degree of a vertex, a smaller average of the longest path, and a smaller
average of the short path compared to the k-trees generated by the bijective code. Moreover,
comparing the last column, since the recursive approach produces star-shaped graphs, the
longest path in the skeleton of these k-tree is clearly shorter than that of graphs generated by
the bijective code. In sum, the star shape of k-trees generated can be statistically verified by
the features of graphs, and the bijective code can generate k-trees randomly and uniformly.

4.5.1.2 The Density of Graphs

The first evaluation is regarding the structure of k-trees and is performed on the first and
second datasets. As mentioned before, the first dataset contains dense graphs, and the second
dataset consists of sparse graphs.

Generally, in Figure 4.4 and Figure 4.5, the x-axis represents the number of vertices in a MRF,
the y-axis represents the overall running time of solving both the partition function problem
and the most probable explanation problem and different colored lines denote the k values of
the k-trees, which is also termed the treewidth of graphs. It is easy to see the increasing trend
of the running time of computing the partition function and the most probable explanation,
which indicates that the running time is positively correlated to the number of vertices and
the treewidth of MRFs. Recall that the time complexity of the variable elimination inference
is O(nkd+1). The larger the treewidth of the MRF is, the larger intermediate factor will be
created during the elimination process and d will grow which leads to a significant increase
in the running time. The influence of the treewidth is exponential, while the influence of the
number of vertices is linear. Comparing the two patterns of the running time in two datasets,
the gap between every two lines is clear in Figure 4.4 while in Figure 4.5, the colored lines are
closely contiguous to each other. Therefore, we could find that the treewidth has a greater
effect on the running time in dense graphs while having less effect in sparse graphs.

Next, analyze the running time behavior in dense graphs individually. In Figure 4.4, the
computation time of MRFs with treewidth from 14 to 16 and the number of vertices from

26 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

#n k Method Max d(v) Min d(v) Max p(G) Min p(G) Max p(S)

100 10
1 90.10 10 2.15 2.00 14.37

2 83.82 10 2.97 2.00 27.99

100 20
1 98.02 20 2.00 1.68 13.41

2 97.71 20 2.00 1.66 26.05

100 30
1 98.98 30 2.00 1.02 12.85

2 98.99 30 2.00 1.01 23.77

500 10
1 390.60 10 3.00 2.00 21.99

2 234.10 10 4.77 2.64 70.31

500 20
1 462.79 20 2.00 2.00 21.74

2 409.89 20 3.01 2.00 70.62

500 30
1 481.50 30 2.00 2.00 21.79

2 462.34 30 2.30 2.00 70.59

1000 10
1 722.22 10 3.02 2.00 25.19

2 337.96 10 5.66 3.10 109.25

1000 20
1 893.29 20 2.00 2.00 25.04

2 680.52 20 3.48 2.01 102.74

1000 30
1 944.08 30 2.00 2.00 25.15

2 836.20 30 2.98 2.00 103.95

Table 4.3: The comparison of k-trees generated recursively (Method 1) or by bijective code
(Method 2)

Random Generation of Markov Random Fields 27

CHAPTER 4. IMPLEMENTATION

Figure 4.4: The running time changes according to the structure of k-trees in dense graphs

Figure 4.5: The running time changes according to the structure of k-trees in sparse graphs

100 to 200 rises slowly, in contrast to the lines with treewidth 17 and 18, which implies that
the number of vertices has a greater influence on denser graphs such as graphs with higher
treewidth. Moreover, there is a sharp spike in the line with k equals 18, while the difference
in the running time is only 2 seconds. It could be explained by randomness.

On the other hand, for the dense graphs with the number of vertices as 200, the running time
has raised over 30 seconds from the MRF with 14 treewidth to the MRF with 18 treewidth
in Figure 4.4. However, in the case of the sparse graphs, for example, keeping the number of
vertices as 2000, the difference between the running time of the MRF with 6 treewidth and
with 10 treewidth is only increasing by 10 seconds in Figure 4.5. Therefore, we could conclude
that addressing problems in dense graphs is harder than addressing problems in sparse graphs
because expanding the same amount of the treewidth of the graphs, the dense graphs need
more effort to solve queries than the sparse graphs.

28 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

4.5.2 Sampling Methods

The second part is to verify whether using different sampling methods to generate the para-
meters of the MRFs affects the computation time of handling the partition function task and
the most probable explanation task. When the tasks are solved on the outside of the log
domain, and the parameter values are less than 1 or too large, a range error of the values of
the intermediate factors will be caused in large graphs because of the multiplication during
the elimination process. Our algorithm adopted the log-sum-exp trick to solve this problem.
As can be seen in Figure 4.6, there is no trend in these lines of the running time. The conclu-
sion that the value of the parameters does not affect the calculation time is reached. It also
implies the ability of MRFs to depict various scenarios with all kinds of relations.

Figure 4.6: The comparison of the running time of MRFs using different sampling methods

4.5.3 The Removal Rate

The last evaluation is about the removal rate, and the experiments are done on Dataset 4
and Dataset 5. The difference between Dataset 4 and Dataset 5 is the density of graphs
they contain, which are dense partial k-trees and sparse partial k-trees, respectively. For the
removal strategy, there are two strategies in our code, which have been explained in Section
4.3. In this part, we used the strategy that removing edges depends on the degrees of their
constituents. For vertices with large degrees, the edges connected to these vertices have a
higher probability of being removed. The objective of applying this strategy is to challenge
the Min-Neighbors approach to find the perfect orderings in the partial k-trees. Moreover,
single vertices produced after removing edges will be excluded from the graphs because they
have no relation with and impact on any other vertices in the graphs.

Overall, in Figure 4.7 and Figure 4.8, with the removal rate increasing, the running time of
computing the partition function and the most probable explanation of the MRFs decreases.
Recall the time complexity of the variable elimination inference. There are two possible
reasons for the reduction in running time: either the number of vertices of the graph is

Random Generation of Markov Random Fields 29

CHAPTER 4. IMPLEMENTATION

reduced, or the treewidth of the graph is reduced. Given that the removal rate has a limited
impact on running time, it is more likely that the graph has fewer vertices. In addition, the
amount of edges removed is related to the number of edges in the graph. The denser the graph,
the more edges there are, and the number of edges removed will also increase accordingly.
When the factor is reduced, the amount of computation in the elimination process is also
reduced accordingly.

Figure 4.7: The running time with varied removal rate in dense graphs

Looking closely at Figure 1, for each row, when the number of vertices of the graph is the
same, the effect of the removal rate on the running time is gradually visible as the treewidth
increases. From the perspective of each column, when the treewidth is fixed and the number
of vertices of the graph increases, we can find that when the tree width is 15, 16, 17, the
change of running time is negligible as the removal rate increases; when the tree width is 18,
the change of running time is slight; when the tree width is 19, the change of running time
is obvious. Therefore, we can show that the removal rate has an effect on the runtime only
when the treewidth is large. In comparison, the effect of treewidth on the running time will

30 Random Generation of Markov Random Fields

CHAPTER 4. IMPLEMENTATION

be greater than the effect of the removal rate.

However, the running time demonstrates a different pattern in sparse graphs. Looking at
each column in Figure 4.8, when the treewidth is fixed, the effect of removal rate on the
running time increases as the number of vertices of the graph increases. For each row, when
the number of vertices of the graph is constant, the fluctuation of the running time does not
increase with the increase of the treewidth. This is similar to the observation we obtained in
Section 4.5.1.2. In sparse graphs, the number of vertices of the graph has a greater impact
on the final running time, compared to the treewidth.

Figure 4.8: The running time with varied removal rate in sparse graphs

Random Generation of Markov Random Fields 31

Chapter 5

Experiments

5.1 Treewidth Heuristic Algorithms

There are two heuristic algorithms to compute the treewidth of graphs mentioned in Sec-
tion 2.3. They are Min-Neighbors and Min-Fill. In this experiment, we compared the per-
formance of the two heuristic algorithms of treewidth on the partial k-trees generated by the
bijective code and by the recursive way. The objective of this experiment is to estimate and
compare the complication of the partial k-trees generated by the two methods empirically.

The partial k-trees used in this experiment are with the number of vertices from 100 to 600,
the treewidth from 8 to 16, and the removal rate from 0.1 to 0.8. Overall, there are 480
graphs, and each k-tree generation method provides half of the graphs. For the removal
strategy, we followed a similar setting in Section 4.5.3 for the same reason. However, different
from the evaluation of the removal rate, in this experiment, we considered greater removal
rates such as 0.6, 0.7, and 0.8. With such removal rates, the treewidth of the partial k-tree
maybe decrease compared to the k-tree before removing edges. Hence, we configured that if
the removal rate is greater than or equal to 0.6, the removal strategy will keep a (k+1)-clique
in this graph. With this procedure, we can guarantee the treewidth of the partial k-tree with
any removal rate. We keep a (k+1)-clique in the partial k-tree rather than a k-clique because
the treewidth of a k-clique graph is k − 1.

The comparison of Figure 5.1 and Figure 5.2 shows that the two heuristics are comparable.
Moreover, both heuristics are better at detecting the treewidth of the graph when the removal
rate is higher than 0.6. However, when the removal rate is smaller than 0.6, both heuristics
make certain mistakes, but the mistakes are more severe on the graphs generated by the
bijective code. It indicates that the graphs generated by the bijective code are more complex
than the graphs generated by the recursive way. Besides, it can be seen that when the
treewidth is constant, expanding the number of vertices of the graph does not increase the
difficulty of finding the treewidth for both heuristics. While the number of vertices of the graph
is fixed, the larger the treewidth is, the greater the error committed by both heuristics on
graphs generated by both methods. Therefore, in order to make our benchmark challenging,
we would suggest using the bijective code to generate graphs with as large treewidth as
possible.

Look at Figure 5.1 individually. When the removal rate is higher than 0.5, the performance of

Random Generation of Markov Random Fields 33

CHAPTER 5. EXPERIMENTS

the Min-Neighbors heuristic algorithm is outstanding in detecting the treewidth of the graphs
generated by the recursive way. Even though the performance of the Min-Fill heuristic is not
as good as the performance of the Min-Neighbors, the differences between the treewidth found
by the Min-Fill heuristic and the actual treewidth are minor. In addition, when the removal
rate is smaller, such as 0.1 and 0.2, the recursively generated graphs are relatively complicated
for both heuristics.

Figure 5.1: The performance of two treewidth heuristic algorithms on the partial k-trees
generated by the recursive way

Unlike the patterns of the performance of the two heuristics in the graphs generated by the
recursive way, in Figure 5.2, neither heuristic algorithms can detect the graph treewidth well
when the removal rate is in [0.2, 0.7], in particular, when the removal rate is around 0.4 and
0.5. At this time, both heuristics calculate a larger value than the actual treewidth, even
beyond twice the treewidth.

34 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

Figure 5.2: The performance of two treewidth heuristic algorithms on the partial k-trees
generated by the bijective code

In the analysis, we did not count the exact error rate and the average error because of the
randomness of the graphs generated by the two methods. The generated graph is different
every time, and the exact error rate and the average error counted on one experiment cannot
generalize to the next time.

5.2 Elimination Orders Comparison

The MRFs generated in the benchmark algorithm in Figure 4.2 have perfect orderings. With
the perfect orderings, the variable elimination inference can provide the partition functions
and the most probable explanations of these MRFs in a short time. Although finding the
perfect elimination order is NP-hard, as we discussed in Section 3, there still are four heuristic
methods commonly used for finding the best elimination order. Next, this second experiment
is to verify the effect of these four methods on our generated MRFs, which are Min-Neighbors,

Random Generation of Markov Random Fields 35

CHAPTER 5. EXPERIMENTS

Min-Weight, Min-Fill and Weighted-Min-Fill. The Min-Neighbors and the Min-Fill are also
used as the heuristic methods to find the treewidth of graphs in the previous section. The
explanation of each criterion is as follows.

• Min-Neighbors: The cost of a vertex is the number of neighbors it has in the current
graph

• Min-Weight: The cost of a vertex is the product of weights, domain cardinality, of its
neighbors

• Min-Fill: The cost of a vertex is the number of edges that need to be added (fill in
edges) to the graph due to its elimination

• Weighted-Min-Fill: The cost of a vertex is the sum of weights of the edges that need
to be added to the graph due to its elimination, where a weight of an edge is the product
of the weights, domain cardinality, of its constituent vertices

These four methods are implemented in the python package pgmpy. But they only work for
Bayesian networks. Here introduces an approach to translate Bayesian networks to MRFs,
and the two types of graphs have special relations in computing the partition function and
the most probable explanation.

The steps to translate a MRF MRF (V,E,Φ) to a Bayesian network BN(V ′, E′,Φ′) are:

Step 1: ∀ϕi(Xi) ∈ Φ, create a new vertex si ∈ {0, 1};

Step 2: Start with an empty graph E′ = ∅,Φ′ = ∅, V ′ = V ∪S, where S = {s1, ..., si};

Step 3: ∀xj ∈ V, xj has no parents. Let p(xj) be uniform and Φ′ = Φ′ ∪ {p(xj)};

Step 4: ∀ϕi(Xi), insert each xj ∈ Xi as a parent of si and E
′ = E′ ∪ {(xj , si)};

Step 5: ∀ϕi(Xi), let p(si = 0|Xi) = ϕi(Xi)∑
Xi

ϕi(Xi)
, p(si = 1|Xi) = 1 − ϕi(Xi)∑

Xi
ϕi(Xi)

and

Φ′ = Φ′ ∪ {p(si|Xi)}.

There is an example of a partial 3-tree MRF with 7 vertices in Figure 5.3(b) and the initial
3-tree is in Figure 5.3(a). With the translation approach, the corresponding Bayesian network
is shown in Figure 5.4. The red vertices are s nodes referred before. Since we only consider
binary random variables and the weight of each vertex is the same, the elimination orders gen-
erated based on the Min-Neighbors method and the Min-Weight method are identical. This is
the same case for the Min-Fill method and the Weighted-Min-Fill method. Therefore, in this
experiment, only the Min-Neighbors method and the Min-Fill method are taken into account.
The elimination orders produced by the above two methods of the MRF in Figure 5.3(b) and
the Bayesian network in Figure 5.4 are listed in Table 5.1. Even thought, these orderings are
different, they are equivalent because the example is relatively simple. In fact, in the pilot
experiment, with larger graphs, the methods from pgmpy provide worse elimination orders,
which made variable elimination inference takes much more time in computing the partition
function and the most probable explanation. Hence, the actual experiment was carried with
the finding elimination orders methods implemented by ourselves.

36 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

(a) A 3-tree with 7 vertices (b) A Markov random field with 7 vertices

Figure 5.3: A 3-tree and its partial 3-tree Markov random field with the removal rate as 0.2

Figure 5.4: The corresponding Bayesian network according to the translation approach

The network The method The elimination order

The Bayesian network
Min-Neighbors 4, 3, 6, 1, 2, 5, 7

Min-Fill 4, 3, 1, 6, 2, 5, 7

The Markov random field
Min-Neighbors 1, 3, 4, 2, 5, 6, 7

Min-Fill 4, 3, 5, 1, 2, 6, 7

The perfect ordering Default 6, 4, 5, 7, 3, 2, 1

Table 5.1: The comparison of elimination orders found by different methods

Next, we illustrated the connection between the partition function and the most probable
explanation of the MRF and the probability of its parallel Bayesian network in equations.
From Equation 5.1, the partition function of MRFs can be calculated as,

Z =
∑
V

|Φ|∏
j=1

ϕj(Xj) = p(si = 0 ∀si ∈ S) · |ΩV |
|Φ|∏
j=1

∑
Xj

ϕj(Xj),

where |ΩV | represents the size of the joint distribution over all variables in the MRF.

Random Generation of Markov Random Fields 37

CHAPTER 5. EXPERIMENTS

p(si = 0 ∀si ∈ S) =
∑
V

∏
v∈V

p(v)

|Φ|∏
j=1

p(sj = 0|Xj)

=

∑
V

∏|Φ|
j=1 p(sj = 0|Xj)

|ΩV |

=
1

|ΩV |
∑
V

|Φ|∏
j=1

ϕj(Xj)∑
Xj
ϕj(Xj)

=

∑
V

∏|Φ|
j=1 ϕj(Xj)

|ΩV |
∏|Φ|

j=1

∑
Xj
ϕj(Xj)

(5.1)

The link between the most probable explanation of the MRF and the translated Bayesian
network is proved in Equation 5.2. It indicates that the most probable explanation over all
variables in the MRF is equivalent to the maximum a posterior inference over the group of
shared variables in the translated Bayesian network.

MAP (v, si = 0 ∀v ∈ V and si ∈ S)

= argmax
V

∏
v∈V

p(v)

|Φ|∏
j=1

p(sj = 0|Xj)

= argmax
V

∏|Φ|
j=1 p(sj = 0|Xj)

|ΩV |

= argmax
V

|Φ|∏
j=1

ϕj(Xj)∑
Xj
ϕj(Xj)

= argmax
V

|Φ|∏
j=1

ϕj(Xj)

=MPE(V)

(5.2)

Then, the datasets used in this experiment are the subsets of four different datasets from
Section 4.4. The details of these subsets are shown in Table 5.2. They are coming from
Dataset 1 (dense graphs without removing edges), Dataset 2 (sparse graphs without removing
edges), Dataset 4 (dense graphs with the removal rate from 0.1 to 0.5) and Dataset 5 (sparse
graphs with the removal rate from 0.1 to 0.5), respectively. Each subset has exactly 30 graphs.
There are 120 graphs in total.

38 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

#N Value of K Sample method Removing rate #MRFs

Subset 1 {100, 110, ..., 150} [14, 18] 1 0 30

Subset 2 {1000, 1200, ... 2000} [6, 10] 1 0 30

Subset 3 {95, 105, 115} [18, 19] 2 [0.1, 0.5] 30

Subset 4 {1500, 1700, 1900} [8, 9] 2 [0.1, 0.5] 30

Table 5.2: The summary of datasets for experiments

At the beginning, the first testing focuses on the case that no edge removes. Figure 5.5
and Figure 5.6 show the running time change with the three elimination orders in different
graphs. The three bars in each subplot of the two figures represent the running time of the
variable elimination inference with the Min-Neighbors elimination order (MN), the Min-Fill
elimination order (MF) and the perfect ordering (PO), respectively. It can be seen that the
three bars have almost the same height, which means the Min-Neighbors method and the
Min-Fill method are able to find the perfect orderings both in dense k-trees and in sparse
k-trees. This is why the benchmarks generated by our algorithm are the partial k-trees rather
than k-trees.

Figure 5.5: The running time comparison on Subset 1

Random Generation of Markov Random Fields 39

CHAPTER 5. EXPERIMENTS

Figure 5.6: The running time comparison on Subset 2

The second part of this experiment concentrates on more challenging graphs. The performance
of different elimination orders is shown in Figure 5.7 and Figure 5.8. When we took the
testing on Subset 3, we set a running time bound as 60 seconds. If computing both the
partition function and the most probable explanation of a MRF takes over 60 seconds, the
computation process will be terminated automatically. The yellow bars in Figure 5.7 represent
the terminated cases.

In Figure 5.7, it can be seen that the perfect orderings perform better than the other two
methods, especially when the removal rate is 0.2 or 0.3. However, when the removing rate is
0.1, the Min-Neighbors method and the Min-Fill method can comparatively easily find the
perfect orderings. The reasons might be that fewer edges are removed and the partial k-tree
is highly similar to the k-tree.

However, analyzing the results of the testing on Subset 4, in Figure 5.8, it reveals that the
large and sparse graphs are not difficult to solve. Because no difference in the performance
of these three elimination orders was observed. Recall the time complexity of the variable
elimination inference. In a graph, the running time of the variable elimination inference
is determined by the size of the maximum factor generated during the elimination process
exponentially and the number of vertices in polynomial. Checking the size of the maximum

40 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

Figure 5.7: The running time comparison on Subset 3

factor generated during the elimination process, we found that with the perfect ordering, the
value is the tree-width, while with the Min-Neighbors elimination order, the value is the same
or slightly greater than the tree-width and with the Min-Fill elimination order, the value is
one or two greater than the tree-width. Even with a larger size of the maximum factor, the
total running time is nearly equal. Besides, computing the Min-Neighbors elimination order
and the Min-Fill elimination order in sparse graphs needs considerable time compared to in
dense graphs.

Overall, with the smaller number of vertices, the larger treewidth and 0.1 or 0.2 removal rate,
our algorithm can generate complicated MRFs to benchmark certain inferences.

Random Generation of Markov Random Fields 41

CHAPTER 5. EXPERIMENTS

Figure 5.8: The running time comparison on Subset 4

5.3 Randomly Generate MRFs by Adding Edges

Apart from the way that firstly generating k-trees and then removing edges, we can create
MRFs by adding edges to the graphs directly the other way around. The probability of adding
edges is called the addition rate. If the addition rate is constant over all candidate edges, it is
also the density of the graph. Consider a graph with n vertices and the addition rate is p. For
each edge, there are only two states, exists or does not exist in the graph. The probability
of the existence of an edge is exactly the addition rate p. The maximum number of edges in

this graph is n(n−1)
2 and the number of graphs with n vertices is 2

n(n−1)
2 . The probability of

randomly generating a graph with the addition rate p is p
n(n−1)

2 and the uniform probability

of creating a graph is 2−
n(n−1)

2 . Therefore, if the addition rate is 50% (p = 1
2), given the

number of vertices, the graphs are uniformly generated. Thus, by modifying the addition
rate, the probability of creating a graph by adding edges can be controlled.

However, it is very difficult to solve the partition function and the most probable explanation
tasks of MRFs based on randomly generated graphs by adding edges because finding the
treewidth of a graph is hard. Figure 5.9 illustrates the results of the experiment that, with the
same number of vertices and the same density of graphs, the maximum size of the intermediate

42 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

factor produced during the variable elimination inference on k-trees or graphs generated by
adding edges. In this experiment, the number of vertices is 100 and the range of the density
of graphs is from 0.001 to 0.5. The comparison is among k-trees, partial k-trees and the
graphs generated by adding edges. The maximum size of the intermediate factor on k-trees
and partial k-trees with the fixed density can be calculated by the relation among the number
of vertices, the treewidth, the removal rate and the density of graphs, while the maximum
size of the intermediate factor on graphs generated by adding edges with the fixed density
are calculated by Min-Neighbors approach and Min-Fill approach.

Figure 5.9 shows the increasing behavior of the maximum factor formed during the variable
elimination with Min-Neighbors and Min-Fill elimination orders among denser graphs. While,
with the same density, k-trees guarantees smaller factors compared to graphs generated by
adding edges. For partial k-trees, to keep the same density of the graph, the treewidth
increases. As mentioned in Section 4.5.1, the size of the maximum factor has exponential
influence on the running time of the variable elimination inference. Hitherto, k-trees and
partial k-trees with bounded treewidth have advantages over randomly generated MRFs by
adding edges in the field of benchmark inferences of MRFs.

Figure 5.9: the relation between the size of the maximum factor and the density of the graph

5.4 Factors on K-cliques

In the previous sections, we have been discussing pairwise MRFs. In this section, we explored
the case that the factors are on the cliques rather than only on the edges.

For a k-tree, it has (n − k)k + 1 k-cliques. However, for a partial k-tree, since some edges
are removed, the corresponding k-cliques are decomposed. Thus, we developed a procedure,
Algorithm 4, to handle the cliques in the partial k-trees. The core idea is to check k-cliques
whether any clique remains after removing edges separately. In the second loop, the rest
edges are verified whether an edge is in a clique with over 2 vertices. If so, this edge should
be excluded from the clique set. This is to say, the second loop in this procedure ensures that
no repeated information is kept on the edges. After executing Algorithm 4, in most cases, the

Random Generation of Markov Random Fields 43

CHAPTER 5. EXPERIMENTS

number of factors in a non-pairwise graph is moderately smaller than its number of edges,
which equals to the number of factors in the pairwise MRF.

Algorithm 4 Cliques of a k-tree after removing edges

Require: K, Ê ▷ K is the set of k-cliques and Ê is the set of remaind edges after the edge
removal

1: C ← ∅ ▷ C is the set of cliques in the partial k-trees
2: Ce← ∅ ▷ Ce is the set of edges in C
3: Re← ∅ ▷ Re is the set of rest edges in the graph but not in Ce
4: for clique ∈ K do
5: if ∀vi, vj ∈ clique and vi ̸= vj , (vi, vj) ∈ Ê then
6: C ← C ∪ {clique}
7: Ce← Ce ∪ {(vi, vj) : ∀vi, vj ∈ clique and vi ̸= vj}
8: else
9: if ∀vi, vj ∈ subset of clique (cliquesub) and vi ̸= vj , (vi, vj) ∈ Ê then

10: C ← C ∪ {cliquesub}
11: Ce← Ce ∪ {(vi, vj) : ∀vi, vj ∈ cliquesub and vi ̸= vj}
12: Re← Re ∪ {(vi, vj) : ∀vi, vj ∈ clique, vi ̸= vj and (vi, vj) ∈ Ê \ Ce}
13: end if
14: end if
15: end for
16: for clique ∈ Re do
17: if cliuqe /∈ Ce then
18: C ← C ∪ {clique}
19: Ce← Ce ∪ {clique}
20: end if
21: end for
22: return C

The experiment was carried out on a dataset with dense graphs, where the number of vertices
over the dense graphs ranges from 100 to 150, the treewidth varied from 10 to 14 and the
removal rate is set from 0 to 0.5. The total number of graphs is 180. Besides, the sampling
method is the exponential distribution, and the inference method is the variable elimination
with the perfect elimination ordering. The results are shown in Figure 5.10.

In Figure 5.10, the blue lines represent MRFs with factors on cliques, while the orange lines
represent pairwise MRFs. The upper bound of the computation time is 60 seconds. All
calculations are done within the requirement time limit. Except the observations of the
known relations between the running time and the treewidth, and between the running time
and the removal rate, the different discovery is that the blue lines have similar behavior to
the orange line after removing edges. However, when the removal rate is 0, computing the
partition function and the most probable explanation of MRFs with factors on cliques needs
relatively more time, which is different from that of the pairwise MRFs. It might be because
of the size of factors in the computation. For the factors on cliques case, in the process of
eliminating one variable, there are k factors with k variables, while for pairwise MRFs, there
are k factors with 2 variables.

44 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

Figure 5.10: The experiment of factors on cliques

5.5 Benchmark the Exact Inferences

5.5.1 Junction Tree

The junction tree algorithm, also known as the clique tree, is an advanced algorithm to
perform inferences in tree-type graphs. It includes converting a general graph to a tree
and then exacting marginalization from it. The vertices of a junction tree are the clusters
of vertices in the original graph. One advantage of the junction tree algorithm is that it
overcomes an important shortcoming of the variable elimination inference. In the variable
elimination inference, many intermediate factors generated for answering one query are useful
for answering another. For example, during the process of answering the conditional marginal
queries p(a|b) and p(c|b), the probability of variable b, p(b) will be computed twice. The
junction tree algorithm solves this problem by pre-computing intermediate factors and saving
them in a tree structure. With the intermediate factors, the marginal quires can be answered

Random Generation of Markov Random Fields 45

CHAPTER 5. EXPERIMENTS

in O(1) time. It is fast and efficient. Besides, reusing the intermediate factors avoids the
waste of running time and space and decreases the computational complexity.

The junction tree algorithm consists of 7 stages, namely, moralizing the graph (only for
Bayesian networks), triangulating the graph, forming the junction tree, pre-computing po-
tentials and initializing the junction tree, selecting an arbitrary root node, performing message
passing and evaluating required marginal potentials [42]. To be noted, there are two essential
properties needed to be satisfied for a junction tree, i.e., family preservation and running
intersection. The family preservation property requires that for each factor in the original
graph, the variables in this factor should be in the same cluster, the same node in the junction
tree and the running intersection property requires that for each variable in different clusters
ci and cj , which are not directly connected, this variable should exist in the clusters in the
path between ci and cj . The junction trees of graphs in Figure 5.3 are shown in Figure 5.11.

Figure 5.11: The junction tree of the 3-tree and Markov random field in Figure 5.3

The intermediate factors generated in the sum-product variable elimination and the max-
product variable elimination are pre-computed by two methods in the junction tree, called
the sum-product message passing and the max-product message passing.

The junction tree algorithm used in this experiment is implemented by pgmpy as belief
propagation. The belief propagation inference has two functions. One is for the MAP query
and the other is for the marginal query. They are working on MRFs, while the marginal query
function returns the distributions of queried variables. The factors are normalized during the
inference process. Therefore, it cannot solve the partition function task. Moreover, even
though the MAP query function can return the most probable explanation over all variables,
it fails to answer the query with over 10 variables because of the time-out.

Technically speaking, the junction tree algorithm is analogous to the variable elimination
inference. The basic operations they used are identical, namely, multiplying factors and
summing out variables. In the source code, The belief propagation creates a junction tree
for the input graph and calls the variable elimination inference on a sub-junction tree of
queried variables. Therefore, the variable elimination order is necessary. The performance
of the default methods to determine the variable elimination order in pgmpy was tested in
Section 5.2.

5.6 Benchmark the Approximate Inferences

5.6.1 Approximate Inference using Sampling

If the precision of the calculation in a controlled range is acceptable, computing the partition
function and the most probable explanation by sampling is an alternative. Besides, consider-

46 Random Generation of Markov Random Fields

CHAPTER 5. EXPERIMENTS

ing that the time complexity and the space complexity of variable elimination inference are
exponential with relative to the treewidth of the network and in practice the graphs with
large treewidth are unavoidable, the approximate inference using sampling is preferable in
such situation.

The approximate inference using sampling in pgmpy is exclusively for Bayesian networks.
Therefore, the approach to translating MRFs to Bayesian networks discussed in Section 5.2
is applied. The concept of this inference is to sample instances from graphs based on the
conditional probability distributions and then approximate the probabilities of variables by
the frequencies of sampled instances.

This inference has good performance in small graphs. However, during the experiment, we
found that the approximate inference using sampling fails to solve the partition function task
and the most probable explanation task of large graphs because of the sampling size. In
Equation 5.1, before computing the partition function of the MRFs, the joint distribution of
all s vertices is required. While the size of the joint distribution of all s vertices is dependent
on the number of s vertices and their cardinalities. To be precise, the number of s vertices
is the number of factors in the MRF, and the size of the joint distribution is the product
of cardinalities of all s vertices, which is exponential in the number of s vertices. Obtaining
the joint distribution of all s vertices from the sampling demands that each instance in the
joint distribution should at least show up in the sample set once. Since small probabilities of
instances exist, the size of samples is required to be enormous.

One reason for using the variable elimination with the perfect ordering is to avert the com-
putation of the joint distribution. But computing the joint distribution is inevitable for
the approximate inference with sampling to solve the partition function task and the most
probable explanation task. Thus, approximate inference using sampling is defective and not
recommended when answering queries.

Random Generation of Markov Random Fields 47

Chapter 6

Discussion

This algorithm can generate benchmarks for MRF inferences and tree decomposition tasks.
The steps to create MRFs are as follows. Initially, the input parameter must be collected,
including the number of vertices, the treewidth, and the removal rate of the wanted graph.
Additionally, a sampling method must be chosen to generate the parameters of the graph,
and an edge removal strategy must be decided on to construct the partial k-trees. With the
partial k-tree and factors, a pairwise MRF is randomly generated, and its perfect ordering
is provided. The partial k-tree can be saved in a “.gr” file as a treewidth task instance;
the tree decomposition will be created and saved with its perfect ordering in the “.td” file
for benchmarking. Next, utilize the variable elimination inference and the perfect order to
efficiently compute the correct partition function and the most probable explanation of this
MRF as a benchmark. Finally, the graph and queries are saved in the UAI file format. This
code is readily available and can be used to generate as many MRFs and benchmark datasets
as needed.

Two unique parts make up this algorithm. The first is that our k-trees are all decoded with
a bijective code. Because bijective codes can randomly construct uniformly in the domain
of bijective codes, the k-trees are obtained from uniform distributions given the number
of vertices and treewidth; thus, the graphs and benchmarks generated are guaranteed to be
unbiased. The second point is about the strategy for removing edges. There are two strategies
employed in this algorithm: removing edges randomly and removing edges conditionally.
Heuristic algorithms are used for verification, and several experiments are run. When we
randomly remove edges, heuristics can easily find the best orderings of what we wish to hide.
In this case, the benchmarks we generate are too easy for the inference algorithm to function
as a test of the inference algorithm. The degrees of vertices are made as close to the average
as possible to challenge these heuristics. Therefore, the edges with vertices of a degree greater
than k are removed first, as they are the edges of non-leaf nodes in the k-trees. This strategy
has proven effective.

Additionally, the analysis of the pgmpy package revealed many areas for improvement. The
first is the module that reads the graph. When there are more than 150 edges in a graph,
pgmpy cannot read it correctly due to a grammar error. The second is that the log-sum-
exp trick is not applied in the variable elimination inference module, which leads to the fact
that the inner function of the variable elimination inference cannot handle the large graph

Random Generation of Markov Random Fields 49

CHAPTER 6. DISCUSSION

with relatively large or small parameters. Moreover, in variable elimination inference, the
function that calculates the most probable explanation does not utilize the elimination order
but calculates the joint distribution. Therefore, this method cannot return the result for large
graphs in a reasonable time-bound. Finally, pgmpy does not have a method for calculating the
elimination order for MRFs. Therefore, this additional functionality had to be implemented
in-house within the structure of pgmpy.

As mentioned in the literature review, although only pairwise MRFs are generated, these pair-
wise Markov networks can represent more complex networks and are used in many practical
problems. However, the intention was to construct benchmark datasets with the algorithm
to validate inferences for MRFs.

50 Random Generation of Markov Random Fields

Chapter 7

Conclusions

7.1 Contributions

This project develops an algorithm to randomly generate MRFs based on a partial k-trees
structure; this structure includes pairwise factors, the number of vertices, the treewidth, and
the removal rate of edges. Besides, the perfect orderings of generated MRFs are known by
us to compute the query results effectively. Therefore, the datasets of MRFs generated by
our algorithm can be used as benchmarks to evaluate inferences on MRFs. Moreover, seven
sampling methods are used to create parameters for the MRFs, such as the values of factors
in different ranges.

In this project, the partition function task and the most probable explanation task are chosen
to test and compare the performance of inferences on the datasets of MRFs generated by
our algorithm. The variable elimination inference is beneficial and efficient since the perfect
orderings of the graphs are included in the data. While finding the ideal ordering is still
NP-hard, solving the partition function task and the most probable explanation task by
the variable elimination inference on our datasets is extremely difficult without the ordering
information. Section 5.2 shows that the intuitive methods for finding elimination orders
are ineffective on these generated datasets. In addition, the junction tree algorithm, an
exact inference, the approximate inference by sampling, and an approximate inference are all
unproductive for these datasets.

Furthermore, generating custom shapes of graphs is possible. Configuring the algorithm’s
inputs, namely, the number of vertices, the treewidth, and the removing rate, can alter the
density of the graphs. The queries on the graphs become relatively complex with the smaller
number of vertices, the larger treewidth, and the removing rate of 0.2. Hence, setting the
removing rate at 0.2 is recommended for challenging benchmarks. All code is presented in
the Appendix A. The generation process is fast, and the reader can generate as many graphs
as they want. The correct answers of queries utilized to verify the performance of inference
algorithms for MRFs can be computed by the variable elimination inference with the perfect
orderings rapidly.

Random Generation of Markov Random Fields 51

CHAPTER 7. CONCLUSIONS

7.2 Future work

When creating MRF datasets as benchmarks for inferences of MRFs, the run time of com-
puting the correct answers for the queries is an important aspect and needs to be considered.
However, the time and space complexity of answering the queries is exponential with respect
to the treewidth of the partial k-trees, even when the perfect ordering is known via the vari-
able elimination inference. With the time limits, the treewidth of MRFs generated by our
algorithm cannot be very large. However, the large graphs are worthwhile in practice. Hence,
future focus will be on developing MRFs with large treewidth while the queries from these
MRFs can be answered correctly in a limited time. Since the computation of queries is an
NP-hard problem, more advanced techniques or tricks must be adopted.

If the computation of queries is unneeded, for example, only randomly generating MRFs,
the speed of the generation process is fast. Except for UAI tasks, the PACE competition
[10] considers the parameterized algorithms in practice as essential in the domain of graph
theory. It is held annually with topics including cluster editing, treedepth, vertex cover,
and treewidth. This algorithm can generate graphs with the edge removal rate over 0.8 as
benchmarks to evaluate the treewidth algorithms. Some ideas to increase the complexity of
our graphs include modifying the structure of k-trees and improving the strategy of removing
edges.

52 Random Generation of Markov Random Fields

Bibliography

[1] Stan Z Li. Markov random field modeling in image analysis. Springer Science & Business
Media, 2009. 1

[2] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305,
2008. 1

[3] George EP Box and George C Tiao. Bayesian inference in statistical analysis. John
Wiley & Sons, 2011. 1

[4] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009. 1, 5, 6, 7, 15

[5] Li Hongmei, Hao Wenning, Gan Wenyan, and Chen Gang. Survey of probabilistic graph-
ical models. In 2013 10th Web Information System and Application Conference, pages
275–280. IEEE, 2013. 1

[6] Rina Dechter, Alexander Ihler, Vibhav Gogate, Junkyu Lee, and Bobak Pezeshki. In-
troduction to uai 2022 competition. https://uaicompetition.github.io/uci-2022/

information/introduction/. 1

[7] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459, 2015. 1

[8] Nathalie Peyrard, Marie-Josée Cros, Simon de Givry, Alain Franc, Stéphane Robin, Régis
Sabbadin, Thomas Schiex, and Matthieu Vignes. Exact and approximate inference in
graphical models: variable elimination and beyond. arXiv preprint arXiv:1506.08544,
2015. 1

[9] Holger Dell, Thore Husfeldt, Bart MP Jansen, Petteri Kaski, Christian Komusiewicz, and
Frances A Rosamond. The first parameterized algorithms and computational experiments
challenge. In 11th International Symposium on Parameterized and Exact Computation
(IPEC 2016). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2017. 2

[10] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The pace
2017 parameterized algorithms and computational experiments challenge: The second
iteration. In 12th international symposium on parameterized and exact computation
(IPEC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 2, 52

Random Generation of Markov Random Fields 53

https://uaicompetition.github.io/uci-2022/information/introduction/
https://uaicompetition.github.io/uci-2022/information/introduction/

BIBLIOGRAPHY

[11] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding
embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987. 2

[12] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard problems
restricted to partial k-trees. Discrete applied mathematics, 23(1):11–24, 1989. 2

[13] Peter Clifford. Markov random fields in statistics. Disorder in physical systems: A
volume in honour of John M. Hammersley, pages 19–32, 1990. 5

[14] Luis Enrique Sucar. Probabilistic graphical models. Advances in Computer Vision and
Pattern Recognition. London: Springer London. doi, 10(978):1, 2015. 5

[15] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 5, 13

[16] L. W. Beineke and R. E. Pippert. Properties and characterizations of k-trees. Mathem-
atika, 18(1):141–151, 1971. 10

[17] Donald J Rose. On simple characterizations of k-trees. Discrete mathematics, 7(3-4):317–
322, 1974. 10

[18] Dandan Fan, Sergey Goryainov, Xueyi Huang, and Huiqiu Lin. The spanning k-trees,
perfect matchings and spectral radius of graphs. Linear and Multilinear Algebra, pages
1–12, 2021. 10

[19] Saverio Caminiti, Emanuele G Fusco, and Rossella Petreschi. Bijective linear time coding
and decoding for k-trees. Theory of Computing Systems, 46(2):284–300, 2010. 10, 14, 18

[20] Cédric Bentz. Weighted and locally bounded list-colorings in split graphs, cographs, and
partial k-trees. Theoretical Computer Science, 782:11–29, 2019. 10

[21] Donald J Rose. A graph-theoretic study of the numerical solution of sparse positive
definite systems of linear equations. In Graph theory and computing, pages 183–217.
Elsevier, 1972. 10, 19

[22] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, 2001. 10

[23] Frank Harary and Edgar M Palmer. On acyclic simplicial complexes. Mathematika,
15(1):115–122, 1968. 10

[24] Cassio P de Campos. Almost no news on the complexity of map in bayesian networks.
In International Conference on Probabilistic Graphical Models, pages 149–160. PMLR,
2020. 13

[25] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan kaufmann, 1988. 13

[26] Michael I Jordan. An introduction to probabilistic graphical models, 2003. 13

[27] Rahul Singh, Isabel Haasler, Qinsheng Zhang, Johan Karlsson, and Yongxin Chen. In-
ference with aggregate data in probabilistic graphical models: An optimal transport
approach. IEEE Transactions on Automatic Control, 2022. 13

54 Random Generation of Markov Random Fields

BIBLIOGRAPHY

[28] Javad Forough and Saeedeh Momtazi. Sequential credit card fraud detection: A joint
deep neural network and probabilistic graphical model approach. Expert Systems,
39(1):e12795, 2022. 13

[29] Jaime S Ide and Fabio G Cozman. Random generation of bayesian networks. In Brazilian
symposium on artificial intelligence, pages 366–376. Springer, 2002. 14, 16

[30] Guy Melançon, Isabelle Dutour, and Mireille Bousquet-Mélou. Random generation of
directed acyclic graphs. Electronic Notes in Discrete Mathematics, 10:202–207, 2001. 14

[31] Tom Britton, Maria Deijfen, and Anders Martin-Löf. Generating simple random graphs
with prescribed degree distribution. Journal of statistical physics, 124(6):1377–1397,
2006. 14

[32] Mohsen Bayati, Jeong Han Kim, and Amin Saberi. A sequential algorithm for generating
random graphs. Algorithmica, 58(4):860–910, 2010. 14

[33] Louis-Claude Canon, Mohamad El Sayah, and Pierre-Cyrille Héam. A comparison of
random task graph generation methods for scheduling problems. In European Conference
on Parallel Processing, pages 61–73. Springer, 2019. 14

[34] KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun,
Richard Zemel, and Xaq Pitkow. Inference in probabilistic graphical models by graph
neural networks. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers,
pages 868–875. IEEE, 2019. 14

[35] Cassio Polpo De Campos and Fabio Gagliardi Cozman. The inferential complexity of
bayesian and credal networks. In IJCAI, volume 5, pages 1313–1318. Citeseer, 2005. 15

[36] Hiroshi Ishikawa. Transformation of general binary mrf minimization to the first-order
case. IEEE transactions on pattern analysis and machine intelligence, 33(6):1234–1249,
2010. 15

[37] Alexander Fix, Aritanan Gruber, Endre Boros, and Ramin Zabih. A hypergraph-based
reduction for higher-order binary markov random fields. IEEE transactions on pattern
analysis and machine intelligence, 37(7):1387–1395, 2014. 15

[38] Ghada Trabelsi, Philippe Leray, Mounir Ben Ayed, and Adel M Alimi. Benchmarking
dynamic bayesian network structure learning algorithms. In 2013 5th International Con-
ference on Modeling, Simulation and Applied Optimization (ICMSAO), pages 1–6. IEEE,
2013. 16

[39] Mouna Ben Ishak, Philippe Leray, and Nahla Ben Amor. Probabilistic relational model
benchmark generation: Principle and application. Intelligent Data Analysis, 20(3):615–
635, 2016. 16

[40] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006. 17

[41] Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using python.
In Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer, 2015.
22

Random Generation of Markov Random Fields 55

BIBLIOGRAPHY

[42] David Kahle, Terrance Savitsky, Stephen Schnelle, and Volkan Cevher. Junction tree
algorithm. Stat, 631, 2008. 46

56 Random Generation of Markov Random Fields

Appendix A

Code of the benchmark algorithm
in Python

A.1 Create a Markov random field as a benchmark for the
UAI competition

from pgmpy . models import MarkovNetwork
from pgmpy . readwr i t e import UAIWriter
from pgmpy . f a c t o r s . d i s c r e t e import D i s c r e t eFac to r
from i t e r t o o l s import combinat ions
from fun c t o o l s import reduce
from tqdm import tqdm
import numpy as np
import time
import math
import copy
import os
import warnings
warnings . f i l t e rw a r n i n g s (ac t i on=’ i gno re ’)

https : //numpy . org /doc/ s t ab l e / r e f e r e n c e /random/ generated /numpy . random . normal .
html

de f random(idx , n) :
”””
inputs : idx : s e l e c t the random method to generate parameters o f a f a c t o r

n : the number o f parameters needed
output : the parameters o f a f a c t o r
”””
i f idx == 1 :

Draw samples from the D i r i c h l e t d i s t r i b u t i o n .
re turn np . random . d i r i c h l e t (np . ones (n) , 1)

e l i f idx == 2 :
Draw samples from an exponent i a l d i s t r i b u t i o n .
re turn np . random . exponent i a l (1 , n)

e l i f idx == 3 :
Draw samples from a Beta d i s t r i b u t i o n .
re turn np . random . beta (2 , 3 , n)

e l i f idx == 4 :
Draw samples from a chi−square d i s t r i b u t i o n .
re turn np . random . ch i square (2 , n)

Random Generation of Markov Random Fields 57

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

e l i f idx == 5 :
Draw samples from a uniform d i s t r i b u t i o n .
re turn np . random . uniform (10 , 100 , n)

e l i f idx == 6 :
Draw samples from a uniform d i s t r i b u t i o n over [0 , 1) .
r e turn np . random . rand (n)

e l i f idx == 7 :
Draw random samples from a log−normal d i s t r i b u t i o n .
re turn np . random . lognormal (0 , 1 , n)

de f preparat i on (graph , va r i ab l e s , ev idence , e l im ina t i on o rde r , j o i n t = True) :
”””
inputs : graph : a pgmpy MarkovNetwork

v a r i a b l e s : v a r i a b l e s that need to be e l im inated
ev idence : the ev idence o f t h i s query
e l im i na t i o n o rd e r : the e l im ina t i on order
j o i n t : True : r e turn the query over a l l input v a r i a b l e s ;

Fa l se : r e turn the que r i e s o f v a r i a b l e s i n d i v i d u a l l y
outputs : wo rk ing f a c t o r s : a d i c t i ona ry o f v e r t i c e s and t h e i r

f a c t o r s us ing in the e l im ina t i on proce s s
e l im i na t i o n o rd e r : the order the v e r t i c e s in the e l im ina t i on

proce s s
”””

get working f a c t o r s
wo rk ing f a c t o r s = {

node : {(D i s c r e t eFac to r (f a c t o r . scope () , f a c t o r . c a rd i n a l i t y , np . l og (
f a c t o r . va lue s)) , None) f o r f a c t o r in graph . g e t f a c t o r s (node) } # se t

f o r node in graph . nodes}

t o e l im i n a t e = (
s e t (graph . nodes)
− s e t (v a r i a b l e s)
− s e t (ev idence . keys () i f ev idence e l s e [])

)

get e l im ina t i on order
Step 1 : I f e l im i na t i o n o rd e r i s a l i s t , v e r i f y i t ’ s c o r r e c t and return .
Step 1 . 1 : Check that not o f the ‘ va r i ab l e s ‘ and ‘ evidence ‘ i s in the

e l im i na t i o n o rd e r .
i f ha sa t t r (e l im ina t i on o rde r , ” i t e r ”) and (not i s i n s t a n c e (

e l im ina t i on o rde r , s t r)) :
i f any (var in e l im i na t i o n o rd e r f o r var in s e t (v a r i a b l e s) . union (s e t (

ev idence . keys () i f ev idence e l s e []))) :
r a i s e ValueError (

” El iminat ion order conta in s v a r i a b l e s which are in ”
” v a r i a b l e s or ev idence args ”

)
Step 1 . 2 : Check i f e l im i na t i o n o rd e r has v a r i a b l e s which are not in

the model .
e l i f any (var not in graph . nodes () f o r var in e l im i na t i o n o rd e r) :

e l im i na t i o n o rd e r = l i s t (f i l t e r (lambda t : t in graph . nodes () ,
e l im i na t i o n o rd e r))

Step 1 . 3 : Check i f the e l im i n a t i o n o rd e r has a l l the v a r i a b l e s that
need to be e l im inated .

e l i f t o e l im i n a t e != s e t (e l im i na t i o n o rd e r) :

58 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

r a i s e ValueError (
f ” El iminat ion order doesn ’ t conta in a l l the v a r i a b l e s ”
f ”which need to be e l im inated . The v a r i a b l e s which need to ”
f ”be e l im inated are { t o e l im i n a t e }”)

Step 2 : I f e l im ina t i on order i s None or a Markov model , r e turn a random
order .

e l i f e l im i n a t i o n o rd e r i s None :
e l im i na t i o n o rd e r = t o e l im i n a t e

e l s e :
e l im i na t i o n o rd e r = None

marginal
i f not v a r i a b l e s :

v a r i a b l e s = []

common vars = s e t (ev idence i f ev idence i s not None e l s e []) . i n t e r s e c t i o n (
s e t (v a r i a b l e s i f v a r i a b l e s i s not None e l s e [])

)
i f common vars :

r a i s e ValueError (f ”Can ’ t have the same va r i a b l e s in both ‘ va r i ab l e s ‘
and ‘ evidence ‘ . Found in both : {common vars}”)

va r i ab l e e l im ina t i on
Step 1 : Deal with the input arguments .
i f i s i n s t a n c e (va r i ab l e s , s t r) :

r a i s e TypeError (” v a r i a b l e s must be a l i s t o f s t r i n g s ”)
i f i s i n s t a n c e (evidence , s t r) :

r a i s e TypeError (” ev idence must be a l i s t o f s t r i n g s ”)

Deal ing with the case when va r i a b l e s i s not provided .
i f not v a r i a b l e s :

a l l f a c t o r s = []
f o r f a c t o r l i in graphs . g e t f a c t o r s () :

a l l f a c t o r s . extend (f a c t o r l i)
i f j o i n t :

r e turn False , f a c t o r p r oduc t (∗ s e t (a l l f a c t o r s))
e l s e :

r e turn False , s e t (a l l f a c t o r s)

re turn work ing fac to r s , e l im i na t i o n o rd e r

de f f a c t o r p r oduc t (∗ args) :
”””
input : f a c t o r s
output : the product o f input f a c t o r s
”””

i f not a l l (i s i n s t a n c e (phi , BaseFactor) f o r phi in args) :
r a i s e TypeError (”Arguments must be f a c t o r s ”)
Check i f a l l o f the arguments are o f the same type
e l i f l en (s e t (map(type , args))) != 1 :
r a i s e NotImplementedError (
”Al l the args are expected to be i n s t an c e s o f the same f a c t o r

c l a s s . ”
)
i f l en (args) == 0 :

Random Generation of Markov Random Fields 59

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

pr in t (args)

re turn reduce (lambda phi1 , phi2 : phi1 + phi2 , args)

Compute the p a r t i t i o n func t i on (PR) task
de f marg ina l i z e (phi o , va r i ab l e s , i np l a c e = True) :

”””
marg ina l i z e s the f a c t o r with r e sp e c t to ‘ va r i ab l e s ‘ .

inputs : ph i o : the in te rmed ia t e f a c t o r
v a r i a b l e s : v a r i a b l e s that need to be e l im inated from the

in te rmed ia t e f a c t o r
i np l a c e : change the o r i g n a l f a c t o r or c r e a t e a new f a c t o r

output : the f a c t o r a f t e r e l im ina t i ng v a r i a b l e s with the marg ina l i z a t i on
operat i on

”””

i f i s i n s t a n c e (va r i ab l e s , s t r) :
r a i s e TypeError (” v a r i a b l e s : Expected type l i s t or array−l i k e , got type

s t r ”)

phi = phi o i f i np l a c e e l s e ph i o . copy ()

f o r var in v a r i a b l e s :
i f var not in phi . v a r i a b l e s :

r a i s e ValueError (f ”{var} not in scope . ”)

get the i n d i c e s o f the input v a r i a b l e s
va r indexe s = [phi . v a r i a b l e s . index (var) f o r var in v a r i a b l e s]

get the i n d i c e s o f the r e s t v a r i a b e l s
index to keep = sor t ed (s e t (range (l en (ph i o . v a r i a b l e s))) − s e t (va r indexe s))
the new f a c t o r with the r e s t v a r i a b l e s
phi . v a r i a b l e s = [phi . v a r i a b l e s [index] f o r index in index to keep]
the new f a c t o r with the c a r d i n a l i t y o f the r e s t v a r i a b l e s
phi . c a r d i n a l i t y = phi . c a r d i n a l i t y [i ndex to keep]
de l e t e the e l im inated v a r i a b l e s
phi . d e l s t a t e names (v a r i a b l e s)

phi . va lue s = np . l og (np . sum(np . exp (phi . va lue s) , ax i s = tup l e (va r indexe s))
)
va lue s = np . s p l i t (phi . va lues , 2 , ax i s = var indexe s [0])
phi . va lue s = np . logaddexp (va lue s [0] . reshape ([2 f o r i in range (l en (phi .

v a r i a b l e s))]) , va lue s [1] . reshape ([2 f o r i in range (l en (phi . v a r i a b l e s))])
)

i f not i np l a c e :
r e turn phi

de f c a l p r (graph , va r i ab l e s , ev idence , e l im ina t i on o rde r , j o i n t = True ,
show progress = False) :
”””
inputs : graph : a pgmpy MarkovNetwork

v a r i a b l e s : v a r i a b l e s that need to be e l im inated
ev idence : the ev idence o f t h i s query
e l im i na t i o n o rd e r : the e l im ina t i on order

60 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

j o i n t : True : r e turn the query over a l l input v a r i a b l e s ;
Fa l se : r e turn the que r i e s o f v a r i a b l e s

i n d i v i d u a l l y
show progress : use tqdm or not

output : log10 (the p a r t i t i o n func t i on)
”””

Step 2 : Prepare data s t r u c t u r e s to run the a lgor i thm .
e l im i n a t e d v a r i a b l e s = s e t ()
Get working f a c t o r s and e l im ina t i on order
work ing fac to r s , e l im i na t i o n o rd e r = preparat i on (graph , va r i ab l e s , evidence

, e l im ina t i on o rde r , j o i n t = True)
i f not wo rk ing f a c t o r s :

r e turn e l im i na t i o n o rd e r
e l im i na t i o n o rd e r = e l im ina t i o n o rd e r

Step 3 : Run va r i ab l e e l im ina t i on
i f show progress :

pbar = tqdm(e l im i na t i o n o rd e r)
e l s e :

pbar = e l im i na t i o n o rd e r

f o r var in pbar :
i f show progress :

pbar . s e t d e s c r i p t i o n (f ” El iminat ing : {var}”)
Removing a l l the f a c t o r s conta in ing the v a r i a b l e s which are
e l im inated (as a l l the f a c t o r s should be cons ide r ed only once)
f a c t o r s = [f a c t o r f o r f a c to r , in wo rk ing f a c t o r s [var] i f not s e t (

f a c t o r . scope ()) . i n t e r s e c t i o n (e l im i n a t e d v a r i a b l e s)]
i f l en (f a c t o r s) == 0 :
pr in t (var)
pr in t (f a c t o r s)

phi = f a c t o r p r oduc t 1 (∗ f a c t o r s)
phi = marg ina l i z e (phi , [var] , i np l a c e = False)
phi = g e t a t t r (phi , opera t i on) ([var] , i np l a c e=False)
de l wo rk ing f a c t o r s [var]
f o r v a r i a b l e in phi . v a r i a b l e s :

wo rk ing f a c t o r s [v a r i ab l e] . add ((phi , var))
e l im i n a t e d v a r i a b l e s . add (var)

e l im inated as s i gnment s [var] = (var ass ignment , phi . v a r i a b l e s)

Step 4 : Prepare v a r i a b l e s to be returned .
f i n a l d i s t r i b u t i o n = se t ()
f o r node in work ing f a c t o r s :

f o r f a c to r , o r i g i n in work ing f a c t o r s [node] :
i f not s e t (f a c t o r . v a r i a b l e s) . i n t e r s e c t i o n (e l im i n a t e d v a r i a b l e s) :

f i n a l d i s t r i b u t i o n . add ((f a c to r , o r i g i n))
f i n a l d i s t r i b u t i o n = [f a c t o r f o r f a c to r , in f i n a l d i s t r i b u t i o n]

i f j o i n t :
i f i s i n s t a n c e (graph , BayesianNetwork) :

f i n a l d i s t r i b u t i o n = fa c t o r p r oduc t 1 (∗ f i n a l d i s t r i b u t i o n) .
normal ize (i np l a c e=False)

e l s e :
f i n a l d i s t r i b u t i o n = fa c t o r p r oduc t 1 (∗ f i n a l d i s t r i b u t i o n)

e l s e :
qu e r y va r f a c t o r = {}

Random Generation of Markov Random Fields 61

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

f o r query var in v a r i a b l e s :
phi = f a c t o r p r oduc t 1 (∗ f i n a l d i s t r i b u t i o n)
qu e r y va r f a c t o r [query var] = phi . marg ina l i z e (l i s t (s e t (v a r i a b l e s) −

s e t ([query var])) , i np l a c e=False) . normal ize (i np l a c e=False)
f i n a l d i s t r i b u t i o n = que ry va r f a c t o r

re turn np . logaddexp (f i n a l d i s t r i b u t i o n . va lue s [0] , f i n a l d i s t r i b u t i o n . va lue s
[1]) / np . l og (10)

Compute the most probable exp lanat ion (MPE) task
de f maximize (phi o , va r i ab l e s , i np l a c e=True) :

”””
Maximizes the f a c t o r with r e sp e c t to ‘ va r i ab l e s ‘ .

inputs : ph i o : the in te rmed ia t e f a c t o r
v a r i a b l e s : v a r i a b l e s that need to be e l im inated from the

in te rmed ia t e f a c t o r
i np l a c e : change the o r i g n a l f a c t o r or c r e a t e a new f a c t o r

output : the f a c t o r a f t e r e l im ina t i ng v a r i a b l e s with the maximization
operat i on

”””

i f i s i n s t a n c e (va r i ab l e s , s t r) :
r a i s e TypeError (” v a r i a b l e s : Expected type l i s t or array−l i k e , got type

s t r ”)

phi = phi o i f i np l a c e e l s e ph i o . copy ()

f o r var in v a r i a b l e s :
i f var not in phi . v a r i a b l e s :

r a i s e ValueError (f ”{var} not in scope . ”)

get the i n d i c e s o f the input v a r i a b l e s
va r indexe s = [phi . v a r i a b l e s . index (var) f o r var in v a r i a b l e s]

get the i n d i c e s o f the r e s t v a r i a b e l s
index to keep = sor t ed (s e t (range (l en (ph i o . v a r i a b l e s))) − s e t (va r indexe s))
the new f a c t o r with the r e s t v a r i a b l e s
phi . v a r i a b l e s = [phi . v a r i a b l e s [index] f o r index in index to keep]
the new f a c t o r with the c a r d i n a l i t y o f the r e s t v a r i a b l e s
phi . c a r d i n a l i t y = phi . c a r d i n a l i t y [i ndex to keep]
de l e t e the e l im inated v a r i a b l e s
phi . d e l s t a t e names (v a r i a b l e s)

v a r a s s i g = np . argmax (phi . va lues , ax i s = var indexe s [0])
phi . va lue s = np .max(phi . va lues , ax i s = tup l e (va r indexe s))

i f not i np l a c e :
r e turn phi , v a r a s s i g

de f cal mpe (graph , va r i ab l e s , evidence , e l im ina t i on o rde r , j o i n t = True ,
show progress = True) :
”””
inputs : graph : a pgmpy MarkovNetwork

v a r i a b l e s : v a r i a b l e s that need to be e l im inated
ev idence : the ev idence o f t h i s query
e l im i na t i o n o rd e r : the e l im ina t i on order

62 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

j o i n t : True : r e turn the query over a l l input v a r i a b l e s ;
Fa l se : r e turn the que r i e s o f v a r i a b l e s

i n d i v i d u a l l y
show progress : use tqdm or not

output : max prob : the maximum probab i l i t y in the j o i n t
d i s t r i b u t i o n over a l l input v a r i a b l e s
ass ignments : a d i c t i ona ry o f the ass ignment o f each va r i ab l e in the

case that the p r obab i l i t y i s the maximum
”””

Step 2 : Prepare data s t r u c t u r e s to run the a lgor i thm .
e l im i n a t e d v a r i a b l e s = s e t ()
Get working f a c t o r s and e l im ina t i on order
work ing fac to r s , e l im i na t i o n o rd e r = preparat i on (graph , va r i ab l e s , evidence

, e l im ina t i on o rde r , j o i n t = True)
i f not wo rk ing f a c t o r s :

r e turn e l im ina t i on o rde r , Fa l se
e l im i na t i o n o rd e r = e l im ina t i o n o rd e r

ass ignments = {node : None f o r node in graph . nodes}
e l im inated as s i gnment s = {node : (None , None) f o r node in e l im i n a t i o n o rd e r }

Step 3 : Run va r i ab l e e l im ina t i on
i f show progress :

pbar = tqdm(e l im i na t i o n o rd e r)
e l s e :

pbar = e l im i na t i o n o rd e r

f o r var in pbar :
i f show progress :

pbar . s e t d e s c r i p t i o n (f ” El iminat ing : {var}”)
Removing a l l the f a c t o r s conta in ing the v a r i a b l e s which are
e l im inated (as a l l the f a c t o r s should be cons ide r ed only once)
f a c t o r s = [f a c t o r f o r f a c to r , in wo rk ing f a c t o r s [var] i f not s e t (

f a c t o r . scope ()) . i n t e r s e c t i o n (e l im i n a t e d v a r i a b l e s)]
phi = fa c t o r p roduc t (∗ f a c t o r s)
phi , var ass ignment = maximize (phi , [var] , i np l a c e = Fal se)
phi = g e t a t t r (phi , opera t i on) ([var] , i np l a c e=False)
de l wo rk ing f a c t o r s [var]
f o r v a r i a b l e in phi . v a r i a b l e s :

wo rk ing f a c t o r s [v a r i ab l e] . add ((phi , var))
e l im i n a t e d v a r i a b l e s . add (var)
e l im inated as s i gnment s [var] = (var ass ignment , phi . v a r i a b l e s)

Step 4 : Prepare v a r i a b l e s to be returned .
f i n a l d i s t r i b u t i o n = se t ()
f o r node in work ing f a c t o r s :

f o r f a c to r , o r i g i n in work ing f a c t o r s [node] :
i f not s e t (f a c t o r . v a r i a b l e s) . i n t e r s e c t i o n (e l im i n a t e d v a r i a b l e s) :

f i n a l d i s t r i b u t i o n . add ((f a c to r , o r i g i n))
f i n a l d i s t r i b u t i o n = [f a c t o r f o r f a c to r , in f i n a l d i s t r i b u t i o n]

i f j o i n t :
i f i s i n s t a n c e (graph , BayesianNetwork) :

f i n a l d i s t r i b u t i o n = fa c t o r p roduc t (∗ f i n a l d i s t r i b u t i o n) . normal ize (
i np l a c e=False)

e l s e :

Random Generation of Markov Random Fields 63

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

f i n a l d i s t r i b u t i o n = fa c t o r p roduc t (∗ f i n a l d i s t r i b u t i o n)
e l s e :

qu e r y va r f a c t o r = {}
f o r query var in v a r i a b l e s :

phi = fa c t o r p roduc t (∗ f i n a l d i s t r i b u t i o n)
qu e r y va r f a c t o r [query var] = phi . marg ina l i z e (l i s t (s e t (v a r i a b l e s) −

s e t ([query var])) , i np l a c e=False) . normal ize (i np l a c e=False)
f i n a l d i s t r i b u t i o n = que ry va r f a c t o r

max assign = np . unrave l index (np . argmax (f i n a l d i s t r i b u t i o n . values , ax i s =
None) , f i n a l d i s t r i b u t i o n . va lue s . shape)

f o r (node , a s s i gn) in z ip (f i n a l d i s t r i b u t i o n . va r i ab l e s , max assign) :
ass ignments [node] = a s s i gn

e l im i na t i o n o rd e r . r e v e r s e ()
f o r node in e l im i na t i o n o rd e r :

ind = []
f o r v a r i a b l e in e l im inated as s i gnment s [node] [1] :

ind . append (ass ignments [v a r i ab l e])
ass ignments [node] = e l im inated as s i gnment s [node] [0] [tup l e (ind)]

max assign = np . argmax (f i n a l d i s t r i b u t i o n . va lue s)
max prob = np .max(f i n a l d i s t r i b u t i o n . va lue s)
re turn max prob , ass ignments

c r ea t e a k−t r e e r e c u r s i v e l y
de f c r e a t e a k t r e e (k , n) :

input :
k : t reewidth
n : the number o f nodes
output :
k c l i q u e s : a l l c l i q u e s in the k−t r e e
k t r e e : the adjacency l i s t s o f the k−t r e e
k t r e e = {}
k c l i q u e s = []
i f k > n :

re turn k c l i qu e s , k t r e e
e l s e :

root = l i s t (np . l i n s p a c e (1 , k , k , dtype = in t))
nodes = 1
f o r i in range (k) :

k t r e e [nodes] = root [0 : root . index (nodes)] + root [root . index (nodes)
+1:]

nodes += 1
k c l i q u e s . append (root)
s e l e c t c l i q u e = 0
whi l e nodes <= n :

k t r e e [nodes] = copy . deepcopy (k c l i q u e s [s e l e c t c l i q u e])
f o r i in k c l i q u e s [s e l e c t c l i q u e] :

k t r e e [i] . append (nodes)
c l = k c l i q u e s [s e l e c t c l i q u e] [0 : k c l i q u e s [s e l e c t c l i q u e] . index (

i)] \
+ k c l i q u e s [s e l e c t c l i q u e] [k c l i q u e s [s e l e c t c l i q u e] . index (i

) +1:] \
+ [nodes]

k c l i q u e s . append (c l)
i f np . random . rand () < 0 . 2 :

s e l e c t c l i q u e = 0
e l s e :

64 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

s e l e c t c l i q u e = np . random . randint (0 , l en (k c l i q u e s)−1)
nodes += 1

return k c l i qu e s , k t r e e

d i s o rd e r the v e r t i c e s
de f d i s o rd e r (nodes) :

”””
input : nodes : a l i s t o f nodes
outputs : nodes en : a encoding d i c t i ona ry with the nodes as keys and the

corre spond ing codes as va lue s
nodes de : a decoding d i c t i ona ry with the codes as keys and the

o r i g i n a l nodes as va lue s
”””
node s d i s = np . random . permutation (np . arange (l en (nodes)))
nodes en = {nodes [i] : node s d i s [i]+1 f o r i in range (l en (nodes)) }
nodes de = { node s d i s [i]+1: nodes [i] f o r i in range (l en (nodes)) }
re turn nodes en , nodes de

check the conne c t i v i t y o f the c rea ted Markov random f i e l d s
Di s j o in t−s e t data s t r u c tu r e
de f f i nd (dic , nod) :

”””
inputs : d i c : a d i c t i ona ry with nodes as keys and the sma l l e s t node in the

s e t t h e i r belong to as va lue s
nod : the node that need to f i nd i t s fa ther , i t s f a t h e r i s the

sma l l e s t node in the s e t i t be longs to
output : the f a th e r
”””
i f d i c [nod] == nod :

f a t h e r = nod
e l s e :

f a t h e r = f i nd (dic , d i c [nod])
re turn f a th e r

de f check subgraphs (nodes , edges) :
”””
inputs : nodes : the l i s t o f nodes in the graph

edges : the l i s t o f edges in the graph
output : the l a r g e s t f a th e r among a l l subse t s
”””
d i c = {}
f o r nod in nodes :

d i c [nod] = nod
f o r edg in edges :

f a = [f i nd (dic , edg [0]) , f i nd (dic , edg [1])]
i f f a [0] == fa [1] :

cont inue
e l s e :

idx = fa . index (max(fa))
d i c [f a [idx]] = min (f a)
d i c [edg [idx]] = min (fa)

f o r nod in nodes :
d i c [nod] = f i nd (dic , d i c [nod])

re turn max(d i c . va lue s ())

de f create aMRF (kk , n , idx , remove edges = False , prob re = 0 . 0) :

Random Generation of Markov Random Fields 65

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

”””
inputs : kk : the t ree−width

n : the number o f v e r t i c e s in the Markov random f i e l d
idx : the index o f s e l e c t e d sampling method
remove edges : whether or not removing edges from the graph
prob re : the p r obab i l i t y o f the removed edges

outputs : G2 : a pa i rw i s e Markov random f i e l d
nodes en : a encoding d i c t i ona ry with the nodes as keys and the

corre spond ing codes as va lue s
”””

k c l i qu e s , k t r e e = c r e a t e a k t r e e (kk , n)

nodes o = [i+1 f o r i in range (n)]
edges o = s e t ()
nodes en , nodes de = d i s o rd e r (nodes o)
f o r (k , v) in k t r e e . i tems () :

f o r l in v :
edges o . add ((min (nodes en [l] , nodes en [k]) , max(nodes en [l] ,

nodes en [k])))

c onne c t i v i t y = Fal se

pr in t (nodes)
pr in t (edges)

i f remove edges and prob re > 2e−5:
whi l e not c onne c t i v i t y :

num re = in t (l en (edges o) ∗ prob re)
l e n e d r e = []
f o r m in range (6) :

h = 2 − m ∗ 0 .2
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]]) > h

∗ kk and l en (k t r e e [edg [1]]) > h ∗ kk]
l e n e d r e . append (l en (edge r e ca))
i f l en (edge r e ca) > num re :

break
i f l e n e d r e [−1] < num re :

f o r m in range (5) :
h = 1 .4 − m ∗ 0 .1
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]])

> h ∗ kk and l en (k t r e e [edg [1]]) >= h ∗ kk]
i f l en (edge r e ca) > num re :

break

prob edg = [(math . pow(l en (k t r e e [edg [0]]) , 2) + math . pow(l en (k t r e e
[edg [1]]) , 2)) f o r edg in edge r e ca]

prob edg = [pro/sum(prob edg) f o r pro in prob edg]
i d x r e = np . random . cho i c e (l en (edge r e ca) , num re , r ep l a c e = False ,

p = prob edg)
edges = edges o − s e t ([edg e r e ca [i] f o r i in i d x r e])

d i c = {}
f o r nod in nodes o :

d i c [nod] = []
f o r edg in edges :

d i c [edg [0]] . append (edg [1])

66 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

d i c [edg [1]] . append (edg [0])

nodes re = []
f o r (k , v) in d i c . i tems () :

i f l en (v) == 0 :
nodes re . append (k)

nodes = [nod f o r nod in nodes o i f nod not in nodes re]

i f check subgraphs (nodes , edges) == 1 :
c onne c t i v i t y = True

e l s e :
nodes = nodes o
edges = edges o

G2 = MarkovNetwork ()
G2 . add nodes from (nodes)
G2 . add edges from (edges)
f a c t o r e d g e s = [Di s c r e t eFac to r (edge , [2 f o r i in range (kk)] , random(idx ,

i n t (math . pow(2 , kk)))) f o r edge in k c l i q u e s]
f a c t o r e d g e s = [Di s c r e t eFac to r (edge , [2 , 2] , random(idx , 4)) f o r edge in

edges]
G2 . add f a c t o r s (∗ f a c t o r e d g e s)

re turn G2, nodes en

de f create MRFs (kk , n , idx , remove edges = False , prob re = 0 . 0) :
”””
inputs : kk : the t ree−width

n : the number o f v e r t i c e s in the Markov random f i e l d
idx : the index o f s e l e c t e d sampling method
remove edges : whether or not removing edges from the graph
prob re : the p r obab i l i t y o f the removed edges

outputs : G1 : a Markov random f i e l d with f a c t o r s on c l i q u e s
G2 : a pa i rw i s e Markov random f i e l d has the same s t ru c tu r e as G1
nodes en : a encoding d i c t i ona ry with the nodes as keys and the

corre spond ing codes as va lue s
”””

k c l i qu e s , k t r e e = c r e a t e a k t r e e (kk , n)

nodes o = [i+1 f o r i in range (n)]
edges o = s e t ()
c l i q u e s o = k c l i q u e s
c l i q u e s o = []
f o r k c l in k c l i q u e s :

k c l en = [nodes en [i] f o r i in kc l]
c l i q u e s o . append (k c l en)

nodes en , nodes de = d i s o rd e r (nodes o)
f o r (k , v) in k t r e e . i tems () :

f o r l in v :
edges o . add ((min (nodes en [l] , nodes en [k]) , max(nodes en [l] ,

nodes en [k])))

c onne c t i v i t y = Fal se

Random Generation of Markov Random Fields 67

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

pr in t (nodes)
pr in t (edges)

i f remove edges and prob re > 2e−5:
whi l e not c onne c t i v i t y :

num re = in t (l en (edges o) ∗ prob re)
l e n e d r e = []
f o r m in range (6) :

h = 2 − m ∗ 0 .2
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]]) > h

∗ kk and l en (k t r e e [edg [1]]) > h ∗ kk]
l e n e d r e . append (l en (edge r e ca))
i f l en (edge r e ca) > num re :

break
i f l e n e d r e [−1] < num re :

f o r m in range (5) :
h = 1 .4 − m ∗ 0 .1
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]])

> h ∗ kk and l en (k t r e e [edg [1]]) >= h ∗ kk]
i f l en (edge r e ca) > num re :

break

prob edg = [(math . pow(l en (k t r e e [edg [0]]) , 2) + math . pow(l en (k t r e e
[edg [1]]) , 2)) f o r edg in edge r e ca]

prob edg = [pro/sum(prob edg) f o r pro in prob edg]
i d x r e = np . random . cho i c e (l en (edge r e ca) , num re , r ep l a c e = False ,

p = prob edg)
edges = edges o − s e t ([edg e r e ca [i] f o r i in i d x r e])

d i c = {}
f o r nod in nodes o :

d i c [nod] = []
f o r edg in edges :

d i c [edg [0]] . append (edg [1])
d i c [edg [1]] . append (edg [0])

nodes re = []
f o r (k , v) in d i c . i tems () :

i f l en (v) == 0 :
nodes re . append (k)

nodes = [nod f o r nod in nodes o i f nod not in nodes re]

i f check subgraphs (nodes , edges) == 1 :
c onne c t i v i t y = True

c l i q u e s = s e t ()
c l i e d g = se t ()
c l i e d g e s = s e t ()
f o r c l i q u e in k c l i q u e s :

c l i q u e . s o r t ()
remove edges = s e t (combinat ions (c l i que , 2)) − edges
i f l en (remove edges) == 0 :

c l i e d g e s . update (s e t (combinat ions (c l i que , 2)))
c l i q u e s . add (tup l e (c l i q u e))
cont inue

e l s e :

68 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

temp dic = {}
f o r edge in remove edges :

f o r i in range (2) :
i f edge [i] in temp dic . keys () :

temp dic [edge [i]] . append (edge [1 − i])
e l s e :

temp dic [edge [i]] = [edge [1 − i]]
f o r key in temp dic . keys () :

c l i q u e n = sor t ed (s e t (c l i q u e) − s e t (temp dic [key])) # l i s t
i f l en (c l i q u e n) == 1 :

i f c l i q u e n [0] in nodes :
c l i q u e s . add (tup l e (c l i q u e n))

e l s e :
cont inue

e l i f l en (c l i q u e n) == 2 :
c l i e d g . add (tup l e (c l i q u e n))

e l i f l en (s e t (combinat ions (c l i que n , 2)) − edges) == 0 :
c l i e d g e s . update (s e t (combinat ions (c l i que n , 2)))
c l i q u e s . add (tup l e (c l i q u e n))

e l s e :
c l i e d g . update (s e t (combinat ions (c l i que n , 2)) .

i n t e r s e c t i o n (edges))

f o r c l i q u e in c l i e d g :
i f c l i q u e not in c l i e d g e s :

c l i q u e s . add (c l i q u e)
e l s e :

nodes = nodes o
edges = edges o
c l i q u e s = c l i q u e s o

G1 = MarkovNetwork ()
G1 . add nodes from (nodes)
G1 . add edges from (edges)
f a c t o r e d g e s = [Di s c r e t eFac to r (edge , [2 f o r i in range (kk)] , random(idx ,

i n t (math . pow(2 , kk)))) f o r edge in k c l i q u e s]
f a c t o r e d g e s = [Di s c r e t eFac to r (c l i que , [2 f o r i in range (l en (c l i q u e))] ,

random(idx , i n t (math . pow(2 , l en (c l i q u e))))) f o r c l i q u e in c l i q u e s]
G1 . add f a c t o r s (∗ f a c t o r e d g e s)

G2 = MarkovNetwork ()
G2 . add nodes from (nodes)
G2 . add edges from (edges)
f a c t o r e d g e s = [Di s c r e t eFac to r (edge , [2 f o r i in range (kk)] , random(idx ,

i n t (math . pow(2 , kk)))) f o r edge in k c l i q u e s]
f a c t o r e d g e s = [Di s c r e t eFac to r (edge , [2 , 2] , random(idx , 4)) f o r edge in

edges]
G2 . add f a c t o r s (∗ f a c t o r e d g e s)

re turn G1, G2, nodes en

de f benchmark uai (path , f i l e name , kk , n , idx , remove edges = False , prob re =
0 . 0) :
”””
inputs : path : the path o f the f o l d e r to save the benchmark

f i l e name : the name o f the benchmark f i l e
kk : the tree−width

Random Generation of Markov Random Fields 69

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

n : the number o f v e r t i c e s in the Markov random f i e l d
idx : the index o f s e l e c t e d sampling method
remove edges : whether or not removing edges from the graph
prob re : the p r obab i l i t y o f the removed edges

output : no output , but the benchmark w i l l be c rea ted in the f o l d e r
accord ing to the input path

”””

G, nodes en = create aMRF (kk , n , idx , remove edges , prob re)
e l i o r d = [nodes en [i] f o r i in range (n , 0 , −1)]
pr = c a l p r (G, [e l i o r d [−1]] , ev idence = None , e l im i na t i o n o rd e r = e l i o r d

[: −1] , j o i n t = True , show progress = False)
max prob , mpe = cal mpe (G, v a r i a b l e s = [e l i o r d [−1]] , ev idence = None ,

e l im i na t i o n o rd e r = e l i o r d [: −1] , j o i n t = True , show progress = False)
completeName = os . path . j o i n (path , f i l e name)
wr i t e r = UAIWriter (G)
wr i t e r . w r i t e u a i (completeName)

with open (completeName+’ .PR ’ , ’w ’) as f :
f . wr i t e (”PR\n”)
f . wr i t e (s t r (pr))

with open (completeName+’ .MPE’ , ’w ’) as f :
f . wr i t e (”MPE\n”)
ls mpe = l i s t (mpe . va lue s ())
ls mpe . i n s e r t (0 , l en (mpe))
str mpe = ’ ’ . j o i n (s t r (v) f o r v in ls mpe)
f . wr i t e (str mpe)

A.2 Create a Markov random field as a benchmark for the
tree-width competition

de f benchmark tw (path , f i l e name , kk , n , remove edges = False , prob re = 0 . 0) :
”””
inputs : path : the path o f the f o l d e r to save the benchmark

f i l e name : the name o f the benchmark f i l e
kk : the tree−width
n : the number o f v e r t i c e s in the Markov random f i e l d
prob re : the p r obab i l i t y o f the removed edges

output : no output , but the benchmark w i l l be c rea ted in the f o l d e r
accord ing to the input path

”””

k c l i qu e s , k t r e e = c r e a t e a k t r e e (kk , n)

nodes o = [i+1 f o r i in range (n)]
edges o = s e t ()
nodes en , nodes de = d i s o rd e r (nodes o)
f o r (k , v) in k t r e e . i tems () :

f o r l in v :
edges o . add ((min (nodes en [l] , nodes en [k]) , max(nodes en [l] ,

nodes en [k])))

c onne c t i v i t y = Fal se

70 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

pr in t (nodes)
pr in t (edges)

i f remove edges and prob re > 2e−5:
whi l e not c onne c t i v i t y :

num re = in t (l en (edges o) ∗ prob re)
l e n e d r e = []
f o r m in range (6) :

h = 2 − m ∗ 0 .2
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]]) > h

∗ kk and l en (k t r e e [edg [1]]) > h ∗ kk]
l e n e d r e . append (l en (edge r e ca))
i f l en (edge r e ca) > num re :

break
i f l e n e d r e [−1] < num re :

f o r m in range (5) :
h = 1 .4 − m ∗ 0 .1
edg e r e ca = [edg f o r edg in edges o i f l en (k t r e e [edg [0]])

> h ∗ kk and l en (k t r e e [edg [1]]) >= h ∗ kk]
i f l en (edge r e ca) > num re :

break

prob edg = [(math . pow(l en (k t r e e [edg [0]]) , 2) + math . pow(l en (k t r e e
[edg [1]]) , 2)) f o r edg in edge r e ca]

prob edg = [pro/sum(prob edg) f o r pro in prob edg]
i d x r e = np . random . cho i c e (l en (edge r e ca) , num re , r ep l a c e = False ,

p = prob edg)
edges = edges o − s e t ([edg e r e ca [i] f o r i in i d x r e])

d i c = {}
f o r nod in nodes o :

d i c [nod] = []
f o r edg in edges :

d i c [edg [0]] . append (edg [1])
d i c [edg [1]] . append (edg [0])

nodes re = []
f o r (k , v) in d i c . i tems () :

i f l en (v) == 0 :
nodes re . append (k)

nodes = [nod f o r nod in nodes o i f nod not in nodes re]

i f check subgraphs (nodes , edges) == 1 :
c onne c t i v i t y = True

e l s e :
nodes = nodes o
edges = edges o

completeName = os . path . j o i n (path , f i l e name)
g r f i l e = open (completeName , ”w”)

l i n e = ”p tw ” + s t r (n) + ” ” + s t r (l en (edges)) + ”\n”
g r f i l e . wr i t e (l i n e)

f o r edge in edges :

Random Generation of Markov Random Fields 71

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

g r f i l e . wr i t e (s t r (edge [0]) + ” ” + s t r (edge [1]) + ”\n”)

g r f i l e . c l o s e ()

txt path = completeName [: −3] + ” . txt ”
with open (txt path , ’ r ’) as f :

f . wr i t e (f i l e name + ” ” + s t r (kk))

A.3 Find the elimination orders from Markov random fields
by the straightforward intuition

from i t e r t o o l s import combinat ions

de f remove node (MRF dic , edges , node) :
”””
inputs : MRF dic : a d i c t i ona ry r ep r e s en t i ng the cur rent Markov

random f i e l d that v e r t i c e s are keys and t h e i r edge in fo rmat ion i s
va lue s . The edge in fo rmat ion i n c l ud e s t h e i r ne ighbors and t h e i r
connected edges .

edges : the s e t o f edges in the cur rent graph
node : the vetex that need to be removed from the cur rent Markov

random f i e l d
output : the updated MRF dic and the updated edges
”””
ne ighbors = MRF dic [node] [’ ne ighbors ’]
add edges = s e t (combinat ions (neighbors , 2)) − s e t (edges)
f o r edge in MRF dic [node] [’ ne igh edg ’] :

i f edge in edges :
edges . remove (edge)

e l s e :
cont inue

edges . extend (l i s t (add edges))
f o r ne ighbor in ne ighbors :

MRF dic [ne ighbor] [’ ne ighbors ’] . remove (node)
add ne ighbors = l i s t (s e t (ne ighbors) − s e t ([ne ighbor]) − s e t (MRF dic [

ne ighbor] [’ ne ighbors ’]))
MRF dic [ne ighbor] [’ ne ighbors ’] = l i s t (s e t (MRF dic [ne ighbor] [’

ne ighbors ’]) . union (s e t (ne ighbors) − s e t (ne ighbor)))
MRF dic [ne ighbor] [’ ne ighbors ’] . extend ([x f o r x in ne ighbors i f x not

in MRF dic [ne ighbor] [’ ne ighbors ’] and x != neighbor])
MRF dic [ne ighbor] [’ ne ighbors ’] . extend (add ne ighbors)
MRF dic [ne ighbor] [’ ne igh edg ’] . remove ((min (node , ne ighbor) , max(node ,

ne ighbor)))
f o r an in add ne ighbors :

MRF dic [ne ighbor] [’ ne igh edg ’] . append ((min (an , ne ighbor) , max(an ,
ne ighbor)))

de l MRF dic [node]

de f get MinNeighbors (MRF dic , node) :
”””
inputs : MRF dic : a d i c t i ona ry r ep r e s en t i ng the cur rent Markov

random f i e l d that v e r t i c e s are keys and t h e i r edge in fo rmat ion i s
va lue s . The edge in fo rmat ion i n c l ud e s t h e i r ne ighbors and t h e i r
connected edges .

72 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

node : a ver tex in the cur rent graph
output : the co s t o f the ver tex based on MinNeighbors method in the

cur rent graph
”””
return l en (MRF dic [node] [’ ne ighbors ’])

de f get MinWeight (MRF dic , node) :
”””
inputs : MRF dic : a d i c t i ona ry r ep r e s en t i ng the cur rent Markov

random f i e l d that v e r t i c e s are keys and t h e i r edge in fo rmat ion i s
va lue s . The edge in fo rmat ion i n c l ud e s t h e i r ne ighbors and t h e i r
connected edges .

node : a ver tex in the cur rent graph
output : the co s t o f the ver tex based on MinWeight method in the

cur rent graph − l og t r i c k used to avoid data over f l ow
”””
return np . sum ([np . l og (MRF dic [ne ighbor] [’ card ’]) f o r ne ighbor in MRF dic [

node] [’ ne ighbors ’]])

de f g e t MinF i l l (MRF dic , node) :
”””
inputs : MRF dic : a d i c t i ona ry r ep r e s en t i ng the cur rent Markov

random f i e l d that v e r t i c e s are keys and t h e i r edge in fo rmat ion i s
va lue s . The edge in fo rmat ion i n c l ud e s t h e i r ne ighbors and t h e i r
connected edges .

node : a ver tex in the cur rent graph
output : the co s t o f the ver tex based on MinFi l l method in

the cur rent graph
”””
ne ighbors = MRF dic [node] [’ ne ighbors ’]
e x i s t e d g e s = s e t ()
f o r ne ighbor in ne ighbors :

e x i s t e d g e s . update (s e t (MRF dic [ne ighbor] [’ ne igh edg ’]))
add edges = s e t (combinat ions (neighbors , 2)) − s e t (e x i s t e d g e s)
re turn l en (add edges)

de f get WeightedMinFi l l (MRF dic , node) :
”””
inputs : MRF dic : a d i c t i ona ry r ep r e s en t i ng the cur rent Markov

random f i e l d that v e r t i c e s are keys and t h e i r edge in fo rmat ion i s
va lue s . The edge in fo rmat ion i n c l ud e s t h e i r ne ighbors and t h e i r
connected edges .

node : a ver tex in the cur rent graph
output : the co s t o f the ver tex based on WeightedMinFil l method in

the cur rent graph
”””
ne ighbors = MRF dic [node] [’ ne ighbors ’]
e x i s t e d g e s = s e t ()
f o r ne ighbor in ne ighbors :

e x i s t e d g e s . update (s e t (MRF dic [ne ighbor] [’ ne igh edg ’]))
add edges = s e t (combinat ions (neighbors , 2)) − s e t (e x i s t e d g e s)
re turn np . sum ([MRF dic [edge [0]] [’ card ’] ∗ MRF dic [edge [1]] [’ card ’] f o r edge

in add edges])

de f g e t e l im i n a t i o n o r d e r (MRF, co s t) :
”””
inputs : MRF: a pgmpy MarkovNetwork

Random Generation of Markov Random Fields 73

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

co s t : methods to get the e l im ina t i on order , the methods are
get MinNeighbors , get MinWeight , ge t MinFi l l ,
get WeightedMinFi l l

output : the e l im ina t i on order based on the input method
”””
nodes = l i s t (MRF. nodes)
edges o = l i s t (MRF. edges)
edges = l i s t ()

o rde r ing = []
d i c = {}
f o r nod in nodes :

d i c [nod] = { ’ card ’ : MRF. g e t c a r d i n a l i t y (nod) , ’ ne ighbors ’ : [] , ’
ne igh edg ’ : [] }

f o r edg in edges o :
edge = (min (edg [0] , edg [1]) , max(edg [0] , edg [1]))
edges . append (edge)
d i c [edg [0]] [’ ne igh edg ’] . append (edge)
d i c [edg [1]] [’ ne igh edg ’] . append (edge)
d i c [edg [0]] [’ ne ighbors ’] . append (edg [1])
d i c [edg [1]] [’ ne ighbors ’] . append (edg [0])

whi l e l en (nodes) > 1 :
s c o r e s = {node : co s t (dic , node) f o r node in nodes}
min score node = min (sco re s , key = s c o r e s . get)
o rde r ing . append (min score node)

pr in t (min score node)
nodes . remove (min score node)
remove node (dic , edges , min score node)

o rde r ing . extend (nodes)
re turn orde r ing

A.4 Translate a Markov random field to a Bayesian Network

convert MRF to BN
from pgmpy . f a c t o r s . d i s c r e t e import TabularCPD
from pgmpy . models import BayesianNetwork

de f t r a n s l a t e (G) :
input G: a pgmpy MarkovNetwork
output BN: a pgmpy BayesianNetwork

nodes = l i s t (G. nodes)
edges = l i s t (G. edges)
BN = BayesianNetwork ()
s nodes = [s t r (node) f o r node in nodes]
z nodes = [s t r (l en (nodes) + 1 + i) f o r i in range (l en (edges))]
BN. add nodes from (s nodes + z nodes)
f o r i in s nodes :

card = G. g e t c a r d i n a l i t y (node = in t (i))
cpd = TabularCPD(i , card , [[1 / card] f o r j in range (card)])
BN. add cpds (cpd)

f o r (edge , z) in z ip (edges , z nodes) :
BN. add edges from ([(s t r (l) , z) f o r l in edge])

74 Random Generation of Markov Random Fields

APPENDIX A. CODE OF THE BENCHMARK ALGORITHM IN PYTHON

f a c t o r = [f a f o r f a in G. g e t f a c t o r s (edge [0]) i f edge [1] in f a . scope ()
] [0]

phi = f a c t o r . copy ()
phi . normal ize ()
ph i r e shape = phi . va lue s . reshape ((1 , −1))
cpd = TabularCPD(z , 2 , np . vstack ((ph i reshape , 1 − ph i r e shape)) ,

ev idence = [s t r (edge [0]) , s t r (edge [1])] , \
ev idence ca rd = l i s t (f a c t o r . g e t c a r d i n a l i t y (edge) .

va lue s ()))
BN. add cpds (cpd)

re turn BN

A.5 Read a Markov random field from UAI file

from pgmpy . f a c t o r s . d i s c r e t e import D i s c r e t eFac to r
from pgmpy . models import MarkovNetwork
from i t e r t o o l s import combinat ions

de f get graph (path) :
input path : path to the graph f i l e
#. output G: a pgmpy MarkovNetwork
reader = UAIReader (path = path)

with open (path , ’ r ’) as f :

Preamble
l i n e s = [x . s t r i p () f o r x in f . r e a d l i n e s () i f x . s t r i p ()]

a s s e r t l i n e s [0] == ’MARKOV’
i f l i n e s [0] == ’MARKOV’ :

G = MarkovNetwork ()
e l s e :

r a i s e ValueError (”This i s not a Markov random f i e l d . ”)

n vars = in t (l i n e s [1])
nodes = l i s t (range (1 , n vars + 1))
c a r d i n a l i t i e s = [i n t (x) f o r x in l i n e s [2] . s p l i t ()]
n c l i q u e s = in t (l i n e s [3])
edges = s e t ()
f a c t o r = []
G. add nodes from (nodes)
f o r i in range (n c l i q u e s) :

edge = [y + 1 f o r y in [i n t (x) f o r x in l i n e s [i + 4] . s p l i t ()] [1 :]]
e d g e s i n c l i q = s e t (combinat ions (edge , 2))
edges . update (e d g e s i n c l i q)
f a c t o r . append (Di s c r e t eFac to r (edge , [c a r d i n a l i t i e s [node − 1] f o r

node in edge] , [f l o a t (x) f o r x in l i n e s [i ∗ 2 + 1 + n c l i q u e s +
4] . s p l i t ()]))

G. add edges from (edges)
G. add f a c t o r s (∗ f a c t o r)

re turn G

Random Generation of Markov Random Fields 75

	Abstract
	Preface
	Contents
	Introduction
	Background
	Motivation
	Outline

	Preliminaries
	MRFs
	Variable Elimination Inference
	Partition Function
	Most Probable Explanation
	An Example

	K-trees and Treewidth

	Literature Review
	The Probabilistic Graphical Models
	Random Generation of Markov Random Fields
	Inference
	Benchmark

	Implementation
	Preparation
	Methodology
	Construction of K-trees
	Sum-Product Variable Elimination
	Max-Product Variable Elimination

	The Benchmark Algorithm
	Results
	Evaluation
	Structure of K-trees
	Sampling Methods
	The Removal Rate

	Experiments
	Treewidth Heuristic Algorithms
	Elimination Orders Comparison
	Randomly Generate MRFs by Adding Edges
	Factors on K-cliques
	Benchmark the Exact Inferences
	Junction Tree

	Benchmark the Approximate Inferences
	Approximate Inference using Sampling

	Discussion
	Conclusions
	Contributions
	Future work

	Bibliography
	Appendix
	Code of the benchmark algorithm in Python
	Create a Markov random field as a benchmark for the UAI competition
	Create a Markov random field as a benchmark for the tree-width competition
	Find the elimination orders from Markov random fields by the straightforward intuition
	Translate a Markov random field to a Bayesian Network
	Read a Markov random field from UAI file

