
 Eindhoven University of Technology

MASTER

LUNA
an Interactive Visualization of Javascript Software with Libraries

van Dijk, Roy E.L.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e9ce4099-3959-43eb-832f-d28dd5a03c4d

LUNA: an Interactive Visualization of
Javascript Software with Libraries

Master Thesis

R.E.L. van Dijk

Department of Mathematics and Computer Science
Software Engineering and Technology Research Group

Supervisors:
Prof. Dr. Michel R.V. Chaudron

Dr. Eleni Constantinou

Eindhoven, October 2022

Abstract

With software development, how much of the code written by the developers actually ends up
in the final application? A large portion of the application’s source code is actually made by
third party developers, usually through so-called open-source libraries. Software libraries have
become commonplace in software development. They are fantastic because they can abstract and
simplify code and programming problems. However, it is difficult to maintain an overview of these
libraries in the software architecture, especially when they are used in high frequently. This thesis
proposes a visualization tool that can show an abstract overview of how libraries interact with
software. We present LUNA, or Library Usage in Node.js Analyzer. It is a library-focused software
development tool for node.js projects. As the name implies, LUNA is a JavaScript application
for the Node.js and NPM ecosystem. This ecosystem is well-known for its abundance of micro-
packages and complex web of dependencies. The goal of LUNA is to help developers comprehend
how libraries are utilized in their projects. We explore how LUNA can recover the software
architecture and library usage by analyzing the abstract syntax tree (AST) of the source code,
and create a visualization that can display all this information in an interactive graph. Finally, the
utility of LUNA is investigated through user interviews. The results show that the tool can recover
the program architecture and library usage, and that the visualization can display this information
in a comprehensible manner. The interviews also showed that LUNA can indeed assist developers
with better understanding their program architecture and library usage, as is concluded by this
thesis.

iii

Preface

I am a master student of Computer Science and Engineering. One of my beloved hobbies is
contributing to open source software, of which I’ve also created many. A large part of the open
source ecosystem are software libraries and I personally have used them countless times too.
Hence, they are the inspiration behind my thesis. I aim to target fellow software engineers with
this thesis. Because the work was carried out entirely by myself, several portions of this article
are written in first person. However, I had great aid by my supervisors Michel Chaudron and
Eleni Constantinou. I would like to sincerely thank them for their support! Our weekly meetings
helped guide me during my master thesis. Finally, I would like to thank Fernando Paulovich for
being part of the assessment committee. I sincerely hope you enjoy reading my thesis.

v

Contents

Contents vii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem description . 1
1.2 Relevancy . 1

1.2.1 Software Engineers . 1
1.2.2 Library Developers . 2
1.2.3 Security Experts . 2

1.3 Research questions . 2

2 Related Work 5
2.1 Background . 5

2.1.1 Software Architecture . 5
2.1.2 Software Libraries . 5
2.1.3 Visualization . 6

2.2 Literature . 6

3 Methodology 9
3.1 Approach . 9
3.2 JavaScript . 9
3.3 Objective . 10
3.4 Abstract Syntax Tree . 10
3.5 Analysis . 12
3.6 Report . 13
3.7 Graph . 13

3.7.1 Cytoscape . 13
3.7.2 Extensions . 13
3.7.3 Source Code Component . 13
3.7.4 Libraries Component . 14
3.7.5 Dependency Graph Component . 14
3.7.6 Optimization . 14

3.8 Graph Layouts . 14
3.8.1 Dagre . 15
3.8.2 Breadthfirst . 15
3.8.3 Cola . 16
3.8.4 Cose-Bilkent . 17
3.8.5 Elk . 17

3.9 Interface . 19

vii

CONTENTS CONTENTS

3.9.1 Graph Menu . 19
3.9.2 Node Menu . 20

3.10 Testing . 21

4 Results 23
4.1 Research question 1 (RQ1) . 24
4.2 Research question 2 (RQ2) . 25
4.3 Research question 3 (RQ3) . 25
4.4 Main research question (RQ0) . 26

5 Discussion 29
5.1 Comparison with Similar Projects . 29

5.1.1 CodeGraph . 30
5.1.2 HUNTER . 31
5.1.3 Eunice . 31
5.1.4 NPMGraph . 32
5.1.5 JSCity . 33
5.1.6 MetropolJS . 34
5.1.7 js2flowchart.js . 35
5.1.8 JSClassFinder . 36
5.1.9 Source Code Explorer . 37

5.2 Implications . 38
5.2.1 Researchers . 38
5.2.2 Practitioners . 38

5.3 Threats to validity . 39
5.3.1 Construct . 39
5.3.2 Internal . 39
5.3.3 External . 39

5.4 Future work . 39
5.4.1 Scanner . 40
5.4.2 Visualization . 40
5.4.3 User Interface . 41
5.4.4 Bugs . 42
5.4.5 Beyond LUNA . 42

6 Conclusion 43

Bibliography 45

Appendix 49

A MoSCoW 49
A.1 Constraints . 49
A.2 Project . 50
A.3 GUI . 51
A.4 Graph . 51
A.5 Node . 53
A.6 Information . 53
A.7 Scalability . 54

B Abstract Syntax Tree 55

C Form 77
C.1 Questions . 77
C.2 Answers . 90

viii

List of Figures

3.1 The very first sketch of the tool . 9
3.2 A diagram of LUNA’s entire system architecture. 10
3.3 Imports of the scanner.js shown in LUNA’s visualization. 12
3.4 The three components of LUNA’s visualization (collapsed). 13
3.5 A layout algorithm for the graph in LUNA’s generated report: Breadthfirst 16
3.6 A layout algorithm for the graph in LUNA’s generated report: Cola 16
3.7 A layout algorithm for the graph in LUNA’s generated report: Cose-Bilkent 17
3.8 The default layout algorithm for the graph in LUNA’s generated report: Elk

(Layered) . 18
3.9 A layout algorithm for the graph in LUNA’s generated report: Elk (Mr. Tree) . . 18
3.10 Graph menu in LUNA’s generated report . 19
3.11 File node menu in LUNA’s generated report . 20
3.12 Library node menu in LUNA’s generated report . 21

4.1 The description of each task, that the interviewees had to perform. 23
4.2 Some of the results of each task. 24

5.1 Overview of CodeGraph. 30
5.2 The GUI of Hunter . 31
5.3 Eunice’s HTML report. 32
5.4 The GUI of NPMGraph. 33
5.5 Screenshot of JSCity. 34
5.6 MetropolJS in action . 35
5.7 Demonstration of js2flowchart.js . 36
5.8 A Class Diagram Generated by JSClassFinder (for JSClassFinder’s algorithm.js) . 37
5.9 The GUI of the Source Code Explorer . 38

ix

List of Tables

3.1 Comparison of different graph layouts used by LUNA. 15

4.1 The combined SUS test results. 26

5.1 Comparison between LUNA and similar tools. 29

xi

Listings

3.1 Snippet of the LUNA’s scanner.js showing how files and libraries are imported via
RequireJS. 11

B.1 AST of the snippet of the LUNA’s scanner.js . 55

xiii

Chapter 1

Introduction

The topic of this master’s thesis is introduced in this chapter. We begin by describing the problem
at hand as well as the reasons why it is relevant. After that, the research questions are stated and
discussed.

1.1 Problem description

The term software package has several meanings [1]. It is used to refer to a library or framework in
this thesis, which is a collection of code written to be reused by other software applications. So, a
software library’s primary function is to offer a solution to a particular problem or set of problem,
which can be accomplished by offering a set of methods, data structures, or classes. It can be
thought of as a black box. Libraries can substantially help with software development. Typically,
they can be imported and used anywhere in the source code of the application. However, where
does it make the most sense to do in a software architecture? And what are software doing in
practice? How can you manage and keep track of all the libraries that are used? We don’t really
have a straightforward answer for these problems, but this would be interesting to know in order to
make good software design decisions relating to libraries. The objective of this thesis is therefore
to comprehend and illustrate how software packages are employed in the software architecture.
This is accomplished through an investigation into how software libraries are used in software.
For this, a tool named LUNA is created, which is covered extensively in chapter 3. An interactive
demo of it can be found online at https://royvandijk06.github.io/luna.

We will now first discuss the problem’s relevance and identify the stakeholders. Afterwards we
go over the research questions and explain why they are important to the research problem.

1.2 Relevancy

As mentioned earlier, the goal of this thesis is to make us more informed about how libraries
are integrated in the software codebase. This is relevant to both researchers and practitioners.
Researchers can utilize the tool developed for this thesis for other research or to extend this research
(section 5.4). Practitioners, like software developers and maintainers, can use the results of this
research to make more insightful design decisions when incorporating libraries. The research
problem from section 1.1 concerns several stakeholders. Let us consider what use cases these
stakeholders may have for software packages and what they may gain from this research.

1.2.1 Software Engineers

1. They can evaluate the impact a library has on their project (in terms of usage frequency)

1

https://royvandijk06.github.io/luna

1.3. RESEARCH QUESTIONS CHAPTER 1. INTRODUCTION

2. They can reduce the complexity of their project by using libraries that provide simplification
or abstraction

3. They can showcase information about used libraries to other interested parties

4. They can find out what needs to be changed in the project code when replacing libraries

1.2.2 Library Developers

1. They can see what parts of their library is being used in a project

2. They can see what parts of the project is using their library

3. They can comprehend the tree of dependencies of their library

1.2.3 Security Experts

1. They can find out where in a project a vulnerable or compromised library is being used

2. They to what extent a vulnerable or compromised library is being used in a project

1.3 Research questions

In this section, we will go over the research questions related to the problem described in section
1.1. There is one question central to the problem described in section 1.1, which is the following:

RQ0 How to facilitate the comprehension of library usage in a software architecture?

Hence, I am proposing this as my main research question. However, since this is a rather
broad research question, a handful of sub-questions are proposed to help answer the main research
question:

RQ1 How to recover the software architecture?
It is essential to understand how to recover the software architecture because we need to
know what the architecture looks like in order to answer the primary research question
(RQ0). This is also relevant to the remaining research questions. Before we can recover
software architecture, we must first analyze what defines it. This is done in section 2.1.1
and in the threads of validity from section 5.3, where we discuss the meaning of software
architecture and whether our interpretation is valid.

RQ2 How to detect libraries and their usage?
Before we can answer the main research question, we need to know how to detect libraries
and their usage. The architecture of the software plays a role in this, since we need to
know where to look for libraries. Hence, this question is related to the previous sub-question
(RQ1).

RQ3 How to visualize this information in a useful way?
Finally, we must understand how to visualize the information that was gathered in order to
facilitate the comprehension of the utilization of libraries in the software architecture. This
information follows from both RQ1 and RQ2. Note that this research question basically asks
two things: how to visualize software architecture with libraries, and how to accomplish this
with usefulness in mind. A visualization is meaningless if it can not be useful to the user.

The answers of these sub-questions together should be able to answer the main research ques-
tion of this thesis. The research questions are formulated in such a way that they can be answered
by the tool developed in this thesis, and the qualitative research that follows.

2

CHAPTER 1. INTRODUCTION 1.3. RESEARCH QUESTIONS

The remainder of this paper is organized as follows. In chapter 2, related work is presented.
Next, in chapter 3, the methodology is described of the study presented in this paper. Then,
chapter 4 includes the answers to the proposed research questions. Comparison with related
studies, the implications in the field and threats to validity are discussed in chapter 5. Finally, I
conclude the paper in chapter 6.

3

Chapter 2

Related Work

Before we delve into the methodology used for this thesis research, let us explore related work in
the domain of software libraries and architecture, as well as visualization.

2.1 Background

In this section, we familiarize ourselves with the concepts used throughout this paper. Background
information is given for the topics of software architecture, software libraries, and visualization.

2.1.1 Software Architecture

The foundational structures of a software system, as well as the discipline of building such struc-
tures and systems, are referred to as software architecture. Each structure is made up of software
components, relationships between them, and attributes of both elements and relationships [2].
These components can be modules, classes, or functions, and the relationships can be dependen-
cies, associations, or inheritance. The attributes can be properties of the components, such as their
name, or properties of the relationships, such as their type. The software architecture is a model
of the system, and it is used to describe the system’s structure and behavior. The architecture is
also used to guide the development of the system, and to communicate the system’s structure and
behavior to stakeholders [3].

A good software architecture is essential for a variety of reasons: it makes the code easier to
write, understand, and modify; it can make the code more maintainable and bug-free; and perhaps
most importantly, good software architecture makes it possible to create scalable applications. In
other words, with a well-designed architecture in place, an application can easily handle increased
loads without breaking down or becoming unstable. Conversely, a poorly designed architecture
will likely lead to an unmaintainable mess of code that is very difficult (if not impossible) to scale.

If we want to analyze the architecture of software, we need to recover it. The basic idea is
to analyze some structural information of the software, e.g., its code or dependencies, and try to
infer from this analysis what the high-level organization of the software looks like. There exist
many techniques for software architecture recovery. In section 2.2, research on comparing software
architecture recovery techniques will be discussed [4] [5].

2.1.2 Software Libraries

A software library can be defined as a collection of subroutines and functions that are used to
perform common tasks. It is a set of code that can be reused in different programs. We call the
provided functionality by the library Application Programming Interface (API), which is how the
library communicates with the rest of the application. When you write a program, you can use
these libraries without having to write your own code from scratch. This saves you time and effort
because you don’t have to reinvent the wheel every time you need a certain functionality. Software

5

2.2. LITERATURE CHAPTER 2. RELATED WORK

libraries are important because they provide building blocks for programmers. They allow us to
break down complex problems into smaller pieces and then put them back together again into
working solutions. Without libraries, we would have to start from scratch every time we wanted
to create something new.

2.1.3 Visualization

Visualization, or more specifically data visualization, is the presentation of data in a pictorial
or graphical format. It is a way of communicating information by encoding numbers, symbols,
and images into visual objects. The goal of data visualization is to communicate information
clearly and efficiently through statistical graphics, plots, information graphics, and other visual
formats. Data visualization is a powerful tool for communicating information. It allows us to see
patterns and trends in data that would otherwise be difficult to detect. It also allows us to make
predictions about the future based on past data. Data visualization is an important part of data
science because it allows us to understand data in a way that is not possible with just numbers
and text. There exist a wide variety of data visualization techniques, such as scatter plots, bar
charts, and pie charts. In this thesis, we will focus on graph visualization techniques [6]. Graph
visualization is a way of representing structural information as diagrams of abstract graphs and
networks. It is a way of representing information in a way that is easy to understand and interpret.

2.2 Literature

This section is devoted to the literature that is relevant to this thesis, covering the following
topics: software architecture recovery, software libraries, and visualization. This literature is used
to provide background information for the methodology used in this thesis. Each work will be
briefly introduced and described, as well as the similarities and differences between them, and how
they relate to the thesis’s research problem.

For starters, in Kula et al. [7], the impact of micro-package in an open source software (OSS)
ecosystem is investigated, specifically the JavaScript NPM ecosystem, which is also a relevant
subject that is discussed in chapter 3. As demonstrated later, the tool developed for this thesis
that can clearly demonstrate this issue for the NPM ecosystem. In this work, micro-packages
are defined as minimized libraries, and they can have long dependency chains which may become
problematic for critical systems.

Again, the software package manager NPM is investigated in the works of Zerouali et al. [8].
Specifically, they research the meaning of popularity metrics that are used for software libraries
and compare the existing ones.

The paper of Žitnỳ et al. [9] is an example of a master thesis that analyzes NPM and JavaScript
at scale. Among other things, they discuss the reasons for the high percentage of clones and present
few ideas on what analyzes can be done to in the future with collected data.

Len Bass at al. [3] wrote an interesting book about software architecture in practice. The
book describes software architecture in detail, including why it is important and how to design,
instantiate, analyze, evolve, and manage it in a disciplined and effective manner.

One way to analyze software architecture, is to detect common design patterns. This is ex-
actly what was done by Bautista et al. [10] as a step for documentation generation for JavaScript
projects. As their methodology, they used fingerprinting on a constructed abstract syntax tree
(AST) of the codebase. The research of Taraghi et al. [11] also focuses on documentation genera-
tion, specifically for Node.js web applications. They combine automated class diagram generation
with some manual adjustments, alongside source code analysis and informal interviews, as a soft-
ware reverse engineering method to output two documents: Software Requirements Specification
and Software Design Document. The tool developed for this thesis also analyzes the AST of
the codebase, but it does not focus on documentation generation. It also provides minimal class
abstraction.

6

CHAPTER 2. RELATED WORK 2.2. LITERATURE

Another paper related to architecture recovery is the paper of Nurwidyantoro et al. [12], where
they present an automated machine learning-based approach for classifying the role-stereotype
of classes in Java. Additionally, they compare their approach to another existing rule-based
classification approach.

There exists multiple software architecture recovery techniques, Agarwal et al. [4] proposes a
research to compare all of them. They use software testing tools to compare recovery algorithms
among multiple projects. Likewise, the paper from Garcia et al. [5] compares the performance
of several software architecture recovery techniques by using a set of 8 open source projects and
their architecture ground truths.

Software libraries update over time, which may result in breaking changes to their available
API. In Xavier et al. [13] they performed a large-scale empirical study investigating API breaking
changes and their impact on client applications. Their study finds that (i) 14.78% of the API
changes break compatibility with previous versions, (ii) the frequency of breaking changes increases
over time, (iii) 2.54% of their clients are impacted, and (iv) systems with higher frequency of
breaking changes are larger, more popular, and more active.

Similarly to the previous work, the work of Ochoa et al. [14] also researched the impact of
breaking changes in API, but unlike the work of Xavier et al. [13] that was previously mentioned,
they focus specifically on libraries and take their evolution and semantic versioning into account.
They developed a tool called Maracas with the goal to detect breaking changes between 2 versions
and what parts of the client code is affected by them.

In the paper from Mili et al. (1995) [15] they discuss the implications of reuse of software in
the production. Later they performed a survey on the subject and published the results in Mili et
al. (1998) [15]. This gives us a good insight on the origin of software libraries and how they came
to be.

Many methods for representing software components for reuse exist and in the work of Frakes
et al. (1990) [16] these methods are surveyed and categorized. Additionally, they discuss systems
in which they have been used and propose a framework of software reuse representation that
relates these methods. Later they performed an empirical study on this in Frakes et al. (1994)
[17].

In the paper of Feldthaus et al. [18] they discuss the difficulties of constructing call graphs
for JavaScript. Call graphs capture the connectivity between software functions. They tackle
this problem by presenting a scalable field-based flow analysis for constructing call graphs which
proved to work well in practice.

The work of Nielsen et al. [19] also present a novel solution for call graph construction in
JavaScript, specifically for the node.js ecosystem. They approach the problem from a security
point of view. Additionally, they take into account the modular structure of Node.js applications.
They claim to be more accurate and efficient compared to competitor software.

Tarawaneh et al. [6] gives us a general introduction to graph visualization techniques. It gives
a general overview about several layout algorithms and interaction techniques.

7

Chapter 3

Methodology

In this chapter, we explore the methods used to tackle our research questions from section 1.3.
We first discuss the general approach and then what constraints and objectives are set. We then
go over the tool’s design and the design decisions that were made.

Figure 3.1: The very first sketch of the tool. A view that connects libraries with project files (left)
and a view that lists library API utilization per file (right).

3.1 Approach

For our research problem, we want to find ways to indicate the usage of libraries in any software
project in a way to make it better comprehensible. Analysis and visualization are the most effective
ways to accomplish this. To actually achieve these two components, a tool can be built. In section
3.3, the objectives of this tool are stated. I created it using iterative software development, where it
is iteratively improved upon. The tool’s name is Library Usage in Node.js Analyzer, abbreviated
as LUNA.

3.2 JavaScript

JavaScript is a programming language and is, alongside HTML and CSS, one of the core technolo-
gies of the World Wide Web. Nowadays, nearly all websites use JavaScript to control the webpage
behavior. The code is executed by a dedicated JavaScript engine, which all major web browsers
have. JavaScript conforms to the ECMAScript standard. It is high-level and has dynamic typ-
ing, prototype-based object-orientation, and first-class functions. It is multi-paradigm, supporting

9

3.3. OBJECTIVE CHAPTER 3. METHODOLOGY

event-driven, functional, and imperative programming styles.
I will focus on analyzing the JavaScript programming language, particularly the node.js runtime

environment. Because it is well-known for having a large number of third-party libraries and
because it is well-known to me (years of practical experience). The libraries in this ecosystem
are better known as NPM (Node Package Manager) modules, but we will remain calling them
libraries, or dependencies, i.e., the libraries that a project or library depends on.

3.3 Objective

As explained in section 3.1, my approach includes building a project scanner for analysis, the first
main component of LUNA. This scanner will detect all the libraries used in a project. For each
library it will also indicate the usage, meaning:

1. How much of the library functionality is being used per file, in terms of the available API
(methods & data);

2. Where it is used, in what files and in what software components (functions & classes);

3. Whether libraries are external (from third-party developers) or internally developed

Software architecture detection techniques are used to locate places in the architecture where
libraries are utilized. More details on that can be found in section 3.4. Additionally, visualization
will be the second main component of LUNA. In appendix A a full list of software requirements
for LUNA can be found.

Scanner

flAST

Library API Function
Call Graph

Dependency
Graph

npm

<any>.js package.json

Visualization

Graph

Control Panel

Loaded by

Analyzed by
JavaScript project

InteractsInforms

Runs User

Provides

Cytoscape

Data

Generates

Figure 3.2: A diagram of LUNA’s entire system architecture.

3.4 Abstract Syntax Tree

To properly analyze source code, an Abstract Syntax Tree (AST) is crucial, which is a tree
representation of the source code. Each node of the tree denotes a construct occurring in the
source code. The AST is a static representation of the code, meaning that it does not change

10

CHAPTER 3. METHODOLOGY 3.4. ABSTRACT SYNTAX TREE

during runtime. It is a way to represent the structure of a program in a way that is easy to
analyze. For producing the AST, I initially choose Acorn [20], as this is a well-established parser
for JavaScript and is still being actively maintained. One key feature I required for proper analysis,
was the ability to find references to a variable in the code. I found a third party library (scope-
analyzer [21]) to do this. Unfortunately, during development I found that scope-analyzer [21] was
inaccurate and this would not be fixed anytime soon1. Roughly, at the same time I took note of
a new promising project that offered the same kind of features, but using a different underlying
AST parser. Although, it was fairly late in the project, it was decided to rewrite some parts of the
codebase to implement this new library, called flast [22]. This is essentially a wrapper for eslint-
scope [23] that outputs a flattened AST object that includes scope and reference information for
each node. It uses a more modern parser that was built on top of Acorn [20], called espree [24].

1 // Internal dependencies
2 const { constructString , constructTemplateLiteral , findReferences } =

require("./ common");
3 const { extractCalls } = require("./call -graph");
4 const { extractLibs } = require("./library -api");
5 const { getNodeModules } = require("./dependency -graph");
6
7 // External dependencies / libraries
8 const { basename , dirname , extname , relative , resolve } = require("

path");
9 const { generateFlatAST } = require("flast");
10 const { promisify } = require("util");
11 const { readFile , stat } = require("fs/promises");
12 const glob = require("glob");
13 const randomColor = require("randomcolor");

Listing 3.1: Snippet of the LUNA’s scanner.js showing how files and libraries are imported via
RequireJS.

1https://github.com/goto-bus-stop/scope-analyzer/issues/32

11

https://github.com/goto-bus-stop/scope-analyzer/issues/32

3.5. ANALYSIS CHAPTER 3. METHODOLOGY

Figure 3.3: Imports of the scanner.js shown in LUNA’s visualization.

3.5 Analysis

For the analysis, function call chains and software library API usage have to be tracked, as well
as the tree of dependencies. At first, discovery on GitHub and NPM was performed to find
existing solutions. Unfortunately, many of them were lacking, outdated, incompatible or simply
not working. In the previous section (section 3.4), the solutions are listed that ended up being
used, yet most of the analysis tasks still had to be designed manually. Let us walk through this
implementation.

When scanning a project, it first constructs a dependency tree object by either invoking NPM’s
[25] native method of listing all installed dependencies, or as fallback (for when these dependencies
are not locally installed), it recreates this dependency tree object by recursively requesting a web
API for each parent dependency that lists its dependencies. After that is accomplished, it reads
all JavaScript files of the project. However, it will ignore the files of the installed dependencies
located in the node modules folder. It then will construct an AST for each read file, as described in
section 3.4. This AST is used to extract information about the code structure and used libraries.
It generates a function calling tree of the file by detecting any function calls and tracing its
source and destination/target, i.e., the function definition. Additionally, it tries to detect all the
imported libraries and their provided features/functionality, i.e., the API of the library. They are
computed based on the require and import declaration nodes of the AST. This will detect both
the declarations made at the beginning of the JavaScript files and the declarations nested within
the source code. Finally, all the collected information is transformed into a data object that can
be imported by the graph located in the report. This process is depicted in diagram 3.2. As an
example, listing 3.1 is a snippet of code, listing B.1 shows its AST, and lastly figure 3.3 displays
the visualization of it from LUNA.

12

CHAPTER 3. METHODOLOGY 3.6. REPORT

3.6 Report

After LUNA has completed scanning the project and generating the data needed for the graph,
it generates a report. The report format is HTML and may be viewed by any Chromium-based
web browser, such as Google Chrome. This report has also SVG-based images, JavaScript scripts
and CSS stylesheets embedded. The report HTML is rendered using a template engine called EJS
[26]. This solution was chosen to embed all data and code in the report. This made the generated
report portable, so it can be shared between machines (or even be hosted on a static website).

3.7 Graph

A graph was chosen as the main way to visualize library usage in a project. Nodes may represent
different elements of the source code, such as directories, files, libraries, classes and function calls.
Edges are used to represent utilization or function calling, i.e., an arrow from A to B, when A
uses/calls B. Let us take a closer look at how this graph is constructed and what components it
is made of.

3.7.1 Cytoscape

LUNA makes use of a library called cytoscape.js [27], which is an open-source library for fully-
featured graphs, written in pure JavaScript. It is a powerful library that allows for extensions
and a lot of customization. Furthermore, it has good documentation, which makes it easy to work
with. This library is used to generate the graph in the report. The graph is created using data that
is generated by the analysis part of LUNA, see section 3.5. The graph displays 3 components as
sub-graphs: source code, libraries and dependency graph. Each component visualizes something
different. The components are also interconnected.

3.7.2 Extensions

As mentioned, cytoscape.js [27] has support for extensions. LUNA uses a few of these extensions.
One of these extensions is used to add extra functionality to the graph, all others are used for the
graph layout and are covered in section 3.8. To support collapsing and expanding of nodes, LUNA
uses the cytoscape-expand-collapse [28] extension for cytoscape.js. This is useful for large graphs,
as it allows for a better overview by collapsing irrelevant parts. Hence, it allows for a better focus
on a specific area of the graph.

Figure 3.4: The three components of LUNA’s visualization (collapsed).

3.7.3 Source Code Component

This component visualizes the structure of the software project. Not only does it display the file
and directory structure, something that is often carefully designed by the project architect, it also
allows files to be expanded into a function call-graphs, as discussed in section 3.5. However, the
nodes representing files are collapsed by default. Furthermore, the size of file nodes are determined

13

3.8. GRAPH LAYOUTS CHAPTER 3. METHODOLOGY

by the amount of lines of code in the file. This helps users to quickly identify the most important
files in the project, or at the very least the files with the most amount of code.

3.7.4 Libraries Component

This component list all the libraries connected to the software project. Library nodes can be
expanded to expose their used API, i.e., functions or objects/classes containing methods. They
are divided into 3 groups. One group consist of all the internal libraries, such as the native modules
provided by node.js or libraries that are internally developed. Another group lists all the external
libraries, which are the third party libraries. The last group includes libraries that are not directly
used by the codebase itself but are likely only used for the development of the project. Each library
has their own randomized color, so it is easier to track a specific library. Anything connected to
this library shares the same color.

3.7.5 Dependency Graph Component

This component includes the dependency chain of all the libraries from the libraries component
(section 3.7.4). Because these dependencies are nodes that are connected to a library node, they
share the same color. The entire dependency chain shares the same color, unless it is connected to
another dependency chain, because one dependency may be included in more than one dependency
chain. This component is often a big complex network of dependency nodes, so not to overwhelm
the user, this graph component is collapsed by default.

3.7.6 Optimization

With the additions of file call-graphs and library API nodes during LUNA’s development, the
amount of nodes and edges to load into the graph became exponentially greater. In some bigger
projects, it even became impossible to load. So, some kind of optimization was required. For-
tunately, a large portion of nodes are hidden behind collapsed groups of nodes or sub-graphs,
as discussed in the previous sections about the graph components. Therefore, during the initial
load of LUNA’s graph, these nodes and edges can be omitted. The challenge was to omit the
correct nodes and edges, and add the correct nodes and edges back upon an expansion event of
their parent node. Additionally, nodes that connect to other nodes outside their parent could not
be omitted without breaking the collapsing functionality. Fortunately, this on-demand loading
technique had been successfully achieved and drastically improved the loading times compared to
the non-optimized version.

3.8 Graph Layouts

The position of the nodes that are displayed in a graph are computed by a layout algorithm. In
this section we will discuss the layout algorithms that were considered or implemented in LUNA.
Table 3.1 shows a summary of the different layouts and their strengths and weaknesses, based on
personal experience with the graph layouts.

14

CHAPTER 3. METHODOLOGY 3.8. GRAPH LAYOUTS

Layout Figure Edge
crossing

Node
overlap

Hierarchy &
ranking

Grouping &
clustering

Breadthfirst 3.5 0 – + 0
Cola 3.6 – – – +
Cose-bilkent 3.7 – 0 0 0
Elk: Layered 3.8 – + – –
Elk: Mr. Tree 3.9 0 – + 0

Table 3.1: Comparison of different graph layouts used by LUNA. A layout algorithm’s strength is
indicated by +, weakness is indicated by – and 0 means neutral.

3.8.1 Dagre

Dagre is a discrete layout that places nodes in a hierarchical order and minimizes the number
of crossing links. The general implementation is inspired by ”A Technique for Drawing Directed
Graphs” [29] and the method for minimizing the number of crossing links is based on ”2-Layer
Straightline Crossing Minimization” [30].

After trying a handful of layouts, this one seemed to be best performing, as it produces a clear
and usable layout. Therefore, this layout was initially chosen for the graph. Later in development,
some critical bugs were noticed in this layout algorithm. This led to the discovery that the
underlying library it relied upon was deprecated2. Hence, it was decided to drop the support for
this layout algorithm.

Instead, I choose to support a collection of layout algorithms. This collection was curated
and tuned to be the best performing of all supported layouts by the graph. However, none of
them were perfect for all use cases, so an option for the user to cycle between the layouts in this
collection was added to LUNA. That way the user has the ability to use the best layout for their
use case or preference.

3.8.2 Breadthfirst

The breadthfirst layout is natively supported by cytoscape.js. It puts nodes in a hierarchy based
on a breadthfirst traversal of the graph. This layout algorithm is best suited for tree/forest graphs
in its default top-down mode, and for DAGs in its circle mode.

2https://github.com/dagrejs/dagre#important

15

https://github.com/dagrejs/dagre#important

3.8. GRAPH LAYOUTS CHAPTER 3. METHODOLOGY

Figure 3.5: A layout algorithm for the graph in LUNA’s generated report: Breadthfirst

3.8.3 Cola

This is a layout for cytoscape.js, which uses a force-directed physics simulation with several soph-
isticated constraints.

Figure 3.6: A layout algorithm for the graph in LUNA’s generated report: Cola

16

CHAPTER 3. METHODOLOGY 3.8. GRAPH LAYOUTS

3.8.4 Cose-Bilkent

Cose-Bilkent is a spring embedder layout for cytoscape.js with support for compound graphs
(nested structures) and varying (non-uniform) node dimensions.

Figure 3.7: A layout algorithm for the graph in LUNA’s generated report: Cose-Bilkent

3.8.5 Elk

ELK is a set of layout algorithms implemented by the Eclipse Foundation in Java. Cytoscape.js
has a layout adapter for this.

17

3.8. GRAPH LAYOUTS CHAPTER 3. METHODOLOGY

Figure 3.8: The default layout algorithm for the graph in LUNA’s generated report: Elk (Layered)

Figure 3.9: A layout algorithm for the graph in LUNA’s generated report: Elk (Mr. Tree)

18

CHAPTER 3. METHODOLOGY 3.9. INTERFACE

3.9 Interface

LUNA consists of two parts: the scanner and the visualization. The scanner offers a command-
line interface (CLI), which means you can only interact with it via a terminal or console. It does
only one thing, which is scan a project and generate a report of it, using the command ”npx
luna-scanner”. The interface of the visualization from the report is significantly more feature-
rich. Aside from the graph that was discussed in section 3.7, the main way to interact with the
visualization is via the two menus available in the report. Let us take a look at them.

3.9.1 Graph Menu

This menu includes options to interact with the entire graph. Figure 3.10 shows the graph menu
and explains the options available in it.

Figure 3.10: Graph menu in LUNA’s generated report. Menu elements: A) Toggle visibility of all
the JSON data files that are imported; B) Change the distance between nodes via this spacing
factor; C) Change the positions of the nodes in the graph dictated by the selected layout algorithm;
D) The section to control all the file nodes that exist in the graph; E) Toggle highlighting of a
node in the graph; F) A folder that is collapsible (via double click) in the file control section; G)
Toggle visibility of a node in the graph; H) A file in the file control section; I) The section to
control all the library and dependency nodes that exist in the graph; J) External libraries group;
K) Internal libraries group; L) Development libraries group; M) Dependency graph group; N)
Take a screenshot of the graph that is in the viewport and save it to disk as ’luna.png’; O) Fit
the whole graph into the viewport; P) Search for a node in the graph by label (case-insensitive);
Q) Reset the position of the viewport to the center.

19

3.9. INTERFACE CHAPTER 3. METHODOLOGY

3.9.2 Node Menu

This menu show information about a selected node and has options to manipulate it. Figure 3.11
and 3.12 shows the node menu and explains the options available in it.

Figure 3.11: File node menu in LUNA’s generated report. Menu elements: A) The label of the
node; B) The category that this node represents (API, class, file, folder, function call, JSON data
or library/dependency); C) Total lines of code in this file; D) Total characters of code in this file;
E) Absolute path to this file (click to view raw source code); F) Not used; G) Focus on the node;
H) Toggle mouse hover functionality; I) Toggle highlighting of the node.

20

CHAPTER 3. METHODOLOGY 3.10. TESTING

Figure 3.12: Library node menu in LUNA’s generated report. Menu elements: A) The label of the
node; B) The category that this node represents (API, class, file, folder, function call, JSON data
or library/dependency); C) The name of the library; D) The version of the library; E) Keywords
related to the library (click to highlight all nodes with the same keyword); F) Link to the library
listing on npmjs.com; G) Button that shows the user a bash command to generate a LUNA report
from this library; H) Focus on the node; I) Toggle mouse hover functionality; J) Toggle highlighting
of the node.

3.10 Testing

During development of LUNA, tests were performed to ensure proper functionality. A debug
mode was added to provide additional logs, as well as enable limited hot-reload functionality for
the generated LUNA report, which allowed changes to the client code and styling to be applied
after reloading the report without regenerating it. Normally, a LUNA report has all its code and
data embedded into a single static file, as explained in section 3.6. Instead, in debug mode, certain
scripts and styles are not embedded, but rather linked to the development files of LUNA. Most
tests were performed on the LUNA project itself, but to ensure good performance for LUNA across
all JavaScript projects, several additional projects were included in the test suite for LUNA. These
projects were deliberately chosen to cover a wide variety of the JavaScript development space. For
example, one of the projects included in the test suite was the popular jQuery library [31], which
has a lot of internal libraries, but no external libraries as dependencies. Another project that
was frequently used as a stress-test for LUNA was the source code for NPM’s CLI program [25],
which included over five thousand JavaScript files and 2500 folders at the time of testing. LUNA
is currently able to handle these big projects, although with a fair bit of struggle and long loading
times. Aside from internal testing, ten interviews were performed with friends and colleagues,
which let them test LUNA and provide feedback. The results of these interviews are covered in
chapter 4.

21

Chapter 4

Results

In this chapter, the study findings are explained and analyzed in relation to the research questions.
We will first go through the supportive research questions (RQ1-RQ3), before we answer the main
research question (RQ0).

Figure 4.1: The description of each task, that the interviewees had to perform.

23

4.1. RESEARCH QUESTION 1 (RQ1) CHAPTER 4. RESULTS

Figure 4.2: Some of the results of each task.

4.1 Research question 1 (RQ1)

The first research question asks how to recover the software architecture? In section 3.5, it was
described how to perform source code analysis and what information can be extracted from the
source code. This has been implemented in a tool called LUNA, which can do the following to
recover the software architecture:

• Recover the scopes of the source code.

• Recover the classes and their methods.

• Recover the function calls and their definitions.

• Recover the directory and file structure.

• Recover the libraries used in the source code.

• Recover the imported API from the libraries.

• Recover the dependency relation between the libraries.

• Recover the dependency relation between the files.

24

CHAPTER 4. RESULTS 4.2. RESEARCH QUESTION 2 (RQ2)

As explained in chapter 3, the method to recover the software architecture is based on the
source code analysis. An abstract syntax tree (AST) was constructed from the source code to
extract the above information, by visiting each node from the AST and analyze itself, its scope
and its references.

With the ten conducted interviews (appendix C), we can verify whether LUNA was successful in
extracting the software architecture. Users had to perform several tasks testing different attributes
of the architecture visualization.

Task 1 was added to test the library dependency relations in the architecture. It basically
asked the user to figure out all connected dependencies for a specific library. Only 6 out of 10
users managed to complete this task, as they found it relatively difficult. The main problem with
this task was a limitation by LUNA, where the search function does not consider collapsed nodes.
So, when a node is collapsed, it will not search for nodes within this node. This caused many to
not find the requested library. Future work (section 5.4) includes a suggestion to solve this issue.

Task 4 relates to the structure of the architecture and asks users to select a specific layout
algorithm to position the architectural elements, i.e., the nodes in the graph, in such a way that
a topological order becomes clear. Three people failed to do this, as two of them failed to use
LUNA entirely due to technical issues and one of them did not know what to do. This task was
determined to be moderately difficult.

The last task, task 5, asks users to create an image of the inner-architecture of a specific
component within the project, this includes the function calls and their definitions, as well as the
classes and their methods. Not only does this test users to use the screenshot feature of LUNA, it
also tests them to identify the correct architecture and hide all irrelevant parts. Again, seven users
were successful in this task and two did not manage to run LUNA. Yet, this task was considered
to be fairly easy to do.

Hence, we may consider that LUNA is successfully able to recover the architecture of software.

4.2 Research question 2 (RQ2)

The second research question asks how to detect libraries and their usage? The answer to the
previous research question (RQ1) already described how to recover the software architecture,
which includes the libraries used in the source code. It does this by looking at the metadata of the
project, as well as any library that is imported into the source code. RQ1’s answer also mentioned
that it recovers the API imported from the libraries, which means any functions, objects or data
that is being offered by the library to the source code. Furthermore, the analysis of the AST also
tracks where this API is being used in the source code. This means that the libraries and their
usage can be detected by LUNA.

To confirm that this is indeed true, a few tasks were performed during the interviews (appendix
C) to test the ability to understand library usage. Specifically, this was task 2 and task 3.

Task 2 asked users to find the affected files and functions when replacing or removing a used
library. Seven out of ten users were able to complete task 2 successfully. Two users were not able
to use LUNA at all, and one user encountered a usability issue, where they were unable to see the
connection between the library and the files. Most users found this task to be easy to complete.

Task 3 asked users to find the library API used for a specific library. With this task, all users
that were able to run LUNA successfully completed it with no effort.

4.3 Research question 3 (RQ3)

Research question 3 asks how to visualize the information in a useful way? The report LUNA
generates includes a visualization about all the collected information. We want to know about
the usability of this visualization. In the 10 conducted interviews (appendix C), a SUS test is
performed. The System Usability Scale (SUS) [32] a reliable, low-cost usability scale that can be

25

4.4. MAIN RESEARCH QUESTION (RQ0) CHAPTER 4. RESULTS

used for global assessments of systems usability. The results of the SUS test are shown in table
4.1.

Item Statement Score
S1 I think that I would like to use LUNA frequently. 16
S2 I found LUNA unnecessarily complex. 26
S3 I thought LUNA was easy to use. 26
S4 I think that I would need the support of a technical person to be able to use LUNA. 30
S5 I found the various functions in LUNA were well integrated. 27
S6 I thought there was too much inconsistency in LUNA. 32
S7 I would imagine that most people would learn to use LUNA very quickly. 28
S8 I found LUNA very cumbersome to use. 25
S9 I felt very confident using LUNA. 22
S10 I needed to learn a lot of things before I could get going with LUNA. 23

Total 255
Overall score (0–100%) 63.75

Table 4.1: The combined SUS test results.

To calculate the overall SUS score, first the score contributions from each item has to be
summed. Each item’s score contribution will range from 0 to 4. For items 1, 3, 5, 7, and 9 the
score contribution is the scale position minus 1. For items 2, 4, 6, 8 and 10, the contribution is 5
minus the scale position. Multiply the sum of the scores by 2.5 to obtain the overall value of SU.
SUS scores have a range of 0 to 100. Because the results of 10 interviews are used, everything will
be 10x. The following mathematical formula (4.1) can be used to calculate the SUS overall score:

SUS overall score = 2.5∗(
n∑

i=1

(S1i+S3i+S5i+S7i+S9i)−n∗1+n∗5−
n∑

i=1

(S2i+S4i+S6i+S8i+S10i))

(4.1)
Here, n would be 10 for the ten interviews that were performed and got the SUS results from.

The system has been tested by people with varying knowledge about programming and JavaS-
cript. If we look at the results of the SUS test in figure 4.1, we can see that the overall score is
63.75%. This is above average, which means that the system is usable.

4.4 Main research question (RQ0)

By answering the previous research questions, we can answer the main research question. The
main research question is: How to facilitate the comprehension of library usage in a software
architecture?

The answer to this research question, LUNA was created. This tool can be used to recover
the software architecture, detect the libraries and their usage, and visualize the information in
a useful way, as we saw from our previous research questions. Visualization was chosen as the
best way to convey information about library usage in software. In the interviews (appendix C),
we see that from the people that may use LUNA in the future, they will use it to facilitate their
comprehension about library usage in the projects:

• “To see how different modules [libraries] are correlated, and seeing which parts of my code
use a certain library/method when refactoring”

• “I maintain a number of increasingly-complex Node.js library modules and getting a visual
indication of how the inner workings interact can be useful.”

26

CHAPTER 4. RESULTS 4.4. MAIN RESEARCH QUESTION (RQ0)

• “...als je code aanpast kun je de dependencies vrij makkelijk vinden. [...when you alter your
code you can pretty easily find the dependencies]”

• “To see how different modules are correlated, and seeing which parts of my code use a certain
library/method when refactoring”

• “...to verify how the upgrade of library impacts my own code.”

It is important to note that these answers were not from a leading question, but rather an
open one, asking about their purpose for using LUNA. This means that these answers are not
biased, as the people that were interviewed were not asked to answer in a certain way, but rather
to answer honestly.

27

Chapter 5

Discussion

What is the relationship between this thesis and other work in the field? What are the implications
and consequences of our work? Is there any threat to the validity? And what does future work look
like? In this chapter, we will go through our findings carefully and address the above questions.

5.1 Comparison with Similar Projects

In chapter 3, it is explained why LUNA is developed to answer our research questions and how this
tool works. Other tools exist that perform comparable functions or achieve similar aims. Let us
examine those that were discovered during discovery and are of interest. We then compare them
each to LUNA, the tool developed for this thesis. We first look at CodeGraph and HUNTER,
the two projects most similar to LUNA, and then we explore other interesting projects that use
different techniques to achieve a similar goal. Additionally, they all support JavaScript. In figure
5.1 an overview of different features across all the similar projects can be found.

Feature L
U
N
A

C
o
d
e
G
ra

p
h

H
U
N
T
E
R

E
u
n
ic
e

N
P
M

G
ra

p
h

J
S
C
it
y

M
e
tr
o
p
o
lJ
S

js
2
fl
o
w
ch

a
rt

S
o
u
rc
e
C
o
d
e
E
x
p
lo
re

r

JavaScript support ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Other language(s) support ✓ ✓

Library dependency analysis ✓ ✓ ✓ ✓ ✓

File dependency analysis ✓ ✓ ✓ ✓

Function analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓

Class analysis ✓ ✓ ✓ ✓ ✓

Library API analysis ✓ ✓ ✓

File browser ✓ ✓ ✓ ✓

Source code viewer ✓ ✓ ✓ ✓

Graph visualization ✓ ✓ ✓ ✓

Treemap visualization ✓ ✓ ✓ ✓

Interaction with visualization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5.1: Comparison between LUNA and similar tools.

29

5.1. COMPARISON WITH SIMILAR PROJECTS CHAPTER 5. DISCUSSION

5.1.1 CodeGraph

In Robert van Barlingen’s master thesis [33] CodeGraph was developed, which is a “web application
that visualizes the dependency graph of JavaScript projects. This allows users to visually explore
the relation between the different files in the project. Additionally, it provides the user with
statistics on the project and information about the individual files. Through some usability tests, it
was determined that CodeGraph facilitates better understanding of a JavaScript project and allows
for a more pleasant user experience than traditional text-based tools.” A picture of CodeGraph
can be found in figure 5.1.

When comparing CodeGraph with LUNA we see that both tools are similar in their goal and in
the way they achieve this goal. Both tools visualize the dependency graph of a JavaScript project.
However, there are some differences between the two tools. CodeGraph is a commercial project,
while LUNA is fully open-source and accessible to anyone using node.js. One could say CodeGraph
is a bit more advanced by offering more settings and different features. Such as, CodeGraph offers
more layouts and layout customization, shows additional statistics, has git versioning integration,
a minimap for the graph, and additional filtering options. However, compared to LUNA, it lacks
node collapsing and expanding capabilities, color-coding in the graph, dynamic node sizes (based
on file code size), and of course the detection of the inner architecture of the source code through
function call-graphs and library API extraction. Furthermore, it is apparent by the presentation
of LUNA that the focus lies on showing the usage of libraries. This is not the case for CodeGraph.
CodeGraph appears to be a remarkably solid tool and a serious alternative to LUNA in most
cases.

Figure 5.1: Overview of CodeGraph.

30

CHAPTER 5. DISCUSSION 5.1. COMPARISON WITH SIMILAR PROJECTS

5.1.2 HUNTER

Hunter [34] is a “tool for the visualization of JavaScript applications. Hunter visualizes source code
through a set of coordinated views that include a node-link diagram that depicts the dependencies
among the components of a system, and a treemap that helps programmers to orientate when
navigating its structure.” In figure 5.2, the GUI of the Hunter tool is shown, and its components
are marked.

Again, the depiction of the dependency graph serves as Hunter’s key component. One of
Hunter’s novel features is the color-coding of the folders in the file browser, which is not unlike
the color-coding of LUNA. The color of the parent folder of the file that each node represents is
used to identify each node in the dependency graph. This enables the user to visually connect
the dependency graph visualization and the file browser’s view. In addition, each node’s size in
the dependency graph is inversely correlated with the amount of lines of code that are present in
the file. LUNA also does this for its nodes that represent files. This increases the visual weight
of more significant nodes, or nodes with more lines of code. While LUNA has its function call-
graphs, interestingly Hunter took a different approach by displaying a treemap of the available
functions in the file and allow the user to inspect these functions in detail. Compared to LUNA, it
loses the ability to connect functions through their invocations, but it gains the ability to observe
the structure and nesting of the functions. This is a trade-off that is worth considering. We will
actually see later in subsection 5.1.6 that there exists a way to achieve both in a single visualization.

Figure 5.2: The GUI of Hunter. The left-most panel (FB) is a File Browser, also included in most
IDEs. The center panel is the File Dependencies View (V), which relates dependencies between
JavaScript source code files. The top-right panel (O) shows the structure in terms of functions
nesting of the selected file. The bottom-left panel (S) is a Search box that can find specific files or
functions located in V. Lastly, the bottom-right panel (SC) shows the Source Code of the selected
file with the selected function highlighted.

5.1.3 Eunice

Eunice [35] is a tool that can scan C# and JavaScript projects and it “improves cohesion, coupling
and modularity in software through hierarchical structure and simplified unidirectional dependen-
cies. Eunice analyzes source code, infers its structure and shows if the dependencies match.” In

31

5.1. COMPARISON WITH SIMILAR PROJECTS CHAPTER 5. DISCUSSION

figure 5.3, the Eunice report of Eunice itself is shown.

Similarly to LUNA, a single command is needed to execute Eunice on JavaScript projects,
namely npx eunice. Then, it creates an HTML report with an included visualization. However,
it is the visualization and the information is displays that is very different compared to LUNA.
Eunice visualizes a nested tree-like structure, whereas LUNA visualizes a collapsible/expandable
graph network. Admittedly, Eunice is impressive and information-dense, but also quite complex
and has a steep learning curve.

Figure 5.3: Eunice’s HTML report.

5.1.4 NPMGraph

NPMGraph [36] is a web application that has a simple visualization of the dependency graph of
a JavaScript project. It is available through the worldwide web1. In figure 5.4, NPMGraph is
demonstrated.

LUNA includes most of the functionality provided by NPMGraph. The graph generated by
NPMGraph is mostly static, but it allows for some interactability, such as selecting nodes or
collapsing nodes with its children. This is of course similar to LUNA. Yet NPMGraph shows some
additional information, such as the bundle size NPMS.io score and the list of maintainers. LUNA
colorcodes by libraries, but with NPMGraph you can choose the colorization of your preference
(NPMS.io overall score, NPMS.io quality score, NPMS.io popularity score, NPMS.io maintenance
score, or # of maintainers). One of the best features of NPMGraph, is that you can choose any of
the displayed libraries in the graph for NPMGraph to scan and make a new graph in this library’s
context. This is something I tried to replicate with LUNA, but due to limitations it can only
show a command line that can rerun LUNA on the selected library (See G from figure 3.12).
NPMGraph is a simple tool that is easy to use and is a good alternative to LUNA when you are
only interested in the dependency graph of a project.

1https://npmgraph.js.org/

32

https://npmgraph.js.org/

CHAPTER 5. DISCUSSION 5.1. COMPARISON WITH SIMILAR PROJECTS

Figure 5.4: The GUI of NPMGraph.

5.1.5 JSCity

JSCity [37] is a JavaScript implementation of CodeCity [37] (for Java). JSCity is an interactive
3D visualization of the source code of a project. It is modelled like a city, where files and (nested)
functions are represented as color-coded skyscrapers, with its height determined by the lines of
code (LOC). The color yellow means it is a folder, the color red is a file, and green are functions.
In figure 5.5, JSCity is demonstrated.

LUNA is 2-dimensional, whereas JSCity is 3D. Not only visually, but also functionally it is
significantly different from LUNA. However, it is an interesting visualization nonetheless. While
the setup is arguably convoluted, the visualization is rather simple to use. It is a good alternative
to LUNA when you are interested in the 3D visualization of a project, and you are not interested
in the dependency graph.

33

5.1. COMPARISON WITH SIMILAR PROJECTS CHAPTER 5. DISCUSSION

Figure 5.5: Screenshot of JSCity.

5.1.6 MetropolJS

MetropolJS [38] visualizes and debugs large-scale JavaScript code structure with treemaps. This
tool aims to solve the following problem: “As a result of the large scale and diverse composition of
modern compiled JavaScript applications, comprehending overall program structure for debugging
proves difficult.” Therefore, MetropolJS provides “an optimized approach for visualizing complex
program structure that enables new debugging techniques where the execution of programs can be
displayed in real time from a bird’s-eye view. The approach facilitates highlighting and visualizing
method calls and distinctive code patterns on top of code segments without a high overhead for
navigation. Using this approach enables fast analysis of previously difficult-to-comprehend code
bases.” Figure 5.6 shows a screenshot of MetropolJS in action.

The function call-graphs of LUNA show all the possible function calls in a project, but they
do not show the nesting of the functions. MetropolJS shows the nesting of the functions with
colorized information, while also showing the function calls. Not only that, but it animates the
function calling order. This is a very interesting approach that I have not seen before. It is a very
good alternative to LUNA when you are interested in the nesting of the functions. However, it
does not show the dependencies between the files and libraries, which is a feature that LUNA has.

34

CHAPTER 5. DISCUSSION 5.1. COMPARISON WITH SIMILAR PROJECTS

Figure 5.6: MetropolJS in action

5.1.7 js2flowchart.js

The library js2flowchart.js [39] is a visualization tool for generating SVG-based flowcharts from
JavaScript source-code. It helps to explain or document your code via flowcharts. Js2flowcart.js
works by defining abstraction levels to render only import/exports, classes/function names, func-
tion dependencies to learn/explain the code step by step. It also has a presentation generator
to generate a list of SVGs in order to different abstractions levels. It also has defined flow tree
modifiers to map well-known JavaScript native APIs. Furthermore, it also contains a destruction
modifier to replace a block of code with a single shape on scheme. Additionally, you can design
your own custom flow tree modifiers using this. In addition, it contains a flow tree ignore filter
to totally omit specific code nodes, such as log lines. Also, it contains a focus node or a whole
code logic branch to draw attention to key portions of the scheme. To conceal less-important
information, it also has a blur node or an entire code logic branch. It also offers specified styles,
themes, and support; pick the one you prefer. Moreover, it supports style customization and
offers a convenient API for changing particular styles without using boilerplate. Figure 5.7 shows

35

5.1. COMPARISON WITH SIMILAR PROJECTS CHAPTER 5. DISCUSSION

a screenshot of js2flowchart.js in action.

Compared to LUNA, it does not have much in common. However, the idea of visualizing the
code as a flowchart is interesting. It is a good alternative to LUNA when you are only interested
in visualizing the flow of your code.

Figure 5.7: Demonstration of js2flowchart.js

5.1.8 JSClassFinder

In the early days of JavaScript, especially before ES6 introduced class support, JavaScript was
dominated by class-like structures. Even nowadays they are still used. JSClassFinder [40] is a tool
that can detect these class-like structures. Likewise to LUNA, it scans the AST to achieve this.
Furthermore, with the power of the Moose2 framework, it can produce powerful visualizations,
such as the one in figure 5.8.

2http://moosetechnology.org/

36

http://moosetechnology.org/

CHAPTER 5. DISCUSSION 5.1. COMPARISON WITH SIMILAR PROJECTS

Figure 5.8: A Class Diagram Generated by JSClassFinder (for JSClassFinder’s algorithm.js)

5.1.9 Source Code Explorer

During my studies I have actually helped develop a system before that shares similar goals to what
LUNA tries to achieve. We called it Source Code Explorer and was made for a visualization course.
It is accessible through the worldwide web3. In figure 5.9, Source Code Explorer is demonstrated.

While LUNA tries to abstract the architecture of the source code of a project, Source Code
Explorer tries to visualize the source code itself. It also lacks any ability to show the dependencies
between the files and libraries. However, it has limited capabilities to show the nesting of the
functions. It is a good alternative to LUNA when you are interested in the source code itself, but
it is not a good alternative when you are interested in the architecture of the source code or the
role of the libraries within the project.

3https://src-explorer.glitch.me

37

https://src-explorer.glitch.me

5.2. IMPLICATIONS CHAPTER 5. DISCUSSION

Figure 5.9: The GUI of the Source Code Explorer

5.2 Implications

We summarize our implications with the following takeaway messages for the key stakeholders:

5.2.1 Researchers

Researchers can use LUNA to analyze the usage of libraries in JavaScript software, which can be
used to answer research questions relating to the usage of libraries in JavaScript software. For
this, LUNA provides a unique ability to research the connection between software architecture
and libraries. It also serves as an example how to analyze a dynamically typed language, like
JavaScript, as this is a difficult and non-trivial task. Furthermore, they can take LUNA as a
starting point to develop their own tool to analyze the usage of libraries in JavaScript software (at
scale). Alternatively, they may extend LUNA with additional features matching their research.
This is possible, as LUNA is fully open-source [41]. Some ideas on how to update and extend
LUNA can be found in section 5.4 about future work. Finally, researchers may compare LUNA
against other tools that analyze the usage of libraries in software, or tools that visualize software
architecture, in order to find the best performant according to some attributes.

5.2.2 Practitioners

In the context of this thesis, practitioners are software engineers and maintainers that use libraries
in their software. They can apply LUNA for various use-cases. They can use LUNA to help
evaluate the impact a library has on their project, e.g. when breaking changes are introduced
when updating it. Moreover, they may use LUNA to realize the complexity of their project by
using libraries that provide simplification or abstraction. They can also use LUNA’s visualization
to showcase information about libraries usage to other interested parties. For example, imagine
you want to extend or improve an open-source project, and you decide to make a pull request
(PR) for it. LUNA’s visualization would be a good way to familiarize yourself with its codebase
and architecture, instead of looking through code and trying to find where the relevant code is.
Not only information about libraries, but also about the project’s architecture can be shown to

38

CHAPTER 5. DISCUSSION 5.3. THREATS TO VALIDITY

others. For example, use LUNA to put its generated visualization in the project’s README.md,
i.e., its description. Lastly, LUNA can be used by practitioners to find out what and where exactly
in the project code needs to be changed when replacing or removing used libraries.

5.3 Threats to validity

In this section, we look at the threats to validity of our research. We discuss the following groups
of validity: construct validity, internal validity and external validity.

5.3.1 Construct

Construct validity is the extent to which the measurements in the study reflect real-world situ-
ations, and the extent to which the measurements in the study measure what they are supposed
to measure. In our case, construct validity is about how well the tool measures the concept it
was designed to evaluate, which is the usage of libraries in JavaScript software. We have shown
in chapter 3 that LUNA is able to recover the software architecture. However, is this truly a
valid representation of the software architecture? In LUNA’s visualization we show the directory
structure of the project and the included source code files with their inner-relations. For each
file, a sub-graph can emerge that shows the chain of function calls and class relations. It can be
argued that this is not a valid representation of the software architecture. However, it is up to
interpretation.

5.3.2 Internal

Internal validity is related to uncontrolled aspects that may affect the experimental results. The
expertise of interview participants might not be representative of a real-world sample of profes-
sional software developers. To mitigate this threat, questions (appendix C) were asked in the
interview to assess their experience using JavaScript and libraries.

5.3.3 External

External validity is related to the possibility to generalize our results. First and foremost, we have
to consider that the results of this thesis are only valid for JavaScript software. However, I argue
that the usage of libraries in JavaScript software is similar to the usage of libraries in most other
software. Therefore, we may assume that the results of this thesis are also valid for most other
software.

Furthermore, we have to consider that the results of this thesis are only valid for the projects
that we have tested. The chosen open-source JavaScript projects used for testing may not represent
the entirety of JavaScript software well enough. To mitigate this risk, a wide range of projects
were carefully chosen to maximize coverage.

Only 10 people were interviewed. They may not represent the entire developer community well
enough. More interviews could have been conducted to get a better understanding of the usability
of LUNA.

5.4 Future work

In this section, we discuss all the directions I would like to take LUNA in the future. A lot of
these were suggested by our test participants that were mentioned in chapter 4. We will discuss
the different directions separately.

39

5.4. FUTURE WORK CHAPTER 5. DISCUSSION

5.4.1 Scanner

The scanner component of LUNA might be greatly improved. It currently lacks export tracking
for files, which means API detection is solely based on import statements. Export tracking would
allow us to detect the full available API of a file and can even be extended to whole libraries.

Currently, the scanner only saves the position of function definitions. However, it would be
more useful for humans to also save the line number and even the column number. This would
allow us to show the exact location of a function in the source code.

Also, additional metrics and statistics could be extracted by the scanner. More information
about the relation between the scanned project and external components could be useful. For ex-
ample, the proportion of lines that depend on an external component, either directly or indirectly.
Or the proportion of lines that are used from an external component. Not only for lines, but also
for functions.

To construct the architecture of a file, the scanner currently only looks at function calls with
limited class structure support. However, it would be useful to provide more meaningful abstrac-
tions for classes and objects in the code. This would allow us to show the architecture of a file in
more detail.

It relies on the file system to perform scanning. It would help with accessibility, if LUNA could
be used fully online without having to install anything on your system. Although the installation
requirement is already pretty minimal, it still is a barrier of entry to try out LUNA. It could use
platforms like GitHub4, GitLab5 or BitBucket6 to import repository to scan. Although definitely
possible, the challenge lies in rewriting a lot of the codebase to handle this change.

The scanner currently only supports JavaScript source code. However, it would be useful to
support other programming languages or runtimes as well. TypeScript, JSX, HTML, and even
less related programming languages such as Java or Python are examples. This would allow us to
scan more projects and provide more information about the usage of libraries in software.

LUNA can currently only scan one project at a time in order to create a visualization. Instead
of generating a visualization, it could scan multiple projects at once. This would allow us to
perform quantitative research on the usage of libraries in software.

Finally, the scanner’s handling of package versions is very basic. It only looks at the version
number and not at the version range. Meaning that constructing dependency trees might not be
accurate. This could be improved by considering the version range as well.

5.4.2 Visualization

The visualization component of LUNA can be improved in many ways. First, the visualization
currently uses one global layout. However, it would be useful to split the layout into multiple lay-
outs for each subcomponent. This would allow us to show more information about the architecture
of a file.

Secondly, the visualization currently allows overlapping compound nodes for most layout al-
gorithms. However, this can be confusing and unappealing for the user. It would be useful to
avoid overlapping compound nodes for all layouts. Sadly, to my knowledge, this is simply not pos-
sible with the current implemented layout algorithms. So, this would require altering the layout
algorithms themselves.

Furthermore, only the left mouse button is used to interact with the graph: both to drag
nodes around and to pan the graph by dragging the background. This can be annoying for the
user when they want to pan the graph but accidentally drag a node. It would be useful to use the
right mouse button for panning and the left mouse button for dragging nodes. This would allow
us to interact with the graph more intuitively. To my knowledge, this is not possible with the
cytoscape.js library [27] that handles this. There exists an issue on GitHub7 that suggests this,

4https://github.com/
5https://gitlab.com/
6https://bitbucket.org/
7https://github.com/cytoscape/cytoscape.js/issues/3063

40

https://github.com/
https://gitlab.com/
https://bitbucket.org/
https://github.com/cytoscape/cytoscape.js/issues/3063

CHAPTER 5. DISCUSSION 5.4. FUTURE WORK

but it has not been implemented yet.
Another idea that could improve the visualization is to change the edges depending on the

closeness to the node that is currently selected. For example, the thickness or opacity of the edges
could be changed. This would allow us to show the user which edges are more important/related
to the node than others.

Also, the graph currently shows all edges between visible nodes. However, this can be confusing
or overwhelming for the user. It would be useful to implement techniques that can reduce the
amount of edges shown. For example, Tarjan’s Algorithm8 could be used to reduce the amount of
edges shown. This would allow us to show the user only the most important edges.

Currently, the cola layout algorithm can cause some inconvenience for the user. It runs a
simulation to produce a layout. However, this simulation is currently set to run at most 4 seconds
and while it is running, the user cannot interact with the graph without being interrupted by the
simulation. An improvement could be made by allowing the user to interact with the graph while
the simulation is running without being interrupted. This would allow us to interact with the
graph more intuitively.

The cytoscape.js library [27] that I use to construct and visualize the graph comes with an
option to show a visual indicator when a node can be expanded or collapsed. However, during
optimization of the visualization, I removed this indicator, because on-demand loading of nodes
made it uncertain when a node could be expanded or collapsed. However, a way could be found
to bring this indicator back to the visualization. This would allow users to know when a node
can be expanded or collapsed before trying. This indicator also provides the user an alternative
(perhaps more intuitive) way to expand or collapse a node.

5.4.3 User Interface

There are several improvements that can be made to the user interface of LUNA. This mostly
concerns the menu and the graph, but some improvements touch upon the user interface of visu-
alization as well.

In the menu, there is currently no search box for the library and the file tree sections. However,
it would be convenient to have a search box there, as these can be very large. This would allow
users to search for a specific item more easily.

The center button of the node menu is currently used to locate the selected node in the graph.
However, it would possibly be useful to highlight the selected node as well, as this would allow
users to see which node is selected more easily.

Currently, the search button only works for visible nodes. However, it would be great to make
it search for collapsed items as well. This would allow users to search for items that are not visible,
but do exist in the graph. When a user searches for a node that is collapsed, the node could be
expanded automatically. Or, when a user searches for a node that is collapsed, the user could be
notified that the node is collapsed.

Currently, the hiding status of a parent item in the menu is not linked to the hiding status of
its children items. However, it would be useful to link these statuses. This would allow users to
hide all items in a section with one click.

Additionally, it would be great to have an option to hide all other items, besides those selected.
This would allow users to focus solely on the items they are interested in.

Likewise, it would be useful to add the ability to collapse or expand all nodes in the graph.
This would allow users to quickly collapse or expand all nodes in the graph.

Right now all node options and information is located in the node menu. But for some user
it may be more convenient to have these options in a context menu, that can be activated with
right-click. This would allow these users to interact with the graph more intuitively.

The visualization currently shows all functions inside a file. However, may not want to see all
functions. Filter options could be added to the user interface. This would allow users to filter the
functions and focus on the functions they are interested in.

8https://en.wikipedia.org/wiki/Tarjan%27s strongly connected components algorithm

41

https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm

5.4. FUTURE WORK CHAPTER 5. DISCUSSION

Finally, a light theme option could be added to the user interface for those who prefer a light
theme over a dark theme. This would allow those users to use LUNA more comfortably.

5.4.4 Bugs

LUNA has a few known issues. One major one is caused by the library used to handle collapsing
and expanding of nodes: cytoscape-expand-collapse [28]. Sometimes nodes do not expand or
collapse properly. This may result in LUNA breaking. Best to avoid excessive collapsing and
expanding of nodes until a solution for this issue is created.

Lastly, there are some browser related issues. LUNA is currently only fully supported by
chromium based web browsers, like Google Chrome. Other browsers may have issues with the
visualization.

5.4.5 Beyond LUNA

As noted in the use cases for researchers, LUNA may be compared against other tools that examine
the usage of libraries in software or tools that display software architecture to determine which is
the most performant based on particular parameters.

Furthermore, the interviews obtained may be reused in research that is not associated to LUNA,
such as studies on the usability of software visualization tools. The interviews may be used to
discover what users expect from a software visualization tool, as well as what they find beneficial
and puzzling. This might be used to improve the overall usability of software visualization tools.

42

Chapter 6

Conclusion

In conclusion, the objective of this thesis is to illustrate how software packages are employed
in software architecture, in order to help with developers’ comprehension. This is accomplished
through investigation into how software libraries are used in software architecture. We discussed
the problem’s relevance and identified the stakeholders. Following that, we went over the research
questions and explained why they are important to the research problem. We presented related
work, study methodology, and study results.

Our approach was to create a tool called LUNA. This tool works by scanning a JavaScript
project, constructing an AST from the source code, and extracting information about the soft-
ware architecture and library usage from it. This data is then visualized in a web report. The
visualization has three sub-graphs and an interaction panel. The first sub-graph depicts the pro-
ject’s directory and file structure, and each file contains an abstraction represented by a function
call-graph. The second sub-graph displays the libraries used in the project, which are divided
into internal, external, and unused/development libraries. The third sub-graph reveals the librar-
ies’ dependencies. Relations are indicated within each sub-graph and between sub-graphs. The
interaction panel allows the user to interact with the visualization.

The research results show that LUNA is able to recover the software architecture and detect
libraries and their usage. The results have also shown that we can visualize this information in a
useful way. The results have been compared with related work, and the implications in the field
have been discussed. At last, the threats to validity were debated.

43

Bibliography

[1] Wikipedia contributors, “Software package — Wikipedia, the free encyclopedia.” https://
en.wikipedia.org/w/index.php?title=Software package&oldid=1104525135, 2022. [Online;
accessed 18-October-2022]. 1

[2] Wikipedia contributors, “Software architecture — Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?title=Software architecture&oldid=1115479169, 2022.
[Online; accessed 27-October-2022]. 5

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. SEI Series in
Software Engineering, Boston, MA: Addison Wesley, 4 ed., Oct. 2021. 5, 6

[4] R. Agarwal, R. Deshmukh, P. Borhade, S. Murarka, and D. Datta, “Software architecture
recovery techniques,” International Journal of Engineering and Advanced Technology, vol. 9,
p. 4, 04 2020. 5, 7

[5] J. Garcia, I. Ivkovic, and N. Medvidovic, “A comparative analysis of software architecture
recovery techniques,” in 2013 28th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 486–496, IEEE, 2013. 5, 7

[6] R. M. Tarawaneh, P. Keller, and A. Ebert, “A General Introduction To Graph Visualization
Techniques,” in Visualization of Large and Unstructured Data Sets: Applications in Geospatial
Planning, Modeling and Engineering - Proceedings of IRTG 1131 Workshop 2011 (C. Garth,
A. Middel, and H. Hagen, eds.), vol. 27 of OpenAccess Series in Informatics (OASIcs), (Dag-
stuhl, Germany), pp. 151–164, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012. 6,
7

[7] R. G. Kula, A. Ouni, D. M. German, and K. Inoue, “On the impact of micro-packages: An
empirical study of the npm javascript ecosystem,” arXiv preprint arXiv:1709.04638, 2017. 6

[8] A. Zerouali, T. Mens, G. Robles, and J. M. Gonzalez-Barahona, “On the diversity of software
package popularity metrics: An empirical study of npm,” in 2019 IEEE 26th international
conference on software analysis, Evolution and Reengineering (SANER), pp. 589–593, IEEE,
2019. 6

[9] J. Žitnỳ, “Npm a javascript,” Master’s thesis, České vysoké učeńı technické v Praze.
Vypočetńı a informačńı centrum., 2017. 6

[10] C. Bautista, A. Dahiya, K. Hardgrave, and D. Xu, “Javascript documentation generation
through semantic code analysis,” 6

[11] B. Taraghi, A. Azmi, and O. Yusop, “Producing software engineering documents through soft-
ware reverse engineering for node.js web application,” in Advanced Research in Engineering
and Information Technology International Conference (AVAREIT), 2018. 6

[12] A. Nurwidyantoro, T. Ho-Quang, and M. R. V. Chaudron, “Automated classification of class
role-stereotypes via machine learning,” in Proceedings of the Evaluation and Assessment on
Software Engineering, EASE ’19, (New York, NY, USA), p. 79–88, Association for Computing
Machinery, 2019. 7

45

https://en.wikipedia.org/w/index.php?title=Software_package&oldid=1104525135
https://en.wikipedia.org/w/index.php?title=Software_package&oldid=1104525135
https://en.wikipedia.org/w/index.php?title=Software_architecture&oldid=1115479169
https://en.wikipedia.org/w/index.php?title=Software_architecture&oldid=1115479169

BIBLIOGRAPHY BIBLIOGRAPHY

[13] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact analysis of api
breaking changes: A large-scale study,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 138–147, IEEE, 2017. 7

[14] L. Ochoa, T. Degueule, J.-R. Falleri, and J. Vinju, “Breaking bad? semantic versioning and
impact of breaking changes in maven central,” arXiv preprint arXiv:2110.07889, 2021. 7

[15] H. Mili, F. Mili, and A. Mili, “Reusing software: Issues and research directions,” IEEE
transactions on Software Engineering, vol. 21, no. 6, pp. 528–562, 1995. 7

[16] W. B. Frakes and P. Gandel, “Representing reusable software,” Information and Software
Technology, vol. 32, no. 10, pp. 653–664, 1990. 7

[17] W. B. Frakes and T. P. Pole, “An empirical study of representation methods for reusable
software components,” IEEE transactions on software engineering, vol. 20, no. 8, pp. 617–
630, 1994. 7

[18] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient construction of
approximate call graphs for javascript ide services,” in 2013 35th International Conference
on Software Engineering (ICSE), pp. 752–761, IEEE, 2013. 7

[19] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular call graph construction for security
scanning of node. js applications,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 29–41, 2021. 7

[20] acornjs, “Acorn.” https://github.com/acornjs/acorn, 2021. 11

[21] R. Kooi, “scope-analyzer.” https://github.com/goto-bus-stop/scope-analyzer, 2021. 11

[22] PerimeterX, “flAST - FLat Abstract Syntax Tree.” https://github.com/PerimeterX/flast,
2022. 11

[23] ESLint, “ESLint Scope.” https://github.com/eslint/eslint-scope, 2022. 11

[24] ESLint, “Espree.” https://github.com/eslint/espree, 2022. 11, 55

[25] npm, “npm - a JavaScript package manager.” https://github.com/npm/cli, 2010. 12, 21

[26] M. Eernisse, “EJS – Embedded JavaScript templates.” https://ejs.co/, 2016. 13

[27] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader, “Cytoscape.js: a
graph theory library for visualisation and analysis,” Bioinformatics, vol. 32, pp. 309–311, 09
2015. 13, 40, 41

[28] U. Dogrusoz, A. Karacelik, I. Safarli, H. Balci, L. Dervishi, and M. C. Siper, “Efficient
methods and readily customizable libraries for managing complexity of large networks,” PloS
one, vol. 13, no. 5, p. e0197238, 2018. 13, 42

[29] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo, “A technique for drawing directed
graphs,” IEEE Transactions on Software Engineering, vol. 19, no. 3, pp. 214–230, 1993. 15

[30] M. Jünger and P. Mutzel, “2-layer straightline crossing minimization: Performance of exact
and heuristic algorithms,” in Graph Algorithms And Applications I, pp. 3–27, World Scientific,
2002. 15

[31] T. jQuery Team, “jQuery.” https://github.com/jquery/jquery, 2006. 21

[32] J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind., vol. 189, 11 1995.
25

46

https://github.com/acornjs/acorn
https://github.com/goto-bus-stop/scope-analyzer
https://github.com/PerimeterX/flast
https://github.com/eslint/eslint-scope
https://github.com/eslint/espree
https://github.com/npm/cli
https://ejs.co/
https://github.com/jquery/jquery

BIBLIOGRAPHY BIBLIOGRAPHY

[33] R. Van Barlingen, “CodeGraph: an Interactive Dependency Analyzer for JavaScript Pro-
jects,” master’s thesis, Aalto University. School of Science, 2021. 30

[34] M. Dias, D. Orellana, S. Vidal, L. Merino, and A. Bergel, “Evaluating a visual approach for
understanding javascript source code,” in Proceedings of the 28th International Conference
on Program Comprehension, pp. 128–138, 07 2020. 31

[35] G. Dyson, “Eunice.” https://devsnicket.com/eunice/, 2020. 31

[36] npmgraph, “npmgraph - a tool for exploring npm modules and dependencies.” https://
npmgraph.js.org, 2018. 32

[37] M. Viana, A. Hora, and M. T. Valente, “Codecity for (and by) javascript,” arXiv preprint
arXiv:1705.05476, 2017. 33

[38] J. D. Scarsbrook, R. K. L. Ko, B. Rogers, and D. Bainbridge, “MetropolJS: Visualizing and
Debugging Large-Scale JavaScript Program Structure with Treemaps,” in 2018 IEEE/ACM
26th International Conference on Program Comprehension (ICPC), pp. 389–3893, May 2018.
34

[39] B. Liashenko, “js2flowchart - a visualization library to convert any JavaScript code into beau-
tiful SVG flowchart..” https://github.com/Bogdan-Lyashenko/js-code-to-svg-flowchart,
2017. 35

[40] L. H. Silva, D. Hovadick, M. T. Valente, A. Bergel, N. Anquetil, and A. Etien, “Jsclassfinder:
A tool to detect class-like structures in javascript,” arXiv preprint arXiv:1602.05891, 2016.
36

[41] R. van Dijk, “LUNA: Library Usage in Node.js Analyzer.” https://github.com/
royvandijk06/luna, 2022. 38

47

https://devsnicket.com/eunice/
https://npmgraph.js.org
https://npmgraph.js.org
https://github.com/Bogdan-Lyashenko/js-code-to-svg-flowchart
https://github.com/royvandijk06/luna
https://github.com/royvandijk06/luna

Appendix A

MoSCoW

The project requirements for building LUNA used the MoSCoW method for prioritization. This
method has four levels of prioritization, namely:

Must have The requirements with this priority are critical for the product. These requirements
are the Minimum Usable Subset.

Should have These are important but not vital or fundamental to the product. There are often
workarounds available.

Could have Desirable requirements but can be left out when time and resources are not available.

W on’t have Requirements which will not be delivered in the time frame. Those are the least
critical, but are in the list to clarify the scope of the project.

A.1 Constraints

UR1-1 M
LUNA is available as a NPM package

UR1-2 M
LUNA is available as a Node.js Package Runner

UR1-3 C
LUNA is available as a standalone application

UR1-4 M
LUNA reports can be viewed on chromium based web browsers (Chrome, Edge, Brave)

UR1-5 C
LUNA reports can be viewed on Firefox

UR1-6 C
LUNA reports can be viewed on other web browsers

UR1-7 M
LUNA is executable on Windows

UR1-8 S
LUNA is executable on Linux

49

A.2. PROJECT APPENDIX A. MOSCOW

UR1-9 S
LUNA is executable on Mac

UR1-10 W
LUNA is executable on Android

UR1-11 W
LUNA is executable on iOS

A.2 Project

UR2-1 M
LUNA can work with Node.js projects

UR2-2 S
LUNA can work with other JavaScript projects

UR2-3 C
LUNA can work with TypeScript projects

UR2-4 C
LUNA can work with JSX projects

UR2-5 C
LUNA can work with projects based on other programming languages

UR2-6 M
LUNA can scan local projects

UR2-7 C
LUNA can scan online project repositories (e.g from GitHub).

UR2-8 M
LUNA can scan projects with dependencies installed

UR2-9 M
LUNA can scan projects without dependencies installed

UR2-10 W
LUNA can scan projects at different times of development using a versioning system (e.g. git)

UR2-11 W
LUNA can show commit information using a versioning system (e.g. git)

UR2-12 M
LUNA can generate HTML reports that visualize library use in projects

UR2-13 W
LUNA can generate reports in other formats (e.g. PDF, XML)

50

APPENDIX A. MOSCOW A.3. GUI

UR2-14 C
LUNA scans can be configured using config files in the project

A.3 GUI

UR3-1 M
LUNA reports display a graph

UR3-2 M
LUNA reports display a menu for graph settings and actions

UR3-3 M
LUNA reports display a menu for node information and actions

UR3-4 S
Each menu option / action has a clear description for the user

A.4 Graph

UR4-1 M
The graph has a source code subgraph component

UR4-2 M
The graph has a libraries’ subgraph component

UR4-3 M
The graph has a dependencies’ subgraph component

UR4-4 M
Every JavaScript file in the project is represented as a node in the source code component

UR4-5 W
Every other file in the project is represented as a node in the source code component

UR4-6 M
Every imported library in the project is represented as a node in the libraries component

UR4-7 M
Every dependency of the libraries in the project is represented as a node in the dependency graph
component

UR4-8 M
The source code component can include inner components representing the folder structure

UR4-9 M
The library component includes inner components representing library categories, e.g external or
internal.

51

A.4. GRAPH APPENDIX A. MOSCOW

UR4-10 M
The dependency graph component shows a different color for the dependency tree of each library

UR4-11 S
A file node may include a subgraph representing a function callgraph

UR4-12 S
A library node may include a subgraph representing its exposed API

UR4-13 M
A function calling another function or library API is represented by a line connecting two nodes

UR4-14 M
If function A calls another function or library API B, then the line connecting nodes A and B has
an arrow pointing from node A to node B

UR4-15 M
A file importing another file or library is represented by a line connecting two nodes

UR4-16 M
If file A imports file or library B, then the line connecting nodes A and B has an arrow pointing
from node A to node B

UR4-17 M
A library depending on another library or dependency is represented by a line connecting two
nodes

UR4-18 M
If library A depends on library B, then the line connecting nodes A and B has an arrow pointing
from node A to node B

UR4-19 M
A node displays the name of the file / function / API / library / dependency

UR4-20 S
Users can choose between different layouts, which define where the nodes are placed

UR4-21 C
The user can interactively change the position of the nodes, e.g by dragging them.

UR4-22 S
The user have the ability to filter which files are shown in the graph

UR4-23 S
The user have the ability to filter which libraries are shown in the graph

UR4-24 W
The user should be able to view the graph in 3D

UR4-25 C
The user can save a screenshot of the graph

52

APPENDIX A. MOSCOW A.5. NODE

UR4-26 S
The user can zoom and pan the graph

UR4-27 S
The user can reset zoom or position

A.5 Node

UR5-1 M
A node in the graph can be highlighted

UR5-2 M
A node in the graph can be selected by clicking or hovering

UR5-3 M
A node in the graph may be collapsed or expanded, depending on if it has children nodes

UR5-4 M
A node in the graph can be displayed in the menu

UR5-5 S
A node in the menu can be highlighted

UR5-6 M
A node in the menu displays information

A.6 Information

UR6-1 M
A node representing a file shows its file name

UR6-2 M
A node representing a file shows its disk location

UR6-3 M
A node representing a file shows its source code size

UR6-4 S
A node representing a file that can be opened, displaying its contents

UR6-5 M
A node representing a library shows its library name

UR6-6 S
A node representing a library shows its library version

UR6-7 S
A node representing a library shows an external link to its corresponding NPM page

53

A.7. SCALABILITY APPENDIX A. MOSCOW

UR6-8 S
A node representing a function call shows its function name

UR6-9 M
A node representing a function call shows its position in the source code file

UR6-10 M
A node representing API shows its function name

A.7 Scalability

UR7-1 M
LUNA can handle projects containing only 1 JavaScript file

UR7-2 M
LUNA can handle projects containing up to 10 JavaScript files

UR7-3 S
LUNA can handle projects containing up to 100 JavaScript files

UR7-4 C
LUNA can handle projects containing up to 1,000 JavaScript files

UR7-5 W
LUNA can handle projects containing over 1,000 JavaScript files

UR7-6 M
LUNA can handle files containing up to 100 LOC

UR7-7 M
LUNA can handle files containing up to 1,000 LOC

UR7-8 S
LUNA can handle files containing up to 10,000 LOC

UR7-9 C
LUNA can handle files containing up to 100,000 LOC

UR7-10 W
LUNA can handle files containing over 100,000 LOC

54

Appendix B

Abstract Syntax Tree

This is the AST from the code snippet of figure 3.1, generated by espree [24].

1 {
2 "type": "Program",
3 "start": 0,
4 "end": 596,
5 "range": [
6 25,
7 596
8],
9 "body": [

10 {
11 "type": "VariableDeclaration",
12 "start": 25,
13 "end": 115,
14 "range": [
15 25,
16 115
17],
18 "declarations": [
19 {
20 "type": "VariableDeclarator",
21 "start": 31,
22 "end": 114,
23 "range": [
24 31,
25 114
26],
27 "id": {
28 "type": "ObjectPattern",
29 "start": 31,
30 "end": 92,
31 "range": [
32 31,
33 92
34],
35 "properties": [
36 {
37 "type": "Property",
38 "start": 33,
39 "end": 48,
40 "range": [
41 33,

55

APPENDIX B. ABSTRACT SYNTAX TREE

42 48
43],
44 "method": false ,
45 "shorthand": true ,
46 "computed": false ,
47 "key": {
48 "type": "Identifier",
49 "start": 33,
50 "end": 48,
51 "range": [
52 33,
53 48
54],
55 "name": "constructString"
56 },
57 "kind": "init",
58 "value": {
59 "type": "Identifier",
60 "start": 33,
61 "end": 48,
62 "range": [
63 33,
64 48
65],
66 "name": "constructString"
67 }
68 },
69 {
70 "type": "Property",
71 "start": 50,
72 "end": 74,
73 "range": [
74 50,
75 74
76],
77 "method": false ,
78 "shorthand": true ,
79 "computed": false ,
80 "key": {
81 "type": "Identifier",
82 "start": 50,
83 "end": 74,
84 "range": [
85 50,
86 74
87],
88 "name": "constructTemplateLiteral"
89 },
90 "kind": "init",
91 "value": {
92 "type": "Identifier",
93 "start": 50,
94 "end": 74,
95 "range": [
96 50,
97 74
98],
99 "name": "constructTemplateLiteral"

56

APPENDIX B. ABSTRACT SYNTAX TREE

100 }
101 },
102 {
103 "type": "Property",
104 "start": 76,
105 "end": 90,
106 "range": [
107 76,
108 90
109],
110 "method": false ,
111 "shorthand": true ,
112 "computed": false ,
113 "key": {
114 "type": "Identifier",
115 "start": 76,
116 "end": 90,
117 "range": [
118 76,
119 90
120],
121 "name": "findReferences"
122 },
123 "kind": "init",
124 "value": {
125 "type": "Identifier",
126 "start": 76,
127 "end": 90,
128 "range": [
129 76,
130 90
131],
132 "name": "findReferences"
133 }
134 }
135]
136 },
137 "init": {
138 "type": "CallExpression",
139 "start": 95,
140 "end": 114,
141 "range": [
142 95,
143 114
144],
145 "callee": {
146 "type": "Identifier",
147 "start": 95,
148 "end": 102,
149 "range": [
150 95,
151 102
152],
153 "name": "require"
154 },
155 "arguments": [
156 {
157 "type": "Literal",

57

APPENDIX B. ABSTRACT SYNTAX TREE

158 "start": 103,
159 "end": 113,
160 "range": [
161 103,
162 113
163],
164 "value": "./ common",
165 "raw": "\"./ common \""
166 }
167]
168 }
169 }
170],
171 "kind": "const"
172 },
173 {
174 "type": "VariableDeclaration",
175 "start": 116,
176 "end": 165,
177 "range": [
178 116,
179 165
180],
181 "declarations": [
182 {
183 "type": "VariableDeclarator",
184 "start": 122,
185 "end": 164,
186 "range": [
187 122,
188 164
189],
190 "id": {
191 "type": "ObjectPattern",
192 "start": 122,
193 "end": 138,
194 "range": [
195 122,
196 138
197],
198 "properties": [
199 {
200 "type": "Property",
201 "start": 124,
202 "end": 136,
203 "range": [
204 124,
205 136
206],
207 "method": false ,
208 "shorthand": true ,
209 "computed": false ,
210 "key": {
211 "type": "Identifier",
212 "start": 124,
213 "end": 136,
214 "range": [
215 124,

58

APPENDIX B. ABSTRACT SYNTAX TREE

216 136
217],
218 "name": "extractCalls"
219 },
220 "kind": "init",
221 "value": {
222 "type": "Identifier",
223 "start": 124,
224 "end": 136,
225 "range": [
226 124,
227 136
228],
229 "name": "extractCalls"
230 }
231 }
232]
233 },
234 "init": {
235 "type": "CallExpression",
236 "start": 141,
237 "end": 164,
238 "range": [
239 141,
240 164
241],
242 "callee": {
243 "type": "Identifier",
244 "start": 141,
245 "end": 148,
246 "range": [
247 141,
248 148
249],
250 "name": "require"
251 },
252 "arguments": [
253 {
254 "type": "Literal",
255 "start": 149,
256 "end": 163,
257 "range": [
258 149,
259 163
260],
261 "value": "./call -graph",
262 "raw": "\"./call -graph\""
263 }
264]
265 }
266 }
267],
268 "kind": "const"
269 },
270 {
271 "type": "VariableDeclaration",
272 "start": 166,
273 "end": 215,

59

APPENDIX B. ABSTRACT SYNTAX TREE

274 "range": [
275 166,
276 215
277],
278 "declarations": [
279 {
280 "type": "VariableDeclarator",
281 "start": 172,
282 "end": 214,
283 "range": [
284 172,
285 214
286],
287 "id": {
288 "type": "ObjectPattern",
289 "start": 172,
290 "end": 187,
291 "range": [
292 172,
293 187
294],
295 "properties": [
296 {
297 "type": "Property",
298 "start": 174,
299 "end": 185,
300 "range": [
301 174,
302 185
303],
304 "method": false ,
305 "shorthand": true ,
306 "computed": false ,
307 "key": {
308 "type": "Identifier",
309 "start": 174,
310 "end": 185,
311 "range": [
312 174,
313 185
314],
315 "name": "extractLibs"
316 },
317 "kind": "init",
318 "value": {
319 "type": "Identifier",
320 "start": 174,
321 "end": 185,
322 "range": [
323 174,
324 185
325],
326 "name": "extractLibs"
327 }
328 }
329]
330 },
331 "init": {

60

APPENDIX B. ABSTRACT SYNTAX TREE

332 "type": "CallExpression",
333 "start": 190,
334 "end": 214,
335 "range": [
336 190,
337 214
338],
339 "callee": {
340 "type": "Identifier",
341 "start": 190,
342 "end": 197,
343 "range": [
344 190,
345 197
346],
347 "name": "require"
348 },
349 "arguments": [
350 {
351 "type": "Literal",
352 "start": 198,
353 "end": 213,
354 "range": [
355 198,
356 213
357],
358 "value": "./library -api",
359 "raw": "\"./ library -api\""
360 }
361]
362 }
363 }
364],
365 "kind": "const"
366 },
367 {
368 "type": "VariableDeclaration",
369 "start": 216,
370 "end": 273,
371 "range": [
372 216,
373 273
374],
375 "declarations": [
376 {
377 "type": "VariableDeclarator",
378 "start": 222,
379 "end": 272,
380 "range": [
381 222,
382 272
383],
384 "id": {
385 "type": "ObjectPattern",
386 "start": 222,
387 "end": 240,
388 "range": [
389 222,

61

APPENDIX B. ABSTRACT SYNTAX TREE

390 240
391],
392 "properties": [
393 {
394 "type": "Property",
395 "start": 224,
396 "end": 238,
397 "range": [
398 224,
399 238
400],
401 "method": false ,
402 "shorthand": true ,
403 "computed": false ,
404 "key": {
405 "type": "Identifier",
406 "start": 224,
407 "end": 238,
408 "range": [
409 224,
410 238
411],
412 "name": "getNodeModules"
413 },
414 "kind": "init",
415 "value": {
416 "type": "Identifier",
417 "start": 224,
418 "end": 238,
419 "range": [
420 224,
421 238
422],
423 "name": "getNodeModules"
424 }
425 }
426]
427 },
428 "init": {
429 "type": "CallExpression",
430 "start": 243,
431 "end": 272,
432 "range": [
433 243,
434 272
435],
436 "callee": {
437 "type": "Identifier",
438 "start": 243,
439 "end": 250,
440 "range": [
441 243,
442 250
443],
444 "name": "require"
445 },
446 "arguments": [
447 {

62

APPENDIX B. ABSTRACT SYNTAX TREE

448 "type": "Literal",
449 "start": 251,
450 "end": 271,
451 "range": [
452 251,
453 271
454],
455 "value": "./dependency -graph",
456 "raw": "\"./ dependency -graph\""
457 }
458]
459 }
460 }
461],
462 "kind": "const"
463 },
464 {
465 "type": "VariableDeclaration",
466 "start": 312,
467 "end": 386,
468 "range": [
469 312,
470 386
471],
472 "declarations": [
473 {
474 "type": "VariableDeclarator",
475 "start": 318,
476 "end": 385,
477 "range": [
478 318,
479 385
480],
481 "id": {
482 "type": "ObjectPattern",
483 "start": 318,
484 "end": 367,
485 "range": [
486 318,
487 367
488],
489 "properties": [
490 {
491 "type": "Property",
492 "start": 320,
493 "end": 328,
494 "range": [
495 320,
496 328
497],
498 "method": false ,
499 "shorthand": true ,
500 "computed": false ,
501 "key": {
502 "type": "Identifier",
503 "start": 320,
504 "end": 328,
505 "range": [

63

APPENDIX B. ABSTRACT SYNTAX TREE

506 320,
507 328
508],
509 "name": "basename"
510 },
511 "kind": "init",
512 "value": {
513 "type": "Identifier",
514 "start": 320,
515 "end": 328,
516 "range": [
517 320,
518 328
519],
520 "name": "basename"
521 }
522 },
523 {
524 "type": "Property",
525 "start": 330,
526 "end": 337,
527 "range": [
528 330,
529 337
530],
531 "method": false ,
532 "shorthand": true ,
533 "computed": false ,
534 "key": {
535 "type": "Identifier",
536 "start": 330,
537 "end": 337,
538 "range": [
539 330,
540 337
541],
542 "name": "dirname"
543 },
544 "kind": "init",
545 "value": {
546 "type": "Identifier",
547 "start": 330,
548 "end": 337,
549 "range": [
550 330,
551 337
552],
553 "name": "dirname"
554 }
555 },
556 {
557 "type": "Property",
558 "start": 339,
559 "end": 346,
560 "range": [
561 339,
562 346
563],

64

APPENDIX B. ABSTRACT SYNTAX TREE

564 "method": false ,
565 "shorthand": true ,
566 "computed": false ,
567 "key": {
568 "type": "Identifier",
569 "start": 339,
570 "end": 346,
571 "range": [
572 339,
573 346
574],
575 "name": "extname"
576 },
577 "kind": "init",
578 "value": {
579 "type": "Identifier",
580 "start": 339,
581 "end": 346,
582 "range": [
583 339,
584 346
585],
586 "name": "extname"
587 }
588 },
589 {
590 "type": "Property",
591 "start": 348,
592 "end": 356,
593 "range": [
594 348,
595 356
596],
597 "method": false ,
598 "shorthand": true ,
599 "computed": false ,
600 "key": {
601 "type": "Identifier",
602 "start": 348,
603 "end": 356,
604 "range": [
605 348,
606 356
607],
608 "name": "relative"
609 },
610 "kind": "init",
611 "value": {
612 "type": "Identifier",
613 "start": 348,
614 "end": 356,
615 "range": [
616 348,
617 356
618],
619 "name": "relative"
620 }
621 },

65

APPENDIX B. ABSTRACT SYNTAX TREE

622 {
623 "type": "Property",
624 "start": 358,
625 "end": 365,
626 "range": [
627 358,
628 365
629],
630 "method": false ,
631 "shorthand": true ,
632 "computed": false ,
633 "key": {
634 "type": "Identifier",
635 "start": 358,
636 "end": 365,
637 "range": [
638 358,
639 365
640],
641 "name": "resolve"
642 },
643 "kind": "init",
644 "value": {
645 "type": "Identifier",
646 "start": 358,
647 "end": 365,
648 "range": [
649 358,
650 365
651],
652 "name": "resolve"
653 }
654 }
655]
656 },
657 "init": {
658 "type": "CallExpression",
659 "start": 370,
660 "end": 385,
661 "range": [
662 370,
663 385
664],
665 "callee": {
666 "type": "Identifier",
667 "start": 370,
668 "end": 377,
669 "range": [
670 370,
671 377
672],
673 "name": "require"
674 },
675 "arguments": [
676 {
677 "type": "Literal",
678 "start": 378,
679 "end": 384,

66

APPENDIX B. ABSTRACT SYNTAX TREE

680 "range": [
681 378,
682 384
683],
684 "value": "path",
685 "raw": "\"path\""
686 }
687]
688 }
689 }
690],
691 "kind": "const"
692 },
693 {
694 "type": "VariableDeclaration",
695 "start": 387,
696 "end": 432,
697 "range": [
698 387,
699 432
700],
701 "declarations": [
702 {
703 "type": "VariableDeclarator",
704 "start": 393,
705 "end": 431,
706 "range": [
707 393,
708 431
709],
710 "id": {
711 "type": "ObjectPattern",
712 "start": 393,
713 "end": 412,
714 "range": [
715 393,
716 412
717],
718 "properties": [
719 {
720 "type": "Property",
721 "start": 395,
722 "end": 410,
723 "range": [
724 395,
725 410
726],
727 "method": false ,
728 "shorthand": true ,
729 "computed": false ,
730 "key": {
731 "type": "Identifier",
732 "start": 395,
733 "end": 410,
734 "range": [
735 395,
736 410
737],

67

APPENDIX B. ABSTRACT SYNTAX TREE

738 "name": "generateFlatAST"
739 },
740 "kind": "init",
741 "value": {
742 "type": "Identifier",
743 "start": 395,
744 "end": 410,
745 "range": [
746 395,
747 410
748],
749 "name": "generateFlatAST"
750 }
751 }
752]
753 },
754 "init": {
755 "type": "CallExpression",
756 "start": 415,
757 "end": 431,
758 "range": [
759 415,
760 431
761],
762 "callee": {
763 "type": "Identifier",
764 "start": 415,
765 "end": 422,
766 "range": [
767 415,
768 422
769],
770 "name": "require"
771 },
772 "arguments": [
773 {
774 "type": "Literal",
775 "start": 423,
776 "end": 430,
777 "range": [
778 423,
779 430
780],
781 "value": "flast",
782 "raw": "\"flast\""
783 }
784]
785 }
786 }
787],
788 "kind": "const"
789 },
790 {
791 "type": "VariableDeclaration",
792 "start": 433,
793 "end": 471,
794 "range": [
795 433,

68

APPENDIX B. ABSTRACT SYNTAX TREE

796 471
797],
798 "declarations": [
799 {
800 "type": "VariableDeclarator",
801 "start": 439,
802 "end": 470,
803 "range": [
804 439,
805 470
806],
807 "id": {
808 "type": "ObjectPattern",
809 "start": 439,
810 "end": 452,
811 "range": [
812 439,
813 452
814],
815 "properties": [
816 {
817 "type": "Property",
818 "start": 441,
819 "end": 450,
820 "range": [
821 441,
822 450
823],
824 "method": false ,
825 "shorthand": true ,
826 "computed": false ,
827 "key": {
828 "type": "Identifier",
829 "start": 441,
830 "end": 450,
831 "range": [
832 441,
833 450
834],
835 "name": "promisify"
836 },
837 "kind": "init",
838 "value": {
839 "type": "Identifier",
840 "start": 441,
841 "end": 450,
842 "range": [
843 441,
844 450
845],
846 "name": "promisify"
847 }
848 }
849]
850 },
851 "init": {
852 "type": "CallExpression",
853 "start": 455,

69

APPENDIX B. ABSTRACT SYNTAX TREE

854 "end": 470,
855 "range": [
856 455,
857 470
858],
859 "callee": {
860 "type": "Identifier",
861 "start": 455,
862 "end": 462,
863 "range": [
864 455,
865 462
866],
867 "name": "require"
868 },
869 "arguments": [
870 {
871 "type": "Literal",
872 "start": 463,
873 "end": 469,
874 "range": [
875 463,
876 469
877],
878 "value": "util",
879 "raw": "\"util\""
880 }
881]
882 }
883 }
884],
885 "kind": "const"
886 },
887 {
888 "type": "VariableDeclaration",
889 "start": 472,
890 "end": 522,
891 "range": [
892 472,
893 522
894],
895 "declarations": [
896 {
897 "type": "VariableDeclarator",
898 "start": 478,
899 "end": 521,
900 "range": [
901 478,
902 521
903],
904 "id": {
905 "type": "ObjectPattern",
906 "start": 478,
907 "end": 496,
908 "range": [
909 478,
910 496
911],

70

APPENDIX B. ABSTRACT SYNTAX TREE

912 "properties": [
913 {
914 "type": "Property",
915 "start": 480,
916 "end": 488,
917 "range": [
918 480,
919 488
920],
921 "method": false ,
922 "shorthand": true ,
923 "computed": false ,
924 "key": {
925 "type": "Identifier",
926 "start": 480,
927 "end": 488,
928 "range": [
929 480,
930 488
931],
932 "name": "readFile"
933 },
934 "kind": "init",
935 "value": {
936 "type": "Identifier",
937 "start": 480,
938 "end": 488,
939 "range": [
940 480,
941 488
942],
943 "name": "readFile"
944 }
945 },
946 {
947 "type": "Property",
948 "start": 490,
949 "end": 494,
950 "range": [
951 490,
952 494
953],
954 "method": false ,
955 "shorthand": true ,
956 "computed": false ,
957 "key": {
958 "type": "Identifier",
959 "start": 490,
960 "end": 494,
961 "range": [
962 490,
963 494
964],
965 "name": "stat"
966 },
967 "kind": "init",
968 "value": {
969 "type": "Identifier",

71

APPENDIX B. ABSTRACT SYNTAX TREE

970 "start": 490,
971 "end": 494,
972 "range": [
973 490,
974 494
975],
976 "name": "stat"
977 }
978 }
979]
980 },
981 "init": {
982 "type": "CallExpression",
983 "start": 499,
984 "end": 521,
985 "range": [
986 499,
987 521
988],
989 "callee": {
990 "type": "Identifier",
991 "start": 499,
992 "end": 506,
993 "range": [
994 499,
995 506
996],
997 "name": "require"
998 },
999 "arguments": [

1000 {
1001 "type": "Literal",
1002 "start": 507,
1003 "end": 520,
1004 "range": [
1005 507,
1006 520
1007],
1008 "value": "fs/promises",
1009 "raw": "\"fs/promises \""
1010 }
1011]
1012 }
1013 }
1014],
1015 "kind": "const"
1016 },
1017 {
1018 "type": "VariableDeclaration",
1019 "start": 523,
1020 "end": 552,
1021 "range": [
1022 523,
1023 552
1024],
1025 "declarations": [
1026 {
1027 "type": "VariableDeclarator",

72

APPENDIX B. ABSTRACT SYNTAX TREE

1028 "start": 529,
1029 "end": 551,
1030 "range": [
1031 529,
1032 551
1033],
1034 "id": {
1035 "type": "Identifier",
1036 "start": 529,
1037 "end": 533,
1038 "range": [
1039 529,
1040 533
1041],
1042 "name": "glob"
1043 },
1044 "init": {
1045 "type": "CallExpression",
1046 "start": 536,
1047 "end": 551,
1048 "range": [
1049 536,
1050 551
1051],
1052 "callee": {
1053 "type": "Identifier",
1054 "start": 536,
1055 "end": 543,
1056 "range": [
1057 536,
1058 543
1059],
1060 "name": "require"
1061 },
1062 "arguments": [
1063 {
1064 "type": "Literal",
1065 "start": 544,
1066 "end": 550,
1067 "range": [
1068 544,
1069 550
1070],
1071 "value": "glob",
1072 "raw": "\"glob\""
1073 }
1074]
1075 }
1076 }
1077],
1078 "kind": "const"
1079 },
1080 {
1081 "type": "VariableDeclaration",
1082 "start": 553,
1083 "end": 596,
1084 "range": [
1085 553,

73

APPENDIX B. ABSTRACT SYNTAX TREE

1086 596
1087],
1088 "declarations": [
1089 {
1090 "type": "VariableDeclarator",
1091 "start": 559,
1092 "end": 595,
1093 "range": [
1094 559,
1095 595
1096],
1097 "id": {
1098 "type": "Identifier",
1099 "start": 559,
1100 "end": 570,
1101 "range": [
1102 559,
1103 570
1104],
1105 "name": "randomColor"
1106 },
1107 "init": {
1108 "type": "CallExpression",
1109 "start": 573,
1110 "end": 595,
1111 "range": [
1112 573,
1113 595
1114],
1115 "callee": {
1116 "type": "Identifier",
1117 "start": 573,
1118 "end": 580,
1119 "range": [
1120 573,
1121 580
1122],
1123 "name": "require"
1124 },
1125 "arguments": [
1126 {
1127 "type": "Literal",
1128 "start": 581,
1129 "end": 594,
1130 "range": [
1131 581,
1132 594
1133],
1134 "value": "randomcolor",
1135 "raw": "\" randomcolor \""
1136 }
1137]
1138 }
1139 }
1140],
1141 "kind": "const"
1142 }
1143],

74

APPENDIX B. ABSTRACT SYNTAX TREE

1144 "sourceType": "module"
1145 }

Listing B.1: AST of the snippet of the LUNA’s scanner.js

75

Appendix C

Form

This is a Google Form to gather feedback for LUNA. It is available online1.

C.1 Questions

1https://forms.gle/8JS12P2uxU8nWBRx7

77

https://forms.gle/8JS12P2uxU8nWBRx7

C.1. QUESTIONS APPENDIX C. FORM

78

APPENDIX C. FORM C.1. QUESTIONS

79

C.1. QUESTIONS APPENDIX C. FORM

80

APPENDIX C. FORM C.1. QUESTIONS

81

C.1. QUESTIONS APPENDIX C. FORM

82

APPENDIX C. FORM C.1. QUESTIONS

83

C.1. QUESTIONS APPENDIX C. FORM

84

APPENDIX C. FORM C.1. QUESTIONS

85

C.1. QUESTIONS APPENDIX C. FORM

86

APPENDIX C. FORM C.1. QUESTIONS

87

C.1. QUESTIONS APPENDIX C. FORM

88

APPENDIX C. FORM C.1. QUESTIONS

89

C.2. ANSWERS APPENDIX C. FORM

C.2 Answers

90

APPENDIX C. FORM C.2. ANSWERS

91

C.2. ANSWERS APPENDIX C. FORM

92

APPENDIX C. FORM C.2. ANSWERS

93

C.2. ANSWERS APPENDIX C. FORM

94

APPENDIX C. FORM C.2. ANSWERS

95

C.2. ANSWERS APPENDIX C. FORM

96

APPENDIX C. FORM C.2. ANSWERS

97

C.2. ANSWERS APPENDIX C. FORM

98

APPENDIX C. FORM C.2. ANSWERS

99

C.2. ANSWERS APPENDIX C. FORM

100

APPENDIX C. FORM C.2. ANSWERS

101

C.2. ANSWERS APPENDIX C. FORM

102

APPENDIX C. FORM C.2. ANSWERS

103

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem description
	Relevancy
	Software Engineers
	Library Developers
	Security Experts

	Research questions

	Related Work
	Background
	Software Architecture
	Software Libraries
	Visualization

	Literature

	Methodology
	Approach
	JavaScript
	Objective
	Abstract Syntax Tree
	Analysis
	Report
	Graph
	Cytoscape
	Extensions
	Source Code Component
	Libraries Component
	Dependency Graph Component
	Optimization

	Graph Layouts
	Dagre
	Breadthfirst
	Cola
	Cose-Bilkent
	Elk

	Interface
	Graph Menu
	Node Menu

	Testing

	Results
	Research question 1 (RQ1)
	Research question 2 (RQ2)
	Research question 3 (RQ3)
	Main research question (RQ0)

	Discussion
	Comparison with Similar Projects
	CodeGraph
	HUNTER
	Eunice
	NPMGraph
	JSCity
	MetropolJS
	js2flowchart.js
	JSClassFinder
	Source Code Explorer

	Implications
	Researchers
	Practitioners

	Threats to validity
	Construct
	Internal
	External

	Future work
	Scanner
	Visualization
	User Interface
	Bugs
	Beyond LUNA

	Conclusion
	Bibliography
	Appendix
	MoSCoW
	Constraints
	Project
	GUI
	Graph
	Node
	Information
	Scalability

	Abstract Syntax Tree
	Form
	Questions
	Answers

