
 Eindhoven University of Technology

MASTER

Analysis and Geometric Interpretation of PDE-G-CNNs

Bon, Daan L.J.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2c9a29eb-9b66-410e-a4bf-4075ffc045a2

Eindhoven University of Technology

Analysis and Geometric Interpretation of

PDE-G-CNNs

Author: D.L.J. Bon

Supervisor: R. Duits

Co-supervisor: G. Bellaard

July 21, 2022

Master thesis

Contents

1 Introduction 2
1.1 Research Objectives . 8
1.2 Structure of the Report . 9

2 Preliminary Theory 10
2.1 Riemannian Geometry . 10
2.2 Lie Groups . 18

2.2.1 Lie Groups . 18
2.2.2 Homogeneous Spaces . 20
2.2.3 Riemannian Geometry on Lie Groups . 21
2.2.4 Cartan Connections . 22

2.3 The homogeneous Spaces Md . 24
2.3.1 The 2-dimensional Case M2 and SE(2) . 24

3 PDE-G-CNNs 29
3.1 Equivariance . 29
3.2 Lifting Layer . 30
3.3 PDE Activation Functions . 31

3.3.1 Convection . 32
3.3.2 Diffusion . 33
3.3.3 Dilation and Erosion . 33

4 Asymptotics 37
4.1 Simple Global Bounds . 38
4.2 Motivating Example . 39
4.3 Taylor Expansion Bound . 41
4.4 Dual Norm Bound . 47

4.4.1 Dual Norm in b Coordinates . 47
4.4.2 Comparison between ρb and dG . 48

4.5 Comparison between the Bounds . 52

5 Visualization and Interpretation 54
5.1 Lines Data Set . 54
5.2 Performance on Easy Data Set . 55
5.3 Visualization of Trained PDE-G-CNNs . 61

5.3.1 PDE layer . 61
5.4 Further Experiments . 67

6 Conclusion 71

A Details of Computations 73

B Experiment Details 75
B.1 Easy Data Set . 75
B.2 Medium Data Set . 76

C Lifting Layer 77

Page 1

Master thesis

1 Introduction

Convolutional Neural Networks (CNNs) have been extensively researched and used in recent years.
Ever since LeCun et al. showed how successful CNNs can be on real world image classification
problems [1], the interest for CNNs has grown. This became especially true with the increase in
hardware performance. However, CNNs suffer from a few flaws. For one, CNNs (and artificial
neural networks in general) are often described as “black boxes”: they lack interpretability in
the sense that one does not know how the network reaches a conclusion. Furthermore, CNNs
usually do not respect the inherent structure of the data they are trained on. Think of an image
segmentation task. It is logical that when we rotate an image, its segmentation should also be
rotated, as the rotation does not change the objects depicted. However, for CNNs, there is no
guarantee that this actually happens.

These “invariances” of the data e.g., rotating an image does not change what it is depicting, are
called symmetries. Requiring that the network respects certain symmetries is called equivariance
of the network with respect to these symmetries. One possible way to achieve this equivariance
is through data augmentation: add explicitly transformed data to the existing data set so that a
networks can learn the symmetries. An alternative would be to alter the structure of the network
such that invariance is guaranteed. Not only does this prevent the need for training on a (much)
larger augmented data set, it also allows the network to “focus” its learning on the essence of the
task, without also having to learn the symmetries involved. One way to include specific symmetries
in CNNs is described in [2], where the authors introduce Group Equivariant Convolutional Neural
Networks (G-CNNs). The networks presented are translation, rotation and reflection equivariant,
as opposed to only the translation equivariance found in regular CNNs. A sample of papers
exploring this topic further is [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In [24], a PDE-based framework for CNNs is presented that generalizes G-CNNs. The authors
present PDE-based Group CNNs (PDE-G-CNNs), in which the usual non-linearities that are
present in CNNs, for example ReLU activation functions and max-pooling, are replaced by solvers
for specific non-linear evolution equations. This idea is depicted in Figure 1, where we compare a
traditional CNN layer with a PDE-G-CNN layer. Figure 2 shows more details about the evolution
equation. There are several advantages to using these PDE-based layers. For one, the PDEs
used in PDE-G-CNNs come from the world of geometric image analysis, and thus their effects
are geometrically interpretable. They also generalize the usual operations that are used in CNNs,
ReLUs and max-pooling. Lastly, the PDEs are not restricted to data living on R2, and can be
formulated on so called homogeneous spaces. This allows for a natural way to require the network
to be equivariant with respect to desired symmetries, based on the homogeneous space used. The
main use cases of PDE-G-CNNs are image processing tasks that are inherently symmetric to
translations and rotations, of which image classification is one. In order to achieve equivariance
of the network, we will lift images to the space of positions and orientations M2, and do the
processing there using PDE-G-CNNs. The overall architecture for such a network can be seen in
Figure 3, where the task is to extract the continuous line from the image.

Figure 1: The difference between a traditional CNN layer and a PDE-G-CNN layer. Note that
both still make use of linear combinations between layers. Each PDE has several parameters that
can be trained by the network. Taken from [24] with permission.

Page 2

Master thesis

Figure 2: The used evolution PDE in more detail. It contains four terms, corresponding to the
terms in the figure. This PDE is solved through operator splitting, which involves solving for each
of the terms separately. We will primarily be concerned with convection, dilation and erosion is
this report. Taken from [24] with permission.

Figure 3: The overall architecture for a PDE-G-CNN performing image classification on the Line
data set, which we will introduce later in this report. All of the processing using PDE layers
happens on the homogeneous space M2.

Lifting an image to M2, which as a set is given by R2 × S1, means that for each position we
determine locally how much the image is aligned with a specific orientation. The result of this is
called the orientation score of the image. Since this score depends on position and orientation,
it naturally lives in M2. See Figure 4 for an visualization of a lifted image. Next to allowing for
equivariant processing using PDE-G-CNNs, working in M2 instead of in R2 also has the advantage
that the networks have explicit access to more information about the image in the form of this
orientation score. It has been shown that doing processing on M2, or its higher dimensional
analogues, has advantages over regular image processing [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41].

Page 3

Master thesis

Figure 4: An example of an image together with its orientation score. We can see that the 2d
image is transformed in a 3d object, the orientation score. These orientation scores are what the
main part of the PDE-G-CNNs is processing, see Figure 3. Notice that the lines that are crossing
in the left image are disentangled in the orientation score.

The inspiration for using orientation scores in image analysis comes from biology. The Nobel
laureates Hubel and Wiesel discovered that certain visual cells in the striate cortex of cats have a
directional preference, firing more when the viewed image contains the specific orientation that is
preferred [42]. It has turned out that the majority of the visual cortex exhibits such a preference
for specific orientations [43].

Moreover, it turns out that neurons that fire for a specific orientation excite neighboring neurons
with an orientation that “aligns”. Petitot proposed a model for the distribution of the orientation
preference and this exciting of neighbors based on sub-Riemannian geometry in [36]. In this paper
he also relates the phenomenon of preference of aligned orientations to the concept of association
fields [44], which model how a specific local orientation puts expectations on surrounding local
orientations in human vision. Such activations of local orientations around a given local orientation
have also been measured [43] on the visual cortex of mammalians. Figure 5 shows what these
measured association fields look like. In [28] the authors propose an model for these association
fields using (horizontal) exponential curves on SE(2).

These association field lines are more closely approximated by (projected) sub-Riemannian geodesics
in the space of positions and orientations SE(2) [45]. For now, we can think of SE(2) as the same
thing as M2. Moreover, [46] showed that certain anisotropic Riemannian geodesics converge to
these sub-Riemannian geodesics for increasing anisotropy of the Riemannian metric. [47] showed
that this convergence is in fact very rapid, so that in practical applications anisotropic Rieman-
nian geometry on SE(2) is a good model for association fields. In Figure 6 we can see how a
Riemannian metric on SE(2) gives rise to association fields.

Page 4

Master thesis

Figure 5: Association field lines from neurogeometry [36, 44] are empirical line propagation models
for contour perception. Finding a local orientation at the center (within the circle) imposes visual
expectations of local orientations p = (x, y, θ) in the surroundings along the depicted field lines.
Such field lines are either modeled by projected (horizontal) exponential curves (co-circularity
[28]) or by cusp-free projected sub-Riemannian geodesics in M2 [45]. There is something to say
for both models: ‘shortest’ curves in the sub-Riemannian manifold are geodesics whereas the
‘straight’ curves w.r.t. Cartan connection are exponential curves [48, Thm.1]. See Fig. 6 where
sub-Riemannian balls on M2 and projected horizontal exponential curves are depicted.

Figure 6: On the left we see level sets of a Riemannian distance in M2. On the right we have
plotted a projected level set, together with horizontal exponential curves, which are a model for
the association fields (See Fig. 5) in the visual system of mammalians, cf. [36, 44, 43, 42]

In PDE-G-CNNs we train such Riemannian geometries for the processing of the image, recall
Figure 2. In other words we train association fields. The Riemannian metrics that are trained are
part of two effects in the PDE evolution, dilation (related to “excitation” from neurogeometry) and
erosion (related to “inhibition”). Dilation and erosion are related to the gray-scale morphology
operations by the same names [49]. These operations mimic the effect of excitation and inhibition
of neighboring positions and orientations, depending on whether they are aligned or not. This
alignment now depends on the trained metric in the network. The hope is that PDE-G-CNNs are
able to combine these learned association fields to higher level geometric units, called geometric
units describing shapes (geons) [50]. Our leading example of this will be line-detection in images,
like in Figure 7a. We see that applying dilation and erosion once has the ability to enhance
lines present, see Figure 7b. The general idea of this is depicted in Figure 8, where elementary
geometrical units, the association fields, combine into a global line detector. Examples of this can
be seen in trained PDE-G-CNNs in Figure 9, and will be explored later on in this report.

Page 5

Master thesis

(a) On the left we have the original image, which has a line running through it. We can see this line by
connecting the two green dots, following the local orientation of the line segments. On the right we have
the orientation score of the image on the left.

(b) On the right we now see the orientation score of the image in (a), after having done dilation and
erosion. On the left we see this orientation score projected down to R2. Note how this dilation and
erosion in M2 allows us to find the outline of the line in R2. The Riemannian metrics (association fields)
we used to apply dilation and erosion are visualized below as the green and red kernels. This visualization
will be explained in Section 5.

Figure 7: An example of how dilation and erosion in M2 can lead to line completion in images. In
PDE-G-CNNs, these operations are done by all channels in each layer.

Page 6

Master thesis

Figure 8: An example of how elementary geometric neurons combine to form geometric units
describing shape (geons). On the left we see an association field, responding to a certain local
orientation, i.e. a point (x, y, θ); here (x, y) is the center position and θ = π

2 the orientation. In
the middle we see how several of these basic units (the association fields) might interact in order
to get a curved line filter, as on the right. In green we depict ‘excitation’ (line extrapolation) that
we will model later by dilation PDEs on M2. In red we see ‘inhibition’ (line sharpening) that we
will model later by erosion PDEs on M2.

Figure 9: Showing the principle of Figure 8 in a real application of PDE-G-CNNs (where we
depict spatially projected feature maps computed on each orientation score node in the PDE-G-
CNN network), line detection in an image. This will be explained in greater detail in Section 5.

Page 7

Master thesis

1.1 Research Objectives

PDE-G-CNNs seem to have many advantages over regular CNNs: the performance is better despite
serious reductions of network complexity, fewer parameters and less training data are needed (as
recent experiments show), and they are equivariant to more symmetries than standard CNNs [24].

However, there are still several pertinent questions that we want to address. Next we list them as
the three main objectives of this master project, with references to the answers further on in the
report in blue.

A) Improve the Assessment of the Quality of Analytic Approximations for PDE-G-CNNs.
The solver for the evolution PDE uses certain approximations, specifically for the dilation
and erosion part. The approximations are motivated by a rough asymptotic expansion [24,
App.A] and supported with a few numerical verifications in [24, Fig.9] with limited spatial
anisotropy. Since in the sub-Riemannian case (where spatial anisotropy tends to infinity) one
must resort to different analytic approximations [29, ch.5.4], we know that there are ranges
of parameter settings where the approximations breakdown. There are three sub-goals that
we tackle in our assessment:

1. Identify the region where the analytic kernel approximations of PDE-G-CNNs in [24, 51]
are guaranteed to be sufficiently accurate.
Remark (4.13)

2. Check whether the trained parameters indeed satisfy the requirements under 1.
Section (5.2)

3. Provide sharper bounds and more accurate asymptotic expansions than in [24, Lemma 5.7,App.A].
Theorem (4.8) and Theorem (4.12), and Theorem 4.9

B) Visualize the PDE-G-CNN network-architecture (and its trained analytic ker-
nels).
We want to do this with the following sub-goals in mind for the visualizations:

1. Visualize the separate modules in a PDE-G-CNNs layer (dilation, erosion and convec-
tion) in a geometrically interpretable way.
Section 5.3, Figure 29

2. Visualize the full network in such a way that allows us to confirm or deny geometric
expectations (from geometric processing on orientation scores).
Section 5.3, Figure 30

3. We can use the visualizations in such a way to identify essential parts of the network.
Section 5.3, Figure 30

C) Study the functioning and application of (sub-)Riemannian PDE-G-CNN models
on test data.
Here we address two sub-goals:

1. Compare the classification performances of (Riemannian and sub-Riemannian) PDE-
G-CNNs and CNNs.
Section 5.2, Figure 21 and Section 5.4, Figure 31

2. A PDE-G-CNN essentially applies an association field in each connection between two
nodes (orientation scores) in the network (recall Figure 8). When we iterate applying
association field on association field can we see the creation of geons in the feature maps
of test images? Is it indeed more intuitive than with a CNN?
Section 5.2, Figures 23,24, 25 and Section 5.4, Figures 32, 33

Page 8

Master thesis

1.2 Structure of the Report

This report has the following structure. Section 2 contains the theoretical background for the
remainder of this report. This primarily consists of some Riemannian geometry and Lie group
theory. Section 3 contains a more elaborate introduction to PDE-G-CNNs, where we go into more
detail about how they work. Section 4 contains the new results about the quality of the approx-
imate distances used in the PDE solver in PDE-G-CNNs. Section 5 contains new visualizations
and geometric interpretations of PDE-G-CNNs, partly based on the new results from the previous
section. Lastly, Section 6 contains the conclusion and future research directions.

All of the code used for this project can be found at https://github.com/d-bon/master_

project. Parts of this report are being adapted into a paper for publishing.

Page 9

https://github.com/d-bon/master_project
https://github.com/d-bon/master_project

Master thesis

2 Preliminary Theory

Since PDE-G-CNNs make use of Riemannian geometry and some Lie group and homogeneous
space theory, we will start with a small introduction to these subjects. We will present some basic
results, and where relevant provide a proof of the presented statements. We will introduce the basic
concepts of Riemannian geometry, including metric tensors, distances, geodesics, connections, the
curvature tensor and end with normal coordinates. For Lie groups we introduce left-invariant
vector fields, the Lie algebra, the exponential map, homogeneous spaces of Lie groups and we
show how Riemannian geometry on Lie groups can interact with the additional structure. We
end with introducing the spaces of positions and orientations Md, with particular details for the
two-dimensional case.

For a general introduction to the subject of Riemannian geometry see for example [52] and [53].
For a general introduction to Lie groups see for example [54] and several chapters in [55]. We
assume the reader is familiar with the basic concepts of differential geometry, such as manifolds,
tangent spaces, functions between manifolds and their derivatives. For a general introduction to
this subject, see for example [55].

2.1 Riemannian Geometry

In the remainder of this section, we let M denote a smooth manifold of dimension d, and p ∈ M
is some arbitrary point on M . We will denote the space of smooth vector fields on M by X(M).
We will make use of the Einstein summation convention.

We would like to have some concept of geometry on M , i.e. have some concept of distances
between two points on the manifold. This is done by defining an inner product on each tangent
space.

Definition 2.1 (Riemannian metric). A Riemannian metric G is a smooth covariant 2-tensor field
on M , which when restricted to p ∈M is an inner product on TpM . A Riemannian manifold is a
smooth manifold M together with a Riemannian metric G.

This already gives us a concept of geometry on a fixed tangent space. If X,Y ∈ TpM , we will use
the notation G(X,Y) to denote the inner product between X and Y , or Gp(X,Y) if we want to

stress the point in which we are looking. We let ||X||G =
√

G(X,X) denote the length of a vector.
Given some local coordinate chart x = (x1, · · · , xd) for U ⊂ M , we can write the metric G in the
form

G = gijdx
i ⊗ dxj ,

where gij : U → R are called the metric components (w.r.t. the coordinate chart x). We would
now like to use this construction to define a distance between points on the manifold itself, not
just on the tangent spaces. One way to do this is by looking at smooth curves on M , and defining
length for these objects, using our metric G. If [a, b] is some closed interval, a smooth function
γ : [a, b] → M is called a curve in M . Assuming for convenience that we can express this in one
local coordinate system, γ(t) = (x1(t), · · · , xd(t)), we have that

d

dt
γ(t) =

∑
i

ẋi(t)∂xi
∈ Tγ(t)M.

Using our metric we can measure the velocity of this curve at each point. Hence it makes sense
to define the length of the curve γ, denoted by L(γ), as

L(γ) :=

∫ b

a

|| d
dt
γ(t)||G dt.

Page 10

Master thesis

Furthermore we define the energy of γ, denoted by E(γ), as

E(γ) :=
1

2

∫ b

a

|| d
dt
γ(t)||2Gdt.

Using these definitions we can define a distance on our manifold. Let p, q ∈M , then the distance
between these points is given by

d(p, q) := inf {L(γ)|γ : [a, b] →M is a piece-wise smooth curve with γ(a) = p, γ(b) = q} . (1)

For convenience we assume here that our manifold M is path-connected, so that we can actually
find such a piece-wise smooth curve connecting our two points. All of the examples of manifolds
we will use in this report are path-connected. This distance is a true distance, in the sense that it
satisfies the usual axioms of a distance function.

Since we will need it later on, we present some basic relations between the length and the energy
of a curve. The proofs of the following two lemmas are straightforward.

Lemma 2.2. Let γ : [a, b] → M be a smooth curve. If s : [α, β] → [a, b] is a reparametrization,
then

L(γ ◦ s) = L(γ),

i.e. the length functional is invariant under reparametrizations.

Lemma 2.3. Let γ : [a, b] →M be a smooth curve. We have that

L(γ)2 ≤ 2(b− a)E(γ),

with equality if and only if || ddtγ|| is constant on [a, b].

In (1) it suffices to look at regular curves, i.e. curves that do not have a vanishing derivative. By
Lemma 2.2 we can thus only consider curves parameterized by arc length. Using Lemma 2.3 this
means we can also minimize energy instead of length for such curves. For the energy functional,
we can compute the Euler-Lagrange equations.

Lemma 2.4. The Euler-Lagrange equations for the energy functional E are given by

ẍi + Γijk(x(t)) ẋ
j(t)ẋk(t) = 0, i = 1, · · · , d.

Here the dot denotes the time derivative, and Γijk are called the Christoffel symbols. They are
given in terms of the metric components

Γijk =
1

2
gil (gjl,k + gkl,j − gjk,l) ,

where gij denotes the inverse matrix of gij, and gij,k = ∂xkgij.

The above system of differential equations are also called the geodesic equations, and curves satis-
fying them are called geodesics. Geodesics have constant speed, as a straight forward computation
shows. Because we can always reparametrize the geodesics, whenever we use geodesics we will
assume that they are parametrized by arc length. By the Picard-Lindelöf Theorem we have the
following result.

Page 11

Master thesis

Theorem 2.5. Let (M,G) be a Riemannian manifold, (p, v) ∈ TM . Then there exists an ε > 0
and an unique geodesic γ : [0, ε] → M such that γ(0) = p, γ̇(0) = v. In addition, γ depends
smoothly on p and v.

Definition 2.6. Let p ∈M . Define Vp := {v ∈ TpM : γv is defined on [0, 1]}. Then

expp : Vp →M, v 7→ γv(1),

is called the (Riemannian) exponential map.

We want to note that Vp always contains some neighborhood of 0 ∈ TpM , but in general shall
not be equal to TpM . Using the exponential map, we can construct a convenient set of local
coordinates around a fixed point p called normal coordinates. They are constructed in such a
way that geodesics on the manifold correspond to straight lines in this (local) coordinate system.
Moreover, as we will see, they allow for a convenient expansion of the metric around p. Before
defining these coordinates we need another result about the exponential map.

Theorem 2.7. Let p ∈M be some arbitrary point. The exponential map expp maps some neigh-
borhood of 0 ∈ TpM diffeomorphically onto a neighborhood of p.

Proof.
We are going to show that the differential of expp in 0 has full rank, from which we can conclude
that it is a local diffeomorphism around 0 by the inverse function theorem for manifolds. Because
TpM is a linear space, the differential of expp at 0 can be seen as a map d expp : TpM → TpM .
For v ∈ TpM we have that

d expp(0)(v) =
d

dt
γtv(1)|t=0

=
d

dt
γv(t)|t=0

= γ̇v(0)

= v.

So, d expp(0) is the identity map on TpM , and thus has full rank.

Now we can define the normal coordinates we discussed above, and prove some important prop-
erties of them.

Definition 2.8 (normal coordinates, neighborhood). Let p0 ∈ M be some arbitrary point, and
let exp : Tp0M →M be the Riemannian exponential map. Let V be a star-shaped neighborhood
of p0 such that exp restricted to this neighborhood is a diffeomorphism. Then U = exp(V) ⊂M is
called a normal neighborhood of p0. Given an orthonormal basis ei for Tp0M we get the canonical
identification B : Rn → Tp0M . We can then combine this with the inverse of the exponential map
to get a coordinate chart y = B−1 ◦ (exp |V)−1 : U → Rn. Such coordinates are called normal
coordinates. We usually specify the pair (U, y) as a normal neighborhood of p0.

Lemma 2.9. Let p0 ∈M , and let (U, y) be a normal neighborhood of p0. Then

a) The metric components w.r.t. the normal coordinates in p0 are gij = δij.

b) Geodesics starting from p0 to p ∈ U in the normal coordinates are straight lines, i.e.

γ(t) = t(y1(p), · · · , yn(p)).

Page 12

Master thesis

c) The Christoffel symbols in p0 all vanish.

d) The partial derivatives of gij at p0 are 0.

Proof.
For a), let ei be the orthonormal basis for Tp0M . Note that if y is the normal coordinate chart,
we have that

y−1 = exp |V ◦B,

and so the differential of this map at 0 ∈ Rn is given by

d(y−1)0 = d(exp |V)0 ◦ dB0 = I ◦B = B.

This follows from the fact that d(exp)0 = I and because B is linear. Hence we have that

∂i|p0 = dy−1
0 (∂i|0) = B(∂i|0) = ei.

So at p0, the coordinate vectors and the chosen orthonormal basis coincide, hence expressing our
metric in these coordinates, we have that gij(p0) = δij .

For b), we recall the property of the exponential map that for v ∈ TM , the geodesic γv is given
by

γv(t) = exp(tv),

whenever this is defined. So, composing this with our coordinate chart we get that the coordinates
of the geodesic are

y ◦ γv(t) = B−1 ◦ exp−1 ◦ exp(tv) = tB−1(v).

For c), let v ∈ TpM be arbitrary, and consider the geodesic γv(t) = tv. The geodesic equation in
this coordinate system simplifies to

Γijk(tv)v
jvk = 0.

Setting t = 0 we thus see that Γijk(0)v
jvk = 0. If we choose v = ek for some k we get that

Γikk(0) = 0. Now for k ̸= l, consider the vectors v1 = ek + el and v2 = ek − el. Substituting these
into the geodesic equation we get

Γikl(0) + Γilk(0) = 0, Γikl(0)− Γilk = 0.

Subtracting these from each other allows us to conclude Γikl(0) = 0. Thus all Christoffel symbols
vanish at p0.

For d), note that since gij(0) = δij , we have that gij = δij , so that

Γijk(0) =
1

2
(gji,k(0) + gki,j(0)− gjk,i(0)) .

Next we calculate, making use of the symmetry gij = gji,

Γijk(0)− Γkij(0) = gij,k − gjk,i = 0.

Page 13

Master thesis

Making use of this property allows us to conclude that

Γijk =
1

2
(2gij,k) = 0,

so that we see that gij,k = 0.

As mentioned above, these coordinates allow for an expansion of the metric in a convenient way.
It relates the geometry of the manifold to how much the metric deviates from being a euclidean
metric. The above lemma already implies that gij(p) = δij +O(||y(p)||2) via a Taylor expansion.
We now aim to refine this by calculating the next term in the series. Before we do this though, we
have to introduce another very important concept in Riemannian geometry, the curvature tensor,
which will turn up in this series expansion. To do this we first introduce connections.

Definition 2.10 (Connection). An affine connection on the tangent bundle is a map∇ : C∞(TM)×
C∞(TM) −→ C∞(TM), written as

(X,Y) 7→ ∇XY,

satisfying the properties

a) The map is C∞(M) linear in its first argument

∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y.

b) The map is linear (NOT C∞(M) linear) in the second argument,

c) It satisfies a product rule. For f ∈ C∞(M) we have

∇X(fY) = f∇XY + (Xf)Y.

Given a connection, we define its Christoffel symbols, Γkij , relative to some chart x = (x1, · · · , xn)
by

∇∂xi∂xj = Γkij∂xk .

Connections serve as a generalization of directional derivatives and can be used for defining a
(equivalent) notion of shortest paths on a Riemannian manifold. Note that in this definition
we do not use the additional structure of a Riemannian manifold. Placing requirements on the
connection which makes it interact nicely with this additional structure allows us to single out an
unique connection, called the Levi-Civita connection. These two requirements are torsion freeness
and metric compatibility.

Definition 2.11 (Torsion free connection). A connection ∇ is called torsion free (or symmetric)
if it satisfies

∇XY −∇YX = [X,Y] =: XY − Y X.

Definition 2.12 (Metric compatible). A connection ∇ is metric compatible with a Riemannian
metric G if it satisfies

G(∇XY, Z) + G(Y,∇XZ) = X(G(Y, Z)).

Page 14

Master thesis

Metric compatibility resembles a differentiation rule that the Euclidean inner product satisfies.
For the Levi-Cevita connection, the definition of its Christoffel symbols above and the previous
definition given coincide, which is why we used the same name and symbol. Next we introduce
the Riemannian curvature tensor R : X(M)× X(M)× X(M) −→ X(M) define by

R(X,Y)Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y]Z. (2)

This is a (1, 3) tensor field on M . We can thus write this in terms of local coordinates as

R = Rlijkdx
i ⊗ dxj ⊗ dxk ⊗ ∂xl ,

with R(∂i, ∂j)∂k = Rlijk∂l. We have the following formula for the components in terms of the
Christoffel symbols

Proposition 2.13. Let ∇ be the Levi-Cevita connection of some Riemannian manifold (M,G),
and Γkij its Christoffel symbols. In some local coordinate system x = (x1, · · · , xn) we have that the
curvature tensor can be written as

Rlijk = Γljk,i − Γlik,j + ΓmjkΓ
l
im − ΓmikΓ

l
jm.

Proof.
Let us use the notation ∂i = ∂xi for convenience. We write out R(∂i, ∂j)∂k. This gives us

R(∂i, ∂j)∂k = ∇∂i∇∂j∂k −∇∂j∇∂i∂k −∇[∂i,∂j]∂k

= ∇∂i∇∂j∂k −∇∂j∇∂i∂k

= ∇∂iΓ
m
jk∂m −∇∂jΓ

m
ik∂m

= ∂mΓmjk,i + Γmjk∇∂i∂m − ∂mΓmik,j − Γmik∇∂j∂m

= ∂mΓmjk,i − ∂mΓmik,j + ΓmjkΓ
l
im∂l − ΓmikΓ

l
jm∂l.

So, comparing this new expression with Rlijk∂l allows us to conclude that

Rlijk = Γljk,i − Γlik,j + ΓmjkΓ
l
im − ΓmikΓ

l
jm.

Lastly we define the curvature function κ : C∞(M)× C∞(M) → C∞(M) by

κ(X,Y) = G(R(X,Y)Y,X). (3)

This is closely related to the sectional curvature Kp : Tp(M)×Tp(M) → R, which is a normalized
variant of the curvature function

Kp(X|p, Y |p) =
κ(X|p, Y |p)

|X|p|2|Y |p|2 − g(X|p, Y |p)
. (4)

We are now finally ready to prove the last result about general Riemannian geometry we will
need for this report. In the next lemma we will calculate the next term in the expansion gij(p) =
δij +O(||y(p)||2).

Page 15

Master thesis

Remark 2.14. In order to define the Hessian of a function f : M → R, we need to choose a
connection ∇. Connections can uniquely be extended to act on all tensor fields on M . We will not
go into detail on this here as we will not need this further. The Hessian of f is then defined by
letting the connection act on the differential of f , Hf = ∇df , which in local coordinates looks like

∇df =
(
∂xi∂xjf − ∂xkfΓkij

)
dxi ⊗ dxj ,

with Γkij the Christoffel symbols of ∇.

Because we will be working with the Levi-Cevita connection below, for which we have proven that
the Christoffel symbols vanish in normal coordinates, we do not have to worry about the additional
effect of the connection and we can just compute the Hessian as we would normally do.

Lemma 2.15. Let p0 ∈M be given, and let (U, y) be a normal neighborhood of p0. For p ∈ U the
components of the metric tensor relative to this coordinate system can be written as (with y = y(p))

gij(y) = δij −
1

3

n∑
k,l=1

Rikjl y
kyl +O(||y||3). (5)

Proof.
As mentioned we show this using a Taylor expansion. Lemma 2.9 already shows that the zeroth
and first order terms are correct. We now calculate the Hessian of gij . Taking the above remark
into consideration, we can calculate the Hessian as we are used to.

We start by establishing the identity gij,k = Γlkiglj + Γlkjgil. Notice that we can write ∂kgij
as ∂kG(∂i, ∂j), so that we can apply the metric compatibility of the Levi-Cevita connection to
conclude

∂kgij = G(∇∂k∂i, ∂j) + G(∂i,∇∂k∂j)

= G(Γnki∂n, ∂j) + G(∂i,Γnkj∂n)
= Γnkignj + Γnkjgin.

We now calculate gij,kl(0) using this characterization of gij,k. Making use of the fact that gij(0) =
δij and gij,k(0) = 0 we get that

gij,kl(0) = Γjki,l(0) + Γikj,l(0). (6)

Next, we claim that Γkij,l(0) + Γkjl,i(0) + Γkli,j(0) = 0. To show this consider some vector v ∈ U ,
and the geodesic passing through v, given by γv(t) = ty(v). We saw in the lemma above that the
geodesic equations reduce to

Γkij(tv)vivj = 0.

If we differentiate this to t, and set t = 0 we get that

Γkij,l(0)vlvivj = 0.

This is a homogeneous polynomial of degree 3 in the coefficients vi, that vanishes at least on some
open set. This means that each coefficient in front of vivjvl must be equal to 0. This is exactly

Page 16

Master thesis

equal to all permutations of i, j, l in Γkij,l. Furthermore from the symmetry gij = gji we get that

Γkij = Γkji, so that we can conclude that

Γkij,l(0) + Γkjl,i(0) + Γkli,j(0) = 0. (7)

Now from proposition 2.13, combined with lemma 2.9, we know that Rlijk(p0) = Rijkl(p0) =

Γljk,i(0)− Γlik,j(0). Combining this fact together with (7) we get that

Riklj(p0) +Rilkj(p0) = 3Γjkl,i(0).

Finally, we can use the above identity in (6) to conclude that

gij,kl(0) = Γjki,l(0) + Γikj,l(0)

=
1

3
(Rlkij +Rlikj +Rlkji +Rljki)

=
1

3
(Rlkij +Rlikj −Rlkij +Rljki)

= −1

3
(Rlijk +Rkijl) .

This proves the lemma.

The last thing we want to show is how to solve advection PDEs on smooth manifolds, using the
method of characteristics. Consider the evolution equation below, with f some smooth function
on M and c a smooth vector field on M .

Lemma 2.16. Let f be a smooth function on M and c be a smooth vector field on M . The
solution to the following advection PDE

{
∂W
∂t (p, t) = −cW (p, t)
W (p, 0) = f(p),

(8)

is given by

W (p, t) = f(γp(−t)),

where γp : R →M is an integral curve of the vector field c, starting at p.

Proof.
From the method of characteristics, we know that d

dtW (γp(t), t) = 0, which can be verified by

d

dt
W (γp(t), t) =

∂W

∂t
(γ(t), t) + ⟨dW (·, t)|γp(t), γ̇p(t)⟩

=
∂W

∂t
(γ(t), t) + ⟨dW (·, t)|γp(t), c|γp(t)⟩

=
∂W

∂t
(γ(t), t) + cW (p, t)

= 0.

Page 17

Master thesis

We thus see that

W (γp(t), t) =W (γp(0), 0) = f(p).

Now using the fact that γγp(t)(−t) = p, which we visualized in Figure 10, we get that the solution
is given by

W (p, t) = f(γp(−t)).

Figure 10: A figure illustrating the idea that γγp(t)(−t) = p. We first walk along the curve γ, to
then walk backwards again for the same amount of time.

Remark 2.17. We want to remark that in general, integral curves will not exist for all t ∈ R.
However, we will see below that for our purpose, this (implicit) assumption will be sufficient.

2.2 Lie Groups

In this section we collect some basic facts about Lie groups, with the aim of calculating the
curvature of a Lie group endowed with a left-invariant metric. In particular, we present where
possible both general theory and apply this to the example of interest, the group SE(2) of rigid
body motions in the plane. The aim is to provide some basic facts about SE(2), ending with
calculating the curvature for particular left-invariant metrics on this Lie group.

2.2.1 Lie Groups

Lie groups are differentiable or smooth manifolds endowed with a group structure that respects
the smooth manifold structure.

Definition 2.18 (Lie group). A Lie group is a smooth manifold G, together with a group structure
on the set G such that the functions

µ : (x, y) 7→ x · y (= xy), ι : x 7→ x−1,

are smooth.

Page 18

Master thesis

We denote left translation by some fixed element g of G with Lg, i.e. Lg : G→ G with Lg(h) = gh,
and similarly we denote right translation by Rg. We now have present a definition of an important
construct on G:

Definition 2.19. A smooth vector field X on G is called left-invariant if we have that for all
g1, g2 ∈ G

X|g1g2 = (Lg1)∗X|g2 . (9)

The set of all left-invariant vector fields forms a linear subspace of X(G), as taking linear com-
binations of such vector fields retains the left-invariance property. It turns out that this linear
subspace has the same dimension as the tangent space at the identity of G, Te(G). This follows
from the fact that the values of a left-invariant vector field are completely determined by its value
in a single point. In particular, for X ∈ TeG we introduce the notation vX for the vector field
defined as

vX(g) = (Lg)∗X,

which obviously is a left-invariant vector field by construction.

On the space of vector fields we furthermore have the commutator bracket, which for general
vector fields X,Y is given by [X,Y] = XY − Y X. It turns out that this bracket also respects the
left-invariance property, that is if X,Y are left-invariant, so is [X,Y]. This additional structure
on the linear space of left-invariant vector fields is called a Lie algebra. We denote the linear space
of left-invariant vector fields, together with the bracket, by g. A Lie algebra is abstractly defined
as

Definition 2.20 (Lie algebra). A Lie algebra is a linear space V equipped with a bracket opera-
tion, a bilinear map [·, ·] : V × V −→ V such that for X,Y, Z ∈ V we have

a) [X,Y] = −[Y,X]

b) [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0

The bracket of a Lie algebra can be concisely described by the structure constants, which are the
coefficients ckij such that

[ei, ej] =

n∑
i=1

ckijek, (10)

where {ei} is a basis for the Lie algebra. Note that the structure constants are anti-symmetric in
the two lower indices, due to the anti-symmetry of the bracket.

Left translation also gives rise to an important group action, which we will need later on. Consider
some space of functions defined on G, denoted by F (G). This could for example be bounded
functions, continuous functions, etc. We then define the following actions of G on F (G).

Definition 2.21. Let G be a Lie group, and let g ∈ G. The right-regular representation R : G→
F (G) is defined by

RgU(h) = U(hg) for all h ∈ G,U ∈ F (G).

Similarly, the left-regular representation L : G→ F (G) is defined by

Page 19

Master thesis

LgU(h) = U(g−1h) for all h ∈ G,U ∈ F (G).

For X ∈ TeG, we now consider the maximal integral curve αX of the vector field vX , with initial
point e. From general results we know that integral curves always exist for some time interval
(−ε, ε), however for these integral curves we can prove they behave better, as the following lemma
shows.

Lemma 2.22. Let X ∈ TeG. The maximal integral curve αX has domain R. For all t, s ∈ R, it
satisfies αX(t+ s) = αX(t)αX(s).

Proof.
Let α be any integral curve for vX , with an arbitrary initial point. For g ∈ G, define αg(t) =
Lgα(t) = gα(t). Differentiating αg with respect to t we find that

d

dt
αg(t) = Tα(t)Lg

d

dt
α(t) = Tα(t)LgvX |α(t) = vX |αg(t),

which tells us that left-translations still result in integral curves of vX . We will use this as follows.
Let I ⊂ R be the interval of definition for αX , the maximal integral curve, and fix some t1 ∈ I.
Put x1 = α(t1), and define α1(t) = x1α(t). This is an integral curve for vX with initial point x1,
and is defined for t ∈ I. However, the maximal integral curve of vX with starting point x1 is given
by α2(t) = αX(t + t1), with domain I − t1, by definition of α as maximal curve. Hence we need
to have that I ⊂ I − t1, or s+ t1 ⊂ I for all s, t1 ∈ I, implying that I = R.

Now, fix some s ∈ R. From the discussion above it follows that both t 7→ αX(s)αX(t) and
t 7→ αX(s+ t) are maximal integral curves for vX with initial point αX(s), hence we conclude they
must be the same, giving us αX(s)αX(t) = αX(s+ t).

We can now define the Lie group exponential as follows

Definition 2.23. Let X ∈ TeG, and let αX be defined as above. We then define exp : TeG→ G
by

exp(X) = αX(1).

We will also use the notation eX := exp(X).

We want to note that this is an entirely different notion from the Riemannian exponential map
we have seen before. We will refer to both as the exponential map, and where confusion can arise
specify which one is meant. Now, if we would want to calculate this mapping, this definition is
not the most convenient to use, as it would require us to find the integral curve, which amounts
to solving a system of coupled ODEs. In certain cases, like with matrix groups, this exponential
map coincides with a well known function, for matrices this is the matrix exponential.

2.2.2 Homogeneous Spaces

For groups, the notion of an action of the group on some mathematical object is important, as
it tells us something about symmetries present in this object. There is a natural analog of this
notion for Lie groups, where we require compatibility with the smooth structure of the Lie group.

Definition 2.24. Let M be a smooth manifold, and G a Lie group. We say that G acts smoothly
from the left on M if there exists a smooth map ⊙ : G×M →M such that

a) e⊙ x = x for all x ∈M ,

b) g ⊙ (h⊙ x) = gh⊙ x for all g, h ∈ G, x ∈M .

Page 20

Master thesis

Whenever the action is clear, we will omit the ⊙ symbol.

Such an action is said to be transitive if for x, y ∈M there exists a g ∈ G such that x = g⊙ y. In
words this means we can ”translate” any point on M to any other point using our group action.

A smooth manifold M together with a smooth, transitive action of some Lie group G is called a
homogeneous space.

Theorem 2.25. Let M be a homogeneous space of G, and let p ∈M be arbitrary. The manifolds
M and G/stabG(p) are diffeomorphic.

The previous theorem shows that each homogeneous space can be identified with some Lie group
quotient G/H, where H is a closed subgroup of G. Note that H needs to be closed, because
stabG(p) is always closed, due to continuity of the action. We will usual adopt this viewpoint of
homogeneous spaces, as quotient spaces, and thus if p ∈ G/H we have to keep in mind that p is
an equivalence class.

We briefly want to mention that on homogeneous spaces, we can also make sense of left-invariant
vector fields. We do this by replacing the left-translation Lg in Definition 2.19 by the left-action
of G on the homogeneous space.

2.2.3 Riemannian Geometry on Lie Groups

Note that all of the above definitions are for general Riemannian manifolds. We now wish to
take a particular look at Lie groups that have a metric that ”respects the group structure”, i.e.
left-invariant metrics.

Definition 2.26. A Riemannian metric G on a Lie group G is called left-invariant if all left
translations are isometries. This means that for g, h ∈ G, X,Y ∈ Tg(M) we have that

Gg(X,Y) = Ghg((Lh)∗X, (Lh)∗Y).

Note that, as was similar for left-invariant vector fields, a left-invariant metric is determined by
the inner product we assign to the tangent space at the identity. We thus only need to specify
one symmetric positive definite matrix to fix a left-invariant metric. Also note that this definition
again translates naturally to a concept of left-invariant metrics on homogeneous spaces, similar to
the left-invariant vector fields.

Left-invariant metrics satisfy the nice property that the distance they induce is invariant under
left-translations, as the following lemma shows.

Lemma 2.27. Let G be a lie group, G a left-invariant metric. We then have that for g1, g2 ∈ G

d(g1, g2) = d(e, g−1
1 g2) = d(g−1

1 g2, e). (11)

Proof.

Let γ : [0, 1] → G be a piece-wise smooth curve connecting g1 and g2. Then consider the curve
Lg−1

1
◦ γ. This curve connects e with g−1

1 g2, and by left-invariance of the metric we find that

Page 21

Master thesis

L(Lg−1 ◦ γ) =
∫ 1

0

|| d
dt
Lg−1

1
◦ γ(t)||dt

=

∫ 1

0

√
Gg−1

1 γ(t)

(
d

dt
Lg−1

1
◦ γ(t), d

dt
Lg−1

1
◦ γ(t)

)
dt

=

∫ 1

0

√
Gg−1

1 γ(t)

(
(Lg−1

1
)∗γ̇(t), (Lg−1

1
)∗γ̇(t)

)
dt

=

∫ 1

0

√
Gγ(t) (γ̇(t), γ̇(t))dt

= L(γ).

So we can identify the set of smooth curves connecting g1 and g2 with the set of smooth curves
connecting e with g−1

1 g2 in such a way that the length of the curves is the same. From this we thus
conclude that d(g1, g2) = d(e, g−1

1 g2). The last equality follows from the fact that d is a distance,
and thus it is symmetric in its arguments.

From now on we assume that G on G is a left-invariant metric. Note that given two left-invariant
vector fields X,Y the function g 7→ G(X,Y) is constant, as its value is completely determined
from the value at e ∈ G

G(X|g, Y |g) = G(Te(Lg)X|e, Te(Lg)Y |e) = G(X|e, Y |e).

This means that for any other vector field Z, we have that

Z(G(X,Y)) = 0. (12)

Following [56], we can use this to show that in left-invariant frames, the curvature for left-invariant
metrics is completely determined by the structure constants, equation 10. Given an orthonormal
basis {ei} of g, we denote the structure constants by ckij . We first claim that we can write the
structure constants as

ckij = G([ei, ej], ek), (13)

which follows from the orthonormality of the frame. Using the fact that ∇ is torsion free and
metric-compatible, equation (12) and the orthonormality of the frame we can obtain a formula for
∇eiej as follows

∇eiej =
∑
k

1

2

(
ckij − cijk + cjki

)
ek. (14)

Since the Riemannian curvature tensor is completely determined by ∇, we see that indeed only
the structure constants will determine the curvature in this frame.

2.2.4 Cartan Connections

Although we see that the extra structure on the Lie group allows us to say something more about
the Levi-Cevita connection then in the general case, we can look for a connection which respects
the structure of our Lie group in a different way. This will lead to so called Cartan connections.

Page 22

Master thesis

Definition 2.28 (Left-invariant connections). A connection ∇ on G is called left-invariant if for
all left-invariant vector fields X,Y we have that ∇XY is also left-invariant.

As was the case with left-invariant vector fields and metrics, left-invariant connections correspond
to an object only living on the Lie algebra g, namely bi-linear forms.

Lemma 2.29. There is a bijection between the set of left-invariant connections and the set of
bi-linear forms on g.

Proof.
Let ∇ be given, and let Xv, Yv ∈ g be arbitrary. Since ∇ is a connection, and ∇XY ∈ g,
∇ : g× g → g is R linear, i.e. defines a bilinear form on the Lie algebra.

Let α be a bi-linear form on the Lie algebra. Let {Xi} be some basis for g. Define aij = α(Xi, Xj).
For general vector fields Y = f iXi, Z = gjXj define the connection by

∇Y Z = f i
(
(Xig

j)Xj + gjaij
)
.

If Y and Z are left-invariant, that is f i and gj are constant, we see that we indeed get a left-
invariant vector field again, so this connection is indeed left-invariant.

Recall that if we require that a connection is torsion-free and metric compatible we fix an unique
one, so we cannot expect that our left-invariant connections will satisfy these conditions. We
wonder when such a left-invariant connection is torsion-free. By the lemma above we might as
well characterize such connections by bi-linear forms. So let α be a bi-linear form, and ∇α be
the connection associated with it. First of, we can always write a bi-linear form as the sum of a
symmetric and anti-symmetric form, α = αs + αa. We then have that the torsion tensor of ∇α is
given by (evaluated on X,Y ∈ g)

T (X,Y) = ∇α
XY −∇α

YX − [X,Y] = α(X,Y)− α(Y,X)− [X,Y] = 2αa(X,Y)− [X,Y].

Hence we see that a connection ∇α is symmetric/torsion-free iff αa(X,Y) = 1
2 [X,Y].

We call a left-invariant connection that additionally satisfies that exponential curves are auto-
parallel a Cartan connection [57]. Since we are working on a Lie algebra, we have already have
a bi-linear form on this space. We denote the connection that is induced by the bi-linear form
αν(X,Y) = ν[X,Y] by ∇[ν], and call these the Lie-Cartan connections. We thus see that if ν = 1

2 ,
this connection is symmetric.

The curvature relative to this connection, which is obtained by replacing the Levi-Cevita connec-
tion in 2 by this connection, is given by (again with X,Y, Z ∈ g)

R(X,Y)Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y]Z

= ∇Xν[Y,Z]−∇Y ν[X,Z]− ν[[X,Y], Z]

= ν2[X, [Y,Z]]− ν2[Y, [X,Z]] + ν[Z, [X,Y]]

= ν(1− ν)[Z, [X,Y]].

Relative to a left-invariant frame we thus have that the components of the curvature tensor are
given by

Rkijl = ν(1− ν)

n∑
q=1

ckiqc
q
jl, (15)

where ckij are the structure constants of the frame, from equation (10).

Page 23

Master thesis

Remark 2.30. Recall from the introduction that association field lines are either modeled by
exponential curves or by geodesics. The first have parallel velocity w.r.t. Cartan connection whereas
the geodesics have parallel momentum. For an intuitive visualisation see [57, Fig.7].

2.3 The homogeneous Spaces Md

Of particular interest in image analysis and to us in this report are the homogeneous spaces of
positions and orientations, which we will be introduced below.

For this we first define the Special Euclidean group, SE(d), which is the Lie group consisting of
rigid body motions. As a set, SE(d) = Rd × SO(d), however it does not carry the direct product
group operation, but its group operation is instead given by

(x1, R1)(x2, R2) = (x1 +R1x2, R1R2).

One readily verifies this is a group product with inverse given by

(x,R)−1 = (−R−1x,R−1),

where R−1 denotes the inverse of the matrix element R ∈ SO(d). The way we construct the
homogeneous space of positions and orientations begins with fixing some reference axis in Sd−1,
denoted by a. The Lie group SO(d) naturally acts on Sd−1 ⊂ Rd via matrix multiplication.
Consider the subgroup of SO(d) that leaves a invariant. We can identify this subgroup with
SO(d − 1). The homogeneous space Md is then given by the quotient SE(d)/H, with H =
{0} × SO(d − 1), seeing SO(d − 1) as a subgroup of SO(d) using the reference axis a. As a set,
Md = Rd × Sd−1. For calculations with distances, we often need a reference element in Md, for
which we choose p0 = (0,a).

2.3.1 The 2-dimensional Case M2 and SE(2)

All of the applications in this report will be concerned with gray-scale two-dimensional image
data, so that we have to consider the particular case M2. We will need some details about M2 for
our applications, which are collected here.

Since for the two dimensional case H = {0} × SO(1) = {0} × {e} is the trivial subgroup, we
have that M2 = SE(2)/{e} ∼= SE(2), i.e. they are diffeomorphic manifolds. Although we will use
both of these manifolds throughout this report, we need to mention that there is still a distinction
between M2 and SE(2), as strictly speaking they do not carry the same structure. In particular,
SE(2) carries a group structure while M2 does not. For our fixed reference element in M2, we will
choose p0 = (0, 0, 0) ∈ R2 × S1.

We now provide some details about SE(2). Since as a set, SE(2) = R2×SO(2), its elements have
the form (x, y,Rθ) with x, y ∈ R and Rθ ∈ SO(2) ⊂ R2×2. However, because SO(2) ∼= (R/2πZ),
we can also identify SE(2) with R2×(R/2πZ), and thus elements can also be written as g = (x, y, θ
mod 2π) with θ ∈ R. Lastly, we identified M2 with R2 × S1, where we see S1 ⊂ R2, so that we
may also write elements in SE(2) as (x, y,n(θ)) for θ ∈ R and n(θ) = (cos(θ), sin(θ)). We will
use all of these identifications interchangeably, and refer to this as the ”fixed coordinate system”.
These relations are summarized in equation (16) below.

R2 × (R/2πZ) ∋ (x, y, θ) ↔ p = (x, y,n(θ))︸ ︷︷ ︸
∈M2=R2×S1

↔ g = (x, y,Rθ) ∈ SE(2) (16)

Page 24

Master thesis

Figure 11: Figure showing the action of SE(2) on the (trivial) homogeneous space M2. This action
is the same as the group product because we can identify SE(2) and M2.

For g1 = (x1, y1, θ1), g2 = (x2, y2, θ2) ∈ SE(2) the group product is explicitly given by

(x1, y1, θ1)(x2, y2, θ2) = (x1 + x2 cos θ − y2 sin θ, y1 + x2 sin θ + y2 cos θ, θ1 + θ2 mod 2π). (17)

The Lie group SE(2) also has an important action on R2, namely the rotating and translating of
elements of R2. For g = (x, Rθ) ∈ SE(2) and v ∈ R2 this action is given by

g ⊙ v = Rθv + x. (18)

Given the fixed coordinate system (16) on SE(2), a natural basis for TeSE(2) is given by

A1 = ∂x|e, A2 = ∂y|e A3 = ∂θ|e. (19)

As discussed before, tangent vectors at the identity give rise to left-invariant vector fields through
left-multiplication. The corresponding vector fields of the basis above are given by

A1 = cos(θ)∂x + sin(θ)∂y, A2 = − sin(θ)∂x + cos(θ)∂y, A3 = ∂θ. (20)

We show how this is computed for A1. Let g = (x, y, θ) ∈ SE(2) be given and f some smooth
function on SE(2). We then compute

A1|gf = L∗
g∂x|ef

= ∂x|e(f ◦ Lg)

= lim
t→0

f
(
(x, y, θ)(t, 0, 0)

)
− f

(
(x, y, θ)

)
t

= lim
t→0

f
(
(x+ t cos(θ), y + t sin(θ), θ

)
− f

(
(x, y, θ)

)
t

= cos(θ)∂xf + sin(θ)∂yf.

The other two vector fields are done in a similar fashion. Since SE(2) is three dimensional, these
three vector fields in fact form a basis for the Lie algebra of SE(2). We will calculate the structure
constants next. The only non-zero ones are in fact

Page 25

Master thesis

[A1,A3] = −A2, [A2,A3] = A1.

We show the computation of the first bracket, the other ones are done in a similar fashion.

[A1,A3] = (cos(θ)∂x + sin(θ)∂y) ∂θ − ∂θ (cos(θ)∂x + sin(θ)∂y)

= cos(θ)∂x∂θ + sin(θ)∂y∂θ + sin(θ)∂x − cos(θ)∂x∂θ − cos(θ)∂y − sin(θ)∂y∂θ

= sin(θ)∂x − cos(θ)∂y

= −A2.

Next, we want to discuss the exponential map of SE(2), as this will be very important for later on.
One way we could compute it would be by identifying SE(2) with a matrix group, where we could
use that the Lie group exponential is the same as the matrix exponential. However recall from
Lemma 2.16 that convection PDEs are solved by integral curves. Since the exponential curves are
defined as integral curves, we can use this fact to compute the exponential map. Note that if we
want the integral curve of a left-invariant vector field at some point g ∈ G, all we have to do is
left translate the integral curve at the identity e, due to the left-invariance of the vector field. We
thus have that

Corollary 2.31. Let f be a smooth function on G, and let c = ciAi be a left-invariant vector
field. The solution to the advection PDE

{
∂W
∂t (g, t) = −cW (g, t)
W (g, 0) = f(p),

(21)

is given by transportation along exponential curves,

W (g, t) = f(g exp(−tciAi)).

Remark 2.32. We want to remark that for left-invariant convection we have more structure than
in the general case. We will show this without going into much detail Note that t 7→ exptc

iAi is a
one-parameter subgroup, so that we may write

R
e−tciAi

=
(
R
e−

t
n

ciAi

)n
=

(
I − t

n
dR(ciAi) +O

(
(
t

n
)2
))n

→ e−tdR(ciAi).

Here dR(ciAi) is the generator of RciAi
, and can be thought of as a kind of derivative of the

operator. This relation can be summarised as follows

e−tdR(A) = Re−tA = R−1
etA

(22)

What we can now do is write out this PDE in fixed coordinates and look for the characteristic
curves, which will be exactly the exponential curves we are looking for. For this we use the
representation of c via equation (28) to write the convection PDE as


∂W
∂t (g, t) =

(
c1 cos(θ)− c2 sin(θ)

)
∂xW

+
(
c1 sin(θ) + c2 cos(θ)

)
∂yW

+ c3∂θW,
W (p, 0) = f(p).

(23)

Page 26

Master thesis

Having rewritten it suggestively as this, we can compute the characteristic curves γ(t) = (x(t), y(t), θ(t))
quite easily by solving


ẋ(t) = c1 cos(θ(t))− c2 sin(θ(t)),
ẏ(t) = c1 sin(θ(t)) + c2 cos(θ(t)),

θ̇(t) = c3.
(24)

We only solve this for the initial condition γ(t) = (0, 0, 0), as we already know that all the other
curves can be obtained from left-translations. The solution to this system for c3 ̸= 0 is given by


x(t) = 1

c3

(
c1 sin(θ(t) + c2 (cos(θ(t))− 1)

)
,

y(t) = 1
c3

(
c1 (1− cos(θ(t))) + c2 sin(θ(t))

)
,

θ(t) = c3t,

(25)

and for c3 = 0 it is given by γ(t) = (c1t, c2t, 0), i.e. straight lines in the spatial domain. Using
some standard trigonometric identities, we can find a formula that holds for all cases, which is the
following expression

ec
iAi =


(
c1 cos(c3/2)− c2 sin(c3/2)

)
sinc(c3/2)(

c1 sin(c3/2) + c2 cos(c3/2)
)
sinc(c3/2)

c3

 . (26)

We call exponential curves with c2 = 0 horizontal exponential curves, recall this notion from the
introduction. Next we will discuss some aspects of Riemannian geometry on Lie groups for M2.
Let ωi denote the dual elements to Ai. From the relation

A1

A2

A3

 =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

∂x∂y
∂θ

 , (27)

we can easily see that ωi can be expressed in terms of dx, dy, dθ as follows

ω1 = cos(θ)dx+ sin(θ)dy, ω2 = − sin(θ)dx+ cos(θ)dy, ω3 = dθ. (28)

We will primarily be interested in metrics that have the following form

G = giiω
i ⊗ ωi, (29)

with gii > 0 constant, i.e. we consider diagonal metrics w.r.t. the covectors ωi. We will use G
to exclusively denote metrics of this form. This metric is in fact a left-invariant metric, which
is due to the fact that Ai are left-invariant and gii are constant. We will denote the distance
induced by this metric with dG . For p ∈ M2, we will use the following short notation: dG(p) =
dG(p, p0) = dG(p, (0, 0, 0)). In the introduction we talked about anisotropic Riemannian metrics.
We can now define what we mean by this. For metrics G of this particular form we define the
(spatial) anisotropy by

ζ :=
max(g11, g22)

min(g11, g22)
. (30)

Page 27

Master thesis

A highly anisotropic metric thus means ζ ≫ 1.

The last thing we need to discuss about SE(2) is an alternative coordinate system, that we will
use later on. Since the exponential mapping always is invertible in a neighborhood of the identity
element e, it has an inverse on this neighborhood denoted by log. In the case of SE(2), the
exponential map is even surjective so that we can use the logarithm to define coordinates on the
entire manifold by identifying TeSE(2) with R3 through the basis Ai. We denote these coordinates
with c, and we thus have that

c(g) = (c1(g), c2(g), c3(g)) such that ec
i(g)Ai = g. (31)

We have the explicit formula for these coordinates below.

(c1(g), c2(g), c3(g)) =
(
x cos(θ/2)+y sin(θ/2)

sinc(θ/2) , −x sin(θ/2)+y cos(θ/2)
sinc(θ/2) , θ

)
(32)

We furthermore define the modified logarithmic coordinates, or half-angle coordinates b as

(b1(g), b2(g), b3(g)) = (x cos(θ/2) + y sin(θ/2),−x sin(θ/2) + y cos(θ/2), θ) . (33)

These have the nice property that the Euclidean norm of the spatial part remains the same, i.e.

√
|b1|2 + |b2|2 =

√
x2 + y2, (34)

which is expected, as b1, b2 are just rotated x, y coordinates.

Page 28

Master thesis

3 PDE-G-CNNs

In order to be able to answer the questions we posed in the introduction, we need to provide
some more details about PDE-G-CNNs. As we mentioned in the introduction, the PDE-G-CNNs
replace the usual activation functions found in CNNs by solutions to a specific evolution PDE,
recall Figures 1 and 2. Figure 3 showed an example of the whole architecture of a PDE-G-CNN
for a specific line detection in images. This specific use case will be introduced later, for now we
want to make some of the ideas mentioned in the introduction more concrete.

In order to do this, let us introduce some notation. We index the depth (the number of layers) of
the network with l, and denote the width (the number of channels) at layer l with Ml. In layer
l we thus have Ml evolution PDEs, which are parametrized by parameters θl,j for j = 1, ...,Ml.
Moreover we have the linear weights and biases al,ij and bl,i, for i = 1, ...,Ml+1 and j = 1, ...,Ml.

The effect of the PDE layer l on inputs (Ul,c)
Ml
c=1 can then be described by

Ul+1,i =

Ml∑
j=1

al,ijΦT,θl,j (Ul,j) + bl,i. (35)

Here we use ΦT,θ(U) to denote the solution operator of the PDE parametrized by parameters θ,
at time T , with initial condition U . Note that we keep the end time T fixed for all channels and
layers. As trainable weights we thus have the affine transformation weights aij and bi, as well as
the PDE parameters θj . Note that PDE-G-CNNs can consist of other layers besides these PDE
layers, notably the possible lifting and projecting layer we see in Figure 3.

We will now introduce the definition we will be using for equivariance of the network, briefly
discuss the lifting layer, and then discuss the precise evolution PDE that is used. It will be (part
of) this PDE and its solution that will be of interest for us in the next section.

3.1 Equivariance

The way we define equivariance constraints for a network is based on homogeneous spaces and
actions from Lie groups on them. We introduced homogeneous spaces in Section 2.2.2. Let X,Y
be homogeneous spaces of some Lie group G. The input space of a PDE-G-CNN is modeled as a
function space on X, say all bounded functions B(X). Similarly, we have that the output space
is B(Y). The network, which we denote by N , can then be seen as an operator transforming
functions on X to functions on Y , i.e. N : B(X) → B(Y).

Recall from Section 2.2.2 that each homogeneous space has some transitive group action of G
associated with it. Such an action gives rise to a natural left action of G on B(X). This action,
denoted by Lg for g ∈ G, is called the left-regular representation. For f ∈ B(X) and p ∈ X it is
given by

Lgf(p) = f(g−1 ⊙ p).

Of course we also have such an action on B(Y). We now define equivariance of the network in
terms of these actions. We require that for all g ∈ G

N ◦ Lg = Lg ◦ N . (36)

We want to note that although we denoted both actions with Lg, they do not need to be the same.
Given that N consists of a composition of l layers, we see that each layer, and in particular each
solution operator ΦT,θ needs to be equivariant if we want the total network to be equivariant. If
the network has a lifting and projection layer, we of course also need these to be equivariant.

Page 29

Master thesis

What does this equivariance look like for some familiar cases? Let X = Y = R2. These are of
course Lie groups under the usual addition operation, and thus also (trivial) homogeneous spaces
of R2. The left-regular representation then does nothing more than moving the input around, i.e.
for x ∈ R2 equation (36) tells us that the network needs to satisfy

N (f(·+ x)) = (N f)(·+ x),

thus shifting inputs shifts the output in the same way.

We are interested in the case of roto-translation equivariance. Again consider X = Y = R2, but
now as homogeneous spaces over SE(2). We have seen that SE(2) acts on R2 in Section 2.3.1.
Again considering equation (36), which tells us that equivariance of the network means that for
g = (x, Rθ) ∈ SE(2) we need

N (f(R−1
θ (· − x)) = (N f)(R−1

θ (· − x)),

which is exactly the rotation-translation equivariance that we would like.

3.2 Lifting Layer

We want to briefly mention the way images are lifted to M2. For more details about how to do
this, see [25].

Of course, we want this lifting to be done equivariant, similar to the requirement of 36, if the
network is required to be equivariant as well. There is a general way of doing this between
homogeneous spaces that is trainable. We will detail this for our case of lifting from R2 to M2.
For this, we need a kernel function k ∈ L1(R2). Then, given an image f ∈ L2(R2), we can map f
to an element in M2 by means of the operator Wk in the following way

(Wkf)(g) := (Lgk, f)L2(R2) =

∫
R2

(Lgk)(x)f(x) dx. (37)

In the implementation of this lifting, the kernel function is discretized and represented by some
array, the values of which are trainable as parameters of the network.

Since most of the time, the output of the network will not be in M2, we also need some way to
project back onto R2. For this, we can simply use a max-projection over the orientation part.
Given some f : M2 → R, we project by

P(f)(x) := max
θ∈[0,2π)

f(x, θ). (38)

This projection is also equivariant, which is again necessary if we want the entire network to be.
Lastly, we want to mention that we can of course use (37) in a non-trainable manner by fixing the
k. In Figure 12, we can see the effect of lifting an image and projecting back down again. We see
there is some loss of information when lifting and projecting, but only minimal.

Page 30

Master thesis

Figure 12: Left is the original image, on the right is the image after being lifted to M2 using cake
wavelets ([25]) as kernel, and max projected down to R2 again.

3.3 PDE Activation Functions

We will now discuss the evolution PDE, and its (approximate) solution operator in more detail.
The evolution equation that is solved can be seen in equation (39) below.



∂W
∂t (p, t) = − cW (p, t)

− (−∆G1)
α
W (p, t)

+ ||∇G+
2
W (p, t)||2αG+

2

for p ∈ M2, t ≥ 0,

− ||∇G−
2
W (p, t)||2αG−

2

W (p, 0) = f(p).

(39)

Here c is a left-invariant vector field on M2, G1,G+
2 ,G

−
2 are left-invariant metrics on M2, and α ∈

[12 , 1]. The left-invariant vector field and the left-invariant metrics form the trainable parameters
θ of the PDE. In particular, we have seen that a left-invariant vector field is determined by
three coefficients, and we only consider left-invariant metrics on M2 as in equation (29), so that
each metric also has three trainable parameters. The solution operator Φ of this PDE forms the
activation functions of PDE-G-CNNs, as in equation (35). Also note that due to the left-invariance,
the solution operator of this PDE will be equivariant, as we required.

The four terms in this PDE each have a distinct effect, recall Figure 2. The first term is a
convection term, which moves the data over exponential curves. The second term is a (fractional)
diffusion term, which regularizes data. The third term is a dilation term, which corresponds to
(soft) max pooling of the data, and the fourth term is an erosion term, corresponding to (soft)
min pooling. The parameter α controls how strong the diffusion and pooling is. The effect of all
of these terms separately can be seen in Figure 13, and the combined effect of convection, dilation
and erosion on the test image from Figure 12 can be seen in Figure 14.

Page 31

Master thesis

Figure 13: A figure showing the various effects each of the PDE terms have on the cylinder in the
bottom left. Taken from [24] with permission.

Figure 14: A figure showing the effects of convection, dilation and erosion on the lifted image from
Figure 12, with increasingly stronger convection, dilation and erosion. The lifted images were
max-projected down to R2 again. The convection, dilation and erosion applied is the same as is
done separately in Figures 15, 17 and 16.

The way that this PDE is solved in the PDE-G-CNNs is via a principle called operator splitting,
which involves composing the solution operator for the four terms separately for a small time step
∆t, until we have reached the desired final time T . Note that operator splitting only produces
an approximation, and in general will not yield the exact solution. We will not further concern
ourselves with the error of this approximation.

In order to be able to apply operator splitting, we need to be able to solve the four separate
evolution PDEs. We will discuss each of these next, with a particular focus on the erosion/dilation
PDE.

3.3.1 Convection

The convection part of the PDE looks like

Page 32

Master thesis

{
∂W
∂t (p, t) = −cW (p, t)
W (p, 0) = f(p).

(40)

We already encountered this PDE in 2.31, and have seen that the solution is given by transporta-
tion along exponential curves, which we already explicitly calculated for M2. Figure 15 shows the
effect of convection on the lifted image from Figure 12. As mentioned, the left-invariant vector
field c is completely determined by a single vector in the tangent space at the identity, so that we
interchangeably use c to denote c = ciAi. The coefficients ci are the trainable parameters for this
PDE.

Figure 15: The effect of numerical convection on the lifted image from Figure 12, max projected
afterwards. Denoting the vector field used in the convection by (c1, c2, c3), representing ciAi, we
used in order (1, 1, 2), (2, 2, 2), (3, 3, 2), (4, 4, 2).

3.3.2 Diffusion

The diffusion part of the PDE looks like

{
∂W
∂t (p, t) = − (−∆G)

α
W (p, t)

W (p, 0) = f(p).
(41)

As is the case with the Euclidean variant, the solution of this is given by a convolution with specific
kernels. This convolution is now a convolution in the homogeneous space, which is defined below.

Definition 3.1. Let f ∈ L2(M2) and k ∈ L1(M2). The group convolution of f with k is then
given by the integral

(k ∗M2 f)(p) :=

∫
R2

∫ 2π

0

k(g−1p)f(g)dxdθ,

where g = (x, y, θ) in the integrand.

The solution to 41 is given by the group convolution of f with some kernel Kα
t [58]. However, the

analytic expressions for these kernels are too difficult to use in practice. In [24] approximations
are proposed that are more practical. However, previously done experiments showed that diffusion
seemed to have a negative effect on the performance, so in the experiments in [24] no diffusion is
included. We will also not further include diffusion in our experiments.

3.3.3 Dilation and Erosion

The dilation/erosion part of the PDE looks like

Page 33

Master thesis

{
∂W
∂t (p, t) = ±||∇G±W (p, t)||2αG±

W (p, 0) = f(p).
(42)

The results of these PDEs will be so called morphological scale spaces [59]. We will for now only
consider the − variant, corresponding to erosion. We will show later how the solution of the
erosion PDE corresponds to the dilation variant.

We first introduce some notation. Define the Hamiltonian function by

Hα : T ∗(M2) → R, (p, p̂) 7→ ||p̂||2αG∗ .

Here, || · ||G∗ denotes the norm on the cotangent bundle, induced by the norm G. Note that
||dW ||G∗ = ||∇GW ||G , by construction. We can thus write the erosion PDE as

{
∂W
∂t (p, t) = −Hα(dW)
W (p, 0) = f(p).

(43)

The solution to such a problem depends on the Lagrangian of the Hamiltonian, which is obtained
by taking the Fenchel transform. The Lagrangian Lα in our case is given by

Lα : TM −→ R
Lα(p, p̄) = sup

p̂∈T∗
P (M)

(p̂, p̄)−Hα(p, p̂)

=
2α− 1

(2α)2α/(2α−1)
||p̄||

2α
2α−1

G∗

= να||p̄||
2α

2α−1

G∗

= L1D
α (||p̄||G∗),

for α ∈ (12 , 1]. For α = 1
2 we will see below what happens. The last thing we need to charac-

terize the solution to the erosion PDE is the concept of an infimal convolution or morphological
convolution between two functions on M2, defined as follows

Definition 3.2. Let f, h : M2 → R be given. Then their infimal convolution f □ h : M2 → R is
defined as

(f □ h)(p) = inf
g∈SE(2)

{
f(g−1p) + h(gp0)

}
. (44)

The following proposition then tells us what the solution of (40) is, in terms of an infimal convo-
lution.

Proposition 3.3. Let α ∈ [12 , 1]. The viscosity solutions Wα of the exact morphological erosion
scale space PDE (43) are given by

Wα(p, t) = inf
q∈M2,γ∈Γt(p,q)

f(q) +

t∫
0

Lα(γ(s), γ̇(s)) ds (45)

= inf
q∈M2

f(q) + tL1D
α (dG(p, q)/t) (46)

= (kαt □ f)(p), , (47)

Page 34

Master thesis

where the morphological kernel kαt is defined as

kαt (p) = tL1D
α (dG(p, p0)/t) = ναt|dG(p, p0)/t|

2α
2α−1 , (48)

if α ∈ (12 , 1]. For α = 1
2 we have the kernel

k
1
2
t (p) =

{
0 if |dG(p, p0)/t| ≤ t

∞ else.
(49)

Proof.
See [24, Theorem 5.21], or the reference given therein [60].

Remark 3.4. The solution to the dilation variant of (42) is solved almost the same as the erosion
variant. We have that Wα(p, t) = −(kαt □−f)(p).

So in order to implement this in the PDE-G-CNNs, we would need to be able to calculate the
Riemannian distance map dG . However, numerical solvers for this distance map cannot be effi-
ciently parallelized for running on GPUs. So, this is not practical for in a machine learning setting.
Instead, an approximation to dG is proposed, which is easily computable, and is instead used to
calculate the kernel. This is the so called logarithmic metric estimate ρ, which can be defined on
general homogeneous spaces. On M2 we denote this approximation by ρc, due to its relation with
the logarithmic coordinates c that were introduced in equation (31). It is given by the following
formula

ρc(·) :=
√
g11|c1(·)|2 + g22|c2(·)|2 + g33|c3(·)|2. (50)

The numerical morphological convolution in the PDE-G-CNNs is done with the kernel kαt,c, given
by

kαt,c(p) = tL1D
α (ρc(p)/t). (51)

In the next section, we will have a look at a slightly different approximation for dG , based on the
half-angle coordinates b, defined in equation (33). We denote this approximation by ρb, and it is
given by

ρb(·) :=
√
g11|b1(·)|2 + g22|b2(·)|2 + g33|b3(·)|2. (52)

We will denote the approximate kernel based on this distance by kαt,b, which, similar to (51), we
get by replacing dG with ρb in (49). The main topic of the next section will be to find out how
good an approximation ρb actually is to the true distance dG . In [24], they already show that
locally ρc and dG behave the same, and we will try to find more precise statements for ρb and dG .
We will discuss why we look at ρb and not at the original approximation ρc below as well.

In Figures 16 and 17 we see some examples of the effect of dilation and erosion on an image.

The last thing we want to mention is the supervisors of this project have proven the fact that all
of these distances, dG , ρb and ρc satisfy certain symmetries. In particular, they all have the eight
symmetries εi, corresponding to flipping signs in the half-angle or logarithmic coordinate system,
as shown in Table 1. For ρb and ρc this is clear, however for dG this is not immediately clear.
Because ρb and ρc are meant to approximate dG , it is nice to know that they are symmetric in the
same way.

Page 35

Master thesis

ε0 ε1 ε2 ε3 ε4 ε5 ε6 ε7

b1, c1 + + − − − − + +

b2, c2 + − + − + − + −
b3, c3 + + + + − − − −

Table 1: The symmetries that ρb, ρc and dG have, that is they are invariant under composition
with these functions.

Figure 16: The effect of numerical erosion on the lifted image from Figure 12, max
projected afterwards. Denoting the metrics we used by (g11, g22, g33), we used in order
(1, 1, 1), (1, 0.5, 1), (1, 0.25, 1), (1, 0.125, 1).

Figure 17: The effect of numerical dilation on the lifted image from Figure 12, max
projected afterwards. Denoting the metrics we used by (g11, g22, g33), we used in order
(1, 1, 1), (0.5, 1, 1), (0.25, 1, 1), (0.125, 1, 1).

Page 36

Master thesis

4 Asymptotics

We have seen that a crucial aspect of the PDE-G-CNNs is the activation function, which solves
PDEs of the form (39). By proposition 3.3, we have seen that the solution of the dilation and
erosion part of this PDE is given by morphological convolution with a specific kernel. This kernel
is completely determined by the Riemannian distance, which is learned by the network. The
approximate kernel, that is actually used in the implementations, is obtained by replacing the
Riemannian distance with the logarithmic estimate (equation (50)). Therefore, in order to study
how well we are approximating the solution to the PDE, it suffices to look at how good the
logarithmic approximation approximates the Riemannian distance. In [24] the following lemma
was proven, relating this approximation and the true distance

Lemma 4.1 ([24] Lemma 5.7). There exists a C ≥ 1 such that

dG(p) ≤ ρc(p) ≤ CdG ,

for all p ∈ M2 in a compact neighborhood around p0, away from the cut-locus.

This lemma tells us that locally around p0 the distances are equivalent. However, we do not know
anything about the constant C. From numerical experiments, we expect that this constant C
heavily depends on the geometry of M2, i.e. on the metric parameters gii. The behaviour that
was observed was that if g11 is close to g22, the approximation is close to dG , while if g11 differs
much from g22 the approximation becomes worse.

Looking at ρb for a second, we can see that this observation makes sense, as from equation (88)
in Appendix A we see that if g11 = g22, we actually have that ρb = dG . We also know that ρb and
ρc are similar, at least locally. The remainder of this section will try to make Lemma 4.1 more
precise. We will however consider the approximation ρb, not ρc. The reason for this is exactly the
behaviour that dG = ρb in the spatially isotropic case, and the fact that ρb is easier to work with.

Recall that we defined the anisotropy of the metric G as

ζ =
max(g11, g22)

min(g11, g22)
. (53)

It seem reasonable to suspect that the quality of ρb as an approximation to dG will depend on ζ,
as if ζ = 1 they are equal.

We will make use of order behaviour in this section, and in order to be as precise as possible we
want to provide the definition of this here.

Definition 4.2. If we write f = g +O(h) what we mean is that

∃U,C>0∀x∈U |f(x)− g(x)| ≤ Ch(x),

where U is some set containing 0. so as we get closer to 0, the difference between f and g is
bounded by some constant times h.

Where there can be confusion about manipulations with this order symbol we will fall back on
this definition to make sure all statements are well-backed. In particular, for inequalities we have
to be a little careful. In particular we will use a couple of times that if f = g+O(h) we have that

g(x)− Ch(x) ≤ f(x) ≤ g(x) + Ch(x),

Page 37

Master thesis

for some C > 0 and for x in some neighborhood around 0. This is of course equivalent to the
definition given above.

The remainder of this section looks as follows. We first provide some global relations relating dG
and ρb. Next, we give a motivating example of how we might approach finding such a bound as
in Lemma 4.1, by looking at general Riemannian manifolds using normal coordinates. Next we
present the first way we constructed a new bound using Taylor expansion of the metric coefficients.
We then present a second bound, based on the Eikonal PDEs the distances satisfy. Lastly, we
compare these two new bounds.

4.1 Simple Global Bounds

We start by relating ρb and ρc, so that we can see how similar they are. For this we have the
following lemma.

Lemma 4.3. Let p ∈ M2. We then have that

ρb(p) ≤ ρc(p) ≤
ρb(p)

sinc(θ/2)
.

Proof.
Note that | sinc | ≤ 1, so that we find that

ρb(p)
2 = g11|b1(p)|2 + g22|b2(p)|2 + g33|b3(p)|2

= g11|c1(p) sinc(θ/2)|2 + g22|c2(p) sinc(θ/2)|2 + g33|c3(p)|2

≤ g11|c1(p)|2 + g22|c2(p)|2 + g33|c3(p)|2

= ρc(p)
2.

For the other inequality we calculate

ρc(p)
2 = g11|c1(p)|2 + g22|c2(p)|2 + g33|c3(p)|2

=
g11|c1(p) sinc(θ/2)|2 + g22|c2(p) sinc(θ/2)|2 + g33|c3(p) sinc(θ/2)|2

sinc(θ/2)2

=
g11|b1(p)|2 + g22|b2(p)|2 + g33|b3(p) sinc(θ/2)|2

sinc(θ/2)2

≤ g11|b1(p)|2 + g22|b2(p)|2 + g33|b3(p)|2

sinc(θ/2)2

=
ρb(p)

2

sinc(θ/2)2
.

Next we present some global bounds and relations for the approximate distance which will help us
later on. We start with a simple global bound for the exact distance dG , based on the observation
that dG and ρb are the same if g11 = g22.

Lemma 4.4. Let gm = min(g11, g22), gM = max(g11, g22) and p = (x, y, θ) ∈ M2. We then have
that

l(p) :=
√
gmx2 + gmy2 + g33θ2 ≤ dG(p) ≤

√
gMx2 + gMy2 + g33θ2 =: u1(p)

Page 38

Master thesis

Proof.
Consider the metric Gm = gmω

1 ⊗ ω1 + gmω
2 ⊗ ω2 + g33ω

3 ⊗ ω3. By definition, for any point
g ∈ SE(2) and any tangent vector X ∈ TgSE(2) we have that ||X||Gm ≤ ||X||G . This clearly
implies that the length of any curve will be less when measured with Gm compared to G. From
this it follows that dGm

(p) ≤ dG(p).

Finally, it follows from equation (87) in the Appendix that the induced distance dGm
can be written

as

dGm
(p) =

√
gmx2 + gmy2 = g33θ2.

A similar argument shows the other inequality for u.

Using this, we can show the following global equivalence result between ρb and dG .

Lemma 4.5. We have that ρb and dG are equivalent with constant
√
ζ, i.e.

1√
ζ
dG ≤ ρb ≤

√
ζdG .

Proof.
We are going to show this by relating l and u1 to ρb.

gmρb(p)
2 = gmg11b

1(p)2 + gmg22b
2(p)2 + gmg33b

3(p)2

≤ gmgMb
1(p)2 + gmgMb

2(p)2 + gMg33b
3(p)2

= gmgMx
2 + gmgMy

2 + gMg33b
3(p)2

= gM l(p)
2,

which shows ρb(p) ≤
√
ζl(p). Using similar manipulations we can get the inequality 1√

ζ
u1(p) ≤

ρb(p). From these inequalities, together with Lemma 4.4 we get the chain of inequalities

1√
ζ
dG ≤ 1√

ζ
u1(p) ≤ ρb ≤

√
ζl(p) ≤

√
ζdG(p).

4.2 Motivating Example

Recall from the preliminaries section the notion of normal coordinates. This is a coordinate
system, centered around some fixed chosen point, such that the metric around this point resembles
an Euclidean metric with a second order correction term given in terms of the curvature of the
manifold. In this coordinate system we moreover have the following result, which tells us that the
distance from the base point to any other point is actually given by the Euclidean norm in this
coordinate system. We give a short proof of this fact below, as well as a way to show this only up
to fourth order. The idea in this last proof will also be used to find a bound between ρb and dG
in the next subsection.

Lemma 4.6. Let (M,G) be a Riemannian manifold. Let p0 ∈ M be given, and let (U, y) be a
normal neighborhood of p0, i.e. y = (y1, . . . yn) are normal coordinates in an open neighborhood
U of p0. For p ∈ U \ cut(p0) we have that

dG(p, p0)
2 = ∥y(p)∥2G (54)

Page 39

Master thesis

Proof.
Let γ : [0, 1] → M denote the arc-length parametrized geodesic between p and p0. The geodesic
equation [52, Lemma 4.1.1] gives ∇γ̇ γ̇ = 0 w.r.t. the Levi-Civita connection ∇, i.e. geodesics are
auto-parallel w.r.t. this connection. The fact that this connection is metric compatible gives us
that

d

dt
∥γ̇(t)∥2γ(t) = 2Gγ(t)(γ̇(t),∇γ̇(t)γ̇(t)) = 0,

so the length of the minimizing geodesic from γ(0) = p0 to p is ∥γ̇(t)∥γ(t) = ∥γ̇(0)∥p = ∥y(p)∥.

Proof.
Next we show this behaviour, but only up to fourth order. This serves as a motivating example
for the upcoming subsection. We are going to use the Taylor expansion of the metric coefficients
expressed in normal coordinates. The distance squared is given by

d2(p, p0) =

∫ 1

0

∥∥∥∥ ddtγ(t)
∥∥∥∥2
G
dt,

with γ : [0, 1] → M the constant speed geodesic from p0 to p. If we express the curve γ in the
normal coordinates yi, we have by definition of those coordinates that

γi(t) = t yi(p) and γ̇i(t) = yi(p). (55)

Using these coordinates we can express the distance as:

d2(p, p0) =

∫ 1

0

n∑
i,j=1

gij |γ γ̇
iγ̇j dt =

∫ 1

0

n∑
i,j=1

gij(γ(t)) y
i(p) yj(p) dt. (56)

In this expression we can make use of Lemma 2.15, giving us

=

∫ 1

0

(
δij −

1

3
Rikjlγ

k(t)γl(t) +O(||y||4)
)
yi(p) yj(p) dt,

and making use of equation (55) we find

=

∫ 1

0

(
δij −

t2

3
Rikjl y

k(p)yl(p) +O(||y||4)
)
yi(p) yj(p) dt.

Now the dependence on t is explicit and it is trivial to evaluate the integral

= ||y(p)||2 − 1

9
Rikjl y

k(p) yl(p) yi(p) yj(p) +O(||y||4).

However, since the Riemannian curvature tensor is anti-symmetric in its first two and last two
components, the summation in the second term here will be equal to 0, so that this is actually
equal to

= ||y(p)||2 +O(||y||4).

Since the expansion here only takes into consideration the first few terms, we cannot conclude
the exact relation we found above. However, one can continue the Taylor expansion of the metric
coefficients as was done in Lemma 2.15. The next terms will also depend, in more complicated
ways, on the curvature tensor, and so it is likely that they will also not contribute due to the
anti-symmetry.

Page 40

Master thesis

4.3 Taylor Expansion Bound

Inspired by the previous section, we want to do a Taylor expansion of the metric on M2 to relate
it to the approximate norm ρb. However, we cannot actually use the normal coordinate system,
so that the previous results are not directly applicable. Instead, we will do a Taylor expansion of
the metric in the b coordinate system, as these coordinates relate directly to ρb.

First off we have a small lemma about the difference between geodesics and straight lines in the
b coordinate system, which we will need in the actual theorem.

Lemma 4.7. Let p0 ∈ M2 be our fixed reference element. Let U be any compact neighborhood of
p0. Let p ∈ U be arbitrary, let γ(p, ·) : [0, 1] → M denote the geodesic curve from p0 to p and let
η(p, ·) : [0, 1] → M denote the straight line in b coordinates between p0 and p. We denote the b
coordinates of the curves by γi and ηi. We have that, for t ∈ [0, 1],

γ̈k(p, t) = η̈k(p, t) +O(ρ2b(p)),
γ̇k(p, t) = η̇k(p, t) +O(ρ2b(p)),
γk(p, t) = ηk(p, t) +O(ρ2b(p)).

(57)

In particular, what we mean by this is that

∃r>0,C>0∀p∈U,t∈[0,1] : |γ̈k(p, t)− η̈k(p, t)| ≤ Cρ2(p),

and similarly for the other two statements.

Proof.

We start of by showing that γ̇k(p, t) = O(dG(p)). We can see this as follows. First of all, we always
parametrize the geodesic by constant velocity from [0, 1], so that ||γ̇(t)||G = dG(p) for all t ∈ [0, 1].
Fix some t ∈ [0, 1]. We then know that in Tγ(t)SE(2), G|γ(t) is a coercive bi-linear form, hence we
can bound ||γ̇(t)||G ≥ ξ(t)|γ̇(t)|, the Euclidean norm in the coordinates. From this we get that

|γi(t)|2 ≤ |γ̇(t)|2 ≤ 1

ξ(t)
||γ̇(t)||2G ≤ ξ∗d2G(p),

with ξ∗ = maxt∈[0,1]
1
ξ(t) <∞. So, we have γ̇k = O(dG). From our choice of U and Lemma 4.5 we

then also know that γ̇k = O(ρ), and hence γ̇kγ̇j = O(ρ2).

Since γ is a geodesic, it satisfies the geodesic equations, given by

γ̈i + Γijk(γ(t))γ̇
kγ̇j = 0.

Note that the Christoffel symbols are smooth functions, as they are defined in terms of the metric
coefficients, and so in particular they are bounded on the compact set U i.e., we have Γijk = O(1).

Now from the geodesic equation, together with the fact that γ̇k = O(dG) and Γijk(γ(t)) = O(1)

we thus have that γ̈i = O(ρ2(p)). Now since η is a straight line in this coordinate system, it has
zero second derivative, so we conclude that γ̈i− η̈i = O(ρ2(p)). In particular this thus means that
there exists some constant C > 0 such that for all p close to p0, we have that

|γ̈i(p, t)− η̈i(p, t)| ≤ Cρ2(p).

Notice that, since γi is a smooth curve connecting pi0 = 0 with pi from t = 0 to 1, by the mean
value theorem there exists some t∗ such that γ̇i(t∗) = pi. Moreover, since η̇i(t) = pi for all

Page 41

Master thesis

t ∈ [0, 1], the function γ̇i− η̇i thus has (at least) one zero in the interval [0, 1], namely at t∗. Since
its derivative is bounded, as was shown above, and we are working in a compact interval, γ̇i − η̇i

is Lipschitz (in t) with constant Cρ2(p), and so we can conclude that

|γ̇i(t)− η̇i(t)| = |γ̇i(t)− η̇i(t)−
(
γ̇i(t∗)− η̇i(t∗)

)
|

≤ Cρ2(p)|t− t∗|
≤ Cρ2(p),

meaning that γ̇i− η̇i = O(ρ2(p)). Since the function γi− ηi also has a zero in [0, 1] (at least two),
we can apply the same argument as above to find that

|γi − ηi| ≤ Cρ2(p),

or in other words γi = ηi +O(ρ2).

Next we present the main theorem of this subsection. It gives a bound on the Riemannian distance
on M2, in terms of ρb. The introduced anisotropy ζ of the metric plays an important role in the
quality of this bound.

Theorem 4.8. Let U ⊂ M2 be any compact neighborhood of p0. For all p ∈ U we have that

ρ2b(p)

(
1− ρb(p)

2

6

(
4ζ − 3

g33

)
− Cρb(p)

3

)
≤ dG(p)

2,

for some C > 0.

Proof.

We start by fixing some p ∈ U . We denote the b coordinates of the arc-parametrized geodesic
γ : [0, 1] → M2 between p0 and p by γi, and similarly for the straight line in the b coordinates,
ηi. We start out by Taylor expanding the metric components of G, expressed in the b coordinate
system. We will denote these by gij . In view of Remark 2.14, we have to choose a connection in
order to be able to define the Hessian. The connection we choose is the Levi-Cevita connection of
the metric that induces ρb, that is the constant diagonal metric

giidb
i ⊗ dbi,

where gii denote the same coefficients as in equation (29). In practice this results in us being able
to just compute the Hessian as usual, as the Christoffel symbols vanish because we have constant
metric coefficients in the b coordinate system for this metric.

We refer to Appendix A for the details and exact formulas for this Taylor expansion. We will use
them with a reference to the Appendix below. So we end up with the following expansion for our
metric components

gij(p) = g̃ij + gij,k(p0)b
k(p) +

1

2
Hijkl(p0)b

k(p)bl(p) +O(ρb(p)
3), (58)

Page 42

Master thesis

where g̃ij is the constant diagonal matrix with gii on its diagonal. Now we are going to plug this
into the definition of the squared distance, as we did in the second proof of Lemma 4.6. First
recall that the squared distance is given by

d2G(p, p0) =

∫ 1

0

gij(γ(t))γ̇
i(t)γ̇j(t)dt,

where γ is the geodesic from p0 to p. Plugging the expansion into this we find

=

∫ 1

0

(
g̃ij + gij,k(p0)γ

k(t) +
1

2
Hijkl(p0)γ

k(t)γl(t) +O(ρb(p)
3)

)
γ̇i(t)γ̇j(t)dt. (59)

We now consider each of the three terms of the Taylor expansion separately.

• The first term, containing g̃ij , we are going to find a lower bound for, using a straight line
in the coordinate space. In particular, we have that

∫ 1

0

g̃ij γ̇
i(t)γ̇j(t)dt ≥ inf

α

∫ 1

0

g̃ijα̇
i(t)α̇j(t)dt.

This infimum is attained by a straight line, i.e. αi(t) = tbi(p). Hence we get that α̇i = bi(p)
and so we find

∫ 1

0

g̃ij γ̇
i(t)γ̇j(t)dt ≥

∫ 1

0

g̃ijb
i(p)bj(p)dt

= ρb(p)
2.

• The term
∫ 1

0
gij,k(p0)γ

k(t)γ̇i(t)γ̇j(t)dt is equal to 0. This is because of the fact that dG is
inversion invariant i.e., dG(p) = dG(p

−1), due to the left-invariance of the distance. Because
inversion corresponds to replacing bi with −bi in the current coordinate system, dG is an
even function, and so we conclude that all odd terms of the expansion have to be equal to 0.

• Lastly we take a look at the Hessian term in the expansion. We are going to bound this
term in the expansion by

∫ 1

0

Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)dt ≥ −

∣∣∣∣∫ 1

0

Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)dt

∣∣∣∣
≥ −

∫ 1

0

∣∣Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)

∣∣ dt.
What we would now like to do is replace the geodesic coordinates in this expression by the
straight line coordinates, as for these we can actually calculate the integral. This is is similar
to what happened in the second proof of Lemma 4.6, only there the geodesics were already
straight lines. In view of Lemma 4.7 we are going to make some error that we can control.

We will need Lemma 4.7 and the fact that γ̇i = O(ρb) and . We first show that γk(t)γ̇i(t) =
ηk(t)η̇i(t) +O(ρ3b). We do this as follows

Page 43

Master thesis

|ηk(t)η̇i(t)− γk(t)γ̇i(t)| = |ηk(t)η̇i(t)− ηk(t)γ̇k(t) + ηk(t)γ̇k(t)− γk(t)γ̇i(t)|
≤ |ηk(t)η̇i(t)− ηk(t)γ̇k(t)|+ |ηk(t)γ̇i(t)− γk(t)γ̇i(t)|
≤ |ηk(t)| |η̇i(t)− γ̇k(t)|+ |γ̇i(t)| |ηk(t)− γk(t)|
≤ C1ρb(p)C2ρb(p)

2 + C3ρb(p)C4ρb(p)
2

≤ C5ρb(p)
3,

where Ci > 0 are some constants, and where on the second to last line we used ηk(t) =
tbk(p) = O(ρb), γ̇

i = O(ρb) and Lemma 4.7. This shows us that we indeed have that
γk(t)γ̇i(t) = ηk(t)η̇i(t) +O(ρ3b). We can apply the same trick again twice to conclude that

∣∣γk(t)γl(t)γ̇i(t)γ̇j(t)∣∣ = |ηkηlη̇iη̇j |+O(ρ5).

We thus have that

−
∫ 1

0

∣∣|Hijkl(p0)|γk(t)γl(t)γ̇i(t)γ̇j(t)
∣∣ dt = −

∫ 1

0

||Hijkl(p0)|ηkηlη̇iη̇j | dt+O(ρb(p)
5).

From this can then conclude that the Hessian term can be lower bounded, for some C > 0,
by the expression

∫ 1

0

Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)dt ≥ −

∣∣∣∣∫ 1

0

Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)dt

∣∣∣∣
≥ −

∫ 1

0

|Hijkl(p0)γ
k(t)γl(t)γ̇i(t)γ̇j(t)|dt

≥ −
∫ 1

0

∑
i,j,k,l

|Hijkl(p0)η
kηlη̇iη̇j | dt− Cρ5(p).

Now we use the special form that the exponential curves have in these exponential coordi-
nates, to conclude that

∫ 1

0

∑
i,j,k,l

|Hijkl(p0)η
kηlη̇iη̇j | dt =

∫ 1

0

t2
∑
i,j,k,l

|Hijkl(p0)b
k(p)bl(p)bi(p)bj(p)|dt

=
1

3

∑
i,j,k,l

|Hijkl(p0)b
k(p)bl(p)bi(p)bj(p)|.

Now recall equation (59). Plugging in all the previous results allows us to conclude that

d2(p, p0) ≥ ρb(p)
2 − 1

6

∑
i,j,k,l

|Hijkl(p0)b
k(p)bl(p)bi(p)bj(p)| − Cρ5(p).

Note that the error term of equation (58) becomes O(ρb(p)
5) as we multiply it with γ̇i(t)γ̇j(t) in

equation (59), and so we can combine it with the error term from the Hessian. Now we want to

Page 44

Master thesis

explicitly write out the contraction with the Hessian. In Appendix A we explicitly calculate these
Hessian terms and the sum. This is given by

|Hijkl(p0)b
k(p)bl(p)bi(p)bj(p)| = 1

2
b3(p)2

(
g11b

2(p)2 + 3|g11 − g22|
(
b2(p)2 + b1(p)2

)
+ g22b

1(p)2
)
.

We see that this is a quadratic form in the squared b-coordinates of the point p. We thus write
this as

|Hijkl(p0)b
k(p)bl(p)bi(p)bj(p)| = 1

4
(b2)TM(b2), (60)

with b = b(p) = (b1(p)2, b2(p)2, b3(p)2) and the matrix M is given by

M =

 0 0 g11 + 3|g11 − g22|
0 0 g22 + 3|g11 − g22|

g11 + 3|g11 − g22| g22 + 3|g11 − g22| 0

 .

Combining all the things we found above we thus conclude that we have the following bound on
dG :

d2G(p) ≥ ρ2(p)− 1

24
(b2)TM(b2)− Cρ5(p). (61)

We see that despite the fact that we know that if ζ = 1 the Riemannian distance and ρb should
be the same, this bound does not tell us that. We suspect that this is because of the way we
lower-bounded the first term. That bound will not be tight if g11 = g22, as exponential curves are
always different from straight lines, which are determined by the metric.

We may equivalently write this bound as

dG(p)
2 ≥ ρb(p)

2 (1− ε(p)) , (62)

where the error term is given by

0 < ε(p) =
ρ2

24

(
b2

ρb(p)2

)T
M

(
b2

ρb(p)2

)
+ Cρ3(p). (63)

Notice that bi(p)2

ρb(p)2
≤ 1

gii
, so that we can bound each component of the vector in the equation

above. Let gm = min(g11, g22) and gM = max(g11, g22). We then have that

ε(p) ≤ ρ2

12

(
g11 + 3|g11 − g22|

g22g33
+
g22 + 3|g11 − g22|

g11g33

)
+ Cρ3(p)

=
ρ2

12

(
g211 + 3g11|g11 − g22|

g11g22g33
+
g222 + 3g22|g11 − g22|

g11g22g33

)
+ Cρ3(p)

≤ ρ2

12

(
2g2M + 6gM |g11 − g22|

g11g22g33

)
+ Cρ3(p)

=
ρ2

6

(
g2M + 3gM (gM − gm)

gmgMg33

)
+ Cρ3(p)

=
ρ2

6

(
4ζ − 3

g33

)
+ Cρ3(p)

Page 45

Master thesis

Recall that we were interested in these distances because they are used for solving certain parts
in the PDE activation function (39). In particular, the distance is used to calculate kernels with
which we take morphological convolutions. It is now easy to see how the error we found for the
distance translates to the error in the kernel, as the following corollary shows.

Theorem 4.9. Let U ⊂ M2 be a compact neighborhood of p0. For p ∈ U let ε(p) denote a
correction term such that

ρ2b(p) (1− ε(p)) ≤ d2G(p).

We then have the following bound on the morphological kernels

kαt,b(p)

(
1− α

2α− 1
ε(p) +O(ε(p)2)

)
≤ kαt (p).

Proof.
Writing out the definition of the kernels we see that

kαt (p) = tνα

∣∣∣∣d2(p)t2

∣∣∣∣ α
2α−1

≥ tνα

∣∣∣∣ρ2(p) (1− ε(p))

t2

∣∣∣∣ α
2α−1

= k̄αt (p) (1− |ε(p)|)
α

2α−1

= k̄αt (p)

(
1− α

2α− 1
ε(p) +O(ε(p)2)

)
.

We thus see that our error gets multiplied with a factor α
2α−1 . The behaviour that this error grows

without bound as α→ 1
2 is expected, as for α→ 1

2 the kernels kαt also explode to ∞ in the region
where dG > t.

From a practical point of view, Theorem 4.8 and Theorem 4.9 tell us that we require g33 to be large,
and ζ ≈ 1 if we want the approximations to be reasonable. This is in line with what numerical
experiments showed. These limitations of the Riemannian approximations were not addressed in
[24, App.A]. It is however unfortunate that this bound does not reflect the behaviour that at ζ = 1
the approximate distance is exact. Next, we will see a bound that does show this behaviour.

Page 46

Master thesis

4.4 Dual Norm Bound

Next, we will present another method to find a bound of the same form as in Theorem 4.12, but
now based on a different technique. It will turn out that this bound does tell us that ρb is equal
to dG if ζ = 1. It is based on the following observation.

Lemma 4.10. Let p ∈ M2 be given, and let γ : [0, 1] → M2 be the geodesic from p0 to p. We then
have that

ρb(p) ≤ dG(p) max
t∈[0,1]

||dρb|γ(t)||G∗

Proof.
To see this, consider the function ρ ◦ γ : [0, 1] → R. We have that

∫ 1

0

(ρ ◦ γ)′dt = ρ(p)− ρ(p0) = ρ(p),

and also that

|(ρ ◦ γ)′(t)| = |⟨dρ|γ(t), γ̇(t)⟩| ≤ ||dρ|γ(t)|||G∗ ||γ̇(t)||G ≤ max
t∗∈[0,1]

||dρ|γ(t∗)||G∗ ||γ̇(t)||G .

So we can conclude that

ρ(p) =

∫ 1

0

(ρ ◦ γ)′ dt ≤
∫ 1

0

||γ̇(t)||G dt max
t∗∈[0,1]

||dρ|γ(t∗)||G∗ = dG(p) max
t∗∈[0,1]

||dρ|γ(t∗)||G∗ .

We want to calculate and bound the quantity maxt∈[0,1] ||dρb|γ(t)||G∗ in such a way that we can
get a useful bound out of this Lemma 4.10. The way we are going to do this is by first calculating
||dρ|p||G∗ for arbitrary p ∈ M2, and using the fact that it satisfies an Eikonal PDE we are going
to bound this expression. Lastly we are going to bound the maximum over the geodesic. First of,
we are going to express the dual norm in half-angle coordinates.

4.4.1 Dual Norm in b Coordinates

Recall that the metric G is defined as a diagonal metric in terms of the frame Ai, equation (29),
so that we may easily calculate ||dV ||2G∗ , for some function V , in this frame as

||dV ||2G∗ = g11|A1V |2 + g22|A2V |2 + g33|A3V |2, (64)

where gii = g−1
ii . We can make this more explicit by writing it as

g11|(cos(θ)∂x + sin(θ)∂y)V |2 + g22|(− sin(θ)∂x + cos(θ)∂y)V |2 + g33|∂θV |2. (65)

We can now rewrite the partial derivatives w.r.t. the fixed coordinates to partial derivatives w.r.t.
the b coordinates. Starting with the first term, we get that

cos(θ)∂xV = cos(θ)

(
∂b1V

∂b1

∂x
+ ∂b2V

∂b2
∂x

)
= cos(θ) (∂b1V cos(θ/2)− ∂b2V sin(θ/2)) .

Page 47

Master thesis

sin(θ)∂yV = sin(θ)

(
∂b1V

∂b1

∂y
+ ∂b2V

∂b2
∂y

)
= sin(θ) (∂b1V sin(θ/2)− ∂b2V cos(θ/2)) .

Using some trigonometric rules we deduce that the first term is equal to

g11|A1V |2 = g11| cos(θ)
(
∂b1V cos(θ/2)− ∂b2V sin(θ/2)

)
+ sin(θ)

(
∂b1V sin(θ/2)− ∂b2V cos(θ/2)

)
|2

= g11|∂b1V (cos(θ) cos(θ/2) + sin(θ) sin(θ/2)) + ∂b2V (− cos(θ) sin(θ/2) + sin(θ) cos(θ/2)) |2

= g11| cos(θ/2)∂b1V + sin(θ/2)∂b2V |2.

Following the same procedure for the second term results in

g22|A2V |2 = g22| − sin(θ/2)∂b1V + cos(θ/2)∂b2V |2. (66)

The last term is slightly different, and we will again do this in detail. Again from the chain rule,
we can rewrite the derivative with respect to θ in terms of derivatives with respect to bi. We get

∂θV = ∂b3V + ∂b2V
∂b2

∂θ
+ ∂b1V

∂b1
∂θ

= ∂b3V +
1

2
∂b2V (−x cos(θ/2)− y sin(θ/2)) +

1

2
∂b1V (−x sin(θ/2) + y cos(θ/2))

= ∂b3V − 1

2
b1∂b2V +

1

2
b2∂b1V

= ∂b3V +
1

2
∂ψV.

Here we introduced the short-hand notation ∂ψV := b2∂b1V − b1∂b2V . It follows from these
computations that we have that

||dV ||2G∗ = g11| cos(θ/2)∂b1V +sin(θ/2)∂b2V |2+g22|−sin(θ/2)∂b1V +cos(θ/2)∂b2V |2+g33|∂b3V +
1

2
∂ψV |2.

(67)

We rewrite this slightly to the following form

= g22
(∣∣∣∣ ∂V∂b1

∣∣∣∣2+∣∣∣∣ ∂V∂b2
∣∣∣∣2
)

+ (g11− g22)

∣∣∣∣cos(b32)
∂V

∂b1
+sin(

b3

2
)
∂V

∂b2

∣∣∣∣2+ g33
∣∣∣∣12 ∂V∂ψ +

∂V

∂b3

∣∣∣∣2 . (68)

4.4.2 Comparison between ρb and dG

The next thing we want to do, is to calculate the norm of dρb. For this, we are going to use the
following fact. The approximate distance ρb satisfies the Eikonal PDE

{
g11|∂b1ρb|2 + g22|∂b2ρb|2 + g33|∂b3ρb|2 = 1,
ρb(0, 0, 0) = 0.

(69)

This is something general distance maps satisfy [61, Theorem 6.24]. In our case, a quick verification
of this fact can be done because we have an exact expression for ρb. We now only need one last
intermediate result before presenting the main theorem of this subsection.

Page 48

Master thesis

Lemma 4.11. Let p ∈ M2 be given. Around p0 we can bound the expression ||dρb||2G∗ as follows

||dρb||2G∗ ≤ 1 +
ζ

g33

ρ2b
2

+O(θ3).

Proof.
For convenience we denote ρb with ρ. We now first calculate the quantity ||dρ|γ(t)||2G∗ for arbitrary
p, which we can do using the dual norm that we rewrote in the previous section. In particular we
have that

||dρ|p||2G∗ = g22
(∣∣∣∣ ∂ρ∂b1

∣∣∣∣2+∣∣∣∣ ∂ρ∂b2
∣∣∣∣2
)

+ (g11− g22)

∣∣∣∣cos(b32)
∂ρ

∂b1
+sin(

b3

2
)
∂ρ

∂b2

∣∣∣∣2+ g33
∣∣∣∣12 ∂ρ∂ψ+

∂ρ

∂b3

∣∣∣∣2 . (70)

What we will now do is first expand the square in the second term in (70), and then Taylor expand
the various sine and cosine terms, so that we can rewrite the whole expression into a form where
we can use that ρb satisfies (69). For this we need some standard Taylor series, presented here for
convenience

cos2(θ/2) = 1− θ2

4
+
θ4

48
+O(θ6),

sin2(θ/2) =
θ2

4
− θ4

48
+O(θ6),

sin(θ) = θ − θ3

6
+

θ5

120
+O(θ6).

Expanding the square we find

∣∣∣∣cos(b32)
∂ρ

∂b1
+ sin(

b3

2
)
∂ρ

∂b2

∣∣∣∣2 = cos2(b3/2)|∂b1 ρ|2 + sin(b3)∂b1 ρ∂b2 ρ+ sin2(b3/2)|∂b2 ρ|2. (71)

From here we can plug in the Taylor expansions of the cosine and sine terms, to conclude that
this term, up to O(θ6) is

∣∣∣∣cos(b32)
∂ρ

∂b1
+ sin(

b3

2
)
∂ρ

∂b2

∣∣∣∣2 = |∂b1 ρ|2

+ θ (∂b1 ρ ∂b2 ρ)

+
θ2

4

(
|∂b2 ρ|2 − |∂b1 ρ|2

)
+
θ3

4
(−∂b1 ρ ∂b2 ρ)

+
θ4

48

(
|∂b1 ρ|2 − |∂b2 ρ|2

)
+

θ5

120
(∂b1 ρ ∂b2 ρ)

+O(θ6).

We can of course calculate the derivatives of ρb, so that we may also write this term as (adding
the metric coefficient back in front that we left out)

Page 49

Master thesis

(g11− g22)

∣∣∣∣cos(b32)
∂ρ

∂b1
+ sin(

b3

2
)
∂ρ

∂b2

∣∣∣∣2 = (g11− g22)|∂b1 ρ|2

+ (g22 − g11)

(
b1b2b3

ρ2

)
+ (g11− g22)

1

4

(
g222(b

2)2(b3)2 − g211(b
1)2(b3)2

ρ2

)
+O(θ3).

We will leave the first term in (70) as is and now take a look at the third term. We first calculate
the ∂ψ term

∂ψρ(p) = b2(p)∂b1 ρ(p)− b1(p)∂b2 ρ(p)

= b2(p)
g11b

1(p)

ρ(p)
− b1(p)

g22b
2(p)

ρ(p)

= (g11 − g22)
b1(p)b2(p)

ρ(p)
.

Similarly we find that ∂b3 ρ(p) = g33b
3(p)/ρ(p). This would mean that the third term becomes

g33
∣∣∣∣12 ∂ρ∂ψ+

∂ρ

∂b3

∣∣∣∣2 =
(g11 − g22)

2

4g33

(
b1(p)b2(p)

)2
ρ(p)2

+ (g11 − g22)
b1(p)b2(p)b3(p)

ρ(p)2
+ g33

∣∣∣∣ ∂ρ∂b3
∣∣∣∣2 (72)

Collecting all results we calculated above, and making use of (69), we get that the dual norm of
dρb is given by

||dρ|p||2G∗ = g11|∂b1ρ|2 + g22|∂b2ρ|2 + g33|∂b3ρ|2 + ε = 1 + ε, (73)

where ε represents the error term that arises from the Taylor expansions done in the second term
and the additional terms in the third term. More specifically, it is given by

ε = (g11− g22)
1

4

(
g222(b

2)2(b3)2 − g211(b
1)2(b3)2

ρ2

)
+O(θ3)

+
(g11 − g22)

2

4g33

(
b1(p)b2(p)

)2
ρ(p)2

.

Here the first line comes from the Taylor expansion, and the second line comes from the third
term in (70). Notice that some terms have canceled in this error expression, specifically the “first
order” terms. We can rewrite ε a little bit into

ε =
g11 − g22

4g11 g22 g33 ρ2
(
g211g33(b

1b3)2 − g222g33(b
2b3)2 + g11g22(g11 − g22)(b

1b2)2
)
+O(θ3). (74)

In order to make this expression a bit more manageable, we introduce the normalized coordinates

Page 50

Master thesis

b̃i :=
√
gii
bi

ρb
. (75)

This error term can then be written as

ε =
ρ2

4

g11 − g22
g11 g22 g33

(
g11(b̃

1b̃3)2 − g22(b̃
2b̃3)2 + (g11 − g22)(b̃

1b̃2)2
)
+O(θ3). (76)

We notice that |b̃i| ≤ 1 by construction, so that the above expression can be bounded by

ε ≤ ρ2

4

|g11 − g22|
g11 g22 g33

(g11 + g22 + |g11 − g22|) +O(θ3). (77)

Lastly we perform some algebraic manipulations on this expression. As before, let gm = min(g11, g22)
and gM = (g11, g22). Note that g11 − g22 + |g11 − g22| = 2gM , so that we may write this bound
equivalently as

ε ≤ ρ2

4

|g11 − g22|
g11 g22 g33

2gM +O(θ3)

=
ρ2

2

gM − gm
gM gm g33

gM +O(θ3)

=
ρ2

2

ζ − 1

g33
+O(θ3),

proving the lemma.

We are now ready to present the main theorem, providing us with a similar result as Theorem 4.8,
but providing sharper behaviour around ζ = 1.

Theorem 4.12. Let U ⊂ M2 be a compact neighborhood of p0. Then for all p ∈ U we have that

ρ2(p)

(
1− ρ2b

2

ζ2(ζ − 1)

g33
− Cρ3b

)
≤ d2G(p),

for some C > 0.

Proof.

Let p ∈ U , and let γ : [0, 1] → M2 be the geodesic from p0 to p. Notice that for the Riemannian
distance we have that

dG(γ(s)) ≤ dG(γ(t)), for s ≤ t. (78)

Making use of Lemma 4.5 we can find a similar statement for ρb, namely that

ρb(γ(s)) ≤ ζρb(γ(t)), for s ≤ t. (79)

From this we get that

Page 51

Master thesis

max
t∈[0,1]

ρb(γ(t)) ≤ ζρb(γ(1)) = ζρb(p). (80)

Combining this with Lemma 4.10 and 4.11 we get the following bound

ρ2b(p) ≤ d2G(p)

(
1 +

ρ2b
2

ζ2(ζ − 1)

g33
+ Cρb(p)

3

)
, (81)

for some C > 0, coming from the order term in Lemma 4.10. We can transform to the desired
inequality by means of the geometric series.

Note that this bound tells us that when ζ = 1, we indeed have that (up to third order) the two
distances coincide, unlike the bound from Theorem 4.8. Also, just like the previous bound, it tells
us that g33 needs to be large to have a good approximation. However, we do expect that this
bound is less sharp for higher ζ, as it is a third order polynomial instead of the linear behaviour
in ζ the other bound had. Also note that this bound is applicable to Theorem 4.9.

4.5 Comparison between the Bounds

The last thing we want to do in this section is to quickly compare the bounds from Theorem 4.8
and 4.12. We do this by plotting the expression we found for the (multiplicative) error term we
found. Since 1

g33
is a multiplicative factor in both of these errors, we fix g33 = 1, and consider

these errors as functions of ζ. Looking at the form of them, we see that the dual error is a third
degree polynomial in ζ, while the Taylor error is linear in ζ, so we already know that at some
point the Taylor error is going to be sharper. Both of the errors are plotted in Figure 18.

Figure 18: The errors from Theorem 4.8 (“Taylor error”) and from Theorem 4.12 (“dual error”).
As we expected, for small ζ the dual error is more accurate, while for larger ζ the Taylor error
becomes better.

For practical purposes, what we will do is combine the two approximations by taking the minimum
of the two. This ensures that the bound we use is as good as possible, both for ζ close to 1 and

Page 52

Master thesis

large ζ. However, note that we do not know if these bounds are sharp. We want to end with the
following remark about how we are going to use the bounds that we found in the next section for
checking the numerical behaviour in the network.

Remark 4.13. In order to check if in numerical experiments the approximations are reasonable,
we do the following. We ignore the higher order terms in the error expressions in Theorem 4.8 and
Theorem 4.12, and fix some a priori tolerance level for the multiplicative error term |ε(p)| < εtol.
Define

B = min

(
ζ2(ζ − 1)

g33
,
3

24

(
ζ − 1

g33
+

ζ

3g33

))
.

We then consider all p ∈ M2 such that

ρ2b(p) ≤
εtol
B
, (82)

and compare this to the region where ρb is numerically sampled.

Page 53

Master thesis

5 Visualization and Interpretation

Now that we have improved on Lemma 4.1 for the specific case of M2, an interesting thing to find
out is if in trained PDE-G-CNNs, the learned geometry is actually suitable for the approximation
ρb (or ρc). We will assess this by means of Remark 4.13, choosing some reasonable tolerance level.

Besides the obvious reasons this is interesting to check, i.e. to see if we are actually accurately
solving the PDE we think we are, there is another reason why we might want to investigate the
anisotropy of the networks. Recall the discussion from the introduction, where we related highly
anisotropic metrics with association fields. Do PDE-G-CNNs need the same highly anisotropic
metrics as the biological model? We have now seen that this might be a problem, as we have seen
that we cannot guarantee that the approximation is good in this case. This would motivate the
need for using a more suitable approximation in those cases.

We will attempt to answer these questions and some of the other questions posed in the intro-
duction in this section. First of all, we introduce a new data set that we will use as a benchmark
for all experiments. Next we investigate how the metric coefficients are configured in fully trained
networks. Furthermore, we try to visualize the network with the hope of better understanding
what is happening. Lastly, we perform some experiments to see if different approximations for dG
yield better performances.

5.1 Lines Data Set

All of the experiments will be done on a new data set. The task is to find a continuous line given
only line segments of this line, as well as randomly placed other line segments. In Figure 19 we
can see two examples of the “easy” variant of this data set, and in Figure 20 we see two examples
of the “medium” variant. We will refer to this data set as the “Lines” data set.

The first reason we consider this data set is because we expect that PDE-G-CNNs will benefit from
their architecture. In particular, in this data set we combine the need for local orientations (the
line segments need to be aligned if they are part of the continuous curve) as well as morphological
operations (stretching of the line segments in a particular direction, recall Figure 7). If the
network behaves similar to the model of our visual system, we expect to see that the geometries
learned for dilation and erosion are orthogonal to each other, which again relates to the idea of
association fields and having a preference to align with a certain direction. This extending of
lines is called “excitation” in neurogeometry, whereas the sharpening in the orthogonal direction
is called “inhibition”.

The second reason is a practical one, that is that these images are relatively easy to generate and
interpret. We will have a look at intermediate output of the network a little later on, and the fact
that these images are relatively simple still allows us to make some sense of them. It also allows
us to work with relatively low resolution images, which from a computational viewpoint is nice.

Figure 19: Two examples from the “easy” difficulty line data set. The left images is the input,
the right image is the ground truth.

Page 54

Master thesis

Figure 20: Two examples from the “medium” difficulty line data set. The left images is the input,
the right image is the ground truth.

The ground truth is created by randomly sampling some points between chosen endpoints, which
are on opposite sides of the unit square. We then fit a B-spline through these points to get a
curve we can sample from. It is also very convenient that we can sample from the derivative of
the curve, as this is what we use to give the correct orientation to the line segments drawn in the
images. Lastly, we plot random line segments in the image, making sure that they do not overlap
too much with the line segments that are already placed.

The difference between the easy and medium data set is that in the medium data set, more
randomly placed line segments are present in the image, that are closer to each other and the
ground truth line. The ground truth lines are generated in the same way for the easy and medium
data set. For training we used 3000 images, and for testing 300 images.

5.2 Performance on Easy Data Set

We start off by training both a normal CNN and a PDE-G-CNN on the easy variant of the
data set, Figure 19, to compare the performance of the two networks types. For this we use
the Lietorch package for pytorch. This packages was introduced in [24], and is available at
https://gitlab.com/bsmetsjr/lietorch. The exact configurations for all experiments can be
found in Appendix B, and are based on the architectures used in [24].

Page 55

https://gitlab.com/bsmetsjr/lietorch

Master thesis

Figure 21: Performance metric for the “easy” line data set. For each network architecture 5 models
were trained with the same configuration of hyper parameters, described in Appendix B.

In Figure 21 we can see the performance of the PDE-G-CNNs and the CNN trained on the easy
line data set. The performance of the PDE-G-CNN can be seen in the “base” column, and the
performance of the CNN in the “CNN” column. Both models perform well, reaching DICE scores
above 0.84. However, overall the CNN still outperforms the PDE-G-CNN, contrary to what we
might have hoped. That said, the amount of parameters needed in the PDE-G-CNNs is much
less than what CNNs need: for this example we have 3424 total parameters for the PDE-G-CNN
versus 10600 for the CNN.

Before addressing this performance gap, let us first take a look at the questions we asked ourselves
in the beginning of this section: how does Remark 4.13 hold in the trained PDE-G-CNNs? For
now we fix the tolerance εtol = 0.5. Recall that this is a multiplicative factor, and not directly
determines the maximum distance between the approximation and true distance.

However, we run into some trouble if we want to calculate this bound, as the trained network
parameters are passed through a ReLU function before being used to calculate ρc. This means
that there are certain channels where min(g11, g22) = 0, and we thus have an infinite anisotropy.
We disregard these cases for a second, as there are relatively few. Now we have to check if the
region where the PDE-G-CNNs sample the approximation is contained in the region we get from
Remark 4.13. The situation is schematically depicted in Figure 22.

Page 56

Master thesis

Figure 22: Figure depicting the two situations that can occur. Left is a situation in which the
sampling, depicted by the grid, is completely inside of this region, while on the right we sample
outside of this situation.

As it turns out, quite a substantial number of channels, around 85%, sample outside of the
region determined by the bounds. We do have to remember that these PDE-G-CNNs use the
ρc approximation instead of the ρb, but in view of Lemma 4.3 we do not expect that the actual
scenario is much better.

Based on these observations we propose a couple of minor tweaks to the implementation of the
PDE-G-CNNs. First of all, we suspect that performance is hindered by the fact that the ReLU
function is forcing metric coefficients to 0 and staying at 0, so we replace the ReLU function by
squaring the metric coefficients. This prevents them from being stuck at 0 if they happen to
become negative during training. Also, we start using ρb instead of ρc, as we have seen that this
might be a better candidate approximation, and it is easier to relate to the results that we have
derived in this report. We will keep these changes for the remainder of this report.

In the “b-sqr” column of Figure 21, the performance after making these changes can be seen.
We see that the performance has increased quite a bit, now also being higher then the CNNs
performance. However, applying the same analysis as before, we again get that around 85% of the
channels have configuration with errors (possibly) larger then εtol.

These observations seem to imply that anisotropy is needed for a fully trained network, so that it
seems PDE-G-CNNs do need (approximately) the same geometry as the biological visual systems.
However, in the “isotropic” column of Figure 21 we trained PDE-G-CNNs where we constrained
each metric to g11 = g22, the spatially isotropic case. We know that in this case, the Riemannian
distance dG and ρb coincide. Surprisingly, this network still performs really well, outperforming
both the “base” model and the CNN.

Lastly, we want to show some of the outputs of the network to get an idea of how good these
look. We are also going to look at some of the intermediate values of the network, since we hope
that with PDE-G-CNNs, the network’s behaviour can be explained better than for CNNs, which
act as a “black box”. While we do not claim that we can fully explain the network behaviour,
these intermediate results offer a nice glimpse into what is happening. Figures 23 and 24 show
these visualizations for the “base” model, using c-coordinates and ReLUs, and 25 shows this same
visualization for a CNN trained on the easy line data set. Note that the intermediate outputs of
the PDE-G-CNNs are projected to R2 using a max projection, as these of course are in reality
living in M2. We also want to note that the scale of each intermediate output, i.e. the value
corresponding to what is drawn as black and what as white, is different for each image, and so
these colors cannot be compared between different images.

Looking at the intermediate output, we can see it appears to be the case that the PDE-G-CNN
really is trying to create some sort of global line filter. In particular, looking at the last columns
of Figures 23 and 24, we see that we get exactly something like we discussed in Figure 8 in the

Page 57

Master thesis

introduction. We also see that this “filter” is only really present in the deeper layers, suggesting
that it takes some time to combine the convection, dilation and erosion in something like this. We
can compare this to the CNNs’ intermediate output. The line now seems to suddenly appear at a
certain depth, and the effect of creating a filter like the PDE-G-CNNs have is not present.

Figure 23: The input, ground truth and output of one test example. Below are some of the
intermediate results from the network, columns correspond to layers and rows correspond to
channels. All of these intermediate results are max-projected to R2 in order to visualize them.

Page 58

Master thesis

Figure 24: Another example that has some fault in the output. We see that the network could not
quite line up the correct line segments, resulting in the disconnect in the left part of the curve.

Page 59

Master thesis

Figure 25: The same plot as above, for the CNN trained on the easy dataset.

Page 60

Master thesis

5.3 Visualization of Trained PDE-G-CNNs

Seeing how in the previous subsection we found that both anisotropic and isotropic networks
perform well, we want to get a better understanding of what is happening. With the hope of
achieving this, we will visualize (parts of) the PDE-G-CNNs. We will only talk about the PDE
layers in the network here. In Appendix C we briefly talk about the lifting layer.

5.3.1 PDE layer

In order to visualize the PDE layer, we need to visualize one activation function, as in equation
(39). Since we solve this PDE using operator splitting, we will first discuss the visualizations for
each of the terms separately, before combining them in one visualization.

We can visualize the convection by plotting exponential curves, as the convection is taking place
over these curves, as we have seen before. We will show some examples of these curves, both
plotted in 3d and projected down to R2, in Figure 26. Although the effect of convection is not
very straightforward, recall Figure 15 from Section 3, these plots do tell us something about the
magnitude and direction of the convection happening.

Figure 26: Some exponential curves for various convection vectors c = ciAi, both in M2 and
projected to R2.

Next, we turn our attention to visualizing the dilation/erosion part. Since the solution to either
of these operations is a morphological convolution with a specific kernel, it makes sense to find a
way to visualize this kernel. In our case, this kernel is completely determined by the distance ρb,
so we opt to visualize this function instead of the kernel. One reasonable way to visualize these
would be to plot iso-surfaces of the distance. Figure 27 shows some examples of this. Note that
the level sets of the actual kernels we take the infimal convolution with have the same shape as
the plotted level sets here.

Page 61

Master thesis

Figure 27: Level sets of ρb for various configurations of the metric coefficients.

However, we would like to stay away from 3D visualizations if possible, as they can be confusing
and un-intuitive. What we will do instead, is project the level sets down to 2D. The way we do
this is by plotting level sets of the function ρ2d(x, y) = minθ∈[0,2π] ρb(x, y, θ). Figure 28 shows an
example, together with the 3D level set.

Figure 28: Illustration of how the 3D level set relates to the min-projected level set. The blue
lines are iso lines on fixed values of θ.

The last thing we have to do now is to combine the convection and dilation/erosion visualizations
into one plot. In the lietorch code, first convection and then the morphological operations are
applied. Let f : M2 → R denote our input image. Applying convection is applying Rg for some
g ∈ G. Next, taking the morphological convolution with kernel k of this function results in

Page 62

Master thesis

(k □Rgf)(p) = inf
h∈G

k(h−1p) + (Rgf)(hp0)

= inf
h∈G

k(h−1p) + f(hgp0)

= inf
h′∈G

k(g(h′)−1p) + f(h′p0)

= inf
h∈G

k̂(h−1p) + f(hp0)

= (k̂ □ f)(p),

where we define k̂ = Lg−1k, i.e. k̂(p) = k(gp). So we see that applying convection and then a
morphological convolution results in a convolution with a translated kernel.

So, what we will do to visualize the convection, dilation and erosion effect of one PDE channel,
is to plot the min-projected level sets of the translated distance maps that are trained. Figure
29 below shows some examples of the visualization, with a (non-zero) convection, dilation and
erosion. Since dilation dilates the orientation score, i.e. increases responses in certain directions,
we color it green. For a similar reason we color the erosion distance map red. Lastly, we need
to address the arrows drawn inside of the level set. These represent the association fields that
we talked about in the introduction, determined by the specific metric of the distance. We have
chosen to represent these by horizontal curves, and not geodesics, for the sole reason that they
are much easier to compute, and are just there to convey the idea that these plots are meant to
represent the fact that we are training association fields.

The particular choices of metrics that were chosen for the example in Figure 29 were deliberate.
We see that the dilation and erosion happens in orthogonal directions, i.e. we “excite” in one
direction and “inhibit” in the other. We would expect to find such behaviour in our network as
well when training for the line data set. It would make sense that we dilate in one direction,
focusing the local orientation of the image, and sharpen in the orthogonal direction, to prevent
misalignment of the local orientations.

With all of these things now discussed, we can turn to visualizing the complete PDE part of a
PDE-G-CNN. The way we do this is straightforward. We go through the layers one by one, and
for each channel in a layer we make a visualization like in Figure 29, and plot these in one column.
We have opted to not plot the linear part that is between each layer, as this might be un-intuitive,
and distract from the activation function plots.

Page 63

Master thesis

Figure 29: Figure showing the way we visualize the activation function. The blue curve is a
projected exponential curve, the green surface is the min-projected level set of the dilation distance,
and the red surface of the erosion distance. The association fields we draw here are determined
by these distances, and are horizontal exponential curves ending at the boundary of the level sets.

In Figure 30 we can see such a visualization for the three different PDE-G-CNNs we trained in
the previous subsection. Note that each level set is drawn for the same value, so we get the effect
that some of the level set are much larger. This is also the reason for the cut-off for some of the
smaller pictures; the level set is very large in this case. If we were to have drawn these fully, the
others would not have been visible.

There are some things we want to discuss. First of all, we can clearly see some cases of very high
anisotropy in the first two pictures, which we of course already noticed earlier when checking for
the validity of the approximation we use. This anisotropy presents itself as the level sets being
very large in one direction and small in another.

On the other hand, we see quite a lot of very small level sets in the picture. These correspond to
relatively large values for the metric parameters. In practice, this means that the kernel with which
the numerical morphological convolution is taken increases quickly outwards from the center, so
that these channels do not change their input very much (at least not through the dilation and
erosion). If they also have small convection vectors, these channels can be seen as a sort of “skip
connection”, merely passing the input through to the next layer.

Lastly, we can see in this first two sub-figures of Figure 29 that we indeed have that several of the
larger level sets, those that would actually perform a meaningful amount of dilation and erosion,

Page 64

Master thesis

have kernels that are orthogonal to each other, or one is much smaller then the other. It does
not seem like the network needs to have this to function, which of course the performance of the
anisotropic network already disproves, but if it is available it does seem to make use of these
configurations somewhat.

If we draw these figures for each epoch we train we can get an idea of the evolution of the network.
What is visible when doing this, is that not a lot of the metric parameters in the network change.
Many of the channels with small level sets remain more or less the same over training, suggesting
that they indeed function as some sort of skip connection as we discussed above. The channels
with large level sets in the final network appear to mostly have started already with large level
sets. This could be an incentive to look at other, maybe better, initialization methods for the
metric parameters.

(a) Visualized PDE layers of a PDE-G-CNN trained on the “easy” Line data set. This network used the
old approximation ρc and applied the ReLU function to the trained metric coefficients. Note that for the
larger level sets we often either have orthogonality between the two kernels, or one is much smaller then
the other.

Page 65

Master thesis

(b) Visualized PDE layers of a PDE-G-CNN trained on the “easy” Line data set. This network was
trained with squared metric coefficients and the ρb approximation. The smaller level sets seem smaller
then in (a). We also again see some example of orthogonality between the kernels in some places.

Page 66

Master thesis

(c) Visualized PDE layers of a PDE-G-CNN trained on the “easy” Line data set. This network was
restricted to only working with isotropic metrics, as we can see from the exclusively elliptic shape of the
level sets. It again used squared metric coefficients and the ρb approximation.

Figure 30: Various full network visualizations. For clarity we omitted the association fields and
linear combinations between the layers. Other than that, the individual pictures are made in the
same way as in Figure 29.

5.4 Further Experiments

The last thing we want to investigate is whether a more suited approximation for highly anisotropic
metrics is needed. As we already established, it occurs relatively often that the network gets to
a situation where the ρb approximation becomes rough, so we wonder if a better approximation
will increase the performance. We will consider two different approximations. The first one comes
from [62], and is given by

Page 67

Master thesis

ρb,sr :=


√√

αg11g33|b2|+ g11|b1|2 + g33|b3|2 if g11 ≤ g22√√
αg22g33|b1|+ g22|b2|2 + g33|b3|2 else.

(83)

Here, α = 44 is chosen [63]. This is specifically an approximation for the sub-Riemannian distance
we would get if either g11 or g22 would approach infinity. The second approximation combines the
global bound we found in Section 4 with ρb and the above approximation, and is given by

ρb,com := max(l,min(ρb,sr , ρb)), (84)

where l is the lower bound from Lemma 4.4.

All of these experiments will be done on the “medium” difficulty lines data set. This is because
we want to get a clear picture of what has influence on the performance and what does not, and
since on the easy data set the basic architectures already solved the task well, we thought this
would present a more accurate picture. Recall that the difference between the medium and easy
data set can be seen in Figures 19, 20.

For comparison’s sake, we trained a base model (base now refers to a model with the b-coordinates
and squared metric components) and an isotropic model on this data set as well. We visualize the
output for the base model in Figures 32 and 33 (in the same way as for the easy data set), and the
performance results can be found in Figure 31. As is to be expected, the performance measures
are all significantly lower than with the easy data set, however as the output visualization shows,
visually the results still look good.

Figure 31: The performance metric for the “medium” Line data set. Again, for each network
architecture 5 models were trained with the same configuration of hyper parameters, as described
in Appendix B.

Page 68

Master thesis

Figure 32: The input, ground truth and output of the network, for a PDE-G-CNN trained on the
medium data set.

Page 69

Master thesis

Figure 33: The input, ground truth and output of the network, for a PDE-G-CNN trained on the
medium data set. We see that the output is not correct, however this test case was difficult, as
the randomly placed lines happened to line up in the bottom left corner.

Let us discuss the results. We can see the performance of the ρb,sr approximation in the third
column in Figure 31, and the performance of ρb,com in the fourth column. Clearly, the performance
of both is slightly lower than our base model, the first column. So it seems like the network does
not benefit from more accurate kernels in anisotropic cases. Perhaps this is due to the fact that
because we already are sampling on course grids in order to make the computation time reasonable,
the additional accuracy that we have in theory does not matter in practice. Moreover, the more
complicated formulas might make gradient descent harder.

It could of course also be the case that the regions we found using 4.13 are too restrictive, and that
in reality ρb is accurate on a larger region. We would like to have some threshold to tell us when
we should switch between the different approximations, but we leave this to further research.

Page 70

Master thesis

6 Conclusion

In this report we have analyzed and visualized PDE-G-CNNs designed to work on image data
lifted to M2. In particular, we derived two new bounds relating the true Riemannian distance
dG with the half-angle coordinate approximation ρb. We also related this error to the kernels
which are used to solve dilation and erosion evolution equations, which form part of the activation
function in PDE-G-CNNs.

Next, we trained PDE-G-CNNs on a new data set, called the “Line” data set, and analyzed the
performance. We looked at how well the dilation and erosion evolution equations are solved in a
concrete case, using the newly found bounds. We presented a way to visualize the network in terms
of its geometric parameters, and made several observations from these visualizations. Lastly, we
looked at the (projected) feature maps of the PDE-G-CNNs in an attempt to better understand
what the network is doing to reach its output.

In the introduction we posed several questions, which we answered throughout the report. The
first thing was whether we could improve the assessment of the quality of the approximation used
in the PDE-G-CNNs. This was done with Theorem 4.8 and 4.12, that confirmed the suspicion
we had that the quality of the performance depends on ζ and g33. Using this we could calculate
regions in which we could still guarantee a certain degree of accuracy; this was done in Remark
4.13. Lastly, we checked in Section 5.2 whether the trained PDE-G-CNNs are actually sampling in
these regions, which turned out to not be the case in many channels. This improved on previous
work in [24], where a more general but less sharp bound was found.

Next, we wanted to visualize the PDE-G-CNNs in a meaningful way. This was done in Section
5.3, where we discussed how we could visualize the parameters of an individual PDE activation
function, which we used to visualize the entire PDE-layer part of the network. From this we
noticed that many channels appear “stuck” in a configuration in which the metric parameters
are relatively large, implying that the effect of these channels is not very large. We also saw
that certain configurations that we would expect there to be from a modeling point of view were
present, in particular the fact that erosion and dilation happen in orthogonal directions.

Lastly, we wondered how geometrically interpretable the functioning of PDE-G-CNNs is. To
answer this we first looked at the performance of PDE-G-CNNs, and compared this with regular
CNNs and PDE-G-CNNs using other approximations. This was done throughout Section 5. We
also talked about the concept of “geons” in the introduction, and wondered if we would see the
formation of these in the feature maps of the PDE-G-CNNs. We plotted these feature maps in
Figures 24,23, 32, 33, and compared this with feature maps of CNNs in Figure 25. The conclusion
was that we do indeed see that gradually over the depth of the network we have that a global line
filter seems to emerge from the combination of association fields. In the CNNs’ output we do not
see such gradual formation of the final output.

Future Directions

The last thing we want to discuss is some future research directions related to this report. For
one, it could be interesting to see if the ideas used here to find the bounds between the distances
can be generalized to other homogeneous spaces. Both approaches could be applied if we have an
explicit expression for the approximate distance.

The visualizations of the entire network could be improved. Now, due to the large difference
in size of level sets, several plots are cut off. Maybe there is a different way to visualize the
difference between the sizes. One could for example plot the kernels that are actually sampled
in the PDE-G-CNNs, so that this difference becomes immediate. Also, we concluded that a lot
of channels appear to not apply a lot of dilation/erosion. It would be interesting to investigate
how important these channels actually are, and whether the performance could be improved by
for example different initialization methods.

Page 71

Master thesis

More fundamentally, we wonder if we could mathematically quantify the creation of geons. For
example, can we say something about the dynamics of when individual lines become connected
via dilation/erosion? Could we set up axioms that give rise to the choices of the PDEs that are
used in PDE-G-CNNs, similar to [64]? These questions will be answered in future work.

Page 72

Master thesis

A Details of Computations

This appendix contains a variety of computations which are rather tedious, and would distract
from the point if we were to put them in the main text. They are presented here for completeness
of the arguments presented.

In particular, we show here how the Taylor expansion was calculated using Mathematica. We will
not provide the full steps here, as that would take up too much space, but instead we provide
some detail as to how this was calculated in Mathematica and provide some intermediate results.

We first want to compute the metric coefficients of G in the b-coordinate system. In order to do
this we start by expressing it in the fixed coordinate system. Recall that G is a diagonal metric
with respect to ωi. In light of equation (27) we can express G in the fixed coordinate system by
calculating

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

T g11 0 0
0 g22 0
0 0 g33

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 , (85)

which equals

 g22 sin
2(θ) + g11 cos

2(θ) (g11 − g22) sin(θ) cos(θ) 0
(g11 − g22) sin(θ) cos(θ) g11 sin

2(θ) + g22 cos
2(θ) 0

0 0 g33

.

 (86)

From this form we also immediately see that if g11 = g22, we have a diagonal metric in the fixed
coordinate system. This implies that if g11 = g22, the exact distance is given by

dG(p) =
√
g11x2 + g11y2 + g33θ2. (87)

However, recall equation (34). This tells us that

dG(p) =
√
g11x2 + g11y2 + g33θ2 =

√
g11b1(p)2 + g11b2(p)2 + g33θ2 = ρb(p). (88)

The next step now is to change the metric from the fixed coordinate system to the b-coordinate
system. We already know how to transform between the coordinates from equation (33). So,
transforming between the coordinate vector fields of these coordinates is done via the Jacobian,
given below

(
∂bi

∂xj
)(x, y, θ) =

 cos
(
θ
2

)
sin

(
θ
2

)
1
2y cos

(
θ
2

)
− 1

2x sin
(
θ
2

)
− sin

(
θ
2

)
cos

(
θ
2

)
− 1

2x cos
(
θ
2

)
− 1

2y sin
(
θ
2

)
0 0 1

 . (89)

We then just apply the same idea as in equation (85) to transform the metric coefficients from the
fixed to the b coordinate system. Unfortunately the expressions for the metric coefficients become
very long and cumbersome, and do not fit on the page. See the Mathematica notebook for the
exact expression.

Having calculated this, we can now calculate the Taylor expansion for these metric coefficients.
We let gij(p) be the metric coefficients in the b-coordinate system, and let gij,k = ∂bkgij , gij,kl =
∂bl∂bkgij . We want to know these in the point p0 = e = (0, 0, 0). Using Mathematica to find these
derivatives, we get that

Page 73

Master thesis

(gij,k(0, 0, 0))i,j,k =

 (0, 0, 0)
(
0, 0, 12 (g11 − g22)

) (
0,− g11

2 , 0
)(

0, 0, 12 (g11 − g22)
)

(0, 0, 0)
(
g22
2 , 0, 0

)(
0,− g11

2 , 0
) (

g22
2 , 0, 0

)
(0, 0, 0)

 (90)

and

(gij,kl(0, 0, 0))i,j,k,l =
 0 0 0

0 0 0

0 0 1
2

(g22 − g11)

  0 0 0
0 0 0
0 0 0


 0 0 1

4
(g11 − g22)

0 0 0
1
4

(g11 − g22) 0 0


 0 0 0

0 0 0
0 0 0

  0 0 0
0 0 0

0 0 1
2

(g11 − g22)


 0 0 0

0 0 1
4

(g22 − g11)

0 1
4

(g22 − g11) 0


 0 0 1

4
(g11 − g22)

0 0 0
1
4

(g11 − g22) 0 0


 0 0 0

0 0 1
4

(g22 − g11)

0 1
4

(g22 − g11) 0




g22
2

0 0

0
g11
2

0

0 0 0




(91)

In the proof of lemma 4.8 we end up contracting these arrays over coordinates, i.e. we compute
there something of the form gij,k(0, 0, 0)b

ibjbk, with bi the coordinate functions. We calculate
these quantities next. Contracting over the array in equation (90) gives us

gij,k(p0)b
ibjbk = 0. (92)

We contract over the absolute values of the array in equation (91), which results in

|gij,kl(p0)|bibjbkabl =
1

2
b3(p)2

(
g11b

2(p)2 + 3|g11 − g22|
(
b2(p)2 + b1(p)2

)
+ g22b

1(p)2
)

(93)

We can write this last expression as a quadratic form in the squares of bi, as follows

gij,kl(0, 0, 0)b
ibjbkbl =

1

4

(b1)2

(b2)2

(b3)2

T

M

(b1)2

(b2)2

(b3)2

 , (94)

with

M =

 0 0 g11 + 3|g11 − g22|
0 0 g22 + 3|g11 − g22|

g11 + 3|g11 − g22| g22 + 3|g11 − g22| 0

 .

This matrix somewhat resembles the curvature matrix when computing it using the Torsion free
Cartan connection, recall equation (15), using the left-invariant frameAi on SE(2). This curvature
matrix would not have the additional 3|g11−g22| terms. We are unsure if there is anything deeper
going on here or whether this is coincidence.

Page 74

Master thesis

B Experiment Details

Here the details of the experiments that were done in Section 5 are collected. For all the results
in Figures 21 and 31 we trained the architectures for 5 different runs. All of them were trained
on the continuous dice loss. The ground-truth images are in the range [0, 1], and our network
segmentation is passed through a sigmoid to produce a number in the range [0, 1]. To calculate
the continuous dice loss we then compute

loss(a, b) = 1−
2
∑
i,j ai,jbi,j + ε∑

i,j ai,j +
∑
i,j bi,j + ε

, (95)

where a and b are the (2D) output segmentation map of the network and the ground truth
respectively, and ε is there to prevent numerical errors with division. All of the networks had a
batch size of 30, and were trained with a learning rate of 0.01 with an exponential decay factor of
0.95 over the epochs. The optimizer used was the ADAM optimizer. Lastly, we put a normalized
L2 loss on the total sum of the parameters, with a weight factor of 0.001.

B.1 Easy Data Set

Figure 34: Architectures used for the networks trained on the easy Line data set. Numbers on the
right indicate the number of channels, boxes with depth indicate that the data lives on M2, and
the number to the left of the 3D boxes indicates the number of orientations used. Based heavily on
the architecture used in [24]. The PDE-G-CNN has 7 PDE layers, with a total of 3424 trainable
parameters, and the CNN has 6 convolutional layers, with a total of 10600 trainable parameters.

Page 75

Master thesis

B.2 Medium Data Set

Figure 35: Architecture used for the networks trained on the medium Line data set. Numbers
on the right indicate channels, boxes with depth indicate that the data lives on M2, and the
number to the left of the 3D boxes indicates the number of orientations used. Based heavily
on the architecture used in [24]. This network has 9 PDE layers, with a total of 3172 trainable
parameters.

Page 76

Master thesis

C Lifting Layer

We already explained the basics of the lifting layer in Section 3.2. Experiments show that the
lifting layer is in fact very important for the performance of the network, with the current design
of them. Reducing the amount of channels in the lifting layer damages the performance quite a
bit. This seems logical, since the entire kernel is trainable, and we use 8 channels of 7× 7 kernels,
there are quite a lot of parameters here.

We start of by showing some examples of the learned kernels of trained networks, specifically the
”base” models of Section 5.2. These can be seen in Figure 36. As we can see, there appears to be
some structure in them, but nothing that immediately jumps out.

Figure 36: The lifting layer kernels visualized for three networks. These are used to lift the input
image to M2 in the trainable way described in Section 3.2.

Figure 37: Lifting kernel based on cake wavelets [25], for comparison to the trained lifting kernels.
For all the lifting of images with a fixed kernel, this is the one that was used.

Could we, instead of training the kernels, choose a kernel we know is a good choice and just use
this instead? Let us investigate this theoretically a little bit. Suppose we fix our lifting kernel
k : R2 → R, and consider some image f : R2 → R. What happens if we were to just apply
convection and a linear layer to the lifted image (Wkf)? Let us denote the effect of convection by

Page 77

Master thesis

Rgi , for some collecting of gi ∈ SE(2), and let (λi)
n
i=1 be weights in R. Applying this to the lifted

image gives us

n∑
i=1

λiRgi(Wkf)(p) =

n∑
i=1

λi(Wkf)(pgi)

=

n∑
i=1

λi

∫
R2

Lpgik(x)f(x)dx

=

n∑
i=1

λi

∫
R2

Lp ◦ Lgik(x)f(x)dx

=

∫
R2

n∑
i=1

λiLp ◦ Lgik(x)f(x)dx

= (W∑n
i=1 λiLgi

kf)(p),

so that applying linear combinations and convections to our lifted image is the same as moving,
rotating and taking linear combinations of the kernel that was used to compute the lifted image.
So, if we were to lift our image and pass it through a layer with just convection and linear
combinations, we might expect that with this fixed kernel we can mimic the effect of training our
kernels, see Figure 39. From an interpretability standpoint this would be preferable, as then the
lifting is uniform over all use cases, and all learning is solely done on the PDEs in M2.

Initial experiments showed inconclusive results. On the Line data set, it seems like making this
change hurts the performance, see Figure 38 column ”fixed-lift”. However, on the Rotnist and
Drive data set, used in [24], the performance remained the same. We also tried a very simple way
of lifting images to M2, by just stacking the same image on top of each other, the performance of
which is visible in Figure 38 column ”trivial-lift”. More experiments are needed to figure this out.

Figure 38: The performance metrics for the different lifting methods, trained on the ”medium”
Line data set. Hyper parameters are the same ones as reported in Appendix B.2. The base model
is the same as the base model from Section 5.4.

Page 78

Master thesis

Figure 39: Illustrating the proposed construction to replace the trained kernels in the lifting layer.
This architecture would be equivalent to rotating and translating the initial lifting kernel and
taking linear combinations. The remainder of the architecture would remain the same.

Page 79

Master thesis

References

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551, 1989.

[2] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 2990–2999, New York, New York, USA, 20–22 Jun 2016.
PMLR.

[3] Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim, and
Remco Duits. Roto-translation covariant convolutional networks for medical image analysis.
In International Conference on Medical Image Computing and Computer-Assisted Interven-
tion, pages 440–448. Springer, 2018.

[4] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. Exploiting cyclic symmetry in
convolutional neural networks. arXiv preprint arXiv:1602.02660, 2016.

[5] Sander Dieleman, Kyle W Willett, and Joni Dambre. Rotation-invariant convolutional neu-
ral networks for galaxy morphology prediction. Monthly Notices of the Royal Astronomical
Society, 450(2):1441–1459, 2015.

[6] Marysia Winkels and Taco S Cohen. 3D G-CNNs for pulmonary nodule detection. arXiv
preprint arXiv:1804.04656, 2018.

[7] Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3D rotation and translation.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 567–584,
2018.

[8] Erik J Bekkers, Remco Duits, Alexey Mashtakov, and Gonzalo R Sanguinetti. A PDE ap-
proach to data-driven sub-Riemannian geodesics in SE(2). SIAM Journal on Imaging Sci-
ences, 8(4):2740–2770, 2015.

[9] Edouard Oyallon and Stéphane Mallat. Deep roto-translation scattering for object classifica-
tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2865–2873, 2015.

[10] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 849–858, 2018.

[11] Erik J Bekkers. B-Spline CNNs on Lie groups. In International Conference on Learning
Representations, 2019.

[12] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to Lie groups on arbitrary continuous data.
In Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 3165–3176. PMLR, 13–18 Jul 2020.

[13] Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on
homogeneous spaces. Advances in Neural Information Processing Systems, 32, 2019.

[14] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow.
Harmonic networks: Deep translation and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5028–5037, 2017.

[15] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2747–2755, Stockholmsmässan, Stockholm Sweden, July 2018. PMLR.

Page 80

Master thesis

[16] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learn-
ing SO(3) equivariant representations with spherical CNNs. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 52–68, 2018.

[17] Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. In Advances
in Neural Information Processing Systems, pages 14334–14345, 2019.

[18] Mercedes E. Paoletti, Juan M. Haut, Swalpa Kumar Roy, and Eligius M. T. Hendrix. Rotation
equivariant convolutional neural networks for hyperspectral image classification. IEEE Access,
8:179575–179591, 2020.

[19] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent con-
volutional networks–isometry and gauge equivariant convolutions on riemannian manifolds.
arXiv preprint arXiv:2106.06020, 2021.

[20] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant con-
volutional networks and the icosahedral CNN. In Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1321–1330. PMLR, 09–15 Jun 2019.

[21] Stefanos Zafeiriou, Michael Bronstein, Taco Cohen, Oriol Vinyals, Le Song, Jure Leskovec,
Pietro Liò, Joan Bruna, and Marco Gori. Guest editorial: Non-euclidean machine learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(2):723–726, 2022.

[22] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges, 2021.

[23] L. Sifre. Rigid-Motion Scattering for Image Classification. PhD thesis, Ecole Polytechnique
Paris, CMAP, 2014.

[24] B. Smets, J. Portegies, E. Bekkers, and R. Duits. PDE-based group equivariant convolutional
neural networks, 2020.

[25] R. Duits. Perceptual organization in image analysis. PhD thesis, Eindhoven University of
Technology, 2005.

[26] M. H. J. Janssen, A. J. E. M. Janssen, E. J. Bekkers, J. Oliván Bescós, and R. Duits. Design
and processing of invertible orientation scores of 3D images. Journal of Mathematical Imaging
and Vision, 60(9):1427–1458, 2018.

[27] B. Franceschiello, A. Mashtakov, G. Citti, and A. Sarti. Geometrical optical illusion via
sub-Riemannian geodesics in the roto-translation group. Differential Geometry and its Ap-
plications, 65:55 – 77, 2019.

[28] G. Citti and A. Sarti. A cortical based model of perceptual completion in the roto-translation
space. Journal of Mathematical Imaging and Vision, 24:307–326, 05 2006.

[29] R. Duits and E. M. Franken. Left invariant parabolic evolution equations on SE(2) and
contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion
equations on SE(2). Quarterly of Applied mathematics, AMS, 68:255–292, June 2010.

[30] R. Duits and E. M. Franken. Left invariant parabolic evolution equations on SE(2) and
contour enhancement via invertible orientation scores, part II: Nonlinear left-invariant dif-
fusion equations on invertible orientation scores. Quarterly of Applied mathematics, AMS,
68:293–331, June 2010.

[31] J. Zhang, R. Duits, B.M. ter Haar Romeny, and G.R. Sanguinetti. Numerical approaches
for linear left-invariant diffusions on SE(2), their comparisons to exact solutions, and their
applications in retinal imaging. Numerical Mathematics: Theory Methods and Applications,
9(1):1–50, January 2016.

Page 81

Master thesis

[32] U. Boscain, R. A. Chertovskih, J. P. Gauthier, and A. O. Remizov. Hypoelliptic diffusion and
human vision: A semidiscrete new twist. SIAM Journal on Imaging Sciences, 7(2):669–695,
2014.

[33] M. Bertalmı́o, L. Calatroni, V. Franceschi, B. Franceschiello, and D. Prandi. A cortical-
inspired model for orientation-dependent contrast perception: A link with Wilson-Cowan
equations. In Scale Space and Variational Methods in Computer Vision, pages 472–484,
Cham, 2019. Springer International Publishing.

[34] R. Duits, H. Fuehr, B.J. Janssen, L.M.J. Florack, and H.A.C. van Assen. Evolution equations
on Gabor transforms and their applications. ACHA, 35(3):483–526, 2013.

[35] D. Barbieri, G. Citti, G. Cocci, and A. Sarti. A cortical-inspired geometry for contour
perception and motion integration. Journal of Mathematical Imaging and Vision, 49(3):511–
529, 2014.

[36] J. Petitot. The neurogeometry of pinwheels as a sub-riemannian contact structure. Journal
of Physiology-Paris, 97(2):265–309, 2003. Neurogeometry and visual perception.

[37] M. Felsberg, P-E. Forssen, and H. Scharr. Channel smoothing: Efficient robust smoothing of
low-level signal features. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 209–222, 2006.

[38] P. Savadjiev, G.J. Strijkers, A.J. Bakermans, E. Piuze, S.W. Zucker, and K. Siddiqi.
Heart wall myofibers are arranged in minimal surfaces to optimize organ function. PNAS,
109(24):9248–9253, 2012.

[39] Remco Duits, Erik Bekkers, and Alexey Mashtakov. Fourier transform on the homogeneous
space of 3D positions and orientations for exact solutions to linear PDEs. Entropy, 21(1):38,
2019.

[40] P. Momayyez-Siahkal and K. Siddiqi. 3D stochastic completion fields for fiber tractography.
In Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit, pages 178–185, June 2009.

[41] J. August and S.W. Zucker. Sketches with curvature: the curve indicator random field
and markov processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(4):387–400, 2003.

[42] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology, 148(3):574–591, 1959.

[43] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick. Orientation selectivity and the
arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience,
17(6):2112–2127, 1997.

[44] D. J. Field, A. Hayes, and R. F. Hess. Contour integration by the human visual system:
Evidence for a local “association field”. Vision Research, 33(2):173–193, 1993.

[45] R. Duits, U. Boscain, F. Rossi, and Y. Sachkov. Association fields via cuspless sub-riemannian
geodesics in se(2). Journal of Mathematical Imaging and Vision, 49(2):384–417, 2014.

[46] R. Duits, S. P. L. Meesters, J. Mirebeau, and J. M. Portegies. Optimal paths for variants of
the 2d and 3d reeds-shepp car with applications in image analysis, 2016.

[47] G. Sanguinetti, E. Bekkers, R. Duits, M. H. J. Janssen, A. Mashtakov, and J. Mirebeau.
Sub-riemannian fast marching in se(2). In Progress in Pattern Recognition, Image Analy-
sis, Computer Vision, and Applications, pages 366–374, Cham, 2015. Springer International
Publishing.

[48] R. Duits, A. Ghosh, T. Dela Haije, and Y. Sachkov. NeuroMathematics of Vision, chapter
Cuspless Sub-Riemannian Geodesics within the Euclidean Motion Group SE(d), pages 173–
215. NeuroMathematics of Vision. Springer, 2014.

Page 82

Master thesis

[49] P. Soille. Morphological Image Analysis: Principles and Applications. Springer Berlin Hei-
delberg, 2013.

[50] I. Biederman. Geon theory as an account of shape recognition in mind and brain. The Irish
Journal of Psychology, 14(3):314–327, 1993.

[51] R. Duits, B. Smets, E. Bekkers, and J. Portegies. Equivariant deep learning via morphological
and linear scale space pdes on the space of positions and orientations. In Scale Space and
Variational Methods in Computer Vision, pages 27–39, Cham, 2021. Springer International
Publishing.

[52] J. Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer International
Publishing, 2017.

[53] J.M. Lee. Introduction to Riemannian Manifolds. Graduate Texts in Mathematics. Springer
International Publishing, 2019.

[54] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Grad-
uate Texts in Mathematics. Springer, 2003.

[55] J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Springer, 2003.

[56] J. Milnor. Curvatures of left invariant metrics on lie groups. Advances in Mathematics,
21(3):293–329, 1976.

[57] R. Duits, B. M. N. Smets, A. J. Wemmenhove, J. W. Portegies, and E. J. Bekkers. Recent
Geometric Flows in Multi-orientation Image Processing via a Cartan Connection, pages 1–60.
Springer International Publishing, Cham, 2021.

[58] R. Duits, E. J. Bekkers, and A. Mashtakov. Fourier transform on the homogeneous space of
3d positions and orientations for exact solutions to linear pdes. Entropy, 21(1), 2019.

[59] M. Schmidt and J. Weickert. Morphological counterparts of linear shift-invariant scale-spaces.
J. Math. Imaging Vis., 56(2):352–366, oct 2016.

[60] Z. Balogh, A. Engulatov, L. Hunziker, and O. Maasalo. Functional inequalities and hamil-
ton–jacobi equations in geodesic spaces. Potential Analysis, 36:317–337, 02 2012.

[61] D. Azagra, J. Ferrera, and F. López-Mesas. Nonsmooth analysis and hamilton–jacobi equa-
tions on riemannian manifolds. Journal of Functional Analysis, 220(2):304–361, 2005.

[62] A. F. M. ter Elst and D. W. Robinson. Weighted subcoercive operators on Lie groups. Journal
of Functional Analysis, 157:88–163, 1998.

[63] E. Bekkers, D. Chen, and J. Portegies. Nilpotent approximations of sub-riemannian distances
for fast perceptual grouping of blood vessels in 2d and 3d. Journal of Mathematical Imaging
and Vision, 60, 07 2018.

[64] R. Duits, L. Florack, J. de Graaf, and B. ter Haar Romeny. On the axioms of scale space
theory. Journal of Mathematical Imaging and Vision, 20:267–298, 05 2004.

Page 83

	Introduction
	Research Objectives
	Structure of the Report

	Preliminary Theory
	Riemannian Geometry
	Lie Groups
	Lie Groups
	Homogeneous Spaces
	Riemannian Geometry on Lie Groups
	Cartan Connections

	The homogeneous Spaces Md
	The 2-dimensional Case M2 and SE(2)

	PDE-G-CNNs
	Equivariance
	Lifting Layer
	PDE Activation Functions
	Convection
	Diffusion
	Dilation and Erosion

	Asymptotics
	Simple Global Bounds
	Motivating Example
	Taylor Expansion Bound
	Dual Norm Bound
	Dual Norm in b Coordinates
	Comparison between b and dG

	Comparison between the Bounds

	Visualization and Interpretation
	Lines Data Set
	Performance on Easy Data Set
	Visualization of Trained PDE-G-CNNs
	PDE layer

	Further Experiments

	Conclusion
	Details of Computations
	Experiment Details
	Easy Data Set
	Medium Data Set

	Lifting Layer

