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Abstract

Rivers are one of the main contributors to the shape of the landscape, and they are often
unpredictable and can cause floods and landslides. To understand how a river evolves, we
want to find methods to analyse the complex behaviour of rivers, but before we can find
such methods, we need a way to represent a time-varying river. As of now, there are no
satisfying automated ways to extract an abstract time-varying representation of a time-
varying river, based on DEMs of the input terrain. Therefore, we propose two models for
dynamic river networks, which capture the changing channel structure in evolving rivers,
by matching features over subsequent time steps. The first model is based on the use
of a similarity measure, comparing channels, and the second model is based on the use
of a displacement field, describing the evolution of the terrain. To find adequate models
for such measures and displacement fields, we use various existing techniques, such as a
volume-based similarity measure, and the theory of optimal transport, to experimentally
find desirable channel matchings. The two proposed models for a dynamic river network
provide two promising building blocks that can lead to a desirable representation of
a time-varying river. Moreover, through the process of modelling such networks, we
identify and pose some of the key challenges in pursuing algorithms for the construction
of a dynamic river network.
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Chapter 1

Introduction

Rivers play an important role in the history of humankind. As they provide a source of

drinking water, a natural defence barrier and an easy way to transport goods, rivers have

often been chosen as locations for settlements. However, rivers can also be dangerous

to human life. Rivers can change their course, due to processes such as erosion, which

can lead to natural disasters, like floods and landslides. Over time, humans found ways

to influence the course and shape of a river. Dams can be build to prevent floods, and

rivers can be dredged to allow for larger ships. As a consequence, there are both natural

and artificial factors contributing to the course of a river, making them act unpredictable

and hard to study.

There are in general two complementary approaches to studying rivers: mathematical

modelling and data analysis. Modelling rivers is one of the primal focuses of geomor-

phology - the study of processes near the Earth’s surface. Geomorphologists try to find

laws governing the behaviour of landscapes, rivers and their interaction. These laws lead

to a variety of models of changing landscapes, which can be used to run simulations.

On the other hand, algorithms to analyse data of simulated and real-world rivers can

help answer questions about the dynamics of rivers. With advancements in numerical

simulations and remote sensing techniques, there is an extensive growth in the amount of

available data. Due to the geometric nature of the data, computational geometry plays

an important role in the design of algorithms.

Multi-channel rivers. The focus of this thesis lies on developing geometric algorithms

for the analysis of multi-channel rivers, like braided rivers and estuaries. A braided

river [31] consists of many, often shallow, channels that are separated by small islands

called bars (see Figure 1.1). Channels split at bifurcations, stay separated along the

length of a bar and join again at a confluence. An estuary is the part of a river that

streams into a sea, and thus exhibits both marine as well as fluvial processes. Estuaries

are influenced by tidal processes, meaning that the water level fluctuates significantly
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Figure 1.1: Illustrative drawing of a braided river.

and frequently. Typically, estuaries are larger than braided systems, but their channels

display similar properties.

All rivers evolve over time, due to natural process such as riverbed erosion and mean-

dering. Braided rivers are among the most dynamic rivers, which manifests in a rapidly

changing channel structure [39]. Existing research on braided rivers has shown that

these rivers develop and maintain their multi-channel structure due to a combination

of natural processes [23, 35]. Wheaton et al. [57] present a classification of 10 differ-

ent morphodynamic mechanisms, and they show the contribution of each of these to

the dynamics of braided rivers. In a similar fashion, we are interested in the effects of

disturbances, for instance due to dredging, to the network structure of multi-channel

rivers.

1.1 Time-varying river networks

To predict how perturbations in a multi-channel river propagate through the channel

structure, it is necessary to understand how these rivers evolve over time. To our knowl-

edge, there is currently no automated method to easily track components of the river,

such as channels or bars, over subsequent time steps. A possibility to study the evo-

lution of rivers is to do the analysis by hand. However, that is a time consuming and

error-prone task, as there are various aspects in a river landscape that are difficult to

manually detect. Therefore, the aim of this thesis is to study the problem of automated

feature tracking in multi-channel rivers.

Problem statement 1. Can we find algorithms for the automated tracking of features

in multi-channel rivers?

When studying the behaviour of complex, real-world objects, such as rivers, the first step
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Figure 1.2: Orthoimagery of a the Western Scheldt, an estuary in the Netherlands (image

from image archive of Rijkswaterstaat: https://beeldbank.rws.nl/).

is to properly define a problem statement and a desired output. To do that, there needs

to be an understanding of the context in which the output will be used. For instance, if

the goal is to study whether dredging causes downstream channels to silt up, the output

should identify channels, store the depth of channels and maintain a spatial structure of

the channel network. However, if the goal is to study the lifespan of individual channels,

there is no need to maintain a spatial structure or store depths.

Given a formal definition of the output, the next step is to find a rigorous model of the

problem, in terms of the input. For example, to study the lifespan of channels, there

needs to be a rigorous model of the identity of a channel and a clear understanding of

how to detect channels from the input. An important part in the modelling step, is to

understand the natural processes and morphodynamical laws guiding the evolution of

channels. The last step, is to use these models to design efficient algorithms to compute

the desired output.

These steps—finding a problem statement, model and an algorithm—form an iterative

modelling framework. To gain a better understanding of the context, and to identify

sub-problems, a first iteration typically starts with a simplified problem statement. In

our case, we start by studying the problem of dynamic river networks. A dynamic river

network is an abstract representation of a time-varying river network. A river network is

an embedded graph which captures the channel structure of a multi-channel river. Edges

in a river network represent the channels in the river, and nodes represent bifurcations

and confluences. An example of a manually drawn river network is shown in Figure 1.3.

Existing algorithms for the automated construction of river networks depend on the

available input data.
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Figure 1.3: An example of a manually drawn river network.

There exist a number of methods to gather data on rivers. A relatively cheap way to

gather data is to deploy an aerial survey like an unmanned aerial vehicle (UAV) or a

satellite. This yields orthoimagery : coloured aerial photos of the terrain (see figure 1.2).

Alternatively, bathymetry can be used to extract a digital elevation model (DEM) of the

terrain. A DEM contains a height map of the terrain and can be rendered as a grey-scale

image, where lighter areas indicate higher elevations.

Algorithms for computing river networks. If the input consists of orthoimagery, a

common way to construct river networks is by converting the coloured photos into binary

images indicating ‘wet’ and ‘dry’ surface [13, 14, 37, 59], which we refer to as the wet-

and-dry approach. In terms of precision, the wet-and-dry approach has a few drawbacks.

Firstly, identifying wet areas relies heavily on tuning parameters dealing with the quality

of the photo and colours of the terrain. Secondly, for the analysis of rivers on the

timescale of years, the dependence on the water level is a major disadvantage. If the

photo was taken during a very dry period, the network may contain only a few ‘wet’

surfaces, that do not represent the actual river network well. Finally, most algorithms

based on the wet-and-dry approach do not account for the shape of the terrain. This

means that there is little to no information on the submerged terrain encoded in the

resulting networks.

Extracting networks from DEMs is also a well-studied topic. Early algorithms were

designed to compute drainage networks or flows [1, 5, 21, 48, 60]. These networks are

typically used to analyse how a uniformly distributed input in the terrain, like rain,

accumulates to local minima. Most existing algorithms rely on the assumption that

flowing water follows the direction of steepest descent. As gravity attracts droplets

of water in the direction of steepest descent, this seems like a reasonable assumption.

However, there are several reasons why a channel does not necessarily follow the direction
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Figure 1.4: Example of a river network of the Western Scheldt based on the lowest paths

in the terrain (image from [30]).

of steepest descent, and might even ascend. For instance, a river acts as a body of moving

water, and with that motion comes inertia that might push water in a different direction.

Moreover, local minima in the terrain may be filled with water, meaning that channels

ascend locally.

Lowest paths. Recently, a new approach to developing river networks from DEMs was

proposed, resulting in two new algorithms [36, 42]. The authors explicitly dropped the

assumption that flowing water follows the direction of steepest descent. Their approach

is based on assembling lowest paths in the terrain. Informally, a lowest path connects

two points in such a way that its highest point is as low as possible. They show that

these lowest paths lie on the piecewise linear Morse-Smale complex [22]. By comput-

ing a discrete Morse-Smale complex, they obtain a set of lowest paths. Among these

lowest paths are many insignificant, small channels. To reduce the size of the resulting

network, they only allow two channels to be represented in the same network if there is

enough sediment in between the two. This approach resulted in a first algorithm [36].

A disadvantage of the resulting network is that it is rather unstable: small changes in

the DEM could lead to completely different networks.

Because of the instability of the first method, they developed a second algorithm for

computing river networks from DEMs, again using the concept of lowest paths [42].

The model starts by pruning features of the terrain based on volume-persistence. By

cutting off parts of the terrain that have little volume, the resulting Morse-Smale complex

consists of only significant channels. This second approach is more stable, as the decision

to include channels in the network is taken at a local level. Figure 1.4 shows an example

of a river network computed by this second algorithm.
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The same authors also developed a kinetic data structure (KDS) [7] for maintaining

an area-persistent terrain in one dimension. Unfortunately, extending this approach

to maintaining volume-persistence in two dimensions seemed infeasible due to a high

computational cost.

A more concrete problem statement. There are numerous advantages of using DEMs

instead of orthoimagery, so in this thesis we assume the input data is given as DEMs.

Among the mentioned algorithms for computing a river network from a DEM, the lowest

path algorithms are most interesting to us, since they do not assume that rivers follow

the direction of steepest descent. Therefore, we model channels as lowest paths in the

terrain, and a river network as a graph. We tackle the problem of constructing a dynamic

river network, by finding a suitable channel matching. A channel matching assigns to

every channel in the initial network, a channel in the second network. We are now ready

to state a more concrete problem statement, which will be the focus of this thesis:

Problem statement 2. Given two DEMs of an evolving terrain, and two corresponding

river networks, can we find algorithms for the automated construction of a dynamic river

network?

Contribution. In Chapter 2, we discuss the notion of a channel matching in more detail,

and we propose two models for a dynamic river network. The two models tackle the

problem of matching channels from a different perspective. In the first model, we see

the channels as the primary object of interest, whereas in the second model, we focus

more on the terrains. In the remainder of this chapter, we briefly introduce these two

perspectives.

1.2 Similarity measures

A first way to look at the problem is from the channel’s perspective. From a morpho-

logical point of view this makes sense, as the channels are the main acting party on the

landscape. So, in this approach we focus on the movement of the channels, and trace

them through time. To do that, we first compute river network for the two subsequent

DEMs of the river. Next, we find a coherent matching of channels, based on how similar

they are with respect to some similarity measure. The performance of such a method

depends greatly on the choice of similarity measure.

From an abstract point of view, the channels can be seen as paths or curves on a surface.

Similarity measures for paths and curves are an important topic of study in various fields.

In computational geometry there exist a plethora of distance metrics [53], of which the

Fréchet distance [3], the Wasserstein distance (also known as Earth Mover’s distance)

[45] and the Hausdorff distance [2] are the most studied examples. Another interesting
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Figure 1.5: Execution of a volume-based similarity measure on two paths on a terrain

(image from [51]).

class of measures uses the topology of the underlying space where the curves reside.

Among these measures are the homotopic and isotopic Fréchet distances, by Chambers

et al. [15, 16]. The same authors also constructed an algorithm that minimises the

homotopy area [17], which models the area swept over when continuously deforming one

curve into the other. These measures are all rather general in the sense that they are

unaware of any context.

Context-aware similarity measures. A similarity measure that is designed for a specific

context is usually not widely applicable. However, such measures often outperform the

classical, general methods in their specific domain. Context-aware similarity measures

have been developed for all kinds of problems. There exists a measure for comparing

GPS trajectories while being aware of buildings [38], one for modelling lane changes

while also taking into account the other traffic [29] and there is a group of context-aware

similarity measures based on geographic context [12]. The latter one uses a subdivision

of the surface to distinguish between different types of terrain (e.g. soil and water).

More interesting for our context is a set of six volume-based similarity measures [51],

which take a 3-dimensional terrain into account. These measures construct a base

surface—each one is different and defines a specific measure—which slices the terrain

between the two paths. The part of the terrain above the base surface is considered

the earth above the two paths, and the volume of that earth is taken as output. See

Figure 1.5 for an example of the application of such a measure.

Contributions. In Chapter 3, we discuss similarity measures in more detail. In par-

ticular, we focus on extending the volume-based similarity measures. The six original

proposed methods work only for paths that do not intersect, but do share endpoints.

However, we want to apply a measure to more general paths, that may intersect and do
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not necessarily share endpoints.

1.3 Displacement fields

An alternative to tracking channels is to focus on the transformation of the terrain. As

a first step, we want to construct a morph of the initial terrain into the subsequent

terrain. With such a morph, it is possible to track the sand on the terrain. We then

match channels using the transformation. It might seem more intuitive to track the

channels directly, since that is how nature acts as well. However, by considering the

terrain first, we are exploiting all of the available data.

The more general problem of aligning images is the primal focus of image registration

[27, 40], which is an active field of research in image analysis. Besides images, the

research in this area also focuses on other sorts of data, such as DEMs or digital terrain

models (DTMs) [44, 54]. Algorithms for data registration typically follow a similar

framework. They first establish a similarity measure between two sets of data, to quantify

how well they align after applying a transformation. Next, they consider a class of

possible transformations. From this class, the transformation is chosen that optimises

the similarity measure. Finally, the chosen transformation is used to morph the initial

data set.

Registration algorithms are widely used in various fields, such as remote sensing and

medical imaging [61]. In geographical context, image registration algorithms have been

used to monitor the locations of agricultural terraces [56] or to track the evolution of

active landslides [54]. Image registration techniques have also been utilised in river

analysis, for instance to study the evolution of a single-channel river [52].

Displacement field. Due to the diversity of the problems, data registration algorithms

can be classified by numerous characteristics. If, for instance, the data is obtained at

distinct moments in time, the problem of aligning data is called multi-temporal data

registration [20]. To represent the transformation, multi-temporal registration methods

often use a displacement field, consisting of displacement vectors. A displacement vector

assigns a direction and magnitude to each data point of the input, capturing the motion

of that data point. A common technique to derive such a displacement field is image

correlation. Image correlation is used to measure a correspondence of sub-images by

moving these sub-images over the target image. This technique has for instance been

used to derive a displacement field for evolving landslides [24].

Recently, Chadwick et al. used image correlation to track the motion of channels in

braided rivers [14]. Inspired by pixel-based tracking algorithms as given in [59], they

first converted their data into binary wet-and-dry images. Then, they used an image

correlation technique called particle image velocimetry (PIV) to derive a displacement
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Figure 1.6: Displacement field derived by the PIV-based approach (image from [14]).

field (see Figure 1.6). They were able to use their algorithm to show that channel motion

occurs sideways as well as bank-perpendicular, refuting a common assumption in braided

river modelling.

Optimal transport. In our approach, we also compute a displacement field to model

the transformation of the terrain. The PIV-based method is restrictive in the sense that

they only use wet-and-dry pixels. To exploit all data, we consider a different method to

compute a displacement field: optimal transport (OT). Optimal transport [46, 50, 55] is

a branch of mathematics that originates from the 18th century and was first introduced

by Gaspard Monge. The general problem that optimal transport tries to tackle is to find

an optimal transport map: a cost-efficient way to redistribute mass from a given source

to a given target, while preserving the total mass. Since the last century, the problem

has been extensively studied, refined and reformulated, but the essence has stayed the

same.

The problem of optimal transport is very versatile, as there are numerous reformulations

of the problem, leading to the same optimal map. As a result, there are many inter-

pretations of the problem, each suggesting the use of a different numerical algorithm.

Finding fast algorithms to compute an optimal transport map is the main concern of

computational optimal transport [43]. Algorithms to find an optimal transport map have

been used in both image registration [25, 41] as well as in river analysis [10]. Moreover,

OT-based algorithms have shown to be effective tools to warp images [28].

Contributions. In Chapter 4 we discuss the construction of a displacement field in more

detail. Specifically, we look at the (basic) theory of optimal transport, and how to apply

that to our case. Moreover, we explore possibilities for a suitable cost function, and

discuss how to deal with the constraint of mass preservation.
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1.4 Implementation

In the previous two sections, we introduced two different tools - similarity measures and

displacement fields - to help in finding a realistic matching. In Chapter 5, we describe how

to obtain channel matchings from these tools. Moreover, we describe the implementation

of our methods, and show the performance on both simulated and artificial test cases.

Finally, in Chapter 6, we conclude our findings and pose some interesting open problems

for future research.
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Chapter 2

Modelling dynamic river networks

The goal of this thesis is to compute a dynamic river network. Recall, in Section 1.1, we

introduced the concept of a river network. A river network is an abstract representation

of the channel structure in a river. We model dynamic river network as a channel

matching that is optimal in some sense. Informally, a channel matching assigns to

every channel in the initial river network, a channel in the second network. A possible

objective for a dynamic river network could be to maximise the number of correctly

matched channels. We say a channel is correctly matched, if it in reality evolved into

its matched channel. Unfortunately, we do not know how to automate the process

of checking whether a channel is correctly matched. Therefore, we look for a relaxed

objective.

The problem of computing dynamic river networks is two-fold. Firstly, the notion of a

channel matching needs to be formalised. Secondly, we want to find a mathematically

rigorous objective, that is optimised to obtain a dynamic river network. In the remainder

of this chapter, we discuss these problems in more detail. In the following paragraphs,

we first discuss how to model terrains, channels, and river networks. Then in Section 2.1

we consider possible definitions for a channel matching. Lastly, in Section 2.2 we propose

two models for a dynamic river network.

Modelling terrains. Given two DEMs of an evolving terrain, we refer to the terrain

at the first time step as the source terrain, and to the terrain at the second time step

as the target terrain. Similarly, objects on the source (target) terrain are referred to

as source (target) objects. Essentially, a DEM stores the elevation of the terrain at a

finite number of points. We assume that a DEM is represented as a triangular irregular

network (TIN). A TIN is a triangulation T of a compact surface Σ ⊂ R2, that stores for

each point a height value. By linear interpolation of these height values over the edges

and triangles of T , we obtain a height function h : Σ → R.
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Following the definitions of Kleinhans et al. [36], we model channels as lowest paths,

and a river network as an embedded graph on the surface Σ. A path π : [0, 1] → Σ is a

continuous function connecting a start point s to an endpoint t. On a TIN, a path is

stored as an ordered set of points {s, v1, . . . , vn, t} ⊂ Σ. For two points s and t, let ℓ be

the lowest possible height, such that any path from s to t reaches at least the height ℓ

with respect to h. A path π from s to t is then called a lowest path, if its highest point

is at most at height ℓ, and it minimises the length of the sub-path that lies at that

height.

A river network is an embedded graph on the surface Σ. A graph embedding of a

graph G = (V,E) on a surface Σ, associates with each edge in G a path on Σ. Given a

height function h, a river network is then a graph G, such that it associates with each

edge, a lowest path on Σ with respect to h. Formally, this means that there exists a

projection P : E → P(Σ), which maps an edge in the graph to a path on the surface.

Here, P(Σ) is the set of paths on Σ. For simplicity, in the remainder of this thesis

we refer to edges in E as channels on Σ, but whenever we do, we implicitly use the

projection P .

2.1 Channel matchings

The first problem in defining dynamic river networks, is to formalise the notion of a

channel matching. Let G1 = (V1, E1) and G2 = (V2, E2) be two river networks, ex-

tracted from the source and target DEM respectively. A natural choice for a channel

matching is to consider functions M : E1 → E2. However, there are a couple of limita-

tions to this definition. For instance, channels can bifurcate, and as a result, a single

channel in the source network, might correspond to two different channels in the target

network. Moreover, a channel might silt up, meaning it disappears entirely from the

river network. By choosing M as a function from E1 to E2, we can not capture these

transformations.

As a solution, there are other ways to define a channel matching. For instance, to deal

with bifurcating channels, one could consider functions M : E1 → 2E2 , assigning to each

channel in the source network, a set of channels in the target network. Similarly, to

account for perishing channels, one could extend the range of the channel matching with

a sink channel τ , and consider functions M : E1 → E2 ∪ {τ}. If a channel is matched to

the sink channel, this means that it no longer exists in the target network. Note that

it is not necessary to include a source channel to account for appearing channels in the

target network. An appearing channel should naturally not be matched to any of the

channels in the source network.

Question 1. What is a suitable range for a channel matching, capturing all possible

transformations of a channel?

12



Figure 2.1: Two types of motion of a river channel. Channel migration is depicted in

green, and channel avulsion in red.

Channel operations. A possible next extension, would be to include more information

on what exactly happened during the transformation. Suppose we consider a class

of functions M : E1 → R, where R is a range of choice. There are various different

morphodynamical changes that can happen to a channel in a multi-channel river. One

could construct a class O of possible operations, capturing the type of morphodynamical

change. A matching M : E1 → R×O then maps each channel to one or more channels

in the target network and a corresponding operation. A simple example of such a class

is O = {persist, perish}.

A more interesting class of operations would be to consider the 10 different mechanisms

presented by Wheaton et al. [57]. As mentioned in Chapter 1, these mechanisms describe

the possible transformations of channels in a braided river. Four of these mechanisms—

central bar development, chute cutoff of point bars, transverse bar conversion and lobe

dissections—stem from earlier work by Ashmore [6] and Ferguson [23]. To detect these

changes, Wheaton et al. developed Geomorphic Change Detection [58] software.

A last example of a class of operations is to distinguish between channel migration and

channel avulsion, following the definitions in [14] (see Figure 2.1). Channel migration

describes a gradual and slow type of motion of channels, which can for instance be caused

by riverbed erosion. Channel avulsion on the other hand, describes a more abrupt type of

motion, often causing a sudden change in the network structure. Since channel avulsion

makes it harder to track channels, a good pre-processing step could be to first detect

areas where channel avulsion took place.

Question 2. What would be a good set of channel operations, and how do we detect

them?

Visualising channel matchings. To inspect the output of automated methods, a visual

representation of a channel matching is useful. There are various ways to visualise a

channel matching. Perhaps the most intuitive choice, is to draw arrows between matched

channels (see Figure 2.2a). However, in large networks, this might cause a lot of clutter,

making it hard to carefully inspect the output.
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(a) (b)

Figure 2.2: Two possible visualisations for a channel matching.

Another option is to consider a colour-based visualisation, where matched channels share

the same colour (see Figure 2.2b). To indicate channels that perish or emerge, one could

reserve two distinct colours, like black and white. A disadvantage of this method, is

that there need to be a lot of colours if there are many channels. One could consider

to limit the number of different colours, by deploying a four-colour algorithm. However,

this might cause issues when channels split or merge.

Alternatively, one could also consider representing a channel matching as a series of

interpolated matchings. To bring the channels closer to each other, it is also possible to

overlay the networks. A final option is to combine some of these methods, to use the

best of multiple worlds. For instance, colouring the networks in two distinct colours,

then overlaying them and drawing arrows between matched channels might provide a

nice visualisation .

Question 3. How do we visualise a channel matching as clearly as possible.

2.2 A suitable objective

Let G1 = (V1, E1) and G2 = (V2, E2) be two river networks, and let M : E1 → R be

a channel matching. For now, we assume that the channel matching maps each source

channel to a single target channel, i.e. R = E2. Recall, a dynamic river network is a

channel matching that optimises some objective. The goal of this section, is to find a

suitable objective, which is both mathematically rigorous and reasonable from a mor-

phological point of view. Ideally, a dynamic river network maximises the number of

correctly matched channels, but unfortunately we do not know how to check automati-

cally whether a channel is matched correctly. It is however, desirable to have a measure

on the quality of the resulting dynamic river network.

Question 4. Can we find an automated way to determine the quality of a generated

dynamic river network, in an objective manner.
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Figure 2.3: For a similarity measure capturing the area between the paths, all source

channels will be matched to the same target channel.

2.2.1 Maximising similarity

A natural way to relax the notion of a correctly matched channel, is to consider optimally

matched channels. Given a similarity measure d : P(Σ)× P(Σ) → [0,∞) and a channel

π ∈ E1, we define a dynamic river network:

M(π) := ρ∗ ∈ E2, such that d(π, ρ∗) = min
ρ∈E2

d(π, ρ).

We assume that d is surjective, so that there is precisely one channel ρ ∈ E2 that

minimises the similarity measure. If d is not surjective, one could consider using a

selection criteria to choose one of the optimal target channels. In this model, every

source channel is matched to the best possible target channel, with respect to a chosen

similarity measure. Therefore, the similarity measure plays an important role in this

model.

Problem statement 3. How do we define a suitable similarity measure, to compare

channels from an evolving terrain?

This problem statement is the central focus of Chapter 3. Note that in this construction,

we consider each channel in the source network separately. As a consequence, the result-

ing channel matching might not be globally coherent. For instance, all source channels

might be matched to a single target channel (see Figure 2.3). A possible solution for

this is to impose constraints on the channel matching. For instance, to prevent that

all source channels are matched to a single target channel, we could enforce that at

most two source channels are matched to the same target channel. An added advan-

tage of adding constraints, is that a constraint can implement morphologically relevant

behaviour.

Question 5. What is a good set of constraints to impose on a channel matching?

A simple way to extend this model in the case that the range of M is chosen differently,

is to consider thresholds. For instance, if the range includes a sink channel, i.e. R =

E1 ∪ {τ}, one could define a threshold dτ . If then, for a given source channel π, dτ is

smaller then the distance of π to the closest target channel, π is matched to τ . Similarly,

if a single source channel is mapped to a set of target channels, one could consider a
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threshold dM and match π to all channels that are within a distance dM . Choosing right

values for these threshold depends on the choice of similarity measure.

Question 6. Given a similarity measure, how do we determine the right values for

thresholds?

2.2.2 Minimising displacement

Before we describe a second model for dynamic river networks, we first introduce some

notation. Recall, we define a channel to be a path π : [0, 1] → Σ on a surface Σ, and

we denote the set of paths on Σ, as P(Σ). Now, we say a time-varying path η, is a

continuous function, that maps a time t ∈ [0, 1] to a path in P(Σ). In other words, η is

a path, in the space of paths: η ∈ P(P(Σ)). We say that the source terrain is obtained

at time t = 0, and the target terrain is obtained at time t = 1. If we assume that every

channel π in E1 has a unique, corresponding time-varying channel ηπ, then we know

that the correct channel matching M∗ is given by

M∗(π) = ηπ(1).

In our second model, we take this assumption as a starting point for defining an optimal

channel matching. We extend the concept of a channel, to that of a time-varying channel,

and model such time-varying channels as time-varying paths. A time-varying channel

captures the, possibly non-continuous, motion of a channel over time, as it changes its

course. A natural way to model a time-varying channel, is by extending the notion

of a lowest path to a time-varying variant, which we will call a persistent lowest path.

Without explicitly defining these paths, let Γ(Σ) be the set of persistent lowest path

on Σ.

To define a persistent lowest path, we need to choose which properties such paths should

exhibit. For instance, an intuitive definition would be to consider time-varying paths η,

such that at every time t, η(t) is a lowest path with respect to the terrain at time t. Now,

let E : P(Σ) → Γ(Σ) denote the function that maps a lowest path π to its corresponding

persistent lowest path ηπ, such that ηπ(0) = π. We assume that such a function E is

well-defined, but note that that is not necessarily the case. Depending on the definition

for a persistent lowest path, there might not be a persistent lowest path that satisfies

ηπ(0) = π. If there is a corresponding persistent lowest path, then it is not guaranteed

that it is unique.

Question 7. How do we (rigorously) define a persistent lowest path?

Since the definition of a lowest path depends on the height of the terrain, we assume

that the same holds for a persistent lowest path. We know only the height of the terrain

at times t = 0 and t = 1, so instead of considering the height, we consider a displacement
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function D : [0,∞)×Σ → Σ. A displacement function captures the transformation of the

terrain, and is related to the time-varying height of the terrain. Therefore, we assume

that we can express E in terms of D:

E(π, t) = L(D(t), π),

for some function L.

Question 8. What is the relation between a persistent lowest path and the displacement

function D, i.e. how do we define the function L?

Finding the displacement function at time t = 1 will be the central focus of Chap-

ter 4.

Problem statement 4. How do we obtain the displacement field D(1)?

We now have a way to map a path π on the source terrain, to another path ρ on the

target terrain. Specifically, we have ρ := E(π, 1) = L(D(1), π). Since the involved

functions—L and D—model very complex processes, there is little hope of finding exact

solutions. Therefore, the path ρ is very likely not a channel in the target river network.

To make sure that we do match source channels to target channels, we need to snap ρ to

the target network. In particular, we introduce a function r : P(Σ) → E2, that assigns

a channel in E2 to the obtained path ρ.

Question 9. How do we snap paths to the target network, i.e. how do we define r?

At last, we say that the dynamic river network is given by the channel matching

M(π) := r(L(D(1), π))

Finding a suitable model for L and r is the main focus of Chapter 5.

2.2.3 Alternatives and extensions

Recall that the river network is stored as a graph, with edges representing channels in

the network. An alternative to the two models proposed in this chapter, is to consider

a model based on the structure of the graph. That is, the edges and nodes in a graph

naturally provide a spatial relation between channels in the river network. A possible way

to define a channel matching, is such that it maintains these spatial relations. Besides

an alternative model, one could also look to extend our current definitions, by including

more properties of the river network.

Widths and depths. In braided rivers, the depth of a channel plays an important role

in the dynamics of the river. For instance, the process of sediment transport is dependent

on the flow velocity of the water. In places where the velocity is low, sediment settles
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at the bottom. As a result, the channel becomes less deep, causing the velocity to drop,

and amplifying the settling of sediment. Therefore, tracking the widths and depths of

channels might provide more insight in the morphodynamical behaviour, making it easier

to define a suitable matching.

Question 10. How do we define and track properties, like width and depth, of a channel?

The time step. So far, we have not yet mentioned a crucial component of the initial

problem statement: the time step. Note that time is not necessarily a relevant pa-

rameter to the problem, as some rivers evolve slowly, while others evolve more rapidly.

Therefore, a better parameter would be to consider a morphological difference of the

input terrain. Alternatively, one could also consider a topological difference in the river

networks extracted from the input terrains.

Question 11. How do we measure the similarity of the input terrains?

The models proposed in this chapter are independent of any similarity of the terrains.

However, we do expect that the more alike two networks are, the better our methods

work. This is a natural consequence, and has been observed in related problems as well.

For instance, in [14], the authors note that their methods to track channel migration

work best, if channels migrate approximately 25% of their channel widths.

Question 12. Can we quantify how well our methods perform in terms of the similarity

of the input terrains?

2.3 Discussion.

This chapter poses a lot of questions, of which many are inherently subjective. For

instance, finding a good model for a channel matching relies heavily on the—almost

philosophical—question of what a time-varying channel is. In modelling, it is always

important to keep the application in mind. So, when it comes to modelling complex

rivers, it is wise to keep a geomorphological point of view.

There is usually a trade-off between adding complexity to a model and obtaining more

accurate results. In the remainder of this thesis, we simplify the problem rather bluntly,

by adding a lot of assumptions. As a consequence, the results of our models might not

be very accurate. However, they might provide more insight to the problem’s context,

and show some promising direction, which may lead to better results in a next iteration

of the modelling proces.
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Chapter 3

Comparing channels

In this chapter we explore the potential of a volume-based similarity measure, that

compares paths obtained at different moments on an evolving terrain. Tools to analyse

geometric data often use a similarity measure to compare paths, but there is not a single,

best way to do so. In our case, we use paths to represent river channels, but they can also

be used to represent various other geographic objects. For instance, paths can be used

to delineate fields growing crops or to represent trajectories of migrating birds. In both

examples, the paths are dynamic and can change over time. Crop fields may merge and

birds might fly a different route next year. The same goes for rivers: channels change

their course as they evolve over time.

Similarity measures. To quantify the similarity of two paths, we need a substantial no-

tion of similarity. If the problem is set in a specific context, this context needs to be taken

into account. As a result, numerous similarity measures have been designed, tailored to

a variety of contexts. For example, when comparing trajectories of migrating birds it is

important to take the air’s temperature or even wind patterns into account. Likewise,

comparing river channels requires an understanding of the processes that cause a river

to change its course and an analysis of how an evolving river affects the terrain.

Most existing similarity measures are some variant on measuring what ‘lies between’

two paths. As we have seen in Section 1.2, some of the more general measures such

as the Fréchet distance and the Hausdorff distance do not consider any context at all.

Other measures compute the area between two paths and some measures are specifically

designed for a geometric use case. In our 3-dimensional setting, we are most interested

in the volume-based similarity measures proposed by Sonke et al. [51]. These measures

first construct a suitable base surface between the two paths, which may both slice

through and hover above the terrain. The volume of earth above the base surface and

below the terrain is considered the volume of earth between the two input paths. An

example of such a measure, with as base surface a simple horizontal plane, can be seen in
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Figure 3.1: Execution of a volume-based similarity measure on two paths on a terrain

(image from [51]).

Figure 3.1. Sonke et al. propose six different ways to construct the base surface, leading

to six different measures with their own applications.

Using the volume of sediment between two channels is a reasonable way to capture the

effort needed for a channel to move across the terrain. We want to exploit this idea in

pursuit of a similarity measure for our use case. Specifically, we wish to compare paths

obtained at different moments in time on an evolving terrain. The volume-based simi-

larity measures assume that the input paths share endpoints and are disjoint elsewhere.

Moreover, the measures use a single height map, arising from a single moment in time,

in the construction of base surface and computation of the volume. To apply such a

measure, we thus need to pre-process our input paths and find a single height map to

use.

Assumptions and organisation. We assume that our input consists of a triangulation T

of a surface Σ ⊂ R2, where each vertex is assigned two height values. Let h1 and h2 be the

height functions obtained by linearly interpolating these height values over the edges and

triangles of T . Moreover, we are given two path π, ρ on Σ. We assume that both paths

are simple, i.e. that they do not intersect themselves. This is a safe assumption, since

by construction of a river network, our paths are separated when they split or join. Our

goal is to compute a similarity between π and ρ, capturing the effort needed for the path

π to change its course to path ρ, with respect to the terrain. For simplicity, we consider

only channel migration from π to ρ and do not account for channel avulsion.

In the remainder of this chapter we discuss the possibilities of a volume-based similarity

measure between π and ρ. In Section 3.1 we first discuss the existing volume-based simi-

larity measures in more detail, and we choose a suitable base surface for our application.

Then, in sections 3.2 and 3.3 we discuss two problems that arise when dealing with more

general paths: intersections and disjoint endpoints. Next, in Section 3.4 we discuss the
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(a) (b)

Figure 3.2: Illustration of the working of the WFS (images from [51]). (a) a sloped hill

with a bump. (b) The WFS slices off the part above the saddle point.

time-varying component of our problem. Finally, in Section 3.5 we discuss the challenges

in designing a suitable similarity measure.

3.1 Sand function

In this section, we discuss the volume-based similarity measures proposed by Sonke et

al. [51]. Formally, let T be a triangulation of a surface Σ, where each vertex has a height

value. Let h : R2 → R be a height function obtained when linearly interpolating the

height values over the edges and triangles of T . We are given two paths π and ρ on Σ

and we assume that the paths intersect exactly twice, namely at their endpoints. The

two paths enclose a single region D ⊂ Σ. A volume-based similarity measure is defined

by its base surface, which acts as a function B : R2 → R. The measure induced by a

specific choice of base surface, is then given by

dearth(π, ρ) =

∫
D
max{0, h(x, y)− B(x, y)} dxdy. (3.1)

This measure captures the volume of earth above the base surface B. A high value means

that there is a large volume ‘in between’ the two paths, and a low value means that there

is little volume in between.

Water flow surface. Out of the six existing base surfaces, the water flow surface (WFS)

is the most suitable choice for our application. The WFS models the minimum amount

of earth that needs to be removed for π to move its course to ρ, with respect to the height

function h. From now on, we refer to the volume-based similarity measure using the WFS

as its base surface, as the sand function. Note that the sand function is asymmetric, as

it is harder for a channel to move uphill than it is to move downhill. Informally, the

WFS is a surface on or below h, on which there exists a smooth morph from π to ρ in D
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Figure 3.3: (a) A monotone isotopy between two paths, depicted as a sequence of

intermediate curves. (b) Two matching curves of the monotone isotopy. (c) An isotopy

would have to squeeze through the bottleneck.

that never moves uphill (see Figure 3.2). Since there may be many such surfaces, the

WFS is the one that measures the smallest volume of earth.

To formally define the WFS, we first introduce the necessary terminology. Let π′ and

ρ′ be two non-intersecting paths in a plane that share endpoints and let D′ denote the

region enclosed by the two paths. An isotopy between π′ and ρ′ is a smooth transition

from π′ to ρ′ with only simple intermediate paths. An isotopy is called monotone if it

only moves forward and stays inside D′ (see Figure 3.3a). Such an isotopy can be seen

as a matching of the points on π′ to the points of ρ′. If we fix a point on π′, we can trace

it along the intermediate curves to its matched point on ρ′. The sequence of points on

the intermediate curves is called a matching curve (see Figure 3.3b).

We are now ready to define the WFS. A monotone isotopy between π and ρ is smooth,

and forward only, so it defines a function over D. By choosing the elevations such that

the function is continuous over D, the image of the monotone isotopy is a surface. Since

we do not want to add sand, we restrict the elevations to be at most as high as h.

Moreover, we want the matching curves of the monotone isotopy to be monotonically

decreasing in elevation. This yields a set of valid surfaces, and the WFS is the surface

from this set that minimises Equation (3.1).

The WFS models the cheapest way to morph one path into another, where cheapest

refers to encountering the least volume of earth. It assumes that this morph stays

inside the enclosed region D, but it is not immediately clear whether that assumption is

reasonable. When only considering the area swept by the morph, it is clear that leaving

the enclosed region yields a larger area. However, it is not trivial to assume that this also

means that a larger amount of volume needs to be sliced off. Is it for instance possible

that part of π finds a ‘cheaper’ path towards its matched part of ρ by leaving D?
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Figure 3.4: Two pairs of paths with different orders of intersection.

Question 13. Suppose B is the surface obtained by taking the surface on or below h, for

which a monotone homotopy exists with monotonically decreasing matching curves and

which measured the smallest volume of earth. Does there then also exists a monotone

isotopy whose matching curves are monotonically decreasing corresponding to B?

Following up on this, we should ask ourselves whether the WFS is a realistic model for

the transition of a channel. For most moving paths, it sounds reasonable to assume that

a channel finds the cheapest way to smoothly morph into another channel. However, for

some paths, it might make more sense if it takes a detour. In particular, if two channels

share a similar bend, it might be more likely that the bend was carried over, thereby

leaving the enclosed region (see Figure 3.3c). One possible way to take these cases into

account is by considering a new base surface, by either removing constraints (allowing

for homotopies instead of isotopies) or by adding constraints (restraining paths from

disentangling).

Question 14. When do we consider two paths to be close to each other? Is there a more

realistic notion than the one proposed in the construction of the water flow surface? And

if so, can we construct a base surface capturing this new notion of similarity?

3.2 Dealing with intersections

In this section we discuss how to deal with intersecting paths. The most intuitive way to

deal with intersections is to split an invalid path into smaller valid sub-paths. Specifically,

we want to partition both input paths π and ρ into n sub-paths π1, . . . , πn and ρ1, . . . , ρn,

such that each pair (πi, ρi) is non intersecting. Given these sub-paths, we can then

evaluate the sand function for each pair, and sum the resulting values:

d′earth(π, ρ) =

n∑
i=1

dearth(πi, ρi).

Naturally, this means we are computing the volume of two piles of sand as the sum of

the volumes of the piles separately.
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Figure 3.5: Execution of intersection partitioning.

The most straightforward way to partition the paths, is to split both paths at their

intersections. Yet, for some pairs of paths that does not necessarily yield well-defined

pairs of sub-paths. If the order of intersections is the same for both paths, there is no

problem in partitioning at the intersections. We call such a pair of paths an orderly pair

of paths (see Figure 3.4a). If the order is not the same for both paths, partitioning the

paths along their intersections might give sub-paths that do no share their endpoints.

We call such a pair disorderly (see Figure 3.4b).

Before we discuss how to deal with disorderly pairs, we introduce some useful notation

and definitions. We are given two simple paths π and ρ on a plane. For now, we assume

that the paths share their endpoints, but in the next section we discuss how to deal with

paths that do not share endpoints. We denote by s and t the (shared) start and endpoint

of π and ρ. A sub-path of a path π is a path contained in π. Partitioning a path π at

a point x gives two sub-paths: one starting at s and ending at x, and one starting at x

and ending at t. Furthermore, a pair of paths is valid if the paths share endpoints and

do not intersect. Let I = {x1, . . . , xn} be the set of intersection points between π and

ρ, sorted by their order along π. Note that n ≥ 2, since the paths share endpoints. We

now discuss how to obtain valid pairs of paths consisting of sub-paths of π and ρ.

Partition along intersections. The simplest idea is to partition two paths along their

intersection points. For orderly pairs of paths it is easy to see how to create valid pairs

on which we can compute the sand function. For disorderly pairs however, there is

no straightforward way to obtain valid pairs. Therefore, we need to alter this method

slightly to also work for disorderly pairs.

Assume that n > 2, since otherwise the two paths already form a valid pair. Formally,

we partition π at x2, to get two sub-paths π1 and π2. Note that ρ does not intersect π1,

except at the endpoints of π1. Therefore, we also split ρ at x2 to get two sub-paths ρ1
and ρ2. The sub-paths π1 and ρ1 do not intersect, but they do share endpoints. Hence,

they form a first valid pair. The remaining two sub-paths π2 and ρ2 also share endpoints,
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(a) (b) (c)

Figure 3.6: Three different sets of valid pairs, obtained by intersection partitioning.

so we can repeat this process until we end at t. Figure 3.5 shows the execution of this

method on a disorderly pair of paths.

To illustrate this method, consider the resulting pairs in Figure 3.5c. By computing the

sand function on those pairs separately, we match sub-paths of π and ρ and prescribe how

a morph from π to ρ would take place. This method of partitioning is a natural extension

to disorderly pairs, for a number of reasons. Firstly, note that for an orderly pair of paths,

this method comes down to simply partitioning at all intersections. Secondly, every part

of π is matched to some part of ρ, meaning that we model the morph of the entire path.

Lastly, start points in the sub-paths of π are matched to start point in the sub-paths of

ρ. As a result, the direction of the flow in a channel is preserved.

If we assume that a path is not allowed to cross itself, the resulting pairs induce an order

in which the sub-paths should transform. For instance, the bottom right red sub-path

should have moved at least a bit before the red sub-path of the top right pair is able to

finish its transition to its corresponding blue sub-path. Otherwise, the initial red path

intersects itself. This could be taken into account when computing the sand function for

these sub-paths: instead of using the same terrain for each pair, one could use a slightly

different terrain, based on the transformations that already took place.

Question 15. Can we update the terrain in between computing the sand function for

sub-paths?

Note, that the partitions change if we sort the intersections along ρ instead of π. In fact,

at every iteration of the procedure, one could choose to partition at the next intersection

along π, or along ρ. If these intersections are not the same, choosing a different one

leads to a different set of sub-paths (see Figure 3.6). An automated method, that is

independent of sorting along π or ρ, is to recursively partition at the earliest intersection.

For the next intersection x along π, there is a parameter t ∈ [0, 1] such that π(t) = x.

Similarly, for the next intersection y along ρ, there is a parameter t′ ∈ [0, 1] such that

ρ(t) = y. If t < t′, the earliest intersection is x, and otherwise it is y. Another,
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Figure 3.7: Three examples of connecting endpoints by a shortest path.

independent, way to partition, is to greedily choose the intersection that yields the

lowest sand function. A final method, would be to consider choosing the partitioning

that minimises the total sand function.

Question 16. How do we choose an order along which to partition?

Alternatives. There are other ways to construct valid pairs of sub-paths. For instance,

one could consider partitioning at all intersections. This yields smaller enclosed regions,

and thus also cheaper transformations. However, this does not necessarily give a realistic

matching of sub-paths. The sub-paths are no longer connected continuously, nor is the

direction of flow preserved. Alternatively, one could consider using the outline of paths.

However, this means we construct new paths, consisting of sub-paths from both π and

ρ. If we are dealing with a single, closed path, this might be useful, but in our setting

that does not make sense.

3.3 Dealing with endpoints

In this section, we briefly discuss the difficulties that arise when generalising a similarity

measure to paths that do not share endpoints. If two paths π and ρ on a plane are not

connected, there is no enclosed region, which is a crucial component of computing the

water flow surface. The simplest way to obtain an enclosed region is by extending π

such that its endpoints coincide with the endpoints of ρ. We denote the extended path

by π′. Since π′ and ρ do share endpoints, we are able to apply the sand function and

compute a volume.

There are infinitely many ways to extend π, but the most natural choice is by drawing

shortest paths between the endpoints of π and the endpoints of ρ. For some input paths,

this might be a reasonable choice. If, for instance, the paths are more or less parallel,

drawing shortest paths makes sense (see Figure 3.7a). For other input paths, it is not

immediately clear whether using shortest paths gives a reasonable result.
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For instance, in some cases, the enclosed region is thin and small (see Figure 3.7b). The

sand function then might consider these paths to be relatively close, while in reality such

a transformation is unexpected. Since the WFS chooses the morph between paths that

requires removing the least volume of earth, it does not necessarily use realistic morphs.

In fact, these cases resemble the issue of channels with bends from Figure 3.3c. One way

to tackle this problem, is by considering a different base surface.

In other cases, the extended path might be intersecting itself (see Figure 3.7c). Since we

assumed that our input paths are simple, this leads to a new kind of problem, that is

outside the scope of this thesis. This problem does not stand on its own, and is due to

an inherent defect in connecting two paths. By extending π, we introduce a new ‘piece’

of channel. As a result, we obtain a different path and thus a new problem, namely that

of morphing the extended path π′ to ρ. Therefore, extending paths might not be the

right solution.

An alternative would be to reconsider the choice of base function. If morphs are allowed

to move outside the enclosed region, we might not even need to connect the paths.

Moreover, it is wise to add some restrictions on which paths we wish to compare. If

paths are for instance very different in size, are oriented differently, or are separated by

other paths, it is not likely that they should be matched. A potential option to deal

with paths that do not share endpoints, would therefore be to combine a filtering step

with an improved base surface.

3.4 Dealing with an evolving terrain

In this section, we discuss paths that are obtained at different moments on an evolving

terrain. We are now given a triangulation T equipped with two height values per vertex.

Let h1 and h2 be the two piece-wise linear height functions, obtained by interpolating

the height values. The sand function computes a volume between two paths, and for

the concept of volume to make sense, we need to have one well-defined height map. The

simplest option is to discard one of the input height maps, but one should be careful

when ignoring data. Therefore, we explore the possibilities for, and interpretations of

choosing a single height map h.

Finding a height map. The input to our problem contains two height maps h1 and h2,

describing the elevation of the terrain at different moments. The simplest way to obtain

one height map is to discard one of the input height maps and use the other. Recall that

the sand function models the minimum amount of earth that needs to be removed for a

channel to move from π to ρ. By choosing h = h1, we thus measure an expected effort

of moving π to ρ with respect to the source terrain. Alternatively, we can also choose

h = h2. Instead of an expected effort, the sand function now gives an indication on how
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likely it is that π indeed moved to ρ.

Both options give a reasonable estimate for our desired similarity measure, but they do

have some shortcomings. One shortcoming is that they use the information of the terrain

at a single moment in time, whereas there is more information available. For instance, if

the sand function is high on the source terrain, but low on the target terrain, this means

that the area between the two paths is affected over time, possibly due to the motion of

π to ρ. Therefore, a better approach would be to compute the sand function for both

h = h1 as well as h = h2, and compare the resulting volumes. A large decrease in the

volumes could indicate that something—possibly the motion of a channel—reshaped the

terrain. Similarly, a small difference in volume could indicate that the terrain remained

rather intact, not experiencing any major changes.

Although informative, a difference in volume does not give a definite answer to what

actually happened. A large difference could also be due to another disruption in the

terrain between the two paths. Likewise, a small difference does not mean that the

terrain did not change. For instance, sediment could have shifted, therefore not causing

a change in height between two paths. In other words, we do not know anything about

where the terrain was changed. One could consider other height maps, such as the

average height of the two terrains: h = (h1 + h2)/2. Another option, is to consider

an absolute difference of the terrains: h = |h2 − h1|. Still, these height maps exhibit a

similar shortcoming: they do not give any information on the direction of motion.

Recovering transformation. We are given two height maps, and we know for a fact that

there exists a transformation between the two. If we are able to recover this transforma-

tion, we can reconstruct the evolution of the terrain and infer how channels moved. Find-

ing such a displacement is largely independent of finding a suitable similarity measure.

Therefore, we introduced a second model for a dynamic river network in Section 2.2.2,

depending on a displacement field. Finding a method to compute a reasonable displace-

ment field is the topic of Chapter 4.

3.5 Discussion

In this chapter, we explored the possibilities for a volume-based similarity measure for

comparing general paths on an evolving terrain. Our focus was on extending the sand

function, which is a volume-based similarity measure for non-intersecting, connected

paths on a static terrain, introduced by Sonke et al. [51]. Although we did not find a

suitable measure yet, this chapter does contain some useful building blocks to extend

the sand function, and poses some interesting questions for further research. The sand

function, and the more general framework of volume-based similarity measures, provide

a good starting point in pursuit of a suitable measure for comparing paths on different
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terrains. To gain a better understanding of the resulting values for non-intuitive paths,

it is crucial to define how paths are allowed to move, taking the setting of the problem

into account. Depending on the context, the different ways to partition intersecting

paths or connect disjoint paths considered in this chapter, provide ways to deal with

more general paths.
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Chapter 4

Transforming the terrain

In this chapter, we discuss an algorithm to reconstruct the transformation of a terrain,

based on the principles of optimal transport. Specifically, we propose a method to

compute a displacement field, which describes an elastic transformation of the source

terrain into the target terrain.

Problem statement. Formally, we are given a triangulation TΣ of a surface Σ, where

each vertex is assigned two height values. Let h1, h2 : M → R be the height func-

tions obtained by linearly interpolating these height values over the edges and triangles

of TΣ. The goal is to obtain a reasonable reconstruction of the transformation of h1
into h2.

4.1 Optimal transport map

Given a pile of sand, what is the most efficient way to transport the sand to form a desired

target shape? In 1781, Gaspard Monge studied the problem of efficiently redistributing

mass from a set of sources into a set of targets. His original problem is an optimisation

problem, where the objective is to minimise a cost of transportation, constrained to

conservation of mass. In the last century, the problem sparked more interest again. This

led to a lot of results in the field of optimal transport, and a wide variety of applications

in a diversity of fields, like machine learning, image warping and economics.

Before we can present the formulation of the Monge-problem, we need to introduce some

definitions. Let X,Y ⊂ Rd be two compact sets and let f be a density on X. A density

is a non-negative function f such that it has total mass equal to 1, i.e.

∫
X
f(x)dx = 1.
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BT−1(B) T−1

f(T−1(B)) T#f(B)

Figure 4.1: The push-forward of a measure.

Figure 4.2: Two ways to transport books.

Next, let T : X → Y be a map and take a subset B ⊂ X. The pre-image T−1(B) of

B under T is the set of points in X that T maps to B. Furthermore, the push-forward

T#f of f under T is a density on Y , locally satisfying conservation of mass:∫
B
T#f(y)dy =

∫
T−1(B)

f(x)dx, ∀B ⊂ Y.

In words, this means that the mass (with respect to T#f) of every set B in Y is equal to

the mass (with respect to f) of its pre-image, T−1(B), in X (see Figure 4.1). If T#f = g,

for a density g on Y , we say T is a transport map which transports f into g.

Monge problem. We are now ready to state Monge’s formulation of the optimal trans-

port problem. Let X,Y ⊂ Rd be two compact subsets, let f, g be two densities on X and

Y respectively, and let c : X × Y → [0,∞) be a non-negative, continuous, cost function.

The cost function describes the cost of transporting mass from a point x ∈ X to a point

y ∈ Y . The Monge-problem is then to find a solution to the following minimisation

problem:

inf

{∫
X
c(x, T (x))f(x)dx | T : X → Y s.t. T#f = g

}
.

If it exists, the transport map T that minimises the above expression, is called the

optimal transport map.
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Figure 4.3: An example of a strictly convex (left) and a convex (right) function.

The existence and uniqueness of an optimal transport map depend on the choice of

cost function c. A common analogy to understand why the choice of cost function is

important, is the problem of moving books (see Figure 4.2). Suppose you have two books:

one at position 1, and one at position 2. This setup defines your source distribution,

and you want to move the books to a target distribution, where one book is at position

2 and one book is at position 3. There are two obvious transport maps to transform

the source setting into the target setting. The first option is to slide both books one

position to the right, and the second option is to take the book at position 1 and place it

at position 3. The optimal transport map is given by the map that minimises the cost,

and it turns out that for some cost there is no unique solution.

If the cost function is a simple Euclidean distance, c(x, y) = |x − y|, both transport

maps have a cost of 2. Although there does exist an optimal transport map1, it is not

unique. On the other hand, if the cost function is a squared Euclidean distance c(x, y) =

|x− y|2/2, there is a unique optimal map. The first option gives a cost of 1, whereas the

second option costs 2. In fact, it was shown by Brenier [11], that if X = Y = Rd and

the densities f and g are zero outside a compact set, the general Monge problem admits

a unique minimiser under a (scaled) quadratic Euclidean cost c = α|x− y|2.

This result was later generalised by Gangbo et al. [26]. They showed that for cost

functions c(x, y) = h(y − x), where h is a strictly convex function, the Monge problem

admits a unique minimiser. A function h : Rd → R is convex if for all x, y ∈ Rd and for

all λ ∈ [0, 1] it holds that

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y).

If the inequality is replaced by a strict inequality, h is called strictly convex. Informally, a

strictly convex function is such that any straight line connecting two points on the graph

of the function lies above the graph, except for the endpoints (see Figure 4.3).

Displacement field. A transport map T assigns to every point in X a new location in

Y . We define our displacement field as follows:

D(x) := T (x)− x. (4.1)

1Under some regularity conditions on the densities, the cost function c(x, y) = |x− y| always admits

at least one optimal transport map [4]
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(a) (b) (c)

Figure 4.4: Transforming the (a) source terrain into the (c) target terrain yields a (b)

displacement field, describing the transport of mass.

To understand what a displacement field encodes, consider the displacement field in

Figure 4.4b. The optimal transport map matches points in the source distribution to

points in the target distribution. The displacement field then shows how the points

moved.

Reformulations and computations. There exist numerous reformulations of the origi-

nal problem by Monge, of which the Monge-Kantorovich problem [33] is the most studied

one. The Monge-Kantorovich problem relaxes the original problem, by looking for opti-

mal transport plan rather than optimal transport maps. An optimal transport plan is a

coupling, assigning to each pair x, y ∈ X × Y a value indicating how much mass moves

from x to y. If there exists an optimal transport map T , it can easily be expressed as

an optimal transport plan γ, namely by setting γ(x, y) = 1, if T (x) = y, and γ(x, y) = 0

otherwise. The Monge-Kantorovich problem is a linear optimisation program under

convex constraints, meaning that the problem also admits a dual formulation.

Yet another reformulation of the problem, is by considering a different point of view, and

is inspired by methods from computational fluid dynamics. The formulations considered

so far, are from a Lagrangian perspective: using a transport map T , we track points

trough space, over time. Alternatively, we can also view the problem from a Eulerian

perspective, where we do not track individual particles, but focus on fixed locations

in the underlying space. Instead of finding an optimal map, we then want to find a

function ρt(x), that gives the density for a non-moving point x at time t. A Eulerian

formulation of the problem, often called dynamic optimal transport, was first introduced

by Beckmann [8]. The relation between dynamic and regular optimal transport was then

later established by Benamou and Brenier [9]. An important component of the Benamou-

Brenier formulation, is the continuity equation, which represents the conservation of mass

constraint.
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In theory, all of the reformulations solve to the same value. In practice however, it is

in general not feasible to obtain an exact solution. Therefore, most existing algorithms

only look for approximate solutions. When discretising, the various reformulations lead

to distinct problems, for which different algorithms can be used to solve them (see for

instance an overview paper on optimal transport on discrete grids [50]). The various

approaches try to optimise the approximate solution in terms of several criteria, such as

accuracy, efficiency and stability. In addition, it can also be desirable to preserve certain

structural properties, such as the triangle inequality.

On a discrete grid, the Monge-Kantorovich formulation can be written as a linear pro-

gram, which means it is solvable by classic algorithms such as the Simplex algorithm.

It is typically not necessary to find an exact solution for a discretised problem, so a

trade-off between efficiency and accuracy can be made. A commonly used algorithm is

the Sinkhorn algorithm [19], which solves a simpler version of the Kantorovich prob-

lem, by entropically regularising the objective. Regularising an optimisation problem,

means that the objective of the optimisation problem is modified, to make it easier to

compute. In the case of entropically-reguralised optimal transport, a small multiple of

the entropy of the source distribution is added, leading to a modified, but simpler, op-

timisation problem. The entropy of a distribution is a formal way to define how much

information is encoded in the distribution. Finally, algorithms to solve the dynamical

optimal transport problem typically use an iterative, gradient-descent based approach,

to find a minimum-energy flow [9].

4.2 Transporting terrains

In this section, we discuss how to model a terrain such that we can apply the theory

of optimal transport to obtain a displacement field. This means that we need to find

an underlying space in which the transport happens, define two densities that represent

the mass that we are transporting, and choose a suitable cost function capturing the

effort of transporting mass. Recall that as input, we have a flat surface Σ ⊂ R2, and

two height map h1, h2 : Σ → R, describing the elevation of a terrain on Σ. We assume

that the soil in the terrain is homogeneous, and we refer to the soil as sand. Moreover,

we assume that the heights in the input TINs are absolute, and that the volume of sand

in both terrains is equal:

V (h1) = V (h2), where V (h) =

∫
σ
h(x)dx.

In fact, one can easily extend our methods to terrains that do not contain the same

volume of sand, by normalising the height functions. However, as we will discuss in the

next section, there are possibly better alternatives than normalising. Our goal is now to
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(a) (b) (c) (d)

Figure 4.5: Optimal transport map from (a) source to (b) target distribution, for cost

(4.2) with (c) p1 = p2 = 2 and (d) p1 = 1.1, p2 = 3. The transport is depicted by colour:

orange moves to the left top, while blue moves to the right bottom (images from [32]).

find a displacement field, describing the transport of sand from the source, to the target

terrain, constrained to conservation of volume.

Since sand is transported from a location on Σ to another location on Σ, we set X =

Y = Σ. Informally, one can see this as a large pile of sand resting on a flat surface. For

the densities, we take the normalised height functions:

f =
h1

V (h1)
, g =

h2
V (h2)

.

Intuitively, these densities capture the distribution of sand. To enforce that no sand is

created or lost in the process, we consider only transport maps T : Σ → Σ, such that

T#f = g.

Lastly, we need to choose a suitable cost function c : Σ × Σ → R, describing the cost

of moving sand from a point x ∈ Σ to a point y ∈ Σ. The most natural choice for the

transport of sand is to consider Euclidean distance c(x, y) = |x− y|, for which we know

that there exists an optimal map. To also guarantee uniqueness of the optimal map,

one could consider a cost function of the form c(x, y) = hp(y − x). Here, the function

hp(x) = |x|p/p is strictly convex for p > 1. We have already seen the special case

c(x, y) = h2(y − x), which prefers moving shorter distances as compared to the p = 1

case.

In [32], the authors consider a class of cost function that put an emphasis on transporting

in a chosen direction. For p1 > 1 and p2 > 1, they consider the cost function

c(x, y) =
|y1 − x1|p1

p1
+

|y2 − x2|p2
p2

, (4.2)

which is strictly convex and thus admits a unique optimal transport map. They illustrate

that if p1 < p2, the resulting map penalises moving horizontally (see Figure 4.5). By

detecting a direction of flow, one could tweak p1 and p2 such that the preferred direction
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of transport is in the direction of the flow. Especially in estuaries, where due to tides

the flow of a river is downstream as well as upstream, this could be an interesting

consideration for the cost function.

An interesting study would be to see if there are other, more realistic cost functions that

could be considered. For instance, the cost functions we discussed do not take the shape

of terrain into account. As a consequence, the resulting map does not care whether

sand moves up or down. A solution to that, would be to consider a volume-based cost

function. However, if we were to consider a volume-based cost function, we do not have

any certainty about the feasibility of the problem, i.e. whether there exists an optimal

map.

Question 17. What is a suitable cost function describing the cost of transporting soil?

And if we can find one, can we prove that it admits an optimal map?

An alternative model. An alternative to the model described above, is to consider the

problem in a 3-dimensional setting. Then, we take X = Y = R3, and let f and g be

the uniform densities on the subset Si = {(x, y, z) | (x, y) ∈ Σ, 0 ≤ z ≤ hi(x, y)} for

i = 1, 2 respectively. In this setting, one could consider a cost function that penalises

moving up, and prefers moving down. A disadvantage of this approach is that there is

no control on how sand moves relative to other sand particles. For instance, sand buried

deep below a mountain could move, if that is what an optimal map prescribes. Still,

given a reasonable cost function this might be an interesting idea worth exploring.

4.3 Discussion

In the previous section, we considered the use of Monge’s problem to find a displacement

field. To fit the precise problem formulation, we had to make some assumptions on our

input. For instance, we assumed that the terrain is made of a homogeneous soil and that

no sand enters or leaves the terrain over time. To obtain a more sophisticated model,

we could consider some extensions to the original optimal transport problem.

Due to the process of sediment transport, sand is carried through rivers. Sand may

leave the area of interest towards the sea, or it may enter the area of interest via an

incoming channel. Therefore, it is not a reasonable assumption to say that the total

volume of sand is the same in subsequent terrains. As mentioned, one could normalise

the height function to get densities. However, this also means that we are no longer

using absolute heights, which may lead to unexpected behaviour of an optimal transport

map. One solution is add a waste point to one of the densities. The cost of transporting

from a point on the terrain, to the waste point is set as high as necessary, so that only

excess sand is transported there. A more general framework to deal with un-normalised

densities is proposed in a paper on unbalanced optimal transport [18].
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Figure 4.6: The top row shows the source and target distributions, and a mass penalty.

The bottom shows the resulting interpolation for the computed mass constrained optimal

transport map (image from [34]).

Another consequence of sediment transport is that the transport of sand often happens

through rivers. In the previous section, we already proposed a cost function that takes

this into account. Alternatively, one could also consider the aforementioned dynamic

optimal transport problem, where the goal is to find a density for every point on the

terrain. Additionally, the dynamical formulation of the problem allows for adding a mass

constraint [34]. For instance, one could add a penalty for moving through a specified

region of the terrain (see Figure 4.6). This type of problem, called constrained mass

optimal transport could potentially also be used to model different types of soil.

Besides optimal transport, there are other ways to define a displacement field. As we

mentioned in Section 1.3, a recent paper [14] proposed the use of image correlation to

obtain a displacement field. The same authors compared their method to a Monte Carlo

approach, called the Demon’s algorithm. An interesting study would be to see how our

optimal transport approach compares to these two algorithms.
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Chapter 5

Implementation and experiments

In this thesis, we study the problem of modelling, and computing dynamic river networks.

Recall that in Chapter 2, we defined a dynamic river network to be a channel matching

that is optimal in some sense. To formalise the concept of a dynamic river network,

we thus need to define the notion of an optimal channel matching. We proposed two

models for this. Specifically, in a first model, a dynamic river network is a channel

matching such that the similarity of matched channels is maximised. In Chapter 3, we

discussed the notion of similarity in more detail, and we explored the possibility of using

a volume-based similarity measure. In the second model, a dynamic river network is a

channel matching, where each source channel is matched to a target channel by evolving

in accordance to the transformation of the terrain. To reconstruct the evolution of a

terrain, we considered the concept of a displacement field in Chapter 4.

In this chapter, we study how well these models work in practice. We primarily focus

on the second model, based on the displacement field. A significant part of this thesis is

dedicated to an experimental investigation of our models. To gain a better understanding

of the problem, we consider available data and make some useful observations. Moreover,

to validate or refute some of the ideas that arose in previous chapters, we implement

and test some of the proposed methods.

Data sets. To get a feel for working with braided rivers, we study the simulated braided

river model by Schuurman et al. [47]. The dataset consists of 662 subsequent DEMs,

and we primarily use time step 500 as our source DEM, to ensure the model reached a

stable period. For ease of testing and visualisation, we only consider a small part of the

input DEMs. In particular, we work with a square region, see Figure 5.1. To evaluate

how well the methods perform when the time step is increased, we consider three time

steps to act as target DEM: time steps 501, 510 and 550. The difference of 50 time steps

is equivalent to about 3 months of morphological development.
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Figure 5.1: DEMs obtained from a simulated braided river model [47] shown as grey-

scale images. The flow is from left to right. Darker areas indicate a lower elevation.

Shown are time steps 500 (top) and 550 (bottom). We focus on the part of the river

enclosed by the square.

Figure 5.2: An example of an unrealistic synthetic test case. The grey area indicates a

hill.

Besides simulated data, we also use a set of synthetic test cases. Such test cases are

very simple, and provide insight in certain behaviour of proposed methods. In designing

synthetic test cases, some care needs to be taken when choosing the terrain. Consider

for instance the test case and corresponding ‘correct channel matching’ in Figure 5.2.

This might seem to be a natural choice for a channel matching, but it completely ignores

the fact that there is a hill blocking the presumed motion of the channel. Since there

is not really another option in this case, it is unclear what a correct matching should

be. Therefore, it is not necessarily an insightful test case. To prevent unrealistic terrain

changes, we mostly use flat terrains in our test cases. These test cases give some idea of

how our methods work, but do not capture the full range of what we wish to know.

Question 18. How do we design useful synthetic test cases, that still portray realistic

behaviour of the terrain?

Input and output. We assume that the input DEMs are given as rectangular grids,

covering a rectangular region of the terrain, and that for both DEMs we have computed
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(a) (b) (c) (d)

Figure 5.3: Two river networks obtained from time steps (a)-(b) 500 and (c)-(d) 550.

a river network. Let Σ ⊂ R2 be a compact surface, covering the input region, and let T

be a triangulation of Σ. Each vertex of T is equipped with two height values, describing

the elevation of the source and target terrains. Let h1, h2 : Σ → R be the two height

functions, obtained as a linear interpolation of the height values over the edges and

triangles of T . Moreover, let G1 = (V1, E1) and G2 = (V2, E2) be two river networks

extracted from the input DEMs.

For simplicity, we restrict to finding channel matchings M : E1 → E2, assigning to each

source channel a single target channel. To visualise a channel matching, we use the

channel matching based on colours (see Figure 2.2b).

Constructing dynamic river networks by hand. A first step towards a good model,

is to better understand the input. Consider two DEMs from the simulated data set,

obtained at time steps 500 and 550. By purely looking at the two terrains, it is not that

hard to identify the ‘main’ channel, and to see how it evolves onto the target terrain.

Moreover, some of the smaller channels in the bottom and at the top of the terrain are

also still good detectable. However, for the smallest channels, it is already quite hard

to identify them in the DEM, let alone match them over time. The same holds for

comparing the two river networks extracted from these input DEMs. Some channels,

like the ones indicated by the blue arrows, are relatively easy to match. The source

channel indicated by the red arrow, is more difficult to match. There are three options,

which all cross the same bar and follow a similar course. Moreover, we do not get much

wiser by consulting the input DEMs, as none of the channels are clearly recognisable on

the terrains.

Assuming that the networks resemble each other at least a bit, there are various factors

that help when manually matching channels. Given a source channel, often the first

step in finding a corresponding target channel is to select a few candidates, that have

approximately the same location as the source channel. Typically, this yields only a

few options. A next criteria is then to compare the course of the channels. The two

40



Figure 5.4: Screenshot of the tool developed for modelling dynamic river networks.

matched channels in the example are very likely the same, since they follow the same

course in both terrains. If there are still too many options, one could consider to use the

shape of the terrain, to deduce whether it is likely that a channel traversed in a certain

direction.

Finding a dynamic river network manually is a tedious task, so we seek an automated

method. Unfortunately, there is currently no way to validate automatically whether a

resulting matching is reasonable. Some matchings might look good, but we do not know

the ground truth. To design and test automated methods, it is therefore desirable to

have an objective means of measuring the quality of resulting channel networks.

Overview. In the remainder of this chapter, we shift our attention to the automated

computation of dynamic river networks. In Section 5.1 we first describe the implemen-

tation of a tool in which we can test our methods and inspect the resulting channel

matchings. Next, in Section 5.2, we briefly discuss our first model of a dynamic river

network, based on the use of a similarity measure. Lastly, in Section 5.3, we explore the

possibilities of using a displacement field to construct a channel matching.
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Figure 5.5: Screenshot of the graphical user interface of Topological Tools for Geomor-

phological Analysis. The river shown in the screenshot is time-step 500 of the simulated

braided river.

5.1 Implementation

In this section, we describe the implementation of channel matching tool (CMT), a

simple tool to test our methods. The tool uses various existing software packages to

compute river networks and optimal transport maps. To inspect the output of the

various numerical experiments, we implemented a graphical user interface (GUI, see

Figure 5.4). The GUI allows the user to select input source and target DEMs, and

displays them as grey-scale images. It furthermore allows the user to select the preferred

method for computing a matching and set a few parameters. To visualise a channel

matching, we use the colour-based approach (see Figure 2.2b).

Topological tools for Geomorphological Analysis. To compute a river network from a

DEM, we use the software package called Topological Tools for Geomorphological Anal-

ysis1 (TTGA). TTGA implements the lowest path algorithms [36, 42], discussed in

Section 1.1. It consists of two separate interfaces. In the graphical user interface (see

Figure 5.5), one can compute and view a construction of a river network. The second

interface is a command-line interface, which is useful for integrating the construction of

river networks into automated processes.

1https://github.com/tue-alga/ttga
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TTGA assumes that the input consists of a rectangular grid T , representing the DEM of

the terrain. After reading the input data, TTGA converts the input grids into triangular

grids. TTGA allows two input formats: text-based and image-based. The text-based

input format stores the height values of the vertices of T , in row-major order, and the

image-based input format encodes height values in each pixel. An advantage of the

image-based format, is that it enables an easy construction of synthetic test cases.

The produced river network is stored2 as an ordered list of links, which are paths on T ,

representing a channel. For each link, the output contains a sequence of vertices on T ,

and an associated significance value. The significance value of a channel captures how

similar it is to other channels in the network, in terms of the volume between other

channels. One can specify a threshold parameter δ, and the resulting network then only

contains channels that have a significance value higher than δ.

We are interested in the volume-persistence based algorithm [42], which yields a more

stable river network. CMT integrates TTGA by using the command-line interface to

extract a text-file containing a river network. We do not specify a significance threshold

beforehand, so the resulting network contains all channels. When matching channels,

we mainly consider the significant channels in the source network, and we expect that

these are matched to significant channels in the target network. When analysing the

evolution of a river network, the significance of a channel might be a good indication of

its persistence over time.

Question 19. What can we derive from a (lack of) change in significance of a channel?

Sand function To compute the sand function, we use an unpublished version of TTGA,

which includes a new package called the generalised sand function (GSF). GSF im-

plements the volume-based similarity measures [51], as discussed in Section 1.2. The

package extends TTGA’s GUI, by allowing the user to manually draw two paths. More-

over, the tool allows the user to upload a text-file containing two paths. The input paths

should be stored as sequences of vertices of T , and are assumed to not share any vertices,

except for the endpoints.

To integrate the GSF tool into CMT, we implemented a command-line interface, that

allows the same text-based input as the GSF GUI. As discussed in Section 3.1, we are

interested in the volume-based similarity measure that uses the water flow surface as its

base surface. The algorithm computes the volume of the enclosed domain above the base

surface. To find the interior of the enclosed domain, we implemented a point-in-polygon

algorithm [49]. The point-in-polygon algorithm determines whether a point is inside a

polygon, by considering a ray, starting from the point and going in any direction. If the

number of intersections with the boundary of the polygon is even, the point is outside

2TTGA also stores river networks as graphs, as we will discuss in Section 5.3.
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Figure 5.6: Illustration of the point-in-polygon algorithm.

the polygon, and otherwise it is inside (see Figure 5.6).

In CMT, the user can select a channel from the source network, and a channel from the

target network. Before computing the sand function, the paths are pre-processed. First,

the paths are connected, by adding shortest paths between the endpoints of both paths

projected on a horizontal plane. Next, the paths are partitioned into non-intersecting

pairs, following the approach proposed in Section 3.2. Lastly, the sand function is com-

puted for every pair, and the resulting values are summed to obtain a total volume.

Optimal transport As discussed in 4.1, there are numerous algorithms to compute

an optimal transport map, based on the formulation of the problem. Computational

optimal transport is still a very active field, which means that the process of finding

more efficient algorithms is very ongoing. Since we do not need an exact solution for our

discretised problem, we are more interested in fast solvers for large grids. Therefore, we

use a fairly new method that solves the dual problem of the Monge-Kantorovich problem,

called the back-and-forth method [32]. In CMT, we use an open source software package3

that implements the back-and-forth method.

5.2 Experimenting with a similarity measure

In this section, we briefly discuss the first model for a dynamic river network, based

on the use of a similarity measure. Recall, in Section 5.2, we defined a dynamic river

network as follows:

M(π) := ρ∗ ∈ E2, such that d(π, ρ∗) = min
ρ∈E2

d(π, ρ).

We consider two different similarity measures for comparing channels. A first way to

compare channels, is to measure the distance between their endpoints. By comparing

the endpoints, we capture the most important criteria in matching channels by hand:

3https://github.com/Math-Jacobs/bfm
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(a)

(b)

Figure 5.7: Two channel matchings computed using the similarity measure de.

the location of the channels. Formally, given a channel π ∈ E1 and a channel ρ ∈ E2,

we define

de(π, ρ) := ∥π(0)− ρ(0)∥2 + ∥π(1)− ρ(1)∥2, where ∥x∥2 :=
√

x21 + x22 for x ∈ R2.

A clear disadvantage of this measure, is that it does not use the shape of the terrain in

any way, and only considers the endpoints of the terrain. Therefore, we also consider the

sand function dearth, which we discussed in Chapter 3. We expect that this measure gives

better results, as it does take the shape of the terrain into account. However, for large

networks, it is not very efficient to compute the sand function for every pair of channels.

In that case, we can make a trade-off between speed and accuracy, by first computing a

set of candidates, using a more efficient, but less accurate, similarity measure.

Question 20. How do we efficiently compute a channel matching based on the use of a

similarity measure.

For now, we only compute a channel matching using the similarity measure de. Specifi-

cally, Figure 5.7a shows a channel matching between the river networks extracted from

the simulated data, and Figure 5.7b shows a channel matching between two artificial

terrains. For the simulated data, we use the terrain at time step 500 as the source

terrain, and the terrain at time step 550 as the target terrain. The resulting networks

does not seem to be very good, as there are only a few target channels that are being

matched. Of course, by only using the distance between endpoints, we do not use a lot
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of information. This becomes even more apparent in the synthetic test case, where a

seemingly easy pair of channels is mismatched.

5.3 Experimenting with a displacement field

In this section, we look at our second model for a dynamic river network. Recall, that

in Section 2.2.2, we construct a channel matching as follows:

M(π) = r(L(D(1), π, 1)).

Here, D(1) describes the displacement of the sand in the terrain, from the source to

the target terrain. In Chapter 4, we discussed a method to obtain a displacement

field, using the theory of optimal transport. Given the displacement, we want to track

channels as they evolve over the terrain. To express the motion of channels in term

of the displacement field, we introduced a function L. Applying L to a channel in the

source network, gives a candidate path on the surface. That path does not necessarily

correspond to a channel in the target network. The last step, is thus to snap the

candidate path to the target river network, by mapping it to one of the target channels

via a function r.

In this section, we experimentally explore how we can choose the functions L and r. We

use both the simulated data set as well as a set of synthetic data. To find a suitable

relation between the motion of channels and the displacement of the sand in the terrain,

we first need to understand what a displacement field between two terrains encodes.

Recall, a displacement field gives for every point x in the surface, a displacement vector

D(x). Such a displacement vector then specifies the new location of that point, relative

to its old location. We store the input surface as a triangulated grid of points, and each

grid cell represents a small region of the terrain. By computing a displacement field,

every grid cell is assigned a displacement vector, describing the motion of the sand in

that region.

Simulated data. In Figure 5.8, we show the displacement fields for four source-target

combinations of the simulated data set. In all four combinations, the source terrain is

the terrain at time step 500. To see how well our methods perform over an increasing

amount of time, we consider four different target terrains, namely the terrains at time

step 500, 501, 510, and 550. DEMs of these terrains are depicted in the first row of the

figure, from left to right.

Since we use an algorithm that approximates the optimal transport map, its solution

may contain some noise. Therefore, we remove this noise by ignoring very small displace-

ments. The second row shows the displacement fields, where each displacement vector is

plotted as an arrow. To see the directions of the arrows more clearly, we also plotted a
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Figure 5.8: Displacement fields with as source terrain, the terrain at time step 500, and

as target terrains, the terrains at time step 500, 501, 510, and 550 (left to right).

simplified displacement field, shown in the third row. To get the simplified displacement

field, we increase the threshold for including displacement vectors. Moreover, we scale

all the vectors to have the same length, and plot only a subset of the rows and columns

of the displacement field.

Inspecting the middle row, containing the complete displacement fields, we see that the

plots contain a lot of dots. A dot represents a zero displacement vector, meaning that the

displacement at that point was smaller than our noise threshold. The first column shows

the displacement of sand from a terrain to itself, and is used as a simple validation of

the method. Naturally, no displacement is detected. The other plots contain lighter and

darker regions. A lighter region in a plot is the result of relatively small displacement

vectors, indicating that there is a noticeable transport of sand in these regions. A darker

region on the other hand, is the result of many, relatively large, arrows, indicating that

there is more transport of sand in such a region. In other words, we expect that the

darker regions in the displacement field correspond to areas in the terrain that have

undergone the most change.
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Figure 5.9: Two synthetic data sets and their corresponding (simplified) displacement

fields. The top row shows a flattening hill, the bottom row shows a meandering river.

If we compare the dark regions in the displacement field, with their corresponding regions

in the DEMs, it indeed seems to be the case that dark regions correspond to changing

areas in the terrain. For instance, the bottom right corner of the DEM of time step 500

shows a relatively small channel. At time step 550 however, the channel is much larger,

meaning that the terrain changed significantly. And indeed, the bottom right corner of

the displacement field at time step 550 shows a dark region.

A displacement field gives an indication of areas in the terrain where a lot of transport

happens. However, it is hard to tell in which direction the transport happens. There-

fore, we also consider the simplified displacement field, containing fewer arrows (see the

bottom row in the figure). Since the simplified displacement vectors have a normalised

length, the plot does no longer contain information on the magnitude of transport of

sand, but we do get a clearer picture of the direction of transport. For instance, if we

again look at the bottom right corner, we see that the displacement vectors point north.

Therefore, we expect that sand in that area of the terrain is transported north. Unfor-

tunately, due to the complex nature of the morphodynamical changes in a terrain, it is

difficult to visually confirm that it is indeed the case.

Interpreting displacement fields. To gain a better understanding of what kind of move-

ment the displacement fields encode, we turn to more predictable terrains. Consider for

instance the two synthetic data sets in Figure 5.9. The first data set contains a flat-

tening hill. The source terrain, a hill, is modelled by a Gaussian distribution, and the

target terrain is a flat plane, modelled by a uniform distribution. The source and target
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Figure 5.10: Illustration of how sand spreads out according to the displacement field.

terrains of the second data set both contain a single channel, represented as a low path,

on an otherwise horizontal plane.

If we consider the hill example, we see that the transport of sand happens on the entire

terrain. At the top of the hill, the sand diffuses in every direction, and near the bound-

aries, sand is pushed towards the corners. Note that the moving sand acts as a wave:

it ripples through the terrain. In a similar fashion as the example of moving books (see

Figure 4.2), the optimal transport map associated with this displacement field prefers

moving shorter distances. To illustrate this, consider Figure 5.10. The sand in region

R1 in the source terrain spreads out to fill a larger region R1 ∪R2 in the target terrain.

Likewise, the sand in region R1 ∪R2 diffuses into R1 ∪R2 ∪R3, and so on.

The way sand is transported is mostly due to the choice of cost function in computing the

optimal transport map. As discussed in Section 4.1, a quadratic cost penalises moving

larger distances more. A disadvantage of a quadratic cost, is that processes such as

sediment transport are not accurately captured. On the other hand, if a channel sweeps

through the terrain, this is a reasonable model for the transport of sand. For instance,

consider the second row in Figure 5.9. A single, meandering river moves through the

terrain. We expect that this motion is smooth, and that the sand is moved in small

steps. The displacement field seems to capture this well. In fact, the arrows seem to

connect the river in the target terrain, to the river in the source terrain.

Tracing gradients. The example of the meandering river provides a promising model

for the relation between a time-varying channel and the displacement field, as the dis-

placement vectors seem to connect two corresponding channels. To be able to trace

displacement vectors, we convert a displacement field D into a directed graph, which we

call the displacement graph. For every vertex in T , we add a node to the graph. If the

displacement vector at a point x ∈ Σ is pruned by our noise-threshold, we do not add

an outgoing edge from the corresponding vertex in the grid. For all other points x, we
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Figure 5.11: Converting a displacement vector into a directed edge.

Figure 5.12: Three synthetic data sets and their corresponding displacement fields and

traced points.
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determine to which neighbouring grid cell y its displacement vector points, and add a

directed edge from x to y. To determine to which neighbouring grid cell a displacement

vector points, we check in which octant it lies (see Figure 5.11).

To see what we can learn from a displacement graph, we consider three new synthetic

data sets (see Figure 5.12). These data sets contain simple, multi-channel rivers, on

an otherwise flat terrain. The first and second column of the figure show the source

and target terrains, the third column shows the displacement field again, and the fourth

column shows the connected components, of at least size two, of the displacement graph.

Each connected component is plotted in a distinct colour. An interesting observation,

is that the connected components seem to provide a point-to-point matching of two

channels.

Naturally, a channel does not move in the same direction as the sand in the terrain. In

fact, one could argue that sand that erodes into a channel, opens up a new lower region

of the terrain. The displacement fields, and thus also the displacement graph, exhibit

a similar property. The channels seem to move in the opposite direction. Informally,

this means that we want to model L as some sort of pre-image of the path. Note, that

the pre-image is typically not enough, as it will only shift the channel a single grid

cell. Moreover, taking the pre-image of a channel might give a non-continuous set of

points.

For now, we use a very simple solution. We trace every point on the source channel

over the edges in the displacement graph, until we either hit a target channel or end at

a node with no more outgoing edges. We then match the source channel to the target

channel that is hit by most points. This final step can be seen as a model for the snap

function r.

Figure 5.13 shows the resulting channel matchings for the three synthetic data sets (on

the left), and for three source-target pairs of the simulated data (on the right). In

particular, for all three pairs, the source is again the terrain at time step 500, and the

targets are 501, 510, and 550 (from top to bottom). If we consider the synthetic data sets,

we see that the channel matchings seem to be quite reasonable. As for the simulated test

cases, it is a bit harder to assess the resulting channel matchings. However, the channel

matchings do look promising. In particular, the smaller channels in the source network

seem to be matched to corresponding channels in the two earliest target networks.

Remark. In our current implementation, we used TTGA to extract links, representing

channels. By construction, these links represent channels from sink to source, leading

to possibly very long channels in the river network. There is, however, a second way

to extract river networks from TTGA: as a graph, where each edge corresponds to a

channel (from bifurcation to confluence). That is also how we model a river network,
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Figure 5.13: Channel matchings for three synthetic source-target pairs, and three simu-

lated source-target pairs.

and it would thus be a better alternative to store the river networks. As a result, the

channels in the river networks will be shorter, and that automatically leads to better

matchings.

5.4 Discussion

In this chapter, we investigated the two models for a dynamic river networks experimen-

tally. We only briefly discussed the first model, based on the use of a similarity measure.

In particular, we saw that using a Euclidean distance measure between the endpoints of

two channels is not a reasonable choice. To see whether the sand function is a better

alternative, we need to improve the current implementation of the sand function. As

of now, it is computationally inefficient to compute the sand function for every pair of

paths in the river network. Moreover, there is no integrated way to test artificial data

yet. A possible solution for the first issue, is to first construct a set of candidate target

paths only, by using a more efficient, but less accurate similarity measure.
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The second model, based on a displacement field, seems promising. Although the results

do not always seem to be reasonable, this model does use all of the available information.

Moreover, the current model is very flexible and can be extended in various ways. For

instance, the displacement field is computed using a quadratic cost function and without

taking the loss of sand into account. However, as we saw in Section 4.3, there are

numerous ways to extend the construction of an optimal map. The same goes for the

construction of the functions L and r. Currently, we use a very crude model for both

functions, and we expect that a more rigorous definition could lead to improved channel

matchings.
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Chapter 6

Concluding remarks

In this thesis, we studied the problem of tracking channels over subsequent river net-

works. Specifically, we modelled the concept of a dynamic river network, which is a repre-

sentation for a time-varying, multi-channel river. In Chapter 2, we saw that the problem

of modelling a dynamic river network, can be decomposed into two sub-problems. Firstly,

we need a reasonable, and most of all workable, definition for the concept of a channel

matching. Secondly, we are not interested in just any channel matching, but rather one

that resembles real-world changes in the channel structure of a river. We then proposed

two models for a dynamic river network, both capturing a different notion of an optimal

channel matching.

In Chapter 3, we discussed the first model, based on the use of a similarity matching.

In particular, we considered extending a volume-based similarity measure, that captures

the amount of earth between two channels on a terrain. The resulting measure is poten-

tially a good tool to compare channels on an evolving terrain. Next, in Chapter 4, we

considered a second model, based on a displacement field, that captures the transport

of sand. We saw that the theory of optimal transport provides a method to compute

a reasonable displacement field. There is a lot of freedom in the construction of a dis-

placement field, as we can choose different cost functions. Moreover, we saw that there

are various extensions and reformulations of the problem, that could potentially lead to

more accurate displacement fields.

Finally, in Chapter 5, we implemented and evaluated our methods experimentally. The

main focus of the test lies on using the displacement field to obtain a reasonable channel

matching. We saw that, even under very rough assumptions, the resulting channel

matchings are promising. In particular, they seem to capture the motion of the multi-

channel river as a whole quite well. Currently, there is no objective way to measure the

quality of resulting channels however. To validate our methods, it is desirable to have a

means of objectively measuring the quality of a dynamic river network.
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Future work. Throughout this thesis, we posed and stated a multitude of questions

on defining, modelling and constructing dynamic river networks. These questions offer

starting points for future research. Moreover, these questions have shown, that de-

signing algorithms for context-specific problems requires a careful consideration of the

problem statement. For instance, to construct a dynamic river network, we first need to

know what exactly we want to capture with a dynamic river network. To answer such

questions, it is important to also consider the context in which the algorithms will be

used.

Given a clear problem statement, one can draw inspiration from the methods proposed

in this thesis. Moreover, some of the key problems in defining, improving and visualising

algorithms for the construction of algorithms have already been identified. Finally, our

implementation CMT, provides a useful means test future methods.
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