
 Eindhoven University of Technology

MASTER

Symmetry-Induced Ambiguity in Orientation Estimation from RGB Images

Bertens, T.E.W.

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f99883f8-e0b0-4fe3-8f3f-14bacbde3299

Department of Mathematics and Computer Science
Visualization Research Group

Symmetry-Induced Ambiguity
in Orientation Estimation from

RGB Images

Master’s Thesis

T.E.W. Bertens

Supervisors:
dr. A.C. Jalba
dr. A. Saccon

Coach:
B.J. Caasenbrood, MSc.

Members of the assessment committee:
dr. A.C. Jalba
dr. A. Saccon

dr. V. Menkovski

Eindhoven, July 2022

Acknowledgements

With this thesis, I conclude my studies at Eindhoven University of Technology. My thanks go
out to my supervisors Andrei Jalba and Alessandro Saccon, whose exceptional guidance has been
invaluable during my work on this project. In our frequent meetings, your enthusiasm, patience,
advice, confidence, and insight, have always kept me motivated. I am also profoundly grateful
to Brandon Caasenbrood for his valuable feedback and advice. You have truly gone above and
beyond to support me in this project and it has been a pleasure to work with you. I wish you
well in the final stages of your PhD. Finally, I wish to thank my friends, sister, and parents for
their unwavering support. At times, you have had more confidence in me than I had in myself,
for which I will always be grateful.

i

ii ACKNOWLEDGEMENTS

Abstract

The estimation of object orientation from RGB images is a core component in many modern
computer vision pipelines. Traditional techniques mostly predict a single orientation per image,
learning a one-to-one mapping between images and rotations. However, when objects exhibit
rotational symmetries, they can appear identical from multiple viewpoints. This induces ambiguity
in the estimation problem, making images map to rotations in a one-to-many fashion. In this thesis,
we explore several ways of addressing this problem. In doing so, we specifically consider algorithms
that can map an image to a range of multiple rotation estimates, accounting for symmetry-induced
ambiguity. Our contributions are threefold. Firstly, we create the first orientation estimation data
set with annotated symmetry information that covers symmetries induced through self-occlusion.
Secondly, we compare and evaluate various learning strategies for multiple-hypothesis prediction
models applied to orientation estimation. Finally, we propose to model orientation estimation
as a binary classification problem. To this end, based on existing work from the field of shape
reconstruction, we design a neural network that can be sampled to reconstruct the full range
of ambiguous rotations for a given image. Quantitative evaluation on our annotated data set
demonstrates its performance and motivates our design choices.

iii

iv ABSTRACT

Contents

Acknowledgements i

Abstract iii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Recent Progress . 2

1.3 Research Goal and Contributions . 3

1.4 Report Structure . 4

2 Preliminaries 5

2.1 Rotations . 5

2.1.1 Rotation Matrices . 5

2.1.2 Euler Angles . 6

2.1.3 Axis-angle Representation . 6

2.1.4 Unit Quaternions . 7

2.2 Deep Learning . 7

2.2.1 Fully Connected Networks . 8

2.2.2 Training . 9

2.2.3 Convolutional Networks . 10

2.3 Pose Estimation . 11

2.3.1 6D Pose Estimation . 12

2.3.2 Symmetries . 12

2.3.3 Uncertainty and Ambiguity . 13

3 Related Work 15

3.1 Symmetry-Aware Learning . 15

3.1.1 Canonicalization . 15

3.1.2 Symmetry-Aware Loss . 16

3.2 Learning with Uncertainty . 17

3.2.1 Parametric Distributions . 17

3.2.2 Non-Parametric Distributions . 18

3.3 Other Works . 19

4 Multi-Hypothesis Orientation Estimation 23

4.1 Background . 23

4.1.1 Multiple Hypothesis Prediction . 25

4.1.2 Training Schemes . 27

4.2 Application to Orientation Estimation . 30

4.2.1 Embedded Loss Functions . 31

4.2.2 Network Design . 32

v

vi CONTENTS

5 Experiments with Multi-Hypothesis Networks 35
5.1 Data Set . 35

5.1.1 SYMSOL . 36
5.1.2 Annotating SYMSOL II . 37

5.2 Evaluation Metrics . 41
5.2.1 Recall . 41
5.2.2 Precision . 42

5.3 Implementation Details . 42
5.3.1 Hyperparameters . 43
5.3.2 Training . 43

5.4 Evaluation . 44
5.4.1 SYMSOL I . 44
5.4.2 SYMSOL II . 47
5.4.3 Summary . 48

6 A Continuous Representation 49
6.1 Overview . 49

6.1.1 Binary Classification . 49
6.2 Review on Occupancy Networks . 51

6.2.1 Architecture . 52
6.2.2 Training . 53

6.3 Application to Orientation Estimation . 53
6.3.1 Shapes of Symmetry Sets . 53
6.3.2 Network Design . 55
6.3.3 Training Strategy . 57

7 Experiments with Binary Classifiers 61
7.1 Data Set . 61
7.2 Evaluation Metrics . 62

7.2.1 Classification Terminology . 62
7.2.2 Generating Samples . 63
7.2.3 Recall . 64
7.2.4 Precision . 64
7.2.5 A Summary Metric . 65

7.3 Implementation Details . 66
7.4 Evaluation . 67

7.4.1 Ablation . 67
7.4.2 Training Sample Sizes . 69
7.4.3 Summary . 70

8 Conclusions 71
8.1 Summary . 71
8.2 Recommendations for Future Work . 72

A Embedded Loss Function Analysis 1
A.1 Comparing Shapes . 1
A.2 Finding the Minima . 2

A.2.1 Cyclic Cosine Loss . 3
A.2.2 Von Mises Loss . 3

B Plots for Binary Classifiers 5

Chapter 1

Introduction

1.1 Context and Motivation

Progress in the field of computer vision has had a profound impact on the capabilities of modern

robotic systems. Early robotic systems mostly operated in heavily controlled and static environ-

ments, performing series of rigidly defined movements and actions, that could be pre-programmed.

However, as industry and society push to automate increasingly complex tasks, the capabilities

of autonomous systems must increase accordingly. In some tasks, the environment cannot be

controlled, and objects can appear in uncertain configurations. Examples of such tasks include

autonomous driving [1], collaborating with humans [2], and robotic grasping of objects in dynamic

environments [3, 4]. For a robotic system to operate in such an environment, it requires the capa-

bility to perceive the dynamic physical world around it. To this end, robotic arms, autonomous

cars, and other machinery, are commonly equipped with a variety of sensors. In this thesis, we

focus on one specific type of sensor, namely: a camera capturing RGB images. Through the use

of vision, images can give rich information about the state of the world surrounding a robotic

system. Algorithms to retrieve this information are studied in the field of computer vision.

A core component in many modern computer vision pipelines is pose estimation. Pose estima-

tion is the process of predicting the position and orientation (pose) of objects in images, relative to

the camera. This information allows a robotic system to build an internal map of its surroundings,

capturing where objects are in relation to itself. In turn, this allows the system to approach, grab,

avoid, or otherwise interact with objects in its environment. Though the performance of recent

works on pose estimation has been impressive, there are still a number of key challenges to over-

come [5, 6]. One such challenge, which has seen an increased amount of attention in recent years,

is the influence of ambiguity. More specifically, some objects may appear visually identical from

different viewpoints, causing images to map to poses in a one-to-many fashion. This phenomenon

mainly occurs as a consequence of symmetries that can be present in the observed object, or be

induced by self occlusion or occlusions caused by the environment (Figure 1.1).

Traditionally, pose estimation techniques have been designed to predict only a single output

pose. As such, these methods fail to report the multitude of possibly correct poses for symmetric

objects. Moreover, when approached naively, the presence of ambiguities can be detrimental to the

performance of single-output techniques. Deep neural networks, which are commonplace in pose

1

2 CHAPTER 1. INTRODUCTION

(a) No ambiguity.

(b) Self occlusion.

(c) Environment occlusion.

Figure 1.1: A mug is not symmetric, but occlusions can still induce symmetries. If the ear of the
mug is visible, then there is no ambiguity (a). However, if the ear is occluded, the mug appears
like a symmetric cylinder (b-c).

estimation, are known to minimize the penalty between their single prediction and all ambiguous

poses appearing in the data set. As a consequence, such networks will converge to a conditional

average pose, which renders them often meaningless for this situation.

1.2 Recent Progress

Recent works have addressed symmetry-induced ambiguity to various degrees. A first category of

works aims to prevent symmetries from disturbing the training process of neural networks. One

approach is to apply canonicalization of symmetric poses, mapping all symmetric poses to a single

canonical pose [7, 8, 9]. However, this approach requires upfront knowledge about the exact sym-

metries present in objects, which becomes infeasible when considering the complex ambiguities

caused by occlusions. A different approach is to apply symmetry-aware loss functions, like the

ShapeMatch-Loss [10], which uses a polygonal mesh to identify symmetric poses automatically.

Nevertheless, this loss cannot deal with symmetry-breaking textures or induced symmetries. Fur-

thermore, since only a single pose is predicted, no information about possible ambiguities can be

deduced from the output, which would be valuable in downstream tasks like robotic grasping and

next-best view prediction.

A more recent, second category of works addresses symmetry-induced ambiguity indirectly as

a cause of uncertainty. When considering a probability distribution over the possible poses for

an observed object, symmetric poses appear as equally probable outputs. Several recent works

have used Bingham distributions [11, 12, 13], Von Mises distributions [14], and Matrix Fisher

distributions [15] to output such distributions. While these methods are indirectly able to predict

multiple poses, their distributions require computationally expensive normalization and complex

parameterizations. Moreover, the choice of distributions limits the expressivity of the algorithm.

1.3. RESEARCH GOAL AND CONTRIBUTIONS 3

Non-parametric distributions can address this issue [16, 17], but often requires discretization over

the space of poses.

As part of the second category, we highlight the work by Murphy et al. [18], which particularly

interesting. To elaborate, inspired by recent advances in implicit shape reconstruction [19], Murphy

et al. [18] proposed to encode a probability density function in a shallow fully connected neural

network. In doing so, they provide a non-parametric output density that can take arbitrarily

complex shapes, and does not require discretization of the space of poses. Sampling from the

distribution, however, still requires the brute force computation of a normalization constant by

means of sampling a grid of poses.

1.3 Research Goal and Contributions

Though the recent progress mentioned above addresses symmetry-induced ambiguity to an extent,

we identify room for improvement. In this thesis, we explore different ways of performing pose

estimation on symmetric objects. Given a single RGB image, our goal is to predict not just a single

correct pose, but rather to predict a range of multiple possibly correct poses, when considering

symmetry-induced ambiguity. However, we note that rotational symmetries are the most common

source of ambiguity in pose estimation. As rotational symmetries only cause ambiguity in the

orientation of objects, we restrict our work to only estimating orientation. Therefore, we do

not perform full pose estimation, but rather focus on the subproblem of orientation estimation.

Finally, no prior knowledge on the types of symmetries present in observed objects are assumed

to be available, and methods should be able to work with inherent symmetries as well as induced

symmetries.

Towards the aforementioned goal, we present the following three contributions in this thesis.

1. We provide new annotations for part of the recently introduced SYMSOL II data set [18].

The data set is recreated, but for every image we provide the complete set of possibly correct

rotations, considering rotational symmetries. In doing so, we create the first orientation

estimation data set with annotated symmetry information, covering symmetries induced

through self-occlusion.

2. Inspired by the recent work of Manhardt et al. [20], we compare and evaluate various training

strategies for multiple-hypothesis prediction models. When applied to orientation estimation,

we show how these strategies help to produce sets of diverse orientation hypotheses, which

can accurately identify multiple symmetric poses for a given image.

3. Finally, inspired by Murphy et al. [18], we propose to model orientation estimation as a

binary classification problem. Rather than predicting rotations directly, or predicting a

normalized distribution over rotations, our model instead predicts whether an object in a

given rotation could have resulted in a given image. The model can be sampled to reconstruct

the full range of ambiguous rotations for a given image. Predictions can be interpreted

directly, and do not require expensive normalization.

4 CHAPTER 1. INTRODUCTION

1.4 Report Structure

The rest of this thesis is structured as follows. First, Chapter 2 covers preliminary concepts,

providing background for the matter discussed in the rest of the thesis. Then, an extensive

literature study is presented in Chapter 3, which categorizes and details relevant recent works.

Chapter 4 gives background on multiple-hypothesis prediction models, and details how they are

applied to orientation estimation. Subsequently, various training strategies for multiple-hypothesis

prediction models are evaluated and compared in Chapter 5. Furthermore, the same chapter details

our recreation of the SYMSOL II data set with annotated symmetry information for every image.

Chapter 6 explains our newly proposed model, in which we model orientation estimation as a

binary classification problem. A quantitative evaluation of the new model is presented in Chapter

7. Finally, conclusions, as well as recommendations for future work, are given in Chapter 8.

Chapter 2

Preliminaries

This section presents preliminary concepts that are fundamental to the matter discussed in this

thesis. Firstly, an introductory explanation of the mathematics behind rotations, along with an

overview of multiple rotation representations is given in Section 2.1. Then, the basics of modern

deep learning for function approximation and feature extraction from images are explained in

Section 2.2. Finally, a formalization of the pose estimation problem is given in Section 2.3.

2.1 Rotations

As the primary subject of this thesis concerns the prediction of rotations, it is important to

understand what a rotation is. Specifically in three dimensions, this is not as trivial as one

might imagine. The extensive body of works studying the mathematics behind rotations is a

testament to this. The mathematical constructions with which rotations are modeled, quickly

become abstract and complex. In the light of this complexity, we aim to give the reader a surface

level understanding, which should suffice to understand the work presented in later chapters.

More specifically, the goal of this section is to give the reader a basic and intuitive understanding

of the space of rotations SO(3), and how individual rotations in this space can be represented

numerically. Interested readers are referred to [21, 22, 23] for further reading.

2.1.1 Rotation Matrices

The properties of rotations around the origin in three-dimensional Euclidean space R3 are repre-

sented in the special orthogonal group SO(3). Since rotations are linear transformations on vectors

in R3, they are most intuitively represented as 3× 3 matrices. Therefore, SO(3) can be defined as

SO(3) =
{
R ∈ R3×3 : R⊺R = I, det (R) = 1

}
, (2.1)

where the constraint det(R) = 1 enforces the transformation R to be orientation-preserving, and

the constraint R⊺R = I implies that the matrix R is orthogonal and length-preserving. Hence,

the column vectors of any R ∈ SO(3) are unit length, and together form an orthonormal basis.

Moreover, these constraints restrict SO(3) to a subset of R3×3, creating a manifold embedded in

R3×3. Finally, rotation matrices form a group, where the group action of composition is represented

5

6 CHAPTER 2. PRELIMINARIES

by matrix multiplication, as the multiplication of two orthonormal matrices is itself an orthonormal

matrix. A rotation matrix is trivially applied to a vector x ∈ R3 by performing matrix-vector

multiplication x′ = Rx.

2.1.2 Euler Angles

Though matrices are an intuitive way to represent rotations, they are not quite as intuitive for

humans to interact with. When thinking about a rotation, it can be difficult to pair a rotation

matrix R to that particular rotation. Furthermore, they are rather space-inefficient, as they use

nine numbers to represent rotations that have only three degrees of freedom. Because of this,

applications in computer graphics and animation often use Euler angles to represent rotations

that are specified by human users. Euler angles represent rotations in three dimensions as the

composition of three separate rotations around the standard basis vectors of R3. Each such

rotation around an axis can be described by a single angle, thus each full rotation in SO(3) is

parameterized by a vector (x1, x2, x3), where xi ∈ [0, 2π).

Although Euler angles are a compact representation, they do not accurately represent the

properties of the group SO(3). This can cause problems when working with Euler angles, the most

famous of which is gimball lock [24]. Other problems are found when performing interpolation or

sampling in the space of Euler angles, where a uniform grid of Euler angles does not correspond to a

uniformly spaced grid on the manifold SO(3), and the shortest path between a pair of Euler angles

similarly cannot easily be related to a distance (or metric in this case) between two rotations on

the space of SO(3) [23]. Finally, rotations expressed as Euler angles are hard to compose, usually

requiring the angles to be converted to matrices and applying matrix multiplication instead.

2.1.3 Axis-angle Representation

Another useful way of representing rotations is as an axis-angle pair. Following Euler’s rotation

theorem, every three-dimensional rotation can be represented as a rotation around a single axis

[23]. Therefore, any rotation can be described by a pair (n, α), where n is a unit vector in R3 and

α ∈ [0, 2π), which describes a rotation by α radians around the axis n. Alternatively, an angle-axis

pair can be represented more compactly as a rotation vector. A rotation vector takes the angle

α and encodes it in the magnitude of n. A rotation is then described by a single vector n′ ∈ R3,

with |n′| ∈ [0, π], which represents a rotation of |n′| radians around the axis codirectional with n′.

Note how the angle of rotation is now restricted to a maximum of π radians. This is, however,

no restriction in the expressivity of rotation vectors, since a rotation of −α radians around an axis

n is equal to a rotation of α radians around the axis −n. An important consequence of this is

the equivalence between the rotation vectors n′ and −n′ when |n′| = π, which makes the mapping

from SO(3) to rotation vectors ambiguous. Nevertheless, with this antipodal symmetry taken into

account, rotation vectors are particularly useful for visualization, since they lie completely in R3.

As rotation vectors occupy a ball with radius π and its center on the origin, a plot of rotation

vectors is called a π-ball plot. Figure 2.1 shows several examples. Note how rotations around

the same axis, with respect to the idenitity rotation, appear on a straight line 2.1a. In contrast,

rotations around the same axis with respect to a different reference frame can occur as arcs (2.1c).

2.2. DEEP LEARNING 7

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

(a)

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

(b)

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

(c)

Figure 2.1: Examples of π-ball plots showing rotation vectors. Each plot shows 20 rotations
around the x-, y-, and z-axis of a different local reference frame. For each axis, the 20 rotations
have their rotation angles equally spaced from 0 to 2π radians. Rotations around the x-, y-, and
z-axis are colored red, green, and blue respectively. In plot (a), all rotations are relative to the
identity rotation, which lies at the origin. In plot (b), the local reference frame is rotated by π

2
radians around the z-axis relative to the identity. In plot (c), the local reference frame is further
rotated by π

2 radians around the x-axis relative to (b).

2.1.4 Unit Quaternions

Finally, one of the most commonly used representations are unit quaternions. A quaternion is a

four-dimensional complex number q = (qw, qx, qy, qz) = qw + qxi+ qyj + qzk, with i2 = j2 = k2 =

ijk = −1. Unit quaternions have |q| = 1 and lie on the hypersphere S3 embedded in R4, where

all quaternions live. A rotation of α radians around the unit axis n ∈ R3 is encoded into a unit

quaternion as q = cos(α/2) + n sin(α/2), where n = inx + jny + knz. Note that a rotation of α

radians around the axis n is equivalent to a rotation of −α radians around the axis −n. Hence,

the unit quaternions q and −q represent the same rotation, making them antipodally symmetric.

The space of unit quaternions is said to be a double cover of SO(3) [23], as every rotation matrix

can be represented by exactly two unit quaternions.

Unit quaternions have favorable properties. Firstly, they form a group under the action of

the quaternion product. Hence, rotations can be easily composed by performing the quaternion

product on their respective quaternion representations [22, 24]. Secondly, the manifold S3 on which

the unit quaternions lie properly represents the topology of SO(3) when taking into account the

antipodal symmetry [23].

2.2 Deep Learning

The use of artificial neural networks has had a profound impact on the field of computer vision.

Manual algorithms for extracting features from images have been replaced by neural networks

that learn to extract features based on large collections of training data. Their application in

this thesis is almost inevitable considering the rapid advances in neural networks tailored towards

vision. However, it is important to underline the word application in this sentence. This thesis

does not aim to develop new insights in the field of deep learning itself, but rather applies existing

work in the field of deep learning to the problem of orientation estimation with symmetry-induced

ambiguity. To this end, it is important for the reader to understand the basics of fully connected

8 CHAPTER 2. PRELIMINARIES

Input

Sum Activation

(a) A perceptron.

Input Layer Hidden Layer Hidden Layer Output Layer

(b) A multi-layer perceptron.

Figure 2.2: Schematic diagrams of a perceptron and a multi-layer perceptron.

and convolutional networks, and how they are trained. Here, we briefly detail each of the afore-

mentioned topics, based on the book by Goodfellow et al. [25] on deep learning. For a more

extensive background, the reader is referred to this book.

2.2.1 Fully Connected Networks

Perhaps the most popular and fundamental deep learning model is the so-called multi-layer per-

ceptron (MLP). An MLP is a general mechanism for approximating functions. More specifically,

say there is some function f∗ that we wish to approximate, then an MLP can be described as a

function f , which can be trained to approximate f∗. To understand how an MLP works, it is

important to understand its building block: the perceptron.

The design of a perceptron is based on that of neurons found in the brain. Hence, a perceptron

is often called an artificial neuron, giving rise to the common term neural networks. A single

perceptron takes a number of inputs organized in a vector x ∈ RN , which we assume to lie in N -

dimensional Euclidean space for simplicity. The perceptron first applies a linear transformation to

the input vector x. To this end, it has a weight vector w ∈ RN and a scalar bias b ∈ R. Together,
w and b form the parameters of the perceptron, and are often collocated into a parameter vector

θ. The result of this linear transformation is then passed through an activation function ϕ, which

is often non-linear. A diagram is given in Figure 2.2a. The perceptron can now be written as a

function fθ : RN → R, parameterized by θ, such that

fθ(x) = ϕ (w⊺x+ b) . (2.2)

The expressive power of a single perceptron is rather limited. It applies a single linear trans-

formation which is passed through an, optionally non-linear, activation function. To address this,

multiple perceptrons with non-linear activation functions can be combined to create a more com-

plex function. Multiple perceptrons can be stacked side-by-side to create a layer of perceptrons.

Layers can again be composed to create a multi-layer perceptron. This way, subsequent layers

2.2. DEEP LEARNING 9

take the output of previous layers as their inputs, creating an increasingly complex mapping from

the original input to the final output (Figure 2.2b). The final layer in an MLP is called the output

layer, the set of inputs is called the input layer, and the middle layers are referred to as hidden

layers. Note that the output layer can contain multiple neurons, thus allowing the output of an

MLP to be a vector o ∈ RO in O-dimensional space, where the constant O denotes the number of

outputs. Layers of perceptrons are often referred to as fully connected layers, since each neuron

in a layer is connected to the output of all neurons in the previous layer. Finally, the width of

a layer denotes the number of neurons in that layer, and the depth of a neural network refers to

the number of layers in that network. Each individual perception in the MLP has its own weight

vector and bias. Therefore, the entire MLP is parameterized by a large vector containing all weight

vectors and all biases. Again, this vector is usually called θ.

2.2.2 Training

As already mentioned, perceptrons and MLPs can be used to approximate a function f∗. This

implies finding a set of parameters θ such that fθ best approximates f∗. A way to formalize what

the ‘best’ approximation is to introduce a scoring function L, more commonly called a loss function.

Conceptually, the loss represents some difference between the ground truth results produced by f∗

and the approximated results produced by fθ. The lower the difference, and therefore the loss, the

better the approximation. A simple example would be the popular mean squared error (MSE),

which, given two vectors v, v′ ∈ RO, is defined as

LMSE (v, v′) =
1

O

O∑
i=1

(vi − v′i) , (2.3)

where subscript i indicates the ith element of a vector. Note how the MSE produces scalar output,

making the loss easily interpretable as a single number. Moreover, the MSE is minimized when

v = v′. Now, given a loss function L, the optimal vector of parameters θ′OPT for which fθ best

approximates f∗, is given by

θ′OPT = argmin
θ

∫
L (fθ(x), f∗(x)) dx . (2.4)

In many practical scenarios, however, the function f∗ may not be known. Instead, the only

data that is available consists of pairs of examples (x, y) such that y = f∗(x). We call the collection

of available pairs the data set and define it as D =
{
(x, y) : x ∈ RN , y = f∗(x)

}
. In this setting,

θ′OPT can be approximated by θOPT , defined as

θOPT = argmin
θ

∑
(x,y)∈D

L (fθ(x), y) . (2.5)

Usually, however, the data set is split into a training set and a test set. The training set is, as the

name suggests, used to train the model. The test set is used to check its performance on inputs

unseen during the training process.

Finding θOPT is a challenging process, especially when a model contains many parameters.

So difficult, in fact, that it is practically infeasible. Nevertheless, the stochastic gradient descent

10 CHAPTER 2. PRELIMINARIES

algorithm can be used to find an assignment of parameters that produces a close fit. This algorithm

works by iteratively moving the parameters θ in a direction that decreases the total loss produced

by the model. To this end, the loss function is expressed as a function of θ, and the gradient of

the total loss with respect to θ is computed as

∇θ

∑
(x,y)∈D

L (fθ(x), y) , (2.6)

where ∇ represents the gradient function. Note that the loss function L has to be differentiable

such that the gradient can be found. When considering θ to be a vector of all parameters in the

model, this gradient gives the direction in the space of parameters, into which the loss increases

most steeply. Naturally, this implies that moving in the opposite direction, decreases the loss most

steeply. Therefore, θ can be updated by iteratively applying the update

θ ← θ − α∇θ

∑
(x,y)∈D

L (fθ(x), y) , (2.7)

where the scalar α determines the step size, more commonly referred to as the learning rate in

deep learning. Since the data set can be very large, however, it is computationally very expensive

to compute the derivative over the entire data set for every step. Instead, the data set is commonly

divided into smaller batches. Derivatives are then computed over the total loss for each batch, and

a step is taken accordingly. Together, the steps taken by going through all the batches in a data

set once make up a single epoch.

2.2.3 Convolutional Networks

Images are a special kind of input data for neural networks. Compared to the one-dimensional

vectors that are input to an MLP, images are two-dimensional. Since images often come with

red, green, and blue channels (RGB), they can even become three-dimensional, as each channel

is encoded in a separate two-dimensional image. Moreover, images are considered to be spatially

distributed data, meaning that features manifest as patterns in neighbouring pixels, and could

appear anywhere in the image. For example, when detecting lines, one has to look for pixels that

have high contrast with respect to their neighbour, and this pattern could appear anywhere in

the image. Hence, in order to properly detect features in images, a mechanism is required that

respects the structure of the image data, and detects patterns no matter where they appear in the

image.

An example of such a mechanism is a convolution. A single convolution is a small filter that is

applied to a patch of neighbouring pixels. The convolutions acts as a sort of sliding window that

is slid along the image. At each position, the convolution applies a set weights, called a kernel,

and outputs its activation. Analogous to a perceptron, a single convolution can be modeled as

a neuron, applying a linear transformation and a non-linear activation function. For example,

a typical two-dimensional 3 × 3 kernel, which could be applied to a two-dimensional image, is

parameterized by a weight vector w ∈ R3×3 and bias b ∈ R. Consider a patch of pixels p ∈ R3×3,

2.3. POSE ESTIMATION 11

then the convolution outputs the value

ϕ

 3∑
i=1

3∑
j=1

(wi,jpi,j) + b

 . (2.8)

Applying a convolution to an entire image yields a feature map containing its activation at each

location in the image (Figure 2.3). Note that every pixel in the feature map is the result of only

those pixels in the image that were in the ‘field of view’ of the convolution. Hence, we say the

connection between the two is sparse, in contrast to the fully connected perceptron, which applies

its weights to all input data at once (Equation 2.2).

Figure 2.3: A diagram of a convolution being applied to a 32 × 32 image. Note how the output
feature map has size 30× 30. This is because there is not enough data around pixels on the edges
to fill all pixels of the convolution. Here, only valid positions are considered, called valid padding.

Multiple convolutional neurons can again be stacked to create convolutional layers. These layers

can again be composed in convolutional network network (CNN) to detect increasingly complex

features. In between such convolutional layers, it is desirable to progressively decrease the size of

feature maps. Pooling layers are added to this end, which ‘summarize’ a set of neighbouring pixels

into a single value. Finally, in order to process the features detected by a CNN, a fully-connected

network is often added to the end. The final feature map is flattened to a one-dimensional vector,

and used as input for the fully-connected model. In this context, the CNN is often referred to as

a feature extractor, embedder, or backbone, and the fully-connected network as the head.

2.3 Pose Estimation

In order for robotic systems to interact with their environment, they require information about

the posture of objects in relation to themselves. A common way to retrieve such information is

through the use of a camera. By capturing images of the world surrounding the system, objects

of interest can be detected and localized. In the most basic setting, each pixel in these images

consists of a red, green, and blue color value (RGB), but more advanced cameras are also able to

capture depth (RGB-D).

12 CHAPTER 2. PRELIMINARIES

(a) A global reference frame. (b) The same world in a camera-local reference
frame.

Figure 2.4: The position and orientation of objects and the camera are defined relative to a
reference frame O (a). For convenience, object poses are predicted relative to the camera C (b).

2.3.1 6D Pose Estimation

Objects, as well as the camera itself, appear in the world at different positions and in different

orientations. Assuming the world to be three-dimensional, position can be represented by a

vector t ∈ R3, representing a translation relative to some reference point in the world. Moreover,

orientation can be represented by a rotation matrix R ∈ SO(3), representing a rotation with

respect to some reference orientation specific to the object. Together, the translation and rotation

have six degrees of freedom, and are referred to as the 6D pose of an object. More formally, the 6D

pose of object is part of SE(3) ∼= R3×SO(3), which is the group of all rigid-body transformations

about the origin of R3. Note that, in this parameterization, objects are assumed to be rigid,

meaning they do not deform. Furthermore, they are assumed to a have a fixed scale, only ever

appearing with the same size.

The problem of pose estimation is to estimate the pose of an object, given some image captured

of that object. Using the aforementioned parameterization of a pose, the problem is also referred

to as 6D pose estimation. Since both position and orientation are only defined in relation to

a reference frame, a point of reference must be established. Therefore, it is common to define

poses relative to the camera (Figure 2.4). In this thesis, we follow the same convention. For

more information on the concepts mentioned above, as well as scene reconstruction in general, the

reader is referred to the book by Szeliski et al. [22] on computer vision.

2.3.2 Symmetries

One of the main complexities in pose estimation is symmetry. In practise, many objects exhibit

rotational symmetries, making them appear identical from different viewpoints. Several types of

rotational symmetries can be distinguished. Firstly, symmetries can be discrete or continuous. A

cube, for example, has a discrete number of symmetric orientations (Figure 2.5a), while a cylinder

has a continuous symmetry about its central axis (Figure 2.5b). Moreover, we distinguish between

symmetric objects and nearly symmetric objects. Symmetric objects have global symmetries, that

are inherent in the object. In contrast, nearly symmetric objects have a symmetry breaking

feature, meaning they have no inherent symmetries. Nevertheless, if the symmetry breaking

feature becomes occluded, a symmetry can be induced (Figure 1.1). In pose estimation, these

2.3. POSE ESTIMATION 13

(a) (b)

Figure 2.5: A cube (a) has a discrete number of symmetric orientations. In contrast, a cylinder
(b) is symmetric under a continuous rotation about its central axis. Axes of symmetry are shown
in dashed lines.

symmetries result in ambiguity on the orientation, as multiple rotations can result in the same

observed image. Therefore, in the presence of symmetries, images can map to poses in a one-to-

many fashion.

This mapping is formalized in what are called symmetry sets [20]. For an image showing an

object of interest, there exists a set of poses, such that the shape and appearance of the object

projected on the image, are indistinguishable between any of the poses. This set of poses is referred

to as the symmetry set of the image. Let I be the space of all images, then the symmetry set of

an image I ∈ I is defined as

SSE(3)(I) = {(t, R) ∈ SE(3) : R(t, R) = I} . (2.9)

Here, R is defined as an abstract ‘rendering’ function R : SE(3) → I, which can take a 6D pose

and produce an image. Many details are abstracted in this function, such as the geometry of the

rendered object, lighting conditions, and other environment variables. Importantly, we assume

that the object of interest is visible in I. If it were not visible, an S(I) would contain an infinite

number poses, all of which transform the object outside the view of the camera.

Dealing with the ambiguity caused by these rotational symmetries is the prime focus of this

thesis. Since rotational symmetries only pertain to orientation, we restrict the pose estimation

problem to orientation estimation in this thesis. More specifically, instead estimating full 6D poses,

we assume the translation is fixed, and only predict orientation. In this context, the definition of

a symmetry set, to be used in the rest of this thesis, is changed accordingly to

S(I) = {(R) ∈ SO(3) : R(R) = I} , (2.10)

where the rendering function is defined only over the rotation manifold R : SO(3)→ I.

2.3.3 Uncertainty and Ambiguity

Though there are many different ways of performing pose estimation, most modern methods rely

on deep learning. Large data sets of images with annotated object poses are used to train neural

14 CHAPTER 2. PRELIMINARIES

networks. When considering the robustness of a neural network, uncertainty is a commonly used

term. When a network produces output, it is desirable for that output to be accompanied by

some measure of certainty, such that the quality of the output can interpreted before it is put to

use. For example, if an input is given to a network, which is completely unlike any of the inputs

used during training, the network may produce incorrect output. In pose estimation, this can

occur when, for example, an object appears under different lighting conditions in the real world

compared to the training data. In this case, it is desirable for the network to present its output

with low confidence.

Symmetries in pose estimation is often addressed as a source of uncertainty. When an image

can map to multiple different poses, any individual pose should be output with low confidence.

After all, the network is uncertain as to which of the poses in the symmetry set is correct. However,

this interpretation only holds for models that output a single pose. In contrast, if a model properly

represents the one-to-many mapping between images and poses, symmetries do not have to cause

uncertainty. If a given image closely resembles the training set, such a network could output all

possible symmetries with high confidence.

To avoid confusion, it is important to understand the difference between ambiguity and uncer-

tainty. Ambiguity is an inherent property of the problem domain. An image can map to multiple

poses, making the problem of pose estimation ambiguous. Uncertainty, on the other hand, is an

emergent property of the neural network and its training process. When a network is unable to

make a prediction with high confidence, we speak of uncertainty. Ambiguity can be a source of

uncertainty if the network is ill-equipped to deal with it. However, if the model is designed with

the ambiguity in mind, a high degree of ambiguity can exist without any uncertainty.

Chapter 3

Related Work

Dealing with symmetric objects has been established as an important open problem is pose es-

timation [5, 6]. As such, it has received an increasing amount of attention in the rich body of

recent literature on the topic. There exist numerous characteristics by which these works can

be grouped. In this section we distinguish two major categories: symmetry-aware learning and

learning with uncertainty. Both categories represent a fundamentally different way of approaching

the problem. Nevertheless, a number of works do not properly fit this categorization and are

presented separately.

3.1 Symmetry-Aware Learning

The first category makes an effort to avoid symmetry-induced ambiguities from disturbing the

training process. Here, the goal is neither to report on the presence of symmetries, nor to give

a range of possible poses under symmetry. Instead, authors look to produce the best possible

single-pose output, the quality of which is invariant between symmetric poses.

3.1.1 Canonicalization

Early works in this direction have opted to simply remove ambiguous cases from training data

[8, 9, 26]. Both SSD-6D [8] and the work from Wohlhart et al. [26] completely ignore an axis of

rotation during training and evaluation for symmetric objects. In doing so, they manually remove

ambiguity from the input and output data. Similarly, Rad et al. [9] restrict poses of symmetric

objects to angles between [0, α) around the axis of symmetry, where α is the angle of symmetry.

Moreover, they note how poses in the extremities of this range still display high visual similarity.

The range is, therefore, further divided into two intervals r1 = [0, α/2) and r2 = [α/2, α). A

separate network is trained to classify whether the rotation of an object falls inside r1 or r2

(Figure 3.1). If it falls in r2, the input image is mirrored, predicted as if it was in r1, and then

manually translated back to r2. A very similar approach is taken by Pitteri et al. [7], who identify

groups of symmetric poses as equivalence classes. An operator is defined that maps each member

of an equivalence class to a canonical pose. In practise, this results in a process very similar to [9],

where additional regressors have to be trained to address discontinuities created by the mapping.

15

16 CHAPTER 3. RELATED WORK

(a) (b) (c)

(d) (e) (f)

Figure 3.1: An example of how Rad et al. [9] handle symmetric objects. Shown is object #5 from
the T-LESS data set, which has an angle of symmetry α of 180 degrees, ignoring the small screw
and electrical contact. If the range of poses is restricted in the training set between 0 degrees (a)
and 180 degrees (b), pose estimation still fails for test samples with an angle of rotations close
to 0 degrees modulo 180 degrees (c). Their solution is to restrict the range during training to be
between 0 degrees and 90 degrees. A classifier is used to detect if the pose in an input images is
between 90 degrees and 180 degrees. If this is the case (d), the input image is mirrored (e), and
the predicted projections for the corners are mirrored back (f). Figure and caption taken from [9].

Note that all the aforementioned works require explicit knowledge of object symmetries during

training time. Furthermore, they require manual work to identify axes of symmetry, and implement

special cases in data-generation for each symmetric object.

3.1.2 Symmetry-Aware Loss

More recent works have started using loss functions that do not penalize poses symmetric to the

‘correct’ training pose. In doing so, there is no longer a need to manually curate training data.

Park et al. [27] introduced the transformer loss in their framework Pix2Pose. For a given training

sample, the transformer loss computes the minimum loss between the predicted pose and all poses

symmetric to the sample. Note that this approach still requires upfront knowledge, namely in the

form of a database of symmetric pose candidates for all objects. Brégier et al. [28] implement

a similar concept, but by embedding poses in a higher dimensional space, in which the distance

between two poses can be evaluated as their Euclidean distance. The embedding function depends

on the type of symmetry present in the object. Poses for objects with discrete symmetries are

represented as sets of points in the embedding space, and the distance to such a pose is the

minimum with respect to all its embedded points. In contrast, the ShapeMatch-Loss introduced

in PoseCNN [10] requires no prior knowledge at all. Using a 3D model of the object, it measures

the distance between points on the object in its predicted orientation and the closest point on the

3.2. LEARNING WITH UNCERTAINTY 17

ground truth object. More formally, given a set of model pointsM, the loss is defined as

SLoss(Rp, RGT) =
1

2m

∑
x1∈M

min
x2∈M

||Rpx1 −RGTx2||2 , (3.1)

where Rp and RGT are the predicted and ground truth rotations respectively, m is the number of

points, and ||·|| computes the length of a vector. In this formulation, symmetric predictions will

naturally result in the same loss value, without needing to know explicitly about axis of symmetry

in the object.

Notably, works in this category almost exclusively target global object symmetries, ignoring

occlusion-induced symmetries. Manually creating a database of all symmetric pose candidates be-

comes unfeasible when considering view-dependent symmetries. Moreover, by focusing only on the

object’s geometry, ShapeMatch-Loss fails on nearly-symmetric objects. An occluded symmetry-

breaking feature would still have to be predicted correctly for the shape in the predicted pose to

match the ground truth. Furthermore, possible symmetry-breaking features in the object’s texture

are ignored.

3.2 Learning with Uncertainty

A second category of works tackles symmetry-induced ambiguities under the broader concept of

uncertainty. The most prominent line of work in this direction aims at outputting probability

distributions over poses, rather than predicting poses directly. More specifically, given an image,

the conditional distribution over poses given the image is predicted. In this setting, symmetry-

induced ambiguity manifests as multiple output poses with equal probability in the conditional

distribution. An accurate estimation of this distribution could, therefore, be used to detect and

explain symmetries present in an image. We distinguish between methods that output parametric

and non-parametric distributions.

3.2.1 Parametric Distributions

One option is to use parametric distributions from directional statistics to estimate the conditional

pose distribution. The benefit of having a small set of parameters is that they are easily inter-

pretable and can be estimated by a neural network directly. Multiple such distributions have been

used by recent works including the Von Mises distribution [14], Bingham distribution [11, 13, 12],

and Matrix Fisher distribution [15]. Both the Bingham and Matrix Fisher distributions require the

computation of a normalizing constant during training, requiring expensive interpolation [11, 13]

and approximation [15] schemes.

While Mohlin et al. [15] output the parameters of a single Matrix Fisher distribution, others

have moved in the direction of outputting mixtures of multiple distributions. The latter allows

for estimating multimodal distributions, which are a common occurrence when symmetry-induced

ambiguities are involved. Prokudin et al. [14] show how to construct a mixture model with an

infinite number of mixing components using a conditional variational autoencoder (CVAE). Their

architecture is based on a biternion networks [29], which output 2D rotations in the form of 2D

vectors (cos(φ), sin(φ)), where φ is an angle of rotation. These vectors are coined biternions in

18 CHAPTER 3. RELATED WORK

[29], and correspond to unit quaternions around a fixed reference axis. Hence, the CVAE can

only predict 2D poses, and is applied to 2D head pose estimation in the paper. Nevertheless, the

authors do create a 3D implementation, where each axis is predicted separately. Deng et al. [13]

propose Deep Bingham Networks (DBNs), which outputs parameters for a mixture of Bingham

distributions. Mode collapse is prevented by using a ‘Winner Takes All’ (WTA) strategy during

training.

While these parametric distributions form a convenient and interpretable output format for

neural networks, their expressiveness is limited. By choosing a specific distribution, or mixture

thereof, an assumption is made on the shape of the conditional pose distribution. In the presence of

symmetry-induced ambiguity, the conditional distribution is uniform over all symmetric poses and

is often multimodal. However, all the aforementioned techniques struggle to accurately represent

this uniformity, as they use non-uniform priors.

3.2.2 Non-Parametric Distributions

Non-parametric distributions provide an alternative that does not make assumptions on the shape

of the predicted distribution. As such, they have the potential to more accurately represent the

complex conditional pose distributions caused by symmetries. We highlight three important works

from this category.

Deng et al. [17] use a Rao-Blackwellized particle filter to track the posterior distribution

over object poses over time. To this end, the posterior is decomposed into separate translation

and rotation components. The space of rotations is discretized into 191 thousand bins and the

likelihood of a given discretized pose with respect to a given observation is determined by code

book matching. An augmented auto-encoder [30] is used to this end, which embeds observed and

pre-rendered images into a shared embedding space, in which similarity scores can be computed.

Poor translation estimates also result in poor similarity scores, in turn allowing for the computation

of likelihoods for translation hypotheses.

Okorn et al. [16] similarly use code book matching to create a discretized non-parametric

histogram distribution over rotations. Rather than using an auto-encoder, they instead learn a

comparison function between features of pre-rendered images and observed images. Likelihoods

can be computed for each of the discretized rotations by inferring this learned similarity metric.

These likelihoods can, furthermore, be interpolated to create a continuous distribution.

Finally, implicit-pdf [18] takes a rather different approach. The authors estimate conditional

rotation distributions as unnormalized functions over the combined space of images and rotations,

which can be parameterized by a neural network. The architecture is divided into two conceptual

stages, where the first embeds images into feature vectors using a CNN, and the second con-

catenates such an embedding with an encoded rotation matrix, which is fed into a shallow fully

connected network. The small size of the second stage allows for efficiently evaluating multiple

sample rotations for a single image. Using these samples, a normalizing constant can be approxi-

mated, which is used to turn the unnormalized output into a proper probability distribution.

Considering all the work mentioned above, implicit-pdf is the only work that does not require

discretizing the rotation space. Moreover, the predicted probability distribution can be inferred

using the full expressive power of a multi-layer neural network. Hence, it can be almost arbitrarily

3.3. OTHER WORKS 19

(a) (b)

(c) (d)

Figure 3.2: A comparison of predicted orientation distributions between Deng et al. [13] (left
column) and Murphy et al. [18] (right column), on a tetrahedron (top row) and cone (bottom row).
The method by Deng et al. outputs a mixture of Bingham distributions. Though their method
is able to identify all 12 symmetries of the tetrahedron (a), the mixture is not expressive enough
to represent the continuous symmetry of the cone (c). The predicted distributions by Murphy et
al. are much more densely concentrated around the ground truth (b), and can properly represent
continuous symmetries (d). Distributions are presented by viewing each point on the 2-sphere as
the direction of a canonical z-axis. Color indicates the tilt angle about that axis. The surface of
the 2-sphere is visualized using the Mollweide projection. Rotations with larger probability are
shown with larger points. Images taken from [18].

complex (Figure 3.2). These desirable features make implicit-pdf one of the primary groundworks

for the work presented in Chapter 6 of this thesis.

3.3 Other Works

Given the aforementioned works, there exist a number of recent works do not fit the previously

established categories. Nevertheless, they provide valuable alternatives for dealing with pose

ambiguity. A number of these techniques are highlighted in the following.

2D-3D Correspondences A popular line of work in pose estimation is to generate 2D-3D

correspondences between image pixels and object surface coordinates. These correspondences can

subsequently be used in combination with, for example, a PnP-RANSAC algorithm to retrieve

a pose. In this category, several works have addressed objects with symmetries. EPOS [31]

divides the object surfaces into fragments. An encoder-decoder network is used to predict the

probability of an image pixel corresponding to each of the fragments, thus establishing a many-

to-many relation between pixels and surface fragments. Symmetries will naturally cause pixels to

map to multiple fragments with equal probability. In contrast, Richter-Klug et al. [32] remove

20 CHAPTER 3. RELATED WORK

Figure 3.3: Sundermeyer et al. [30] train an encoder network to embed images into a latent space.
A code book is created that pairs a number of discretized rotations Ri ∈ SO(3) to an associated
latent code zi. At test time, objects are cropped from larger images, and encoded into latent
vectors ztest. The code book entry best matching ztest according to cosine similarity is used to
predict one or more rotations.

ambiguity from the decoder output space. To this end, they introduce the closed symmetry loop

(CSL) representation, which maps symmetric object surface points to the same value. A secondary

mapping is also construct which maps points from the csl representation back to object surface

coordinates. This process is best seen as a form of canonicalization, as described earlier in this

Section.

Image Template Matching Another class of pose estimation algorithms focuses on image

template matching. An observed image is matched against template images containing objects

in known poses. If, by some comparison measure, a match is found, the pose of the observed

object can be estimated to be the template’s associated pose. This approach has the potential

to deal with symmetries naturally, as symmetric objects will create similar template images in

symmetric poses. The same holds for nearly-symmetric objects, which will exhibit self-occlusion

induced symmetries in template images.

In this category, a common strategy is to embed real images and pre-rendered images with

known views into a shared latent space. A library of latent codes for such pre-rendered images is

often constructed called a code book. Corona et al. [33] train an encoder network using a triplet

loss [26] to predict poses of objects unseen at training time. Notably, they add a separate branch to

their network, which also classifies an object’s order of rotational symmetry along the X-, Y-, and

Z-axis. Sundermeyer et al. [30] use an augmented autoencoder (AAE) to embed observations into

a latent space. The closest match in the code book according to cosine similarity is chosen as the

output orientation (Figure 3.3). Alternatively, the algorithm can return the K-nearest neighbours

of the embedded input, which would give information about other similar poses. If the nearest

neighbours are spread out, it implies a high degree of certainty. If, on the other hand, the nearest

neighbours are clustered, it implies that a number of poses could be equally likely. This can serve

as an indication that the input can be explained by multiple symmetric poses, since such poses

will naturally be clustered in the latent space.

3.3. OTHER WORKS 21

Multiple-Hypothesis Prediction Manhardt et al. [20] take a different approach. They pro-

pose a model that produces multiple pose hypotheses for a single image. To this end, they train

a network with duplicated output layers using a ‘Winner Takes All’ strategy. The range of pre-

dicted hypotheses can be interpreted as a Bingham distribution over possible poses explaining the

input. How close the hypotheses lie together, moreover, serves as an indication of the presence

of ambiguity. More specifically, if there is no ambiguity, all hypotheses will lie close together. If

there is ambiguity, the hypotheses will be spread out. By performing further analyses, the axis of

symmetry can even be reconstructed from a set of hypotheses.

Compared to the other works mentioned in this chapter, these multiple-hypothesis prediction

(MHP) models come with a desirable set of properties. They neither require complex parameteri-

zation, nor the manual canonicalization of poses before or during the training process. Moreover,

they are able to directly predict a set of multiple, possibly symmetric, poses. In Chapter 4 of

this thesis, we further explore different variations of the winner takes all training strategies, and

how they may apply to orientation estimation. Furthermore, in Chapter 5, we evaluate how well

hypotheses from MHP models are able to represent the symmetry sets of images.

22 CHAPTER 3. RELATED WORK

Chapter 4

Multi-Hypothesis Orientation

Estimation

In this Chapter, we cover the concept of multiple-hypothesis prediction in deep learning, and

explain how it can be applied to orientation estimation. Section 4.1 first details how multiple-

hypothesis prediction models can address ambiguity in learning tasks, as well as introduces multiple

training strategies for such models. Subsequently, 4.2 details the application of multiple-hypothesis

prediction to orientation estimation, covering two possible loss functions and arriving at a final

neural network architecture.

4.1 Background

The problem of ambiguity in orientation estimation boils down to a more fundamental one. As

such, we will treat the problem of ambiguity step-by-step. We first focus on the problem of

ambiguity in general deep learning. Ambiguity exists, when for a given input x, there can be

multiple correct outputs y. Consider a data set D consisting of N input-output pairs from an

input space X and an output space Y. More formally, we define

D = {(xi, yi) : 1 ≤ i ≤ N, xi ∈ X , yi ∈ Y} . (4.1)

Now, let (xi, yi) and (xj , yj) be two separate pairs belonging to the data set D, such that i ̸= j.

Then, ambiguity implies that there exist such data pairs, where xi = xj and yi ̸= yj . In other

words, two different pairs can have the same input, but with different corresponding output.

A traditional neural network can be seen as a function fθ : X → Y with parameters θ. During

training, a loss function L is minimized over the entire data set by minimizing the value

1

N

N∑
i=1

L (fθ(xi), yi) . (4.2)

Adopting the notation from [34], it is assumed that the above sum of errors, given large enough

23

24 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

N , approximates the continuous formulation∫
X

∫
Y
L (fθ(x), y) p(x, y) dy dx , (4.3)

where p(x, y) is the joint probability density over x and y. If the network is allowed to produce

only a single output, the total loss is minimized when, for a given x, the network outputs a value

such that

fθ(x) = min
yo∈Y

∫
Y
L(yo, y)p(x, y)dy (4.4)

= min
yo∈Y

∫
Y
L(yo, y)p(y|x)p(x)dy (4.5)

= min
yo∈Y

∫
Y
L(yo, y)p(y|x)dy . (4.6)

In other words, for a given input x, the network learns to predict a value that minimizes its loss

with respect to all output values weighted by their conditional probability. If the mapping from

X to Y is one-to-one or many-to-one, meaning there is no ambiguity as all x ∈ X map to distinct

y ∈ Y, then it is easy to show how the network regresses to the right answer. Given x, let yGT be

the corresponding unambiguous output. Then, by definition, yGT has a conditional probability of

1, while all other values y ∈ Y \ yGT , have conditional probability 0. The optimal prediction is

now defined as

fθ(x) = min
yo∈Y

L (yo, yGT) . (4.7)

For any proper loss function L, which is minimized when the prediction is equal to the ground

truth, this implies that fθ(x) = yGT .

However, if the mapping from X to Y is one-to-many, meaning there is ambiguity, then this is

not the case. Instead, a given x can map to a variety of values y ∈ Y. We define A(x) to be the

set of all such values y, for which the pair (x, y) could appear in D. For the sake of consistency

in notation, we assume A(x) is an infinite set, though it could also have a discrete number of

elements. The optimal prediction is now defined by integrating over A(x) as follows

fθ(x) = min
yo∈Y

∫
A(x)

L(yo, y)p(y|x)dy . (4.8)

As was mentioned before, this implies that the network learns to predict an output that minimizes

the loss with respect to all y ∈ A(x), weighted by the conditional probabilities p(y|x). Where

exactly this optimum prediction lies heavily depends on the loss function L. Take for example

the standard mean squared error (MSE) loss, for which the optimum prediction would converge

to the conditional average

fθ(x) =

∫
A(x)

y · p(y|x) dy . (4.9)

Whether this is a desirable property depends on the shape of the conditional density p(y|x).
Consider the densities in Figure 4.1. If p(y|x) is unimodal and symmetric, like in Figure 4.1a,

then the conditional average corresponds to the most likely output y. However, if p(y|x) is skewed
or multimodal, like in Figure 4.1b, then the conditional average may fall outside the distribution

4.1. BACKGROUND 25

0 2 4 6 8 10
y

0.0

0.2

0.4

0.6

0.8

1.0

p(
y|

x)

Conditional Density
Conditional Average

(a) A unimodal density.

0 2 4 6 8 10
y

0.0

0.2

0.4

0.6

0.8

1.0

p(
y|

x)

Conditional Density
Conditional Average

(b) A multimodal density.

Figure 4.1: A visualization of the conditional average for a unimodal distribution and a multimodal
distribution.

entirely. The latter case can occur when multiple distinct elements ya, yb ∈ A(x) exist, with

ya ̸= yb, such that both ya and yb correspond to a peak in p(y|x). As demonstrated in Equation

4.9, in such a case, the prediction fθ(x) will converge to be in between ya and yb, thus giving a

meaningless value as it represents neither of the most probable outputs.

4.1.1 Multiple Hypothesis Prediction

Now that the problem of training a single-output network to learn on ambiguous data has been

established, we introduce the concept Multiple Hypothesis Prediction (MHP) models. The term

was first coined by Rupprecht et al. [34] in 2017, but the concept can be traced back to the

work by Guzman-Rivera et al. [35] in 2012. The approach was first introduced in the field of

multiple choice learning (MCL). Observing that uncertainty and ambiguity can not be properly

captured by single-prediction models, Guzman-Rivera et al. proposed to output a set of multiple

plausible hypotheses instead. As long as one of the hypotheses is correct, they argue that a

downstream entity with more knowledge should be able to identify it. Hence the name: multiple

choice learning. This entity could, for example, be a human that is presented a set of possibilities

in an interactive application. Alternatively, it could also be another algorithm that is able to

score each hypothesis. One example is the application of human pose estimation, where a set of

proposed key-point locations is passed to a downstream algorithm, which will incorporate temporal

information to pick the best option. Guzman-Rivera et al. [36] later proposed such an application

for the problem of camera relocation. There, they render a depth map from each hypothesized

camera location and compare it to the original input depth. The hypothesis with the highest

corresponding depth map is chosen as the final prediction. With the assumption that such an

oracle exists, works in the line of MCL have focused on producing sets of hypotheses that are as

diverse as possible [37]. After all, the more diverse the hypotheses, the more chances to find the

right output. In the absence of an oracle, recent works by Lee et al. [38] and Tian et al. [39] have

proposed methods to assign a notion of confidence to each individual hypothesis, thus providing

an inherent scoring mechanism to an MCL model.

26 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

To produce these multiple hypotheses, MCL models traditionally consist of an ensemble of

neural networks. A given input x is fed to each of the M networks in the ensemble, producing a

set of outputs

fθ(x) =
(
f1
θ1(x), ..., f

M
θM (x)

)
, (4.10)

where each f i
θi
(x) is referred to as a single hypothesis. Note that in this formulation each network

f i
θi
(x) is parameterized by its own set of parameters θi, making them completely independent.

Later work has suggested that feature sharing between members of the ensemble is beneficial

[38, 34]. Rupprecht et al. have even gone so far as to implement the ensemble as a single network,

just with M duplicated output layers. In this case, the parameter sets θi, 1 ≤ i ≤ M , obviously

overlap greatly. Hence, it is more convenient to see all hypotheses as different outputs of the same

parameterized network:

fθ(x) =
(
f1
θ (x), ..., f

M
θ (x)

)
. (4.11)

To reach the aforementioned goal of diversifying the hypotheses, Guzman-Rivera et al. [35]

fist introduced the oracle loss. The name reflects the fundamental assumption in MCL, namely

that there exists an oracle that is always able to identify the best hypothesis. Using the notation

of equation 4.11, the oracle loss for a data pair (x, y) ∈ D is defined as follows:

LO(x, y) = min
1≤i≤M

L
(
f i
θ(x), y

)
, (4.12)

where L is a loss function that can be chosen freely, based on the application domain. In words,

the model only pays a loss L(f i
θ(x), y) for the best hypothesis f i

θ(x), which is the one creating the

smallest task-dependent loss among all hypotheses. Therefore, the oracle loss emulates an oracle

choosing the best hypothesis. In doing so, it allows all other hypotheses to lie freely distributed

over the output domain without being penalized. In turn, individual networks f i
θ are allowed to

specialize in predicting values located in specific regions of the output space.

The 2017 work by Rupprecht et al. focuses precisely on this last observation. Though the

proposed multiple hypothesis prediction (MHP) models by Rupprecht et al. are very similar to

MCL models, they are used as means to a different end. While MCL is used to pass a set of

plausible hypotheses to a downstream oracle, Rupprecht et al. propose MHP models to identify

the presence of uncertainty and to discover multiple modes in multimodal distributions. To this

end, their analyses focuses on the behaviour of hypotheses with respect to the conditional density

p(y|x), when training using the oracle loss. In their analysis, they relate the training process to

the mathematical concept of Voronoi tesselations. In this context, they find that the continuous

error formulation from Equation 4.3 can be reformulated to

∫
X

M∑
j=1

∫
Yj(x)

L
(
f j
θ (x), y

)
p(x, y) dy dx , (4.13)

where Yj(x) represents a subregion of the output space in which the loss between any point

y ∈ Yj(x) and the hypotheses is minimal for f j
θ (x). These are all the points for which the

oracle loss would select f j
θ . Conceptually, the output space Y is thus subdivided into a voronoi

4.1. BACKGROUND 27

tessellation. More formally, the regions are defined as

Yj(x) =
{
y ∈ Y : L

(
f j
θ (x), y

)
< L

(
fk
θ (x), y

)
∀k ̸= j

}
. (4.14)

Assuming a mean squared error loss for L, Rupprecht et al. show that the loss in Equation 4.13 is

minimized when the hypotheses tesselate the output space into cells with minimal expected loss

to their conditional average.

4.1.2 Training Schemes

In works subsequent to that of Rupprecht et al., the name ‘oracle loss’, as used in the MCL liter-

ature, has been largely replaced by the name ‘winner takes all’ (WTA) loss. The aforementioned

property of creating a minimizing Voronoi tesselation has made the WTA loss popular in mul-

timodal prediction problems. Moreover, the WTA loss works with any application-specific loss

function L, making it easily adaptable to almost any problem. Because of this property, WTA is

often referred to as a meta loss function, which can be used together with an arbitrary embedded

or nested loss function L. We will now give a more detailed description of the WTA training

strategy, as well as two adaptations: relaxed winner takes all (RWTA) and evolving winner takes

all (EWTA).

WTA

As was mentioned before, the WTA loss is simply the same as the oracle loss, but with a different

name. Hence, we define it as

LWTA(x, y) = min
1≤i≤M

L
(
f i
θ(x), y

)
. (4.15)

In order to illustrate how the WTA meta loss function influences the convergence of hypotheses, we

consider a simple example. Let x ∈ X be an ambiguous input sample, such that the distribution

p(y|x) is multimodal. For the sake of simplicity, we assume that there exist a discrete number

of four ambiguous outputs for x, hence |A(x)| = 4. For an MHP model with M = 5 randomly

initialized hypotheses, Figure 4.2 shows how the hypotheses converge in a concrete example. Note

how each hypothesis creates a Voronoi cell in the output space. In LWTA, a hypothesis is selected

as the winner for a given y ∈ A(x), if y lies within the Voronoi cell defined by that hypothesis.

This means that a hypothesis with an empty cell will always be a loser and, therefore, will not be

moved. Consequently, as can be seen in Figure 4.2b, hypotheses that are initialized too far from

any mode will not converge. Moreover, if a single hypothesis is consistently closest to 2 different

modes, that hypothesis will be pulled in equal amounts towards both modes, making it converge

to an averaged position. Both of these properties are problematic, since they can cause modes to

remain uncovered, and cause stray hypotheses that become noise in the output.

RWTA

To combat these issues, Rupprecht et al. introduced a relaxed version of the WTA loss (RWTA).

Rather than determining the loss strictly based on the closest hypothesis, a weighted sum is taken

28 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

(a) Initial hypotheses. (b) Converged hypotheses.

Figure 4.2: A visualization of the strict winner takes all training process. The domain represents
the output space Y. Given a single input x, a multiple-hypothesis prediction network outputs
five hypotheses (blue markers). The input x can map to four ambiguous outputs y ∈ A(x) (red
markers), which appear as separate modes in p(y|x). Arrows indicate which hypothesis is the
winner with respect to a y ∈ A(x). Lines portray the voronoi cells created by hypotheses, where
dashed lines extend to infinity.

among all hypotheses as follows.

LRWTA(x, y) =

(
1− ϵ

M

M − 1

)
min

1≦j≤M
L
(
f j
θ (x), y

)
︸ ︷︷ ︸

Winner term

+
ϵ

M − 1

M∑
j=1

L
(
f j
θ (x), y

)
︸ ︷︷ ︸

Sum term

, (4.16)

where ϵ, with 0 ≤ ϵ ≤ 1, is a weighting term. Note how a choice of ϵ = 0 results in the strict WTA

loss, and a choice of ϵ = 1 removes the WTA concept completely. By adding the sum term, the

RWTA loss function effectively forces every hypothesis to move at least slightly in the direction

of all modes, even when its own Voronoi cell is empty. An illustrative example is given in Figure

4.3 for |A(x)| = 3 and M = 6. The other issue with WTA, where a single hypothesis converges

to an averaged position between two modes, is also largely solved. Eventually, one of the loser

hypotheses is likely to pass close enough by one of the contending modes that it becomes a winner,

thus freeing the other hypothesis to converge to the other mode.

The addition of the sum term does, however, come with its own unfortunate side-effects. Firstly,

in the converged positions, each mode is still paired with only a single winner hypothesis. While

the remaining losers are not stranded at their arbitrary initial positions, like in WTA, the sum term

instead forces them all to a single shared equilibrium position (Figure 4.3b). Furthermore, since

the winning hypothesis for one mode is also a loser for all other modes, the winning hypotheses

converge slightly away from their paired mode. How far entirely depends on the choice of ϵ, with

larger ϵ causing larger distances.

EWTA

Another variation of the WTA loss was introduced by Makansi et al. [40] called Evolving Winner

Takes All (EWTA). The idea behind EWTA is to use an alternative relaxation of strict WTA, in

which as many hypotheses as possible converge to one of the modes. In contrast to RWTA, where

the eventual set of loser hypotheses converges to an averaged position. To this end, Makansi et al.

4.1. BACKGROUND 29

(a) Initial hypotheses. (b) Converged hypotheses.

Figure 4.3: A visualization of the relaxed winner takes all training process. The domain represents
the output space Y. Given a single input x, a multiple-hypothesis prediction network outputs six
hypotheses (blue markers). The input x can map to three ambiguous outputs y ∈ A(x) (red
markers), which appear as separate modes in p(y|x). Arrows indicate which hypothesis is the
winner with respect to a y ∈ A(x). Transparent arrows indicate pull resulting from the sum term.
Lines portray the voronoi cells created by hypotheses, where dashed lines extend to infinity

propose to let the k best hypotheses be winners, rather than only the single best. The parameter

k is then ‘evolved’ from k = M down to k = 1 over the course of the training process. Formally,

we define the EWTA loss function as

LEWTA(x, y) = min
B⊆fθ(x),|B|=k

∑
a∈B

L(a, y) , (4.17)

where B is the set of k best hypotheses.

The exact inner workings of the EWTA training process are quite complicated to imagine,

but we give an illustrative example in Figure 4.4. The process starts with k equal to the total

number of hypotheses M . In the context of the figure, this implies k = 8. At this stage, the

loss is computed between each hypothesis and each mode, causing all hypotheses to converge

to a conditional average (Figure 4.4b). More intuitive is to imagine each mode pulling on all

hypotheses. As k is decreased, each mode releases its pull on an increasing number of hypotheses,

instead pulling only on the top-k closest hypotheses. In the example, for k = 4, the bottom left

and bottom right modes each pull on 4 hypotheses (Figure 4.4c). Among these 4 hypotheses, 2 are

free to converge to the respective mode, as they receive no pull from any other modes. The other

2, however, are also part of the 4 winning hypotheses for the top mode, thus making them converge

to another average. Finally, the entire EWTA process converges when k = 2 (Figure 4.4d). In this

configuration, each mode is able to pull on a unique set of 2 hypotheses, making those hypotheses

converge entirely to the respective mode. Since the 3 modes are now only pulling on 6 distinct

hypotheses in total, the 2 left over hypotheses receive no more pull at all. Consequently, they

remain in their previous averaged positions.

In conclusion, EWTA provides an alternative way of relaxing the strict WTA loss. By avoiding

the sum term in RWTA, no residual forces remain in the converged state. Consequently, loser hy-

potheses are not pulled to a shared averaged position, and winner hypotheses can fully converge to

a ground truth mode. While stray hypotheses are not avoided entirely, their numbers are reduced,

30 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

(a) Initial hypotheses at
k = 8.

(b) Converged at k = 8. (c) Converged at k = 4. (d) Converged at k = 2.

Figure 4.4: A visualization of the evolving winner takes all training process. The domain represents
the output space Y. Given a single input x, a multiple-hypothesis prediction network outputs
eight hypotheses (blue markers). The input x can map to three ambiguous outputs y ∈ A(x) (red
markers), which appear as separate modes in p(y|x). Arrows indicate which hypotheses belong
to the k winners with respect to a y ∈ A(x). Overlapping markers are manually moved slightly
apart to improve clarity. Figure based on [40].

making the distribution of hypotheses represent the ground-truth distribution more accurately.

4.2 Application to Orientation Estimation

As was mentioned at the start of this Chapter, the problem of ambiguity in orientation estimation

relates very closely to multimodal output prediction. Concretely, we can define the input space X
to be the space of all possible input images I, and define the output space Y to be the rotation

manifold SO(3). Then, the mapping we wish to learn is one of images to rotations. Recall the

definition of a symmetry set from Section 2.3.2

S(I) = {R ∈ SO(3) : R(R) = I} . (4.18)

The presence of global and occlusion-induced symmetries plays a dominating role in the charac-

teristics of S(I). Take, for example, an image I of an unobstructed and textureless cube. A cube

has a discrete number of 24 rotational symmetries, such that |S(I)| = 24, where the notation | · |
indicates the size of the set. An image of an unobstructed cone, on the other hand, would have

an associated S(I) with infinite elements, since a cone has a continuous axial symmetry. When

considering occlusions, the situation gets even more complicated. Consider an image of a tea mug,

which could either produce a finite or infinite set S(I) depending on the view. If the ear of the mug

is visible, the rotation is unambiguous and |S(I)| = 1. If the ear is occluded, the mug becomes

symmetric around its central axis, causing S(I) to become a set with infinite number of possible

rotations.

As was explained earlier in Section 4.1, a network that produces only a single output will not

be able to deal with this ambiguity. By applying multiple hypothesis prediction, however, we can

create a model capable of finding multiple modes in the output distribution. This idea was first

tested by Manhardt et al. [20], who applied RWTA training to a pose estimation network. In the

rest of this Section, we explain how MHP models can be applied to orientation estimation. In the

next chapter, this implementation is evaluated with various meta and embedded loss functions.

4.2. APPLICATION TO ORIENTATION ESTIMATION 31

4.2.1 Embedded Loss Functions

Because the meta loss functions WTA, RWTA, and EWTA make no assumptions on the embedded

loss function L, applying them is as easy as choosing a suitable L. In orientation estimation, such

a loss function should capture a notion of distance between two rotation matrices. The minimal

angular difference is a popular metric that can be used to this end [41]. It measures the smallest

angle by which one rotation matrix can be rotated into another. Given two rotation matrices

R,R′ ∈ SO(3), the minimal angular difference α is defined as

α = cos−1

(
Tr (RR′⊺)− 1

2

)
. (4.19)

More formally, the minimal angular error describes the geodesic distance between R and R′,

as it gives the distance in radians between the two rotations on the rotation manifold. Using the

minimal angular difference, we can formulate a loss function that directly satisfies our criterion.

By renaming R to Rp, indicating a predicted rotation, and R′ to RGT , indicating the ground truth

rotation, we formulate the geodesic loss as

LGEO(Rp, RGT) = cos−1

(
Tr (RpR

⊺
GT)− 1

2

)
. (4.20)

The inverse cosine in this formulation is, however, inconvenient in practise. The expression inside

can take values outside the range [−1, 1] due to accumulating errors in floating point arithmetic.

Instead, we can use the cyclic cosine loss [29] as a surrogate, which is defined as

LCOS(Rp, RGT) = 1− cos(α)

= 1−
Tr (RpR

⊺
GT)− 1

2
.

(4.21)

Alternatively, Beyer et al. [29] proposed a loss function based on the Von Mises distribution.

While the geodesic loss grows linearly with respect to the minimal angle between Rp and RGT ,

this loss functions scales exponentially. Practically, it penalizes large errors more harshly than

small errors. The loss is defined as

LVM (Rp, RGT) = 1− eK(cos(α)−1)

= 1− e
K
(

Tr(RpR
⊺
GT)−1

2 −1

)
,

(4.22)

where K is a parameter analogous to the inverse of the standard deviation in a traditional Gaussian

distribution. Much like LCOS , LVM does not require the computation of an inverse cosine.

What makes the Von Mises loss particularly interesting, is the shape of the loss function (Figure

4.5). The loss is minimized when the predicted rotation matches the ground truth, but converges

to 1 for larger angular errors. Up until now, we have assumed that minimizing the loss for a

single predicted output with respect to multiple ground truth outputs, results in that prediction

converging to a single averaged position. This is also the case for LGEO, but, interestingly, not for

LVM . Instead, if the ground truth rotations lie far enough apart, the Von Mises loss is minimized

in multiple positions, each of which lies very close to one of the ground truths. A downside of using

32 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

0 1 2 3 4 5 6
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(a)

0 1 2 3 4 5 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(b)

Figure 4.5: Plots illustrating the shape of both LGEO and LVM . Functions are shown in a 2D
orientation estimation setting for simplicity. Figure (a) plots both losses as a function of the
predicted angle x ∈ [0, 2π) (radians) with respect to a ground truth rotation of π radians. Figure
(b) plots the sum of losses with respect to ground truth rotations 2 and 4 radians. LVM uses
K = 4. For a detailed analysis see Appendix A.

the Von Mises loss is that its derivative converges to 0 for larger angular errors. Consequently, if a

hypothesis is predicted with a large error, it produces very little gradient, damaging the training

process. See Appendix A for more details.

4.2.2 Network Design

Based on previous works [34, 20], we implement a multiple hypothesis prediction model as a

single neural network with duplicated output layers. The network can be seen as a predictor

fθ : I → SO(3) × ... × SO(3), that takes a single image I ∈ I as input and produces multiple

rotations f1
θ (I), ..., f

M
θ (I) ∈ SO(3) as output.

Rather than designing the entire network from scratch, we rely on established high-performing

network architectures to construct fθ. We constrain images to be 224 pixels in both width and

height and choose the popular Residual Network (ResNet) [42] architecture as the basis for this

network. A number of ResNet versions are available that are 18, 34, 50, 101, and 152 layers deep.

These models also come pre-trained on the image classification data set ImageNet [43], which

consists of more than a million images with objects from 1000 categories. Re-using parameters

from pre-trained networks in different contexts is called transfer learning and can kick-start a new

training process.

Producing Orthogonal Output

Output rotations are represented as rotation matrices. That is, each hypothesis f i
θ outputs a 3×3

matrix where the columns form an orthonormal basis. Outputting 3×3 matrices is easily achieved.

Simply create an output layer with the same 3× 3 shape, and duplicate it M times. Constraining

these outputs to form orthogonal matrices, however, is not trivial. Without additional processing

steps, the network would simply output the 9 values of a matrix independently, with no regard

for the orthogonality constraint. To address this, a more elaborate scheme is used. Based on the

work by Zhou et al. [41], a rotation is first output in the form of two 3D vectors x′ and y′. Note

4.2. APPLICATION TO ORIENTATION ESTIMATION 33

ResNet Gram-

Schmidt

Copy Fully Connected

Figure 4.6: A schematic overview of the network architecture used in the multiple hypothesis
prediction model for pose estimation.

that x′ and y′ are not normalized, and can be taken straight from the output of a neural network.

A full set of local orthonormal axes is subsequently built by following the Gram-Schmidt process.

More specifically, we first normalize x = x′

||x′|| . Then, we compute z′ = x× y′ to find a vector that

is perpendicular to the plane of x′ and y′. Next, we also normalize z = z′

||z′|| , and subsequently

compute y = z×x, which is orthogonal to both z and x. Note that y is automatically normalized,

since z and x are orthogonal and normalized. Finally, this gives us three orthonormal axes that

represent the predicted local axes of an object. These axes are converted to a rotation matrix R

as

R =

xx yx zx

xy yy zy

xz yz zz

 ∈ SO(3) .

Final Design

Putting everything together, the final architecture is depicted in Figure 4.6. In the first stage,

an input image is fed to a ResNet model. The image consists of three channels (RGB) with

224 × 224 pixel values each. The output of the ResNet model is converted to an embedding of

size E by a fully connected layer. This embedding is again fed to a fully connected layer, in order

to produce M pairs of 3D vectors. Finally, by applying the Gram-Schmidt process, M proper

rotation matrices are output.

34 CHAPTER 4. MULTI-HYPOTHESIS ORIENTATION ESTIMATION

Chapter 5

Experiments with

Multi-Hypothesis Networks

In this Chapter, we go over a set of experiments that aim to evaluate the various meta loss functions

and embedded-loss functions described in the previous chapter. To this end, multiple models are

implemented as described in Section 4.2.2, and trained using WTA, RWTA, and EWTA meta loss

functions, together with cyclic cosine and Von Mises embedded loss functions. The performance

of these models as multiple hypothesis orientation predictors is tested on a variety of objects. The

choice of objects is based on the SYMSOL data set proposed in [18], and were specifically chosen

for the types of symmetries they exhibit. In this evaluation, we are specifically interested in the

ability of each model to predict hypotheses that fall within the symmetry set of an image.

First we explain in Section 5.1 how a data set can be created with annotated symmetry sets for

every image, while covering different types of symmetries. Section 5.2 details the metrics used in

evaluation. Next, Section 5.3 gives implementation details for the models that will be evaluated.

Finally, results are presented and discussed in Section 5.4 .

5.1 Data Set

Evaluation should be performed on data that is relevant to the problems described in the thesis.

As such, the images in these data sets should display symmetry-induced ambiguity. Moreover,

ground truth annotations of symmetry sets should preferably be available for each image. This

way, the output of all the considered models can be tested against a full set of symmetries.

Furthermore, the models in this thesis only pertain to orientation estimation, rather than full 6D

pose estimation. Preferably, the data sets reflect this, and do not consider translation. Finally, a

data set preferably includes different types of symmetries. More specifically, we distinguish discrete

and continuous symmetries for symmetric and nearly-symmetric objects, where nearly-symmetric

objects can appear symmetric under self-occlusion.

This specific set of requirements greatly restricts which data sets can be used. The most

restricting requirement is that of having annotated ground truth symmetry sets. Few data sets

include this information. When they do, the annotations are limited to symmetric objects, and are

35

36 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

(a) Tetrahedron (b) Cube (c) Icosahedron (d) Cone (e) Cylinder

(f) Marked tetrahe-
dron

(g) Marked cylinder (h) Marked sphere

Figure 5.1: Example images from the SYMSOL data set. The top row shows the five symmetric
objects in the SYMSOL I set. The bottom row shows the three nearly-symmetric objects from
the SYMSOL II set.

not available for nearly-symmetric objects under occlusion. This is understandable, as capturing

such information for real-life images is practically infeasible. Another restrictive requirement is

that of only considering orientation. Many established pose estimation data sets exist [44, 10,

45, 46], but most cater towards full 6D pose estimation. Translation could be taken out of the

equation by cropping images based on their bounding box within each image, but concerns are

that this may cause distortion which influences the perceived orientation of the object. If the

object is not centered, it is observed from a slight angle. Nevertheless, some related work has used

this strategy [17].

5.1.1 SYMSOL

Considering all requirements, only the SYMmetric SOLids (SYMSOL) data set by Murphy et al.

[18] comes close. It contains two subsets: SYMSOL I and SYMSOL II, containing symmetric and

nearly-symmetric objects respectively. The objects are synthetically rendered and are placed in

the center of each image, thus ignoring translation. Objects are observed from a stationary camera

and under constant lighting (Figure 5.1). More details on the two subsets are as follows.

1. SYMSOL I

Contains five objects with global symmetries: tetrahedron, cube, icosahedron, cone, and cylin-

der. The tetrahedron, cube, and icosahedron each have 12, 24, and 60 discrete symmetric

rotations respectively, whereas the cone and cylinder have continuous symmetries. The cone

is symmetric around a single axis, while the cylinder can also be rotated 180 degrees. A total

of 50000 images are available for each object, where 45000 are used for training and 5000

are used as a test set. The objects appear in orientations randomly sampled from SO(3).

SYMSOL I also comes with annotated symmetry sets for every image, as they are easily

derived for these shapes. For the cone and cylinder, the continuous ranges of symmetric

5.1. DATA SET 37

rotations are discretized at 1 degree.

2. SYMSOL II

Contains nearly-symmetric objects that exhibit symmetries under self-occlusion. These in-

clude a marked tetrahedron (tetX), marked cylinder (cylO), and marked sphere (sphereX).

As the names suggest, each of these images has symmetry-breaking markings applied to its

surface. The tetrahedron has a single colored face, the cylinder is marked with a dot, and the

sphere is marked with both an X and an adjacent dot. Depending on whether the markings

are visible, the symmetry set of an image can be very different.

Tetrahedron For the tetrahedron, if the colored face is visible, only 3 discrete symmetries remain.

If the colored face is not visible, then the symmetry set will contain 3, 6, or 9 discrete

symmetries if 3, 2, or 1 non-colored face(s) is/are visible respectively.

Cylinder For the cylinder, if the mark is visible, then there is no ambiguity left at all. If the

mark is not visible, then only the subset of symmetric rotations for a normal cylinder

remains in which the mark does not enter the view of the camera.

Sphere For the sphere, the situation is more complicated. If the X and dot are both visible,

then there is no ambiguity. If neither is visible, then only the symmetries of the sphere

remain in which neither of the markings would be visible. If only one of the markings

is visible, a complicated set of discrete or continuous symmetries appears, that can not

be easily described nor imagined.

As with SYMSOL I, a total of 50000 images are available for each object, where 45000 are

used for training and 5000 are used as a test set. However, since symmetry sets for these

nearly-symmetric objects are complex and view-dependent, annotations do not include full

symmetry sets.

Notably, both SYMSOL I and II only contain synthetically rendered images. Moreover, images

show objects in a simplistic setting, using constant lighting conditions and perfectly centered

objects. Compared to real life images, or more realistic synthetic images [6], this simplistic setting

simplifies the orientation estimation problem in the sense that a neural network is expected to

learn effective feature-extraction more easily, and with fewer network parameters. Nevertheless,

specifically in SYMSOL II, there exists a complex relationship between viewpoint and symmetry

set. Since we are most interested in the ability of MHP models to learn this relationship, rather

than their ability to perform complex feature extraction, we still consider SYMSOL to be a suitable

data set for this evaluation.

Though SYMSOL II does not contain annotated symmetry sets like SYMSOL I, it would be

a valuable addition. Having the symmetry sets available would create the first data set covering

symmetry under self-occlusion with full symmetry annotations. Such a data set is also a necessity

for evaluation any model’s performance on these types of objects. Hence, we make a custom

version of SYMSOL II with symmetry set annotations.

5.1.2 Annotating SYMSOL II

As was explained in the previous section, the nearly-symmetric objects in SYMSOL II have sym-

metries that differ drastically between views. More specifically, the visibility of the markings

38 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

0 50 100 150 200

0

25

50

75

100

125

150

175

200

RGB

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Segmentation

(a) TetX with no visible marking.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

RGB

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Segmentation

(b) CylO with no visible marking.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

RGB

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Segmentation

(c) TetX with visible marking.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

RGB

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Segmentation

(d) CylO with visible marking.

Figure 5.2: Example images from the annotated recreation of SYMSOL II. Both RGB images as
well as the associated segmentation map are shown. In the segmentation maps, the segmentation
index of the marking is mapped to a light red color, while the segmentation index of the body is
mapped to a dark red color.

determines the shape of symmetry sets in a complex way. Nevertheless, some structure can be

found. For a given image, the symmetry set for a marked object is a subset of the symmetry set

of the equivalent unmarked object in the same orientation. Since symmetry sets for the unmarked

objects are trivial to compute, they can be used as a set of candidate rotations for the marked

object. If a procedure can be devised to test whether a candidate from the unmarked object’s

symmetry set is also in the marked object’s symmetry set, then the symmetry set of the marked

object can be computed.

One complication in this regard is that continuous symmetries would produce an infinite num-

ber of candidate rotations. However, this is already addressed in SYMSOL I, where continuous

rotations are discretized at 1 degree. For the cylinder, this reduces the number of candidate

rotations to 720, which is a manageable amount. Unfortunately, this discretization does not do

much for the marked sphere. An unmarked sphere is completely symmetric under all rotations,

meaning that it produces symmetry sets covering all of SO(3). Discretizing SO(3) at a resolution

of 1 degree would create millions of candidate rotations. Therefore, we only consider the marked

tetrahedron and marked cylinder, and drop the marked sphere from the data set.

Rendering Images and Segmentation Maps

To compute symmetry set annotations, we exploit the rendering of segmentation maps. When

rendering an image, the geometry of objects in a virtual world is rasterized to that image, mean-

ing that for each pixel it is computed which piece of geometry covers that pixel in the final image.

Hence, for each pixel it is known which, if any, piece of geometry covers that pixel. A segmenta-

tion map returns exactly this information. Firstly, each piece of geometry is assigned an integer

segmentation index. Then, a segmentation map can be rendered by assigning to each pixel the

5.1. DATA SET 39

segmentation index of the geometry covering that pixel in the image (Figure 5.2).

Now, to recreate an annotated version of SYMSOL II, we use the following procedure. First,

the marked tetrahedron and marked cylinder objects were recreated in Blender1. In these models,

the geometry constituting the marking is separated from the rest of the body in each object. The

marking and the rest of the geometry are given a different segmentation index, such that for any

pixel in a rendered segmentation map, it can be established whether that pixel belongs to the

marking or the object’s body.

We now render a data set of 50000 RGB images for both the marked cylinder and marked

tetrahedron, each split into 5000 test images and 45000 training images. To this end, the objects

are placed at the origin of a virtual world, with a camera observing from the negative z-axis. A

light is placed at the same position as the camera, such that the observed part of the object is

always lit. When rendering an image I, a rotation R is sampled randomly from SO(3) using the

method described in [47], and is applied to the object. The object is then rendered from the point

of view of the camera using OpenGL2 to an image 224 by 224 pixels in size. The pair (I,R) now

contains an image I along with the associated ground truth orientation R of the object in that

image.

Computing Symmetry Sets

Finally, the most interesting part is computing the symmetry set annotations. This process is

implemented slightly differently for the cylinder and the tetrahedron. Moreover, because this

method can be computationally intense, we only provide symmetry set annotations for test images.

Examples of the results are shown in Figure 5.3.

Marked Cylinder Firstly, for the cylinder, given an image-orientation pair (I,RGT), we render

a segmentation map Is of the same object in the same orientation RGT . This is, again, done using

OpenGL. Then, we check whether the marking is visible in Is by testing each pixel value against

the segmentation index of the marking. If the marking is visible, then there is no ambiguity in

the image, and the symmetry set S(I) = {R}. If, on the other hand, the marking is not visible,

then there is ambiguity, and we proceed to the next step. Let C(RI) be the set of discretized

symmetric rotations of a cylinder in the identity rotation RI . Note that a cylinder has a full 360

degree rotational symmetry about its central axis, and can additionally be flipped end-to-end.

Hence, discretized at 1 degree, |C(RI)| = 720. Now, we define the same set of symmetric rotations

for a cylinder in rotation RGT as

C(RGT) = {RGTR : R ∈ C(RI)} . (5.1)

Hence, C(RGT) forms the set of candidate rotations for the symmetry set S(I). For each candidate

rotation Rc ∈ C(RGT), a new segmentation map Ics is rendered with the object in rotation Rc.

The symmetry set S(I) now consists of those rotations Rc, for which the marking is not visible in

Ics . Let i be the segmentation index of the marking, and consider Ics as a set of pixel values, then

1https://www.blender.org/
2https://www.opengl.org/

40 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Symmetry Set

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Image

(a) TetX with two gray faces visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Symmetry Set

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Image

(b) CylO with no visible marking.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Symmetry Set

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Image

(c) TetX with visible marking.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Symmetry Set

0 50 100 150 200

0

25

50

75

100

125

150

175

200

Image

(d) CylO with visible marking.

Figure 5.3: Example symmetry sets from the annotated recreation of SYMSOL II. Images are
shown with their respective symmetry set represented in rotation vectors, which ate illustrated in
a π-ball plot (Section 2.1.3).

we formally define

S(I) = {Rc ∈ C(RGT) : i /∈ Ics} . (5.2)

Marked Tetrahedron In contrast to the marked cylinder, images of the marked tetrahedron

are always ambiguous, with at least three symmetric rotations. Again, let (I,RGT) be an image-

orientation pair, and Is be a segmentation map of the object in rotation RGT . Let C(RI) be

the set of 12 symmetric rotations for a tetrahedron in the identity rotation, and define C(RGT)

as in Equation 5.1. We again distinguish two cases. Firstly, if the colored face is visible in Is,

then S(I) contains only the three rotations for which the colored face rotates onto itself. These

three rotations are manually identified as the subset C ′(RI) ⊂ C(RI), before the data generation

process. Hence, the symmetry set for I can be trivially computed as

S(I) = {RGTR : R ∈ C ′(RI)} . (5.3)

If the colored face is not visible in Is, then the symmetry set is computed similar to the marked

cylinder. A segmentation map Ics is rendered for each candidate rotation Rc ∈ C(RGT). The

symmetry set now consists of those rotations for which the marking does not become visible:

S(I) = {Rc ∈ C(RGT) : i /∈ Ics} . (5.4)

In practise, this latter step is susceptible to slight numerical errors in floating-point computation.

As a consequence, a proper symmetric rotation R ∈ S(I) may render to a segmentation map in

which a handful of pixels of the colored face become visible. To deal with this, a tolerance is

added. More specifically, let p be the number of pixels in Ics that belong to the marking, then Rc

is accepted if p < T , where T = 5 was empirically determined to be a good threshold.

5.2. EVALUATION METRICS 41

5.2 Evaluation Metrics

The set of output hypothesis of an MHP model should be accurate and diverse. This Section

will describe quantitative metrics by which MHP models can be evaluated to test them on these

properties. These metrics fall into two categories, measuring recall and precision.

5.2.1 Recall

Given an image I and an associated symmetry set S(I), recall describes how much of S(I) is

covered by the hypotheses of an MHP model. Depending on the shape of S(I), perfect recall can

be defined in different ways. Let M be the number of hypotheses, then if |S(I)| ≤M , it is possible

for the hypotheses to cover the entire symmetry set. This happens when an observed object has a

discrete number of symmetric rotations, in which case it is desirable to have all these symmetries

covered.

If, on the other hand, |S(I)| > M , then it is not possible to cover all elements of the symmetry

set. This happens in any case where the observed object as has a continuous symmetry, such that

|S(I)| = ∞. In this case, it is most desirable that the hypotheses spread out evenly across the

potentially multiple ranges of SO(3) that are spanned by the symmetry set.

A quantitative measure of both the aforementioned definitions is best given by the distance

between members of the symmetry set, and the closest hypothesis. Ideally, the distance from

each rotation in the symmetry set to the closest respective output hypothesis is minimal. More

formally, let f i
θ(I) be the i

th output hypothesis, then the quantity describing how well any R ∈ S(I)

is covered, is given by

min
1≤i≤M

d
(
R, f i

θ(I)
)
, (5.5)

where the distance metric d(·, ·) is defined as the minimal angular difference, or angular error,

between two rotation matrices

d(Rx, Ry) = 2 · sin−1

(
|Ry −Rx|F

2
√
2

)
. (5.6)

Note how this definition of the minimal angular difference is different from what was introduced

back in Equation 4.19. Brégier [28] found that implementing the formula in Equation 4.19 produces

sizable numerical errors when the minimal angular error is small. The Rotation Manipulation

(RoMa)3 library introduced in the paper, implements the formula from Equation 5.6 instead.

Moreover, it is shown to have superior precision. Hence, we adopt it in this evaluation, to get

more precise results.

Using the measure of recall for a single rotation mentioned above, a metric can now be defined

to measure recall on an entire data set. Let Dtest be a data set containing pairs (I, S(I)) of

test images and their respective discretized symmetry set. The recall of an MHP model on Dtest

is given by the mean angular error between members of the annotated symmetry sets and their

closest respective output hypothesis. More formally, let L be the sum of the number of symmetries

3https://naver.github.io/roma/

42 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

|S(I)| over all images I ∈ Dtest, then the recall score on Dtest is computed as

1

L

∑
(I,S(I))∈Dtest

∑
R∈S(I)

min
1≤i≤M

d
(
R, f i

θ(I)
)
. (5.7)

Alternatively, the recall can be quantified as the ratio of symmetry set members that are

considered ‘covered’. Here, a symmetry set member is considered ‘covered’ if an output hypothesis

lies within a certain maximum distance T . We will refer to this ratio as the coverage at T .
However, note that he coverage is only useful for objects with discrete symmetries. In the case of

a continuous symmetry, the hypotheses can impossibly cover the entire symmetry set. Therefore,

the coverage may be low, even when the hypotheses are perfectly spread out.

5.2.2 Precision

Precision in this context relates to the number of stray hypotheses generated by a model. Ideally,

every hypothesis is meaningful, meaning that it is close to some member of the symmetry set. It

can, therefore, be quantified similarly to recall. Again, let f i
θ(I) be the ith output hypothesis for

an image I, then the precision of f i
θ(I) is given by the quantity

min
R∈S(I)

d
(
R, f i

θ(I)
)
, (5.8)

where the distance metric d(·, ·) is again defined as the minimal angular difference.

Precision on an entire data set is again defined as the mean angular error between all hypotheses

and the closest member of the respective ground truth symmetry set. Let Dtest be the data set,

this is formally defined as

1

|Dtest|
∑

(I,S(I))∈Dtest

1

M

M∑
i=1

min
R∈S(I)

d
(
R, f i

θ(I)
)
. (5.9)

Moreover, the precision can again be expressed as a ratio of ‘correct’ hypotheses, where a

hypothesis is accepted as correct if it lies within a maximum distance of T from the ground truth

symmetry set. We will refer to this ratio as the accuracy at T . Unlike the earlier defined coverage,

the accuracy can be used for objects with either discrete or continuous symmetries.

5.3 Implementation Details

The MHP models were implemented in PyTorch4, according to the network design detailed in

Section 4.2.2. The 18-layer version of ResNet was used as the first stage of the network, which

is the smallest available size. Given that the images in the SYMSOL dataset show objects in a

simplistic synthetic setting, this size is sufficient to achieve good performance. The red, green, and

blue channels of images are normalized using mean 0.485, 0.456, and 0.406 and standard deviation

0.229, 0.224, and 0.225 respectively, before being input to the ResNet model, with the purpose of

being compatible with pre-trained versions of ResNet available in PyTorch5. Finally, the output of

4https://pytorch.org/
5https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/

5.3. IMPLEMENTATION DETAILS 43

the ResNet model is converted to the embedding by a fully connected layer with ReLU activation,

where the embedding size E was fixed at 256.

5.3.1 Hyperparameters

The number of hypotheses M is chosen based on the objects in the data set. The most important

criteria is that, for the objects with discrete symmetries, M should be larger than the number

of symmetric rotations, such that each symmetry can be covered. Moreover, since the number

of generated stray hypotheses is of particular interest when comparing the various meta loss

functions, there should be more hypotheses than symmetries for the discrete objects. Furthermore,

the number of hypotheses is somewhat limited by the EWTA training process. The parameter k

has to be decreased during training. The more hypotheses, the more steps have to be taken in

decreasing k. Considering these constraints, it was decided to fix M at 30 for all objects but the

icosahedron, for which M is set to 75. The choice of M = 30 is enough to cover all 24 symmetries

of the cube with 6 hypotheses to spare, and can cover the 12 symmetries of the tetrahedron more

than twice. Setting M = 75 for the icosahedron covers all 60 symmetries with 15 to spare.

Separate networks are trained using each combination of WTA, RWTA, or EWTA meta loss

with cyclic cosine of Von Mises embedded loss, for each object in the SYMSOL data set. For

RWTA, ϵ was set to 0.05, and for the Von Mises loss, K was set to 4. For EWTA, the parameter k

is initialized to M , and then decreased using the process described in the supplemental materials of

[40]. More specifically, k is halved every few epochs during training, until it reaches k = 1. Several

extra epochs are spent while k = 1, to give the network a chance to converge the hypotheses to

their final position. Notably, it is not quite clear in the literature how the process of decreasing

k is best implemented. One alternative is to decrease k linearly, as implemented in [13], but the

quality of results was found to vary greatly.

5.3.2 Training

Finally, the process of training the networks differs slightly between the SYMSOL I and SYMSOL

II data sets.

1. SYMSOL I

For WTA and RWTA, networks were trained for 30 epochs using a batch size of 64. Training

for additional epochs was not found to further improve results. Network parameters are

optimized using the ADAM [48] optimizer. The learning rate starts at 1e−3, and is decreased

to 1e−4 and 1e−5 after epochs 15 and 25 respectively. Decreasing the learning rate in this

way allows for small adjustments to the network parameters, improving convergence. For

EWTA, an extra 5 epochs of training were given, such that networks are trained for a total

of 35 epochs. The parameter k is halved every few epochs, and is set to hit k = 1 after epoch

20. The learning rate starts at 1e−3 and is decreased to 1e−4 after epoch 30.

2. SYMSOL II

The objects in SYMSOL II exhibit more complicated symmetries. Consequently, networks

trained on SYMSOL II were found to require more training time than their SYMSOL I

counter parts. For WTA and RWTA, networks were trained for 50 epochs with a batch size

44 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

of 64. Network parameters are optimized using the ADAM optimizer. The learning rate

starts at 1e−3, and is decreased to 1e−4 and 1e−5 after epochs 25 and 40 respectively. For

EWTA, no extra epochs were given. The parameter k is, again, halved every few epochs, and

is scheduled to hit k = 1 after epoch 30. The learning rate starts at 1e−3 and is decreased

to 1e−4 after epoch 42.

5.4 Evaluation

As was explained in Section 4.1.2, the standard WTA training scheme has two main problems:

(1) a single hypothesis can consistently lie closest to multiple different symmetries, making that

hypothesis converge to an averaged position between these symmetries, and (2) hypotheses that

do not lie closest to any symmetry are never moved. The first problem concerns recall, as it can

leave several symmetries uncovered. The second problem concerns precision, since the stranded

hypotheses can be inaccurate. Results are shown for metrics regarding recall and precision in

Table 5.1 and 5.2 respectively.

SYMSOL I SYMSOL II
tet cube icosa cone cyl tetX cylO

mean error (↓)

WTA
LCOS 0.018 0.038 0.038 0.070 0.109 0.010 0.088
LVM 0.016 0.035 0.030 0.075 0.111 0.010 0.084

RWTA
LCOS 0.018 0.041 0.041 0.067 0.112 0.020 0.236
LVM 0.017 0.032 0.029 0.073 0.109 0.012 0.171

EWTA
LCOS 0.044 0.066 0.101 0.066 0.116 0.018 0.127
LVM 0.032 0.038 0.077 0.063 0.114 0.022 0.154

coverage at 5 (↑)

WTA
LCOS 0.997 0.948 0.957 - - 1.000 -
LVM 0.997 0.956 0.976 - - 0.999 -

RWTA
LCOS 0.997 0.956 0.976 - - 0.995 -
LVM 0.995 0.968 0.977 - - 0.999 -

EWTA
LCOS 0.942 0.818 0.593 - - 0.998 -
LVM 0.977 0.959 0.770 - - 0.991 -

Table 5.1: Recall metrics evaluated on the SYMSOL I and SYMSOL II data sets. The best and
second best performing networks for each object have a dark gray and light gray colored cell
respectively. Mean errors are given in radians, lower is better (↓). Coverage is calculated at 5
degrees, higher is better (↑).

5.4.1 SYMSOL I

Continuous Symmetries

Scores on the cone and cylinder objects, which strictly exhibit continuous symmetries, are close

between all methods. This is true for both metrics concerning recall, as well as precision. Sym-

metry sets for images of these objects are infinite, consisting of continuous ranges of rotations.

Considering that there is only a finite number of 30 hypotheses, there are not nearly enough hy-

potheses to cover all symmetries. In this case, we expect the hypotheses to spread out equally

over the ranges of symmetries. The better the the spread of hypotheses, the lower the expected

5.4. EVALUATION 45

SYMSOL I SYMSOL II
tet cube icosa cone cyl tetX cylO

mean error (↓)

WTA
LCOS 0.228 0.079 0.081 0.026 0.015 0.917 0.948
LVM 0.235 0.070 0.083 0.079 0.017 0.910 0.988

RWTA
LCOS 0.240 0.086 0.117 0.016 0.023 0.540 0.069
LVM 0.168 0.072 0.080 0.037 0.016 0.224 0.684

EWTA
LCOS 0.169 0.132 0.157 0.019 0.029 0.255 0.193
LVM 0.063 0.056 0.135 0.016 0.024 0.210 0.090

accuracy at 5 (↑)

WTA
LCOS 0.550 0.839 0.828 0.984 0.996 0.299 0.534
LVM 0.548 0.852 0.836 0.940 0.995 0.296 0.538

RWTA
LCOS 0.536 0.822 0.781 0.997 0.985 0.289 0.816
LVM 0.647 0.854 0.841 0.959 0.996 0.560 0.665

EWTA
LCOS 0.656 0.661 0.479 0.996 0.980 0.565 0.631
LVM 0.870 0.898 0.628 0.998 0.989 0.648 0.762

Table 5.2: Precision metrics evaluated on the SYMSOL I and SYMSOL II data sets. The best
and second best performing networks for each object have a dark gray and light gray colored cell
respectively. Mean errors are given in radians, lower is better (↓). Accuracy is calculated at 5
degrees, higher is better (↑).

angular error between any ground truth symmetry and the nearest hypothesis. Therefore, the

quality of the spread is best measured by the mean error metric describing recall.

Results show that this desired effect is achieved by all methods (Figure 5.4a). Mean errors

for recall are consistently low for all training strategies. Differences in scores are slightly more

pronounced on the cone object, with EWTA in combination with the Von Mises loss slightly

outperforming the rest. The methods that perform worse, like WTA and RWTA in combination

with the Von Mises loss, also show slightly worse accuracy at 5 degrees. This indicates the presence

of stray hypotheses, meaning that fewer hypotheses are left to cover the range of symmetries, in

turn explaining the higher mean errors for recall.

Discrete Symmetries

The differences between methods are much more pronounced on the tetrahedron, cube, and icosa-

hedron objects, which exhibit strictly discrete symmetries.

Recall The difference between using the cyclic cosine loss and Von Mises loss is quite small,

with the Von Mises loss performing marginally better. Differences between the training schemes,

on the other hand, are slightly more pronounced. While WTA and RWTA show very comparable

results, EWTA performs notably worse, with the icosahedron being the most significant. This is

likely due to the inconvenient process of lowering the hyperparameter k during training. Only

once k reaches 1 can the hypotheses start to converge to their final positions. Since this only

happens after epoch 20 out of the 35 training epochs, there is comparably less time to converge

when compared to WTA and RWTA. Increasing the time spent at k = 1 is, however, not a general

solution to this problem. Doing so emulates the standard WTA training process, where loser

hypotheses no longer contribute to the loss. In turn, this can harm the precision of the model.

The scores, furthermore, show that this problem more pronounced when using cyclic cosine loss

46 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

WTA COS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

EWTA COS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(a)

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

WTA COS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

EWTA VM

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(b)

Figure 5.4: Examples of hypotheses predicted on the SYMSOL I data set. Both the best per-
forming (WTA COS) and worst performing (EWTA COS) models are able to correctly find the
two continuous ranges of symmetries for the cylinder (a). On objects with discrete symmetries,
precision varies drastically between training strategies (b).

compared to the Von Mises loss.

Overall, the best performance with respect to recall seems to be achieved using either WTA

or RWTA together with the Von Mises loss function. The comparable scores between WTA and

RWTA are interesting. Firstly, this suggests that the problem of hypotheses converging to averaged

positions in between symmetries rarely appears. Secondly, the influence of the ϵ term in RWTA,

pulling even the winning hypotheses towards a global averaged position, seems to be small.

Precision Scores for metrics concerning precision show much more significant differences be-

tween methods. EWTA in combination with the Von Mises loss shows by far the best perfor-

mance on the tetrahedron and cube, approaching almost 90% accuracy at 5 degrees (Figure 5.4b).

Performance is, however, much worse on the icosahedron, presumably due to the same problem

mentioned above.

Furthermore, for RWTA and EWTA, the Von Mises loss consistently outperforms the cyclic

cosine loss by a large margin. This can be explained by the properties of the Von Mises loss

mentioned in Section 4.2.1 and Appendix A. More specifically, the Von Mises loss does not force

hypotheses to an averaged position, when summing the loss of with respect to multiple symmetries.

Using the cyclic cosine loss, the surplus hypotheses converge to an average position, whereas, using

the Von Mises loss, they converge to positions close to the symmetries. As a consequence, the

precision significantly increases. A similar effect occurs when using EWTA, where high values of

k would normally cause hypotheses to converge to averaged positions.

Finally, it is interesting to note how RWTA does not significantly increase precision compared

to standard WTA. As explained in Section 4.1.2, the relaxation in RWTA causes all surplus

hypotheses to converge to a global averaged position. Since this position is not guaranteed to lie

close to any symmetry, the accuracy of the hypotheses is not expected to increase. In fact, it may

even harm the precision, as can be seen in the mean error and accuracy at 5 degrees for the RWTA

5.4. EVALUATION 47

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

RWTA VM

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

RWTA COS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(a)

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

RWTA VM

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

RWTA COS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(b)

Figure 5.5: Plots comparing two models trained using the Von Mises loss and cyclic cosine loss
in combination with RWTA. On the marked cylinder object, the Von Mises loss fails to cluster
hypotheses on images without ambiguity, in contrast to the cyclic cosine loss (a). Nevertheless,
both methods are able to cover broken symmetries (b).

model using cyclic cosine loss. EWTA, on the other hand, was specifically introduced to increase

precision, which shows in the results.

5.4.2 SYMSOL II

Marked Tetrahedron

Compared to the standard tetrahedron from SYMSOL I, it is more difficult to achieve high preci-

sion on the marked tetrahedron. This is because, depending on the view, only a subset of the 12

tetrahedral symmetries remain. A model that outputs all 12 symmetries for every image, while

having a high recall, will therefore have poor precision. This is partly what happens for the WTA

models, which achieve the highest recall, but perform by far the worst on precision.

RWTA and EWTA also achieve high recall, but, moreover, greatly improve on precision. Again,

EWTA in combination with the Von Mises loss outperforms all other methods. Furthermore,

consistent with results on SYMSOL I, the Von Mises loss function performs significantly better

when using either RWTA or EWTA. The difference is particularly apparent for RWTA.

One observation of particular interest concerns the precision of the RWTA model using cyclic

cosine loss. While this model significantly improves the mean error with respect tot WTA, the

accuracy at 5 degrees actually decreases. This is again an example of the surplus hypotheses

reaching an averaged position, which may lie relatively close to the ground truth symmetries, but

not close enough such that the hypotheses could be considered accurate.

Marked Cylinder

Finally, the marked cylinder is a particularly interesting case. Depending on the view, there is

either no symmetry at all, or a continuous symmetry like that of a cylinder. An ideal model,

48 CHAPTER 5. EXPERIMENTS WITH MULTI-HYPOTHESIS NETWORKS

therefore, clusters all hypotheses together in the former case, and spreads the hypotheses evenly

across the continuous ranges of symmetries in the latter case.

Differences between the various methods are again stark. Firstly, the WTA models perform

significantly better on recall, but have very poor precision. This poor precision is no surprise,

considering the properties of the WTA training process. For images in which the marking is

visible, and no symmetry exists, only a single hypothesis converges to the ground truth rotation.

The rest land in arbitrary positions in the output space. RWTA and EWTA models score slightly

worse on recall, but have significantly better precision. Interestingly, for RWTA, the cyclic cosine

loss achieves significantly better precision than the Von Mises loss. Upon further inspection,

the models using the Von Mises loss were found to poorly cluster hypotheses for images without

ambiguity. This is explained by the vanishing of gradients for hypotheses with large errors, as

these get stuck in positions far away from the single ground truth rotation (Figure 5.5a).

5.4.3 Summary

In general, the use of RWTA does not give much benefit over using the standard WTA strategy.

The problem that the relaxation term solves, which is that of hypotheses converging to averaged

positions, does not seem to have a large impact in pose estimation, considering the results shown

above. Consequently, the recall is not generally improved by using RWTA. Moreover, the effect of

having surplus hypotheses cluster in a globally averaged position, which is caused by the added

relaxation, does not increase precision. On the contrary, the accuracy of hypotheses can be worse.

The EWTA training scheme, on the other hand, shows a lot of potential. Results show how

the precision of hypotheses is greatly improved on objects with discrete symmetries. Nevertheless,

the training process is difficult to control. The hyperparameter k has to be decreased over the

course of the training process, yet it is unclear how this is best done. Every time k changes

value, the hypotheses may converge to completely different positions. Hence, more training time

is needed. Furthermore, the optimal time spent on each value of k differs between objects. Manual

tuning should be applied to achieve optimal results for each individual object. In a setting where

no knowledge about possible symmetries is assumed, this is an undesirable property. A user

in this position should run multiple experiments with strategies for setting k and decreasing it.

Alternatively, RWTA could be used instead, as it does not require the same parameter tuning.

Finally, the Von Mises loss significantly increases precision when dealing with discrete sym-

metries. This difference is due to its behaviour when a hypothesis receives loss from multiple

symmetries in RWTA and EWTA. In contrast to the cyclic cosine loss, which makes such hy-

potheses converge to an averaged positions, the Von Mises makes them converge to one of the

symmetries. In turn, this greatly improves precision. The only exception is seen among the

RWTA models trained on the marked cylinder. Here, vanishing gradients in the Von Mises loss

cause poor clustering of hypotheses on images without ambiguity.

Chapter 6

A Continuous Representation

In the following chapter, we propose a new network design in which we model orientation estima-

tion as a binary classification problem. Context and motivation are given in Section 6.1. Next, the

concept of an occupancy network is detailed in Section 6.2, which forms the basis of our proposed

design. Finally, in Section 6.3 we apply occupancy networks to orientation estimation.

6.1 Overview

Though an MHP model is able to capture multiple modes in the output distribution, it produces

only a discrete number of outputs. However, when an object exhibits a continuous symmetry in

an image I, we know that there are infinitely many rotations in which that object could be. More

specifically, the symmetry set S(I) contains infinitely many rotations. Ideally, an algorithm would

provide a way to recover the entire symmetry set, no matter its shape or size. Doing so would give

a complete view of the possible orientations for an observed object, which can be very valuable in

downstream tasks. Say, for example, we have a robot that is tasked with grabbing a coffee mug.

To do so, it has to find the ear of the mug and grab hold of it. If the ear is occluded in the robot’s

observation, having an idea of the full range of possible orientations allows the robot to reason

about where the ear could be (Figure 6.1a). Furthermore, the robot could have a way of performing

multiple observations. Either through the use of multiple camera sensors, or by capturing multiple

images from a single camera, but at different times. In this case, the information captured by all

images would ideally be combined. Orientations that could fit one observation, may be discarded

when considering another observation. The symmetry set is a powerful concept in this setting.

Suppose we have two observed images I1 and I2, then the intersection S(I1)∩S(I2) represents the
set of rotations that could explain both images (Figure 6.1b). Conceptually, this allows the robot

to shrink its search space progressively with multiple observations.

6.1.1 Binary Classification

In practise, retrieving the entire symmetry set is, however, not feasible. There would not be

enough memory in the world to save the infinite number of poses it may contain. Nevertheless,

there is a lot of room for improvement with respect to the small number of discrete hypotheses

49

50 CHAPTER 6. A CONTINUOUS REPRESENTATION

(a) (b)

Figure 6.1: When the ear of a mug is occluded from the point of view of a camera, the symmetry
set of the observed image will include a continuous range of rotations (a). If multiple observations
are available, the intersection of the associated symmetry sets represents the range of poses that
fits both observations (b).

given by an MHP model. A powerful alternative to full reconstruction, that is still more expressive

than an MHP model, would be an algorithm with which an arbitrary number of hypotheses can be

computed. In theory, with an infinite number of diverse hypotheses, the full symmetry set could

be reconstructed. In practise, a number can be taken according to computational constraints, or

use-case specific needs. This way, the symmetry set can be reconstructed at an arbitrary resolution.

To the end of creating such an algorithm, we can reframe orientation estimation as a binary

classification problem. An algorithm in this setting would not output (a discrete set of) rotations

directly, but instead classify a given rotation as being part of the symmetry set or not, conditioned

on a given image. More formally, we wish to find a classifier

C : SO(3)× I → {0, 1} , (6.1)

which takes a rotation R and an image I as inputs, and classifies whether R ∈ S(I). Assuming

such a classifier C exists, it is easy to see how it would facilitate the reconstruction of symmetry

sets. Note how the classifier accepts the full space of SO(3) as an input domain. Hence, for a

given image I, C can be queried with an arbitrary number of rotations sampled at a continuous

resolution. Consequently, S(I) can reconstructed at arbitrary resolution, as far as computational

constraints allow.

Furthermore, the existence of C would also facilitate convenient sampling of intersections of

symmetry sets. Let Ii ∈ I, 1 ≤ i ≤ N , be images of the same object, but taken from different view

points. Moreover, assume that rotations in the symmetry sets for all images are defined relative

to some common frame of reference. Then, as mentioned before, the intersection
⋂N

i=1 S(In) gives

the set of rotations that fit all observations. Note that a given rotation R ∈ SO(3) is in this set if

6.2. REVIEW ON OCCUPANCY NETWORKS 51

and only if it is in each of the separate symmetry sets. More formally,

R ∈
N⋂
i=1

S(Ii) ⇐⇒
N∧
i=1

R ∈ S(Ii) . (6.2)

Assuming C to be a perfectly accurate classifier, we can test whether R is in the symmetry set

of an image image Ii by checking C(R, Ii) = 1. Therefore, R is in the intersection if and only if∧N
i=1 C(R, Ii) = 1.

The rest of this Chapter details how such a classifier C can be parameterized by a neural

network. The design is based on that of occupancy networks, which will be explained first.

6.2 Review on Occupancy Networks

The idea we propose of a binary classifier used to reconstruct symmetry sets is closely related to

recent works in 3D shape reconstruction, as well as the work by Murphy et al. [18]. In 2019, both

Mescheder et al [19] and Chen et al. [49] presented similar works, in which 3D shape reconstruction

is modeled as a binary classification problem. They both note how a shape can be seen as a set of

points in the Euclidean space R3. Namely, as the set of all points p ∈ R3 that are located within

the boundaries of the object. In other words, the object occupies all such points p ∈ R3. Hence,

shapes can be described by a so-called occupancy function

o : R3 → {0, 1} , (6.3)

which classifies whether a given point is occupied by the object or not. Now, given an image

I ∈ I, the shape of the object in I can be output as an occupancy function. While the idea is

quite simple, it is not immediately clear how to output such an occupancy function. It is difficult

do design a canonical representation without making any assumptions on the shape. Nevertheless,

the function should be able to represent any arbitrary shape.

The solution proposed in [19, 49] is to replace the discrete output domain {0, 1} of the occu-

pancy function, with the continuous output domain [0, 1]. Values in this range are then interpreted

as probabilities, such that the output represents the probability that a given point is occupied by

the object. By setting a threshold T , a mapping can then be made back to the original classifica-

tion domain. Every value less than T is mapped to 0 and every value larger than or equal to T
is mapped to 1. Furthermore, rather than creating a separate mapping from images to occupancy

functions, they merge these two stages into a single function

f : R3 × I → [0, 1] . (6.4)

In this formulation, there is a single function f that evaluates the occupancy for a given point

p ∈ R3 with respect to the object in a given image I ∈ I directly. Now, f is also in the traditional

form of classification problems used in deep learning, and can be approximated by a neural network.

Mescheder et al. dubbed such a network an Occupancy Network.

52 CHAPTER 6. A CONTINUOUS REPRESENTATION

ResNet

Copy Fully Connected

MLP

Concatenate

Figure 6.2: A schematic overview of the network architecture used to implement an occupancy
network for the purpose of 3D shape reconstruction from images. Images are assumed to be 224
pixels in width and height. A ResNet is used to encode the occupancy function.

6.2.1 Architecture

An occupancy network is implemented according to the architecture shown in Figure 6.2. An image

I ∈ I is first embedded into a lower dimensional vector of size E. Much like the MHP model in

Chapter 4, a pre-trained ResNet model is used to this end by Mescheder et al. Consequently, the

image dimensions are fixed to be 224 × 224, which is the expected input size for ResNet models.

The embedding is subsequently concatenated with the query point p ∈ R3. The combined vector is

then input to a multi-layer perceptron (MLP), which produces the output occupancy probability.

The output layer of this MLP uses the logistic sigmoid function for its activation, which forces

outputs to lie in the range [0, 1]. The logistic sigmoid function is commonly denoted by the symbol

σ, and defined as

σ(x) =
ex

ex + 1
. (6.5)

Note how the extreme output values of 0 and 1 are only reached when the input x tends to −∞ and

∞ respectively, making the practical output range (0, 1). In conclusion, we find a two-stage design,

where the first stage extracts features from a given image, embedding it into a low dimensional

vector. The second stage then uses this embedding to evaluate an occupancy function at a given

point p, conditioned on the image.

This architecture is aimed at providing both versatility and computational efficiency. Having

the feature extractor be a separate component makes the design modular. For example, the

ResNet model could be swapped out for a PoinNet encoder [50], which would allow the network

to take in point clouds as input. Regarding the computational efficiency, we have to note the use

case of the occupancy network. In order to reconstruct a polygon mesh from the encoded shape,

the occupancy of thousands of points may have to be evaluated. In this two-stage design, the

feature extractor is a large and deep network, whereas the MLP is rather compact. Now, since

the image stays constant during the mesh reconstruction of a single object, the embedding only

has to be computed once. Therefore, the most computationally expensive stage of the network

is only inferred once. The occupancies of all subsequent query points can be computed by only

evaluating the small MLP model.

6.3. APPLICATION TO ORIENTATION ESTIMATION 53

6.2.2 Training

As with any binary classification network, occupancy networks require both positive and negative

samples during training. In this case, this implies that training samples should both cover points

with an occupancy of 1 and an occupancy of 0 respectively. To this end, the following sampling

strategy is applied. A data set is created containing N images. When training on a given image

I, a total number of K points are sampled randomly within the bounding volume of the object.

For each such point pi, an associated ground truth occupancy oi is computed. For convenient

notation, let K be the set of all pairs (pi, oi), then the loss for a single image and associated set of

samples K is defined as

L(I,K) =
∑

(pi,oi)∈K

H (fθ(pi, I), oi) , (6.6)

where θ are the parameters of the network. This way, a random set of sample points are evaluated

for each training image. Furthermore, H is the binary cross-entropy loss function defined as

H(o′, o) = −o log(o′)− (1− o) log(1− o′) , (6.7)

where o′ is the predicted probability of occupancy, and o is the ground truth occupancy. Note

that the ground truth o is a binary value in {0, 1}, as a point is either occupied or not, while

the range of o′ is continuous. Depending on the value of o, one of the two terms in H is zeroed.

Consequently, when o = 1, the loss produced by H is minimized when the prediction o′ tends to

1. When o = 0, the opposite holds, and H is minimized when o′ tends to 0. In other words, H

is minimized when the predicted occupancy probability approaches the true occupancy. Finally,

H is undefined when o′ = 0 or o′ = 1, as the logarithm goes to infinity. To prevent this from

happening, a small positive value ϵ is usually added to the body of both logarithms.

6.3 Application to Orientation Estimation

With the concept of occupancy networks explained, we revisit the formulation of pose estimation

as a binary classification problem. At first glance, the context of 3D shape reconstruction seems

completely different from orientation estimation. However, we can draw parallels between the two,

where the reconstruction of symmetry sets is analogous to a shape reconstruction problem on the

rotation manifold.

6.3.1 Shapes of Symmetry Sets

Analogous to how an object can be seen as a set of 3D points, which together occupy bounded

regions in Euclidean space, a symmetry set can be seen as a set of rotations, which together occupy

bounded regions on the surface of the rotation manifold. The most notable difference is the input

space. In contrast to objects, symmetry sets are constrained to the rotation manifold. When

reformulating the occupancy function from Equation 6.3 this need not be a problem, but simply

requires a formulation over a different input domain. Hence, an occupancy function describing a

54 CHAPTER 6. A CONTINUOUS REPRESENTATION

Figure 6.3: Different types of symmetries correspond to differently shaped symmetry sets. Discrete
symmetries (left) create symmetry sets consisting in singular points, continuous symmetries around
a single axis (middle) trace a continuous loop, and continuous multi-axial symmetries (right) trace
a volume. Though symmetry sets are actually defined on the rotation manifold, a simplified 3D
interpretation is depicted for clarity.

symmetry set can be formulated as a function

o : SO(3)→ {0, 1} . (6.8)

A more impactful difference concerns the shapes of 3D objects and symmetry sets. Where

objects typically occupy a single continuous volume in R3, symmetry sets can have very different

shapes. As was briefly mentioned back in Section 4.2, different types of symmetries result in

symmetry sets with different properties. Interpretations of this effect are depicted in Figure 6.3.

If an image I depicts an object with discrete symmetries, then S(I) will be a finite set. Moreover,

the elements of S(I) likely lie apart, thus creating a finite number of disconnected singular points

on the rotation manifold. If instead I depicts an object with a continuous symmetry, S(I) will

be an infinite set and trace a continuous shape over the manifold. In this case, two notable cases

can be distinguished: whether the object is symmetric around a single axis, or around multiple.

Take for example a cone, which is symmetric only around a single axis. In this case, S(I) traces a

continuous loop around SO(3). Importantly, however, this loop is infinitely thin, causing it to have

zero volume. Only when the object has a continuous multi-axial symmetry, will the symmetry set

occupy a patch with non-zero volume. Corona et al. [33] proved that such multi-axial symmetries

only occur for spheres, making them very rare. Their proof only pertains to global symmetries,

however, and does not cover occlusion-induced symmetries. Nevertheless, we conjecture that

multi-axial symmetries can only be induced if an object appears like a perfect sphere under some

occlusion.

Since discrete and single-axis symmetries are very common, the shapes of symmetry sets often

consist of thin structures. For such structures to be accurately modeled, the occupancy function

must produce sharp peaks. However, recent analyses [51] has shown that the high frequencies

required to produce these peaks are difficult to model using an MLP. This will be an important

consideration when designing an occupancy network for modeling symmetry sets.

6.3. APPLICATION TO ORIENTATION ESTIMATION 55

6.3.2 Network Design

With the analogy to 3D shape reconstruction clear, we can apply the concept of an occupancy

network to orientation estimation. The basic idea stays virtually unchanged. Conceptually, we

again find a two-stage process, where the first stage extracts features from a given image, embed-

ding it into a low dimensional vector. The second stage uses the embedding, in combination with

a given rotation, to evaluate an occupancy function on SO(3) (Equation 6.8), conditioned on the

image. Like in Equation 6.4, these two stages are combined into a single function formulation as

fθ : SO(3)× I → [0, 1] , (6.9)

parameterized by a neural network with parameters θ. Note that the output domain is again

changed from {0, 1} to [0, 1] to fit the traditional formulation of a binary classification problem.

Outputs can be interpreted as probabilities, giving the probability that a given rotation R ∈ SO(3)

is in the symmetry set S(I) of a given image I ∈ I.

Rotation Representations

In this formulation, the only thing that has changed with respect to a standard occupancy function

is the input domain. More specifically, the new formulation operates on rotations instead of 3D

Euclidean coordinates. In practise, this requires picking a suitable representation for rotations

to be used as an input format for the neural network. In contrast to the simple 3D vectors

describing points from R3, there are several options for representing rotations. Candidates include

Euler angles, rotation vectors, unit quaternions, and rotation matrices. Respectively, these can be

represented as 3D vectors, 3D vectors, normalized 4D vectors, and orthogonal 3× 3 matrices.

As was discussed in Section 2.1, each representation has its own characteristics. An important

benefit of Euler angles and rotation vectors is that every possible 3D vector corresponds to a

valid rotation. With quaternions and rotation matrices however, only normalized and orthogonal

values are proper rotations respectively. As a consequence, decision boundaries drawn through the

input space can cross values that do not actually belong to SO(3). Nevertheless, unit quaternions

and rotation matrices benefit from their accurate representation of the topology of the rotation

manifold. Notably, special care ought to be taken to deal with the antipodal symmetry of unit

quaternions. Two antipodal unit quaternions represent the same rotation, and, therefore, should

result in the same output. This problem can be avoided by projecting all unit quaternions to a

single half of the unit hypersphere before using them as input to the network, thus creating a

canonical value for antipodal quaternions.

In a similar network design, Murphy et al. [18] tested all the representations mentioned above.

Following their conclusions, we pick rotation matrices as the representation for input rotations,

thus changing the formulation in Equation 6.9 to

fθ : R9 × I → [0, 1] . (6.10)

56 CHAPTER 6. A CONTINUOUS REPRESENTATION

ResNet

Copy Fully Connected

MLP

Concatenate

PE

Figure 6.4: A schematic overview of the occupancy network used to reconstruct symmetry sets.

Positional Encoding

To address the issue of thin shapes common in symmetry sets, we apply a Positional Encoding

(PE) to all input rotations before feeding them to the MLP. As mentioned in Section 6.3.1, MLP

networks have been shown to have difficulties learning high frequency functions, which have sharp

local fluctuations [51]. Nevertheless, in order to properly represent thin symmetry sets, we require

our MLP to produce sharp peaks in the occupancy function, requiring high frequency fluctuations.

Recent work has addressed this issue by manually mapping input values to vectors in a higher

dimensional space using high frequency functions. The resulting vector is then used as input to the

network instead. Mildenhall et al. [52] first showed how this technique helped in reconstructing

fine details in shapes. Murphy et al. [18] have subsequently shown its successful application to

input rotations. The most popular mapping applies a function γ : R→ R2F , defined as

γ(x) =
(
sin
(
20πx

)
, cos

(
20πx

)
, ..., sin

(
2F−1πx

)
, cos

(
2F−1πx

))
, (6.11)

where x ∈ R, and F is the number of frequencies. Higher values of F exponentially increase the

frequency with which inputs are embedded. Furthermore, note that γ is applied to individual

input values. In our use-case, that means γ is applied separately to each of the 9 values making

up an input rotation matrix. Therefore, we effectively create a mapping from R9 to R9·2F .

Rahaman et al. [51] give a detailed mathematical explanation as to why the use of γ helps MLP

networks to learn high frequency functions. In short, their conclusion is that a high frequency

function on the input space of γ (R9 in our case) can be expressed as a low frequency function

on the output space of γ (R9·2F in our case) which are easier to learn for an MLP. A perhaps

more intuitive explanation as to why the positional encoding works is as follows. Input values

that lie closely together in the original input space R9 are mapped to vectors that lie farther apart

in R9·2F , due to the high frequencies introduced in γ. Hence, they are more easily distinguished,

allowing the network to create sharper decision boundaries.

6.3. APPLICATION TO ORIENTATION ESTIMATION 57

Final Design

Putting everything together, we arrive at the architecture described in Figure 6.4. Images are

first embedded into a lower dimensional vector of size E using a pre-trained ResNet model. The

embedding is subsequently concatenated with the positional encoding of a query rotation, and fed

to an MLP model. Note that the positional encoding contains 9 · 2F values, since Equation 6.11

contains both a sine and a cosine for each frequency. This makes the total combined input size

for the MLP model E + 9 · 2F . Finally, the output of the MLP model is put through a Sigmoid

function, which ensures that its value lies in the domain [0, 1].

6.3.3 Training Strategy

When applying the training process of a traditional occupancy network to the proposed network,

a problem becomes apparent. As was explained in Section 6.2.2, both positive and negative

samples are required to train a classifier. In the occupancy network, these samples are provided

by randomly sampling points inside the bounding volume of an object and testing whether they

lie inside or outside the object’s shape. This is possible because the shape of the object is known

through a provided CAD model. The problem appears when we try to do the same for symmetry

sets. Random samples cannot be checked to lie inside or outside the symmetry set, because no

ground truth representation of the symmetry set is assumed to be available. Unlike object shapes,

which are relatively easy to recreate using 3D modeling tools, symmetry sets are too difficult to

annotate. In the presence of self-occlusion, for example, the exact shapes of symmetry sets can

vary dramatically from one image to the next. It is in fact this complex relation between images

and symmetry sets that motivates the design of this network in the first place.

The only data that is assumed to be available during training consists of image-rotation pairs,

where each image is annotated only with the corresponding ground truth pose. In terms of a

classification problem, this means only a single, positive sample is available for each image. More

formally, such a data set D can be described as

D = {(Ii, Ri) : 1 ≤ i ≤ N, Ii ∈ I, Ri ∈ SO(3)} , (6.12)

where N denotes the number of pairs in the data set. With only this information, training

the proposed network like an occupancy network seems impossible. Nevertheless, we find that

by restricting the supported types of symmetries to only discrete and continuous single-axis, a

training strategy for the proposed network can be formulated using only image-rotation pairs.

Restricting to Discrete and Single-Axis Symmetries

The proposed training strategy relies on a particular property of discrete and single-axis symme-

tries, namely that they have zero volume on the rotation manifold. As a consequence, an image I

that exhibits only a discrete or continuous single-axis symmetries, or a combination thereof, will

produce a symmetry set with zero volume. Hence, a random rotation Ri sampled uniformly from

SO(3) falls inside S(I) with probability zero. It can, therefore, be assumed that for any such Ri

it holds that Ri /∈ S(I).

With this key observation, we can turn back to the training process of occupancy networks.

58 CHAPTER 6. A CONTINUOUS REPRESENTATION

ResNet Gram-

Schmidt

ResNet MLP

PE

MHP

Classifier

Copy Parameters

Figure 6.5: Parameters from a trained MHP network can be used as pre-trained weights for the
first stage of a binary classification model.

It is no longer necessary to have annotated ground truth symmetry sets, now that any randomly

sampled rotation is known to fall outside the symmetry set. When recreating the loss from

Equation 6.6, this implies that each of the K random samples, for each image in a batch, has

an associated occupancy of 0. This is also problematic, since the network would only be given

negative samples. We address this as follows. Rather than using only randomly sampled rotations,

we additionally evaluate the network at the ground truth rotation. Given an image-pose pair

(I,R) ∈ D, this means R is manually added along side the K randomly sampled rotations, in

order to introduce a positive sample. More formally, we define the loss for a single image-rotation

pair to be

L(I,R) = H (fθ(I,R), 1) +

K∑
i=1

H (fθ(I,Ri), 0) , (6.13)

where H refers to the binary cross-entropy loss function mentioned in Equation 6.7

H(o′, o) = −o log(o′)− (1− o) log(1− o′) . (6.14)

Note that o = 1 results in the second term becoming zero, and that o = 0 results in first term

becoming zero. Hence, Equation 6.13 can be rewritten to

L(I,R) = − log (fθ(I,R)) +

K∑
i=1

− log (1− fθ(I,Ri)) . (6.15)

Pre-training the First Stage

Initial experiments using the loss from Equation 6.15 showed inconsistent results. During training,

the network has a tendency get stuck in a local optimum. More specifically, it gets stuck outputting

6.3. APPLICATION TO ORIENTATION ESTIMATION 59

0 for all inputs. Considering Equation 6.15, this strategy achieves an optimal score on all K

negative samples, at the expense of very poor score on the ground truth rotation.

Further experiments showed that pre-training the first stage of the proposed network as a

multiple-hypothesis prediction model helped to increase robustness (Figure 6.5). A quantitative

evaluation to substantiate this claim is presented in Section 7.4.1. Recall the MHP architecture

detailed in Section 4.2.2. The first stage of the binary classification network is identical to that

of an MHP network. The results presented in Chapter 5 show how MHP models are able to

predict diverse sets of hypotheses covering symmetry sets. To achieve this, the parameters of the

underlying neural network are able to extract features that help generating these hypotheses. The

intuition behind copying these parameters to a binary classification network, is that the same

features will be useful for classification. By copying them, the training process is preconditioned,

helping to avoid the aforementioned local minimum.

60 CHAPTER 6. A CONTINUOUS REPRESENTATION

Chapter 7

Experiments with Binary

Classifiers

This Chapter details experiments that evaluate the newly proposed binary classification network

for orientation estimation (Chapter 6). The structure of the chapter is similar to that of to Chapter

5. First, Section 7.1 covers the data set on which the new design is evaluated. Subsequently,

Section 7.2 introduces terminology related to the evaluation of binary classifiers, and describes the

metrics used in the final evaluation. Section 7.3 covers implementation details. Finally, results

are presented and discussed in Section 7.4.

7.1 Data Set

The requirements for a data set in this evaluation are mostly the same as those for multiple-

hypothesis prediction evaluation (Chapter 5). That is, the data set should cover objects with

different types of symmetries, and should only pertain to orientation estimation. Furthermore,

each image in the data set should be annotated with a single ground truth pose, but also its

full ground truth symmetry set. Since the proposed model is specifically designed to reconstruct

symmetry sets, these ground truth symmetry sets are particularly important to have available.

Without ground truth symmetry sets, the quality of a model can not properly be evaluated.

In contrast to multiple-hypothesis models, the proposed binary classification model makes

an additional assumption that further constrains the data set. Namely, that all objects can

only exhibit discrete symmetries or single-axis symmetries. In practise, this excludes spheres, or

objects that can appear spherical under occlusion. Since such objects are quite rare, this additional

requirement is not particularly restrictive.

Considering these requirements, we again choose the SYMSOL data set with custom symmetry

set annotations as introduced in Section 5.1. Though the original SYMSOL II data set contains the

marked sphere object, which can appear like a white sphere under occlusion, it is not contained

in custom annotated version. All other objects only exhibit discrete or single-axis symmetries,

making the data set suitable for use in this evaluation. Furthermore, the objects appear in a

simplistic setting: without noise and under constant lighting conditions. Feature extraction, in

61

62 CHAPTER 7. EXPERIMENTS WITH BINARY CLASSIFIERS

this setting, is no problem for a contemporary convolutional neural network like ResNet. Therefore,

the bottleneck in training the proposed binary classification models will not be the ability of the

backbone to perform feature extraction, but rather the full model’s ability to learn which parts of

the rotation manifold belong to the symmetry set.

7.2 Evaluation Metrics

The goal of training the proposed model, is to classify whether a given rotation is part of the

symmetry set of a given image. Hence, each model should be evaluated based on its performance

as a classifier. Traditionally, this performance is best captured by measuring recall and precision.

7.2.1 Classification Terminology

As was explained earlier, the proposed model predicts whether a given rotation is inside the

symmetry set of a given image or not. This makes the model a function over the combined space

of rotations and images

fθ : SO(3)× I → [0, 1] . (7.1)

However, when considering only a single image I ∈ I, we are left with a classification problem

solely over SO(3). In this context, the network predicts whether a given rotation is inside the

symmetry set S(I). Therefore, conceptually, every image is associated with its own instance of

a classification problem over just the space of SO(3). For a fixed image I, the model becomes a

function

f I
θ : SO(3)→ [0, 1] . (7.2)

For the rest of this evaluation, we measure the performance of the proposed model on a per-image

basis, and compute average metrics over all images in the data set.

Since the proposed model predicts two classes, we can evaluate its performance using estab-

lished metrics for evaluating binary classification models. To this end, it is productive to formulate

our problem in the terminology used in the related literature. Consider the model as a classifier

CIθ : SO(3)→ {0, 1} , (7.3)

for a fixed image I ∈ I. This model is said to classify samples from SO(3) into two classes: the

positive class (1) and the negative class (0). Here, a sample R ∈ SO(3) is said to be in the positive

class when R ∈ S(I), and in the negative class when R /∈ S(I). Note, however, that our network

does not predict this class directly, but rather rather outputs the probability of a sample being

positive. To convert this output probability to a binary prediction, we set a probability threshold

T , such that

CIθ (R) =

1 if f I
θ (R) > T

0 if f I
θ (R) ≤ T

(7.4)

Now, to evaluate a model’s performance on an image, we take a set of samples for which

their classes are known. In other words, for every sample, it is known whether it belongs to the

positive class or the negative class. When these samples are input to the classifier, the model

7.2. EVALUATION METRICS 63

True Positive (TP) False Negative (FN)

False Positive (FP) True Negative (TN)

Positive Negative

Po
si

tiv
e

N
eg

at
iv

e

Predicted Class

Tr
ue

 C
la

ss

Figure 7.1: The confusion matrix categorizes binary predictions into four categories, depending
on the predicted class of a sample and the predicted class of a sample.

makes predictions on whether a sample is positive or negative. Ideally, the predictions agree with

the truth. However, in practice, trained classifiers are usually not perfect, and the predictions for

some samples will be wrong. The relationship between prediction and truth is intuitively captured

in a confusion matrix (Figure 7.1). According to the confusion matrix, a prediction can fall into

one of four categories as follows.

• True Positive (TP): a positive sample is correctly predicted to be positive.

• False Positive (FP): a negative sample is wrongly predicted to be positive.

• False Negative (FN): a positive sample is wrongly predicted to be negative.

• True Negative (TN): a negative sample is correctly predicted to be negative.

Counting the number of predictions that fall into each category gives valuable data regarding the

quality of a classification model. For more details on this topic, the reader is referred to [53].

Later in this section, it is explained how this data is used to construct informative metrics, which

are used to quantitatively evaluate model performance. Firstly, however, we discuss how a set of

samples is generated for every image.

7.2.2 Generating Samples

For every image I, a set of sample rotations is required that covers both the positive and negative

class. Finding positive samples, that lie inside the symmetry set S(I), is simple. Note that the full

(discretized) symmetry set is available for every image in our annotated version of the SYMSOL

data set (Section 5.1). All elements of these annotated symmetry sets can be directly used as

positive samples for evaluation.

Negative samples can not be deduced directly from the annotated data. However, since our

classification model (and data set) are restricted to objects with discrete symmetries or single-axis

continuous symmetries (Section 6.3.3), we can assume that all images have symmetry sets with

zero volume. Consequently, any rotation sampled uniformly random from SO(3) will fall outside

64 CHAPTER 7. EXPERIMENTS WITH BINARY CLASSIFIERS

the symmetry set with probability 1, and will therefore be a negative sample. With this knowledge,

an arbitrary number of negative samples can be generated for every image.

However, for the sake of reproducibility of evaluation results, it would be desirable to use a

deterministic set of samples, rather than random one. Moreover, the local density of randomly

generated samples inevitably varies across the rotation manifold. Therefore, a peak in the output

of the network can coincide with a different number of samples depending on this random local

density. Consequently, two equally sized peaks may incur a significantly different penalty. For

these reasons, rather than generating a random set of samples, we instead follow Murphy et al.

[18] and adopt a technique for generating equivolumetric grids on SO(3) developed by Yershova

et al. [23]. This technique generates a deterministic grid of rotations on SO(3), such that all grid

cells have the same volume. Moreover, the grid can be generated at multiple hierarchical levels,

each level containing exponentially more points. In this evaluation, we use the fourth hierarchical

level, which is composed of 294 thousand rotations. This grid will be referred to by the symbol G
in the rest of this section.

Note that the rotations in G are not distributed uniformly random. In contrast, they are placed

deterministically, and in a regular pattern with uniform density on SO(3). Nevertheless, for the

rotations in G to be considered proper negative samples, they must fall outside the symmetry set

of every image. Since the images in the SYMSOL dataset were generated using rotations that are

themselves uniformly randomly sampled, the relative orientation of G with respect to any such

rotation is also random. In turn, the probability of the symmetry set of any image aligning with

G is still zero. Hence, all rotations in G are still guaranteed to be proper negative samples, as they

fall inside any symmetry set from SYMSOL with probability zero.

7.2.3 Recall

The recall of a binary classifier measures its ability to correctly identify positive samples. More

specifically, it is defined to be the proportion of positive samples that are correctly classified by

the model. This value is calculated as

recall =
TP

TP+ FN
=

TP

|S(I)|
. (7.5)

Ideally, the recall is 1, in which case the classifier correctly classifies all positive samples. In

context, this would mean that the entire symmetry set is found.

7.2.4 Precision

Just the recall alone does paint not a complete picture of model performance. Even when a classifier

achieves a recall score of 1, it can still give undesirable results. This is because recall does not

depend the number of false positives or true negatives. Consider a classifier that classifies every

sample as positive. This model would not generate any false negatives, because never predicts the

negative class. Consequently, its recall score will be 1. Nevertheless, it also wrongly classifies all

negative samples, making it useless in practise.

An additional metric is needed that penalizes false positive predictions. To this end, we use

precision, which is defined as the proportion of samples that are predicted positive that are truly

7.2. EVALUATION METRICS 65

positive. This value is calculated as

precision =
TP

TP+ FP
. (7.6)

At a precision score of 1, a model generates no false positive predictions. A special case occurs

when TP+ FP = 0, which happens when the network does not predict any samples to be positive.

In this case, we say the precision is 1, since no false positives have been generated, and the recall

would be 0.

To see how precision relates to the classification of symmetry sets, see Figure 7.2. For a given

image I, the classifier CIθ predicts certain regions of SO(3) as either positive or negative. The

boundary between such regions is called the decision boundary, and depends on the threshold T .
Samples from G that fall inside the decision boundary are predicted as false positives. Intuitively,

the tighter the decision boundary fits around the symmetry set, the fewer false positives will be

predicted, and the higher the precision will be.

(a) Discrete (b) Continuous

Figure 7.2: An illustration showing how the decision boundary relates to precision for both discrete
and continuous symmetries. The enclosed blue area represents the region of SO(3) predicted as
positive. Green squares represent samples from S(I) that are predicted positive. Moreover, in (b),
the green line represents the true continuous symmetry set. Circles represent the grid G, where
gray circles are true negative predictions and red circles are false positive predictions.

7.2.5 A Summary Metric

Since neither recall nor precision are enough to evaluate performance on their own, they are best

used together. Nevertheless, it is preferable to use only use a single metric, as this would make

it easier to compare different models. Such a metric should summarize both recall and precision

into a single value. Traditionally, the accuracy score fills this role, where the accuracy defines the

proportion of all samples that are predicted correctly. More formally, it is calculated as

accuracy =
TP+ TN

TP+ FP+ FN+ TN
=

TP+ TN

|S(I)|+ |G|
. (7.7)

The accuracy score can, however, be problematic. When the samples are heavily imbalanced,

meaning that one class is represented much more frequently than the other, the accuracy becomes

difficult to interpret. If 95% of samples are negative, than an accuracy of 0.95 can be achieved by

66 CHAPTER 7. EXPERIMENTS WITH BINARY CLASSIFIERS

predicting all samples as negative. This score is deceptively high, while the model itself is useless.

The samples used in this evaluation are also very imbalanced. Even the largest symmetry

sets in the data set only consist of 720 rotations. The grid G, on the other hand, has almost

300 thousand rotations. Therefore, there are many times fewer positive samples than negative

samples.

As a replacement for the accuracy, we instead use the popular F-measure, which is defined as

the harmonic mean between recall and precision. This metric does not depend on the number

of true negative predictions, which can be become very high due to the large imbalance. It is

computed as

F-measure = 2 · recall · precision
recall+ precision

. (7.8)

7.3 Implementation Details

The binary classification models were implemented in PyTorch, according to the network design

outlined in Section 6.3.2. The first stage of the network was implemented like that of the MHP

networks explained in Section 5.3. This way, the weights of a pre-trained MHP model can be

easily copied into the binary classification network. To reiterate, the 18-layer version of ResNet is

used in the first stage. Red, green, and blue channels of images are normalized using mean 0.485,

0.456, and 0.406 and standard deviation 0.229, 0.224, and 0.225 respectively, before being input to

the model, with the purpose of being compatible with pre-trained versions of ResNet available in

PyTorch1. The output of this ResNet model is processed into an embedding by a fully connected

layer with ReLU activation. The embedding size E is again fixed at 256. Based on empirical

observations, three frequencies were used in the positional encoding, such that F = 3.

The second stage MLP network was implemented with two hidden layers, each with 256 neurons

and ReLU activations. The output layer consists of a single neuron with logistic sigmoid activation

(Equation 6.5), which forces the output to lie in the range [0, 1].

All networks were trained for a total of 30 epochs. Training for additional epochs was not

found to significantly improve convergence. The batch size was set at 32, with larger batch sizes

being found to result in worse F-measure scores. Network parameters were, again, optimized using

the ADAM optimizer. The learning rate starts at 1e−3, and is lowered to 1e−4 after epoch 15,

and then to 1e−5 after epoch 25.

Finally, it was found to be beneficial to freeze the parameters of the ResNet model, as well as

the layer connecting it to the embedding, at the start of training. At this point, the weights of

the second stage MLP are still set to their randomly initialized values. When using a pre-trained

MHP network in the first stage (Figure 6.5), its weights are already meaningful. Therefore, the

idea is to first let the second stage converge while keeping the first stage constant. After some

time, the weights of the first stage are unfrozen, and the network is trained end-to-end. Here, we

choose to unfreeze after the 4th epoch.

1https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/

7.4. EVALUATION 67

7.4 Evaluation

The evaluation of the proposed binary classification model will be separated into two different

experiments. The first is an ablation study, in which we motivate the use of a positional encoding

described in Section 6.3.2, as well as the use of a pre-trained MHP model in the first stage

(Section 6.3.3). The second studies how the number of samples K used during training, influences

the performance of the final model.

7.4.1 Ablation

The goal of this ablation study is to test whether the addition of a positional encoding and pre-

training of the first stage actually increase performance. To this end, we train the proposed model

in various configurations.

As a baseline, we use a model with positional encoding, and use the weights from the MHP

model with the highest performance on recall (Section 5.4) in the first stage. This baseline is

compared against three other models, that each change one component with respect to the baseline.

The first uses no positional encoding. The second uses no MHP pre-training, but instead uses the

default weights for ResNet-18 pre-trained on the ImangeNet classification data set. Lastly, the

third uses weights from the MHP model with the highest performance on precision.

When selecting the MHP model with best precision or recall, the model is chosen with the

lowest mean error. In the event of a tie, the model is chosen with the lowest mean error on the

opposite metric. Note that for the icosahedron, cone, and cylinder, the MHP model performing

best on precision and recall is the same. All models are trained with K = 256 samples during

training. F-measure scores for all models are shown in Table 7.1

SYMSOL I SYMSOL II
tet cube icosa cone cyl tetX cylO

No Positional Encoding 0.000 0.169 0.000 0.964 0.974 0.219 0.560
No MHP Pre-training 0.565 0.755* 0.696 0.949* 0.971* 0.240* 0.560*
Best Precision 0.551 0.804 - - - 0.381 0.572
Baseline (Best Recall) 0.619 0.837 0.670 0.959 0.978 0.408 0.603

Table 7.1: Mean F-measure scores for different ablations of the binary classification model. The
thresholds was set at T = 0.8 for all models. The best performing model on each object has a
dark gray colored cell. Higher is better (↑). (*) Learning rate was set to 1e−4 already after epoch
4, otherwise the model would not train.

The baseline model consistently shows good performance with respect to the other models,

achieving top scores for all but the icosahedron and cone. In general, differences in scores are

largest on objects with discrete symmetries. Appendix B contains example predictions for both

SYMSOL I and SYMSOL II data sets. Several observation can be made from the data, regarding

the individual network components.

Positional Encoding

Observations regarding the positional encoding mostly agree with those of Murphy et al. [18]. For

objects with continuous symmetries, specifically the cone and cylinder from SYMSOL I, the posi-

68 CHAPTER 7. EXPERIMENTS WITH BINARY CLASSIFIERS

tional encoding has an almost negligible impact on performance. On the cone object, performance

even slightly improves over the baseline model. However, whereas Murphy et al. observed a slight

decrease in performance on all objects with continuous symmetries, our data does not support

this conclusion in a general sense.

In contrast, for object with discrete symmetries, the benefits are evident. Models for the

tetrahedron, as well as the icosahedron from SYMSOL I, failed to train at all without the positional

encoding. More specifically, they fail to converge to a meaningful solution, getting stuck outputting

0 for all inputs. Results for the cube and marked tetrahedron did not get stuck in the same way, but

perform significantly worse than the baseline. Figure 7.3 shows how the model without positional

encoding is unable to produce a tight decision boundary around the symmetry set, in contrast to

the baseline.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier: No PE

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier: Baseline

(a)

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier: No PE

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier: Baseline

(b)

Figure 7.3: π-Ball plots showing the difference between using positional encoding (PE) and not
using positional encoding. Classifiers are evaluated on images from the marked tetrahedron data
set from SYMSOL II. For each classifier, only positive predictions are shown.

Pre-Training

Like with the use of a positional encoding, differences in performance between various types of

pre-training mostly show for discrete symmetries. Unlike the models without positional encoding,

all models with no MHP pre-training achieve F-measure scores that lie reasonably close to the

baseline. However, for several such models, the training process had to be altered for the networks

to train at all. Similar to the configuration without positional encoding, these networks got stuck

outputting 0 for all inputs. In general, training networks without MHP pre-training was found to

be a delicate process. Robustness of the training process greatly improved when adding the pre-

training step. Furthermore, the use of the MHP model with highest recall (baseline) consistently

outperforms the model with highest precision.

7.4. EVALUATION 69

7.4.2 Training Sample Sizes

Another important variable in the training process is the number of samples K used during

training. To re-iterate, for a given image-pose pair (I,R), the loss used to train the network fθ is

L(I,R) = − log (fθ(I,R)) +

K∑
j=1

− log (1− fθ(I,Rj)) , (7.9)

where K specifies the number of randomly sampled rotations used as negative samples. The

higher K, the more densely these negative samples cover SO(3). To study the impact of K on

performance, we train the baseline model from the previous section with different values of K on

the SYMSOL II data set. Specifically, the values 64, 128, 256, 512, and 1024 are used. Figure 7.4

shows how the mean F-measure changes.

64 128 256 512 1024
K

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
F-

M
ea

su
re

tetX
cylO

(a) F-measure

64 128 256 512 1024
K

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

Pr
ec

isi
on

tetX
cylO

(b) Precision

Figure 7.4: Plots of mean F-measure and mean precision scores for the baseline model over the
sample size K used during training. Results are shown for the SYMSOL II data set, where tetX
and cylO refer to the marked tetrahedron and marked cylinder respectively. A threshold of T = 0.8
is used in for all models.

The plots show how increasing the sample size significantly improves F-measure scores. These

improved scores can be attributed mostly to increases in precision (Figure 7.4b). Recall stays

mostly the same, with a marginal decrease for higher values of K. Between the marked cylinder

and marked tetrahedron, the latter enjoys the largest increase in scores. This is consistent with

earlier results, where objects with discrete symmetries were found to be challenging for the classifier

to deal with.

Deeper investigation gives an explanation for improved scores on the marked tetrahedron. In

order to precisely classify its discrete symmetries, the network must produce very sharp peaks in

its output. This way, the decision boundary fits tightly around the individual symmetries, thus

increasing precision. With a denser sampling of rotations during training, it becomes more likely for

these samples to appear in close proximity to the symmetries of the tetrahedron. Consequently, the

network is incentivized to tighten its decision boundary around these symmetries, as to correctly

distinguish them from the random negative samples during training. Therefore, it is intuitive that

precision increases for higher values of K.

70 CHAPTER 7. EXPERIMENTS WITH BINARY CLASSIFIERS

Figure 7.5 illustrates this effect, by zooming in on one of the peaks generated in the output

of the network. A one-dimensional slice of rotations is taken along the object-local x-axis, and

the output of the network is computed at each rotation. These plots give a clear example of how

larger values of K result in sharper output peaks, thus increasing precision.

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

(a) GT Image

0.2 0.1 0.0 0.1 0.2
Angle w.r.t GT Rotation

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

Ou
tp

ut

Object-Local Rotation Around x-axis

(b) K = 64

0.2 0.1 0.0 0.1 0.2
Angle w.r.t GT Rotation

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

Ou
tp

ut

Object-Local Rotation Around x-axis

(c) K = 128

0.2 0.1 0.0 0.1 0.2
Angle w.r.t GT Rotation

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

Ou
tp

ut

Object-Local Rotation Around x-axis

(d) K = 256

0.2 0.1 0.0 0.1 0.2
Angle w.r.t GT Rotation

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

Ou
tp

ut

Object-Local Rotation Around x-axis

(e) K = 512

0.2 0.1 0.0 0.1 0.2
Angle w.r.t GT Rotation

0.0

0.2

0.4

0.6

0.8

1.0

Ne
tw

or
k

Ou
tp

ut

Object-Local Rotation Around x-axis

(f) K = 1024

Figure 7.5: Plots zooming in on a single output peak produced by various binary classification
models on an image of the marked tetrahedron. Each model is trained with a different number
of training samples K. The output is shown over a one-dimensional slice of rotations taken along
the object local x-axis, centered on the ground truth rotation. Relative angles on the x-axis are
shown in radians.

7.4.3 Summary

The proposed binary classification network is able to faithfully reconstruct symmetry sets for

images of the SYMSOL data set. This is true for both the simplistic symmetry sets created by

globally symmetric objects, as well as more complicated sets created by nearly symmetric objects.

An ablation study shows how the addition of a positional encoding, as well as a pre-trained

first stage, help increase (1) the robustness of the training process and (2) the F-measure scores

of the model. The positional encoding is found to be particularly influential, allowing networks to

produce tight decision boundaries around discrete symmetric rotations.

Finally, increasing the sample size parameter K during training is shown to further increase

precision. Increasing the number K incentivizes the network to produce sharper peaks in its

output. The benefits of this are most significant for discrete symmetries, where the decision

boundary is preferably as tight as possible.

Chapter 8

Conclusions

This chapter summarizes the most important findings of this thesis, and presents recommendations

for future work.

8.1 Summary

In this thesis, we have addressed the issues posed by rotational symmetries in orientation esti-

mation. Existing literature in pose estimation either uses manual canonicalization of symmetric

poses, or symmetry-aware loss functions based on object CAD models, to predict a single correct

pose. Other work treats ambiguity as a cause of uncertainty, predicting distributions over poses.

The former approach gives no information on the set of possibly correct poses under ambiguity,

called the symmetry set, and does not scale to symmetries induced by occlusions. The latter

often requires parameterization and computationally expensive normalization to obtain a complex

distribution on SO(3).

Ground truth symmetry set annotations for every image are required to evaluate orientation

estimation algorithms on symmetric objects and nearly-symmetric objects. To this end, in Chapter

5, we have introduced the first data set with annotated symmetry sets covering nearly-symmetric

objects under self-occlusion. This data set is based on the SYMSOL II data set introduced in

earlier work. Known patterns in the symmetries are exploited to generate candidate rotations for

the symmetry set of every image. A methodology for accepting or rejecting candidates is presented

that uses rendered segmentation maps to check images for visible markings.

In Chapter 4, we have detailed the application of multiple-hypothesis prediction to the task

of orientation estimation. Subsequently, in Chapter 5, three meta loss functions, as well as two

embedded loss functions, for multiple-hypothesis prediction models have been evaluated. Results

show how well sets of hypotheses, output by various combinations, represent symmetry sets, where

performance is measured using quantitative measures of precision and recall. Our findings identify

properties of the Von Mises loss function that favorably impact the precision of hypotheses when

compared to the traditional geodesic loss. Moreover, we have found performance to vary the most

on objects with discrete symmetries, and saw best performance using the evolving winner takes

all training strategy.

Finally, in Chapter 6, we have modeled orientation estimation as a binary classification prob-

71

72 CHAPTER 8. CONCLUSIONS

lem on the combined space of images and SO(3). Our solution is based on existing work in implicit

shape reconstruction and pose distribution estimation, but requires a restriction to only discrete

and single-axis symmetries. The resulting network is able to learn accurate decision boundaries,

separating symmetry sets from the rest of SO(3) at continuous resolution. In Chapter 7, per-

formance is confirmed by quantitative metrics measuring recall and precision, and individual

components of the training process show increased performance in an ablation study.

8.2 Recommendations for Future Work

Annotated Symmetry Sets The methodology of using rendered segmentation maps to com-

pute symmetry set annotations can be further exploited. In this thesis, we have employed it on

symmetries induced by self-occlusion found in the SYMSOL II data set. Nevertheless, we believe

the same methodology can be applied when simulating environment-induced occlusions. More-

over, the objects in SYMSOL II appear in a simplistic setting, but the same methodology can

be applied to objects in much more complicated environments, like the synthetic images used in

the BOP challenge [6]. Finally, future research could seek to improve performance of the method,

making it feasible to apply for objects with larger sets of candidate symmetries.

Multiple-Hypothesis Prediction The potential of the EWTA training strategy to increase

precision in multiple-hypothesis prediction models has been demonstrated. However, a more robust

procedure for decreasing the parameter k is required for its general application. Furthermore, our

findings regarding the behaviour of the Von Mises loss function show its potential for avoiding

stray hypotheses. Nevertheless, the vanishing gradient in the flat regions of the loss curve can

make hypotheses immovable. A scheme in which the parameter K is evolved during training, is a

promising direction for addressing this problem. Furthermore, deeper analyses of the loss function

itself, and possible other loss functions with the same properties, would help in understanding

their effects in pose estimation.

Binary Classification Though our binary classification model shows impressive performance

on the simplistic SYMSOL data set, further research is required into its robustness when objects

appear in more complex synthetic environments, and ultimately, in real images. Also, the proposed

training strategy only works when symmetry sets have zero volume. More analysis is required to

define a category of objects that can satisfy this requirement when considering occlusion-induced

symmetries. Alternatively, an extension to the training process to work on symmetry sets with

volume would make the method generally applicable. Finally, future research could apply the

method to object tracking or extend to a multi-view framework. In both cases, information from

multiple view points can be combined by intersecting the symmetry sets predicted from different

images.

Bibliography

[1] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler, and R. Urtasun, “Monocular 3D object
detection for autonomous driving,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2147–2156, June 2016.

[2] P. A. Lasota, G. F. Rossano, and J. A. Shah, “Toward safe close-proximity human-robot
interaction with standard industrial robots,” in 2014 IEEE International Conference on Au-
tomation Science and Engineering (CASE), pp. 339–344, 2014.

[3] E. Sucar, K. Wada, and A. Davison, “NodeSLAM: Neural object descriptors for multi-view
shape reconstruction,” in 2020 International Conference on 3D Vision (3DV), pp. 949–958,
IEEE, 2020.

[4] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using vision,” The
International Journal of Robotics Research, vol. 27, no. 2, pp. 157–173, 2008.

[5] T. Hodan, F. Michel, E. Brachmann, W. Kehl, A. GlentBuch, D. Kraft, B. Drost, J. Vidal,
S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim, J. Matas, and C. Rother,
“BOP: Benchmark for 6D object pose estimation,” in Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

[6] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann, F. Michel, C. Rother, and
J. Matas, “BOP challenge 2020 on 6D object localization,” in Computer Vision – ECCV 2020
Workshops (A. Bartoli and A. Fusiello, eds.), (Cham), pp. 577–594, Springer International
Publishing, 2020.

[7] G. Pitteri, M. Ramamonjisoa, S. Ilic, and V. Lepetit, “On object symmetries and 6D pose
estimation from images,” in 2019 International Conference on 3D Vision (3DV), pp. 614–622,
IEEE, 2019.

[8] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6D: Making RGB-based
3D detection and 6D pose estimation great again,” in Proceedings of the IEEE international
conference on computer vision, pp. 1521–1529, 2017.

[9] M. Rad and V. Lepetit, “BB8: A scalable, accurate, robust to partial occlusion method for
predicting the 3D poses of challenging objects without using depth,” in Proceedings of the
IEEE International Conference on Computer Vision, pp. 3828–3836, 2017.

[10] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolutional neural network
for 6D object pose estimation in cluttered scenes,” Robotics: Science and Systems (RSS),
2018.

[11] I. Gilitschenski, R. Sahoo, W. Schwarting, A. Amini, S. Karaman, and D. Rus, “Deep orienta-
tion uncertainty learning based on a bingham loss,” in International Conference on Learning
Representations, 2019.

73

74 BIBLIOGRAPHY

[12] V. Peretroukhin, M. Giamou, W. N. Greene, D. Rosen, J. Kelly, and N. Roy, “A Smooth Rep-
resentation of Belief over SO(3) for Deep Rotation Learning with Uncertainty,” in Proceedings
of Robotics: Science and Systems, (Corvalis, Oregon, USA), July 2020.

[13] H. Deng, M. Bui, N. Navab, L. Guibas, S. Ilic, and T. Birdal, “Deep bingham networks: Deal-
ing with uncertainty and ambiguity in pose estimation,” International Journal of Computer
Vision, May 2022.

[14] S. Prokudin, P. Gehler, and S. Nowozin, “Deep directional statistics: Pose estimation with
uncertainty quantification,” in Proceedings of the European conference on computer vision
(ECCV), pp. 534–551, 2018.

[15] D. Mohlin, J. Sullivan, and G. Bianchi, “Probabilistic orientation estimation with matrix
fisher distributions,” in Advances in Neural Information Processing Systems (H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 4884–4893, Curran Asso-
ciates, Inc., 2020.

[16] B. Okorn, M. Xu, M. Hebert, and D. Held, “Learning orientation distributions for object pose
estimation,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 10580–10587, 2020.

[17] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox, “PoseRBPF: A Rao-
Blackwellized particle filter for 6D object pose tracking,” in Robotics: Science and Systems
(RSS), 2019.

[18] K. A. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and A. Makadia, “Implicit-pdf:
Non-parametric representation of probability distributions on the rotation manifold,” in Pro-
ceedings of the 38th International Conference on Machine Learning, pp. 7882–7893, 2021.

[19] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger, “Occupancy networks:
Learning 3D reconstruction in function space,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

[20] F. Manhardt, D. M. Arroyo, C. Rupprecht, B. Busam, T. Birdal, N. Navab, and F. Tombari,
“Explaining the ambiguity of object detection and 6D pose from visual data,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6841–6850, 2019.

[21] J. Solà, J. Deray, and D. Atchuthan, “A micro lie theory for state estimation in robotics,”
arXiv preprint arXiv:1812.01537, 2018.

[22] R. Szeliski, Computer Vision - Algorithms and Applications, Second Edition. Texts in Com-
puter Science, Springer, 2022.

[23] A. Yershova, S. Jain, S. M. LaValle, and J. C. Mitchell, “Generating uniform incremental
grids on so(3) using the hopf fibration,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 801–812, 2010. PMID: 20607113.

[24] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors,”
technical report, Stanford University, 2006.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] P. Wohlhart and V. Lepetit, “Learning descriptors for object recognition and 3D pose esti-
mation,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3109–3118, 2015.

[27] K. Park, T. Patten, and M. Vincze, “Pix2Pose: Pixel-wise coordinate regression of objects for
6D pose estimation,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 7668–7677, 2019.

BIBLIOGRAPHY 75

[28] R. Bregier, F. Devernay, L. Leyrit, and J. L. Crowley, “Symmetry aware evaluation of 3D
object detection and pose estimation in scenes of many parts in bulk,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV) Workshops, Oct 2017.

[29] L. Beyer, A. Hermans, and B. Leibe, “Biternion nets: Continuous head pose regression
from discrete training labels,” in German Conference on Pattern Recognition, pp. 157–168,
Springer, 2015.

[30] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel, “Implicit 3D orien-
tation learning for 6D object detection from RGB images,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 699–715, 2018.

[31] T. Hodan, D. Barath, and J. Matas, “EPOS: Estimating 6D pose of objects with symmetries,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11703–11712, June 2020.

[32] J. Richter-Klug and U. Frese, “Handling object symmetries in cnn-based pose estimation,” in
2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 13850–13856,
2021.

[33] E. Corona, K. Kundu, and S. Fidler, “Pose estimation for objects with rotational symme-
try,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 7215–7222, IEEE, 2018.

[34] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab, and G. D. Hager,
“Learning in an uncertain world: Representing ambiguity through multiple hypotheses,” in
Proceedings of the IEEE International Conference on Computer Vision, pp. 3591–3600, 2017.

[35] A. Guzman-Rivera, D. Batra, and P. Kohli, “Multiple choice learning: Learning to produce
multiple structured outputs,” Advances in neural information processing systems, vol. 25,
2012.

[36] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton, T. Sharp, A. Fitzgibbon, and S. Izadi,
“Multi-output learning for camera relocalization,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1114–1121, 2014.

[37] D. Dey, V. Ramakrishna, M. Hebert, and J. Andrew Bagnell, “Predicting multiple structured
visual interpretations,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2947–2955, 2015.

[38] K. Lee, C. Hwang, K. Park, and J. Shin, “Confident multiple choice learning,” in International
Conference on Machine Learning, pp. 2014–2023, PMLR, 2017.

[39] K. Tian, Y. Xu, S. Zhou, and J. Guan, “Versatile multiple choice learning and its application
to vision computing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6349–6357, 2019.

[40] O. Makansi, E. Ilg, O. Cicek, and T. Brox, “Overcoming limitations of mixture density
networks: A sampling and fitting framework for multimodal future prediction,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7144–7153,
2019.

[41] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations
in neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5745–5753, 2019.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

76 BIBLIOGRAPHY

[43] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009.

[44] T. Hodan, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabulis, “T-LESS: An
RGB-D dataset for 6D pose estimation of texture-less objects,” in 2017 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), pp. 880–888, IEEE, 2017.

[45] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A benchmark for 3D object
detection in the wild,” in IEEE Winter Conference on Applications of Computer Vision,
pp. 75–82, 2014.

[46] S. Liao, E. Gavves, and C. G. M. Snoek, “Spherical regression: Learning viewpoints, surface
normals and 3D rotations on n-spheres,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[47] J. Arvo, “Iii.4 - fast random rotation matrices,” in Graphics Gems III (IBM Version)
(D. KIRK, ed.), pp. 117–120, San Francisco: Morgan Kaufmann, 1992.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[49] Z. Chen and H. Zhang, “Learning implicit fields for generative shape modeling,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5939–5948,
2019.

[50] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D
classification and segmentation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 652–660, July 2017.

[51] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and
A. Courville, “On the spectral bias of neural networks,” in Proceedings of the 36th Interna-
tional Conference on Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97
of Proceedings of Machine Learning Research, pp. 5301–5310, PMLR, 09–15 Jun 2019.

[52] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf:
Representing scenes as neural radiance fields for view synthesis,” in Computer Vision – ECCV
2020 (A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, eds.), (Cham), pp. 405–421, Springer
International Publishing, 2020.

[53] C. J. van Rijsbergen, Information retrieval. Butterworth, 1979.

Appendix A

Embedded Loss Function Analysis

To re-iterate, the definitions of the embedded loss functions are as follows:

LCOS(α) = 1− cos(α) (A.1)

LVM (α) = 1− eK(cos(α)−1) , (A.2)

where α is the smallest angular difference between a predicted rotation Rp and a ground truth
rotation RGT . Moreover, K is a hyperparameter of the Von Mises distribution, which is analogous
to the inverse of the standard deviation of the Gaussian distribution. Note that the smallest
angular difference is computed as

cos(α) =

(
Tr(RpR

⊺
gt)− 1

)
2

, (A.3)

thus defining the actual loss functions as

LCOS(RGT , Rp) = 1−
(
Tr(RpR

⊺
gt)− 1

)
2

(A.4)

LVM (RGT , Rp) = 1− e
K
(

(Tr(RpR
⊺
gt)−1)

2 −1

)
. (A.5)

A.1 Comparing Shapes

Since the behaviour of these loss function in 3D is rather difficult to visualize and analyze, we
instead start by looking at the 2D case. This reduces the complexity, since poses in 2D can simply
be described by a single angle, and their smallest angular difference is simply their difference
in angle. Given two rotations described by the angles α and β, the same loss functions can be
described in 2D as

LCOS(α, β) = 1− cos(α− β) (A.6)

LVM (α, β) = 1− eK(cos(α−β)−1) . (A.7)

Say we have a simple 2D example setup, where a network is trained to predict all symmetric
rotations for a single image. As was mentioned before, at the start of the EWTA training process,
the loss is computed between each hypothesis and each ground truth symmetry. Consequently,
the total loss that a single hypothesis x contributes given a set of ground truth symmetries Y is
given by the sum

LΣ(x) =
∑
y∈Y

L(x, y)

1

2 APPENDIX A. EMBEDDED LOSS FUNCTION ANALYSIS

, where L is the embedded loss function. Figure A.1 plots LΣ(x) for three different example sets
Y using both LCOS and LVM . Here, LVM uses K = 4, which is the value used in the main text.
Interestingly, the summed loss using LVM has minima very close to the ground truth rotations,
whereas using LCOS , the loss is minimized in some conditional average.

0 1 2 3 4 5 6
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(a)

0 1 2 3 4 5 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(b)

0 1 2 3 4 5 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(c)

Figure A.1: Plots of LΣ(x) using both LCOS and LVM for three example sets Y : (a) {π}, (b)
{2, 4}, and (c) {1, 2.5, 4.5}. In LVM uses K = 4.

When the ground truth samples are close enough, however, the distinct minima of the Von Mises
loss do collapse into a single average (Figure A.2a). By increasing K and, therefore, increasing
the steepness of the Von Mises, the minima are again separated (Figure A.2b). Note that the loss
plot using the Von Mises loss become very flat in the regions far away from ground truth samples,
which becomes worse for increased values of K. This can be problematic in deep learning, as
predictions in these regions will receive small gradients, thus preventing them from moving.

0 1 2 3 4 5 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(a) k = 4

0 1 2 3 4 5 6
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta

l L
os

s

VM Loss
COS Loss
Ground Truths

(b) k = 15

Figure A.2: Plots of LΣ(x) using both LCOS and LVM for Y = {3, 3.75}, with varying k in the
Von Mises loss.

A.2 Finding the Minima

The exact location of the minimum of LΣ can be found analytically by setting the derivative to
zero, and solving for x.

A.2. FINDING THE MINIMA 3

A.2.1 Cyclic Cosine Loss

When using LCOS , this is relatively easy. We first find the derivative of LΣ with respect to x as

dLΣ(x)

dx
=
∑
y∈Y

dLCOS(x, y)

dx
(A.8)

=
∑
y∈Y

sin(x− y) (A.9)

=
∑
y∈Y

sin(x) cos(y)− cos(x) sin(y) (A.10)

=
∑
y∈Y

sin cos(y)−
∑
y∈Y

cos(x) sin(y) (A.11)

= sin(x)
∑
y∈Y

cos(y)− cos(x)
∑
y∈Y

sin(y) . (A.12)

Now, setting it equal to 0 to find the location of extrema

dLΣ(x)

dx
= 0 (A.13)

⇐⇒ sin(x)
∑
y∈Y

cos(y)− cos(x)
∑
y∈Y

sin(y) = 0 (A.14)

⇐⇒ sin(x)

cos(x)
=

∑
y∈Y sin(y)∑
y∈Y cos(y)

(A.15)

⇐⇒ x = tan−1

(∑
y∈Y sin(y)∑
y∈Y cos(y)

)
+ πn . (A.16)

This gives exactly one maximum and one minimum within the domain of [0, 2π].

A.2.2 Von Mises Loss

Doing the same with with LVM is rather more difficult. Finding the derivative is easy enough.

dLΣ(x)

dx
=
∑
y∈Y

dLVM (x, y)

dx

=
∑
y∈Y

KeK(cos(x−y)−1) sin(x− y)

But setting it equal to 0 and solving for x is much more complicated. Nevertheless, the properties
of the Von Mises loss shown Figure A.1 do illustrate how multiple minima can exist. These minima
lie a small distance away from the individual elements in Y , and this distance was found to shrink
for increased values of K. An intuitive explanation as to why these multiple minima exist, concerns
the shape the loss function. When summing multiple losses together, the minima of individual
losses can fall inside the flat regions of others. When this happens, the graphs are essentially
stacked, and multiple minima occur in the summed loss. These minima are, however, slightly
offset from their original positions, as the flat regions are not perfectly flat. Increasing K further
flattens the loss curves, therefore decreasing the size of this offset.

4 APPENDIX A. EMBEDDED LOSS FUNCTION ANALYSIS

Appendix B

Plots for Binary Classifiers

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(a) Tetrahedron

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(b) Cube

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(c) Icosahedron

5

6 APPENDIX B. PLOTS FOR BINARY CLASSIFIERS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(d) Cone

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(e) Cylinder

Figure B.1: π-ball plots showing outputs for the baseline model from Section 7.4.1 on images
from SYMSOL I. All rotations in S(I)∪ G are input to the classifier for each image, only positive
predictions are shown in the middle column.

7

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(a) One gray face is visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(b) Two gray face are visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(c) Three gray faces are visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(d) The red face is visible.

Figure B.2: π-ball plots showing outputs for the baseline model from Section 7.4.1 on images of
the marked tetrahedron from SYMSOL II. The marked tetrahedron exhibits a different number
of rotational symmetries depending on which faces are visible. All rotations in S(I)∪G are input
to the classifier for each image, only positive predictions are shown in the middle column.

8 APPENDIX B. PLOTS FOR BINARY CLASSIFIERS

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(a) The mark is visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(b) The mark is not visible.

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

Classifier

0 50 100 150 200

0

25

50

75

100

125

150

175

200

GT Image

x

3 2 1 0 1 2 3

y

3
2

1
0

1
2

3

z

3
2
1

0
1
2
3

GT Symmetry Set

(c) A view from the top or bottom.

Figure B.3: π-ball plots showing outputs for the baseline model from Section 7.4.1 on images of
the marked cylinder from SYMSOL II. The marked cylinder exhibits different symmetries based
on whether the marking is visible. All rotations in S(I) ∪ G are input to the classifier for each
image, only positive predictions are shown in the middle column.

	Acknowledgements
	Abstract
	Introduction
	Context and Motivation
	Recent Progress
	Research Goal and Contributions
	Report Structure

	Preliminaries
	Rotations
	Rotation Matrices
	Euler Angles
	Axis-angle Representation
	Unit Quaternions

	Deep Learning
	Fully Connected Networks
	Training
	Convolutional Networks

	Pose Estimation
	6D Pose Estimation
	Symmetries
	Uncertainty and Ambiguity

	Related Work
	Symmetry-Aware Learning
	Canonicalization
	Symmetry-Aware Loss

	Learning with Uncertainty
	Parametric Distributions
	Non-Parametric Distributions

	Other Works

	Multi-Hypothesis Orientation Estimation
	Background
	Multiple Hypothesis Prediction
	Training Schemes

	Application to Orientation Estimation
	Embedded Loss Functions
	Network Design

	Experiments with Multi-Hypothesis Networks
	Data Set
	SYMSOL
	Annotating SYMSOL II

	Evaluation Metrics
	Recall
	Precision

	Implementation Details
	Hyperparameters
	Training

	Evaluation
	SYMSOL I
	SYMSOL II
	Summary

	A Continuous Representation
	Overview
	Binary Classification

	Review on Occupancy Networks
	Architecture
	Training

	Application to Orientation Estimation
	Shapes of Symmetry Sets
	Network Design
	Training Strategy

	Experiments with Binary Classifiers
	Data Set
	Evaluation Metrics
	Classification Terminology
	Generating Samples
	Recall
	Precision
	A Summary Metric

	Implementation Details
	Evaluation
	Ablation
	Training Sample Sizes
	Summary

	Conclusions
	Summary
	Recommendations for Future Work

	Embedded Loss Function Analysis
	Comparing Shapes
	Finding the Minima
	Cyclic Cosine Loss
	Von Mises Loss

	Plots for Binary Classifiers

