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Abstract— This work presents a pipeline to infer semantic
goals of multiple humans based on their motion cues as perceived
by multiple robots. Experiments were conducted to gather data
in order to evaluate the performance of the proposed pipeline.
Lastly, the improvements on the human intention prediction by
sharing data between robots are identified and compared to the
individual cases of the robots. This thesis aims to take a first step
to achieve multi-human multi-robot collaboration.

Index Terms—Strategy Evaluation, Intention Prediction,
Multi-Human, Multi-Robot, Semantic Goals, Collaboration

I. INTRODUCTION

In the field of warehousing, automation is one of the
key drivers for increasing efficiency. The integration of
Automated Vehicles (AV’s) and other types of robots into
the core warehouse processes has rapidly accelerated in the
past decade [1] [2] [3]. But the industry slowly gravitates
away from the stationary automated warehouses towards
a more flexible and scalable solution, namely a fleet of
Automated Vehicles with increased decentralized decision-
making capabilities [4] [5]. However, until every task can
be automated, robots and humans will unavoidably be
present in the same working space. Society, and especially
the warehousing business, will move towards a situation
where work is shared between multiple robots and multiple
humans whom have to collaborate on their everyday tasks to
achieve lower labour intensity and higher productivity and
profitability. Current research, such as the ILIAD project [2]
and Vanderlande’s Pallet AV project [3], focus mainly on
a centrally controlled fleet of AV’s that have precalculated
trajectories and goals throughout the warehouse. These AV’s
currently have limited human intention prediction capabilities,
because this is mainly used for collision avoidance and
enforcing general safety rules instead of human-robot
collaboration. Due to the expected increasing decentralization
of fleet control, mobile robots not only need to be able
to estimate the semantic goals of multiple humans in their
vicinity, but also make choices to work with these humans
towards that same goal. This thesis aims to take a first step to
achieve multi-human multi-robot collaboration by identifying
how and why the sharing of data between robots can lead to
better estimation of human intentions.

A noticeable trend observed at mayor players in the
warehousing field is the transition of the current order picking
solutions to a situation where humans and robots are working
together, which can result in a more cost-effective and easily
scalable situation. Often small business in Europe or in other
less developed parts of the world do not have the money or
space to incorporate a fully automated warehouse system.
Such a system has a high initial installation cost and often
needs to be build around the peak throughput, meaning that
such a system operates beneath maximum capacity most of
the year. It is thus in the interest of these small business to
have a relatively compact system that has lower installation
costs and higher scalability when the business grows or a
peak in orders needs to be processed. Both can be achieved

by designing a fleet controller to calculate only the basic
order of tasks and routes for each robot in the fleet and retain
more autonomy for each individual robot. This increasingly
decentralized structure has an additional advantages that the
amount of active robots can easily be scaled up or down based
on the amount of work and that the system is more robust
to individual failing robots. These AV’s can only transport
products around the warehouse, like automated shopping
carts riding from the loading dock through the warehouse and
back. This circumvents a problem that is very hard to solve,
namely the construction of a robot that can pick a variety
of different products from shelves at different heights and
distances. Humans are responsible for the picking of orders
in a designated corridor of shelves, and putting them inside
the container of an AV. In this situation, multiple humans
are walking in the same area as where the robots operate.
It would thus be very beneficial for the AV’s to be able to
estimate to which goal a human is walking, so it may for
example adjust its own trajectory or current goal based on
where the human is going. Furthermore, the AV’s need to
communicate and share their observations to cover a bigger
part of the total warehouse and thus make more informed
decisions. In order to achieve these functionalities, the AV’s
need to be able to translate a sensory data such as a video
feed or infra-red depth information into 2D trajectories of
each human in its field of view and relate the trajectories to
the possible goals in their vicinity. Next, they need to evaluate
which goals the humans are most likely to be moving towards
and find a consensus on the situation together. A pipeline
on how to infer human semantic goals based on the robot
perception of their motion is proposed in this thesis.

A comparable situation, in the sense that intention prediction
and collaboration in a multi-human multi-robot situation is
becoming more relevant, is during the robot-soccer matches
in the MSL RoboCup. At the world championship in 2022,
for the first time a human was allowed to play with the robots
during a match [6]. A soccer match is a highly collaborative
environment and being able to estimate what the human on
their own team is intending to achieve as well as what the
human on the enemy team is intending to do is important for
planning strategies and, in general, playing well together. In
order for this research to also be relevant in a soccer robot
case, the test setup used for gathering data is inspired by
similar human-robot collaboration characteristics from both
the warehouse and soccer robot use cases. Due to the similarity
between these cases, a similar pipeline can be utilised in both
cases.

This thesis is structured as follows. In Section II the rules
and constraints of the experiments used to gather data are
explained. These experiments are designed to incorporate
some characteristics that are relevant for human-robot teams
in warehousing situations such as retrieving a package and
bringing it back to the robot. The experiments are performed
with two humans, two robots and four goals. In Section III
the proposed Goal Estimation Pipeline is discussed. First the
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video and depth data of the camera are converted into human
joint locations in a 3D environment. Then these joint locations
are translated into a sequence of 2D positions and orientations
over time. Lastly, a 2D-Gaussian function is used to estimate
the goal of both humans for each robot individually. Their
respective estimation is compared to the situation where the
estimations of both robots are combined to investigate if and
where this can lead to improvements. In Section IV it is ex-
plained how the experiments were conducted and in Section V
the performance of each part of the proposed Goal Estimation
Pipeline is discussed. Lastly in Section VI the conclusions are
drawn up and in Section VII the recommendations for further
research are formulated.

A. Related Work

Research in the field of intention prediction can be
subdivided into three different areas: current behavior
estimation, trajectory prediction and semantic goal prediction.
The goal of the models used is to provide the agent with
an accurate assessment of a specific situation so appropriate
actions can be taken. The first category focuses on estimating
the current actions the tracked entity is engaged in, for
example determining if a human is showing behavior related
to crossing a street by feeding raw data from the camera of
an autonomous driving vehicle into a deep neural network
[7], or by using an LSTM-network (a form of a recursive
neural network) to categorize a persons behavior inside a
working environment by detecting if human is engaging with
another human or just walking by [8]. These (deep) neural
network models can often be opaque in their inner workings,
but can however provide quite accurate results. Next to the
direct actions of humans, also the actions of objects like cars
can be analyzed to determine if for example lane changing
behavior is present based on positional data [9].
The next category of intention prediction is the extrapolation
of trajectories of moving objects or humans. For example, the
past path of a human in combination with the proximity of
other humans in its vicinity can be analyzed and used as input
for an LSTM-network. The future trajectory of a human in a
dense crowd can be accurately estimated with the proposed
method from [10]. These trajectory estimation algorithms are
also used in research affiliated with self-driving vehicles to
extrapolate the trajectories of pedestrians to avoid collisions
[11].
The last category of intention prediction is the estimation
of semantic goals. This can be done in abstract ways like
analyzing clicking behavior of a human in an online webshop
to predict what the customer wants to buy in order to show
personally tailored discounts [12]. Less abstract methods
involve using state estimation algorithms like a Hidden
Markov model to analyze car movement and determine to
which lane a car will change [13], or using human pose
estimation to predict the intentions of workers in warehouse
corridors towards predefined semantic goals [14]. This main
focus of this thesis is the latter category, namely the intention

prediction of semantic goals from user movement.

Recent research on semantic goal estimation includes [15],
where the freely available human pose estimation library
OpenPose [16] is used to obtain the position and orientation
of a human. Bayesian mathematics is then used to estimate
the leading hypothesis corresponding to a semantic goal. In
this research a single robot is used to estimate the goal of a
single human. The goals consists of areas in a T-split corridor
and areas around the robot itself. In this work, the methods
described in [15] are extended to incorporate multiple humans
and estimate the goals of each in an open area without walls.
Furthermore, the influence of sharing data between both
robots on the convergence to the correct goal is assessed.

The contribution of this thesis is thus a method to estimate
the semantic goals of multiple humans in a situation where
multiple robots are present. A Bayesian approach is used
to calculate the likelihood of each hypothesis based on the
positions and orientations of each human. The influence of
sharing data between robots is compared to the situation
where both robots operate individually. Lastly, a repository1 is
provided containing a program with interchangeable parts that
facilitates easily swapping and testing of different methods for
data association, probability calculation and data sharing. The
data gathered from the performed experiments is also available
for future research.

II. EXPERIMENT SETUP

In order to test the proposed method, a series of experiments
was designed to gather data that can be used to gain insight
into the performance of the proposed pipeline and identify
situations where the sharing of data leads to improved results.
The experiments are designed such that they incorporate
characteristics that are relevant for human-robot teams in a
warehouse such as an open movement area with no walls or
other physical obstructions, humans starting outside the field
of view of one or both robots, overlapping fields of view of
the robots and humans picking up parcels and bringing them
back to the robot. In both a warehouse situation and the robot
soccer match situation, robots and humans fulfill different
rolls in the same team based on both their limitations. A robot
is for example very well suited for moving parcels around
following an optimal route, but it is very hard for a robot to
pick up non-uniform parcels from different places. A human
can easily select and pick-up a variety of different parcels
with different weights and shapes, but cannot transport those
effectively over long distances. By assigning the tasks best
suited for both robots and humans, the highest efficiency can
be reached. In the experiments the humans perform the task
of walking towards a goal, picking it up and bringing it back
to the robot. The task of the robot is only to observe and
save data.

1 https://gitlab.tue.nl/et_projects/svintentionrecognition
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The experiments are conducted on one half of a robot soccer
field, which is shown in Figure 1. The robots are recreated by
two Kinect V2 camera’s each connected to a laptop and are
thus stationary. These camera’s are placed a 2 meters apart,
1.5 meters outside the borders of the field. By choosing this
setup, the middle of the field is covered by both robots while
still allowing some areas to only be covered by one of the
two robot. This is done to cover a bigger total part of the field
and also create interesting situations to analyse the influence
of sharing data. The field of view of both robots are visible
in Figure 1.
The semantic goals are represented by four soccer balls that
are placed in four different configurations in the field. The
location of these goals is assumed to be known by the robots.
For each configuration of starting positions for the balls,
different starting positions for each human are devised. The
exact combinations of starting positions for the goals and the
humans can be found in Appendix B. They are however chosen
in such a way that the humans start close to different goals and
at different spots in the field, eliminating external influences as
much as possible and enabling the emergence of interesting
situations such as crossings and walking past another goal
towards the next. In each experiment, two people perform 10
different trials. An experiment lasts about 20 minutes. All
experiments are grouped such that the participants do not
start at the same spot or with the same starting positions
of the soccer balls in subsequent trials, again eliminating as
much external influences as possible. The experiments are held
during three subsequent days. People are allowed to participate
more than once, but not more than once a day.

Figure 1: The empty field where the experiments are held.
Both robots are displayed with their field of views and the

location for putting down the picked-up ball.

The experiments are performed as follows: The goals and
humans start at the pre-planned locations. The humans then
receive the instructions to each walk towards a ball, pick it up
and bring it towards one of the robots. The only constraints
are that they cannot pick up the same ball and that they are
not allowed to arrive at the same robot at the same time. After

they have put their ball at the designated spot before the robot,
they have to exit the field to the side to not walk in front of
the camera’s. If the first human has exited the field, it is again
allowed to potentially bring a ball to the same robot. If both
persons have exited the field, the trial ends. The soccer balls
are put at the next locations while the humans walk towards
their next starting positions. This is repeated until all trials are
done. It is aimed to perform about 100 experiments in this way
in order to capture all possible interesting situations and also
create some duplicates for redundancy. A contingency table
B.1 of the combinations of starting positions of the soccer
balls and staring positions of the humans can be found in
Appendix B. An overview of the configurations used in each
experiment can be found in Table D.13 in Appendix D. The
data obtained with these experiments is then used as input for
the Goal Estimation Pipeline explained in the next section.

III. GOAL ESTIMATION PIPELINE

In this section the complete method used to transform a
frame from a Kinect camera into likelihood evaluations for
all goals is explained. An overview of the full pipeline is
shown in Figure 2. The method is divided into three parts:
Perception, Trajectory and Intention Prediction. In Subsection
III-A: Perception, it is explained how the color frame and
pointcloud received from the Kinect are used to find the
[x, y, z]-coordinates of the six assessed joint positions by
OpenPose. After that, in Subsection III-B: Trajectory it is
shown how these 3D joint positions are converted into an
[x, y]-position and how the orientation θ is determined. Next,
in Subsection III-C: Intention Prediction it is explained how
the 2D position and orientation sequences are used to calculate
the most likely goal of each human using a Bayesian approach.
It is also described how the data of the two robots is shared.
Lastly, an overview of the complete method is given with the
help of a pseudo-code algorithm.

A. Perception

For the Perception part of the pipeline frames obtained from
the Kinect camera are transformed into 3D joint positions
in the field. The output of the Kinect consists of a RGB
color image with a size of 424 × 512 and a corresponding
pointcloud with x, y and z values for all pixels. The original
resolution of the Kinect is HD 1080× 1920, but this is scaled
down by the drivers of the Kinect to match the coarseness
of the depth sensors. The conversion from depth values to a
pointcloud is done by the drivers of the Kinect. The image
frame is analyzed by the pose estimation algorithm OpenPose
[17]. A brief summary of the workings of this free-to-use
algorithm are explained in Subsection III-A1. The output of
OpenPose consists of 2D pixel values for the tracked points,
which are converted to world coordinates with the pointcloud
from the Kinect. This process is explained in subsection
III-A2.
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Figure 2: Visual representation of the Goal Estimation Pipeline for the processing of one frame. The part executed for each
robot is subdivided into Perception, Trajectory and Intention Prediction. After that, the likelihoods of the hypotheses are

shared between robots. The type of data communicated between parts is displayed above each arrow connecting the parts.
Each part is discussed in Section III

.

1) OpenPose: OpenPose is an open-source library that can
be used for real-time multi-person keypoint detection. The
input of the model is a single frame of any size. The model
consists of a two-branch multi-stage convolutional neural
network, where one branch predicts confidence maps for par-
ticular body parts and the other branch estimates part-affinity
fields. These fields indicate towards what directions different
body parts are most likely oriented with respect to other body
parts of the same human. Together these two branches are
merged in a bipartite graph that matches associated body parts
of multiple humans (if present in the frame). For an in depth
explanation of the workings of the OpenPose model the reader
is referred to [17]. The output is 24 2D pixel coordinates per
human corresponding to major joints of the human body as
well as some other points of interest indicating the orientation
of the head. Next to that, also the confidence between 0 and 1
of each joint position is given. The confidence is only used in
the occlusions part of the pipeline and thus not shown in the
overview in Figure 2. An example of the result of OpenPose
is displayed in Figure 3.

Figure 3: Keypoints detected by OpenPose on the COCO
dataset. [16]

Only 6 of the 24 joint locations are used: the shoulders,
the elbows and the hips. These joint pairs are indicated
in Figure 3 by the numbers 2 & 5, 3 & 6 and 8 & 11

respectively. These three joint pairs are chosen because they
remain most constant when a person is walking, while joints
like the hands, knees and feet oscillate around the absolute
center of the human (when seen from a side view). The
average 2D location of the chosen six joints is thus closest
to the average location of a person as a whole. In the next
subsection it is explained how the pixel coordinates of the six
joints are converted back to the world coordinates in which
the positions of the humans are measured.

2) 3D Joint Positions: The data received from the Open-
Pose algorithm consists of six joint locations in pixel coor-
dinates [px, py]. These coordinates need to be converted to
[x, y, z]-coordinates with the help of the positions stored in
the pointcloud matrix of the Kinect. The OpenPose algorithm
outputs float values, so it cannot immediately be linked to
one entry in the pointcloud. Furthermore, it is observed that
pixel coordinates outputted by OpenPose in some cases do not
match with the visual location of the joints in the frame, as
illustrated in Figure 4. After inspection of multiple cases, the
compression of the resolution from 1080× 1920 to 424× 512
by the Kinect is appointed as the cause of this mismatch
between the color matrix and the pointcloud values. Algorithm
1 is thus devised to iteratively increase the search range in the
pointcloud matrix in order to find enough suitable points for
an estimate of the joint location.

Design and Evaluation of Strategies for Multi-Human Intention Prediction in Multi-Robot Systems 4



(a) 424× 512 color frame as
received from the Kinect with
the joint positions of the six

followed joints.

(b) 424× 512 depth frame as
received from the Kinect

before conversion to world
coordinates. A lighter color

means that the target is closer
to the camera.

Figure 4: Example of a mismatch between pixel values for
the joint positions from OpenPose and the depth image

received from the Kinect.

Algorithm 1 Compute [x, y, z]-position of joint

Require: keypoint: [px, py] in pixel coordinates
Require: pointcloud: all [x, y, z] points in world coordinates

1: Iteration i = 2
2: Max iterations k = 8
3: Threshold h = 5

4: while amount of valid points ≤ h do
5: Take [x, y, z]-values of 2i × 2i square around

keypoint
6: Discard points with pixel values outside 424× 512

frame
7: Discard points with no depth value

8: Calculate center point of depth values in world
coordinates

9: Discard points outside 90% surface under fitted
normal distribution curve

10: Discard points with norm of more than 1.0m to
center point

11: i = i+ 1

12: if i ≥ k then
13: return Empty Array
14: end if
15: end while

16: Recalculate center point
17: return center point

The input of the algorithm is the keypoint [px, py] from
OpenPose and the complete pointcloud from the Kinect. In
row 1-3 the parameters are initialized. The initial value of the
iteration parameter i is chosen to be equal to 2. This means
at least 16 pointcloud points are evaluated, which ensures
enough points are available to identify possible outliers. The

parameters k and h determine the values of the evaluation
in row 12-14 where the algorithm terminates if less than 5
suitable points are found after 8 iterations. In every iteration
i, all points corresponding to the pixels in a square with width
2i around [px, py] are evaluated. If one of the evaluated pixels
lays outside the matrix, the corresponding point is discarded.
This can happen when the location from OpenPose lays close
to the border of the frame. All points outside the range of
the Kinect depth sensor have no depth value and are thus
also discarded. These actions take place in row 5-7. Next,
the mean and standard deviation of the current point set is
calculated. Points with an absolute distance to the mean of
more than 1.7 times the standard deviation (corresponding to
90% of the surface under the fitted normal distribution curve)
are discarded, as well as points located more than 1.0 meter
from the mean. The depth values in the matrix can increase
rigorously when compared to adjacent pixels, so it is essential
to filter outliers effectively. These computations happen in row
8-11. In the last part of the algorithm the iteration parameter
i is increased and it is evaluated if enough viable points
were found. If that is the case, the mean point of the set is
recalculated in row 16 and returned as output in row 17.

B. Trajectory

In this part of the pipeline the six corrected joint positions
of each human from OpenPose are used to determine the
average [x, y]-position of each human. In Subsection III-B1
it is first explained how each group of six joint positions is
added to the sequence of the corresponding human. OpenPose
outputs data for both persons in the scene, but it cannot
be known beforehand which data belongs to Human H1
and which data belongs to Human H2. It thus needs to be
determined to which current sequence the new data most
likely belongs. After that, in Subsection III-B2 it is described
how missing joint positions are estimated. It is also explained
how occlusions of joints by other body parts of the same
human are detected and resolved with the newly proposed
Far Joint Inferring algorithm (Alg. 4). Lastly, in Subsection
III-B3 it is explained how the orientation θ of each human
is calculated based on a weighted moving average of the
past velocity vectors. Also a brief description is given of
how a Kalman filter is used to adjust the found position and
orientation based on the assumption of constant velocity.

1) Data Association: Each new set of joint positions needs
to be associated to the correct set of already evaluated points.
OpenPose does not always detect each human in the scene in
the same order. This can result in the fact that the joint position
groups are swapped with respect to the human sequences and
thus is it needed to evaluate to which of the existing sequences
the new joint positions most likely belong. This is shown in
Algorithm 2. First, in row 4 a prediction of the joint position
is made by calculating a weighted moving average of the five
past joint positions. The moving average calculation is shown
in Eq. (1), where xt+1, yt+1 and zt+1 represent the prediction
of the new joint position, N is the total amount of frames
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that is looked back, n is the frame number and t is the current
frame number. Taking a moving average ensures that each data
point closer to the current frame weight twice as heavy as data
points further back in the sequence.

xt+1

yt+1

zt+1

 =
1∑N−1

n=0 2N−n

N−1∑
n=0

2N−n ·

xt−n

yt−n

zt−n

 . (1)

If it is the first frame, the initial starting position of the hu-
man is taken as the prediction value (row 5−6). Furthermore,
if the moving average does not produce a viable result, for
example because a human cannot be seen resulting in no data
at that time frame, the last known position of that joint is taken
(row 7− 8). Next, in row 8 the absolute norm between each
new joint position and the prediction of the new point based on
existing sequence of each human is calculated. In row 10 these
errors are then summed for each group of new joint positions
and the humans in the scene. Next, these summed-up errors
for two humans and two new data groups can be visualized
in an error matrix such as

EH1,H2 =

[
eJG1→H1 eJG1→H2

eJG2→H1 eJG2→H2

]
, (2)

where eJG1,H1 is the value of the summed up errors between
the new joint position group 1 and Human H1, eJG1→H2 for
joint position group 1 and Human H2 and so forth. In row
13-16 it is then assessed which trace of all permutations of
the rows of EH1,H2 results in the lowest total error, such as

Tb,p = argmin(tr(P (EH1,H2))), (3)

where Tb,p is the trace of the best permutated error matrix
E, P(·) is the set of all permutations, tr(·) is the trace of
a matrix and EH1,H2 is the error matrix of two humans.
The corresponding permutation indicates if the joint position
groups need to be swapped or if they are assigned to the
sequence of the correct human. For two permutations this
can be easily computed, but the usage of permutations of the
error matrix is also scalable to evaluating situations with more
humans present. For a scene where i humans are tracked, the
error matrix would be a i × i-matrix with the factorial of i
permutations.

Algorithm 2 Associate New Data to Correct Human

Require: joint position groups: [x, y, z] of 6 joints per
Human

1: for each human do
2: for each joint position group do
3: for each joint do
4: Make prediction of new joint position based

on moving average of past joint positions
(Eq. 1)

5: if first frame then
6: Take initial position as prediction value
7: else if prediction invalid then
8: Take last known valid joint position as

prediction value
9: end if

10: Calculate error new joint and prediction
11: end for
12: Sum error values per joint position group

and human combination
13: end for
14: end for

15: for each permutation of error matrix do
16: Evaluate trace of permuted error matrix (Eq. 2)
17: end for

18: Best situation is permutation with lowest sum of
errors (Eq. 3)

19: return Joint position groups reordered based on best
situation

2) Resolving Occlusion: After the new data points are as-
signed to the correct sequence, there is looked at the detection
of occlusions and how to relocate those points so they better
represent the original real life location. Occlusions can for
example occur when a person is facing the robot with its
right side. The left hip, elbow and shoulder are in this case
blocked from sight by the rest of the body of the human.
However, in most cases OpenPose still recognizes these joints
and thus provides a pixel coordinate point, but when these
pixel coordinates are converted to a 3D position, the found
position often is closer to the joint facing the camera than
the actual (obstructed) location. This phenomenon is shown
in Figure 5 for all six joints. It is clear that the left joint
locations from OpenPose are not close to the original location
of the joint. Algorithm 3 is thus proposed to detect if a joint
position is misplaced due to occlusion. When this is the case,
Algorithm 4 is used to estimate the original position of an
occluded joint based on the distance between the joint facing
the camera and the misplaced joint.

Design and Evaluation of Strategies for Multi-Human Intention Prediction in Multi-Robot Systems 6



Figure 5: An example of wrongly estimated joint positions
due to occlusion.

For the detection of occlusion it is first checked in row 2-4
if one of the joints of the current joint pair is missing. If both
positions have a valid position, it is checked in row 5-8 if one
of both positions lays too close to the borders of the field of
view. If this is the case, the human is only partly visible and
thus these missing joint positions should not be repositioned
inside the field of view. Lastly, in row 9-24 the norm of the new
joint pair is compared to the average of all previous correct
norms of this joint pair for each human. If the difference is
too small or too big, it needs to be determined which of the
two joints is correct and which one has to be substituted. The
limits on the differences are experimentally determined. If the
difference is smaller than the average minus 0.05m, the other
joint pairs in the new joint position group are evaluated to
determine which joint positions are closer to the robot and thus
which side of the human is facing the robot. If the other joint
pairs are also not valid, the point with the lowest confidence
from OpenPose is substituted. Alternatively, if the difference
in norms is higher than the average plus 0.20m, this means
that one of the found joint positions is positioned somewhere
in the background and not on the body of the human. In this
case also the point with the lowest confidence from OpenPose
is substituted.

Algorithm 3 Resolve Occlusions

Require: joint positions of Human: [x, y, z] of 6 joints
in 3 pairs

1: for each joint pair do
2: if one of joint positions invalid then
3: Continue with next joint pair
4: end if

5: Calculate perpendicular distances joints to closest
border field of view

6: if one of the distances ≤ 0.1m then
7: Continue with next joint pair
8: end if

9: Calculate norm of distance between joints of joint
pair

10: if norm joint pair is within average limits then
11: Add norm of joint pair to average
12: else if norm joint pair is too small then
13: for each other joint pair do
14: Calculate norm of distance between joints of

other joint pair
15: if norm other joint is within average limits
16: then
17: Identify if the Human is facing the robot

with its right or left side
18: Substitute joint corresponding to other

side with FJI algorithm
19: end if
20: end for
21: else if norm joint pair is too big then
22: Identify joint that is furthest away from robot

location
23: Substitute furthest joint with FJI algorithm
24: end if
25: end for

The Far Joint Inferring (FJI-)algorithm of Algorithm 4 is
used for the substitution of a joint position if the norm of the
accompanying joint pair is smaller than the threshold. First,
the 2D vector from the robot towards the closest joint position
is calculated in row 1. Then in row 2 a new vector is created
with the same direction and the average measured norm of this
joint pair. This vector starts in the closest joint position and
is rotated based on the ratio between the old norm and the
average norm of the joint pair. This ratio is then multiplied
with 45◦ in row 4 to determine the angle of rotation. This
method is based on the fact that the furthest joint position
is found closer to the closest joint position if the human is
oriented perpendicular with respect to the robot. A threshold
of 45◦ is chosen because if a human would turn further, the
robot would again be able to see the furthest joint directly and
the original norm thus would measure within limits. Lastly
in row 5 the newly found joint is substituted into the joint
position group. This process is schematically represented in
Figure 6 for the left joint position.
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Algorithm 4 Far Joint Inferring algorithm

Require: joint pair: [x, y, z] of 2 joints in joint pair
Require: furthest point, closest point

1: Obtain 2D vector from robot to closest joint position
2: Create new vector with this direction and length of

average measured norm of joint pair
3: angle correction ac = norm/average norm ∗ 45◦
4: Rotate adjusted norm around Z-axis of closest joint with
a◦c towards side of old point

5: Substitute old furthest joint position with newly acquired
joint position

(a) Joint positions of
shoulders as received
from OpenPose. The

distance between R and L
is the old norm.

(b) Joint positions of
shoulders after application

FJI algorithm. The
distance between R and
the new point L is the

average norm of a
particular joint pair.

Figure 6: Top-down schematic representation of the
repositioning of an occluded joint, where R is the right and

closest joint position, L is the left and furthest joint position,
α is the rotation angle and the dotted line represent the
vector from the robot towards the closest joint position.

3) Kalman Filter for Trajectory Smoothing: With the oc-
cluded joint locations repositioned, the 2D location of each
human is determined by taking the average of all new joint
locations. The orientation is calculated by taking a weighted
moving average of the past five velocity vectors, as illustrated
in

[
vx,t+1

vy,t+1

]
=

1∑N−1
n=0 2N−n

N−1∑
n=0

2N−n · (
[
xt−n

yt−n

]
−
[
xt−n−1

yt−n−1

]
),

(4)
where vx,t+1 and vy,t+1 denote the x- and y-component of
prediction for the velocity vector, xt and yt are the x- and

y-position at frame t, N is the total amount of frames that
is looked back, n is the amount of frames and t is the
current frame number. The total resulting vector of the form
[xt, yt, θt] is subsequently used as input for a Kalman filter
with a constant velocity model for each human. With a Kalman
filter new measurements are compared to the beliefs of an
underlying model and are updated based on the likeliness of
observing the new measurements. The result in this case is
the smoothing of the trajectory by repositioning the new data
point based on the assumption of a constant velocity model and
Gaussian distributed errors. The effect of applying a Kalman
filter on an example sequence is shown in Figure 7. It can
clearly be seen that the resulting trajectory with a constant
velocity Kalman filter applied is a lot smoother and thus
better represents a casually walking human person. Lastly, the
filtered position and orientation are added to the time sequence
of each human.

(a) Example sequence without
a Kalman filter applied.

(b) Example sequence with a
constant velocity Kalman filter

applied.

Figure 7: An example sequence to highlight the effect of
applying a constant velocity Kalman filter to each new joint

position before adding it to the sequence.

C. Intention Prediction

In the last part of the pipeline from Figure 2 the obtained
position and orientation of each human is used to predict
the most likely goal of each human. In Subsection III-C1 it
is explained how the likelihood of each goal hypothesis is
calculated using a 2D Gaussian function for the probability
distribution of the positions and a custom function for the
probability distribution of the orientations. This custom
function is derived from the work of [15] but expanded to
work in an open field instead of a hallway environment. Next,
in Subsection III-C2 the method for sharing data between the
two robots is described.

1) Likelihood Calculation: The intention prediction of each
human is done by evaluating the most likely semantic goal
based on Bayesian mathematics. During the experiments there
are four goals to be evaluated: goal b1, goal b2, goal b3 and
goal b4. Each hypothesis Hi represents that the most likely
goal of the human is goal bi. The hypothesis with the highest
likelihood is deemed to most likely goal of that human at a
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particular time frame. The probabilistic model for each of the
four goal hypotheses is defined as

pi(Hi|xi, yi, θi) = pi(Hi|θi) ∗ pi(Hi|xi, yi), (5)

where it pi(Hi|xi, yi, θi) is the total combined likelihood of
hypothesis Hi, pi(Hi|xi, yi) is the likelihood for Hi given the
position [xi, yi] of the human and pi(Hi|θi) is the likelihood
for Hi given the orientation θi of the human. These likelihoods
can be multiplied because it is assumed they are independent
observations. Each of these likelihoods can be expressed using
Bayes’ rule as

pi(Hi|obs) =
pi(obs|Hi)pi(Hi)

pi(obs)
, (6)

where obs can be either [xi, yi] or thetai, pi(Hi|obs) is
the likelihood of hypothesis Hi given a certain observation,
pi(obs|Hi) the probability of observing obs given hypothesis
Hi is true, pi(Hi) the probability of the system beginning
in state Hi and pi(obs) the likelihood of seeing observation
obs. While there is a finite set of hypotheses, the law of total
probability is applied such that

pi(Hi|obs) =
pi(obs|Hi)pi(Hi)∑
pi(obs|Hi)pi(Hi)

. (7)

When Eq. (5) and (7) are combined, the prior knowledge terms
cancel each other and the equation for the total likelihood
becomes

pi(Hi|xi, yi, θi) =
pi(xi, yi|Hi)∑
pi(xi, yi|Hi)

∗ pi(θi|Hi)∑
pi(θi|Hi)

. (8)

The probabilities are automatically normalized because of
the division by the sum of all probabilities, so the resulting
likelihoods will always add to 1.0.
Next, the probability density function for the position of a
human is defined as a homogeneous 2D Gaussian function
with the mean [xi, yi] at the location of goal i. The 2D
Gaussian is chosen because it increases gradually to the
mean, resulting in an increase in likelihood when a human
approaches a certain goal from any direction. The 2D Gaussian
function is expressed as

pi(xi, yi|Hi) = A∗exp
(
−
(
(x− xi)

2

2σ2
+

(y − yi)
2

2σ2

))
(9)

where [x, y] is the position of the human, [xi, yi] the location
of goal i, the amplitude A and the standard deviation σ.
As the probability density function for the orientation of the
human a custom function is chosen based on the work of
[15]. The custom function consists of the positive part of the
inner product between the corresponding vector of the human
orientation θ and the vector from the human towards goal
bi, multiplied by a constraint parameter fc. This ensures the
human has to be oriented in the direction of the goal to have
a probability higher than zero. The equation is given by

pi(θi|Hi) = max(0,
Θi · dHi

|Θi||dHi |
)fC , (10)

where Θi =

[
sin θi
cos θi

]
is the orientation vector with a length

|Θi| = 1, dHi the 2D vector from the human towards goal bi
with length |dHi | and lastly the constraint parameter fc. This
parameter has a value between 0 and 1 and it decreases the
influence of the orientation on the probability when a goal is
not the closest goal of the human. The equation is given by

fC,i =
min(|dH1

|, |dH2
|, |dH3

|, |dH4
|)

|dHi
|

. (11)

Lastly, a fifth hypothesis HNT is added to account for the
uncertainty in the model. The value for this hypothesis is
chosen to be constant, so it has a relatively high likelihood
if the likelihoods of the other hypotheses are low and vice
versa due to the normalization in Eq. (8). The value of
this constant remains a design parameter and behaves like
a threshold value for when then likelihood of a hypothesis
before normalization starts to count.

2) Data Sharing: The previously explained parts of the
pipeline all relate to the data conversion in a single robot, but
in this subsection it is explained how the hypotheses of each
robots are merged with the hypotheses of the other robot. The
one of the main goals of this thesis is to identify improvements
in human intention prediction due to data sharing, so a simple
data sharing method is chosen for comparison to the individual
cases. First, the frames per second of both robots need to be
measured. Then, the sequences are compared at the timestamp
of the slowest robot. At that time frame, the values from most
recent time frame of the other robot are taken. This conversion
is expressed as

fn,R2 = floor(fn,R1 ∗
dtR1

dtR2
), (12)

where fn,R2 is the frame number of Robot R2, fn,R1 the
frame number of the slowest Robot R1, dtR1 the time between
frames for Robot R1 and dtR2 the time between frames for
Robot R2. The time between frames can also be defined as
the 1

fps where fps denotes the frames per second of a robot
camera. Once two probability distributions are selected, the
likelihoods of the combined goal hypotheses are calculated by
adding the individual hypotheses element-wise following

pi,R1+R2(Hi|vi,R1, vi,R2) =

pi,R1(Hi|vi,R1) + pi,R2(Hi|vi,R2)∑
R1,R2 pi(Hi|vi)

(13)

where pi,R1+R2(Hi|vi,R1, vi,R2) is the likelihood after data
sharing, pi,R1(Hi|vi,R1) is the combined likelihood of Robot
R1, pi,R2(Hi|vi,R2) is the likelihood of Robot R2, vi,R1 =
[xi, yi, θi]R1 is the position and orientation vector of Robot
R1, vi,R2 = [xi, yi, θi]R2 is the position and orientation vector
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of Robot R2 and
∑

R1,R2 pi(Hi|vi) is the sum of likelihoods
of both distributions. The division by the sum of likelihoods
is done to ensure the likelihoods sum to 1.0. The No Target
hypothesis HNT remains constant such that

pi,R1+R2(HNT ) = pi,R1(HNT ) = pi,R2(HNT ) = cNT .
(14)

Algorithm 5 Goal Estimation Pipeline

1: for every new frame of robot with slowest fps do
2: for each robot do

Phase 1 – Perception

3: Obtain depth and color frame from Kinect
4: Analysis color frame by OpenPose
5: Transform pixel values of joint positions into

3D coordinates (Alg. 1)

Phase 2 – Trajectory

6: Associate each group of joint positions to
correct Human (Alg. 2)

7: Detect and substitute occluded joints (Alg. 4)
8: Take average (x, y)-position
9: Calculate 5 frame moving average velocity

direction as orientation (Eq. 4)
10: Apply constant velocity Kalman filter to smooth

final position and orientation (Eq. 7)
11: Add position and orientation to time sequence

Phase 3 – Intention Prediction

12: Calculate likelihood for all goal hypotheses
with 2D-Gaussian (Eq. 9) and orientation
towards the goals (Eq. 10)

13: Add No Target hypothesis and normalize
individual likelihoods (Eq. 8)

14: Add individual likelihoods to time sequence
15: end for

Phase 4 – Data Sharing

16: Find most recent time stamp for both
robots (Eq. 12)

17: Combine likelihoods (Eq. 13)
18: Add No Target hypothesis and normalize

combined likelihoods (Eq. 13, Eq. 14)
19: Add combined likelihoods to time sequence
20: end for

D. Summary

In this subsection a summary is given of the complete Goal
Estimation Pipeline discussed in this section. In Algorithm 5
an overview of all steps is shown corresponding to Figure 2.
First, the color frame and depth frame are retrieved from the
Kinect at a time t (row 3). The color frame is analysed by the
OpenPose algorithm and the joint positions of three joint pairs
are extracted: the shoulder-, elbow- and hip-joints (row 4). By
using the depth frame from the Kinect, the 3D joint positions

of each followed joint are determined (row 5). To overcome
mismatches due to the compression inside the Kinect, the
search area around the point supplied by OpenPose can be
expanded. After that, the newly found points are assigned to
the correct sequence based on the error with a moving average
prediction of each joint position (row 6) and occluded points
are repositioned with the Far Joint Inferring algorithm (row
7). The average position of each human is calculated as the
2D average of each joint position and the orientation of each
human is determined by calculating the five frame moving
average of the velocity vector (row 8-9). Then a Kalman filter
is used to reposition the trajectory assuming a constant velocity
dynamic model (row 10). The resulting vector [xt, yt, θt] for
time frame t is saved for each robot (row 11). Next, the
likelihoods are evaluated for each goal hypothesis and saved
for time frame t (row 12-13). Lastly, the closest time stamps
of both robots are evaluated and the likelihoods are combined
by adding the likelihood of each goal hypothesis element-
wise (row 15 − 16). The result is normalized so the sum of
all likelihoods remains 1.0 and the results are saved in the
sequence for time frame t (row 17-18). The output is thus a
position and orientation sequence for every time frame t with
the accompanying values for five hypotheses for each robot
individually and for the situation where data is shared.

IV. EXPERIMENTS

In this section it is explained how the experiments were
performed. As highlighted in Section II, the experiment setup
consists of two robots, two humans and four goals. The robots
are represented by two Kinect V2 camera’s connected to
two laptops running Ubuntu 20.04. On each laptop a custom
Python script is executed that retrieves the color- and depth-
frame from the Kinect camera. The frames per second mea-
sured is highly influenced by the processing speed of the script,
so the script is designed in such a way that the conversion
from the single depth value towards a [x, y, z]-position using
the focal length of the camera is done after the recording of
the video. This results in an average frames per second of
5Hz for robot R1 and 6 Hz for robot R2. The used script
can be found in the repository2 accompanying this thesis, of
which the file structure is described in Appendix C. Next,
the four goals are represented by four soccer balls. All balls
have the same color yellow, which is distinct from the green
field so they can be clearly recognized in each frame. The
balls are placed in four different configurations named A-D.
Each configuration also has a different set of possible starting
positions for the humans named a-m, of which an overview
is displayed in Appendix B. An example of an experiment
setup is shown in Figure 8. The experiments are conducted in
series of ten trials per two participants. The trials are ordered
in such a way that the same exact experiment is not repeated
by the same two participants inside a series. Furthermore, in a
series of ten trials subsequent starting positions of the humans
as well as starting positions of the goals are always varied.

2https://gitlab.tue.nl/et_projects/svintentionrecognition
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This is done to ensure more random behavior and to eliminate
external influences on the decisions of the participants as much
as possible. All experimental configurations can be found in
the repository accompanying this thesis.

Figure 8: The starting positions of all humans and goals in
Experiment 1. The balls are placed in Configuration D,

while the humans start in Configuration a.

The experiments were performed spanning three days with
the help of 19 different voluntary participants. Each participant
has signed an informed consent form, of which a template can
be found in Appendix E. Due to two participants participating
multiple days, a total of 110 experiments were performed. The
data of 12 experiments was corrupted due to saving issues
at the used laptops and thus unusable, so the final results
are 98 correctly captured experiments. Each trial resulted in
two videos with a length of 15 seconds, consisting of 100-
120 frames each depending on the frame rate of the camera.
All gathered data can also be found in the repository3 of this
thesis.

V. RESULTS

In this section the effect of the application of the Goal
Estimation Pipeline on the performance within the experiments
is discussed. First, the Perception part of the pipeline is
evaluated. This first part is responsible for extracting the 3D
joint locations from OpenPose data, as explained in Section
III-A. Next, the performance of the second part Trajectory is
determined by identifying the main causes for incomplete or
insufficient 2D time sequences. After that, the performance
of the human intention prediction as explained in Section
III-C is evaluated based on the amount of correctly identified
goals and the percentage of the time and absolute distance
at which the correct hypothesis first becomes dominant. The
results of the individual situations are compared to the results

3 https://gitlab.tue.nl/et_projects/svintentionrecognition

when data is shared between robots. Specific examples from
the experiments are used to highlight the improvements with
respect to the latter case.

A. 3D Joint Position Estimation

In this section the performance of Perception part of the
Goal Estimation Pipeline explained in Subsection III-A is
evaluated. This is done by determining in how many cases
Algorithm 1 returns a valid joint position after a maximum of
8 iterations. In table I the cumulative amount of valid joint
positions after each amount of iteration i is shown. Also the
percentage of the total amount of assessed joint positions is
shown. It can be derived from this table that in 80.29% of
the cases a valid joint position is found with the first time the
algorithm is executed (the initial value of i is 2). This leaves
about 20% of cases where a substantial mismatch between the
pointcloud and the color frame due to the compression in the
Kinect is observed. The algorithm is automatically terminated
after 8 iterations, resulting in the fact that in 93.94% of the
evaluations eventually a valid joint position is found. For the
remaining 6.06% the compression resulted in such a mismatch
that a valid point could not be found with the closest 256
pointcloud values.

Table I: Cumulative amount and percentage of found valid
joint positions after amount of iterations i of Algorithm 1.

Amount of
Iterations: i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 Total

Amount [-] 80408 86424 89360 91213 92502 93429 94068 100146
Percentage [%] 80.29 86.30 89.23 91.08 92.37 93.30 93.94 100.00

B. Construction of 2D Human Position and Orientation Se-
quences

In this section the performance of the Trajectory part of the
Goal Estimation Pipeline as shown in Figure 2 is evaluated.
In this part multiple joint positions in a 3D coordinate system
are converted to one position and orientation of a human at
each time frame. These positions and orientations are then
filtered by a Kalman filter and chained together to form a
time sequence of the trajectory of the human. When a human
reaches a goal, that goal is marked as reached based on auto-
matic detection by position proximity. In Table II the amount
of sequences for each human-robot pair of which is detected
sequences end at the correct goal. Some of these goals could
never be detected correctly (for example because the goal is
outside the field of view of the robot), others are wrongly
detected due to gaps in the data or other inconsistencies. In this
section the identified causes for not achieving a perfect amount
of correctly detected end goals are discussed. Then in the next
section the prediction of the correct goals are discussed and
the individual cases are compared to the case where data is
shared.
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Table II: The amount of correctly assessed sequences from
each robot for each human in the scene - Goal: Balls

Amount
Correct R1 R2

H1 63 of 98 40 of 98
H2 49 of 98 60 of 98

Gap in Data Sequence when Reaching Goal
In Figure 9 the position and orientation sequences of both

humans are displayed. It is visible that the sequence of Human
H2 nicely begins at the border of the field of view and ends
at one of the goals. However, in the sequence for Human H1
a data gap is present exactly when the human is reaching the
goal. Due to this gap in the data, the goal is not marked as
reached and the sequence is not separated in the two sequential
tasks: walking towards one of the goals and walking towards
one of the robots. A possible explanation for this data gap is
that the infrared depth rays from the Kinect data become more
sparsely distributed if they have to travel further. This results
in a more coarse distribution of data points in the back of the
field, which can result in the case that there is no matching
depth point for the joint location as determined by OpenPose.

Figure 9: Example of a situation where there is a gap in the
data sequence exactly when a human reaches the goal. -

Experiment 77, R1

Reaching Goal Outside Field of View
In Figure 10 the two sequences from Robot R2 in Experi-

ment 62 are displayed. It is shown that Human H2 is moving
towards goal b1, but it is not detected as reached because the
goal is positioned outside the field of view of the robot. This is
the reason the sequence is not split and the second part of the
sequences from that goal to Robot R2 is also visible. These
mislabeling errors are inherent to the chosen configurations of
the positions of the goals.

Figure 10: Example of a situation where the goal is outside
the field of view of the robot. - Experiment 62, R2

Location Offset of Goals
In Figure 11 the sequences for both humans from Robot

R1 are displayed. The trajectory shows that Human H1 is
walking towards goal b3 and the remainder of its walking
pattern indicates that he has reached it. However, the location
of the bend in the trajectory does not correspond with the
predefined location of the goal. The same holds for Human
H2 and goal b4. The result is that the goal is not marked
as reached. This can be caused by the position of the goals
during the experiments not being at exactly the predefined
(x, y)-location in the field. Alternatively, it can be caused by
an offset in the orientation of the camera or a propagated offset
by the Kalman filter smoothing.

Figure 11: Example of a situation where there is a
substantial location offset in the goals and/or the sequence. -

Experiment 43, R1

Insufficient Data due to Occlusions
In Figure 12 the data sequences of both humans from Robot

R1 are shown. The sequence of Human H1 is smooth and
continuous, while the sequence belonging to Human H2 is
divided into three parts. This is caused by the fact that Human
H1 is crossing in front of Human H2 with respect to Robot
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R1, such that Human H2 is only partially visible during some
time. The absence of data from Human H2 results in a high
uncertainty in the update step of the Kalman filter, so when
data is available again the positions are corrected wrongly.
Furthermore, the moving average of the velocity vector also
becomes increasingly unreliable with a non-continuous data
sequence, resulting in orientations that can point in the wrong
direction.

Figure 12: Example of a situation with insufficient
OpenPose data for H2. - Experiment 83, R1

Incorrect Goal Detected as Reached
In Figure 13 the sequences of both humans from Robot R2

are displayed. At first glance both sequences are looking fine,
but the sequence of Human H2 terminates at goal b4, while
the person is walking past this goal towards goal b3. This goal
is thus mislabelled by the position proximity method used to
check if a goal is reached by a human. The trade-off between
sensitivity of the the proximity method and mislabelling of
humans walking past goals will always remain, but is mitigated
by choosing the detection range at the current experimentally
obtained value of 0.25m.

Figure 13: Example of a situation where a human (H2)
walks too close to another ball such that it is mislabeled as

reached. - Experiment 38, R2

Sequences of Humans Flipped
In this subsection three causes are highlighted for the unin-

tentional swapping of sequences. In Figure 14 both sequences
belonging to Experiment 94 are displayed. It is visible that
the the trajectory for Human H1 from Robot R1 starts at the
left side of the middle line, but then suddenly transforms into
the sequence of Human H2. The path of Human H1 shows a
gap and continues after a few frames in the middle of the field
towards goal b2. A similar trajectory is visible from Robot R2
but it belongs to the other human. The sequences of each robot
for both humans are thus swapped with respect to each other.
In this case it occurs because Human H1 is tracked while
he is outside the area and on entering the field the evaluation
of the data association algorithm becomes very low for both
cases, resulting in a wrong assessment that is then propagated
throughout the analysis.

Figure 14: Example of a situation where the sequences of
both humans are flipped from a few frames after the start. -

Experiment 94

In Figure 15 both sequences of Experiment 26 are shown.
The path of Human H1 by Robot R1 is cut off at goal b1,
while the eventual goal is goal b4. The remainder of the
sequence is then assigned to Human H2 because the actual
path of Human H2 (as indicated by the estimation of robot
R2) crosses in front of the path of Human H2 with respect
to robot R1. Robot R1 thus loses track of human H1 for a
few seconds, after which the sequences are swapped for the
remainder of the experiment.
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Figure 15: Example of a situation where the sequences of
both humans are flipped after a crossing. - Experiment 26

Lastly, in Figure 16 all sequences of Experiment 21 are
displayed. In this case the sequence for Human H1 of Robot
R1 is swapped with respect to the Robot R2 when Human
H2 exits the field of view of Robot R1. Robot R2 still sees
the human continuing his path towards goal b2, but for Robot
R1 the newly observed positions from that point are assigned
to the wrong human sequence. This can occur when some
values in the error matrix EH1,H2 from Eq. (2) are invalid,
which can result in a wrong assignment of a frame which is
then propagated to all further frames.

Figure 16: Example of a situation where the sequences of
both humans are flipped after a human exits the field of

view of one robot. - Experiment 21

C. Evaluation of Data Sharing

In this section the results obtained from implementing the
third part of the Goal Estimation Pipeline Intention Predic-
tion (Subsection III-C) on the data sequences. For this last
part the sequences of the 2D position and orientation of
both humans are used to calculate the likelihoods for which
goals the humans are most likely to go to over time. These
probability distributions are made for both robots individually
and for the situation where a simple form of data sharing is

present between the two robots. The parameter values for the
intention prediction function are experimentally determined
to be adequate and are consequently chosen as follows: The
amplitude and standard deviation of the 2D Gaussian of Eq.
(9) are A = 2.0 and σ = 0.8 respectively. The constant value
for hypothesis HNT is chosen equal to cNT = 0.01. The
probability distributions are compared based on three metrics:

1) Ch: the correctness of the hypothesis as a boolean.
2) T%: the percentage of the total time at which the correct

hypothesis first becomes dominant.
3) dG: the absolute distance in meters m from the human to

the goal at the time the correct hypothesis first becomes
dominant.

Naturally, T% and dG do not have a value in the case that
the final hypothesis is not the correct hypothesis, and these
experiments are thus excluded from the resulting average
values for T% and dG. The metrics were chosen because they
reflect some important values of a real-life situation well.
The most important value of course is that the final goal is
estimated correctly. A wrong assessment of the situation may
later result in unexpected behavior. If the goal is estimated
correctly, the percentage of the total time at which the
correct hypothesis first is dominant (measured from the first
time the human is detected by the robot until the goal is
reached) indicates the speed of convergence of the used
intention prediction algorithm. The absolute distance from
the human towards the goal at the time the correct hypothesis
first becomes dominant indicates the real world relevance
of the intention prediction algorithm. The aim of intention
prediction is to estimate the goal of the agent before this goal
is reached. Further away from the goal generally indicates
a better working prediction algorithm, because the possible
anticipation time is increased.

Overall Analysis
Firstly, there is looked at the first part of all sequences where

the humans have one of the balls as their goal. The amount of
sequences (two sequences per experiment) where the final goal
is estimated correctly is shown in table III. Several reasons for
why not all sequences are correct have already been elaborated
on in Section V-B, but the main point of interest is the increase
in the amount of sequences that are estimated correctly when
data is shared. In the situation where data is shared for 77%
of the sequences the goal of the human is estimated correctly,
while it is only 57% for R1 and 51% for R2 individually. On
average, there is thus an increase in correctly estimated goals
of approximately 43.40% when data is shared.

In Table IV averages of the other two metrics are displayed.
It is shown here that the sharing of data on average results
in a decrease in T% of 7% with respect to robot R1 and no
decrease with respect to robot R2. For dG an increase of 13%
is seen when compared to only robot R1 and an increase
of 10% when compared to only robot R2. It is thus clear
that even a rather simple form of data sharing results in an
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Table III: The amount of correctly assessed sequences Ch in
all experiments - Goal: Balls

Config
No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

all 112 of 196 100 of 196 152 of 196

Table IV: The mean over all experiments of the percentage
of total time T% and absolute distance dG at which a correct

assessment is made - Goal: Balls

Config

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

all 52 1.60 49 1.64 49 1.81

improvement of most metrics. It is interesting to look at for
which situations sharing of data results in the highest gains
and if there are situations in which the performance is less
good or even worse when data is shared.

A first check that is made is to cluster all sequences based
on which human is tracked and compare which robot tracks
which human better. These results are shown in Table V. It is
to be expected that R1 would have more correct assessments
of H1, because H1 always starts on the left side of the field
where R1 is located. The same holds for H2 and R2. In Table
V it is shown that this is indeed the case. If R1 tracks H1
more and R2 tracks H2 more, it would also be expected if
the data is shared that this effect is mitigated because both
robots together would oversee the whole field. This is also
noticeable in Table V as the amount correct of both humans
for the data-sharing case is almost equal.

Table V: The amount of correctly assessed sequences Ch

clustered based on the two humans present in the
experiments - Goal: Balls

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

H1 63 of 98 40 of 98 77 of 98
H2 49 of 98 60 of 98 75 of 98

Crossings
Another interesting clustering of data is displayed in Table

VI. Here a distinction is made between sequences that are part
of a crossing and sequences that do not cross with the other
sequence in the situation. The most noticeable correlation in
this table is that the effect of data sharing has a bigger positive
influence on the metrics in situations where a crossing is
present, namely on average an increase of 9% for T% against a
decrease of 7% for the non-crossing sequences and an increase
of 19% in dG against an increase of just 4% in the non-
crossing sequences. It is thus concluded that the vast majority

Table VI: Experiment results for T% and dG, clustered based
on if a crossing of trajectories happened in that particular

experiment - Goal: Balls

Crossing
in

experiment

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

True 61 1.57 61 1.59 56 1.88
False 43 1.63 35 1.69 42 1.74

of gained improvement from sharing data in earlier detection
of the correct goal is to be found in situations where a crossing
is present.

Configurations of Ball Starting Positions
Next the data is clustered based on the different starting

positions of the soccer balls. As discussed in Section II,
four different configurations of starting positions are used
in the experiments: Configuration A corresponds to the four
balls being placed in a 1x1-meter square in the middle of
the field, Configuration B correspond to a 2x2-meter square,
configuration C corresponds to the balls being placed in a line
1.5 meter from the goal line and configuration D corresponds
to the balls being placed towards the four corners of the field.
The results of the amount of correctly evaluated sequences
are shown in Table VII. It is shown that the sharing of
data results in the lowest increase in Cg in configuration A,
namely an average increase of 19% for H1 and 24% for H2.
Furthermore, neither of the totals of the data sharing situation
exceed the highest value of their respective individual robots,
thus indicating that no additional goals have been estimated
correctly by sharing data.
Next, both configuration B and C have a moderate increase in
the amount of correctly estimated goals, namely an average
increase in configuration B of 50% for H1 and an increase of
30% for H2. In configuration C an average increase of 68%
for H1 and in increase of 27% for H2 is noted. The highest
increase in correctly estimated goals when data is shared is
however in configuration D, namely an average increase of
88% for H1 and an increase of 83% for H2. Next to that, the
total amount of correctly estimated goals as a percentage of
the total is highest in configuration B and D where the balls
are placed further away from each other.
It is thus derived from the data that the sharing of data
is more prevalent in situations where the goals are more
sparsely located. With configurations A and C less sparsity
leads to more mislabeling of goals, which results in a lower
total correct count in these situations. With the more sparser
configurations B and D, all goals may not be in the field of
view of both robots. The sharing of data thus has an immediate
gain on the amount of correctly estimated sequences by adding
information that would not have been visible for the other
robot individually. To further quantify the gains of sharing data
in each configuration of ball starting positions, the increases
in T% and dG are displayed in Table VIII. The increases are
displayed percentage-wise with respect to the data sharing
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case. The absolute averages per situation can be found in
Appendix Table D.8. All configurations denote an average pos-
itive increase in the distance to the goal, with Configurations
B leading with an average increase of 32%, which is about
0.59m earlier from the ball. Situations with Configuration D
have the second best improvement with an average increase of
13% and situations with Configuration A and C follow with
an increase of 7% and 8% respectively. In Configuration A
and C also an increase in T% of respectively 5% and 10% is
measured. This increase in T% and an increase in dG means
that the correct goal is identified further from the position of
the goal, but later in time with respect to the total length of the
sequence. This can occur during data sharing when the human
is tracked earlier after data sharing, but this extension of the
sequence does not lead to an earlier estimation of the correct
goal (for example because the human was walking towards
another goal first). Then the total time from the first frame the
human is tracked to a correct assessment is increased, while
the absolute distance from the goal at which it is found can
be further away than in the individual case.

Next, in configuration B and D a decrease in T% is visible.
In Configuration B an average decrease of 28% is denoted,
while in Configuration D an average decrease of 11% is
seen. On average the largest improvements are measured with
configuration B, thus a breakdown of all sequences that belong
to Configuration B is given in Table IX, separated based
on the start positions of the humans. Each two consecutive
rows in this table consist of the data from five different
experiments. It is shown that the biggest improvements are
made in Configuration g, which is where the humans start in
the middle of the field. After examining these five experiments,
it is clear the increase is attributed to three moments where a
gap in the data is bridged by sharing data, two cases where
the increased combined field of view enabled the detection of
more humans reaching goals and one case where the addition
of likelihoods resulted in a faster converging to the correct
hypothesis. In the other configurations, these improvements
are also present, but in Configuration a and f there are also
three cases where a human is tracked from an earlier time
because he is only in the field of view of one of the robots.
In the next subsection the causes of these improvements are
explained further, next to how these improvements impact the
percentage of time and absolute distance to the goal at which
the correct hypothesis first becomes dominant.

Table VII: The amount of correctly estimated sequences Ch

clustered on starting positions of the soccer balls - Goal:
Balls

Ball
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

A H1 22 of 31 15 of 31 22 of 31
A H2 13 of 31 21 of 31 21 of 31
B H1 16 of 20 8 of 20 18 of 20
B H2 9 of 20 11 of 20 13 of 20
C H1 13 of 27 12 of 27 21 of 27
C H2 17 of 27 16 of 27 21 of 27
D H1 12 of 20 5 of 20 16 of 20
D H2 10 of 20 12 of 20 20 of 20

Table VIII: Percentagewise increases in T% and dG of the
data sharing case with respect to the individual cases. These

experiment results are clustered based on the starting
positions of the soccer balls - Goal: Balls

Ball
Config

Human
Name

Differences of metrics
T% [%] dG [-]

R1 R2 R1 R2

A H1 −1.85 51.43 −5.66 14.77
A H2 −19.64 −10.00 20.02 −1.77

B H1 −28.57 −38.78 12.50 4.41
B H2 −29.31 −10.87 87.48 21.91

C H1 −3.12 16.98 13.20 −0.66
C H2 35.00 −10.00 8.67 9.64

D H1 5.36 −14.49 14.13 −11.47
D H2 −26.32 13.51 4.54 46.65

Table IX: Percentagewise increases in T% and dG of the
data sharing case with respect to the individual cases. These

experiment results are clustered based on the starting
positions of the humans in ball configuration B - Goal:

Balls

Ball
Config

Human
Config

Human
Name

Differences of metrics
T% [%] dG [-]

R1 R2 R1 R2

B a H1 −6.33 −70.32 0.73 13.88
B a H2 −7.54 50.10 75.28 17.15

B f H1 −34.48 22.65 −7.62 19.89
B f H2 15.62 15.15 75.19 0.69

B g H1 −40.41 −46.69 36.03 18.26
B g H2 −70.94 −37.04 348.35 35.06

B h H1 −26.90 −23.23 21.16 −14.29
B h H2 1.00 −46.59 −0.38 29.28
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Improvements due to Data Sharing
In this subsection different situations are discussed where

the sharing of data has a positive effect on the position
sequences and accompanying probability distributions. These
situations are 1) the extension of sequences due to a combined
field of view, 2) the coverage of gaps in the sequence from
different causes, 3) an increase in correctly estimated goals
due to a combined field of view and 4) faster convergence
due to the amplification of likelihoods in the overlapping part
of the field of view of both robots. Each situation is illustrated
with a clear example experiment.

Sequence Extension due to Combined Field of View
The first improvement is the extension of the data range of

the joined probability distribution. The field of view of each
robot individually does not cover the full field and thus one
robot can only track a human in a portion of the field. By
adding the probability distributions together, a human can be
tracked in a bigger area and thus the robots can potentially
estimate the goal of the human earlier. An example of a
situation where this is shown clearly is Experiment 31, of
which the results of the Goal Estimation Pipeline are illustrated
in Figure 17. Subfigure 17c shows that each human starts at
the middle line, each at the other side of the robots. These
positions are outside the fields of view of both robots. It is
shown that the sequences extend back outside the field of view
of robot R1 to the border of the field of view of robot R2.
This is also visible in the probability distributions in Subfigure
17a and Subfigure 17b. For human H2 the first data point of
robot R1 is registered around 6.8s. This is indicated by the
No Data hypothesis HNT dropping towards almost zero while
the other hypotheses gain a visible positive value. For robot
R2 there is already a faint rise in likelihood of hypothesis H4

at 3.0s and it eventually switches to the correct hypothesis
H3 at around 5.8s. By combining the likelihoods (Subfigure
17d), human H1 is thus tracked about 3.8 second earlier with
respect to robot R1 individually and estimates the correct goal
1.0s earlier than R2 individually.
However, it should be noted that these extensions of sequences
do not always result in a decrease in the percentage of total
time and an increase in the absolute distance from the goal
in the data sharing case. For example in Experiment 31, the
percentage of total time is increasing from 10% for robot R1 to
54% for the joined case (see Appendix table D.14 for the data),
although it is slightly improved when compared to the 56%
of robot R2. This decrease happens because the sequence is
extended, but in the added part first hypothesis H3 is dominant.
So the biggest part of the added sequence does not influence
the time at which the correct hypothesis is found and thus
the percentage of that time is increased with respect to the
shorter sequence of robot R1 where the dominant hypothesis
immediately is the correct one. The extension of sequences
has little effect on dG, because earlier tracking of the human
does not influence the absolute distance from the goal where
the correct hypothesis first becomes dominant.

(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences
from starting positions to the

balls

(d) Joined likelihoods over
time for both humans

Figure 17: Example of how data sharing can lead to the
extension of sequences. - Experiment 31

24 out of 98 experiments are identified where one or two
sequences are extended by sharing data. They are grouped
per goal configuration in Table X. It is apparent that the
most sequence extensions happen in experiments with
Configuration A and Configuration C. This is explained by
the fact that most starting locations of the humans in these
configurations are outside the field of view of the robots,
while the goals are relatively in the middle of the field.
This means the humans inadvertently have to come in the
overlapping part of both views and thus the data sequence
is extended based on the wider view towards the starting
location of the human of one of the robots.

Furthermore, the most frequent presence of sequence ex-
tensions in Configuration A and Configuration C explains the
average increase in T% in those configurations in Table VIII,
while the amount of correctly estimated goals Cg in Table VII
is hardly influenced.

Design and Evaluation of Strategies for Multi-Human Intention Prediction in Multi-Robot Systems 17



Table X: Experiment numbers per configuration of starting
positions of the balls where sequence extensions are

registered.

Configuration Amount Experiment Numbers

A 9 2, 28, 41, 59, 65, 67, 78, 90, 91
B 3 71, 74, 85
C 10 11, 18, 31, 37, 45, 75, 77, 79, 96, 98
D 2 60, 62

Sequence Data Gap Coverage
The second improvement is the bridging of gaps in the data

sequences when two probability distributions are merged. An
often small gap of only a few frames can appear in the data.
This has a substantial influence on the percentage of total
time at which the correct hypothesis is first dominant and
absolute distance from the human towards the goal at that
time frame. When a gap is present in the data, the No Data
hypothesis HNT is dominant during those frames. When after
the data gap the sequence resumes, the first time at which
the correct hypothesis becomes dominant is thus reset to the
time frame after the data gap. By bridging this gap with the
use of the data from the second robot, it is to be expected
that large improvements are made to the involved metrics.
Three causes for a data gap are treated: 1) a crossing of the
sequences from the robots perspective, 2) a human leaves
the field of view of one robot and later re-enters it and 3)
unpredictable data loss due to inconsistencies in the camera,
OpenPose or the rest of the pipeline.

(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences
from starting positions to the

balls

(d) Joined likelihoods over
time for both humans

Figure 18: Example of how data sharing can lead to data
gap coverage when sequences cross. - Experiment 72

In Subfigure 18c an example of a crossing in the position
sequences from the perspective of the robots is shown. The
resulting data gap in the individual likelihoods is shown
in Subfigure 18b for human H2. When no position and
orientation data is put into the intention prediction function,
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the likelihoods for all hypotheses default to zero, while the
likelihood for the No Data hypothesis remains constant. The
No Data hypothesis is thus the only non-zero likelihood
and after normalization it has a likelihood of 1.0. After
the gap, the sequence continues and the goal is reached. In
the joint probability distribution in Subfigure 18d, the data
gap is bridged. The results is that the first time the correct
hypothesis becomes dominant, is now at about 3.0s instead
of at 5.5s for the case of the individual robot R2. This is
further supported with data from Table D.16 in Appendix
D-B, where robot R2 individually denotes a value for T%
of 97% and 0.28m for dG. In the data sharing case, T%
decreases to 42% and dG increases by 1048% to 2.94m. It is
thus evident that the bridging of gaps due to crossings can
massively impact the time and distance at which the correct
hypothesis is first dominant, mostly because the data gaps
due to crossings happen close to the goal and thus the gain
in time and distance is highest.

In Table XI all experiments where a gap in the data due to
a crossing is bridged are shown. Situations with Configuration
B and Configuration C contain most of these situations. This
is explained by the fact that in these configurations most
crossings with respect to the robot views happen in the
overlapping part of the field of views of both robots. In
Configuration B the humans can walk between the balls in
the middle of the field and in Configuration C they have to
walk from the middle line towards the goals next to each other
on the far side of the field, while in Configuration A the middle
is blocked by the goals itself and in Configuration D the goals
are the most sparsely placed meaning that crossings do not
often happen. Because the crossings happen in the overlapping
part of the field of views, the data sequence is only shortly
interrupted and can be more easily bridged with the help of
the data from the other robot.

Table XI: Experiment numbers per configuration of starting
positions of the balls where coverage of data gaps due to a

crossing are registered.

Configuration Amount Experiment Numbers

A 2 29, 32
B 4 13, 25, 29, 38
C 4 5, 27, 68, 75
D 2 62, 72

The next cause of a data gap occurring is when a human
leaves the field of view of one robot and later re-enters the field
of view on its path to a goal. A position sequence highlighting
this is shown in Subfigure 19c. Human H1 leaves the field
of view of robot R1 walking towards goal b2, after which
he turns to the left and eventually reaches goal b4 again
in the field of view of robot R1. The result is a gap in
the probability distribution sequence of about 1.9s, which is
visible in Subfigure 19a. Human H1 however never leaves the
field of view of robot R2, so when the likelihoods are added

together in Subfigure 19d the data gap is entirely bridged by
the data from robot R2. This lowers T% from about 7.8s in the
individual case for robot R1 to about 7.4s in the joined case
and the individual case of robot R2 (these parts are identical
here because there is no data to be added from robot R1). The
improvement is further supported by the decrease and increase
respectively of T% and dG from Table D.14 in Appendix D-B.
Here a decrease from 83% to 67% is denoted for T%, which
is a decrease of 20% with respect to the individual case of
robot R1. For dG an increase from 0.99m to 2.20m is seen,
which is a relative increase of 223%.

(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences
from starting positions to the

balls

(d) Joined likelihoods over
time for both humans

Figure 19: Example of how data sharing can lead to data
gap coverage when sequences span outside one robots field

of view. - Experiment 15

The distribution of occurring data gaps due to temporarily
leaving the field of view of one robot in each configuration
is shown in Table XII. The most occurrences are found with
Configuration C. This is explained by the observation that both
humans start at the middle line of the field, often outside the
field of view of one or both robots. If the humans do not walk
in a straight line towards their goal, they can easily leave the
field of view of one robot when they pass through close to the
position of the robot. However, the human then always needs
to re-enter the field of view at some point, because all goals
are inside the field of view of both robots in this configuration,
thus resulting in the data gaps seen in these situations.
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Table XII: Experiment numbers per configuration of starting
positions of the balls where coverage of data gaps due to a
human temporary leaving the field of view of one robot are

registered.

Configuration Amount Experiment Numbers

A 0 -
B 1 15
C 3 11, 24, 27
D 2 30, 93

The last cause for the occurrence of a gap in the position
sequence is unforeseen inconsistencies in the data gathering or
processing pipelines, for example the absence of depth data at
a specific spot in the files coming from the Kinect camera,
no joints detected by OpenPose or wrongly adjusted joint
positions due to the Far Joint Inferring algorithm (Subsection
III-B2. One such an occurrence is shown in Figure 20. In
Subfigure 20b it is shown that for human H2 a frame is
missing at 2.3s. Due to this missing frame the time at which
the correct hypothesis first becomes dominant moves from 0.4s
to 2.4s. But due to the merging of the data of both robots, this
data gap is visibly bridged in the graph of Subfigure 20d. In
such, T% is pushed back to the original 0.4s. This is again
further supported by data from Table D.16 in Appendix D-B,
where a decrease in T% from 68% to 8% and an increase in
dG to goal from 0.69m to 1.59 is denoted. In the described
cases, the sharing of data often has a big impact on the
metrics, because the gaps can occur unexpectedly, and at
any given time in the sequence. Mostly such a defect does
not occur at the same time at the other robot, meaning that
these gaps can be resolved in most situations by sharing data.
In Table XIII the amount of unpredictable gaps in the data
sequences per configuration is shown. In Configuration C the
most inconsistencies occur, which is explained by the fact that
the goals are all placed far from the camera where the rays
used for the determination of depth are more sparse and thus
more prone to inconsistencies.

(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences
from starting positions to the

balls

(d) Joined likelihoods over
time for both humans

Figure 20: Example of how data sharing can lead to data
gap coverage when sequences are incomplete. - Experiment

99

Table XIII: Experiment numbers per configuration of starting
positions of the balls where coverage of data gaps due to

data loss are registered.

Configuration Amount Experiment Numbers

A 1 28
B 1 99
C 3 16, 37, 92
D 2 52, 95

Increase in Detected Goals due to Combined Field of View
The third improvement gained by the sharing of data is due

to combining of two semi-overlapping fields of view. Each
robot can observe the center and two farmost corners of the
field with respect to the robots’ positions, but closer to the
middle line they can only observe their own side of the field.
Due to the fact that the position of goal b1 in configurations
B and D is outside or on the border of the field of view of
robot R2, robot R2 can never mark that goal as reached based
on the position of the human as a result of the lack of data
in that area. However, by combining the data from the both
robots the combined field of view is extended so all goals in
the field are covered. The same holds for ball b2 and robot
R1. An example situation is shown in Figure 21.
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(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences from
starting positions to the balls

(d) Joined likelihoods over time
for both humans

Figure 21: Example of how data sharing can lead to
registering more goals-reached. - Experiment 1

In Subfigure 21c it is shown that goal b1 and the starting
position of human H1 lay both outside the field of view of
robot R2. The same holds for b2, the starting position of
human H2 and robot R1. This is also visible in Subfigure
21a and 21b, where there are no data points detected for
the respective humans. When the likelihoods are combined in
Subfigure 21d, both goals lay in the shared field of view and
can thus be detected. This results in an immediate increase
in the amount of correctly estimated goals. All experiments
where such an increase is detected are shown in Table XIV. As
expected, the most occurrences are detected in Configuration
B and D, where the closest goals lay on or outside the field of
view of one of the robots. Some occurrences are also detected
in Configurations A and C. This is explained by the fact that
the real life positions of the goals are not exactly the same in
each experiment, and thus some cases exist where goals are
placed too close to the field of view borders.

Table XIV: Experiment numbers per configuration of
starting positions of the balls where more pick-ups of soccer

balls are registered due to the combined field of view
covering a bigger part of the field.

Configuration Amount Experiment Numbers

A 2 6, 78
B 5 36, 44, 71, 89, 99
C 2 18, 98
D 10 1, 17, 20, 39, 49, 52, 62, 72, 76, 93

Faster Convergence
The last improvement due to data sharing is the faster

convergence towards the correct hypothesis by the amplifi-
cation of the most dominant hypothesis in a situation where
a human is in the field of view of both robots. If both
robots are able to track the human, both supply a similar
probability distribution to be added together during the data
sharing part of the pipeline. When the likelihood of one
hypothesis is big in comparison to the others, its magnitude
is further amplified and the hypothesis may become dominant
earlier than in both individual cases. An example is visible
in Subfigure 22d, where the joined probability distribution of
Experiment 51 is shown. In the graph for human H2, the
correct hypothesis first becomes dominant at 1.2s, which is
earlier than both the individual cases of robot R1 at about
1.7s and robot R2 at about 1.4s. All occurrences of noticeable
faster convergence are shown in Table XV. Most cases are
registered in Configuration A. This configuration can result in
amplification of the joined likelihoods because the position of
the goals are in the middle of the field where both robots can
see the humans.
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(a) Individual likelihoods over
time of both humans from R1

(b) Individual likelihoods over
time of both humans from R2

(c) All position sequences
from starting positions to the

balls

(d) Joined likelihoods over
time for both humans

Figure 22: Example of how data sharing can lead to a faster
convergence of the likelihood of the lead hypothesis. -

Experiment 51

Table XV: Experiment numbers per configuration of starting
positions of the balls where faster conversion of the

likelihood of the leading hypothesis is registered.

Configuration Amount Experiment Numbers

A 3 2, 12, 22
B 0 -
C 1 51
D 1 30

VI. CONCLUSIONS

In this work a framework is provided in which different
strategies for the intention prediction of multiple humans
towards semantic goals can be tested for both an individual
case and a case where data is shared between multiple robots.
A pipeline is proposed for the estimation of shared probability
distributions from a video feed of a RGBD-camera. First,
a set of joint locations is estimated using the OpenPose
library and these are then converted to real-world coordinates.
Occluded joint positions are identified and repositioned with
the proposed Far Joint Inferring algorithm. The position and
orientation of each human is determined and a constant veloc-
ity Kalman filter is applied for trajectory smoothing. Next, the
likelihood of each human going towards a goal is calculated
with the multiplication of a 2D Gaussian function and a
custom direction evaluation function. Lastly, the individual
estimations of each robot are combined. To gather sufficient
data to evaluate the proposed method, 98 experiments with
each two persons, two robots and four semantic goals are
carried out.
With the obtained data, four scenarios are identified where
sharing data leads to a better assessment of the most likely
semantic goal for the humans. These improvements are the
earlier tracking of a human due to a combined field of view, the
coverage of gaps in the data sequences, the increased detection
of reached goals due to a combined field of view and the faster
convergence towards the correct hypothesis by amplification
of similar likelihoods.
It is thus concluded that even with relatively simple inten-
tion prediction and data sharing methods, already substantial
improvements are observed when compared to the results of
each robot individually. This may enable further research into
the decentralization of autonomous robots in a warehousing
environment.

VII. FUTURE WORK

Suggestions for future work as a result of this thesis include
the following topics.

A. Exploration of Alternative Data Association Techniques

For the method used to associate new data points to the
correct sequence, alternative methods can be explored to
evaluate the likelihood of a new set of points belonging to
one of multiple existing sets of points. Alternative methods
can be easily compared within the proposed framework.

B. Exploration of Alternative Prediction Methods

In this thesis a 2D Gaussian function is used to estimate
the likelihoods of all hypotheses in a scene. It is suggested to
look into other prediction models such as the Hidden Markov
model or an LSTM-network to estimate these likelihoods. The
performance of each method can be compared to find the most
suitable method for the application in different warehousing
situations.
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C. Exploration of Alternative Data Sharing Methods

In this thesis a data sharing method is used where the
likelihoods of the same human estimated by multiple robots
were added together. In future research there could also be
looked at how the probability distributions of different humans
estimated by the same robot influence each other in a multi-
human multi-robot system.

D. Increased Amount of Tracked People

The proposed Goal Estimation Pipeline in this thesis is
designed to work for two humans and two robots. However,
there can be looked at expanding the this algorithm to incor-
porate more than two humans and more than two robots and
the influence of this on the improvements in semantic goal
estimation.
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Appendices

APPENDIX A
SUPPORT METHODS

In this appendix two methods are explained that are used to
support accuracy of the Goal Estimation Pipeline. In Appendix
A-A a basic method is explained for retrieving the [x, y, z]-
positions of the soccer balls. After that, in Appendix A-B it is
explained how these acquired positions of the balls are used to
estimate the rotation- and position-offset of the Kinects during
the experiments. It is also explained how the tilt of the Kinect
is calculated by fitting a line through a set of points in the
floor. By estimating the position offset, rotation offset and tilt
offset of the robots, it is made sure both robots operate in the
same world coordinate system.

A. Ball Recognition

During the experiments, the semantic goals are represented
by four soccer balls. All soccer balls are a yellow color, so they
can be found back in the pointcloud by analyzing the color
frame of the Kinects. The complete algorithm is displayed in
Algorithm 6. The inputs for the algorithm are the pointcloud
of the Kinect, the color frame from the Kinect and the [x, y, z]-
positions of all four balls. First, the 250 points with a RGB-
value closest to yellow are retrieved from the color matrix of
the Kinect and the accompanying [x, y, z]-values are located
in the pointcloud (row 1). Then, these points are split into four
sets based on the closest proximity to one of the goals (row
2). Next, because all points of a set lay on the exterior of the
sphere, a sphere can be fit through the points using a Linear
Least Squares approximation of

n∑
k=1

((vk −m)2 − r2)2, (15)

where vk are the points in the set belonging to a ball, m
is the center of the sphere and r is the radius (row 4) [18].
Lastly, the center and radius for each ball is returned (row 5).
These estimated ball positions are not used for the prediction
of human intention (because the goal location are assumed
to be known), but for calculating the position- and rotation-
offset of each Kinect during the experiments. This is further
elaborated on in the next subsection.

Algorithm 6 Ball recognition

Require: pointcloud: all [x, y, z] points in world
coordinates

Require: color frame: RGB values for each point
Require: ball positions: [x, y, z] positions of the balls

in world coordinates

1: Take [x, y, z] values of 250 points with a color
closest to yellow

2: Divide points in four sets based on proximity to
one of the balls

3: for each ball do
4: Fit sphere through the points of the accompanying

set using Linear Least Squares
5: end for

6: return center [x, y, z] in world coordinates
7: return radius [m]

B. Syncing of Coordinate Systems

In order for the data of the two robots to be comparable,
the two robots have to operate in the same coordinate system.
If this is not the case, the estimations for joint positions
in Algorithm 1 would too different although the two robots
are witnessing the same actions. During the experiments the
Kinect camera’s of both robots were carefully placed at their
designated spots, but small errors in position and orientation
are always possible. In order to determine these errors, the
results of the ball recognition algorithm (Algorithm 6) and
the next algorithm are used to roughly estimate the values for
the offsets, after which they are tuned by hand until a sufficient
similarity in coordinate systems is achieved.
In Algorithm 7 it is explained how the tilt of each Kinect is
estimated. First, the 1000 closest points to the vector extending
forward from the Kinect are selected (row 1). A 1D polynomial
is then fitted through these points using a Linear Least Squares
approximation (row 2). This outputs a vertical offset and a
slope. The angle between the vector of the slope and the
vector extending forward from the Kinect is then calculated
(row 3). These values are used for the y-offset and the tilt ϕ
respectively.
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Algorithm 7 Tilt Estimation

Require: pointcloud: all [x, y, z] points in world
coordinates

1: Select 1000 closest points to the vector extending
forward from the Kinect

2: Fit 1D polynomial through y-coordinates of points
in set

3: Calculate angle ϕ of fitted vector with vector
extending forward from the Kinect

4: return tilt ϕ, y-offset

The estimated offsets are displayed in Table A.1. Because
the experiment setup was build anew every day when experi-
ments were held, the offset values also differ between days. By
estimation of these offsets, the position sequences estimated
by both robots can be compared in a more accurate manner.

Experiment
day robot x-offset

[m]
y-offset
[m]

z-offset
[m]

ϕ-offset
[◦]

ψ-offset
[◦]

θ-offset
[◦]

Day 1 R1 0.0 −0.03 0.0 −1.63 0.0 −0.55
R2 0.0 0.04 0.0 2.69 0.0 1.71

Day 2 R1 0.0 −0.04 0.0 −1.55 0.0 0.66
R2 0.0 −0.01 0.0 2.17 0.0 1.46

Day 3 R1 0.0 −0.04 0.0 −1.15 0.0 −1.45
R2 0.0 −0.04 0.0 −0.68 0.0 −2.35

Table A.1: Estimated offset of each Kinect during each day
experiments were conducted. The x-, y- and z-offset are in
world coordinates, ϕ is the rotation around the x-axis (or

tilt), ψ is the rotation around the y-axis (or roll) and θ is the
rotation around the z-axis (or rotation), all in world

coordinates.

APPENDIX B
EXPERIMENT CONFIGURATIONS

In Table B.1 it is shown which combinations of configura-
tions for the starting positions of the soccer balls and starting
positions for the humans are used during the experiments.
Which combination is used in each experiment is displayed
in Table D.13.

Table B.1: Contingency matrix of ball configurations A-D
and human configurations a-m.

Ball configs =⇒

Human configs
w�
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APPENDIX C
REPOSITORY STRUCTURE

The repository of this thesis is open source and can be found
at https://gitlab.tue.nl/et_projects/svintentionrecognition. The
following components are shared and available:

• All scripts used to perform the experiments, including a
instruction manual for installation of all Ubuntu packages
and the drivers needed for the Kinects.

• Figures of the used setups for each experiment.
• The video data obtained from the experiments, structured

per experiment and pre-analyzed by OpenPose.
• A complete library of the Goal Estimation Pipeline. All

classes and function are fully commented and section
interesting for future work are highlighted.

• 3D and 2D figures of the intention prediction, the position
and orientation estimation and probability distributions.

APPENDIX D
RESULT TABLES

In this appendix all tables with results of the experiments
are displayed.

A. Clustered Tables
In this subsection all tables are displayed based on

different relevant clustering of the raw data obtained from
the experiments. In all tables the following symbols are
present: Ch here can be True or False based on if the goal
of the sequence is estimated correctly, T% is the percentage
of the total time the human is tracked at which the correct
hypothesis first becomes dominant and dG is the absolute
distance to the goal when the correct hypothesis first becomes
dominant.

Overall Data
In Table D.1 the summed values for Ch are displayed. In
Table D.2 the mean of the values for T% and dG obtained
from the experiments is displayed. Both are clustered over all
experiments. This is done to assess the overall performance of
the sharing of data on the metrics.

Table D.1: The mean of the amount of correctly assessed
sequences Ch in all experiments - Goal: Balls

Config
No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

all 112 of 196 100 of 196 152 of 196

Table D.2: The mean over all experiments of the percentage
of total time T% and absolute distance dG at which a correct

assessment is made - Goal: Balls

Config

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

all 52 1.60 49 1.64 49 1.81

Data Clustered on Humans
In Table D.3 the summed values for Ch are displayed. In Table
D.4 the mean of the values for T% and dG obtained from the
experiments is displayed. Both are clustered based on the two
humans present in the experiments. This is done to determine
if irregularities are existent belonging to one specific human
and if the sharing of data favours one specific human. Both
statements are not true.

Table D.3: The amount of correctly assessed sequences Ch,
clustered based on the two humans present in the

experiments - Goal: Balls

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

H1 63 of 98 40 of 98 77 of 98
H2 49 of 98 60 of 98 75 of 98

Table D.4: The mean of the experiment results for T% and
dG, clustered based on the two humans present in the

experiments - Goal: Balls

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

H1 53 1.65 48 1.69 51 1.76
H2 51 1.54 50 1.60 46 1.85
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Data Clustered on Crossing / No-crossing
In Table D.5 the summed values for Ch are displayed. In Table
D.6 the mean of the values for T% and dG obtained from
the experiments is displayed. Both are clustered based on if a
crossing of trajectories happened in that particular experiment.
This is done to evaluate if the sharing of data results in more
improvement in situations where crossings are present. From
the data it is derived that this is indeed the case.

Table D.5: Experiment results for Ch, clustered based on if
a crossing of trajectories happened in that particular

experiment - Goal: Balls

Crossing
in

experiment

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

True 57 of 100 53 of 100 75 of 100
False 55 of 96 47 of 96 77 of 96

Table D.6: The mean of the experiment results for T% and
dG, clustered based on if a crossing of trajectories happened

in that particular experiment - Goal: Balls

Crossing
in

experiment

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

True 61 1.57 61 1.59 56 1.88
False 43 1.63 35 1.69 42 1.74

Data Clustered on Different Ball Starting Positions
In Table D.7 the summed values for Ch are displayed. In Table
D.8 the mean of the values for T% and dG obtained from the
experiments is displayed. Both are clustered on starting posi-
tions of the soccer balls. This is done to evaluate if the sharing
of data leads to more improvement in particular configurations
of goals. It is concluded that the most improvement by sharing
data is gained in Configuration B.

Table D.7: Experiment results for Ch, clustered on starting
positions of the soccer balls - Goal: Balls

Ball
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

A H1 22 of 31 15 of 31 22 of 31
A H2 13 of 31 21 of 31 21 of 31
B H1 16 of 20 8 of 20 18 of 20
B H2 9 of 20 11 of 20 13 of 20
C H1 13 of 27 12 of 27 21 of 27
C H2 17 of 27 16 of 27 21 of 27
D H1 12 of 20 5 of 20 16 of 20
D H2 10 of 20 12 of 20 20 of 20

Table D.8: The mean of the experiment results for T% and
dG, clustered on starting positions of the soccer balls -

Goal: Balls

Ball
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

A H1 54 1.71 35 1.40 53 1.61
A H2 56 1.37 50 1.67 45 1.65

B H1 42 1.67 49 1.80 30 1.88
B H2 58 1.01 46 1.55 41 1.89

C H1 64 1.63 53 1.86 62 1.85
C H2 40 1.72 60 1.70 54 1.87

D H1 56 1.52 69 1.96 59 1.73
D H2 57 1.95 37 1.39 42 2.04
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Data Clustered on Different Human Starting Positions
In Table D.9 the summed values for Ch are displayed. In Table
D.10 the mean of the values for T% and dG obtained from the
experiments is displayed. Both are clustered based on starting
positions of the humans. This is done to evaluate if the starting
positions of the humans have a decisive influence on the
improvements due to data sharing. Although most rows show
an improvement in the data sharing case, no clear conclusions
are derived from this clustering of data.

Table D.9: Experiment results for Ch, clustered based on
starting positions of the humans - Goal: Balls

Human
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

a H1 12 of 14 5 of 14 12 of 14
a H2 5 of 14 7 of 14 10 of 14
b H1 5 of 12 2 of 12 7 of 12
b H2 6 of 12 5 of 12 9 of 12
c H1 2 of 5 2 of 5 3 of 5
c H2 4 of 5 4 of 5 4 of 5
d H1 5 of 6 4 of 6 6 of 6
d H2 2 of 6 5 of 6 4 of 6
e H1 4 of 5 2 of 5 3 of 5
e H2 1 of 5 3 of 5 3 of 5
f H1 8 of 10 5 of 10 9 of 10
f H2 6 of 10 7 of 10 8 of 10
g H1 8 of 10 4 of 10 9 of 10
g H2 5 of 10 8 of 10 9 of 10
h H1 3 of 5 2 of 5 3 of 5
h H2 2 of 5 2 of 5 2 of 5
i H1 3 of 6 3 of 6 5 of 6
i H2 4 of 6 4 of 6 4 of 6
j H1 5 of 10 4 of 10 7 of 10
j H2 5 of 10 8 of 10 10 of 10
k H1 2 of 5 2 of 5 3 of 5
k H2 1 of 5 2 of 5 2 of 5
l H1 2 of 5 4 of 5 5 of 5
l H2 3 of 5 3 of 5 5 of 5

m H1 4 of 5 1 of 5 5 of 5
m H2 5 of 5 2 of 5 5 of 5

Table D.10: The mean of the experiment results for T% and
dG, clustered based on starting positions of the humans -

Goal: Balls

Human
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

a H1 43 1.64 56 1.70 38 1.66
a H2 57 1.56 26 1.85 40 2.03

b H1 50 1.88 39 1.77 49 1.79
b H2 52 1.34 59 1.33 52 1.42

c H1 42 2.44 27 1.72 58 1.88
c H2 44 1.38 47 1.90 51 1.86

d H1 37 1.62 29 1.29 48 1.45
d H2 49 1.43 64 1.48 59 1.45

e H1 78 1.35 54 0.50 83 1.28
e H2 57 1.46 46 1.53 35 1.60

f H1 48 1.78 29 1.57 32 1.82
f H2 62 1.27 50 1.70 51 1.72

g H1 37 1.82 60 1.73 29 2.10
g H2 84 0.77 34 1.58 33 2.17

h H1 56 1.62 53 2.30 41 1.97
h H2 38 1.59 72 1.22 39 1.58

i H1 74 1.18 36 2.38 70 1.57
i H2 28 1.96 56 1.87 37 2.35

j H1 85 1.10 46 2.20 71 1.93
j H2 26 2.31 50 1.86 47 2.02

k H1 53 2.39 43 1.34 57 2.17
k H2 75 0.90 60 1.40 56 1.85

l H1 61 1.89 81 1.47 74 1.85
l H2 43 1.68 73 1.37 68 1.34

m H1 75 1.24 69 2.08 75 1.39
m H2 52 1.98 58 0.40 41 2.31
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Data Clustered on Different Experiment Setups
In Table D.11 the summed values for Ch are displayed. In
Table D.12 the mean of the values for T% and dG obtained
from the experiments is displayed. Both are clustered based on
the combination of the starting positions of the soccer balls and
humans. This is done to evaluate if a particular combination of
starting positions for humans and soccer balls shows a decisive
bigger improvement of the metrics than other combinations.
Furthermore, parts of these tables in combination with the
accompanying probability distributions are used to identify
why Configuration B holds the largest improvement when data
is shared.

Table D.11: Experiment results for Ch, clustered based on
the combination of the starting positions of the soccer balls

and humans - Goal: Balls

Ball
Config

Human
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2
Ch [-] Ch [-] Ch [-]

A a H1 4 of 4 3 of 4 4 of 4
A a H2 1 of 4 3 of 4 2 of 4
A b H1 2 of 6 1 of 6 2 of 6
A b H2 1 of 6 2 of 6 4 of 6
A c H1 2 of 5 2 of 5 3 of 5
A c H2 4 of 5 4 of 5 4 of 5
A d H1 5 of 6 4 of 6 6 of 6
A d H2 2 of 6 5 of 6 4 of 6
A e H1 4 of 5 2 of 5 3 of 5
A e H2 1 of 5 3 of 5 3 of 5
A f H1 5 of 5 3 of 5 4 of 5
A f H2 4 of 5 4 of 5 4 of 5
B a H1 5 of 5 1 of 5 5 of 5
B a H2 2 of 5 2 of 5 3 of 5
B f H1 3 of 5 2 of 5 5 of 5
B f H2 2 of 5 3 of 5 4 of 5
B g H1 5 of 5 3 of 5 5 of 5
B g H2 3 of 5 4 of 5 4 of 5
B h H1 3 of 5 2 of 5 3 of 5
B h H2 2 of 5 2 of 5 2 of 5
C b H1 3 of 6 1 of 6 5 of 6
C b H2 5 of 6 3 of 6 5 of 6
C i H1 3 of 6 3 of 6 5 of 6
C i H2 4 of 6 4 of 6 4 of 6
C j H1 3 of 5 2 of 5 3 of 5
C j H2 4 of 5 4 of 5 5 of 5
C k H1 2 of 5 2 of 5 3 of 5
C k H2 1 of 5 2 of 5 2 of 5
C l H1 2 of 5 4 of 5 5 of 5
C l H2 3 of 5 3 of 5 5 of 5
D a H1 3 of 5 1 of 5 3 of 5
D a H2 2 of 5 2 of 5 5 of 5
D g H1 3 of 5 1 of 5 4 of 5
D g H2 2 of 5 4 of 5 5 of 5
D j H1 2 of 5 2 of 5 4 of 5
D j H2 1 of 5 4 of 5 5 of 5
D m H1 4 of 5 1 of 5 5 of 5
D m H2 5 of 5 2 of 5 5 of 5

Table D.12: The mean of the experiment results for T% and
dG, clustered based on the combination of the starting
positions of the soccer balls and humans - Goal: Balls

Ball
Config

Human
Config

Human
Name

No Data Sharing Data Sharing
R1 R2 R1+R2

T% [%] dG [m] T% [%] dG [m] T% [%] dG [m]

A a H1 64 1.94 50 1.55 54 1.78
A a H2 83 0.44 40 1.90 46 2.02
A b H1 62 1.62 7 2.04 57 1.54
A b H2 44 1.67 49 1.32 34 1.24
A c H1 42 2.44 27 1.72 58 1.88
A c H2 44 1.38 47 1.90 51 1.86
A d H1 37 1.62 29 1.29 48 1.45
A d H2 49 1.43 64 1.48 59 1.45
A e H1 78 1.35 54 0.50 83 1.28
A e H2 57 1.46 46 1.53 35 1.60
A f H1 45 1.64 29 1.58 30 1.76
A f H2 67 1.46 49 1.82 43 1.88

B a H1 20 1.64 64 1.45 19 1.65
B a H2 42 1.41 26 2.11 39 2.47
B f H1 53 2.02 28 1.56 34 1.87
B f H2 51 0.89 51 1.54 59 1.55
B g H1 50 1.52 55 1.75 30 2.07
B g H2 86 0.43 40 1.44 25 1.94
B h H1 56 1.62 53 2.30 41 1.97
B h H2 38 1.59 72 1.22 39 1.58

C b H1 42 2.05 71 1.49 46 1.89
C b H2 53 1.28 66 1.34 63 1.57
C i H1 74 1.18 36 2.38 70 1.57
C i H2 28 1.96 56 1.87 37 2.35
C j H1 86 0.99 23 2.57 63 1.90
C j H2 25 2.27 51 2.21 45 2.31
C k H1 53 2.39 43 1.34 57 2.17
C k H2 75 0.90 60 1.40 56 1.85
C l H1 61 1.89 81 1.47 74 1.85
C l H2 43 1.68 73 1.37 68 1.34

D a H1 53 1.25 65 2.38 48 1.49
D a H2 60 2.28 7 1.50 39 1.77
D g H1 15 2.33 72 1.68 29 2.14
D g H2 79 1.27 29 1.71 39 2.34
D j H1 82 1.28 69 1.83 77 1.94
D j H2 30 2.49 49 1.51 48 1.73
D m H1 75 1.24 69 2.08 75 1.39
D m H2 52 1.98 58 0.40 41 2.31
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Experiment Numbers per Situation
In Table D.13 all experiments corresponding to each combi-
nation of human starting positions and ball starting positions
are shown. The amount of experiment numbers in a row thus
indicates how many times the same situations was tested in
an experiment. However, the trajectories obtained as a result
are not exactly the same for each repeated experiment. The
experiments are split into a column where a crossing happened
during the experiments and a group where it did not happen.
This is done because this feature could not be automated and
thus had to be checked by hand.

Table D.13: Experiment numbers corresponding to each
experiment situation - Goal: Balls

Ball
Config

Human
Config

Corresponding Experiments
Crossing No Crossing

A a 19, 40, 90 6
A b 14, 26, 56, 65 80, 101
A c - 4, 35, 50, 67, 91
A d 9, 22 43, 59, 78, 97
A e 2, 28 41, 63, 86
A f 12, 32, 54, 61, 88 -
B a 38 10, 44, 71, 85
B f 36, 48, 74, 83 8
B g 13, 25, 66 89, 99
B h 29, 46, 57, 87 15
C b 3, 73, 82 31, 58, 98
C i 5, 27 45, 64, 79, 94
C j 51, 96 18, 37, 77
C k 100 11, 24, 68, 84
C l 33, 42, 75, 92 16
D a 62, 81 1, 23, 52
D g 21, 49, 60 17, 76
D j 30, 69, 93 20, 39
D m 72, 95 7, 34, 47
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B. Raw Data Tables

In this appendix the unclustered results of all experiments are displayed. The data is split in the individual cases and the
cases where data is shared. Ch here can be True or False based on if the goal of the sequence is estimated correctly, T% is
the percentage of the total time the human is tracked at which the correct hypothesis first becomes dominant and dG is the
absolute distance to the goal when the correct hypothesis first becomes dominant.

Table D.14: Raw data table (part 1) - Goal: Balls

Ball
Config

Human
Config

Experiment
Number

Human
Name Crossing

No Data Sharing Data Sharing
R1 R2 R1+R2

Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m]

D a 1 H1 False True 26.32 1.09 False - - True 26.32 1.09
D a 1 H2 False False - - True 8.33 0.94 True 8.33 0.94

A e 2 H1 True True 72.73 1.69 False - - True 86.96 0.91
A e 2 H2 True True 57.14 1.46 True 77.78 1.04 True 80.77 1.25

C b 3 H1 True True 47.37 2.27 False - - True 42.86 2.27
C b 3 H2 True True 78.26 1.35 False - - True 91.67 0.92

A c 4 H1 False True 42.86 2.58 True 7.69 2.17 True 42.86 2.58
A c 4 H2 False True 22.22 1.68 True 69.23 1.86 True 73.08 1.68

C i 5 H1 True True 77.78 0.81 True 29.17 2.45 True 48.15 2.41
C i 5 H2 True True 35.71 1.99 True 64.52 2.16 True 64.52 2.07

A a 6 H1 False True 54.17 2.08 True 25.00 2.06 True 13.04 2.01
A a 6 H2 False False - - True 13.64 2.24 True 13.64 2.24

D m 7 H1 False True 59.09 2.24 False - - True 59.09 2.05
D m 7 H2 False True 51.72 2.45 False - - True 41.38 2.75

B f 8 H1 False False - - True 12.50 0.79 True 1.05 0.82
B f 8 H2 False True 14.29 0.72 True 20.00 0.62 True 14.29 0.67

A d 9 H1 True True 50.00 1.64 True 20.00 1.63 True 41.67 1.70
A d 9 H2 True False - - False - - False - -
B a 10 H1 False True 8.33 1.11 False - - True 8.33 1.14
B a 10 H2 False False - - True 45.45 2.23 True 45.45 2.57

C k 11 H1 False True 52.94 2.54 True 20.00 1.20 True 52.94 2.54
C k 11 H2 False True 75.00 0.90 True 82.14 0.47 True 75.00 0.87

A f 12 H1 True True 20.00 1.36 True 7.14 1.33 True 6.67 1.35
A f 12 H2 True True 62.86 2.12 True 59.38 2.13 True 61.76 2.03

B g 13 H1 True True 41.94 2.57 True 74.07 1.23 True 26.67 2.69
B g 13 H2 True True 95.83 0.34 True 100.00 0.23 True 36.96 2.14

A b 14 H1 True False - - False - - False - -
A b 14 H2 True False - - False - - False - -
B h 15 H1 False True 83.33 0.99 True 63.89 2.20 True 66.67 2.20
B h 15 H2 False True 69.23 1.95 True 67.50 1.90 True 70.00 1.87

C l 16 H1 False True 74.29 1.65 False - - True 74.29 1.59
C l 16 H2 False True 11.11 1.51 True 52.17 1.97 True 52.17 1.97

D g 17 H1 False True 5.26 2.02 False - - True 5.00 1.84
D g 17 H2 False True 58.06 2.46 False - - True 53.12 2.64

C j 18 H1 False True 61.54 2.52 True 26.09 2.53 True 50.00 2.84
C j 18 H2 False False - - True 62.50 2.32 True 62.50 2.32

A a 19 H1 True True 70.00 1.94 True 43.75 1.83 True 70.00 1.80
A a 19 H2 True True 82.76 0.44 True 92.50 0.87 True 78.57 1.81

D j 20 H1 False True 65.00 2.34 False - - True 65.00 2.34
D j 20 H2 False False - - True 29.17 1.80 True 29.17 1.80

D g 21 H1 True False - - True 72.00 1.68 True 72.00 1.68
D g 21 H2 True False - - True 25.00 1.03 True 53.33 2.63

A d 22 H1 True True 50.00 1.67 True 22.22 1.62 True 46.67 1.60
A d 22 H2 True True 68.42 1.40 True 94.12 0.88 True 91.43 0.88

D a 23 H1 False False - - False - - False - -
D a 23 H2 False False - - True 5.26 2.06 True 5.26 2.06

C k 24 H1 False True 52.17 2.24 False - - True 50.00 2.24
C k 24 H2 False False - - False - - False - -
B g 25 H1 True True 42.86 1.31 False - - True 28.57 1.40
B g 25 H2 True True 95.24 0.27 True 44.44 2.25 True 50.00 2.14

A b 26 H1 True False - - False - - False - -
A b 26 H2 True False - - False - - False - -
C i 27 H1 True True 100.00 0.19 True 61.54 2.08 True 70.59 2.20
C i 27 H2 True True 55.56 2.04 True 43.33 2.59 True 43.33 2.67

A e 28 H1 True True 96.67 0.36 True 82.35 0.69 True 82.76 1.44
A e 28 H2 True False - - False - - False - -
B h 29 H1 True True 53.57 2.37 True 42.86 2.39 True 50.00 2.34
B h 29 H2 True True 7.14 1.23 True 76.92 0.55 True 7.14 1.30

D j 30 H1 True False - - True 55.56 2.56 True 65.71 2.77
D j 30 H2 True True 30.00 2.49 False - - True 39.29 2.67

C b 31 H1 False True 8.33 1.99 False - - True 8.33 1.99
C b 31 H2 False True 10.00 1.64 True 55.56 1.87 True 53.57 1.87

A f 32 H1 True True 59.26 1.65 True 60.00 1.67 True 61.54 1.58
A f 32 H2 True True 87.10 0.58 True 53.33 1.52 True 36.67 2.07
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Table D.15: Raw data table (part 2) - Goal: Balls

Ball
Config

Human
Config

Experiment
Number

Human
Name Crossing

No Data Sharing Data Sharing
R1 R2 R1+R2

Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m]

C l 33 H1 True False - - True 77.78 2.35 True 77.78 2.35
C l 33 H2 True False - - False - - True 51.47 0.26

D m 34 H1 False True 100.00 0.19 False - - True 100.00 0.19
D m 34 H2 False True 70.00 2.41 False - - True 72.50 2.37

A c 35 H1 False False - - False - - False - -
A c 35 H2 False True 100.00 0.23 True 5.88 1.81 True 25.00 1.77

B f 36 H1 True True 77.14 1.94 False - - True 78.95 1.94
B f 36 H2 True False - - True 74.42 1.73 True 74.42 1.97

C j 37 H1 False True 97.22 0.31 True 19.23 2.60 True 40.00 2.75
C j 37 H2 False True 20.00 2.47 True 40.00 2.56 True 37.50 2.56

B a 38 H1 True True 65.38 2.04 True 64.29 1.45 True 61.54 2.08
B a 38 H2 True False - - False - - False - -
D j 39 H1 False True 100.00 0.22 False - - True 100.00 0.22
D j 39 H2 False False - - True 6.67 1.61 True 6.67 1.61

A a 40 H1 True True 65.52 1.85 False - - True 62.07 1.93
A a 40 H2 True False - - True 12.50 2.58 False - -
A e 41 H1 False True 75.86 1.50 True 25.00 0.32 True 78.57 1.50
A e 41 H2 False False - - True 5.56 1.76 True 5.56 1.76

C l 42 H1 True False - - True 65.79 2.17 True 93.62 0.95
C l 42 H2 True False - - True 100.00 0.16 True 100.00 0.16

A d 43 H1 False False - - False - - True 57.14 1.39
A d 43 H2 False False - - True 4.76 2.16 True 3.45 2.16

B a 44 H1 False True 10.00 1.49 False - - True 10.00 1.49
B a 44 H2 False False - - False - - False - -
C i 45 H1 False False - - False - - True 100.00 0.23
C i 45 H2 False True 10.00 1.23 True 30.00 2.19 True 7.14 2.19

B h 46 H1 True False - - False - - False - -
B h 46 H2 True False - - False - - False - -
D m 47 H1 False True 83.33 0.34 False - - True 83.33 0.34
D m 47 H2 False True 12.50 0.46 True 20.00 0.53 True 14.29 0.48

B f 48 H1 True True 4.17 1.72 False - - True 4.17 1.59
B f 48 H2 True False - - True 59.46 2.28 True 58.97 2.52

D g 49 H1 True True 36.67 2.53 False - - True 33.33 2.57
D g 49 H2 True False - - True 10.00 0.97 True 10.00 1.14

A c 50 H1 False True 40.91 2.30 False - - True 40.91 2.30
A c 50 H2 False False - - False - - False - -
C j 51 H1 True True 100.00 0.13 False - - True 100.00 0.13
C j 51 H2 True True 11.11 2.60 True 23.53 2.54 True 15.00 2.67

D a 52 H1 False True 53.85 0.61 False - - True 53.85 0.61
D a 52 H2 False True 70.00 2.11 False - - True 86.36 2.11

A f 54 H1 True True 100.00 1.81 False - - False - -
A f 54 H2 True True 76.92 1.05 True 55.17 1.82 True 64.52 1.17

A b 56 H1 True False - - False - - False - -
A b 56 H2 True False - - True 88.89 1.05 True 36.36 1.15

B h 57 H1 True False - - False - - False - -
B h 57 H2 True False - - False - - False - -
C b 58 H1 False False - - False - - True 90.70 1.02
C b 58 H2 False False - - False - - False - -
A d 59 H1 False True 3.85 2.02 False - - True 76.92 0.64
A d 59 H2 False True 30.00 1.46 True 77.78 1.28 True 70.00 1.28

D g 60 H1 True False - - False - - False - -
D g 60 H2 True True 100.00 0.08 True 76.47 2.59 True 73.58 2.95

A f 61 H1 True True 20.00 1.72 True 21.05 1.73 True 4.55 1.73
A f 61 H2 True True 42.31 2.10 True 28.57 1.81 True 7.06 2.23

D a 62 H1 True True 78.38 2.05 True 64.52 2.38 True 64.86 2.78
D a 62 H2 True True 50.00 2.45 False - - True 57.78 2.92

A e 63 H1 False True 66.67 1.85 False - - False - -
A e 63 H2 False False - - True 54.17 1.79 True 17.81 1.79

C i 64 H1 False False - - False - - True 100.00 0.13
C i 64 H2 False False - - False - - False - -
A b 65 H1 True True 50.00 1.77 True 7.14 2.04 True 47.37 1.60
A b 65 H2 True True 43.75 1.67 False - - True 58.33 2.13

B g 66 H1 True True 100.00 0.24 True 51.43 2.49 True 47.37 2.66
B g 66 H2 True False - - False - - False - -
A c 67 H1 False False - - False - - False - -
A c 67 H2 False True 46.67 1.50 True 80.00 1.42 True 80.43 1.48
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Table D.16: Raw data table (part 3) - Goal: Balls

Ball
Config

Human
Config

Experiment
Number

Human
Name Crossing

No Data Sharing Data Sharing
R1 R2 R1+R2

Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m] Ch [-] T% [%] dG [m]

C k 68 H1 False False - - True 66.67 1.48 True 68.00 1.73
C k 68 H2 False False - - True 38.46 2.32 True 37.84 2.84

D j 69 H1 True False - - False - - False - -
D j 69 H2 True False - - True 64.10 2.36 True 71.79 2.31

B a 71 H1 False True 14.29 1.62 False - - True 14.29 1.62
B a 71 H2 False True 33.33 0.35 True 5.88 1.99 True 5.56 1.99

D m 72 H1 True True 58.62 2.18 False - - True 62.50 2.18
D m 72 H2 True True 57.14 2.49 True 96.88 0.28 True 42.11 2.94

C b 73 H1 True False - - True 71.43 1.49 True 65.52 2.05
C b 73 H2 True True 100.00 0.10 True 96.15 0.26 True 45.83 1.44

B f 74 H1 True False - - True 43.75 2.32 True 48.48 2.44
B f 74 H2 True False - - False - - False - -
C l 75 H1 True True 47.62 2.13 True 97.37 0.26 True 55.26 2.56
C l 75 H2 True True 64.71 1.60 False - - True 72.73 1.92

D g 76 H1 False True 4.00 2.42 False - - True 4.00 2.45
D g 76 H2 False False - - True 4.55 2.27 True 4.17 2.37

C j 77 H1 False False - - False - - False - -
C j 77 H2 False True 7.14 2.41 False - - True 33.33 2.41

A d 78 H1 False True 9.09 1.41 True - 0.25 True 11.11 1.41
A d 78 H2 False False - - True 71.43 1.48 True 71.43 1.48

C i 79 H1 False True 43.75 2.55 True 17.39 2.60 True 29.03 2.87
C i 79 H2 False True 11.11 2.57 False - - True 33.33 2.48

A b 80 H1 False True 74.07 1.48 False - - True 66.67 1.48
A b 80 H2 False False - - True 8.33 1.58 True 8.33 1.58

D a 81 H1 True False - - False - - False - -
D a 81 H2 True False - - False - - True 35.56 0.82

C b 82 H1 True True 70.00 1.87 False - - True 24.32 2.12
C b 82 H2 True True 66.67 1.72 False - - True 82.93 1.72

B f 83 H1 True True 76.60 2.40 False - - True 39.78 2.55
B f 83 H2 True True 87.88 1.06 False - - True 88.57 1.06

C k 84 H1 False False - - False - - False - -
C k 84 H2 False False - - False - - False - -
B a 85 H1 False True 3.85 1.94 False - - True 1.27 1.94
B a 85 H2 False True 50.00 2.47 False - - True 64.58 2.85

A e 86 H1 False False - - False - - False - -
A e 86 H2 False False - - False - - False - -
B h 87 H1 True True 31.25 1.51 False - - True 6.25 1.36
B h 87 H2 True False - - False - - False - -
A f 88 H1 True True 26.67 1.63 False - - True 46.81 2.37
A f 88 H2 True False - - False - - False - -
B g 89 H1 False True 59.38 1.38 True 40.74 1.52 True 41.38 1.53
B g 89 H2 False False - - True 5.26 1.84 True 5.26 1.90

A a 90 H1 True True 65.62 1.89 True 81.25 0.75 True 71.43 1.40
A a 90 H2 True False - - False - - False - -
A c 91 H1 False False - - True 45.45 1.27 True 89.66 0.75
A c 91 H2 False True 8.33 2.13 True 31.58 2.50 True 24.00 2.50

C l 92 H1 True False - - True 82.76 1.09 True 68.57 1.81
C l 92 H2 True True 53.33 1.92 True 66.67 1.98 True 63.64 2.38

D j 93 H1 True False - - True 82.76 1.11 True 79.07 2.45
D j 93 H2 True False - - True 94.74 0.26 True 94.74 0.26

C i 94 H1 False False - - False - - False - -
C i 94 H2 False False - - True 85.71 0.51 False - -
D m 95 H1 True False - - True 68.97 2.08 True 70.00 2.20
D m 95 H2 True True 68.97 2.11 False - - True 34.48 3.03

C j 96 H1 True False - - False - - False - -
C j 96 H2 True True 63.64 1.58 True 78.38 1.44 True 76.32 1.59

A d 97 H1 False True 72.73 1.35 True 46.15 1.67 True 57.14 1.97
A d 97 H2 False False - - True 71.43 1.59 False - -
C b 98 H1 False False - - False - - False - -
C b 98 H2 False True 11.11 1.56 True 47.37 1.88 True 39.13 1.88

B g 99 H1 False True 3.70 2.10 False - - True 3.70 2.08
B g 99 H2 False True 68.42 0.69 True 10.00 1.43 True 8.33 1.59

C k 100 H1 True False - - False - - False - -
C k 100 H2 True False - - False - - False - -
A b 101 H1 False False - - False - - False - -
A b 101 H2 False False - - False - - True - 0.11
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APPENDIX E
CONSENT FORM

The consent form signed by all participants before the experiments.

CONSENT FORM FOR PARTICIPATION IN RESEARCH  
 
The purpose of this form is to inform you of the nature of the experiment that is about to 
start and to ask for your informed consent to participate.  
Your participation in this experiment is strictly voluntary.  
Your may choose not to participate, and you may withdraw at any time during the 
experiment.  
If there are any hesitations about participating or you have any questions about the 
research, please feel free to ask the experimenter, Sander van der Vorst.  
Your will be asked to pick-up balls and bring them in front of cameras (see experiment 
introduction paper). You will be recorded while moving on the field. There will be no health 
risks. The video of this experiment will be recorded and notes will be taken. All data 
obtained in this experiment will be processed and reported anonymously. More information 
about this study has been explained to you by the researcher.  
 
I, (NAME)……………………………………….. have read and understood this consent form and have 
been given the opportunity to ask questions. I agree that I participate in research mentioned 
above. 
 
Participant Signature and Date 
 
 ________________________ 
 
 
________________________  
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APPENDIX F
EXPERIMENT INFORMATION

A form containing all relevant experiment information for the participants. It was distributed to the participants before the
start of their experiments.

Learning in Mixed Human-Robot Teams
Data Gathering Experiment

Dear Participant,

First of all, thank you for your willingness to participate in one of the experiments that I am conduct-
ing for my master thesis. In this document the details of the experiment are briefly explained. If you have
any further questions, please do not hesitate to ask them.

Kind regards,
Sander van der Vorst

1 Goal of Experiment
The goal for this experiment is to simultaneously record two sequences of two persons each walking towards
a different soccer ball, picking it up and delivering it to a robot.

2 Experiment Setup
The experiment will be set up as follows:

• Both persons start at a designated start location, which will be different for every recording.

• Both persons will walk towards a different ball. Your path does not have to be a straight line but take
the path you want (without exiting this half of field).

• When arriving at a ball, the ball has to be picked up. Both persons do not have to do this necessarily
at the same time.

• When a person has picked up a ball, he/she walks towards a robot. Both persons cannot arrive at the
same robot at the same time.

• When arriving at a robot, the ball can be put on the floor on the middle line of the field before the
robot (the spot will be marked).

• When the ball has been laid down, the person can exit the field at the closest field corner of the half
field.

During the experiment it is advised not to walk too fast but also not overly slow, so the camera’s can later
track all movement correctly.

3 Time
One sequence will be filmed in + 1 minute. Then the balls will be relocated and the camera’s restarted,
which will take a few minutes. The total time of all experiments will be 1 hour at maximum.
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