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Abstract

Fast transport of heat in a fluid to achieve thermal homogenization is desired in a large
variety of industries, such as food processing and geothermal sites. Conventional approaches
to obtain a homogeneous temperature field rely on periodic reorientation schemes, which are
specifically designed for efficient fluid mixing. However, efficient mixing does not automati-
cally yield optimal heat transfer. In the case of heat transfer, it is required to find the optimal
balance between fast increase of the total energy content and fast homogenization of the in-
ternal temperature distribution. The 2D Rotated Arc Mixer (RAM) is adopted to study
heat transfer governed by advective and diffusive heat transfer. Different stirring motions
can be introduced in the 2D RAM to generate advection and enhance heat transfer.

A prior numerical study reveals that an adaptive reorientation scheme can substantially
accelerate the heating compared to conventional time-periodic reorientation designed for
efficient mixing. In this thesis, the development of control strategies to accomplish a ho-
mogeneous temperature field as fast as possible is continued. Simulations are performed to
investigate the effect of the cost function, activation time, and horizon on the performance
of an MPC controller. From the simulations, it follows that the cost function is essential for
a good performance of the MPC algorithm. When only one circulation direction is possible
in the RAM, the L1-norm of the temperature would be the best option for the cost function,
whereas the L2-norm of the temperature would be the best cost function when two directions
of rotation are possible. The optimal activation time depends on several parameters and can-
not be determined for a specific case. Moreover, the simulations show that it is beneficial to
use a large horizon in the MPC controller since a homogeneous temperature field is obtained
faster using a larger horizon. Simulations also show the potential of using other methods to
further improve the performance of the algorithm. However, further experimental research
is required to elaborate on these methods and to draw conclusions from them.
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Chapter 1

Introduction

1.1 Fluid stirring and heating

Stirring and mixing of scalars (e.g., heat or chemicals) by fluid flow plays an important role
in many industrial applications of sizes extending from micrometers to hundreds of kilome-
ters [1]. One application can be found in the thermal management of power electronics to
maintain optimal operating temperatures. Cooling of computer hardware has been one of
the central issues concerning computer technologies for many decades, since it is often the
limiting constraint for performance [2, 3]. Successful flow control can prove beneficial to
improve heat transfer, thereby allowing further improvements in speed, efficiency, and relia-
bility in electronics. Furthermore, several applications can be found in microfluidic systems.
For example, applications in the field of biomedical diagnostics and drug development, which
are widely used in the food and chemical industries [4, 5]. In the field of subsurface engineer-
ing, some practical applications include the extraction of geothermal energy or minerals [6],
remediation of contaminated groundwater [7], and localization of pollutants for in-situ reme-
diation and recovery [8]. Other relevant engineering applications can be found in polymer
extrusion, glass manufacturing, tailings, and paper-making [9, 10].

Some examples in nature include magma transport in the Earth’s mantle and dispersion of
hydrocarbons within fractured rock [1]. An intriguing aspect of natural flows is their wide
range of scales, both in space and time. At the large end of the scale are huge weather
systems and the oceanic conveyor belt, both tens of thousands of kilometers in size [11].
Figure 1.1 shows some areas of application.

Enhancing transport of scalars to improve the mixing/heating rate will be beneficial to a
large variety of industries. As for fluid flows, an important area of research is the so-called
laminar regime, which is characterized by its ordered stream and deterministic nature. Lam-
inar conditions preclude mixing by turbulence. Under these conditions mixing of scalars
may be accomplished through chaotic advection [1]. To achieve chaotic advection, scalar
transport is influenced by repetitive changes, often periodic reorientations, to the flow based
on mixing principles described in [12]. Conventional approaches to obtain a homogeneous
scalar field rely on these periodic reorientation schemes, which are specifically designed for
efficient fluid mixing. In the case of heat transfer, the common assumption in practice is
that applying the conventional mixing approach automatically yields optimal heat transfer.
This assumption does not necessarily hold, since diffusion can also play an important role
in scalar transport (characterized by the Péclet number Pe). First, the relationship between
fluid motion and thermal transport is highly non-trivial for heat transport by an interplay of
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Chapter 1. Introduction

convection and diffusion. Moreover, heat transport will often involve exchange across system
boundaries, in contrast to fluid mixing, which generically only involves transport within the
system boundaries. The temperature gradient between fluid and system boundary will drive
the heat transfer. It is important to refresh material near heat transfer boundaries, other-
wise the temperature gradients at those boundaries lessen and heat transfer slows down [13].
Therefore, it is required to find the optimal balance between fast increase of the total energy
content and fast homogenization of the internal temperature distribution. Efficient fluid
mixing, on the other hand, only relies on the rapid homogenization of the scalar field. As a
result, fluid mixing schemes may create a sub-optimal or even counter-productive condition
for accelerated heat transfer, at least in the vicinity of the boundary [14]. The main objective
of this research is therefore to develop a feedback control strategy to accomplish a homoge-
neous temperature field as fast as possible, considering both energizing and homogenization
of the internal temperature.

1.2 Existing methods for efficient fluid mixing and heating

Recent research is directed towards improving mixing and heating further. The amount
of literature about mixing is quite extensive, in contrast to the available literature about
stirring and mixing of scalars. A good overview of the different techniques is given in [1] and
[15]. Most techniques require detailed information about the velocity field or fluid motion.
In [16], an aperiodic mixing protocol has been advocated that destroys the symmetries in
the phase space by preventing the formation of unmixed zones due to island formation to
achieve mixing throughout the fluid. Knowledge of these symmetries provides a basis for
systematic methods for destroying islands. Moreover, from [17] it follows that aperiodicity
can enhance mixing enormously. To achieve complete mixing for a flow, regular motions must
be removed; procedures that achieve global chaos are therefore highly desirable. Aperiodic
perturbations generate widespread chaos under conditions where periodic flows generate
regular motions.

Another method to tackle the problem of efficient fluid mixing is using (approximate) dy-
namic programming from a switched system perspective [18]. A switched linear system is
typically characterized by a finite set of linear subsystems in which the switching among

Figure 1.1: Relevant areas of application for stirring and mixing of scalars.
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1.2. Existing methods for efficient fluid mixing and heating

these subsystems is governed by a state- and/or time-dependent switching protocol. As a
first step, temporal and spatial discretization is used by means of the cell-mapping method
on the original infinite-dimensional fluid models to make the control problem tractable. The
original mixing problem can then be formulated as an optimal control problem for a linear
discrete-time switched system. A novel feedback law for mixing fluids is proposed based on
suboptimal rollout policies in dynamic programming contexts. Finally, it follows that this
feedback law guarantees a performance improvement over any given (open-loop) periodic
mixing control.

In contrast to control strategies for mixing, literature on control strategies for maximizing
heat transfer is scarce. The majority of the research on this topic is focused on scalar trans-
port only by (chaotic) advection and is frequently limited to highly idealized configurations
and/or forcing techniques with few practical applications. Several studies show that control
laws and measures intended for advective transport (i.e., limit Pe → ∞) may still be effective
for finite Pe, addressing the effect of diffusion. For example, in [19] flow forcing optimized
for advective transport worked well for Pe ≥ 104, and in [20] the mix-norm was successfully
applied for Pe ∼ O(103). Most optimal-control approaches in existing research, however,
still have two major shortcomings: limited robustness to unforeseen disturbances and omis-
sion of diffusive transport both internally and across non-adiabatic boundaries. This again
motivates the development of specialized control strategies to improve advective-diffusive
scalar transport in realistic flow systems with non-adiabatic boundaries.

In [21], the heat transfer enhancement within a two-rod stirring device is numerically in-
vestigated. The fluid is heated by the walls (a cylindrical tank and the rods), which are
maintained at a constant temperature. Different stirring protocols are analyzed, from which
it is concluded that the use of discontinuous wall rotations is necessary to promote heat
transfer by chaotic advection. Thus, the stirring rods and the cylinder tank should move al-
ternately. In this way, hot spots in the vicinity of walls are avoided. However, only open-loop
control has been used in this research.

Another control strategy is adaptive reorientation of the flow by interval-wise selection of
the reorientation that is predicted to yield optimal scalar transport for a future time horizon
[14]. In this research, a compact model based on the spectral decomposition of the scalar
evolution in the base flow is used to enable fast predictions. The study reveals that the adap-
tive reorientation scheme can substantially accelerate the heating compared to conventional
time-periodic reorientation designed for efficient mixing. The compact model predicts the
temperature one step forward in time, after which the reorientation is selected which yields
optimal heat transfer. This approach can be seen as an MPC controller with a horizon
of one time step. Further developments of control strategies are possible by, for example,
extending the horizon. Moreover, currently the entire state is measured with a camera. In
practice, it might only be possible to measure a part of the state by, e.g., a limited number
of temperature sensors. This demonstrates the need to develop observers that can estimate
the state from discrete sensor data.

The common goal in these applications essentially is accomplishment of maximum heat
transfer between a domain boundary and a flow inside this domain via active manipulation
of the flow. A flow can be manipulated in different ways, e.g., by rotating (a part of) the wall,
stirring, letting the flow follow a geometric path, etc. One well-known example is stirring a
fluid (e.g., soup) to boost heat transfer. Despite the different methods to manipulate a flow,
in all cases the main goal is to find the best flow to accomplish a homogeneous temperature
field as fast as possible.

3



Chapter 1. Introduction

Using control technology to yield optimal scalar transport by adaptive reorientation of the
flow is not completely new. Although in the conventional method to accelerate scalar trans-
port (open-loop) periodic mixing protocols are used, a first step using a closed-loop control
strategy has been taken in [14]. Optimal control combined with a fast predictor can sig-
nificantly accelerate thermal homogenization. In [14], the transient temperature is only
predicted one step forward in time. Based on this temperature prediction, the optimal con-
trol action is determined. However, it might be more beneficial to predict the transient
temperature some steps further away in time to determine the optimal control action.

Moreover, as discussed before, an adequate description of the control target is essential. In
[21] and [22] first steps have been taken with regard to performance indicators for achieving
a homogeneous temperature field as fast as possible. However, the optimal performance
indicator for this problem has not yet been formulated.

When the transient temperature is predicted only one step ahead, the computational effort
is low. However, the computational effort will increase rapidly when the temperature should
be predicted multiple steps ahead in time. To regulate scalar transport in real time, the
computational effort must remain low. Therefore, it might be required to use a reduced-
order model.

1.3 Research objectives

This work adopts the 2D Rotated Arc Mixer (RAM), described in [23], as the representa-
tive configuration for in-depth analysis of scalar transport. The 2D RAM is visualized in
Figure 1.2. The RAM has several control parameters to tune the flow conditions to achieve
desired transport characteristics, making it flexible for applications and theoretical develop-
ments. In this research, it is assumed that the complete temperature field is available via
measurements. The focus of this research will therefore be on developing a control strategy.

Figure 1.2: The setup with the 2D Rotated Arc Mixer. The infrared camera at the top
measures the temperature field.
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1.3. Research objectives

The main objective of this research is therefore:

Develop a full-state feedback control strategy to accomplish a homogeneous temperature field
as fast as possible for the 2D RAM, in which heat transfer will take place between object and
flow via controlled reorientation of the flow.

Furthermore, some subgoals have been formulated to accomplish the main goal of this re-
search. The subgoals are discussed in the next sections.

1.3.1 Performance indicators

An adequate description of the control target is essential. It is required to find the optimal
balance between fast increase of the total energy content and fast homogenization of the
internal temperature distribution. The first step is to come up with a performance indicator,
that reflects achieving a homogeneous temperature field as fast as possible for the 2D RAM.
For example, an important question is to find the optimal error norm to minimize the error
between the current temperature field and the desired temperature field. In [22], a start
has been made on this subject. Relevant metrics are discussed for the global dynamics,
which enables formulation of the control problem as the minimization of a dedicated cost
function that naturally emerges from the dynamic analyses and adequately incorporates both
processes, i.e., increasing energy content and thermal homogenization. This research builds
on the work done in [21] and [22], in which several performance indicators are defined. The
performance of these indicators is not yet compared in a minimization procedure of a cost
function in an optimal control problem. The following subgoal is defined for development of
a performance indicator:

Design a performance indicator (i.e., a cost function) that reflects attaining a homogeneous
temperature field as fast as possible for the 2D RAM.

by adaptive reorientation of the flow

1.3.2 Control strategy

Conventional approaches to obtain a homogeneous temperature field rely on periodic re-
orientation schemes, as discussed in Section 1.1. The goal is to propose a feedback control
solution that outperforms any proposed periodic protocol over a finite horizon. The adaptive
reorientation scheme which maximizes heat transfer has to be found, based on intermediate
temperature fields. Using this modeling perspective, suboptimal rollout policies in a dynamic
programming context will be used as a starting point for the control strategy [24, 25]. Differ-
ent policies will be compared, after which one policy will be chosen based on computational
time and performance. In [14] a model predictive control (MPC) approach is applied using
a horizon of one time step. A longer horizon will in general result in better performance,
however, it also increases the computational time significantly. It is important to find a good
balance between performance and computational time. The following subgoal is defined for
development of the control strategy:

Design a full-state feedback controller that outperforms any proposed periodic protocol over
a finite horizon.

1.3.3 Model reduction

The compact model of [14] will be used for the development of the control strategy. This
model leans on the existence of a spectral decomposition of the temperature evolution into
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Chapter 1. Introduction

eigenmodes, which enables simulation of the temperature evolution using matrix-vector mul-
tiplications instead of a (computationally for more expensive) time-marching scheme. The
compact model in [14] reduces the computation effort dramatically, i.e., by 3-4 orders of
magnitude compared to conventional time-marching.

In [14] the dedicated approach described in [26] is employed to obtain the system matrixA1 of
the base flow and its spectral decomposition underlying the compact model. System matrix
A1 of the base flow, however, can also be obtained using conventional FDM/FVM/FEM
schemes, resulting in a more accurate system matrix of the base flow. The disadvantage of
using FDM/FVM/FEM schemes is the large computational time, making it impossible to
use it for the development of the control strategy.

As discussed in Section 1.3.2, it is desired to predict the temperature evolution multiple
steps ahead in time. The current control scheme only requires one step ahead predictions,
so the computational effort is low. However, when using an MPC approach, the number of
predictions (and therefore also the computational costs) increase exponentially when more
predictions are needed as illustrated in Figure 1.3. To regulate scalar transport in real time,
it is important that the computational effort remains low. The required computational time,
however, depends on several parameters, such as the characteristic velocity of the flow field
and the radius of the domain. When using the same values as in [23], the reference time
scale (i.e., the forcing period) is 625 s. However, for systems with a higher velocity and/or a
smaller domain it might be required to reduce the computational costs even further.

Model reduction is a technique for obtaining a lower-dimensional approximation to a high-
dimensional dynamical system. A good overview of different approximation methods is given
in [27]. Gramians are important tools for system approximation and can be used to represent
a quantitative measure of controllability and observability. In this research, a linear switched
system is considered, which represents an important class of hybrid systems that consists
of a family of linear time-invariant subsystems and a rule that orchestrates the switching
between them, e.g., the adaptive reorientation scheme. Methods exist for model reduction
of a hybrid system, such as LMI-based methods [28, 29], balanced truncation [30–34], and
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1.4. Structure of the report

moment matching [35, 36].

The following subgoal is defined for reduction of the model:

Reduce the complexity of the compact model, which approximates the dynamics of the full-
order system with sufficient accuracy, to make fast predictions of the temperature evolu-
tion.

1.4 Structure of the report

This report has the following structure. The relevant background material is discussed in
Chapter 2. The background material consists of the modeling of the 2D RAM, the thermal
problem, switched linear systems, optimal control, and performance indicators. Chapter 3
subsequently discusses the main contributions of this research. The main contributions
are the performance evaluation of the designed controller, including the effect of different
performance indicators, the horizon, and the activation time on performance. In Chapter 4,
some further possible improvements are proposed based on the results in Chapter 3. In this
part, model reduction is discussed as well. This chapter gives motivation to further research.
Finally, a conclusion and recommendations are given in Chapter 5.
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Chapter 2

Mathematical preliminaries and
background material

This chapter provides a review of preliminary material. Firstly, modeling of the 2D RAM is
discussed. The 2D RAM can be modeled using the method described by Lensvelt et al. [14]
and using conventional FVM schemes. The first method will be discussed in this chapter,
because this model will be used for the simulations in this research. Thereafter, the control
of the 2D RAM is discussed. Different types of (sub)optimal control will be elaborated upon.
This will be followed by Section 2.3, in which different performance indicators are discussed
and analyzed. It is essential to find a good performance indicator, which can be used as a
cost function in the control algorithm. The cost function determines the choices made in the
process and is crucial for good performance. Finally, the main findings of this chapter are
discussed in Section 2.4.

The flow configuration in the 2D RAM, the thermal problem, and the numerical method are
already extensively and well explained in the work of Lensvelt et al. [14], and are therefore
concisely repeated in Section 2.1. Only small changes are made to these parts, which are
mostly cross-references and layout-related issues.

2.1 Model of the 2D Rotated Arc Mixer

This section discusses the 2D Rotated Arc Mixer in more detail. Furthermore, the governing
equations are given and it is explained how the model can be simulated numerically.

2.1.1 Flow configuration

The 2D Rotated Arc Mixer introduced in [23] will be used as the representative configuration
for the analysis of heat transfer. The goal is to heat an initially cold fluid via an isothermal
hot boundary by reorientating 2D flow fields.

It is assumed that the flow is laminar and incompressible. The 2D RAM consists of a
disk D =

{
(r, θ) ∈ R2 | r ≤ R,−π ≤ θ < π

}
with radius R which is enclosed by a boundary

Γ = ∂D as shown in Figure 2.1. Circumference Γ contains N apertures of arc length ∆
which consecutively differ from each other by an angular offset Θ = 2π/N as illustrated in
Figure 2.1a. The arc length is constrained as the apertures cannot overlap. The centerline of
arc k, 1 ≤ k ≤ N , is located at angle θk = (k− 1)Θ. The flow inside the RAM can be driven
by sliding wall segments along these apertures via viscous drag. Moreover, no-slip boundary

9



Chapter 2. Mathematical preliminaries and background material

conditions assure the absence of flow at the circumference Γ. Only at an active aperture k
the angular velocity ωk drives the fluid flow inside D through viscous drag. These conditions
can be physically realized through a motor-belt system as presented in [23]. By activating
an aperture, the flow field influences heat transport through advection. This accelerates
homogenization of the scalar field inside D compared to mere diffusive heating.

By activating the first arc (i.e., centered on the x-axis) in clockwise direction at an angular
velocity Ω a steady flow v1 with streamline pattern following Figure 2.1b is created. This
is called the base flow of the RAM. In this research, the 2D RAM will be simulated with a
radius R = 1 and unit angular velocity Ω = 1 without loss of generality.

The motion of the fluid can be described with the conservation laws for mass and momentum.
Assuming incompressibility, laminar flow and absence of body forces other than gravity, the
conservation laws can be written in non-dimensional form as

∇ · v = 0, Sr
∂v

∂t
+ Re v ·∇v = −∇P +∇2v, (2.1)

with v(x, t) the fluid velocity and P (x, t) the pressure in position x ∈ D at time t ≥ 0, which
depends on the fluid flow. Moreover, system (2.1) is parameterized by the Strouhal number
Sr = τv/τ = R2/ντ and the Reynolds number Re = UR/ν = ΩR2/ν, with τv = R2/ν
the viscous time scale, U = ΩR the azimuthal velocity of the apertures, ν the kinematic
viscosity of the fluid, R the radius as in Figure 2.1a and τ the aperture activation time.
The aperture activation time should not be chosen too small, since this will result in poor
performance [37]. In this research, the same lower bound for τ is considered as in [22], i.e.,
τ ≥ 3. Strongly laminar conditions imply (i) a rapid response of the fluid to changes in flow
forcing by the apertures (i.e., Sr = τv/τ ≪ 1) and (ii) negligible fluid inertia (i.e., Re ≪ 1).
This implies the base flow is a steady Stokes flow symmetric about the x-axis and admitting

Ωk

Θ

(a) Geometry. (b) Base flow. (c) Reversed flow.

(d) Reoriented flow. (e) Reoriented flow.

Figure 2.1: A schematic of the 2D Rotated Arc Mixer (RAM) with three apertures of arc
length ∆: (a) geometry of the 2D RAM; (b) streamlines corresponding with the base flow;
(c) reversed base flow; (d)-(e) reorientations of the base flow. Image taken from [14].
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2.1. Model of the 2D Rotated Arc Mixer

an analytical solution following [38]. As presented in [23], this simplifies (2.1) to

∇ · v = 0, −∇P +∇2v = 0, (2.2)

in case the fluid flow is driven by a single aperture. The corresponding initial and boundary
conditions are given by

v(x, 0) = 0, ∀ x ∈ D, and v(x, t) =

{
ωeθ if x ∈ Γk

0 if x ∈ Γ \ Γk

, t > 0, (2.3)

where Γk = {(r, θ) ∈ Γ | −∆/2 ≤ θ − (k − 1)Θ ≤ ∆/2} and eθ indicate aperture k and the
unit vector in azimuthal direction, respectively. The coefficient ω = ±1 determines the sense
of circulation: clockwise (ω = -1) versus counter-clockwise (ω = 1).

The simplification to steady Stokes flow causes the aperture reorientations to carry over the
flow, meaning that flow vk driven by aperture k is just a reorientation of the base flow v1

as illustrated in Figure 2.1d-2.1e. Mathematically this can be written as

vk(x) = vk(r, θ) = v1(r, θ + (k − 1)Θ) = v1(Rk(x)), (2.4)

where Rk is a rotation matrix. Moreover, it is possible to reverse the base flow by reversal
of the motion of the first arc, as shown in Figure 2.1c. This yields a flow v(r, θ) = −v1(r, θ),
while the streamline portrait is maintained (i.e., only the arrows change direction). For
simplicity, only one aperture is activated at a time. In the case of N apertures, it means
that N different flow fields can be created by activating an aperture without reversing the
flows. When reversal of the flow fields is possible, 2N different flow fields can be created.
At every time step, another aperture can be activated, resulting in another aperture-wise
steady flow. As mentioned before, the strongly laminar conditions imply a rapid response of
the fluid to changes in flow forcing by the apertures, meaning the acceleration stage can be
neglected. So, we can assume the flow is in a piece-wise continuous steady state.

2.1.2 Thermal problem

The thermal problem can be described as heating an initially cold fluid at uniform temper-
ature T0 inside D via the hot boundary Γ with constant wall temperature T∞ > T0. The
evolution of the temperature field from its non-uniform initial state towards the final homo-
geneous state is governed by the balance between advection and diffusion. The transport of
a diffusing passive scalar field T in a velocity field v is described by the advection-diffusion
equation (ADE):

∂T

∂t
= −v ·∇T +

1

Pe
∇2T, (2.5)

where Pe is the Péclet number. The Péclet number is the ratio of timescales for diffusion
and advection, Pe = RU/α with R the characteristic length, U = ΩR the flow velocity scale,
and α the thermal diffusivity. A system with a high Péclet number indicates an advectively
dominated distribution, whereas a system with a low Péclet number has a large amount
of diffusion. The initial and boundary conditions corresponding with the above heating
problem are T (x, 0) = T0 and T (x, t)|Γ = T∞ for all x ∈ D and t ≥ 0. Relevant application
areas typically have Pe ∼ O(102 − 104), implying advection-dominated heat transfer yet
with significant diffusion. Since diffusion is present, any initial temperature field T (x, 0) will
eventually evolve towards the uniform final state limt→∞ T (x, t) = T∞, even if the system
is not regulated. So, T (x, t) = T∞ is an asymptotically stable solution of (2.5) if diffusion
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Chapter 2. Mathematical preliminaries and background material

is present, as proven in [22]. Therefore, the principal goal is to find the fastest route to
the uniform final state. As a result, the dynamic behavior can be entirely captured in the
transient temperature

T̃ (x, t) ≡ T (x, t)− T∞, (2.6)

which is governed by the ADE

∂T̃

∂t
= −v ·∇T̃ +

1

Pe
∇2T̃ , T̃ (x, 0) = T0 − T∞, T̃ (x, t) |Γ= 0, (2.7)

following from substitution of (2.6) into (2.5). The original problem is now translated into
progression of the transient temperature towards the final state T̃∞ = 0. Without loss of
generality, the initial and boundary conditions can be set to T0 = 0 and T∞ = 1, which gives
T̃ (x, 0) = −1 for the initial condition in (2.7). Using the transient temperature allows us
to perform an error analysis encountered in control theory, where T∞ is the reference signal
and T̃ is the error signal [39].

To do fast predictions of the transient temperature, the compact model proposed in [14]
has been used in this research. This compact model decomposes the temperature evolution
into eigenmodes, which characterize the mixing dynamics of advected fields in flows [23].
Solutions of the ADE are expressed in terms of the exponentially decaying natural persistent
patterns [26]. The temperature field for the base flow v1 can be decomposed into eigenmodes
[23] according to

T̃ (x, t) =
∞∑

m=0

αmϕm(x)eλmt, T̃ (x, 0) =
∞∑

m=0

αmϕm(x), (2.8)

with {ϕm, λm} the eigenfunction-eigenvalue pairs defined by the eigenvalue problem

Pe−1∇2ϕm − v1 ·∇ϕm = λmϕm, (2.9)

corresponding with the advection-diffusion operator in (2.5) and αm the expansion coef-
ficients based on initial conditions [26]. The eigenvalue problem (2.9) is solved using the
built-in function eig in Matlab. The transient temperature T̃ (x, tn) at the current time
step tn is the initial condition used for the determination of the expansion coefficients, and
therefore changes each time an aperture is switched (i.e., at times tn = τn). Progressive
decay of transient temperatures implies stable eigenmodes that are ordered according to
decay rate . . . ≤ Re(λ1) ≤ Re(λ0) < 0, where m = 0 is the slowest-decaying mode. For
Pe ∼ O(102 − 104), the eigenvalues are complex with negative real part. This will be dis-
cussed in more detail in Section 2.1.3. The stability property follows from the second law
of thermodynamics, which dictates that diffusive heat flux always acts against the tempera-
ture gradient [22]. This implies that any non-zero transient temperature, irrespective of the
flow, always evolves towards the final equilibrium and the system is intrinsically stable. As
mentioned before, flow vk driven by aperture k is just a reorientation of the base flow v1

following

T̃ (x, t) =
∞∑

m=0

α(k)
m ϕm (Rk(x)) e

λmt, T̃ (x, 0) =
∞∑

m=0

α(k)
m ϕm (Rk(x)) . (2.10)

Thus, spectral temperature evolution for the steady flow vk implies an identical eigenvalue
spectrum and a reorientation of the eigenfunctions related to the base flow v1.
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2.1. Model of the 2D Rotated Arc Mixer

2.1.3 Numerical method

In this section, two methods are discussed to simulate the 2D RAM numerically. First, the
dedicated method proposed in [26] is discussed. Thereafter, it is shown that the method
proposed in [14], which is based on the spectral temperature decomposition discussed in the
previous section, results in the same structure as the semi-analytical solution obtained with
the dedicated method proposed in [26].

The 2D RAM can be simulated numerically using the dedicated method proposed by Lester
et al. [26]. Equation (2.7) is spatially discretized for each steady flow vk, from which a
semi-discrete model is obtained, yielding

dT̃(t)

dt
= AkT̃(t), (2.11)

with T̃(t) = [T̃ (x0, t), . . . , T̃ (xM , t)]⊤ the nodal temperature value vector on computational
grid X = [x0, . . . ,xM ]⊤ and Ak the discrete matrix approximation of the advection-diffusion
operator. A cylindrical mesh with equidistant inter-nodal spacings should be chosen as com-
putational grid to discretize the cost function, which will be needed for the control algorithm
as discussed in Section 2.3.2. This computational grid is also used for the discretization of
(2.11). Moreover, the number of elements should be chosen high enough to achieve con-
vergence, which will be discussed in Chapter 3. Matrix Ak has complex eigenvalues with
negative real parts. As Pe → ∞, diffusion is negligible and transport becomes equal to pure
advection. This corresponds with skew-symmetric Ak with purely imaginary eigenvalues
[26]. As Pe → 0, Ak becomes diagonal with purely real eigenvalues. This corresponds with
diffusion dominated heat transfer; the effects of advection are negligible. Time-invariant Ak

is implied by the time independence of vk, making it possible to write the transient temper-
ature T̃ as a function of the initial transient temperature T̃0 and the standard eigenvectors
and eigenvalues of Ak according to

T̃(t) = UkT̃0, Uk = Vke
ΛktV−1

k , (2.12)

using the spectral decomposition Ak = VkΛkVk, with Vk = [ϕ
(k)
0 , . . . ,ϕ

(k)
M ] and Λk =

diag(λ
(k)
0 , . . . , λ

(k)
M ) the standard eigenvector and eigenvalue matrices, respectively, of system

matrix Ak. Note that conventional finite volume method (FVM) discretizations [40] yield
the same model structure as in (2.11).

The method in [22] is based on the spectral temperature decomposition discussed in Sec-
tion 2.1.2. The spectral decompositions (2.8) and (2.10) given in Section 2.1.2 have the same
structure as the semi-analytical solution (2.12), establishing

T̃(t) = Vke
ΛktV−1

k T̃0 =
M∑

m=0

α(k)
m ϕ(k)

m eλmt, α(k) = V−1
k T̃0 (2.13)

with eigenvector ϕ(k)
m containing the nodal values of eigenfunction ϕ

(k)
m (x) and vector α(k)

the discrete approximation of expansion coefficients α
(k)
m mapped on the computational grid.

Using the rotation matrix R, the discrete counterpart to operator Rk on the computational
grid, the eigenvector bases Vk can be related to the base flow according to

Vk = Rk−1V1. (2.14)

As explained by Lensvelt et al. [14], this affords two major reductions in computational effort
compared to numerical treatment of (2.5) via conventional spatio-temporal discretizations.
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Chapter 2. Mathematical preliminaries and background material

Moreover, the computational effort is further reduced by neglecting the fastest-decaying
eigenmodes. For sufficiently long times, only the most slowly decaying term present in the ini-
tial condition persists. Each eigenmode m has a characteristic time scale τm = −1/Re(λm),
which can be compared with the aperture activation time τ . The modes with τm/τ ≪ 1
can then be neglected. Note that τv and τm are not related; τv/τ ≪ 1 implies the transient
effects of the velocity field associated with aperture reorientations may be ignored, whereas
τm/τ ≪ 1 implies the fastest-decaying eigenmodes in aperture activation time τ can be
neglected. This results in a truncated expansion at Q ≪ M similar to (2.13):

T̃(t) ≈ T̂(t) =

Q∑
m=0

α̂(k)
m ϕ(k)

m eλmt, α̂(k) = GkT̃0, Gk = (V̂⊤
k V̂k)

−1V̂⊤
k , (2.15)

with V̂k = [ϕ
(k)
0 , . . . ,ϕ

(k)
Q ] the reduced eigenvector basis and symbol .̂ indicating approxi-

mate quantities. This means that the vector T̂(t) = [T̂ (x0, t), . . . , T̂ (xm, t), . . . , T̂ (xM , t)]⊤

approximates of the nodal temperature value vector on the computational grid X. Note that
Gk is the Moore–Penrose inverse of matrix V̂k (V̂k is a M × Q matrix). Using this trun-
cation, only the so-called “dominant eigenmodes“ (slowest-decaying eigenmodes) remain. In
Chapter 3, the number of modes Q is chosen large enough such that the simulation results
are approximately the same as for using M modes. Next, this can be reformulated in an
efficient matrix-vector operation, resulting in

T̂k(tn+1) = ÂkT̂(tn), (2.16)

where Âk can be found in [14] and the hat operator indicates approximate quantities.

2.2 Control of the 2D Rotated Arc Mixer

In this section, the control of the RAM is discussed. As discussed in Section 1.3, the goal
is to find the fastest way to the final state by activating different apertures. Firstly, the
system is discussed from a control perspective. Thereafter, different options of control will
be treated.

2.2.1 Control strategy

The goal is to come up with a control strategy that determines the aperture sequence which
minimizes the transient from the initial temperature to the target temperature. As can be
seen in Figure 2.2, a feedback controller is incorporated into the system that determines this
sequence, based on intermediate temperature fields. As discussed in [22], the flow v in the
RAM is generated by switching between aperture-wise steady flows vk (2.4) following

v(x, t) = vun(x), (2.17)

where un is the selected aperture, which is active on the time interval [nτ, (n + 1)τ) . The
selected aperture un activates the corresponding flow vun according to Figure 2.1. The flow
reorientation is described by a reorientation scheme U = {u0, u1, . . . , un, . . .} that determines
the particular aperture sequence and thus the time signature of the flow; e.g., U = {1, 3, 2}
subsequently activates apertures (1, 3, 2) each for a duration τ . The input set W contains
the values that u can attain, which depends on the circulation possibilities in the RAM.
When the RAM can only circulate the flow in one direction, W ∈ {1, . . . , N}. When the
RAM can circulate the flow in two directions, W ∈ {−N, . . . ,−1, 1, . . . , N}. The number
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2.2. Control of the 2D Rotated Arc Mixer

of different switching inputs (i.e., the size of the input set) will be denoted with s. For the
RAM, it follows that s = N when the flow can circulate in one direction and s = 2N when
the flow can circulate in two directions.

2.2.2 Switched linear systems

This section describes some relevant material regarding switched linear systems. For a com-
plete overview about switched system, see Liberzon [41].

Consider the following general switched linear discrete-time system

xn+1 = Funxn +Bunzn, n ∈ N0, (2.18)

where xn ∈ Rq is the state, zn ∈ Rnu is the control input, F is the system matrix, B is
the input matrix, and un ∈ {1, 2, . . . , s} is the switching input at discrete time n ∈ N0 :=
{0, 1, 2, . . . }. The goal is to design a policy for the control and switching input that regulates
the state to zero while minimizing a cost. It should be noted that the control input is absent
(zn = 0 for all n ∈ N0) for the 2D RAM. This means that only the optimal switching input
has to be found, i.e., the goal is to find the aperture sequence that results in the fastest way
to the final uniform state. This is called an autonomous linear switched system since the
control input is absent. The autonomous linear switched system is given as

xn+1 = Funxn. (2.19)

The semi-discrete model of the 2D RAM in (2.16) can be written in the same format as
(2.19), where the state xn is the temperature T̂n at discrete time step n.

It is desired to control the system optimally. However, it has to be defined what is optimal.
This is usually done with a cost function [25]. Assuming that both the subsystems and the
cost function are time invariant, it is possible to set the initial time to t0 = 0 without loss
of generality. Usually, the running cost function of the control problem is a quadratic cost
function, which can be written as

J =
∞∑
n=0

(
x⊤
nQxn

)
, (2.20)

where Q = Q⊤ ≥ 0 is the state cost matrix. In (2.20) an infinite horizon is considered. The
computational burden for infinite horizon control problems is usually very large, so often

Controller

RAM

T∞ T̃ (x, tn)

Flow Heat transfer

T (x, t)u(t)
v(x, t) = vuk

(x) ∂T

∂t
= −vuk

(x) ·∇T + 1

Pe
∇

2T
u(tn)

T (x, tn)

Figure 2.2: The closed-loop system for adaptive flow reorientation in the Rotated Arc
Mixer. Since the feedback controller is not determined yet, the controller block is not speci-
fied.
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finite horizon control problems are considered, giving

J =

H−1∑
n=0

(
x⊤
nQxn

)
+ xHQfxH , (2.21)

where H is called the time horizon and Qf = Q⊤
f ≥ 0 is the final state cost matrix. For

switched systems, also switching costs can be added in (2.21) as discussed in [42]. These
switching costs account for the effort required to execute the control action [43]. In the RAM,
the energy consumption to drive an arc is the same for all arcs. This means that switching
costs are not relevant to the minimization procedure and therefore, switching costs are not
considered in (2.21). However, when multiple arcs are activated at the same time, or arcs
are activated at variable speeds, the energy consumption should be taken into account in
(2.21). A more elaborate discussion about cost functions and performance indicators will be
given in Section 2.3.

2.2.3 Optimal control

The problem of determining optimal control laws for hybrid and switched systems has been
widely investigated in the last few years. In this section, different forms of (sub)optimal con-
trol are discussed. It is desired to develop a controller that can deal with noise, uncertainty,
and disturbances, so that the controller can be used in practical applications. This excludes
an open-loop controller that determines the entire aperture sequence before the start of the
simulation.

Model predictive control

The certainty equivalent controller (CEC) is a suboptimal control scheme that is inspired
by linear-quadratic control theory. The main attractive characteristic of CEC is its ability
to deal with stochastic and even imperfect information problems by using the mature and
effective methodology of deterministic optimal control. However, in CEC an infinite horizon
is used. In most problems, these infinite horizon control problems cannot be solved due to
their computational burden. This motivates a type of control with a finite horizon, called
model predictive control (MPC). Model predictive control is a control scheme where a model
is used for predicting the future behavior of the system in a finite time window. At each
time step, an optimal control problem is solved over a fixed length horizon, starting from
the current stage. The first component of the corresponding solution is then used as the
control action for the current stage, while the remaining part of the solution is discarded.
This process is then repeated at every time step. Compared to certainty equivalent control,
in which a larger horizon is used, the MPC problem is simpler to solve and this makes it
feasible to run the MPC algorithm online.

Essentially, the idea is that short-term optimization achieves optimality over a long time.
However, the obtained policy using MPC is typically not optimal, even for problems without
disturbances. One is tempted to conjecture that if the size of the horizon is larger, then
the performance of the MPC algorithm is improved. This, however, need not be true as
explained in [25]. Beyond the horizon H, the policy may be “blind” to the presence of
particularly “favorable” or “unfavorable” states. Figure 2.3 shows an example from [44]. At
the initial state, there are two possible controls, denoted u and u′. From the initial state,
2-step lookahead compares 0+1 with 0+2 and prefers the optimal control u, while 3-step
lookahead compares 0+1+2 with 0+2+0 and prefers the suboptimal control u′. Thus, using
a longer lookahead yields worse performance. Another example of reduced performance for
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2.2. Control of the 2D Rotated Arc Mixer

Figure 2.3: Example problem with costs for every transition, illustrating how using a longer
lookahead (i.e., a larger horizon) may degrade the performance of the policy obtained. Image
taken from [44].
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Figure 2.4: Example problem with total costs denoted at every note, illustrating how using
a larger horizon may degrade the performance of the policy obtained.

a larger horizon is given in Figure 2.4. The total cost is indicated at every state. Both
MPC controllers start with the same cost and should minimize the cost. Applying the MPC
algorithm for the 1-step horizon controller results in a cost sequence 0 - 4 - 7 - 13 - 18 - 22.
On the other hand, the cost sequence for the 3-step horizon controller is equal to 0 - 5 - 9
- 14 - 19 - 24, which is worse at every time step. The problem here has to do with large
cost changes at the “edge” of the horizon (i.e., the cost changes from 12 to 18 and 17 to 25).
Again, this example shows that the policy obtained with a larger horizon controller may be
“blind” to the presence of particularly “favorable” and “unfavorable” states.

For system (2.19), the MPC algorithm can be represented by the following three steps:

1. At step n, compute all the possible control sequences in the horizon, i.e.,
(un, un+1, . . . , uH−1). This means that future temperatures are predicted in the 2D
RAM for every possible combination in U .

2. Compute the cost (2.21) for each of these control sequences and pick the sequence with
minimum cost.
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3. Apply the first element of this sequence, set n = n+ 1, and go again to the first step.

In [14] the same approach has been used; however, the horizon in [14] is fixed at the duration
of the control action (meaning a horizon of one discrete time step). In this research, larger
horizons are considered as well. Note that the horizon keeps being shifted forward. For this
reason, MPC is also called receding horizon control.

Rollout

A rollout algorithm is similar to the MPC algorithm, however, after the horizon a base policy
is used. The base policy is fixed and determined before the start of the rollout algorithm.
Assume the base policy is determined as (ūn+H , ūn+H+1, . . . , ūnF−1). The rollout algorithm
can then be written as:

1. At step n, compute all the possible control sequences, i.e.,
(un, . . . , un+H−1, ūn+H , . . . , ūnF−1). Note that the base policy is fixed, i.e., only
(un, . . . , un+H−1) are free and can be optimized.

2. Compute the cost (2.21) for each of these control sequences and pick the sequence with
minimum cost. Note that H should be replaced by nF in (2.21) in case of the rollout
policy.

3. Apply the first element of this sequence, set n = n+ 1, and go again to the first step.

In Figure 2.5, the difference between MPC and rollout is visualized. By choosing the base
policy (ūn+H , ūn+H+1, . . . , ūnF−1), it is guaranteed that the rollout strategy will never per-
form worse than the base policy over an arbitrary finite horizon. However, choosing a well-
performing base policy is required in this case. Note that this does not mean that rollout
will perform better than an MPC controller.

Approach based on Pontryagin’s maximum principle

The finite-time optimal control problem can also be solved using Pontryagin’s maximum
principle. Using this method, it is possible to optimize both the switching sequence and the
aperture activation time. In order to obtain a more tractable optimal control problem, the
switched system (2.19) is embedded [45, 46] into a larger family of systems. This is done by

k k +H h

xk

k + 1 k + 1 +H

xk+1

h

k k +H h

xk

k + 1 k + 1 +H h

xk+1

Figure 2.5: Different suboptimal approximate dynamic programming policies. On the left,
model predictive control is shown. The calculated sequence is given in blue, from which the
first decision is applied (green line). On the right, rollout is shown. The base policy is given
in red.
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defining a convex set W given as

W =

{
w ∈ Rs :

s∑
i

wi = 1, wi ∈ [0, 1]

}
, (2.22)

where w(tn) =
[
w1(tn), . . . , ws(tn)

]⊤ ∈ Rs. The finite-time optimal control problem can now
be transformed into the embedded finite-time optimal control problem as

min
(w(t0),...,w(tH−2))

J =

H−1∑
n=0

x⊤(tn)Qx(tn)

s.t. x(tn+1) =
s∑

i=1

wi(tn)Fix(tn).

(2.23)

Note that the terminal costs are not present in (2.23) for the sake of simplicity. The repre-
sentation in (2.23) allows the input wi(tn) to vary continuously in the range [0, 1]. However,
as proven in [45], the optimal inputs for the larger family of systems belong to the set {0, 1}.
The optimal switching control law of problem (2.23) is then given as

u(tn) = argmin
u(tn)∈{1,2,...,s}

[
ξ⊤(tn+1)Fu(tn)x(tn)

]
, (2.24)

where ξ(tn) ∈ Rq, the co-states, are the solutions of

ξ(tn) = 2Qx(tn) +
s∑

i=1

wi(tn)F
⊤
i ξ(tn+1), (2.25)

satisfying ξ(tH) = 0. Note that u(tn) = un is the selected aperture, which is active
on the time interval [nτ, (n + 1)τ), and is part of the flow reorientation scheme U =
{u0, u1, . . . , un, . . .} (indicating the time signature of the flow). Equation (2.24) thus gives the
optimal switching input for (2.19). To determine the optimal solution, a two-point boundary
value problem needs to be solved, as opposed to usual single-point boundary value problems.
Two different ways to solve a two-point boundary value problem are the shooting method
and the relaxation method [47]. In the shooting method the two-point boundary value prob-
lem is reduced to an initial (final) value problem with a random choice of the initial (final)
conditions to satisfy the boundary conditions at one end of the time interval. The equations
are then integrated with standard techniques and corrections are made for the initial guess;
the process is repeated until convergence is reached. In the relaxation method, ordinary
differential equations are approximated by finite difference equations on a mesh of points
that span the domain of interest and the optimal solution is obtained iteratively, starting
with a guess solution.

In Section 3.2, the discussed control strategies will be compared, after which one control
strategy is implemented for the 2D RAM.

2.3 Performance indicators

2.3.1 Selection of performance indicators

An adequate description of the control target is essential. It is required to find the optimal
balance between a fast increase in the total energy content and fast homogenization of the
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internal temperature distribution. In [22], a start has been made on this subject, which
will be partly repeated here. Relevant metrics are discussed for the global dynamics, which
enables the formulation of the control problem as the minimization of a dedicated cost
function that naturally emerges from the dynamic analyses and adequately incorporates
both processes, i.e., increasing energy content and thermal homogenization. The transient
temperature can be decomposed as

T̃ (x, t) = T̄ (t) + T ′(x, t), T̄ (t) =
1

A

∫
D
T̃ (x, t) dx, T ′(x, t) ≡ T̃ (x, t)− T̄ (t), (2.26)

where A is the area of the 2D RAM. Since R = 1 as described before, A can be replaced by π
(A = πR2). The decomposition above isolates the temperature distributions corresponding
to these goals. The average temperature T̄ (t) can be seen as an indicator of the total energy
supplied to the fluid from time 0 to t:

Ẽ(t) =

∫
VRAM

ρcp

(
T̃ (t)− T̃0

)
dV (2.27)

= ρcp

∫
VRAM

(
T̃ (t) dV − T̃0VRAM

)
(2.28)

= ρcpVRAM

(
T̄ (t)− T̃0

)
, (2.29)

where ρ is the fluid density, cp the specific heat capacity, and VRAM the volume of the
RAM. Moreover, “heterogeneity” T ′(x, t) represents the (spatial) departure of T̃ from the
momentary homogeneous state T̄ . As discussed in Chapter 1, most problems considered
in the literature are homogenization problems, which in general concern adiabatic domains.
This implies T̄ = 0, and therefore only the field T̃ = T ′ is important in these problems.
The decomposition in (2.26) exposes the great dynamic complexity of the heating problem.
For fluid heating both energizing and homogenization are important. Therefore, the total
transient field T̃ , as well as its components T̄ and T ′, are relevant to its dynamics. This
motivates the definition of three measures for the global dynamic behavior of the heating
process [22]:

J1(t) ≡
1

π

∫
D
T̃ (x, t) dx, (2.30)

J2(t) ≡
1

π

∫
D
T̃ 2(x, t) dx, (2.31)

J3(t) ≡
1

π

∫
D

(
T ′)2 (x, t) dx (2.32)

with J1 = T̄ the normalized energy content of the transient state, J2 the global departure
from the equilibrium, and J3 the global heterogeneity. Note that T̃ ≤ 0 ∀x ∈ D and
t ≥ t0 = 0 by the definition in (2.6), so the use of the absolute value sign in (2.30) is not
necessary. To get the desired behavior, J1 = T̄ should be maximized since it represents the
normalized energy content of the transient state. Measures J2 and J3, on the other hand,
should be minimized to get the desired behavior. These measures relate via (2.26) and the
property

∫
D T ′(x, t) dx = 0 as

J2(t) = J2
1 (t) + J3(t), (2.33)

and effectively represent two distinct degrees of freedom as shown in [22].
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Following the procedure in [22], it is possible to derive the evolution of these measures. The
resulting evolutions are given as

dJ1
dt

=
1

πPe

∫
Γ
n ·∇T̃ ds, (2.34a)

dJ2
dt

= − 2

πPe

∫
D
|∇T̃ |2 dx, (2.34b)

where n is the normal vector to the surface of the 2D RAM. The evolution of J3 follows
from differentiating (2.33). Measure J1 represents the energy content of the transient state,
so dJ1/ dt represents the rate of change of the energy content. Equation (2.34a) shows that
energy enters the 2D RAM via the diffusive flux normal to the boundary. From (2.30)
it can be derived that J1(0) < 0 due to the uniform initial condition T̃ (x, 0) = −1 and
limt→∞ J2(t) = 0 due to the final condition limt→∞ T̃ (x, (t)) = 0, which is implied by the
uniform boundary condition T̃ |Γ = 0. Since (2.34a) shows that dJ1/ dt > 0), it follows that
measure J1 will increase monotonically. Moreover, (2.34b) via inequality |∇T̃ |2 > 0 implies
dJ2/ dt < 0 in at least one non-zero subset x ∈ D for any non-uniform T̃ . It is known from
(2.31) that J2(0) > 0 and limt→∞ J2(t) = 0, because T̃ (x, 0) = −1 and limt→∞ T̃ (x, (t)) = 0
as explained before. This implies a monotonic decay for measure J2. Since T̃ (x, 0) = −1
and limt→∞ T̃ (x, (t)) = 0, the temperature fields are homogeneous at the start and the end
of the process. This implies that J3(0) = limt→∞ J3(t) = 0. However, at the start, the
heterogeneity will grow (dJ3/dt|t=0 > 0) because heat is transferred to the fluid close to the
wall of the RAM. Eventually, the heterogeneity will decline (dJ3/ dt < 0) towards the final
state. This means that measure J3 is non-monotonic.

In [21] similar efficiency indicators are used to characterize the efficiency of heat transfer by
chaotic advection. The dimensionless fluid temperature defined in [21] is equal to T (x, t),
since T0 = 0 and T∞ = 1. The average dimensionless temperature T̄ ∗(t) and the standard
deviation σ(t) of the fluid are used as performance indicators. The average dimensionless
temperature T̄ ∗(t) and the standard deviation σ(t) of the fluid temperature are defined as

T̄ ∗(t) = T̄ (t) + T∞, σ(t) =

√
1

A

∫
D

(
T̃ (x, t)− T̄ (t)

)2
dx =

√
J3(t), (2.35)

where A is the area of the domain. Since both indicators are important as described before,
a new indicator is introduced that combines the two effects:

ATσ =
1

tfinal

∫ tfinal

0

T̄ ∗(t)

σ(t)
dt, (2.36)

where tfinal indicates a certain time period. For an efficient stirring protocol, ATσ must tend
toward a high value. The measure J4 can now be defined as

J4(t) ≡
T̄ ∗(t)

σ(t)
=

J1(t) + T∞√
J3(t)

, (2.37)

which has to be maximized. It should be mentioned that σ(t) = 0 for a homogeneous
temperature field. In this case, J4(t) is undefined (division by zero). When the simulation
would start with a homogeneous temperature field, this yields an undefined value of J4.
However, in the spectral model the fluid temperature at the wall is higher due to the definition
of T̃ (x, 0) in (2.8) and the simulation does not start with a homogeneous field. When the
temperature field is homogeneous at the start (J(0) → ∞ because σ(0) = 0), measure J4
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will decay first, since σ increases. Eventually, measure J4 will grow again towards its final
value. This means measure J4 is non-monotonic.

As the last performance indicator, it is chosen to maximize the lowest temperature present
in the RAM according to (2.38). The idea behind this is to prevent the formation of (large)
cold plumes. However, this approach does not say anything about global dynamic behavior.

J5(t) ≡ min
x∈D

T̃ (x, t). (2.38)

To visualize all performance indicators over time, the performance indicators can be nor-
malized such that J̌ shows decaying behavior and J̌(0) = 1. The normalized performance
indicators can be calculated as

J̌p(t) =
Jp(t)

Jp(0)
, p = [1, 2, 3, 5], (2.39)

J̌q(t) =
Jq(0)

Jq(t)
, q = 4. (2.40)

A measure should be used that captures both homogenization of the temperature field as
well as energizing (related to the mean temperature of the fluid). Measures J2 in (2.31) and
J4 in (2.37) are the most suitable candidates for this due to the combination of homogeniza-
tion and energizing. J2 incorporates both energizing (represented by J1) and homogenization
(represented by J3) by virtue of relation (2.33) as discussed in [22]. J4 also incorporates both
energizing (represented by T̄ ∗(t)) and homogenization (represented by σ(t)). The other mea-
sures do not capture both energizing and homogenization directly. In measure J4, however,
the balance between energizing and homogenization is not entirely clear; when the temper-
ature field is homogeneous, J4 will grow to infinity. This makes measure J2 the best option
to assess the performance of the control algorithm.

As described in Section 1.3, the main objective is to accomplish a homogeneous temper-
ature field as fast as possible for the 2D RAM. Therefore, it is important to rewrite this
requirement into a mathematical expression, making it possible to compare this requirement
systematically. The requirement consists of two parts. First, it has to be defined how the de-
sired homogeneous temperature field can be represented mathematically. Second, the time
requirement (as fast as possible) should be defined mathematically. As discussed before,
measure J2 would be most suited to represent the desired homogeneous temperature field
mathematically. The time requirement is translated into achieving a transient time tϵ as fast
as possible [22], i.e., finding the smallest tϵ such that J(t) ≤ ϵ ∀ t ≥ tϵ. Since the value of
J is only known at some discrete time points n, the transient time is interpolated via [22]

tϵ,i = t(n) + τ
J̌i(n)− ϵi

J̌i(n)− J̌i(n+ 1)
, i ∈ [1, 2, 3, 4, 5], (2.41)

where n is the smallest integer such that J(n + 1) ≤ ϵ. The values of ϵi are chosen such
that the transient is captured well, i.e., ϵi = 10−2 for i ∈ [2, 4] and ϵi = 10−1 for i ∈ [1, 5].
Since measures J2 and J4 capture both homogenization and energizing, it is desired that ϵi
is relatively small for these measures to achieve the desired performance, therefore ϵi = 10−2

for i ∈ [2, 4]. Via relations (2.33) and (2.37) it is determined that ϵi = 10−1 for i ∈ [1, 5] to
have all the transient times tϵ,i in the same order of magnitude.

In the next chapter, different performance indicators (discussed in this section) will be used
as cost functions. To compare the performance between these cost functions, the transient
time in (2.41) will be used.

22



2.4. Discussion

2.3.2 Discretization of performance measures

The cost functions given above should be discretized, since the approximated transient tem-
perature T̂ is only known at discrete data points on the computational grid X as discussed
in Section 2.1.3. As an example, J1(t) (2.30) is discretized [22] according to

Ĵ1(t) =

M∑
m=0

γmT̂ (xm, t), (2.42)

where γm are weight factors incorporating area weighting of T̃ (xm, t). The discretizations of
J2, J4, and J5 are given in Appendix A. Note that other types of weighting are also possible,
however, this results in a different (spatially weighted) measure. In case of area weighting,
the discrete grid points are placed at the center of an element as can be seen in Figure 2.6.
The area of such an element can be calculated as

γm = π

((
rm +

∆r

2

)2

−
(
rm − ∆r

2

)2
)

∆θ

2π
= rm∆r∆θ. (2.43)

The area of the element in the center of the 2D RAM (with center point x = y = 0), is given
as (∆r)2π. When the area of all elements is summed, it corresponds with the total area π
of the 2D RAM.

2.4 Discussion

In this section, the main findings of this chapter are discussed.

Firstly, the numerical model of the 2D RAM was discussed in Section 2.1. This model will
be used for the simulations in Chapter 3, using an efficient matrix-vector operation for the
temperature predictions (2.16).

In Section 2.2.1, the control of the RAM was discussed. The goal is to determine the
aperture sequence which minimizes the transient from the initial temperature to the target

-1 0 1

-1

0

1

Figure 2.6: Area weighting in the 2D RAM.
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temperature. The RAM can be seen as a switched linear system, which can be controlled
in different ways. Model predictive control, rollout, and an approach based on Pontryagin’s
maximum principle are discussed as potential control options. In Chapter 3, one of these
options will be selected, tested in simulations, and evaluated.

Finally, different performance indicators are discussed and analyzed in Section 2.3. Perfor-
mance measures J1, J2, J4, and J5 will be compared in the next chapter. Furthermore,
the transient time tϵ is defined in (2.41) to compare the performance of different perfor-
mance measures. In addition, other parameters, such as the aperture activation time and
the horizon, can be compared as well using the transient time.
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Chapter 3

Computational performance
analysis

In this chapter, the performance of the RAM is investigated for a RAM consisting of N = 3
apertures for different Péclet numbers and aperture activation times. The compact model
described in Section 2.1.3 is used for the simulations. The simulation settings are discussed
in Section 3.1. In Section 3.2, the used control strategy will be discussed, including the
parameters that still need to be determined. This will be followed by Section 3.3, in which
the effect of the horizon on performance is investigated for the values of Pe and τ given
in Section 3.1. Thereafter, the influence of the aperture activation time τ on performance
is analyzed in Section 3.4. In Section 3.5, a RAM with one circulation direction will be
compared with a RAM with two circulation directions. Finally, a conclusion is given in
Section 3.6.

3.1 Simulation settings

As discussed in Section 2.1.3, the number of elements should be chosen high enough to
achieve convergence. In this research, the computational grid consists of a cylindrical mesh
with equidistant inter-nodal spacings (∆r, ∆θ) and includesNr = 149 andNθ = 320 elements
in radial and angular direction, respectively. Truncation is at Q = 1000 modes according to
(2.15). In [22], Nr = 51 and Nθ = 121 elements are used with truncation at Q = 500 modes,
which resulted in convergence (verified by mesh-refinement tests). Since the same model is
used as in [22], using the same number of elements and modes should result in convergence.
In this research, it is assumed the results are accurate when metric J2 converges for a given
aperture sequence. In Figure 3.1, the evolution of metric J̌2 is shown for Pe = 1000, τ = 5,
Q = 1000, U = {1,−3,−2}, and different numbers of elements as indicated. In this figure, no
differences can be seen between simulations with different numbers of elements. In Table 3.1,
J̌2 is shown at t = 15 for the same settings. As J̌2 does not change significantly for a finer
mesh, it can be concluded that the used mesh (Nr = 149, Nθ = 320, and Q = 1000) is fine
enough for accurate results. Furthermore, metric J2 is accurate within a range of 10−4, i.e.,
J̌2|t=15 = 0.5390± 0.0001. This is verified with other Péclet numbers.
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Figure 3.1: Evolution of J̌2 for Pe = 1000,
τ = 5, Q = 1000, U = {1,−3,−2}, and
different numbers of elements.

Nr Nθ J̌2
44 96 0.538994
59 128 0.538989
74 160 0.538973
89 192 0.538995
104 224 0.539010
119 256 0.539016
134 288 0.539017
149 320 0.538984

Table 3.1: J̌2 at t = 15 for Pe = 1000,
τ = 5, Q = 1000, U = {1,−3,−2}, and
different numbers of elements.

The analysis is carried out for 5×102 ≤ Pe ≤ 1.25×103 to encompass the values Pe ∼ O(103)
typical of practical systems within the present scope as described in Section 1.2. In addition,
3 ≤ τ ≤ 7 captures the transition from regular to chaotic advection with conventional
periodic reorientation schemes [37].

3.2 Control strategy

In Section 2.2.3, different options of (sub)optimal control have been discussed, which are
model predictive control, rollout, and an approach based on Pontryagin’s maximum princi-
ple. In this chapter, the performance analysis will be done using an MPC controller. The
main reasons for this choice are the ease of implementation and lower computational costs
compared to the approach based on Pontryagin’s maximum principle. Furthermore, it con-
tinues on the work done by Lensvelt et al. [14], where an MPC controller with a horizon of
H = 1 is used. Another advantage is that the MPC controller can be easily extended to a
rollout controller.

As discussed in Section 2.2.2, the heating problem considered in this report can be seen as
an autonomous linear switched system (2.19) for which the optimal switching sequence is to
be determined. To formulate a well-defined optimization problem, the cost function should
be convex. This ensures convergence and regularity of the minimization procedure. The goal
is to find the cost function that corresponds with the main goal, i.e., finding the fastest way
to the homogeneous temperature field. In the MPC controller settings, the following three
aspects should be addressed:

1. The type of costs (i.e., the cost function). Which performance indicator corresponds the
most with the main goal? In Section 2.3.1, a selection will be made for the performance
indicators.

2. Whether and how the costs are summed in intermediate prediction steps. For example,
suppose an MPC controller with H > 1. It is possible to only look at the terminal cost
(using only the terminal state xH) and discard the costs at intermediate time steps.
On the other hand, it is possible to sum the costs at intermediate time steps, where it
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is even possible to weight the costs differently for each time step according to

Jtotal =

H∑
n=1

µ(tn)J(tn), (3.1)

where µ(tn) is a weighting factor indicating the relative importance of a specific cost
function J at time tn. Note that using terminal costs is a special case of summing costs
with µ(tn) = 0 ∀ n ∈ N0 \H. Furthermore, summing costs and terminal costs are the
same in caseH = 1. In this research, costs are summed equally, i.e., µ(tn) = 1 ∀ n ∈ N0.

3. The horizon, i.e., the number of future samples over which the controller tries to
minimize the cost defined in steps 1 and 2. A larger horizon does not necessarily result
in improved performance of the MPC algorithm as discussed in Section 2.2.3, which
will influence the choice of the optimal horizon. Besides the performance of the MPC
algorithm, the horizon also correlates with the computational costs.

As discussed in Section 2.2.3, an optimization problem should be solved at every discrete time
step i. In the optimization problem, the sequence with minimum cost (U∗) is determined.
Thereafter, the first element of the sequence (u∗0) is applied and the procedure is repeated
in the next step. At every time step i, the initial time of the optimization problem can be
set to ti = t0 without loss of generality. The optimization problem is then given by

min
U

H∑
n=1

µ(tn)J
(
T̂(tn)

)
,

s.t. T̂(t0) = T̂(ti),

U = {u0, u1, . . . , uH−1},
T̂(tn+1) = ÂunT̂(tn), ∀ n ∈ {0, . . . ,H − 1},
un ∈ W, ∀ n ∈ {0, . . . ,H − 1}.

(3.2)

Note that cost function J is not specified in (3.2). Different cost functions will be compared
in the next section.

3.2.1 Comparison of different performance indicators

As a first step, different performance indicators (J1, J2, J4 and J5) discussed in Section 2.3.1
are investigated for the 2D RAM consisting of 3 apertures at Pe = 1000 and τ = 5. Only
one direction of rotation (ω = −1 in (2.3)) is considered here. The actual temperature
evolution and the step-wise predictions are simulated using the numerical model (2.16). In
every simulation, an MPC controller with horizon H = 1 is used. This controller determines
the aperture sequence. Since four different performance indicators are considered, four simu-
lations have been performed, each with a different cost function. After every simulation, it is
possible to show the evolution of the four performance measures described above, although
only one of them is used in determining the aperture sequence. After the simulations, the
performance can be compared using the transient time according to (2.41). For a Péclet
number of 1000, this gives the results in Table 3.2. Note that the transient times tϵ,i cannot
be compared with each other, since they are defined differently. For an aperture activation
time of τ = 5, the evolution of the different normalized performance indicators J̌ is shown
in Figure 3.2. The results for different Péclet numbers and aperture activation times are
given in Table B.1. As can be seen in Table 3.2, the transient times differ relatively much
for another aperture activation time and another cost function used in the MPC algorithm.
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In particular, the transient times tϵ,2 and tϵ,4 are used to compare the different cost func-
tions used in the MPC algorithm, since the measures J2 and J4 capture homogenization and
energizing directly. However, this might favor cost functions J2 and J4 used in the MPC
algorithm, since the performance of the algorithm is evaluated with the same indicator. As
expected in Section 2.3.1, it turns out that measure J5 is not suited as cost function when
looking at the transient times. The transient times are relatively high compared to the other
cost functions used in the MPC algorithm, regardless of which transient time is used for
comparing the cost functions used in the MPC algorithm. Also, when looking at the tran-
sient time tϵ,5, cost function J5 performs poorly compared to other cost functions. Hence,
J5 is not suited as cost function. For measure J1, it can be seen the transient time is high
for τ = 3 compared to the other measures. However, using measure J1 as cost function for
τ = 7 results in the shortest transient time. Based on the transient times in Table B.1, it
can be concluded that the difference between using J1, J2, and J4 as cost functions is small.
However, as discussed in the previous section, J4 is non-monotonic, because in J4 (2.37) the

Table 3.2: Transient times tϵ for different aperture activation times τ and different cost
functions J used in the MPC algorithm. The Péclet number has a fixed value of 1000.

Type of cost used to
define transient time

τ Cost used in MPC tϵ,1 tϵ,2 tϵ,4 tϵ,5

3

J1 133.8 153.5 195.8 197.4
J2 104.7 112.7 119.8 124.4
J4 97.8 102.7 113.6 117.8
J5 117.9 126.3 145.9 136.0

5

J1 105.0 110.0 117.3 121.6
J2 98.2 104.0 111.6 116.0
J4 112.9 116.8 124.1 130.9
J5 110.2 117.0 130.2 128.6

7

J1 99.2 103.5 117.5 121.0
J2 109.9 115.0 124.1 128.7
J4 116.1 120.4 128.5 123.9
J5 116.1 120.4 128.5 123.9
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(a) Simulation with cost function J2.
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(b) Simulation with cost function J4.

Figure 3.2: Evolution of different normalized performance indicators for Pe = 1000 and
τ = 5.
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average dimensionless temperature is divided by the standard deviation. This favors perfor-
mance indicators J1 and J2 above J4. At this point, it is decided to continue the analysis
with both J1 and J2.

3.2.2 Summing of costs in intermediate prediction steps

As discussed in Section 3.2, it is important to determine whether and how costs are summed
in intermediate prediction steps. The goal (accomplishing a homogeneous temperature field
as fast as possible) suggests that only terminal costs would suffice. In Section 2.2.3, the
conclusion was drawn that a larger horizon does not necessarily result in a better perfor-
mance. Therefore, simulations have been performed in which both situations (i.e., summing
costs and terminal costs) are compared. In the simulations, a horizon H = 3 has been used.
This horizon should be large enough to see differences in both situations. To compare both
situations, the performance indicator β is defined as

β(Pe, τ) =
tϵ,s
tϵ,t

, (3.3)

where subscripts “s” and “t” denote summing and terminal costs, respectively. The perfor-
mance can be quantified as follows: β > 1 indicates a shorter transient - and thus better
performance - of using terminal costs compared to summing costs at intermediate prediction
steps; β < 1 indicates a relatively better performance of summing the costs at intermediate
steps. The results are shown in Table 3.3 for J1 and J2, using transient times tϵ,1 and tϵ,2,
respectively. The transient times tϵ,s are given as well to be able to make a comparison
between different values of τ and J . Subsequently, the transient times tϵ,t can be computed
using relation (3.3). For most values of τ and J the difference between both situations is
small (i.e., β ≈ 1). Some differences can be seen for τ = 3 and J = J2, for both Pe = 750 and
Pe = 1000. In case of a small aperture activation time (τ = 3), it is more beneficial to sum
the costs. Since β < 1 in most cases, the costs will be summed in intermediate steps from
now on. Different options of summing are possible by adding weights according to (3.1). In
this report, however, the costs are summed equally, i.e., the weighting factor is equal to 1
for every step.

Moreover, it is interesting to see what happens when other area weighting factors γ (2.43)
are used in this comparison. As explained before, this corresponds to another cost function
(i.e., a spatially weighted L1-norm). According to Figure 2.6, there are comparatively more
discrete data points in the RAM’s center than there are at the wall. This enables us to
emphasize the temperature at the RAM’s center more strongly by not using area weighting
(i.e., γm = 1 ∀ m ∈ {1, . . . ,M}). The rationale for this is that heat, coming from the walls,
will be faster at the center of the RAM, resulting in faster energizing and homogenization.
Figure 3.3 shows the costs J̌1, the adaptive reorientation scheme, and the temperature field

Table 3.3: Comparison of simulations where only terminal costs are considered with simu-
lations where the costs are summed at intermediate steps using performance indicator β.

(a) Pe = 750.

τ [-] J [-] tϵ,s [-] β [-]

3 J1 85.1 0.992
3 J2 87.1 0.903
5 J1 84.5 0.988
5 J2 93.3 0.977

(b) Pe = 1000.

τ [-] J [-] tϵ,s [-] β [-]

3 J1 102.9 1.004
3 J2 105.7 0.897
5 J1 102.7 1.007
5 J2 111.6 0.963
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(c) Temperature field in RAM for t = 90.

Figure 3.3: Comparison between MPC with only terminal cost with MPC with summing
cost for γ = 1, J = J1, τ = 5 and Pe = 1000.

in the RAM for t = 90 using area weighting factors γm = 1. Again, MPC with terminal
cost is compared with MPC with summing cost. It follows that the MPC controller with
H = 2 and terminal costs performs poorly. The controller only switches at the start of the
simulation, after which aperture 2 is selected for the remaining time. Therefore, only area
weighting will be used in this research.

3.2.3 Comparison of L1-norm and L2-norm of temperature as cost func-
tion

In Section 3.2.1, it was concluded that J1 and J2 would be the best options to use as
cost function in the MPC algorithm. In this section, the performance of both metrics is
evaluated. The performance is again determined using the transient time (2.41). To make
a fair comparison between both cost functions, the same transient time tϵ,2 is used. To
compare both cost functions, the performance indicator ζ is defined as

ζ(Pe, τ) =
tϵ,2,J1
tϵ,2,J2

, (3.4)

where subscripts “J1” and “J2” denote simulations with J1 and J2 as cost functions used
in the MPC algorithm, respectively. The performance can be quantified as follows: ζ > 1
indicates better performance for using J2 as cost function compared to using J1 as cost
function. Note that in both situations an MPC controller is used with a horizon H = 3.
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The results are given in Table 3.4. When only clockwise rotation is possible in the RAM, J1
would be the best option for the cost function for all combinations of Pe and τ , because ζ ≤ 1
for all combinations considered in Table 3.4a. In case rotation is possible in both directions,
the differences between both cost functions are much smaller. Although in Table 3.4b ζ ≥ 1
for all combinations of Pe and τ , the difference in performance is neglectable. This can also
be seen when looking at the aperture sequences shown in Figure 3.4. In Figure 3.4b it can
be seen that the number of switches is approximately the same; the simulation in which J1
is used has two fewer switches in the considered time interval. Another thing that stands
out is that the controller with J1 switches between 1 and -2, whereas the controller with
J2 switches between 1 and -3. This, however, does not significantly affect the performance
(which is confirmed by ζ, since ζ ≈ 1). On the other hand, the performance is different
when only clockwise rotation is possible in the RAM as shown in Figure 3.4a. The number
of switches differs significantly: using the controller with J1 as cost function results in three
switches, and the controller with J2 as cost function results in eleven switches. This pattern
is also present at other values of Pe and τ , which can be seen in Table B.2. It seems like the
many number of switches has a negative impact on the performance. The many number of
switches is only present when J2 is used as the cost function. To find out why this happens,
the temperature fields are compared for J1 and J2 in Figure 3.5. The MPC controller with
J = J2 results in more switches, which can also be seen in Figure 3.4a. In the first few
time steps, this results in better performance. However, when looking at the controller with
J = J1, it can be seen that a hot plume is spread into the cold part from t ≥ 25. This
results in a fast decay of measure J2 in the time interval 25 ≤ t ≤ 35. On the other hand,

Table 3.4: Comparison of an MPC controller with J = J1 with an MPC controller with
J = J2 using ζ as performance indicator. A horizon H = 3 is used.

(a) Only clockwise rotation.

ζ
τ

3 5 7

Pe

500 0.936 0.919 0.904
750 0.977 0.906 0.898
1000 0.973 0.920 0.903
1250 1.000 0.898 0.892

(b) Rotation in both directions.

ζ
τ

3 5 7

Pe

500 1 1 1
750 1.005 1.005 1.014
1000 1.015 1 1
1250 1.012 1.008 1.020
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Figure 3.4: Adaptive reorientation schemes for Pe = 750, τ = 5 and using a horizon H = 3.
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(a) Using an MPC controller with J = J1.

(b) Using an MPC controller with J = J2.

Figure 3.5: Temperature evolution for MPC controllers with different cost functions using
Pe = 750, τ = 5, H = 3, and only clockwise rotation.

the controller with J = J2 forms two smaller plumes, as can be seen from t ≥ 20. These
plumes do not get the time to grow, because the controller switches to another aperture.
When comparing the situation at t = 25, one large plume can be seen at the bottom for the
controller with J = J1. On the other hand, for the controller with J = J2 two plumes can
be seen at t = 25; one plume at the left side of the RAM and one plume at the bottom right
of the RAM. When comparing the situation at t = 40, it turns out that forming a large hot
plume is more beneficial. This can be seen in the temperature field and the value of J̌2 at
t = 40. Again, it can be seen that the many number of switches does have a negative impact
(after some time steps) on the performance. The reason the controller with J = J2 has more
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3.3. Larger horizon

switches than the controller with J = J1 seems to be in the definition of the cost function and
relation (2.33). Measure J2 covers both the energizing (via J1) and the homogenization (via
J3), whereas J1 only covers the energizing. From the results in Table 3.4a, it follows that J1
performs better than J2. When comparing the temperature fields and the costs, it appears
that the difference in performance is made at the start of the simulation. Therefore, it can be
concluded that energizing is the most important process at the start of the simulation. This
result is intuitive, since it is important to refresh the fluid near the boundaries; otherwise, the
temperature gradient at these boundaries lessens and heat transfer slows [13]. On the other
hand, when using J2 as cost function, also the homogenization process is considered at the
start of a simulation and this results in more switches. This is verified using Figure 3.6, in
which it can be seen that the global heterogeneity (indicated with J3 on the y-axis) is lower
for J = J2 compared to J = J1 in the first 40 time units. Moreover, the normalized energy
content J1 is lower for J = J1 compared to J = J2 in the considered time interval. In short,
the emphasis of controller J = J1 is on energizing, whereas the emphasis of controller J = J2
is on both energizing and homogenization. It follows, however, that emphasizing energizing
at the start of the simulation ultimately also leads to better homogenization.

3.3 Larger horizon

An important parameter in the MPC algorithm is the horizon. In general, it is expected
that a larger horizon results in better performance. Suppose only clockwise rotation is
possible in the RAM. With N apertures, N different control actions are possible at each
discrete time step. Suppose an MPC controller with a horizon of H = 3 is compared with
an MPC controller with a horizon of H = 1. At each iteration, NH different options are
considered in the MPC algorithm. The solution of the controller with H = 1 is always
present in the solution set of the controller with H = 3, which suggests that a controller
with a larger horizon will never perform worse than a controller with a smaller horizon.
However, as discussed in Section 2.2.3, this is not always the case. Therefore, it is important
to investigate the influence of the horizon on the performance of the 2D RAM. Another
essential aspect related to the horizon is the computation time. In Figure 1.3 it was shown
that the computation time increases exponentially with a larger horizon. When dealing with
real-time systems, it is desired that the MPC algorithm can run fast, so the algorithm can
do its predictions on time and can use the latest temperature measurement. In short, if a
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Figure 3.6: Comparison of performance measures J1 and J3 for the simulations with J = J1
and J = J2 for Pe = 750, τ = 5 and only clockwise rotation.
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larger horizon results in better performance, does this outweigh the computational costs? In
this section, only the performance part is considered. The comparison will be made between
using H = 1 and H = 3. When it proves beneficial to use a larger horizon (i.e., H = 3),
it is worth investigating the effect of even larger horizons as well. For these situations, the
importance of computational costs is more important.

Furthermore, no perturbations are acting on the system in the following simulations. When
using a horizon H = 1, N = 3 temperature fields are predicted using the spectral model. One
of these predicted temperature fields (determined by the cost function Ji) is the temperature
field in the next time step. For a larger horizon (i.e., H > 1), an optimal aperture sequence
is determined at each time step, from which only the first decision is implemented. Although
there are no perturbations, it is still possible that the optimal sequence changes in the next
step of the algorithm.

3.3.1 Rotation in one direction

To compare the performance of controllers with different horizons, again the transient time
(2.41) is used. This enables us to define the performance indicator χ as

χ(Pe, τ) =
tϵ,2,H1

tϵ,2,H3
, (3.5)

where subscripts “H1” and “H3” denote simulations with a horizon of H = 1 and H =
3, respectively. Note that the transient time tϵ,2 (based on J2) is used to compare the
performance. In the simulations, both J1 and J2 will be used as cost functions. When χ > 1,
the transient time for the MPC controller with H = 3 is shorter than the transient time
for the MPC controller with H = 1, i.e., the performance is better for the larger horizon
controller. In the considered parameter range, an MPC controller with H = 1 is better than
a conventional periodic scheme as shown in Lensvelt et al. [14]. This allows us to compare
the performance of a larger horizon controller (in this case, H = 3) with a controller with
H = 1. The results are given in Table 3.5 in case only clockwise rotation is possible. It
has to be mentioned that no conclusions can be drawn over which cost function is better.
Table 3.5 shows only the performance indicator χ (3.5) and does not compare J1 and J2.
When J1 is used as cost function, a larger horizon is better for all the combinations of τ
and Pe considered. Furthermore, the performance increases the most for small values of
τ . When J2 is used as cost function in simulations, it turns out that an MPC controller
with a horizon H = 1 is better for τ = 5. It is interesting to see that for this value of the
aperture activation time, a controller with a larger horizon performs worse. This motivates
a more in-depth analysis of such a case, in which the parameters Pe = 1000, τ = 5, and
J = J2 will be used. To this end, the temperature evolution, the performance indicator J̌2,

Table 3.5: Comparison of an MPC controller with H = 1 with an MPC controller with
H = 3 using χ as performance indicator. Only clockwise circulations are considered here.

(a) J = J1.

χ
τ

3 5 7

Pe

500 1.164 1.028 1.027
750 1.382 1.092 1.011
1000 1.492 1.071 1.012
1250 1.283 1.059 1.036

(b) J = J2.

χ
τ

3 5 7

Pe

500 1.113 1.000 1
750 1.053 0.911 1.028
1000 1.065 0.932 1.015
1250 1.024 0.910 1.005
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3.3. Larger horizon

and the switching sequence are shown in Figure 3.7 and Figure 3.8. When comparing both
situations, one can observe that the MPC controller with H = 3 performs better on the
time interval 25 ≤ t ≤ 35. However, from t ≥ 40 the MPC controller with H = 1 performs
better. Another interesting observation is the number of aperture switches in the considered
time interval; the larger horizon controller has more switches, which results in the forming
of different thermal plumes. In this case, however, it seems more beneficial to form one
large thermal plume (from t = 10 until t = 30 for the MPC controller with H = 1) and
subsequently send this plume into the cold region (t ≥ 35). Moreover, it turns out that the
MPC controller with H = 3 puts more emphasis on homogenization compared to the MPC

(a) Using an MPC controller with a horizon H = 1.

(b) Using an MPC controller with a horizon H = 3.

Figure 3.7: Temperature evolution for MPC controllers with different horizon lengths using
Pe = 1000, τ = 5, J = J2, and only clockwise rotation.
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(b) Adaptive reorientation scheme U .
Figure 3.8: Performance for MPC controllers with different horizon length using Pe = 1000,
τ = 5, J = J2 and only clockwise rotation.

controller with H = 1 when analyzing the global heterogeneity J3. In short, it would be
better to activate the same aperture for a longer time, instead of switching between different
apertures. This is the same observation as done in Section 3.2.3. The fact that this only
applies to this set of parameters (Pe = 1000, τ = 5, and J = J2) is crucial to remember. For
the other cases in Table 3.5b where χ < 1, however, the same observations are made. The
transient times and the number of switches are shown in Table B.2. When comparing the
transient times tϵ for a certain Peclet number, it turns out that a relatively high transient
time corresponds with a high number of switches. This is the same as seen before in the
specific situation in Figure 3.7. While for J1 no problems occur for a larger horizon, for
J2 the number of switches increases in some situations for a larger horizon resulting in a
worse performance. When using a controller with H = 1, the system only switches when
it has an immediate increase in performance. For H = 3, however, the system switches to
increase the performance after 3 steps. This results in more switches which has a negative
influence on performance. Possible solutions to reduce the number of switches are discussed
in Chapter 4.

In Figure 3.9, χ is plotted over the aperture activation time τ for Pe = 750. These results
correspond with the results in Table 3.5. For J1, χ > 1 ∀ τ and χ decreases when τ increases.
This result is intuitive; the larger the activation time τ , the lesser the improvement of
increasing H will be. On the other hand, no correlation is present between χ and τ for J2.
This again shows that only for MPC using J = J1 it is beneficial to use a larger horizon
for rotation in one direction. It is not possible to find the optimal aperture activation time
using Figure 3.9, since χ is shown, which compares the performance of an MPC controller
with H = 1 with an MPC controller with H = 3. The influence of the aperture activation
time on performance will be discussed in Section 3.4.
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Figure 3.9: Comparison of an MPC controller with H = 1 with an MPC controller with
H = 3 using χ as performance indicator for Pe = 750. This is done for both an MPC
controller with J = J1 and an MPC controller with J = J2. Only clockwise circulations are
considered here.

3.3.2 Rotation in two directions

The same procedure can be followed as done for rotation in one direction. This gives us the
results in Table 3.6. The first noticeable thing is that χ ≥ 1 ∀(Pe, τ). In particular for an
aperture activation time τ = 3 the performance increases. Moreover, some combinations of
Pe and τ result in the same performance for the two different controllers (i.e., χ = 1). To
understand this, it is important to see the aperture sequence when two rotation directions
are allowed. In Figure 3.10 and Figure 3.11 the temperature evolution and the adaptive
reorientation schemes are given, respectively, for two different situations, both for J = J2.
Both situations show a way to increase performance. In Figure 3.11a the controller with
H = 1 determines to change the arcs moving in opposite directions, while it is better to
keep the same arcs moving in the opposite direction. In Figure 3.11b, the controller with
H = 3 sometimes chooses to move one certain arc longer than the activation time τ , while
the controller with H = 1 continuously keeps switching. In particular, the last part (holding
one aperture for a longer time) happens significantly more for the cases where ζ > 1. To
investigate what is happening here, the temperature fields are plotted for the situation with
Pe = 1250 and τ = 3 in Figure 3.10. The MPC controller with a horizon H = 1 results
in switching between arcs 1 and 3 at every time step τ , whereas the MPC controller with
a horizon H = 3 results in switching between arcs 1 and 3 at every two time steps (2τ).

Table 3.6: Comparison of an MPC controller with H = 1 with an MPC controller with
H = 3 using χ as performance indicator. Two rotation directions are possible.

(a) J = J1.

χ
τ

3 5 7

Pe

500 1.034 1 1
750 1.044 1.015 1
1000 1.083 1 1
1250 1.169 1.018 1

(b) J = J2.

χ
τ

3 5 7

Pe

500 1.041 1 1
750 1.049 1.020 1.014
1000 1.116 1 1
1250 1.183 1.012 1.020
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Holding the arcs for a longer time results in faster homogenization (i.e., the cold islands are
destroyed faster) and therefore in a better performance. Besides the temperature fields in
Figure 3.10, this also follows from the values of J̌2, which are lower in case the arcs are held
for a longer period of time, resulting in better performance. The conclusion that can be
drawn from these simulations is that a larger horizon results in better performance when
rotation is possible in two directions. Although this has only been tested for H = 2 and
H = 3, the expectation is that an even larger horizon will perform better for small τ .

(a) Using an MPC controller with a horizon H = 1.

(b) Using an MPC controller with a horizon H = 3.

Figure 3.10: Temperature evolution for MPC controllers with different horizon lengths
using Pe = 1250, τ = 3, J = J2, and both directions of rotation.
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Figure 3.11: Adaptive reorientation schemes for τ = 3, J = J2 and two rotation directions.

3.4 Influence of aperture activation time

As already seen before, the aperture activation time does have a relatively large influence
on performance. This is, for example, shown in Figure 3.9 and Table B.2. However, it is
hard to draw conclusions based on Figure 3.9, since two controllers with different horizons
are compared here. Given the fact that more control actions are possible with a smaller
activation time, the hypothesis is that in general a smaller activation time results in better
performance provided the horizon is large enough. As an example, consider a horizon H = 1
and an activation time τ = 5. It is expected that a controller with a horizon H = 2 and
an activation time τ = 2.5 will at least achieve the same performance as the first controller,
because the same prediction time is considered in both controllers. However, since the
second controller allows the aperture to change one more time, it is expected this controller
will perform better (or at least not perform worse since the solution of the first controller
is also present in the solution set of the second controller). However, choosing the aperture
activation time too small results in poor performance [37]. As discussed before, a lower
bound τ ≥ 3 is used in this research.

3.4.1 Rotation in one direction

To compare the performance for different values of the aperture activation time, the transient
time is determined using (2.41). In Section 3.2.3 it was concluded that for clockwise rotation
of the RAM J1 would be the best option as cost function. In this section, the performance
is investigated with respect to the aperture activation time. However, both cost functions J1
and J2 used in the MPC algorithm are considered in this aspect. Moreover, in Section 3.3.1
it was concluded that a larger horizon does not necessarily lead to better performance.
Therefore, it is chosen to determine a minimum transient time tmin, which is defined as

tmin = min(tϵ,2,H1, tϵ,2,H3), (3.6)

where tϵ,H1 and tϵ,H3 are the transient times tϵ using an MPC controller with a horizon of
H = 1 and H = 3, respectively. In Figure 3.12 the minimum transient times are shown for
different values of the aperture activation time. Since χ > 1 ∀ τ when J = J1, it follows
that tϵ2,H1 > tϵ2,H3. This means that tmin = tϵ2,H3 if J1 is used as cost function in the MPC
algorithm. When looking at Figure 3.12a, it can be concluded that the aperture activation
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Figure 3.12: Transient times for MPC controllers with different aperture activation times
Pe = 750 and only clockwise rotation.

time does not have a large influence on the transient time (i.e., on performance) in case J1 is
used as cost function. Any aperture activation time between the values considered would be
a good option. Also for other Péclet numbers, the influence of the aperture activation time
on performance is small. See Table B.2b for more results. On the other hand, when J2 is used
as cost function as shown in Figure 3.12b, it can be concluded that the aperture activation
time has a large influence on the performance. For Pe = 750, it seems an aperture activation
time of τ ≈ 4.5 is optimal. Also for other Pe, shown in Table B.2, an activation time of τ ≈ 5
seems to be optimal. Unfortunately, the relation between the aperture activation time and
the performance is unclear and therefore, the optimal aperture activation time τ ≈ 5 cannot
be motivated. The jumps in tmin illustrated in Figure 3.12b at τ = 5 and τ = 5.7 cannot
be explained. These jumps in tmin occur both by jumps in tϵ,2,H1 and jumps in tϵ,2,H3 In
conclusion, it can be stated that an aperture activation time τ ≈ 5 in general results in a
good performance for the RAM when only clockwise rotation is possible.

3.4.2 Rotation in two directions

When the RAM is able to move the fluid in both directions (i.e., clockwise and counterclock-
wise), the transient time is smaller for all combinations of Pe and τ . Furthermore, as shown
in Section 3.3.2, a larger horizon will result in a better (or at least not worse) performance,
since χ ≥ 1∀(Pe, τ) for rotation in two directions. To compare the performance for different
values of τ , the transient time is used, which is determined using the MPC controller with
a horizon H = 3. In Figure 3.13, the transient times are plotted for both J1 and J2 as
cost functions. For both cost functions, using an aperture activation time of τ ≈ 6.5 would
result in the best performance in case Pe = 750. When looking at the transient times for
other Pe in Table B.3, it is concluded that τ = 7 performs the best. As already seen before,
for two circulation directions the adaptive reorientation scheme almost always consists of
switching between two arcs that move in opposite directions (Figures 3.4b and 3.11). This
implies that the difference in performance is not always the cause of the control algorithm.
As an example, observe the transient times in Figure 3.13b for 4.1 ≤ τ ≤ 7.0. The transient
times show a declining trend for a larger τ . However, for all these values of τ , the aperture
sequence is the same (i.e., switching between arcs 1 and 3). This shows an optimum aperture
activation time exists, which is independent of the control algorithm for Pe = 750.
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Figure 3.13: Transient times for MPC controllers with different aperture activation times
Pe = 750 and both rotation directions.

3.5 Comparing rotation in one and two directions

In this section, the performance of a 2D RAM that can rotate in one direction is compared
with a 2D RAM that can rotate in two directions. To compare this properly, the performance
indicator κ is defined as

κ(Pe, τ) =
tϵ,ω1

tϵ,ω2
, (3.7)

where subscripts “ω1” and “ω2” denote simulations with one circulation direction and two
circulation directions, respectively. When κ > 1, the performance is better for the RAM
with two circulation directions. The indicator κ is shown in Table 3.7 for the considered
parameter range of Pe and τ . From these results, it can be concluded that rotation in two
directions is guaranteed to lead to better performance. This is the expected result, since the
number of different control actions is higher for the RAM with two circulation directions. In
the sections before, however, it is shown that the optimal cost function, aperture activation
time, and horizon depend on the rotations possible in the RAM.

Table 3.7: Comparison of one circulation direction with two circulation directions in the
RAM using κ as performance indicator. an MPC controller with H = 3 is used.

(a) J = J1.

κ
τ

3 5 7

Pe

500 1.066 1.038 1.053
750 1.020 1.041 1.060
1000 1.047 1.068 1.082
1250 1.107 1.054 1.058

(b) J = J2.

κ
τ

3 5 7

Pe

500 1.138 1.131 1.165
750 1.049 1.155 1.196
1000 1.091 1.161 1.198
1250 1.121 1.182 1.209
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3.6 Conclusion

This section repeats and combines the results from Sections 3.2 - 3.5 to achieve the best
performance for the RAM.

A general conclusion that can be drawn is that rotation in two directions significantly im-
proves the temperature homogenization in the RAM compared to only one rotation direction.
This is independent of the used cost function, horizon, and aperture activation time.

In Section 3.2.1 it was concluded that the performance indicators J1 and J2 would be the
most suited candidates as cost functions. The difference in performance for these norms
is in general small, which motivated a more elaborate investigation of these cost functions
in Section 3.2.3. Moreover, as discussed in Section 3.2.2, it is more beneficial to sum the
costs in the cost function than to take the terminal cost. However, a few things about this
conclusion have to be noted. The conclusion is based on simulations with an MPC controller
with a horizon H = 3. For a larger horizon, it could be the case that the difference between
summing and terminal costs is negligible, or even that a terminal cost would be better. In
addition, the costs can be summed in different ways, but in this report, the costs are summed
equally.

When only one circulation direction is possible in the RAM, J1 would be the best option for
the cost function, because ζ ≤ 1 for all combinations considered in Table 3.4a. The controller
with J = J1 results in significantly fewer switches than the controller with J = J2, which
has a positive effect on the performance. Moreover, a larger horizon (i.e., H = 3) also results
in a shorter transient time as shown in Table 3.5a. Furthermore, it can be concluded that
the influence of the aperture activation time is small when J1 is used as cost function in the
MPC controller with H = 3. An activation time of τ ≈ 5 is recommended.

When two directions of rotations are possible, the switching sequence is often periodic,
regardless of the cost function. Because of this, the difference in performance is small for J1
and J2. However, since ζ ≥ 1 for all combinations of Pe and τ as shown in Table 3.4b, it is
recommended to use J2 as cost function. Furthermore, it is better to use a larger horizon
since χ ≥ 1 in the considered parameter range of Pe and τ . The performance improvement
is the highest for a small activation time τ . Finding the optimal aperture activation time is
more difficult. It is recommended to analyze the influence of the aperture activation time
for the Péclet number used in the application. As a guideline, an aperture activation time
of τ ≈ 6.5 seems a good starting point.

From the conclusions above, it follows that a larger horizon proves to be beneficial in most
cases. Note that the maximum horizon considered in this chapter isH = 3. It is interesting to
investigate whether an even larger horizon increases the performance even more. A reduced
model is required for this analysis, since the number of predictions grows exponentially with
the horizon as shown in Figure 1.3. This subject is discussed in Chapter 4.

In some cases (e.g., using J = J2, τ = 5, and one circulation direction), using a larger horizon
has a negative influence on the performance. As discussed, this is due to the many aperture
switches in the process. In Chapter 4, some options are discussed to reduce the number of
switches and thus improve the performance.
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Chapter 4

Outlook and further possible
improvements

In this chapter, further possible improvements are discussed based on the results from Chap-
ter 3. In the previous chapter, the maximum horizon considered was H = 3. It is interesting
to investigate whether a larger horizon increases the performance even more, however, a
larger horizon increases the computation time enormously. Using a RAM that can circulate
the flow in two directions and an MPC controller with H = 5, 9.330 temperature predic-
tions are needed as shown in Figure 1.3. This corresponds with O(1011 − 1012) flops for
the temperature predictions when using the spectral model (calculations are discussed in
Section 4.1). A modern computer processor can operate in the range of O(109 − 1010) flops.
For practical applications, however, it is preferred to do the temperature predictions just
before the calculation of the new control action. This allows the last temperature measure-
ment to be included in the control algorithm. Therefore, a larger horizon (i.e., H ≥ 5) is
not possible using the spectral model given in Section 2.1.3. This motivates the study of a
reduced model, which will be discussed in this chapter. Furthermore, in Chapter 3 it was
concluded that in general many aperture switches affect the performance negatively, in par-
ticular in the case of one rotation direction. In this chapter, some ideas will be presented to
increase the performance of the system, with some methods based on limiting the number
of switches.

4.1 Reduced model

As discussed in [14], the compact model involves 2QM flops per prediction, where Q = 1.000
and M = Nr×Nθ+1 = 47.681. The conventional method (i.e., FVM method), on the other
hand, involves 2NM2 flops, where N = τ/∆t ∼ O(102−103) is the number of steps for time
interval τ . In Figure 1.3 it is shown that the number of predictions increase exponentially for
a larger horizon. 9.330 predictions are needed when using an MPC controller with H = 5 and
a RAM with two circulation directions, resulting in 9.330×2×1.000×47.681 = O(1011−1012)
flops. To make the control strategy also viable for larger horizons, a reduced-order model of
the RAM is required. In [22], it was shown that the reorientation scheme obtained with a
FVM-based method coincides with the reorientation scheme found via the compact model,
which is based on the spectral method. In this section, the FVM model will be used for model
reduction. There are two main reasons to use the FVM model over the spectral method for
model reduction. First, the eigenvalues from the FVM model have a clear physical meaning,
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since they are determined using the system matrix Ak in (2.11). These eigenvectors and
eigenvalues provide dynamic properties such as natural modes and natural periods. The
eigenvalues determined in the spectral method, on the other hand, are determined using the
approach in [26] and are based on diffusion eigenfunctions. However, it is desired to keep
the slowest-decaying eigenmodes of the advection-diffusion operator during model reduction,
since they best capture the thermal behavior. This favors model reduction based on the FVM
model over the spectral model. Second, the system matrix Ak can be determined easily using
FVM schemes for other applications than the RAM, whereas the spectral method is designed
for the RAM.

4.1.1 Eigenmode analysis

The system matrix A1 of the base flow (2.11) is obtained by spatial discretization of (2.5)
using a conventional FVM scheme. As a next step, the dominant eigenvalue-eigenvector pairs
of system matrix A1 are determined using the built-in function eigs in Matlab, as already
done in [22]. The function eigs is used instead of the function eig, since A1 is a large
(M ×M), sparse matrix. The real part Re(λm) of the eigenvalues are shown in Figure 4.1
for Pe = 1000. As discussed in Section 2.1.3, each eigenmode m has a characteristic time
scale τm = −1/Re(λm). For the case in Figure 4.1 with Pe = 1000, the slowest-decaying
mode has a characteristic time scale τ0 = 75.0. To reduce the computation time, the number
of eigenvalue-eigenvector pairs should be reduced to save computation time. In this report,
this is done by considering all eigenvalue-eigenvector pairs satisfying τm ≥ 0.01τ0, i.e., the
eigenvalue-eigenvector pairs with τm < 0.01τ0 will be neglected. The value 0.01 is based on
Figure 4.1; using this value will result in a shorter computation time (as discussed below),
without losing too much accuracy. In this method, the truncation is based on the intrinsic
time-scale of the RAM dynamics, whereas the truncation for the approach described in
Section 2.1.3 is based on the time-scale of activation (the modes with τm/τ ≪ 1 are neglected
in Section 2.1.3). Using τm ≥ 0.01τ0 results in m ≈ 167 modes for Pe = 1000. For other
Péclet numbers (i.e., Pe = 500, 750, 1250), approximately the same number of modes is found.
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Figure 4.1: Characteristic time τm corresponding to eigenvalue λm using a FVM scheme
for Pe = 1000.
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4.1. Reduced model

Therefore, it is decided to take S = 200 modes from now on. Eigendecomposition of matrix
A1 results in eigenvector matrix V and diagonal eigenvalue matrix Λ. The temperature can
now be approximated as

T̂k(tn+1) = V̂ke
Λ̂kτGkT(tn), Gk = (V̂⊤

k V̂k)
−1V̂⊤

k , Λ̂k = diag(λ0, . . . , λS), (4.1)

where symbol .̂ indicates approximate quantities based on the truncation with S = 200
modes. The computational costs of the predictions are determined by the number of elements
and the number of modes (Q is the number of modes in the compact model and S is the num-
ber of modes in the reduced model). For the same number of elements M as in the spectral
model, the reduced model involves 2SM flops per prediction, yielding Q/S = 1000/200 = 5
as relative computational effort compared to the compact model.

4.1.2 Performance of the reduced model

In this section, the performance of the reduced model is compared with the spectral model
used for the simulations in Chapter 3. In the previous chapter, the spectral model was used
for both the actual temperature evolution and the temperature predictions. In this section,
the temperature predictions are done using the reduced model described in Section 4.1.1.
The actual temperature evolution, however, is simulated using a full FVM model, not with
the reduced model. In short, the following situations are compared:

• Using the spectral model (2.16) for both the actual temperature evolution and the
temperature predictions (as done in Chapter 3);

• Using a full FVM model for the actual temperature evolution and using the reduced
model for the temperature predictions. The reduced model is never used to simulate
the actual temperature evolution.

To make a fair comparison between both situations, the actual temperature evolution should
be approximately the same for the spectral model and the full FVM model, which is investi-
gated in [22]. As discussed in [22], the evolution of J2 determined with the spectral method
slightly deviates from the full FVM-based model, which need to be attributed to different
characteristics of the numerical schemes (e.g., FVMs are known to suffer from numerical
diffusion [40], which increases the homogenization rate in the simulations artificially). This
is confirmed in this study, since measure J̌2 obtained with the full FVM model is slightly
below J̌2 of the spectral model (the maximum difference is 1.5%) for the same aperture se-
quence. Figure 4.2 shows that J̌2 are not exactly the same for the full FVM model and the
spectral model. As discussed in [22], attainment of identical U (for the spectral model and
the full FVM model) implies that the controller is insensitive to (at least) disturbances of this
magnitude, caused by numerical effects or otherwise. As a next step, the spectral model will
be compared with the reduced prediction model. From now on, the term “reduced model”
means that only the temperature predictions (in the MPC algorithm) are done using the
reduced model as discussed in Section 4.1.1; the actual temperature evolution is simulated
using the full FVM model.

To make a good comparison between both models, the reduced model is simulated for differ-
ent values of Pe, τ , and J as also done in the previous chapter. This enables us to compare
the transient times, switching sequence and costs. The transient times and the number of
switches for different parameter settings can be found in Table C.1 and Table C.2. When
comparing this with the results for the spectral method in Appendix B.2, it follows that
the results (i.e., aperture sequence) differ significantly for one circulation direction. In most
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Figure 4.2: Comparison of spectral model with full FVM model for Pe = 750, τ = 7,
J = J2, H = 1, and only clockwise rotation.
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Figure 4.3: Comparison of spectral model with reduced model for Pe = 1250, τ = 3,
J = J1, H = 1, and only clockwise rotation.

cases, the performance is worse for the reduced model; only in a few special cases the per-
formance of the reduced model is better, as shown in Figures 4.3 and 4.4. These figures
show the aperture sequence and performance metric J̌2 (note that J1 is used as cost function
in the MPC algorithm) for various simulation and MPC settings. From this, the conclusion
can be drawn that the reduced model with S = 200 modes does not predict the future
temperature as well as the spectral model. However, still it might be beneficial to use the
reduced model in combination with a larger horizon. This will be discussed in more detail
in Section 4.2.

For two circulation directions, the performance of the reduced model and the spectral model
is almost the same. For both the reduced model and the spectral model, the aperture
sequence almost always consists of switching between two arcs in opposite direction. When
analyzing the costs at each iteration step, it follows that this switching signal is significantly
better than switching to another aperture. This is different than the situation with one
circulation direction; the costs for different apertures are closer to the same value for one

46



4.2. Reducing the number of switches

0 50 100 150
0

1

2

3

4

Spectral model

Reduced model

(a) Adaptive reorientation scheme U .

0 50 100 150
10-2

10-1

100

Spectral model

Reduced model

(b) Performance metric J̌2.

Figure 4.4: Comparison of spectral model with reduced model for Pe = 1250, τ = 3,
J = J1, H = 3, and only clockwise rotation.

circulation direction. When a less accurate model (e.g., the reduced model) is used in this
case, it is more likely another aperture is selected. This behavior is also observed for the
compact model with fewer elements (Nr = 50, Nθ = 120) and fewer modes (Q = 500).

Most of the differences found for two circulation directions are distinct apertures between
which is switched; for example, using the spectral model results in switching between arc
1 and -2, whereas using the reduced model results in switching between arc 1 and -3. As
already stated in Section 3.2.3, this hardly affects the performance. This allows for further
investigation of the reduced model to use larger horizons.

4.2 Reducing the number of switches

In Chapter 3 and Section 4.1.2 it was concluded that a high number of switches often
has a negative influence on the performance. In Section 3.3.1, it turned out that a larger
horizon does not necessarily increases the performance, which was due to the high number
of switches present in the controller with a larger horizon (H = 3). In this section, four ideas
are presented which limit the number of switches in order to increase the performance.

The first idea is to increase the horizon further. In Chapter 3 the largest horizon that has
been used is H = 3. When a larger horizon is used, the system is given more time to form a
large thermal plume and subsequently extend it into the colder interior by activating another
arc. When a horizon of H = 3 is used, on the other hand, multiple smaller plumes are formed
by multiple switches as shown in Figure 3.7. To use a larger horizon, a reduced prediction
model has to be used as described in Section 4.1.2. One simulation with a significant larger
horizon (H = 8) has been performed to test this hypothesis. The results are shown in
Figure 4.5 and Figure 4.6. In this scenario, the larger horizon controller (H = 8) results
in less switches and in a better performance. From the temperature evolution illustrated
in Figure 4.5, it can be seen that forming one large hot plume (the controller with H = 8)
is more beneficial than forming two smaller plumes (the controller with H = 3). Even
though this is one specific situation with certain parameters, it shows the potential of using
a significant larger horizon. Note that the transient times tϵ,2 can be derived from Figure 4.6b
and are tϵ,2 = 94.2 and tϵ,2 = 85.0 for the controllers with H = 3 and H = 8, respectively.
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(a) Using an MPC controller with H = 3.

(b) Using an MPC controller with H = 8.

Figure 4.5: Temperature evolution for MPC controllers using the reduced model with
different horizons for Pe = 750, τ = 5, J = J2, and only clockwise rotation.

The full evolution of J̌2 is shown to judge the performance of the different controllers over
time. To be able to draw conclusions from using larger horizons (i.e., H > 3), it is necessary
to do more simulations.

Another suggestion to reduce the number of switches is using more advanced cost functions.
As discussed in Section 3.2.3, using J2 as cost function results in more switches than using
J1 as cost function, since J2 covers both the energizing (via J1) and the homogenization (via
J3). At the start of the process, energizing is the most important part, whereas at the end of
the process, homogenization is more important. It might, therefore, be beneficial to combine
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Figure 4.6: Comparison of reduced model with different horizons for Pe = 750, τ = 5,
J = J2, and only clockwise rotation.

J1 and J2 is a new cost function Ja, which could, for example, be defined as

Ja =

{
J1 if J1 > ϵJ ,

J2 otherwise,
(4.2)

where ϵJ is a certain threshold value defining when to switch from cost function. The
condition J1 > ϵJ can easily be evaluated at every control iteration, making (4.2) easy to
implement in the MPC algorithm. It is essential to define the threshold value ϵJ properly,
since it plays an important role in the performance of the advanced cost function. Therefore,
more research is needed to find the optimal balance between J1 (energizing) and J2 (ho-
mogenization and energizing). Note that other conditions (e.g., with another performance
metric) are also possible. One simulation has been performed with ϵJ = 0.5, i.e., when the
average transient temperature is half of its final value, the cost function will switch from J1
to J2. This is only an educated guess, more research should be done to select a value of ϵJ
with a good motivation. The aperture sequence and performance indicator J̌2 are shown in
Figure 4.7 for Pe = 1000, τ = 5, H = 3, and only clockwise rotation. The advanced cost
function Ja performs better than cost function J2 when the performance is evaluated with
metric J̌2. However, J1 outperforms Ja for this case. At t = 40, the advanced cost function
switches from J1 to J2. As a result, the MPC controller with Ja as cost function starts
switching, since homogenization is important as well for t ≥ 40. In Figure 4.7b, it can be
seen that this results in a better performance (based on metric J̌2) for 55 ≤ t ≤ 70. When
t ≥ 70, however, the MPC controller with cost function J1 performs better than the MPC
controller with cost function Ja. When comparing the aperture sequence and metric J̌2 for
the cost functions J1 and Ja, it can be concluded that aperture switching has a positive
effect on performance in the short term, but a negative effect on performance in the long
term. From this the conclusion can be drawn that ϵJ is too small for this specific case. As
mentioned before, more research should be done regarding this subject.

Another possibility is to use the rollout strategy as discussed in Section 2.2.3. The disad-
vantage of using a rollout strategy is that a base policy should be determined in advance.
Although the rollout strategy will never perform worse than the base policy, it is required to
find a well performing base policy. From the simulations done in Chapter 3, it followed that
many aperture sequences are aperiodic in case the RAM is only able to move the fluid in one
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Figure 4.7: Comparison of different cost functions using the spectral model for Pe = 1000,
τ = 5, H = 3, and only clockwise rotation.

direction. On the other hand, for two rotation directions the aperture reorientation scheme
is often periodic (sometimes after a short transient) and consists of switching between two
arcs in opposite direction. This would be a good option to use as base policy in a rollout
controller. Simulations should be performed to test the rollout algorithm.

The last option is based on the rollout strategy, but without a base policy. In this option, a
distinction is made between the prediction and the control horizon as shown in Figure 4.8.
Before, the control horizon and prediction horizon were the same (i.e., H = c = p). In this
case, temperature predictions for all possible sequences are performed in the control horizon
c as before. After that, the last input of the sequence stays constant in the prediction horizon
p as shown in Figure 4.8, while the temperature predictions continue for the constant input.
In other words, the control horizon is the part of the time horizon in which changes in the
input are allowed. The prediction horizon extends past the control horizon to predict the
output, but without changes of input.

As seen in Chapter 3, it is often beneficial to hold one arc for a longer time instead of
extensively switching between different arcs. By making this distinction between prediction
horizon and control horizon and using p > c, the controller is forced to keep its input constant
in the last steps of the time window. The intention is to reduce the number of aperture
switches. This method is not effective if the prediction horizon is too small. For example,
when using c = 1 and p = 4, only one aperture is free in the optimization algorithm. This
results in three possible sequences, the same arc for a duration of four time steps. However,
only one step is implemented. Since in the calculation it is assumed the arc will stay active
for a duration of four time steps, this might result in many switches. For a larger horizon
(i.e., H ≳ 3), this problem will not occur.

The above concept has been tested for the specific situation with Pe = 1000, τ = 5, J = J2,
and only clockwise rotation. The comparison is done for a control horizon c = 3 and the
prediction horizons h = 3 and h = 7. The results are shown in Figure 4.9. For this specific
case, it proves advantageous to use p = 7 instead of p = 3. Furthermore, it turns out
that the adaptive reorientation scheme for the MPC controller with c = 3 and p = 7 (see
Figure 4.9) is the same as for the MPC controller with H = 8 (see Figure 4.6) for 0 ≤ t ≤ 80.
Moreover, the same observations are done as in Figure 4.5: forming one large hot plume (the
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controller with p = 7) is more beneficial than forming two smaller plumes (the controller
with p = 3). Although for this specific case it proves advantageous to use p = 7 instead of
p = 3, more simulations should be performed with varying control and prediction horizon to
draw conclusions.

n n+ 1 n+ 2 n+ cSample time n+ p

Prediction horizon p

Control horizon c

FuturePast

Past control input

Predicted control input

Past output

Predicted output

Figure 4.8: Concept of MPC controller with control horizon c and prediction horizon p,
based on [48].
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Figure 4.9: Comparison of spectral model with different prediction horizons for Pe = 1000,
τ = 5, J = J2, and only clockwise rotation.
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4.3 Discussion

In this chapter, a reduced model of the RAM has been discussed and the performance of
the reduced model has been compared with the spectral model given in Section 2.1.3. For
the reduced model, the 200 slowest-decaying eigenmodes of the state matrix A1 are used.
It turned out that the temperature predictions are less accurate than the spectral model,
in particular when only one circulation direction is possible in the RAM. Although the
temperature predictions are less accurate, it was shown in Section 4.2 that using a significant
larger horizon (i.e., H = 8) might be effective, since it prevents the system from having many
aperture switches.

Moreover, in Section 4.2 several other methods were discussed to improve the performance.
Besides using a larger horizon, more-advanced cost functions, a rollout strategy and using a
larger prediction horizon (p > c) are potential methods to increase the performance further.
In particular the last method looks promising, because the performance will not be worse
than the usual MPC controller with p = c. Furthermore, almost no additional computation
power is needed, in contrast to using a larger horizon.
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Chapter 5

Conclusion and
recommendations

In this chapter, the conclusions that can be drawn from this project are discussed. A
reflection on the main goal and the subgoals stated in Section 1.3 is given. Additionally,
recommendations regarding the project and future work are given.

5.1 Conclusion

The goal of the project was to develop a full-state feedback control strategy to accomplish a
homogeneous temperature field as fast as possible for the 2D RAM. It followed that using two
circulation directions significantly improves the temperature homogenization in the RAM
compared to using only one rotation direction. Despite this difference in performance, it
turned out that the optimal cost function, aperture activation time, and horizon depend on
the rotations (one circulation direction versus two circulation directions).

Firstly, it was shown in Section 3.2.2 that it is more beneficial to sum the costs in the cost
function than to take the terminal cost. However, this conclusion is based on simulations
with an MPC controller with a horizon of three discrete time steps. For a larger horizon, it
could be the case that the difference between summing and terminal costs is negligible, or
even that a terminal cost would be better.

One subgoal was to design a performance indicator that reflects attaining a homogeneous
temperature field as fast as possible for the 2D RAM. The L2-norm of the temperature is
most suited as performance indicator from a theoretical point of view, since it incorporates
both energizing and homogenization . However, this does not mean that the L2-norm is
also the best option for the cost function. When only one circulation direction is possible in
the RAM, the L1-norm of the temperature would be the best option for the cost function,
whereas the L2-norm of the temperature would be the best cost function when two directions
of rotation are possible. It appears that the controller using the L2-norm as cost function
is more aggressive, which is due to the fact that the L2-norm coves both energizing and
homogenization.

Finding the optimal aperture activation time is more difficult, since it depends on several
parameters such as the Péclet number and the horizon. It is recommended to analyze the
influence of the aperture activation for the Péclet number used in the application. Using
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the results from this report, it is recommended to use an aperture activation time between
5 and 6.5.

Furthermore, in Chapter 3 the benefits of using a larger horizon than one discrete time step
are discussed. In almost all cases, it is beneficial to use a larger horizon. In this research,
however, the maximum horizon used is three steps because of computational costs. More
research should be done regarding the performance for horizons larger than three steps. In
Chapter 4, a start has been made with a reduced model. Although the reduced FVM model
is less accurate than the spectral model, it was shown in Section 4.2 that using a significant
larger horizon (e.g., a horizon of 8 steps) has potential.

Additionally, in Chapter 4 some other methods are described to increase the performance
by limiting the number of switches. Besides using a larger horizon and more-advanced cost
functions, potential methods to increase the performance are using a rollout strategy and
using a larger prediction horizon (e.g., a prediction horizon that is larger than the control
horizon). The last method seems most promising, since not much additional computation
power is required and the performance will not be worse than the MPC controller with the
same prediction and control horizon.

Finally, it can be concluded that in this research a start has been made with the development
of a full-state feedback control strategy to accomplish a homogeneous temperature field as
fast as possible for the 2D RAM. However, more research is needed to further elaborate
some findings (e.g., the influence of a larger horizon and varying the control and prediction
horizon) and draw conclusions from them. Lastly, the control strategy could be developed
further by testing it experimentally.

5.2 Recommendations

The designed control strategy is able to accomplish a homogeneous temperature field fast,
but there are some recommendations to continue on this work.

In Chapter 4, some methods are discussed to improve the performance of the control strategy.
Firstly, it is recommended to look at controllers with a larger horizon. To use a control
strategy with a larger horizon in practical applications, the computation costs should be
reduced which can be done using a reduced model. In this research, it followed that using
the 200 slowest-decaying eigenmodes in the reduced model is not enough to obtain the same
results as the spectral model. This leads to two questions. First, how accurate should
the reduced model be to do reliable temperature predictions? Second, how much does the
performance increase when using larger horizons?

When using a larger horizon, it is recommended to reconsider some of the decisions taken in
this project, the structure of the cost function in the MPC controller settings in particular.
In Section 3.2.2 it was concluded that it is more beneficial to sum the costs in the cost
function than to take the terminal cost. However, for a larger horizon it could be the case
that the difference between summing and terminal costs is negligible, or even that a terminal
cost would be better. It is suggested to do more research into this area. Furthermore, the
use of more advanced cost function is also a possibility as discussed in Section 4.2.

In addition, it is suggested to gain more physical insight into the cost functions. For a certain
set of parameters, a certain cost function works well, while for another set of parameters the
cost function does not work well. It is advised to look for an explanation for this, because
physical understanding is instrumental for defining a proper cost function.
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Moreover, in this research only one aperture of the RAM is activated at a time. However, it
is possible to activate two (or more) arcs at the same time, resulting in more possible flow
fields. In general, more options will increase the performance of the control algorithm.

Besides possible improvements in the control strategy, there are several other recommenda-
tions. Most important is to test the control strategy experimentally. In this research, only
simulations have been used to evaluate the performance of the control strategy. These sim-
ulations are approximate imitations of the real 2D RAM and they never exactly imitate the
RAM. Therefore, the control strategy should be experimentally investigated and validated
using a laboratory set-up. Experiments can provide us with new empirical data, resulting in
new insights and conclusions.

In this project, it was assumed that the complete temperature vector is known at any time
exactly. In applications, this is not possible and information can only be collected by sensors,
forcing us to create a framework for partial-state information. This can, for example, be
solved by development of observers, which estimate the full state from discrete sensor data.
In [49], an initial observer model is presented which estimates the temperature field in the
fluid domain based on a discrete-point temperature measurement.

Another suggestion is to do the simulations with more variations in the parameters. In this
research, only the RAM with three apertures is considered. Moreover, a finer (and possibly
a larger) range in Péclet numbers and aperture activation times gives a better view in the
performance of the control strategy. Furthermore, it might be interesting to find out why
the performance changes so much for different values of the Péclet number and the aperture
activation time and link this to system parameters.

Finally, it is recommended to test the control strategy on other applications than the 2D
RAM. Although the 2D RAM is well suited for the development of the control strategy
because it is experimentally realizable, it is important to test the control strategy also on
other applications. To apply the control strategy on other applications, compact models of
these applications are needed. One way to construct these compact models would be data-
based, for example by so-called “Dynamic Mode Decomposition” (DMD), which enables
determination of the dominant eigenmodes directly from temperature time series [14]. To
assess whether DMD is an appropriate method for the construction of the compact models,
more research is required.
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Appendix A

Discretization of performance
indicators

The performance indicators J2 (2.31), J4 (2.37) and J5 (2.38) can be discretized as

Ĵ2(t) =
M∑

m=1

γmT̂ 2(xm, t), (A.1)

Ĵ4(t) =

∑M
m=1 γmT̂ (xm, t) + T∞√∑M

m=1 γm

(
T̂ (xm, t)−

∑M
m=1 γmT̂ (xm, t)

)2 , (A.2)

Ĵ5(t) = min
m∈[1,2,...,M ]

γmT̂ (xm, t). (A.3)
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Appendix B

Simulation results spectral model

This appendix shows the simulation results obtained with the spectral model. In Section
B.1, the results are given for different cost functions. In Section B.2, the elaborate results
are given for different parameter settings.

B.1 Different cost functions

In Table B.1, the transient times are given for different Péclet numbers, aperture activation
times, and cost functions.

Table B.1: Transient times tϵ for different values of Pe, τ and J .

(a) Pe = 500.

Type of cost used to
define transient time

τ Cost used in MPC tϵ,1 tϵ,2 tϵ,4 tϵ,5

3

J1 73.0 77.4 83.3 85.1
J2 73.3 79.0 85.1 87.0
J4 64.7 68.0 79.8 78.9
J5 69.0 73.7 85.9 78.9

5

J1 62.4 66.7 82.2 82.6
J2 67.4 70.6 76.6 77.8
J4 68.2 70.9 76.9 79.9
J5 69.5 74.8 86.2 80.1

7

J1 62.2 67.0 74.4 75.4
J2 69.0 72.2 78.8 76.5
J4 69.0 72.2 78.8 76.5
J5 69.0 72.2 78.8 76.5
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Table B.1: Transient times tϵ for different values of Pe, τ and J , continued.

(b) Pe = 750.

Type of cost used to
define transient time

τ Cost used in MPC tϵ,1 tϵ,2 tϵ,4 tϵ,5

5

J1 103.5 117.6 148.5 150.1
J2 85.6 91.7 113.5 114.7
J4 82.1 85.2 93.7 93.9
J5 96.0 101.9 118.3 110.3

5

J1 84.8 92.3 104.5 107.8
J2 81.9 85.0 96.5 95.3
J4 92.4 95.4 102.6 107.3
J5 90.4 94.4 107.1 100.6

7

J1 83.1 86.5 95.1 95.5
J2 94.5 98.0 105.7 102.5
J4 94.5 98.0 105.7 102.5
J5 94.5 98.0 105.7 102.5

(c) Pe = 1000.

Type of cost used to
define transient time

τ Cost used in MPC tϵ,1 tϵ,2 tϵ,4 tϵ,5

3

J1 133.8 153.5 195.8 197.4
J2 104.7 112.7 119.8 124.4
J4 97.8 102.7 113.6 117.8
J5 117.9 126.3 145.9 136.0

5

J1 105.0 110.0 117.3 121.6
J2 98.2 104.0 111.6 116.0
J4 112.9 116.8 124.1 130.9
J5 110.2 117.0 130.2 128.6

7

J1 99.2 103.5 117.5 121.0
J2 109.9 115.0 124.1 128.7
J4 116.1 120.4 128.5 123.9
J5 116.1 120.4 128.5 123.9
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Table B.1: Transient times tϵ for different values of Pe, τ and J , continued.

(d) Pe = 1250.

Type of cost used to
define transient time

τ Cost used in MPC tϵ,1 tϵ,2 tϵ,4 tϵ,5

3

J1 151.5 155.9 173.7 177.6
J2 120.3 124.5 134.9 143.7
J4 127.0 131.4 138.7 140.6
J5 139.3 147.3 169.6 158.4

5

J1 119.4 123.5 137.3 144.3
J2 114.2 118.1 124.9 132.1
J4 132.6 136.5 143.1 149.8
J5 128.6 134.8 143.4 147.2

7

J1 115.0 121.2 135.5 141.4
J2 127.2 131.8 139.7 142.3
J4 136.2 140.8 149.1 145.4
J5 136.2 140.8 149.1 145.4
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B.2 Elaborate results for different parameter settings

In Table B.2, the transient times and number of switches are given for different Péclet
numbers, aperture activation times, and cost functions for one circulation direction. In
Table B.3, the transient times and number of switches are given for different Péclet numbers,
aperture activation times, and cost functions for two circulation directions.

Table B.2: Comparison of a MPC controller with H = 1 with a MPC controller with H = 3
using χ as performance indicator. Only clockwise circulations are considered here.

(a) MPC controller with H = 1.

Pe J τ tϵ,2 Number of
switches

500

1
3 77.4 3
5 66.7 1
7 67.0 2

2
3 79.0 3
5 70.6 10
7 72.2 11

750

1
3 117.6 1
5 92.3 3
7 86.5 3

2
3 91.7 2
5 85.0 3
7 98.0 15

1000

1
3 153.5 1
5 110.0 3
7 103.5 3

2
3 112.7 3
5 104.0 4
7 115.0 11

1250

1
3 155.9 2
5 123.5 3
7 121.2 4

2
3 124.5 3
5 118.1 4
7 131.8 13

(b) MPC controller with H = 3.

Pe J τ tϵ,2 Number of
switches

500

1
3 66.5 2
5 64.9 2
7 65.2 2

2
3 71.0 12
5 70.6 12
7 72.2 11

750

1
3 85.1 3
5 84.5 3
7 85.6 3

2
3 87.1 5
5 93.3 11
7 95.3 10

1000

1
3 102.9 3
5 102.7 3
7 102.3 3

2
3 105.7 7
5 111.6 12
7 113.3 12

1250

1
3 121.5 4
5 116.6 3
7 117.0 3

2
3 121.6 7
5 129.8 13
7 131.1 13
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Table B.3: Comparison of a MPC controller with H = 1 with a MPC controller with H = 3
using χ as performance indicator. Both directions of rotation are considered here.

(a) MPC controller with H = 1.

Pe J τ tϵ,2 Number of
switches

500

1
3 64.5 22
5 62.5 13
7 62.0 9

2
3 64.9 22
5 62.5 13
7 62.0 9

750

1
3 87.1 30
5 82.4 17
7 80.8 12

2
3 87.1 30
5 82.4 17
7 80.8 12

1000

1
3 106.5 35
5 96.1 20
7 94.6 14

2
3 108.2 37
5 96.1 20
7 94.6 14

1250

1
3 128.3 43
5 112.6 23
7 110.5 16

2
3 128.3 43
5 111.1 19
7 110.5 16

(b) MPC controller with H = 3.

Pe J τ tϵ,2 Number of
switches

500

1
3 62.4 21
5 62.5 13
7 62.0 9

2
3 62.4 21
5 62.5 13
7 62.0 9

750

1
3 83.4 24
5 81.2 14
7 80.8 12

2
3 83.0 22
5 80.8 17
7 79.7 12

1000

1
3 98.3 26
5 96.1 20
7 94.6 14

2
3 96.9 22
5 96.1 20
7 94.6 14

1250

1
3 109.8 25
5 110.7 17
7 110.5 16

2
3 108.5 21
5 109.8 22
7 108.4 16
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Simulation results reduced model

In Table C.1, the transient times and number of switches are given for different Péclet
numbers, aperture activation times, and cost functions for one circulation direction. In
Table C.2, the transient times and number of switches are given for different Péclet numbers,
aperture activation times, and cost functions for two circulation directions.

Table C.1: Comparison of a MPC controller with H = 1 with a MPC controller with H = 3
using χ as performance indicator. Only clockwise circulations are considered here.

(a) MPC controller with H = 1.

Pe J τ tϵ,2 Number of
switches

500

1
3 80.6 1
5 67.8 2
7 68.8 4

2
3 80.6 2
5 70.7 10
7 72.2 11

750

1
3 116.5 1
5 91.4 3
7 86.0 3

2
3 90.9 2
5 94.2 13
7 96.8 14

1000

1
3 152.1 2
5 109.7 3
7 103.1 3

2
3 111.5 13
5 114.2 14
7 119.0 18

1250

1
3 137.7 24
5 123.1 3
7 121.7 4

2
3 137.6 23
5 132.9 16
7 139.7 20

(b) MPC controller with H = 3.

Pe J τ tϵ,2 Number of
switches

500

1
3 67.3 3
5 65.2 2
7 65.1 2

2
3 71.2 12
5 70.7 10
7 72.2 11

750

1
3 84.6 3
5 87.5 5
7 85.0 3

2
3 87.3 6
5 94.2 13
7 96.8 14

1000

1
3 101.8 3
5 107.6 7
7 113.0 12

2
3 107.9 11
5 115.8 18
7 119.0 18

1250

1
3 137.5 23
5 127.8 11
7 131.1 13

2
3 125.5 12
5 135.7 22
7 139.7 20

69



Appendix C. Simulation results reduced model

Table C.2: Comparison of a MPC controller with H = 1 with a MPC controller with H = 3
using χ as performance indicator. Both directions of rotation are considered here.

(a) MPC controller with H = 1.

Pe J τ tϵ,2 Number of
switches

500

1
3 61.9 21
5 62.0 13
7 61.6 9

2
3 64.0 22
5 63.2 13
7 61.6 9

750

1
3 86.1 29
5 79.9 16
7 79.0 12

2
3 86.4 29
5 79.9 16
7 79.0 12

1000

1
3 107.0 36
5 98.1 20
7 96.0 14

2
3 106.5 36
5 98.1 20
7 94.3 14

1250

1
3 127.1 43
5 112.7 23
7 110.4 16

2
3 126.4 43
5 112.7 23
7 108.3 16

(b) MPC controller with H = 3.

Pe J τ tϵ,2 Number of
switches

500

1
3 61.9 21
5 62.0 13
7 61.6 9

2
3 61.9 21
5 62.0 13
7 61.6 9

750

1
3 83.5 28
5 79.9 16
7 79.0 12

2
3 81.6 22
5 79.9 16
7 79.0 12

1000

1
3 97.7 26
5 96.0 16
7 94.3 14

2
3 95.9 20
5 95.7 20
7 94.3 14

1250

1
3 111.1 28
5 110.3 17
7 108.3 16

2
3 109.5 22
5 109.6 22
7 108.3 16
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