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Abstract

Turbulence on the electron- and ion gyroradii scales is the main cause of particle- and energy
losses in fusion plasmas. A proper understanding of turbulence is thus necessary to increase
their confinement time to make a self-burning plasma as needed for a fusion power plant
possible.

A plethora of different microinstabilities exist in a fusion plasma, with typically the Ion Tem-
perature Gradient (ITG) mode and the Trapped Electron Mode (TEM) causing the most
transport in present day devices. Most theoretical/numerical investigations of these insta-
bilities have been carried out in the collisionless limit, as the collision frequency under fusion
reactor conditions is typically small. However especially for TEMs a small but non-zero
collisionality could have a substantial effect due to collisional (de)trapping mechanism.

The (linear) stability properties of TEMs in the presence of collisions are investigated us-
ing the gyrokinetic framework through a combination of analytical theory and simulations
in both the DIII-D tokamak and HSX/W7-X stellarator geometries, the latter of which is
stable against collisionless TEMs.

Analytically a perturbative approach is used to find scaling laws for the TEM growth rate,
which show that at high collisionality there is a universal stabilising influence of collisions.
At low collisionality, however, the collisionless growth rates are unaffected in the tokamak
whereas a destabilising influence of collisions is found at low wavenumbers for both stellara-
tor cases.

Simulations with the GENE code show the same qualitative behaviour of the growth rate
with increasing collisionality, which can be attributed to particle de-trapping by collisions.
In addition these simulations show that collisions do not spoil the stability of W7-X against
TEMs, but promote a change of the dominant instability towards the so-called Universal
Instability. This new instability, which is predicted to be important in low-shear devices like
W7-X, is observed to appear over a substantantially larger wavenumber range than recently
found in collisionless simulations which established their existence at low wavenumber in
stellarators.
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1 Introduction

In this section the motivation for the research and goals of the research are presented. To
accommodate for the mixed audience of fusion specialists and general physicist first a brief
motivation is provided in Section 1.1 leading to the overarching research question of this thesis.
Then to bridge the gap between these audiences, an exposition of the relevant aspects about
magnetic confinement confusion needed to fully grasp the concepts introduced during the brief
introduction and later used throughout the thesis is presented in Sections 1.2 to 1.5, which is
therefore lengthier than the reader familiar about these concepts is used to. With everyone
aboard, the state-of-the-art is then presented in Section 1.6 followed by the scope and outline
of the remainder of the thesis in Section 1.7.

1.1 Research motivation

One of the most most pressing challenges for humanity to overcome during this century is to
transition our energy generation from traditional fossil fuels to sustainable alternatives, all the
while the global energy demand will increase to facilitate energy access to developing countries
[1]. Not only will the remaining energy reserves run out before the end of the century, but the
energy generation by traditional burning of fossil fuels will have to be gradually phased out to
limit their harmful effect on climate change to the “acceptable” levels of the Paris agreement [2].

Nuclear fusion could be a promising solution to this energy problem. In a nuclear fusion process
two relatively light nuclei merge, forming a heavier nucleus and some elementary particles as
byproducts to satisfy conservation laws. Because this process occurs under influence of the
strong nuclear force, the energy released in this process is enormous and is typically in the range
of tens of MeV [3]. This in contrast to the chemical reactions which occur under the much weaker
electromagnetic interaction and typically release only a handful of eV of energy [3], which form
the basis for the majority of our present day energy production. Furthermore as the fuel used in
nuclear fusion is significantly lighter than the hydrocarbons burnt in combustion power plants
the energy density of nuclear fusion is unprecedented. Combined with the fact that no harmful
greenhouse gasses or radioactive waste (in contrast to nuclear fission) is produced in a fusion
reaction, nuclear fusion presents a sustainable and clean alternative energy source that could
help to fill up the gap in the energy problem.

A fusion power plant would then consist of a dense plasma which is heated up to reach fusion
conditions and kept in place by strong magnets [3] (explained in more detail in Section 1.2).
There are two1 “flavours” of magnetic fields that can be used to get this confinement, which
result in the two reactor types of a tokamak and stellarator whose most important difference
lies in the rotational symmetry and lack thereof of the magnetic field. These reactor types will
be further discussed in Section 1.3. The confinement by the magnetic is not perfect2 such that
over time heat and particles will leak out, which is one the hand desired as it allows to extract
the energy released by the fusion reactions from the plasma, but on the other hand undesired
as it cools down the plasma. For magnetic confinement confusion to be successful as an energy
source these energy losses should not exceed the energy generated by the fusion reactions, such
that the fusion conditions of the plasma can be sustained. which leads to the so called fusion
triple product criterion [5]

1These are the common options for magnetic confinement fusion, some other alternatives exist like a levitated
dipole, spheromak and reversed field pinch devices however these have significantly less matured than the two
schemes discussed here [3].

2This is similar to the finite quality factor Q of a resonant microwave cavity used to store electromagnetic
energy. As a result of the finite conductance of the metal walls, the fields can penetrate into the surface layer of
the materials where they generate eddy currents which will be dissipated by the finite resistivity [4]. Over time
this depletes the energy content of the fields in the cavity.
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nTτE ≥ 12T 2

Ef,c ⟨σv⟩
(1)

where n, T are the plasma density and temperature respectively, τE the energy confinement
time, Ef,c the energy of the magnetically confined fusion products3, and ⟨σv⟩ the reaction rate.
In the context of fusion it is common to express in the temperature not in Kelvin but in terms
of an average particle energy, defined by T̂ [J] = kbT [K], and throughout the full thesis whenever
temperature is mentioned it will refer to this temperature as an energy unit and the hat will be
omitted (although in practical units this energy is typically expressed in keV instead).

One problem of particular importance is the prediction of particle and energy fluxes, as these
determine the energy confinement time. A fusion plasma has a hot and dense core region to
maximise the triple product Equation (1), but gradually transitions to a cold and dilute4 edge
region such that the reactor walls are not exposed to the extreme plasma conditions and can
survive, see Figure 1a. As a consequence there is a strong pressure gradient in the plasma
which prevents the plasma from being in thermal equilibrium and drives outward transport in
an attempt to flatten the pressure profile [6]. This transport is driven by particle collisions
(described by Fick’s and Fourier’s law), the drifts caused by the nonuniform magnetic geometry
(as is explained Section 1.3) in and plasma turbulence. In present day tokamaks and stellarators
this transport is completely dominated by turbulence [3, 7]. This turbulence leads to chaotic
fluctuations in density and temperature at multiple scales in the plasma which lead to mixing
between the core and edge plasma regions thereby cooling the core region and reducing the energy
confinement time [8]. This turbulence is believed to be driven by microinstabilities, which are
spontaneous perturbations of the plasma on the scale of the electron- and ion gyroradius [9–11].
These perturbations can grow over time by tapping into the free energy of the plasma, which
mainly consists of the pressure gradient [12], thus making turbulence an unavoidable issue fusion
plasmas. A proper understanding of these microinstabilities is therefore imperative to increase
the energy confinement time and pave the way towards fusion power plants which beat the triple
product requirement Equation (1).

Many microinstabilities can simultaneously exist in the plasma on the same scale, and they can
be identified by their respective driving mechanisms, spatial scale and frequencies [15]. The most
important microinstabilities that are believed to cause the majority of the observed transport
in present day experiments are the ion temperature gradient (ITG) and the trapped electron
mode (TEM) [16–19]. The latter is an instability which is driven by the trapped particles
(this will be explained in detail in Section 1.5), which exist in a fusion device because the
confining magnetic field is inhomogeneous and functions like a magnetic bottle [5, 12]. The
influence of particle collisions is often neglected in the investigation of these microinstabilities,
since the collision frequency scales as ν ∝ n/T 3/2 [20] and is typically much lower than any
other characteristic frequency in the plasma core [7]. Under typical reactor conditions, the
collision frequency only becomes appreciable near the edge region where the temperature drops
significantly, as seen Figure 1a. However present day experiments do not yet achieve the plasma
parameters comparable to reactor conditions, with temperature typically being an order of
magnitude lower, such that collisions are not totally negligible and could have an influence on
the turbulence observed in these experiments, as supported by the various favourable scalings

3This is the fraction of the total energy released per fusion reaction which remains stored in the plasma and
can be used to compensate for the energy losses of finite confinement by reheating the plasma. As only charged
particle are confinemened by the magnetic field, the energy stored in the neutron of the D-T reaction does not
account for this as it will leave the plasma before redistributing its energy.

4The edge region is not completely dilute of particles, as a result of the colder temperature most plasma
particles recombine into neutral gas particles which gives rise to a high neutral particle density. For the discussion
of the outward heat and particle fluxes however the relative densities are those of the charged particles.
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Figure 1: Plasma profiles for the EU-DEMO baseline 2018 scenario [13], which form a represen-
tative set of reactor conditions for power plant purposes. Shown are (a) density- and temperature
profiles for electrons and ions, and the electron-ion momentum scattering frequency according
to Equation (17), and (b) normalised profile gradients and profile ratios as important for the
theory developed in Chapters 2 and 3. Density and temperature data are reproduced from [14]
with permission from the author.

of the confinement with decreasing collision frequency [21–24]. Collisions are expected to have
a particularly large influence on instabilities that rely on the existence of trapped particles,
since collisions lead to trapping of previously “free” particles (referred to as passing particles as
explained in Section 1.5) or detrap previously trapped particles [3]. There it is of interest to
know how collisions would affect turbulence as a result of TEM microinstability, which will be
the main topic of this thesis.

1.2 Basic principle of magnetic confinement fusion

Nuclear fusion occurs in nature only under the very exotic conditions of stellar cores [25] (light
elements) and supernovas [26] (heavier elements). This is because two nuclei can only fuse if they
come within the interaction range of the strong force [27], which has roughly the same dimension
as the nuclei themselves [5], while overcoming their long range repulsion by the Coulomb force,
otherwise they will simply scatter. This classical picture places an energy barrier of a few
100 keV to the fusion process, however neglects the quantum mechanical nature of the nuclei
which results in a finite probability for the reaction to occur below this threshold energy due to
tunnelling [3]. Nevertheless a fair amount of energy far above the ionisation is still required for
fusion to occur, and consequently any matter undergoing fusion will be in the plasma state.

It is possible to reproduce fusion conditions on Earth in laboratories by simply directing a
beam of high energy hydrogen on a hydrogen target as first achieved in 1934 [28]. This is
however not a feasible method to use fusion for energy generation, since a significant fraction
of the high energetic beam particles will be lost due to scattering on the high density target.
Therefore a feasible method of energy generation will require to confine the hot plasma. The
stars confine the plasma by their high gravitational pressure, but this method is not feasible
on Earth5. Rather, the plasma can be confined using strong magnetic fields. This confinement
works twofold. On the macroscopic level, the hot plasma will have a natural tendency to expand
which is counteracted by the magnetic pressure, as determined by the magnetohydrodynamic

5Furthermore, even if they could be realised, the exact stellar fusion conditions would not be desirable, since
stars convert protons into helium through the p-p chain, which is a slow multi-stage process [29], whereas a quick
single-stage reaction is desirable for energy generation.

3



(MHD) force balance [30]

J ×B = ∇p (2)

where J denotes the current density, B the magnetic field and p the thermal plasma pressure.
Meanwhile on the microscopic level the presence of the magnetic field constrains the motion of
the charged particles to align itself with the field lines while gyrating in the plane perpendicular
to the field line as a result of the Lorentz force. This creates a strong anisotropy in the plasma
w.r.t. the magnetic field which significantly reduces the energy transport across the field lines.

In principle any light nuclei can be fused together if the temperature is high enough. But in
view of the limited confinement time as a result of turbulence and the high input power needed
to reach fusion conditions [31], a feasible nuclear power plant should pick its fuel such that the
triple product requirement is easiest to achieve. Minimising the threshold value at the right-hand
side of Equation (1) then leads to the choice of the deuterium-tritium reaction

D + T → α(3.5MeV) + n(14.1MeV)

as the most proper candidate to achieve fusion conditions since it has the highest reaction rate
at the lowest temperature [12].

1.3 Magnetic confinement devices: tokamak and stellarator

From the MHD force balance Equation (2) it follows that both the current density and magnetic
field must lie on isobars, which span surfaces in 3D space. The requirement6 that both B,J
must lie on these surfaces constraints the geometry of the confinement devices that can be made,
since according to the “hairy ball theorem” it is only possible to smoothly spread out a vector
field on a toroidal surface [32]. There are two classes of such toroidal confinement devices: the
tokamak and the stellarator which will be discussed below.

1.3.1 The tokamak

The tokamak, originally pioneered by Russians scientists in the early ’50s [33], is the straightfor-
ward and intuitive realisation of a magnetic confinement device, consisting of a vacuum vessel
in the shape of a torus around which several planar coils are placed to create an axisymmetric
toroidal (long way around the torus) magnetic field.

Such a toroidal field alone cannot properly confine the charged particles since as a result of the
geometry the coils sit closer together on the inboard- than outboard side of the torus, which
result in a non-uniform magnetic field strength. This gradient in the magnetic field strength
will perturb the circular orbits of the gyration in the plane perpendicular to the magnetic field,
and result in a net particle drift called the ∇B drift [12]. As this drift is opposite for ions
and electrons the magnetic inhomogeneity drives charge separation, and causes the plasma to
collectively move toward the outer wall due to the resulting E×B drift. This issue is remedied
by adding an additional poloidal (short way around the torus) magnetic field which makes the
effective magnetic field helical and forces particles to sample both low- and high magnetic field
regions to average out the ∇B drift.

6A more handwaving argument for the need of a toroidal geometry follows from the microscopic influence of
the magnetic field; as the motion of charged particles along a magnetic field line is not constraint, the magnetic
field lines have to close back on themselves in order to prevent enormous end losses of particles and energy in a
simple linear geometry such as a plasma column. The easiest way to mitigate is by bending the plasma column
in the shape of a torus.

4



The necessary poloidal magnetic field is introduced by driving an inductive current in the plasma
by a solenoid in the center of the torus, which also renders the poloidal field axisymmetric. A
schematic tokamak configuration7 highlighting the above elements is shown in Figure 2a.

Although the tokamak idea is simple and intuitive, it has some drawbacks. First since the current
is driven inductively, it only makes pulsed operation of the device possible which is undesirable
from a power plant perspective. Although it is possible to drive this current through non-
inductive methods, this would be inhibit the reactor efficiency as these methods require a lot
of input power [35]. Additionally, the required plasma current to generate the poloidal field
is large, typically in the MA range, which is unfavourable for the macroscopic stability of the
plasma as the plasma current is one of the driving factors for MHD instabilities [5].

1.3.2 The stellarator

The issue of the resulting drifts from the non-uniform magnetic field discussed above is not
unique to the tokamak, but is present in all toroidal magnetic confinement systems. However,
what differentiates between the confinement methods is how the required helical magnetic field
to average out the drift is generated. The stellarator in contrast does not rely on a plasma
current, but generates its helical magnetic field directly from its external coils.

The stellarator idea was originally proposed by Spitzer [37] and created its effective helical field
by bending a torus into the shape of a figure eight, but suffered from poor plasma confinement.
The confinement properties of stellarators were later improved by first using helically shaped
coils wound around the vacuum vessel to directly generate a helical field (the so called classic
stellarator), but modern stellarators typically use an optimised modular coil design [38]. For
simplicity in their design, stellarators are typically made with a discrete toroidal symmetry n,
such that the magnetic field structure repeats itself n times through the torus [39]. A schematic
(classical) stellarator configuration highlighting these elements is shown in Figure 2b.

The coil configuration of stellarators breaks the axisymmetry present in tokamaks and result
in an inherently 3D magnetic geometry. Although the geometry has become significantly more

(a) (b)

Figure 2: Schematics showing the coils, plasma shape, currents and magnetic field lines for (a)
the ideal tokamak and (b) the classical stellarator. Notice how the stellarator configuration does
not require a plasma current, and how the shape of the plasma volume is non-axisymmetric.
Adapted from [36].

7Note that this concerns a simplified ideal tokamak where the poloidal cross section is circular, whereas
modern tokamaks employ plasma shaping techniques which create deformed poloidal cross sections to increase
the plasma stability and confinement time [34].
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complex, breaking with axisymmetry gives stellarators about 50 degrees of freedom in the mag-
netic field which is an order of magnitude more than for tokamaks [40]. As it is already possible
to reduce the turbulent transport to appreciable levels by tweaking the magnetic configuration
in the limited parameter space available to tokamaks [41], it seems feasible that the additional
freedom present in stellarators could be used to completely optimise for turbulence as well [42].
Furthermore, the stellarator concept has the obvious advantage that does not require a plasma
current to generate its magnetic field8 which is favourable for MHD stability and also makes
steady-state operation possible. Additionally, it has also been observed that stellarators do not
suffer from stringent operational limits on the plasma density and pressure, which are the source
of violent plasma disruptions in tokamaks [43]. The obvious disadvantage of the stellarator is
the complexity of the design and manufacturing of the coils [38, 44].

1.4 Magnetic field in general geometry

Regardless whether a tokamak or stellarator is used for the confinement, the magnetic field lines
will be helical. In so-called magnetic coordinates such a helical magnetic field can be represented
as [45]

B = ∇ψ×∇θ +∇ζ ×∇χ (3)

where ψ, χ denotes the toroidal- and poloidal magnetic flux respectively, and ζ, θ are the so
called toroidal and poloidal Boozer angles. These magnetic coordinates do not coincide with
the physical poloidal- and toroidal angles in the torus, but are closely related to them, and are
defined such that magnetic field lines are straight in the (θ, ζ) plane [46]. The helical twisting
of the magnetic field can be described by rotational transform ι, which in magnetic coordinates
is equivalently defined by [47]

ι =
dθ

dζ
=

dχ

dψ
=

B ·∇θ

B ·∇ζ
(4)

and describes the number of poloidal turns a field line makes per toroidal turn, as well as the
ratio between fluxes and magnetic field components. In case ι is a rational number a magnetic
field line will “bite its own tail” after an finite number of round trips through the torus, but
otherwise a field line will traverse the torus indefinitely and trace out a full surface. In tokamak
physics it is more common to describe the field line twisting by the safety factor q, which is the
inverse of the rotational transform q = 1/ι, since important macroinstabilities set operational
limits to integer values of q at the core and edge plasma [3]. Using the rotational transform the
magnetic field can also be written in Clebsch representation as

B = ∇ψ×∇α (5)

where α = θ − ιζ. From the Clebsch representation it follows that B · ∇ψ = B · ∇α = 0,
that is the magnetic field lines lie in a surface of constant enclosed magnetic flux, which are
therefore called flux surfaces. Together with the MHD force balance Equation (2) it then follows
that the isobars correspond to surfaces of constant magnetic flux which are therefore called flux
surfaces, and the pressure is referred to as a flux function p = p(ψ). Since the flux grows with
increasing distance from the magnetic axis, this creates a set of nested flux surfaces in the torus
and the flux ψ can thus be used as a radial coordinate. Lastly, B ·∇α = 0 implies that also α is
constant along a field line, such that α can be used as a field line label to identify different field
lines on a given flux surface. For completeness, the magnetic field can also be written in the
less illustrative form B = Beb by separating its magnitude B = ∥B∥ and direction eb = B/B,
which will be convenient later to identify the unit vector eb with the parallel direction.

8Note that this not mean that the stellarator is completely devoid of current. The MHD force balance
Equation (2) requires a plasma current to balance the pressure gradient, however this current is significantly
smaller than the MA currents present in tokamaks.
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1.5 Charged particle motion and adiabatic invariants

In a magnetically confined fusion plasma, there are a handful of periodic motions present in
the trajectories of individual particles. With each periodic motion, there is an associated ap-
proximately conserved quantity, called an adiabatic invariant, because there is a separation of
scales [30]. These adiabatic invariants are very fundamental for the behaviour of the particles
in a fusion plasma, as they give rise to the existence of trapped particles and determine the
confinement on a microscopic level.

Firstly, there is the gyration of the particles perpendicular to the magnetic field lines which
occurs at the gyrofrequency Ω = qB/m and gryoradius ρ = v⊥/Ω, where m and q denote the
particle’s mass and charge, B the magnetic field strength and v⊥ the component of the velocity
perpendicular to the field. Associated with this periodic motion is the magnetic moment

µ =
mv2⊥
2B

(6)

which is approximately conserved if the variations of the magnetic field strength remain small
over the course of a gyro-orbit, which requires ω/Ω ≪ 1, ρ/LB ≪ 1 where ω is the frequency of
fluctuations in the magnetic field and LB is the characteristic length scale of spatial variations in
the magnetic field [12]. These conditions generally hold under fusion conditions, and conservation
of the magnetic moment has an enormous impact on the particle trajectories. Since µB is just
the perpendicular kinetic energy, the region of the magnetic geometry that is accessible to a
particle is limited to B ≤ E/µ where E = 1/2mv2 is the equally conserved total kinetic energy.
Since the magnetic field in both tokamaks and stellarators is non-uniform, this gives rise (local)
minima and maxima of magnetic field strength along a field line which define “magnetic wells”.
If the maximum magnetic strength along a field line exceeds this E/µ threshold value, then a
particle cannot escape the well(s) along the field line and will be deflected back to regions of
lower magnetic field9. Such particles are referred to as trapped particles, and will perform a
bounce motion along the magnetic field line between the bounce points defined by µB = E. In
contrast particles whose E/µ threshold value is higher than the maximum field strength along
a field can follow the field through the full torus and are called passing/circulating particles.
This distinction between trapped and passing particles is visualised in Figure 3 for the LHD
stellarator.

The bounce motion of trapped particles is also periodic with an associated bounce frequency
ωb, and is related to the second adiabatic invariant J , defined by [46]

J =

ˆ b

a
mv∥ dl (7)

where the integration is along the field line and the integration boundaries are the bounce points
where v∥ = 0. This invariant is related to the motion of the so-called guiding center, which can
be considered as the average position of the particle during gyration, and to lowest order simply
follows the field line. To next order the guiding center will experience small drifts perpendicular
to the field lines due to magnetic inhomogeneity. If these perpendicular excursions remain
small w.r.t. to length scale of variations in the magnetic geometry LB, it can be shown that
dJ
dt = 0, with the bar denoting an average over the bounce motion, which implies that the guiding
center of trapped particles will remain on the same field line in between deflections [48]. The

9This situation is analogous to the analysis of one dimensional motion in classical mechanics under the
influence of a potential, where mv2∥/2 has the role of the 1D kinetic energy, and µB has the role of potential
energy. This analogy also makes clear why the particle is deflected rather than coming to a standstill along the
field line, since the potential energy can be associated with a force F∥ = −µ∇∥B aptly called the mirror force.
A formal calculation shows that this mirror force from this simple analogy argument is the exact parallel force a
particle experiences in an inhomogeneous field properly averaged over the gyromotion [3].
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Figure 3: Characteristic orbit of a trapped and passing ions in the Large Helical Device (LHD)
stellarator, showing the contrast between the field line following trajetory of the passing ion and
the bounce motion of trapped ions along with the precession drift of their guiding center. Also
indicated in the poloidal cuts are the isobar surfaces. Image courtesy National Institute for
Fusion Science (NIFS).

requirement for the excursions to remain small enough w.r.t. changes in background magnetic
geometry is that the drift- and fluctuation frequency satisfy ωd/ωb ≪ 1, ω/ωb ≪ 1, and is also
typically satisfied under fusion conditions [12,46].

The conservation of J defines a surface of possible field lines to which the particle must stick, and
constrains the drifts to cause only a slow precession of the particle within this surface [48, 49],
which is shown in Figure 4 for the case of a tokamak. If the frequency of variations in the
magnetic field also satisfies ω/ωpc where ωpc denotes the precession frequency, then there is also
a third adiabatic invariant associated with this drift velocity vd, which is proportional to the
magnetic flux enclosed by the orbit of a particle [5].

Although the conservation of adiabatic invariants have an enormous influence on the trajectories
of particles, violation of the conditions has even bigger consequences as these are associated losses
of confinement [12]. Typically the frequencies of these three periodic processes are ordered as
Ω ≫ ωb ≫ ωpc such that the third adiabatic invariant is most easily violated due to fluctuations
in the magnetic field [49]. Good confinement requires that the average radial drift vanishes to
keep particles and their energy at their original flux surface. For passing particles the average
cross field drifts vanish by design of the helical field as they sample both low- and high field
regions. For trapped particles the average drifts depend on the second adiabatic invariant as [36]

ψ̇ =
1

qτb

∂J
∂α

α̇ = − 1

qτb

∂J
∂ψ

(8)

where the bar denotes averaging over a single bounce period τb of a trapped particle (this
averaging procedure will be properly defined in Section 3.1). It can be shown that the bounce
time is given by τb = ∂J

∂E [50], further emphasising the importance of the second adiabatic
invariant for trapped particles. Consequently, to make the average radial displacement of trapped
particles vanish, the second adiabatic invariant J should be identical for all field lines on a flux
surface such that ∂J∂α = 0. Magnetic fields that achieve this are called omnigeneous, and a special
case of this are quasi-isodynamic fields which cause the trapped particles to precess around the
flux surface poloidally rather than toroidally, as is the case for tokamaks. It is however not
possible to create magnetic fields that are exactly globally omnigeneous, but realistic fields can
achieve omnigeneity to a high degree of approximation [46].

For omnigeneous fields, the conservation of the second adiabatic invariant J identifies interesting
configurations that could reduce the energy losses associated with fluctuations in the field [43].
For omnigeneous configurations J = J (ψ,E, µ) and a perturbation that causes excursions
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Figure 4: Characteristic trajectory of a passing particle (top) and trapped particle (bottom) in a
tokamak, and the projection of their orbit in the poloidal plane. Note how the passing particle
traverses both the high and low magnetic field regions and traces out the full field line along a flux
surface, whereas the trapped particle is constrained to the low field region at the outboard side
while precessesing around toroidally, which results in a banana shaped orbit in the poloidal plane.
Also indicated in the top plot are the definitions of the physical poloidal and toroidal angles θ, φ,
the radial direction indicated by the magnetic flux ψ, as well as the major- and minor radius
R, a. Adapted from [7].

δψ, δα, δE, δµ in the particle trajectory result in a change of second adiabatic invariant of

δJ =
∂J

∂ψ
δψ +

∂J

∂E
δE +

∂J

∂µ
δµ.

If however the perturbation frequency ω/ωb ≪ 1 than J and consequently since ωb/Ω ≪ 1 also
µ remain conserved such that δµ = δJ = 0, which results in an energy change due to radial
excursion of

δE = −
∂J
∂ψ

∂J
∂E

δψ = −
∂J
∂ψ

τb
δψ.

Since τb = ∂J
∂E > 0 by definition, it follows that whether a particle gains or loses energy for

a radially outward excursion δψ > 0 depends completely on the sign of ∂J
∂ψ . As any gains in

particle energy have to come at the expense of the energy in the perturbations, it follows that
radially outward excursions corresponding to confinement losses are suppressed if ∂J∂ψ < 0. Such
configurations are called maximum-J configurations as the second adiabatic invariant peaks
on the magnetic axis, which is the innermost flux “surface” which becomes a single degenerate
magnetic field line.

1.6 State of the art

“Nuclear fusion will deliver power in 50 years from now” has been an ongoing jab at the prospects
of the fusion community [51], since it seems that the code towards a working controlled fusion
reactor is almost cracked, but the progress is advancing at a snail’s pace. This statement however
does undermine the enormous progress that has been made over the past 70 years: the fusion
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triple product has increased by 5 orders of magnitude to a record value of 1.6× 1021m−3 keV s
held by the JT-60 tokamak [52], and the plasma duration has increased from several milliseconds
to a record value of over 15 minutes of steady-state operation at the EAST tokamak [53].
Furthermore a recent DT plasma campaign in the JET tokamak in preparation of the new ITER
tokamak has shown a sustained fusion output power of 10MW for five seconds [54]. Although
all existing records have been made in tokamak devices, stellarators are also catching up with
the recent W7-X device holding the stellarator triple product record of 6.8×1019m−3 keV s with
an energy confinement time of 0.22 s [55]. Despite the advances, nuclear fusion still faces several
physics and engineering challenges which are the focus of active research. To name a few besides
turbulence, there is the issue of high heat- and neutron loads on materials [56,57], the control of
macroscopic plasma instabilities in the edge [58], the understanding of plasma detachment [59],
and the breeding of sufficient tritium [60,61].

Returning to the issue at hand of plasma turbulence, a significant effort has been put towards
understanding the microinstabilities which cause them. Experimentally microturbulence is in-
vestigated by measuring the frequency spectra [62,63], and phase differences/correlations [64–66]
of the plasma fluctuations, but it is generally much harder to experimentally distil information
about the underlying microinstabilities since the experiments exist in a fully developed chaotic
turbulent state. To gain insight in the microinstabilities which exist on much shorter timescales
than experiments, a mixture of theory and simulations are performed based on the framework of
gyrokinetics [6,7], in which the dynamics of the gyromotion is removed from the evolution of the
perturbations as the gyrofrequency far exceeds the frequency of the fluctuation, which reduces
the dimensional complexity of the problem [8, 67]. This which will be explained in much more
detail in Section 2.3. The different types microinstabilities correspond to certain limits/simpli-
fications of the governing equations from this framework [68]. Neglecting collisions within this
framework does simplify the analytical theory and reduces computation time, but it creates a
fundamentally physically incorrect picture of the plasma. Collisions facilitate the interaction
between particles and is responsible for establishing an equilibrium amongst electrons and ions
(Maxwellisation of the distribution function) and between them (thermal equilibration Te ≈ Ti
and quasi-neutrality ne ≈ ni, as achieved under reaction conditions, see Figure 1b). Obviously,
without ion-ion collisions there also would not be any fusion reactions.

There have been some investigations on the role of collisions on plasma turbulence, but the
majority of this work has focused on the non-linear regime of the turbulence to assess the
influence of the collisionality10 on the heat and particle fluxes, which are determined by the
saturated turbulent state [71]. Since non-linear physics is notoriously difficult, most work has
been carried out numerically and the relevant physics is then deduced from simple models that
can explain the results. Different results have been obtained for different microinstabilities,
showing an increase in heat flux with collisionality for the ion temperature gradient (ITG) mode
[72,73]. A similar but less strong increase in heat flux for electron temperature gradient (ETG)
mode [74], but a decrease in heat flux with collisionality was found for trapped electron modes
(TEM) [75]. These different microinstabililites type will be discussed in Section 2.1. Meanwhile
linear investigations have revealed contrasting results for the influence of the collisionality on
the growth rate, showing a stablising effect at moderate driving gradients [76] but a destabilising
effect at strong gradients [77].

The above research has been limited to tokamak geometries and fairly little is known about the
effect of collisionality in stellarators. The onset of microinstabilities depends critically on the
magnetic geometry [78], so it is not evident that the results obtained in tokamaks also apply to

10The collisionality ν⋆ is a commonly used dimensionless measure for the collision frequency in transport theory
defined as the ratio between collision frequency and bounce frequency (ν⋆ = ν/ωb) [20, 69, 70], however as the
latter is fixed by the geometry the collisionality and collision frequency are used interchangeably throughout this
work.
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stellarators. For the ITG mode, a preliminary investigation on the role of collisions in different
geometries has shown that the growth rate is hardly affected by collisions in both tokamak and
the LHD stellarator, but strongly affected in a slab geometry where the magnetic field lines are
straight and uniform [79]. In case of the W7-X stellarator, an extensive scan over the driving
gradients has been performend, which show an overall reduction in growth rates when collisions
are taken into account [11]. This has however only been assessed for a single, and particularly
high collisionality and is the only investigation of the effects of collision in W7-X to date, so it
remains unknown whether this growth rate stabilisation in W7-X is monotonous in collisionality.

Analytical investigations of the role of collisionality on microinstabilities are even less common.
Early investigations of the role of collisions in the literature use simplified fluid rather than
kinetic models and find the collisions have a damping effect in a slab geometry [80, 81], but
a destabilising effect in a tokamak [82]. More recent investigations use either a fully kinetic
approach [83] in tokamaks, or a hybrid approach of cold fluid ions and kinetic electrons [84, 85]
in stellarators but consider low and high collisionality limits from the outset. Most analytical
work on collisions is dedicated to formulating approximate collision operator models which retain
the essential physics of the full collision operator, but are more numerically efficient to implement
in gyrokinetic codes [86–91].

1.7 Scope and outline of the thesis

As highlighted above much remains unknown about what the influence of collisions is on mi-
croinstabilities in stellarators. For the collisionless case at least, the stellarator ITG seems to
have a comparable growth rates [92] and turbulent transport levels [93] as in tokamaks. The
same cannot be said for TEMs, as these heavily rely on the structure of magnetic wells along the
field line. In tokamaks due to axisymmetry, there is a single but repeated magnetic well along
the field line caused by closer the proximity of coils on the inboard side. Consequently, there
is strong localisation of where the trapped particles reside. For stellarators in contrast, there
can be multiple local maxima/minima along the field line creating magnetic wells of varying
depths along a field line, and consequently there will be multiple spatially separated populations
of trapped particles [16]. This difference is illustrated in Figure 5. Therefore the response of
trapped electrons, and hence the levels of turbulence, to an identical initial plasma perturbation
will be fundamentally different in stellarators.

Since the TEM is believed to be responsible for the majority of turbulent electron transport
in present day experiments [7, 94], extremely sensitive to the details of the magnetic geometry,
and the TEM is the microinstability expected to be most affected by collisions as a result
of the (de)trapping mechanism it is therefore of interest to find out how TEM turbulence in
stellarators is influenced by collisions. Already in the collisionless case, important differences
between stellarators arise, where maximum-J devices like W7-X have been shown to be resilient
against trapped particle instabilities both analytically [95] and numerically [96]. It remains to
be seen however if this favourable property of maximum-J devices would extent to collisional
TEM.

A full characterisation of TEM turbulence in different geometries is not feasible within a single
thesis. In particular the transport fluxes are determined by the final turbulent state and de-
scribed by the full non-linear physics which is notoriously difficult to solve especially analytically
but also numerically. As it is still unclear what the effects of collisions on the underlying mi-
croinstability would be, this should be examined first to warrant a full investigation of changes
to the transport fluxes compared with their collisionless values. Therefore this thesis will focus
on the role of collisions on the linear stability properties of the TEM. To be able to isolate
the influence of collisions on the TEM the investigations will be limited to instabilities driven
by density gradient only, which rules out the ITG/ETG instabilities mentioned above (as will
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Figure 5: Variation of the magnetic strength along a field line in the poloidal plane for (a) the
tokamak and (b) the standard configuration of W7-X stellarator. Also indicated are the trapping
wells along the field line for a particle with the same normalised threshold field. In these plots
θ = 0 corresponds to the outboard side of the torus, where magnetic field of tokamaks have their
absolute minimum.

become clear in Section 2.1).

As the stability analysis is analytically tractable, the approach will be mainly to see if any a
priori influence can be obtained from theory, rather than inferring trends from simulations, even
if only qualitatively. Because of the sensitivity of the TEM on geometry, it will be interesting
to see if this behaviour is universal, or differs between tokamak and stellarators. A general
survery of every possible stellarator configuration among the vast possiblities will be infeasible,
and therefore two realistic geometries from experimental devices will be considered: the HSX
stellarator [97] and the W7-X [98] stellarator. This choice allows to assess possible differences due
to the maximum-J property of the geometry, which is achieved in the high-mirror configuration
of W7-X [11] but not in HSX. To facilitate fair comparison with a tokamak, the realistic DIII-
D [99] geometry will be considered rather than the idealised case of a circular plasma cross
section.

Besides this theoretical investigation, numerical simulations for the above geometries will also be
performed to facilitate a comparison with the theory, which is expected to break down at some
point due to the inevitable approximations that have to be made. Furthermore, this will also
allow for quantitative results whereas theory is expected to yield primarily qualitative results.
For the simulations the GENE code [17] will be used to numerically investigate plasma microin-
stabilities, which can be used for both linear stability analysis and full non-linear turbulence
simulations.

The remainder of the thesis is then outlined as follows. In Chapter 2 a basic description of
the instability mechanism and the necessary background theory needed to describe plasma mi-
croturbulence as well as collisional process in a plasma will be discussed. This framework is
then applied to TEMs analytically in Chapter 3 and numerically in Chapter 4 to find how the
stability of TEMs is changed by the inclusion of collisions. This is followed by a comparison of
the results obtained from theory and simulations in Chapter 5. Lastly a summary of the findings
and outlook for future research is presented in Chapter 6.
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2 Background theory

The present chapter will introduce the necessary theoretical background needed to describe and
understand the microinstabilities in fusion plasmas. First, the instability mechanisms introduced
in Chapter 1 will be briefly explained in Section 2.1 using only basic physics to gain an intuitive
understanding of the process leading to instability without the need of a thorough mathematical
analysis. Then with a clear picture of the TEM instability mechanism in mind, the remainder
of this chapter is dedicated to formulating physical framework and mathematical machinery
used to rigorously describe these microinstabilities. In Section 2.2 the need for a approach
kinetic approach to plasma turbulence is argued and briefly explained. As collisions form a
central part of this thesis, Section 2.2.1 in particular will discuss the kinetic description of
collisional processes in the plasma in terms of the collision operator. Then in Section 2.3 the
gyrokinetic equation will be derived in detail as it introduces much of the of the concepts and
terminology which are used throughout the later work in this thesis. To close the gyrokinetic
framework, the quasi-neutrality condition is then introduced in Section 2.4 which together with
the gyrokinetic equation forms the foundation for the analytical work and simulations that follow
in Chapters 3 and 4 respectively. Lastly in Section 2.5 an alternative model for the collision
operator is introduced and motivated, which will be used in Chapter 3 to account for collisions
in an analytically tractable way.

2.1 Microinstability mechanisms

A plethora of plasma instabilities can occur on the scale of the gyroradius, and can be dis-
tinguished by means of how perturbations in the plasma profiles couple to perturbations in
the electromagnetic fields. The ITG/TEM instabilities which are most important for transport
in present day experiments can be described by perturbations in the electric field alone, and
therefore throughout the thesis the electrostatic limit will be considered where perturbations
in the magnetic field are neglected. This is a valid approximation for low β plasmas where
β = p/(B2/2µ0) is the normalised plasma pressure and the total energy content is dominated
by the equilibrium magnetic field [30]. Within the electrostatic limit, the electric field can be
completely described in terms of the electrostatic potential ϕ as E = −∇ϕ. These different mi-
croinstabilities can all be interpreted in terms of unstable variations of the fundamental plasma
drift wave, which describes the interaction between plasma- and electric field perturbations,
as result from the magnetic field inhomogeneity in the torus [12]. Therefore the drift wave
is discussed first in terms of a simple and original waveform analysis which avoids the more
mathematical descriptions given in plasma physics textbooks [5, 12, 30] (which is reproduced in
Appendix E for completeness), and then the changes to this model which lead to the different
instabilities are introduced.

2.1.1 The drift wave

The fundamental interaction between plasma- and potential perturbations is characterised by the
so-called drift wave, which can be understood by considering a simplified plasma slab geometry
with a uniform magnetic and straight field. The basic ingredient is the existence of a gradient
in the background density ∇n0 perpendicular to the magnetic field. In the slab geometry the
magnetic field is taken in the z direction, and the density gradient is taken in the x direction,
which would correspond to the toroidal and radial directions in a torus respectively. This leaves
a third direction determined by ey = ez × ex which is referred to as the binormal direction,
which roughly corresponds to the poloidal angle in a torus [5].

If a wave-like perturbation of the particle guiding centers δx(y) = A sin(ky) is superimposed on
the existing background density, then these radial excursions effectively “take” plasma particles
from a position x at density n0(x) and “displace” those particles at constant density to x +
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(a) (b)

Figure 6: Schematic mechanism of the drift wave showing (a) how the guiding center displace-
ment leads to a density perturbation and (b) the waveforms of all perturbed quantities along with
the effect of the E ×B drift on the initial displacement.

δx(y) where the equilibrium density is n0(x+ δx(y)) ≈ n0(x) + δx(y)dn0
dx , resulting in a density

perturbation δn(y) = −δx(y)dn0
dx which is π out of phase with the guiding center perturbation,

as shown in Figure 6a. As the electrons are much lighter than the ions and can freely move along
the field line, they will quickly “communicate” with the unperturbed electrons and diffuse out
to re-establish equilibrium along the field line, which is called the adiabatic electron response.
Within the same time frame, the much heavier displaced ions will not have moved much along
the field line and are left behind at their initial density. As these ions are now balanced by
electrons at the background this results in a net charge density of ρ = eδn, which creates
an electrostatic potential ϕ ∝ ρ in phase with density perturbation. This potential difference
creates an electric field E = −∇ϕ, which in the presence of the magnetic field results in an
E × B ∝ dδx(y)

dy ex drift that causes an additional guiding center displacement which is π/2
out of phase with the initial guiding center displacement, see Figure 6b. This drift also affects
the guiding centers of previously unperturbed particles and will result in an additional density
perturbation which is shifted w.r.t. the initial density perturbation. This cycle continues and
causes the density perturbation to propagate along the y direction rather than grow in amplitude
and thus corresponds to a stable perturbation called the drift wave.

2.1.2 The trapped-particle mode

One major influence of an inhomogeneous magnetic field is the existence of trapped particles,
which are absent in the simple drift wave picture above. The second key element that is in-
troduced by an inhomogeneous magnetic field is the ∇B and curvature drifts (these will be
elaborated in Section 2.3). As this drift vanishes on average for passing particles, the response
of passing particles to density perturbations is essentially that described by the drift wave model.
Therefore, it is the non-vanishing average drift of trapped particles that could introduce an in-
stability mechanism.

To investigate this, two changes will be made to the basic drift wave model: the electron response
is no longer assumed to be adiabatic and the effect of trapped particles is simulated by adding a
constant drift velocity vd which is opposite for ions and electrons, see Figure 7a. This drift moves
trapped particles originally at position (x, y0) to (x, y0 ± δy) where the plus sign is taken for
ions. In absence of a density perturbation this does not lead to the accumulation of charge since
the density gradient is in the x direction. If however there is also a wavelike radial excursion
of guiding centers like before, then these drifts will now move trappped particles at the locally
perturbed density n(x, y) = n0(x) + δn(y) which results in an imbalance between the in/out
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(a) (b)

Figure 7: Schematic mechanism of the trapped particle mode showing (a) how the oppositely
directed magnetic drifts of electrons and ions result in a charge density and (b) the waveforms
of all perturbed quantities along with the effect of the E ×B drift on the initial displacement.

fluxes of electrons and ions. This leads to the build up of a net charge density of

ρ(y0) = + e [n(x, y0 − δy)− n(x, y0)]− e [n(x, y0 + δy)− n(x, y0)]

≈− 2e
∂n(x, y)

∂y

∣∣∣∣
y=y0

δy = +2e
dn0
dx

dδx(y0)

dy
δy.

which is now π/2 out of phase with the initial density perturbation in contrast to the drift wave
mechanism, see Figure 7b. Completely analogous to the analysis of the drift wave mechanism,

this charge density will result in an E×B drift given by E×B ∝ −d2δx(y)
dy2

ex which is completely
in phase with the initial guiding center perturbation. This drift will thus add to the already
existing radial excursion of the trapped particle guiding centers thereby enhancing its amplitude,
see Figure 7b. As the density perturbation δn = −δx(y)dn0

dx is proportional to the guiding center
perturbation this will also be enhanced creating a feedback loop which leads to instability. Since
the amplitude of the density perturbation is directly proportional to the density gradient, this
instability mechanism will be more dangerous at high density and is thus referred to as the
density-gradient-driven trapped-particle mode.

By comparing with the basic drift above, it is thus the phase between the density and potential
perturbation which is of importance for determining whether an instability occurs. This makes
the direction of the drift velocity crucial, as it is easily verified that a reversal of the drift
velocities would lead to a potential which is −π/2 out of phase with the density perturbation
and an E ×B drift that is π out of phase with the initial radial excursion of guiding centers,
which would quench rather than enhance the amplitude of the guiding center displacement
corresponding to damping of the perturbations.

2.1.3 Temperature gradient modes

The above analysis only considers the situation with a density gradient and implicitly assumes
a uniform temperature, but in general a fusion plasma also has a temperature gradient which
could drive instabilities. As the average drifts of trapped particles depend on temperature,
a temperature perturbation can also result in an imbalance between in/out fluxes of charged
particles, such that temperature-gradient-driven trapped-particle also modes exist [36].

Although temperature gradient effects are not discussed in this thesis, since it is so important
for present day transport the instability mechanism of the ITG mode is sketched in Appendix A
using the same waveform based model as above. The fundamental change w.r.t. the basic drift
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wave is that ions are considered to respond to the perturbations with a temperature dependent
drift velocity, while the electrons are treated adiabatically again. Analogous to the trapped
particle mode, an instability occurs when there is a +π/2 phase difference between the tempera-
ture fluctuations and potential fluctuations, although this instability is largely a passing particle
effect [5]. For completeness, it will be mentioned that an electron temperature gradient (ETG)
mode also exists which is completely isomorphic11 to the ITG with the roles of ions and electrons
reversed [102], although it is generally considered less important for the overall transport [19].

2.2 Kinetic description of a plasma

In order to describe the plasma dynamics, in principle one would have to solve the equations of
motion for all plasma particles. As plasma microturbulence occurs on the gyroradius scale, at
bare minimum this means that particle trajectories have to be evolved within a box which spans
several gyroradii in each direction to correctly resolve the spatial structure of the fluctuations.
Under the typical reactor conditions of Figure 1a this corresponds to tracking O(1013) particles
which is beyond the capabilities of modern super computers. On the other hand, the involved
spatial- and temporal scales of the microinstabilities are not sufficiently collisional for the plasma
to re-establish well defined “fields” like density, velocity and temperature such that a reduced
fluid description of the plasma cannot be used to describe plasma microturbulence [8].

Thus an intermediate statistical approach has to be taken, which describes the ions and electrons
in terms of a distribution function. This distribution function can be very complicated if the
particles are strongly coupled. Fortunately, at the reactor conditions the average potential
energy can be estimated as a few meV whereas the thermal energy is a few tens of keV, such that
the particles can be considered as weakly coupled and the single-particle distribution function
f(t, q,p) describes the full ensemble12. This distribution function is defined such that the number
of particles occupying a small volume in six dimensional phase-space is given by fd3qd3p where
q,p are the canonical position and momentum respectively. The evolution of this distribution
function is described by the kinetic equation [5]

∂fs
∂t

+ q̇ ·∇qfs + ṗ ·∇pfs = Cs(fs) (9)

where the subscript s indicates the species, t denotes time, ∇q,∇p represent the gradient w.r.t.
phase-space coordinates q and p respectively, the dot indicates a derivative w.r.t. time and
Cs is the collision operator. The left-hand side of Equation (9) is the phase-space analogue of
the material derivative, such that in absence of collisions Equation (9) represents conservation
of the distribution function along a trajectory in phase-space. The collisions can then be con-
sidered as a perturbation resulting from the neglected weak particle interactions which cause
discrete jumps in phase-space [103]. Since the particle interactions are the result of the local mi-
croscopic electromagnetic fields generated by individual particles, the unperturbed trajectories
are completely determined by the macroscopic electromagnetic fields [20], and consequently the
canonical position q is just the real position x and the canonical momentum is just the normal
momentum p = mv. Then the kinetic equation can be simplified to13

11At least conceptually the instability mechanisms are isomorphic being described by a kinetic response of one
species and an adiabatic response of the other. Mathematically there is a subtle difference in the adiabatic response
as due to their much smaller gyroradius electrons cannot respond adiabatically to perturbations which cross the
flux surface by several ion gyroradii, as this would correspond to unphysical transport [100,101]. Nevertheless the
isomorphism holds at least for the linear onset of instability discussed by the waveform model, although there is
still debate whether the isomophism also carries over non-linearly [17,74].

12In other words the complete N particle distribution function fN describing the full ensemble of particles can
be factorised into the individual particle distribution functions fN =

∏N
j=1 fj(t, qj , p̃j).

13Gravitational effects are neglected, as even for ions for which gravity is strongest, the Lorentz force is already
dominant over gravity for electric fields as weak as O(0.1µVm−1) and magnetic fields as weak as O(0.1 pT),
which are always exceeded in fusion plasmas.
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∂fs
∂t

+ v ·∇xfs +
qs
ms

(E + v ×B) ·∇vfs = Cs(fs) (10)

where qs,ms denote the charge and mass of a particle from species s respectively, E,B represent
the macroscopic electric and magnetic field respectively.

2.2.1 The collision operator

As collisions are central for this thesis, a couple of words on the collision operator are due.
Collisions in a plasma are in stark contrast with the usual picture of a “billiard ball” collisions
in neutral gasses [104]. This is because charged particles interact by the long range Coulomb
force, such that essentially a single collision involves the interaction between many particles,
which makes a complete description of collisions intractable. Nevertheless because the 1/r2

dependence of the Coulomb force between a pair of charged particles, most of these interactions
are weak and cause only a small deflection in the trajectory of a particle, such that the reaction
on particles in the direct vicinity to this small scattering will be negligible compared to the
interaction they experience with all other unscattered particles, and consequently there will
be no correlations between the small deflections of particles [105]. In other words, this means
that the small deflections can be considered as random walk in the velocity of the scattered
particle [20]. Because of the high densities, repulsive14 nature and 1/r2 dependence of the
Coulomb force, there will only be relatively few strong interactions which cause a significant
deflection to the trajectory, such that the accumulated effect of the small deflections from long-
range interactions will be dominant [70]. This allows to consider the collisions in a plasma as
independent random binary scattering events which result in small velocity deflections, such
that the influence of collisions can be around ∆v ≈ 0.

The mathematical details of this process are quite lengthy and the derivation can be found
in Appendices B.1 to B.3. This derivation results in a Fokker-Plank equation for the collision
operator which describe the effective drag- and diffusive forces that collisions have on the dis-
tribution function. The collision operator describing collisions between particles from species a
with species b can then be compactly expressed as

Cab(fa, fb) = Lab
∂

∂vk

[
ma

mb

∂φb
∂vk

fa −
∂2ψb
∂vk∂vl

∂fa
∂vl

]
(11)

where Lab = (qaqb/maϵ0)
2 ln Λ is a measure of the interaction strength, with lnΛ the Coulomb

logarithm which is related to the number of particles in the Debye sphere15 [30], fa,b,ma,b, qa,b are
the distribution function, mass and charge of species a and b respectively, ϵ0 the vacuum permit-
tivity, vk,l denote velocity components with repeated indices l, k implying Einstein summation,
and φb, ψb are the so-called Rosenbluth potentials determined by

φb(v) =− 1

4π

ˆ
fb(v

′)

∥v − v′∥d
3v′

ψb(v) =− 1

8π

ˆ ∥∥v − v′∥∥fb(v′)d3v′
. (12)

14The repulsive nature sets a clear distance of closest approach and thus limits the number of large deflections
as a result of close proximity pair interactions. In case of attractive interactions, there is no limiting distance.
However the number of particles that fall within a handful of interparticle distances is negligibly small compared
to the total number of particles within the Debye sphere. Consquently the accumulated effect effect of small
deflections in the scattered trajectory as a result from long-range interactions will outweigh the effect of the few
large deflections in the scattered trajectory as result from nearest-neighbour interactions. Therefore the argument
for repulsive interactions is easily extended to collisions between ions and electrons.

15This can be taken as the region over which the electric field of a single charged particle can influence those
around it, as beyond the Debye length the microscopic electric fields get shielded by collective rearrangements of
the bulk plasma. See any introductory textbook to plasma physics, e.g. [3]

17



This Fokker-Planck collision operator Equation (11) is valid provided that the Coulomb log-
arithm lnΛ ≫ 1 as otherwise the effect of large angle deflections and correlations become
dominant, and the collisions can no longer be considered binary [106]. The Coulomb logarithm
depends weakly on plasma parameters as [70]

lnΛ = 17.25− 1

2
lnn[1019m−3] + lnT [keV] (13)

where the quantities in square bracket indicate the proper unit for density and temperature, and
is typically between lnΛ ∼ 15 − −20 for fusion plasmas, making the Fokker-Planck approach
valid. In principle the Fokker-Planck collision operator is derived in the absence of a magnetic
field where the particle motion is isotropic. Nevertheless Equation (11) can still be used in a
magnetised plasma provided that the gyroradius is larger than the Debye length [107], such that
the effects of gyration are not noticeable at the spatial scales where the particle is scattered.
This condition is also typically satisfied under reactor conditions.

Although Equation (11) is generally valid for collisions between any charged particle species a, b
with arbitrary distribution functions, it is not very illustrative. In particular the Rosenbluth
potentials are hard to evaluate as they involve integrals over the relative velocity between parti-
cles. If species b is taken to have Maxwellian distribution, then the calculation of the Rosenbluth
potentials is analytically tractable. In Appendix B.4 it is shown that in this case the collision
operator takes the more comprehensible form of

Cab(fa, fMb) = νabD L{fa}+
1

v2
∂

∂v

[
v3
(

ma

ma +mb
νabs fa +

1

2
ν∥v

∂fa
∂v

)]
(14)

where L is the Lorentz scattering operator

L =
1

2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ς2

)
(15)

with v, θ, ς are spherical velocity coordinates16, and νabD , ν
ab
s , ν

ab
∥ are the so-called test-particle

collision frequencies

νabs = ν̂ab
(
1 +

mb

ma

)
Ta
Tb

2G(xb)

xa
νab∥ = ν̂ab

2G(xb)

x3a
νabD =ν̂ab

erf(xb)−G(xb)

x3a
(16)

where the special functions are G(x) = (erf(x)−x erf ′(x))/(2x2) and erf(x) = 2√
π

´ x
0 exp

(
−ξ2

)
dξ

is the error function, xs = v/vTs is the velocity normalised to thermal speed of each species
vTs =

√
2Ts/ms, and the characteristic collision frequency ν̂ab is given by

ν̂ab =
nb

4πv3Ta

(
qaqb
ϵ0ma

)2

ln Λ = νab90°
3
√
π

4
. (17)

Here νab90° is the so-called 90° scattering frequency, such that 1/νab90° is the time it takes for the
accumulated effect of small angle collisions with species b to decorrelate the velocity17 of a typical
thermal particle from species a and essentially make the particle “forget” about its history and
become part of the background plasma [3].

When writing the collision operator in the form of Equation (14) the different effects that the
collisions have on a particle become clear. As the Lorentz scattering operator L essentially
describes diffusion of the velocity vector on a surface of constant speed18 v = ∥v∥, the first term

16Following the physics convention where θ indicates the polar angle and ς the azimuthal angle.
17This should be interpreted in the sense that the velocity autocorrelation function ⟨va(t) · va(t+ τ)⟩ → 0.
18Speed is typically only used in traffic regulations in everyday life, however to distinguish between processes

that depend only on the magnitude of the velocity rather than its full vectorial details (like the collision frequencies
of Equation (16)), the notion of speed will also be used throughout this thesis.
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Figure 8: Dependence of the test particle collision frequencies Equation (16) on particle velocity
in case of self collision when b = a.

describes the how collisions change the direction of the velocity of a particle which result in
the small deflection of the trajectory, and is referred to as pitch-angle scattering. The second
term in Equation (14) all contain terms that affect the speed of a particle and are in contrast to
the Lorentz scattering operator thus not energy conserving. Therefore this part of the collision
operator describes energy scattering due to energy exchanges in a collision. The energy scattering
is a balance between drag forces that slow the particle down and diffusive forces in the same
direction as the initial velocity, which can be identified by the first and second speed derivatives
of the distribution function. The test particle collision frequencies νabs , ν

ab
∥ , ν

ab
D then simply

give the rates at which a particle is slowed down by drag, accelerated by parallel diffusion and
deflected by perpendicular diffusion respectively. The velocity dependence of these frequencies
in the case of self-collisions b = a is shown in Figure 8, which shows that at low velocity diffusion
is more important while at high velocity drag dominates.

The interspecies collisions when a ̸= b are special in plasma because of the enormous mass differ-
ence between electrons and ions. Because of this mass difference the thermal velocities vT i, vTe
will be on disparate scales when the temperatures are similar. This effects the behaviour of the
test-particle collision frequencies Equation (16) through the velocity dependence of G(xb), ϕ(xb),
where the particle velocity is normalised to the thermal speed of the other species, such that
they can be expanded for small and large arguments

ϕ(x≪ 1) ≈ 2√
π
x− 2

3
√
π
x3 +O(x5) ϕ(x≫ 1) ≈ 1

ϕ′(x≪ 1) ≈ 2√
π
− 2√

π
x2 +O(x4) ϕ′(x≫ 1) ≈ 0

G(x≪ 1) =
ϕ(x≪ 1)− xϕ′(x≪ 1)

2x2
≈ 2x

3
√
π
+O(x3) G(x≫ 1) =

ϕ(x≫ 1)− xϕ′(x≫ 1)

2x2
≈ 1

2x2
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where for small arguments the next order terms in the Taylor expansion of ϕ(x), ϕ′(x) are
needed to prevent an indeterminate limit 0/0 in G. Writing xb = xavTa/vTb and performing an
expansion in the electron-ion mass ratio give the relevant collision frequencies between ions and
electrons as

νeis ≈ ν̂ei
1

x3e
νies ≈ ν̂ie

4

3
√
π

√
me

mi

(
Ti
Te

)3/2

νei∥ ≈ ν̂ei
me

mi

Ti
Te

1

x5e
νie∥ ≈ ν̂ie

4

3
√
π

√
me

mi

√
Ti
Te

1

x2i

νeiD ≈ ν̂ei
1

x3e
νieD ≈ ν̂ie

4

3
√
π

√
me

mi

√
Ti
Te

1

x2i

(18)

where the electron collision frequencies now only depend on the v/vTe and vice versa for the
ions. From the ratio of these frequencies it follows that the electrons are easily deflected and
slowed down by ions, but the energy exchange between them proceeds much slower by the mass
ratio, which is exactly the same conclusion as reached when working out the momentum and
energy conservation laws using basic classical mechanics [108]. In contrast ions predominantly
only experience a net drag from the “sea” of electrons, as the mass difference makes it impossible
to change the ion momentum or energy by a significant amount, completely analogous to how a
cyclist only experiences an effective drag from the many collisions with air molecules they make,
without being thrown off course.

2.3 The gyrokinetic equation

In principle the kinetic equation Equation (10) could be used to solve for the distribution function
of electrons and ions to study the effect of fluctuations in a magnetised fusion plasma. However
this equation has the full details of the plasma evolution “encoded” within it, which spans a wide
range of spatial scales between the microscopic gyroradius and macroscopic plasma size and an
even wider range of temporal scales between the fast gyration and total pulse duration [6].

Experimental observation of microturbulence across many fusion devices have revealed however
that the fluctuations in the plasma obey the scaling [7]

ω

Ωs
∼
k∥
k⊥

∼ vE
vTs

∼ δns
n0s

∼ δB

B0
∼ ρs
Ln

∼ δ ≪ 1 (19)

where ω is the perturbation frequency, Ωs = qsB/ms the gyrofrequency of each species s, k∥, k⊥
denote the wave number parallel and perpendicular to the direction magnetic field, vE is the
magnitude of the perturbed E×B drift velocity, vTs is the thermal velocity of species s, δns, n0s
are the density perturbation and equilibrium density of species s, δB,B0 are the strengths of
the perturbed- and equilibrium magnetic field, ρs = v⊥/Ωs is the gyroradius of each species and
Ln = ∥∇ lnn0∥−1 is the gradient length scale of the plasma profile, which can be regarded as
a measure of the macroscopic plasma size. For typical microinstabilities the wavenumber scales
with k⊥ρs ∼ O(1). Together with the scaling for the E × B drift Equation (19) implies that
the electrostatic potential fluctuations have the scaling

δ ∼ vE
vTs

∼ k⊥ϕ
BvTs

∼ ϕ

BρsvTs
∼ qsϕ

Ts
(20)

where ρsΩs ∼ vTs was used, such that the particle energy remains dominated by its thermal
kinetic part.

The perturbations are observed to be highly elongated19 along the magnetic field but compressed

19This does not mean that perturbations with short correlation lengths along the magnetic field cannot exist
in the plasma, as spontaneous fluctuations are naturally generated at all scale. Such perturbations will however
by quickly subdued to Landau damping from passing particles, and consequently after some initial transient only
the elongated fluctuations will survive [7].
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perpendicular to it, which is expressed by the k∥/k⊥ ≪ 1 scaling of Equation (19) since the
wavenumbers follow as inverse correlation lengths k∥,⊥ ∼ 1/L∥,⊥. This reflects the length scales
in the in the helical particle orbits, where the anisotropy between the motion along the field
line and the perpendicular gyration forms the basis of magnetic confinement (see Section 1.2).
Furthermore, the oscillation period has been observed to be much slower than the gyrofrequency,
as expressed by ω/Ωs ≪ 1 in Equation (19) which shows there is a clear disparity between the
timescales. This means that the gyration of the particles cannot couple to the evolution of the
instabilities, and it is the slower motion of the guiding centers that is responsible for driving the
perturbations unstable20a which motivates the removal of the details of the gyration from the
kinetic equation.

This can be achieved by a change of phase-space variables21 (x,v) → (R, E, µ, ϑ) defined by

R =x− eb × v

Ωs
ϑ =arctan

(
v · e1
v · e2

)

µ =
msv

2
⊥

B
E =

msv
2
∥

2
+ µB + qsϕ

(21)

where R = x−ρ is the position of the guiding center, eb = B/B the unit vector in the direction
of the magnetic field, E,µ the particle energy and magnetic moment, e1, e2 are orthogonal unit
vectors locally defined at the guiding center such that e1×e2 = eb and thus ϑ is the gyrophase
angle which contains all information of the fast gyromotion [110]. The time derivatives of the
new velocity variables are given by ϑ̇ = Ωs since it defines the gyromotion, µ̇ ≈ 0 as the frequency
ordering ω/Ωs ∼ δ makes µ a proper adiabatic invariant, and lastly

Ė =msv · v̇ + qs
∂ϕ

∂t

∣∣∣∣
x

+ qs (v ·∇)ϕ

=msv · qs
ms

(E + v ×B) + qs
∂ϕ

∂t

∣∣∣∣
x

+ qs (v ·∇)ϕ = qs
∂ϕ

∂t

∣∣∣∣
x

where the last step follows from E = −∇ϕ and it has been made explicit that the potential ϕ
is a function of the particle position x rather than the guiding center position R since ϕ is not
a formal phase-space variable. Consequently the transformed kinetic equation takes the form

∂fs
∂t

+ Ṙ ·∇Rfs + qs
∂ϕ

∂t

∣∣∣∣
x

∂fs
∂E

+Ωs
∂fs
∂ϑ

= Cs(fs). (22)

Note that although µ does not appear explicitly, the distribution function still depends critically
on µ as it distinguishes between trapped and passing particles.

In Equation (22) all the fast time scale dynamics are in the ∂
∂ϑ term, and in Appendix C.1

it is shown using an order of magnitude estimate that this term is unbalanced, making the

20Note that this is in line with the explanation of the basic instability mechanisms discussed in Section 2.1,
where only excursions of the guiding centers is considered and the details of the gyration have been completely
left out.

21Formally such a change of variables should be performed through perturbative Lie transforms, since the
new coordinates are not canonical and therefore do not conserve the original phase-space properties such as
symmetries and conserved quantities [109]. This transformation method involves an asymptotic expansion of
the new coordinates in the small order parameter δ, where the lowest order terms simply correspond to the
unperturbed particle trajectories in absence of the turbulent fluctuations, and the higher order terms ensure that
the magnetic moment is an adiabatic invariant to all orders in δ [110]. These additional terms would result
in O(δ2) corrections to the gyrokinetic equation, since the perturbations in the distribution function and fields
themselves are already O(δ). As the goal of this thesis is linear stability analysis, such corrections can be neglected
and a simple substitution of variables will suffice, although the additional corrections are important for non-linear
simulations which determine the turbulent transport fluxes [6].
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distribution function to leading order isotropic. In Appendix C.2 this leading order distribution
function is shown to be the Maxwellian distribution

FMs = n0s(ψ)

(
ms

2πT0s(ψ, t)

)3/2

exp

(
− msv

2
s

2T0s(ψ, t)

)
(23)

with equilibrium density and temperature profile depending only on ψ as a result that the
plasma isobars are flux surfaces. The equilibrium temperature has a weak time dependence to
allow for temperature equilibration between electrons and ions as in general T0e ̸= T0i, and a
slow energy exchange due to collisions will take place to make the plasma isothermal [90] (a
concrete example of this appears in Appendix G.3.2). This process is however slow and within
the gyrokinetic ordering occurs on a timescale τeq ∼ O(1/δ2ω) [111], such that the equilibrium
contribution can be considered as “frozen” in the gyrokinetic framework.

To next order, the influence of the potential fluctuations ϕ on the distribution function is then
obtained by splitting the distribution in an equilibrium and perturbed part fs = FMs + δfs. In
Appendix C.3 it is shown that that this perturbed distribution can be split as

δfs = −qsϕ
T0s

FMs + gs (24)

where the first part is the so-called adiabatic response which arises due to the tendency of
particles to re-establish equilibrium by quickly redistributing along the field line in an attempt
to cancel the perturbed electric field [67], and the second part is the gyrophase independent
kinetic response which obeys the gyrokinetic equation

∂gs
∂t

+

〈
E ×B

B2

〉

R

·∇RFMs +
〈
Ṙ
〉
R
·∇Rgs + qs

〈
∂ϕ

∂t

∣∣∣∣
x

〉

R

∂FMs

∂E
=
〈
CLs (gs)

〉
R
. (25)

In Equation (25) the gyroaverage operator

⟨· · ·⟩R ≡ 1

2π

˛
· · · dϑ (26)

has been introduced which averages any quantity over the fast gyromotion of the particles while
keeping their guiding centers fixed, thus effectively filtering out any remaining details of the
fast gyration such that the kinetic description has been completely reduced from a 6D to a 5D
phase-space. Conceptually, this reduction in the dimensionality of phase-space effectively means
that the helical orbit of charged particles is reduced to the motion of a charged ring with radius
ρs moving along the gyrocenter22, which is the average position of the particle during a gyration,
see Figure 9. Also introduced in Equation (25) is the linearised collision operator23

CLs (gs) = Cs(gs, FMs) + Cs(FMs, gs)

where the first term describes particles from the perturbed distribution colliding with the back-
ground “sea” of equilibrium particles, and vice versa for the second term, which are respectively
referred to as the “test” and “field” part of the collision operator in literature [88].

22Although sometimes used interchangeably with guiding center, it is a matter of terminology. Formally the
guiding center R and the gyrocenter ⟨R⟩R = ⟨x⟩R are formally different quantities, as R rapidly changes it
direction in the perpendicular plane as the particle gyrates, while ⟨R⟩R is only affected by the slow cross field
drifts.

23The non-linear part of the collision operator, taking into account collisions between particles from the per-
turbed distribution function are hardly ever accounted for in literature, even non-linearly. TheE×B non-linearity
which facilitates interaction between the different modes is the main non-linear feature which determines the heat
fluxes, and a linear collisional operator still captures the essential physics of particle, momentum and energy
conservation while providing sufficient to ensure the dissipation required to for the fluxes to reach a statistically
steady state [86,89].

22



Figure 9: As a result of the gyroaveraging operator Equation (26) and the coordinate transfor-
mation of phase-space Equation (21) and the timescale separation ω,Ωs ∼ δ the details of the
fast gyration is completely removed from the plasma dynamics, which reduces the helical particle
particles orbits to the motion of a charged ring along the gyrocenter particle’s helical trajectory
into the motion of a charged ring along the guiding center. Adapted from [7].

All that remains is to evaluate the gyroaverages. In Appendix D it is shown that the gyrocenter
drift is given by

〈
Ṙ
〉
R
= v∥eb +

eb × ⟨∇ϕ⟩R
B︸ ︷︷ ︸

=⟨ve⟩R

+
eb
Ωs

×
(
v2∥κ+

v2⊥
2
∇ lnB

)

︸ ︷︷ ︸
=vds

(27)

where the first term is simply the unaffected parallel motion along the field line, the second
term is the gyroaveraged E × B velocity vE and the last term is the magnetic drift velocity
vds which consists of a gradient driven part and a curvature driven part where κ = (eb ·∇) eb
is the magnetic curvature vector. Thus indeed as claimed, the guiding center mainly consists of
the motion along the field line superimposed by slow cross field drifts which are O(δ) smaller.

To evaluate the remaining gyroaverages of the electrostatic potential fluctuations, the k∥/k⊥ ≪ 1
spatial scale anisotropy of the perturbations w.r.t. the magnetic field Equation (19) can be used
to separate the slow variation along the field line from the fast variation perpendicular to the
field by means of a WKB approximation [112]

ϕ(x, t) = ϕ̂(x) exp

(
i

{
S(x)

δ
− ωt

})
(28)

where both ϕ̂(x) and S(x) vary on the large equilibrium scale and ϕ has also been Fourier
transformed in time. In Equation (28) the fast variation across the field is contained in the
exponential factor as a result of the ρ/Ln ∼ δ scaling. The gyroaveraging procedure of all
terms involving the potential perturbation in Equation (25) is then fairly straightforward, but
still quite tedious. This step of the derivation is therefore deferred to Appendix C.4 and here
only the important physical consequences are highlighted below. This procedure then reduces
Equation (26) to

∂gs
∂t

+
(
v∥eb + vE + vds

)
·∇Rgs −

〈
CLs (gs)

〉
R
= −i qs

Ts
J0(k⊥ρs)ϕ̂

(
ω − ωT⋆s

)
FMs (29)

where all terms involving gs have been collected on the left-hand side and the gyrocenter drift
Equation (26) has been explicitly substituted. In Equation (29) a perpendicular wavevector is
introduced according to k⊥ ≈ ∇S(x)/δ which allows to interpret the WKB approximation as if
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Equation (28) were a single Fourier mode in a spatial Fourier series of the electrostatic potential.
The wavenumber k⊥ appearing in the zeroth order Bessel function J0 is then simply defined as
its magnitude k⊥ = ∥k⊥∥. This Bessel function reflects the effect that as the particle undergoes
its fast gyration it will sample different phases of the perturbation which is practically “frozen”
in time. If the potential varies over distances much longer than the gyroradius (k⊥ρ≪ 1) then
the effective electric field ⟨E⟩R the charged ring in Figure 9 experiences, will be roughly just its
local value at the centre E(R) (recall that in the electrostatic approximation E = −∇ϕ). If,
however, the potential varies on distances much shorter than the gyroradius (k⊥ρs ≫ 1) than
this phase mixing between positive and negative electric field regions makes that the effective
electric field that acts on the charged ring will be roughly zero. Also introduced in Equation (26)
is the temperature-dependent diamagnetic frequency ω⋆T which is defined by

ωT⋆s =ω⋆s

(
1 + ηs

[
E

Ts
− 3

2

])

ω⋆s =
Ts
qs

(k⊥ × eb) ·∇ψ

B

d lnns
dψ

ηs =
d lnTs
dψ

/d lnns
dψ

. (30)

where ω⋆s is the frequency of the fundamental drift wave due to density gradient in a slab geome-
try showcased in Section 2.1.1 (as proven in Appendix E), ωT⋆s is its straightforward extension to
the case of a temperature gradient, and ηs is the ratio between density and temperature gradient
scale lengths which are defined by24 Ln = ∥−∇n∥−1, LT = ∥−∇T∥−1, such that ηs = Lns/LTs
measures the competition between density- and temperature gradient drive of the instabilities.

In principle the kinetic response gs will have the same spatial scale anisotropy as ϕ, as it is also
a perturbation, so a similar WKB approximation can be made for the spatial part of gs

gs(R, E, µ, t) = ĝs(R, E, µ) exp

(
i

{
S(R)

δ
− ωt

})
. (31)

The remaining derivatives on the right-hand side of Equation (29) can then be evaluated with the
same methods from Appendix C.4. One point of attention, however, is that the right-hand side of
Equation (29) contains the convective vE ·∇Rgs non-linearity, since both ϕ, gs are perturbations.
This results in results in the crossing of the generally different phase factors between gs, ϕ and
creates either rapidly oscillating or near-constant terms. Because of the analogy with the WKB
approximation and a Fourier series made above, this is a manifestation of the multiplication-
convolution property of Fourier transforms. As the goal of this thesis is linear stability analysis
to study how collisions affect the onset instability, the amplitudes of the perturbations are small
during the time period of interest and the convective non-linearity will thus typically be O(δ)
smaller compared with the other terms in Equation (29) and can thus be neglected.

With the gyrokinetic equation subsequently linearised, if the WKB expansion for the perturba-
tions is substituted in Equation (29) all terms except for the collision operator would have the
same rapidly varying phase factor. Were it not for the collision operator, this phase factor could
then be cancelled on both sides of the equation to yield an algebraic equation for the amplitude
coefficients ϕ̂, ĝs only, as shown below

v∥∇∥ĝs − i(ω − ωds)ĝs =− i
qs
Ts
J0ϕ̂

(
ω − ωT⋆s

)
FMs

+exp

(
−i
{
S(R)

δ
− ωt

})〈
Cs

[
ĝs exp

(
i

{
S(R)

δ
− ωt

})]〉

R

(32)

24The minus sign accounts for the peakedness of the profiles in the plasma core such that the gradients are
typically negative.
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where for illustrative purposes the collision operator has been transferred to the right-hand side
and given its private line. In Equation (32) the parallel derivative ∇∥ = eb · ∇R which acts
only on the ĝs and not on the phase factor by means of k⊥ ≈ ∇S/δ, and the magnetic drift
frequency ωds = k⊥ · vds which gives the rate at which the particle orbits precess through
the torus, have been introduced. The complicated term involving the collision operator arises
because ⟨Cs⟩R has not (yet) been WKB expanded like the other terms. If the collision operator

could be written as ⟨Cs⟩R = Ĉs exp(i {S(R)/δ − ωt}), then the phase factor would be cancelled

an a purely algebraic equation in ϕ̂, ĝs, Ĉs remains. Because of the operator property of Cs and
the fact that it has been linearised in gs, such a WKB expansion does not have to be carried
out explicitly but follows from the WKB expansion of gs. Some care in this expansion has to be
taken however, as the kinetic response gs is defined at the guiding center position R, and so is
the gyroaveraging operator, but the collision operator involves derivatives of the distribution at
fixed particle position x. This nuance can be taken care of by expressing the phase factor iS/δ
both in x and R = x− ρs by expanding about the gyroradius [86]

〈
Cs

[
ĝs exp

(
i

{
S(R)

δ
− ωt

})]〉

R

≈
〈
exp

(
i

{
S(x)

δ
− ωt

})
Cs [ĝs exp(−ik⊥ · ρs)]

〉

R

≈ exp

(
i

{
S(R)

δ
− ωt

})
⟨exp(+ik⊥ · ρs)Cs [ĝs exp(−ik⊥ · ρs)]⟩R

(33)

where the exp(−iωt) factor can be taken out of the collision operator and the gyroaveraging
operator by realising that the binary collisions between particles have to occur simultaneously
as particles scatter on the instantaneous and not future/past Coulomb fields, and that the oscil-
lation frequency is fixed a property of the perturbations and therefore gyrophase independent.
The gyroaverage itself still has to be evaluated and depends on the detail of the collision oper-
ator [91, 107]. Finally then, the phase factor of Equation (33) will cancel against its conjugate
in front of the gyroaveraged collision operator in Equation (32), which yields the linearised
gyrokinetic equation (GKE)

v∥∇∥ĝs − i(ω − ωds)ĝs − ⟨exp(ik⊥ · ρs)Cs [ĝs exp(−ik⊥ · ρs)]⟩R = −i qs
Ts
J0ϕ̂

(
ω − ωT⋆s

)
FMs (34)

which describes the dynamics of the plasma under influence of small-amplitude low-frequency
perturbations with elongated structures along the field line and short perpendicular structures
comparable to the gyroradius perpendicular to the magnetic field.

2.4 Quasi-neutrality condition

In order to solve the linearised gyrokinetic equation Equation (34) for the kinetic response gs
the electrostatic potential ϕ has to be known. The electrostatic potential is however determined
by the charge densities in the plasma which are defined as the first velocity moment of the
distribution functions. Consequently for any physically correct description of microturbulence,
the gyrokinetic equation will have to be solved in tandem with Poisson’s equation25

∇2ϕ = −
∑

s qsns
ϵ0

(35)

where the sum is over all plasma species and plasma dielectric effects are neglected. In order
for the plasma to be in equilibrium a macroscopic electric field is not allowed as this would pull
the ions and electrons apart. This leads to the concept of quasi-neutrality, which expresses the

25In the specific case of the electrostatic limit considered in this thesis, it is sufficient to solve Poisson’s equation.
In the more general case when perturbations to the magnetic field are also taken into account, one must also solve
Ampère’s equation as the perturbations in the plasma current will self-consistently determine the magnetic field
perturbations [109].
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tendency of a plasma to distribute its ions and electrons in a way such that over an intermediate
scale the effective charge density vanishes and there is no equilibrium electric field E0. This
requires the electron density to be approximately equal to the total density of all ion species,
weighted by their charge state, i.e. n0e ≈ ∑

s′ Zs′n0s′ where Zs′ = qs′/e is the charge number
of the ions and the sum is only over ion species. This intermediate scale beyond which electric
fields will be shielded is the Debye length [113]

λD =

√
ϵ0T0e

n0ee2
(
1 +

∑
s′ Z

2
s′Ts′0/Te0

)

which under the typical fusion conditions Ti ≈ Te of a simple hydrogen plasma is up to a
numerical factor of unity determined by its electron part λDe =

√
ϵ0T0e/n0ee2 [3].

If a density perturbation now occurs in the plasma this can create a non-vanishing electric field
which is determined by Poisson’s equation Equation (35) by letting ns → n0s + δns

∇2ϕ =
e (δne −

∑
s′ Zs′δns′)

ϵ0

where ϕ contains only the perturbed part and the equilibrium contribution cancels due to quasi-
neutrality. By introducing the dimensionless potential Φ = eϕ/Te0 this can be rewritten in terms
of the Debye length as26

n0ee
2

ϵ0Te0
∇2Φ = λ2De∇2Φ =

δne −
∑

s′ Zs′δns′

n0e
(36)

An order of magnitude estimate of the middle term of Equation (36) gives λ2De∇2Φ ∼ δ ×
(λDek⊥)

2 ∼ δ×(λDe/ρs)
2 which follows from using the WKB form of the potential Equation (28),

considering k⊥ as a constant property of the instability and the scalings Equation (19) together
with the microturbulence property k⊥ρs ∼ O(1). Consequently unless λDe/ρs ∼ δ−1/2 ≫
1 the perturbations cannot cause significant deviations from quasi-neutrality as both density
perturbations on the right-hand side of Equation (36) are of O(δ) according to the scaling
Equation (19). Under the typical reactor conditions of Figure 1a the ratio between Debye length
and gyroradius is O(1) for electrons and O(0.01) for ions, such that the density perturbations
obtained from solving the gyrokinetic equation must satisfy

∑
s qsδns ≈ 0 where the sum is

again over all species.

The density perturbations can be expressed in terms of the distribution function as

δns =

ˆ
fsd

3v −
ˆ
FMsd

3v =

ˆ
δfsd

3v

where the perturbed distribution function is given by Equation (24). The density perturbation
due to the adiabatic response is straightforward to calculate, since all velocity dependence is in
the isotropic Maxwellian FMs such that

δns,ad =

ˆ
−qsϕ
Ts

FMsd
3v = −qsϕ

Ts
n0s.

The density perturbation due to the kinetic response involves another subtlety. By the choice
of new phase-space coordinates gs is formally a function of guiding center position R such that
a velocity integration would give a perturbed guiding center density δn(R). The electrostatic
potential in contrast “lives” in real space and it is the local charge densities in real space

26Formally speaking ∇2Φ ̸= e
Te0

∇2ϕ as the equilibrium electron temperature is not constant. However this
electron temperature varies over the macroscopic length LTe whereas the perturbed potential will vary over the
gyroradius such that the changes in ϕ will be the dominant contribution to the Laplacian.
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which determine the perturbed electric fields, so a particle density δn(x) is required for the
quasi-neutrality condition [67, 111]. Just as with the collision operator, this is remedied by27

expanding the rapidly varying phase factor of the WKB decomposition Equation (31) between
x,R

δns,kin =

ˆ
ĝs(R+ ρs, E, µ) exp

(
i
S(R+ ρs)

δ
− iωt

)
d3v

≈ exp

(
i
S(x)

δ
− iωt

)ˆ
ĝs(R, E, µ) exp(−k⊥ · ρs)v⊥ dv⊥ dv∥ dϑ

=exp

(
i
S(x)

δ
− iωt

)ˆ
ĝs(R, E, µ)J0

(
k⊥v⊥
Ωs

)
2πv⊥ dv⊥ dv∥

where the definition of the Bessel function Equation (C.5) and cylindrical velocity coordinates
d3v → v⊥ dϑ dv⊥ dv∥ have been used, and the velocity dependence of the gyroradius is made
explicit for the remaining integrals. Compiling these results then gives the quasi-neutrality
condition for the perturbed densities

∑

s

ns0
q2s
Ts
ϕ̂(x) =

∑

s

qs

ˆ
ĝs(R, E, µ)J0

(
k⊥v⊥
Ωs

)
d3v (37)

where the WKB decomposition for the potential Equation (28) has been used to cancel the
fast varying phase factor again, and the 2π factor resulting from integrating the rapid phase
factor over ϑ has been reabsorbed into the velocity differential d3v and the implied integration
boundaries.

2.5 Simplified BGK collision operator model

The inclusion of a Fokker-Planck collision operator Equation (11) makes finding solutions to the
kinetic equation Equation (10) nearly impossible. Even when neglecting collisions, the right-
hand side is a non-linear partial differential equation since the sources of the electromagnetic
fields are determined by moments of the distribution function. Meanwhile the collision operator
itself involves both derivatives and integrals of the distribution function through the Rosenbluth
potentials, making the collision operator an integrodifferential equation for the distribution
function [114]. This is highly intractable for doing any analytical theory. The problem is made
even worse in the gyrokinetic framework, as the gyroaverage of the collision operator operator
in Equation (34) introduces additional spatial diffusion terms of the gyrocenters proportional to
(k⊥ρs)2 wich is referred to as a Finite Larmor Radius (FLR) effect [7,86]. Therefore a simplified
collision operator is needed to make any analytical work feasible. Fortunately in the limit of low
β plasmas, the resulting physics is rather insensitive to the model of the collision operator that
is used, provided that the model is physically reasonable [115].

The main role of collisions is to make particles aware that they do not exist in a vacuum but are
embedded in a medium consisting of a background “sea” of many other particles. By exchanging
small amounts of momentum and energy in a conservative way, a particle is slowly integrated into
this collective of other particles eventually leading to equilibration of the distribution function
which becomes stationary. A simplified collision model that describes this equilibration process
is the Bhatnagar-Gross-Krook (BGK) operator [116]

CBGK = − 1

τrel
(f −M [f ]) (38)

27At least up to linear accuracy it is, non-linearly there will be O(δ2) corrections due to the expansion of
new coordinates which give rise to a polarisation charge density and magnetisation current in case of magnetic
fluctuations [109].
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where τrel is the characteristic time scale for relaxation towards the equivalent Maxwellian28

M [f ] = n[f ]

(
m

2πT [f ]

)3/2

exp

(
− m

2T [f ]
(v − q[f ])2

)
(39)

where the density, mean flow velocity29 and temperature functionals are defined as moments of
the distribution function f

n[f ] =

ˆ
f(x,v, t)d3v = n(x, t)

q[f ] =

ˆ
vf(x,v, t)d3v

/
n[f ] = q(x, t)

3

2
T [f ] =

ˆ
m

2
(v − q[f ])2 f(x,v, t)d3v

/
n[f ] =

3

2
T (x, t)

. (40)

In this way, the BGK operator captures the essential physics of particle, momentum and energy
conservation and describes the relaxation towards a steady Maxwellian distribution just like
any other collision operator would [104]. In Appendix F it is shown that in absence of gradi-
ents and electromagnetic fields the BGK collision operator Equation (38) causes any arbitrary
initial distribution function to exponentially relax towards the Maxwellian M [f ] with a rate
given by 1/τrel, which expresses the thermodynamic irreversibility of collisions [117]. There are
however two drawbacks to the BGK collision operator. Firstly it is an empirical model where
the relaxation time τrel is a constant free model parameter, whereas any rigorous derivation of
collision rates result in velocity dependent relaxation rates such as those in Equation (16). If
a velocity dependent relaxation rate would be used instead, then the BGK operator no longer
conserves particles, momentum and energy. A comparative study by Livi & Marsch between
the BGK operator and the full Fokker-Planck operator has, however, shown that when using
the physical collision rates of Equation (16) the density, momentum and temperature are only
non-conserved on a 1% level, making this issue not very severe [118]. Secondly, because the
BGK model is less sensitive to the shape of the distribution than the Fokker-Planck collision
operator, this will results in erroneous velocity moments of the distribution function higher than
the temperature, starting with the heat flux [104, 119]. This means that the BGK operator
cannot be used for transport studies. The same study by Livi & Marsch has also shown that
the errors in higher order moments are smaller using velocity dependent relaxation compared
to constant relaxation rate [118]. As it is not the aim of the thesis to determine transport
coefficients, the BGK model can be thus used as a proxy for the exact collision operator for the
purpose of analytical linear stability analysis, using velocity dependent relaxation rates as done
in the literature [84,85,120–122].

2.5.1 Linearisation of the BGK model

The BGK model is, in principle, valid for any distribution function fs that is arbitrarily far from
equilibrium. For the case of interest it will be applied to a distribution function that is nearly an
isotropic Maxwellian Equation (23) superimposed by small fluctuations given by Equation (24),
so the functionals for density, mean velocity and temperature that determine the equivalent
Maxwellian can be calculated as30

28In the form of Equation (38) the effect of scattering is described by particles being “absorbed” from the
distribution function f and then being “re-emitted” at a Maxwellian distribution with the same properties as f ,
such that scattering will establish a local thermodynamic equilibrium situation.

29This represents the velocity with which each plasma species as a collective would move if it were described a
as a fluid rather than statistically by their distribution function. Typically the symbol u is used for this, but to
prevent confusion with Appendices B and H where u denotes the relative velocity for a collision pair the symbol
q is used here instead to honour the notation of the original BGK article [116].

30In these equations gs is still a guiding center distribution expressed in R which for the evaluation of the
integrals have to be formally transformed to x, just as was done in Section 2.4.
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n[f ] =n0s

(
1− qsϕ

T0s

)
+

ˆ
gs(v)d

3v

q[f ] =

´
vgsd

3v

n[f ]

3

2
T [f ] =

3
2T0s

(
1− qsϕ

T0s

)
n0s +

m
2

´
v2gsd

3v

n[f ]
− m

2
q[f ] · q[f ]

where (v − q)2 has been expanded in the temperature functional and the velocity moments of
the Maxwellian

´
FMsd

3v = n0s ,
´
vFMsd

3v = 0,
´
v2FMs(v)d

3v = 3n0sT0s/ms have been
used. For small perturbations of the distribution δf/FMs ∼ δ it is expected that the moments
of the distribution will are also only slightly perturbed. Indeed, the density can be written as
n[f ] = n0s(1− δn[f ]/n0s) where δn/n0s ∼ δ, which invites a similar expression for the tempera-
ture T [f ] = T0s (1 + δT [f ]/T0s) where δT/T0s ∼ δ. The same cannot be done for q[f ] as there is
no equilibrium flow. However, for the distribution to be only slightly perturbed from Maxwellian,
the mean flow should be small compared to the RMS velocity such that q[f ]/vRMS ∼ δ as oth-
erwise the perturbed distribution will be a strongly shifted Maxwellian which no longer satisfies
δf/FMs ∼ δ. Consequently the temperature and flow velocity functionals can be appropriately
linearised by expanding 1/n[f ] as a harmonic series, and neglecting all O(δ2) contributions. This
procedure leads to

δn[f ]

n0s
=− qsϕ

T0s
+

´
gsd

3v

n0s
= −qsϕ

T0s
+

´
gsd

3v´
FMsd3v

q[f ]

vRMS
≈

´
vgsd

3v

n0s

√´
v2FMsd3v/n0s

=

´
vgsd

3v√´
FMsd3v

´
FMsv2d3v

δT [f ]

T0s
≈− qsϕ

T0s
+
m
´
v2gsd

3v

3n0sT0s
− δns[f ]

n0
=

´
mv2

2 gsd
3v´

mv2

2 FMsd3v
−
´
gsd

3v´
FMsd3v

where in the second step the equilibrium parameters are rewritten as moments of the Maxwellian
to be symmetric with the similar integral over gs. Note that for the temperature perturbation
δT [f ], two O(δ) appear with opposite signs such that near cancellation occurs. In fact in the
low β limit the temperature perturbation can be safely be taken as δT/T0s → 0 [115]. The only
way to consistently make the perturbation in the temperature functional vanish is if all integrals
involving the kinetic response vanish from the other functionals as well31. Consequently the
linearised equivalent Maxwellian M [f ] becomes

M [f ] ≈ n0s

(
1− qsϕ

T0s

)(
m

2πT0s

)3/2

exp

(
−mv

2

2T0s

)
= FMs

(
1− qsϕ

T0s

)

that is the actual Maxwellian with a corrected density due to adiabatic response, which is
exactly what one would expect for the local thermodynamic equilibrium that M [f ] represents.
The linearised BGK model then trivially follows as

CBGK ≈ 1

τrel
gs (41)

31To see why the kinetic response can be written as gs = δnkin(x)G(v) in analogy with the Maxwellian
FMs = n0s(x)F (v), where the densities satisfy the scaling δnkin/n0s ∼ δ such that the velocity dependent parts
must satisfy G(v)/F (v) ∼ O(1) such that the perturbation in the distribution remains gs/FMs ∼ δ. Then
the vanishing of δT/T0s for arbitrary velocity dependent part of the kinetic response G(v) is only possible if
δnkin/n0s → 0.
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where gs remains the gyrocenter distribution evaluated at R, which matters momentarily when
the gyroaverage of the complete BGK model is determined. In what follows rather than a
relaxation time τrel a collision rate ν = 1/τrel will be used such that the BGK model takes on a
form thats similar to Equation (14) for the actual Fokker-Planck collision operator in terms of
collision frequencies.

2.5.2 Extension to interspecies collisions and gyroaveraging

The BGK operator as high-lighted only models the role of a self-collisions for each species
(electrons-electron, ions-ions) but in a plasma there will also interspecies collisions between the
electrons and ions. As the collision operator is additive due to the binary nature of the collision
operator, the BGK model can be straightforwardly extended to include interspecies collisions
for each species s as [117,123]

Cs,BGK = Css,BGK + Css̃,BGK (s̃ ̸= s) (42)

where in general Css′,BGK is given by

Css′,BGK = −νss′ (fs −Mss′ [fs, fs′ ]) (43)

where νss′ is the collision rate and the equivalent Maxwellian has become

Mss′ [fs, fs′ ] = nss′ [fs, fs′ ]

(
ms

2πTss′ [fs, fs′ ]

)3/2

exp

(
− ms

2Tss′ [fs, fs′ ]
(vs − qss′[fs, fs′])

)
. (44)

Self-collisions are then described by the case s′ = s for which the double species label becomes
redundant and Css,BGK is given by Equation (38) and the equivalent Maxwellian Mss reduces
to Equation (23). For the interspecies case Mss′ no longer describes a local thermal equilibrium
of the species s itself, but rather it describes a local thermodynamic equilibrium distribution of
only the subset of particles that have scattered with the “alien” species s′ [123]. Because these
scattered particles have exchanged energy and momentum with the particles from this “alien”
species s′ their statistical properties (i.e. moments of their distribution function) will now also
contain information about the distribution f ′s, and consequently the velocity moments of the
scattered particles will be in some “hybrid” state between the moments of fs and fs′ .

The main problem with the interspecies BGK operator is the determination of these “hybrid”
velocity moments since the extended BGK model of Equation (42) is no longer conservative for
each species to model the effect of momentum and energy exchanges between the two species,
but of course the combined momentum and energy of the two species has to be conserved since
the collisions are elastic. The determination of the “hybrid” velocity moments is rather tedious
and therefore deferred to Appendix G.1. This process involves postulating32 that the “hybrid”
moments can be decomposed into a linear combination of the known velocity moments of both
species and proceeding to fit the expansion parameters to conservation of total energy/momen-
tum and a relaxation problem expressing the tendency of the exchanges to over time establish a
common equilibrium between the two species [124]. This exercise leaves some of the expansion
parameters undetermined, but is generally valid for any arbitrary exchange problem as only
basic physical laws for elastic collisions have been enforced [117]. To determine the remaining
parameters it has been suggested by one of the originl authors to fit the BGK model to the

32This postulate can be justified based on the expressions fact that momentum exchange is linear process in
the particle velocities and energy exchange is a quadratic process in the particle velocities, which can be split into
a deterministic part given by the kinetic energy carried by the mean flow velocity and a thermal part related to
the random motion of individual particles [123]. By exchanging momentum/energy (interspecies collisions) and
reshuffling energy between its thermal and deterministic components (self-collisions) all possible elastic collision
processes are then accounted for.
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actual application of interest [123]. This is done in Appendix G.2 where the resulting momen-
tum and energy exchange between electrons and ions from the BGK model is first fitted to the
net exchange of energy and momentum from Coulomb collisions [3]. Lastly in Appendix G.3 all
velocity moments are then linearised with the goal of linear stability analysis in mind, and the
remaining BGK model is then expanded around a temperature ratio τ = Ti/Te = 1 to reflect
the typical fusion reactor conditions of Figure 1b.

After a substantial effort the linearised BGK model for interspecies collisions for electrons and
ions is then found to be

Cei,BGK = −νeige Cie,BGK = −νiegi

where the collision frequencies νei, νie correspond to the free model parameters νss′ , which is a
complete mirror of Equation (41) for the self-collisions and reflects the intuitive belief that the
interspecies collisions should add to the relaxation of the kinetic response as they tend to steer
the system to a combined equilibrium. This then gives the full BGK operator as will be used in
Chapter 3 to analytically account for collisions as

Cs,BGK ≈ −νssgs − νss′gs = −νs,effgs ≡ Cs,BGK [gs]. (45)

Rather what is needed in the linearised GKE Equation (34) is not Equation (45) but its gy-
roaverage, which is straightforward to obtain as the collision operator no longer contains any
derivatives that should be evaluated at constant particle position. The kinetic response gs
should however still be expanded from gyrocenter to particle position according to the recipe of
Equation (33) resulting in

⟨exp(ik⊥ · ρs)Cs,BGK [ĝs exp(−ik⊥ · ρs)]⟩R = ⟨−νs,eff ĝs⟩R = −νs,eff ĝs (46)

since the kinetic response is by definition independent of the gyrophase, and the exponential
phase factor has been omitted.
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3 Extended theory

The background theoretical framework of Chapter 2 will be employed to give an analytical
description of TEMs in the presence of non-negligible collisionality. The main goal of this chapter
will be to find the growth rate of TEMs and assess what influence the collision frequency has on
it. As all plasma perturbations are taking to have the form of a normal-mode ansatz δA(x, t) =
δA(x) exp(−iωt), by imposing that the frequency can be complex ω = ωR + iγ it follows that
the imaginary part of the frequency results in exponential growth of the perturbations, where γ
is its growth rate, whereas the real part ωR will give the regular oscillation frequency [125].

First as a preliminary, in Section 3.1 the relevant parameter regime for TEMs is introduced
and applied to the GKE Equation (34) to obtain solutions for the kinetic responses of ions and
electrons, and the relevant concepts of bounce average and pitch-angle velocity coordinates are
introduced which allow to distinguish trapped- from passing particles. With these preliminaries
cleared, the paradigm and rationale for analysing the TEM perturbatively is introduced in Sec-
tion 3.2, which is subsequently carried out in the remainder of this chapter. First in Section 3.3
the lowest solution for the plasma perturbation to the quasi-neutrality condition is calculated
retaining all kinetic ion effects, and in Section 3.4 the perturbative response of trapped elec-
trons to these plasma perturbations is considered. This is first evaluated in Section 3.4.1 for the
limits of extremely weak and strong collisionality that are commonly considered in literature to
simplify the trapped electron response by only accounting for the dominant dynamics. Then
in Section 3.4.2 the perturbative approach is extended to arbitrary collisionality regimes by
taking into account the proper velocity dependence of the involved frequencies, and it is shown
that the obtained growth rates from this new approach match the common literature results by
taking the appropriate limits. This perturbative approach can only be carried out completely
analytically up to requiring the details of the magnetic geometry determining the shape of the
magnetic wells and the magnetic drift of the trapped particles. The influence of differences in the
magnetic geometry is explored in Section 3.5 by numerically solving for the perturbative growth
rate of TEMs using the realistic magnetic fields of the DIII-D tokamak and the HSX/W7-X
stellarators also considered for the simulations in Chapter 4. It will be shown that scaling laws
for the growth rate with collision frequency can be determined from this numerical integration.
At high collisionality these scaling laws show a universal damping behaviour in all geometries.
At low collisionality differences between the geometries do emerge, where the collisions are found
to exert a destabilising influence at low wavenumbers in the stellarator geometries, but unaffect
the growth rate at in the tokamak. The exponents from these scaling laws are in good agreement
with the considerations from the new method of Section 3.4.2.

3.1 Characteristion of TEMs in the gyrokinetic framework

3.1.1 TEM parameter regime

The gyrokinetic equation Equation (34) can describe any electrostatic perturbation of the
plasma. As the influence of collisionality on specifically TEMs is of interest, it is sensible to look
for solutions of Equation (34) that are in the appropriate parameter regime for TEMs. First
the majority of electrostatic instabilities have a frequency and parallel wavenumber that satisfy
vT i ≪ ω

k∥
≪ vTe such that Landau damping with either ions or electrons is avoided [93, 126].

This condition is immediately relevant for trapping as the typical bounce time of a trapped
particle is given by [122]

τb,s =

˛
dl∣∣v∥
∣∣ ∼

1

vTs

˛
dl ∼

L∥
vTs

where the integration is over the full trapped particle orbit between the two bounce points,
and L∥ = 1/

∥∥∇∥ lnB
∥∥ is the characteristic length of variations along the magnetic field. For
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passing particles the transit time τt,s is of importance, which has a similar definition but with
the integration over the connection length between regions of opposite magnetic curvature33. As
passing particles have considerably larger parallel velocities, the transit time is typically much
shorter than the bounce time. For tokamaks τt,s/τt,b ∼

√
a/R where a,R are the minor and

major radius of the torus [75, 128]. According to the scaling Equation (19) microinstabilities
with perpendicular wavelengths comparable to the gyroradius k⊥ρs ∼ O(1) will have parallel
wavelengths comparable to the macroscopic length of the system k∥L∥ ∼ O(1) such that the
frequency ordering leads to

k∥vT i ∼ ωTbi ≪ ωTti ≪ ω ≪ ωTbe ≪ ωTte ∼ k∥vTe (47)

where the bounce- and transit time respectively of a typical thermal particle have been intro-
duced through ωbs,ts = 2π/τbs,ts.

As a result of the frequency ordering Equation (47) trapped ion effects will be negligible as
during a full period of the perturbations the ions will hardly move along the field at all, which
makes passing and trapped ions virtually indistinguishable. By contrast trapped electrons will
bounce many times during a period of the perturbation, making the instabilities sensitive to the
fraction of trapped electrons.

There will be an especially strong coupling between the perturbations and the trapped electrons
if their spatial structure has significant overlap with the trapped electron orbit [121,129], which
then identifies the TEM. This coupling requirement means that TEM cannot occur on the
electron gyroradius scales as the there would be too little overlap with the trapped electron
orbits as a result of the orbit precession from the non-vanishing magnetic drifts (see Figure 4),
which places the relevant length scales34 at k⊥ρi ∼ O(1).

3.1.2 Approximate solution to the GKE

The frequency ordering Equation (47) along with ∇∥ ∼ k∥ and the scalings Equation (19) means
that the GKE takes a different form for ions and electrons. For ions the v∥∇∥ĝi term will be
small compared with the other terms of Equation (34) such that it can be neglected. By using
the simplified BGK operator Equation (45) to take into account collisions in an analytically
tractable way, the GKE becomes a simple algebraic equation which is easily solved for the
kinetic ion response

ĝi ≈
e

Ti

(
ω − ωT⋆i

)
FMi

ω − ωdi + iνi,tot
J0(k⊥ρi)ϕ̂ (48)

where the ion collision frequencies have been compressed as νtot,i = νii + νie.

Meanwhile for the electrons the same v∥∇∥ĝe term will be much larger than the other terms of
Equation (34) such that the GKE is unbalanced. This can be resolved by expanding the electron
kinetic response ĝe ≈ ĝe,0 + ĝe,1 with ĝe,1/ĝe,0 ≪ 1 such that to leading order ∇∥ĝe,0 = 0 and to
next order

v∥∇∥ĝe,1 − i (ω − ωde) ĝe,0 + νe,totĝe,0 =
ie

Te

(
ω − ωT⋆e

)
FMeϕ̂J0(k⊥ρe). (49)

33Formally this is defined as the distance along the field line between regions of “good” and “bad” curvature
[92,127], which will be explained in Section 4.2. For tokamaks this ise an integration over a single poloidal turn [69],
but for stellarators this will be an integration over a single field period of the discrete toroidal symmetry [43], as
after that the magnetic field strength B(l) will repeat itself and so will the parallel velocity v(l).

34In the specific case of a tokamak, the frequency ordering Equation (47) together with ω ∼ ω⋆e leads to
the requirement that the poloidal wavenumber must satisfy kθρe ≪ √

ϵ ≪ 1 [130] and kθρbi ≫ 1 [131] where
ρbi = qρi/

√
ϵ is the width of a banana orbit. Both scalings indicate that k⊥ρi ∼ O(1).
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the GKE is balanced again, where the BGK operator has also been used for the electrons. The
remaining parallel dynamics can be dealt with by taking the bounce average of Equation (49),
which is defined by

· · · =

¸
(· · · ) dl

|v∥|¸
dl

|v∥|
(50)

and is a essentially a time average measured along the particle orbit as it follows the field line.
For passing particles this means averaging over the transit time, and the averaging of the v∥∇∥
term is straightforward as the velocity along the field line does not change direction such that

˛
v∥∇∥ĝ

p
e,1

dl∣∣v∥
∣∣ = σ

˛
∇∥ĝ

p
e,1 = 0

where σ = v∥/
∣∣v∥
∣∣ = ±1 has been introduced which is constant along the full trajectory. Because

the passing particles all return to the same position with the same velocity after traversing the
field line, their distribution ĝpe,1 is identical at the end points of integration which makes the
integral vanish. For trapped particles, σ will change its sign during its bounce orbit as they
traverse once the field line “forwards” in between the bounce points and once “backwards” to
complete a full bounce orbit. Thus if l1,2 denote the bounce points then the path of a trapped
particle will be l1 → l2 → l1, where in the first part v∥ > 0 and for the second part v∥ < 0,
as illustrated in Figure 10 where this is contrasted against the situation for a passing particle
discussed above.
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Figure 10: Situation sketch for the parallel velocity of a passing- (purple) and trapped particle
(orange) used for the bounce averaging procedure of the parallel dyanmics term v∥∇∥ĝe in the
GKE. The poloidal angle θ is used as a surrogate for the arc length l, based on their connection
through Equation (M.3).
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Consequently the field line integral can be split as

˛
v∥∇∥ĝ

tr
e,1

dl∣∣v∥
∣∣ =
ˆ l2

l1

∇∥ĝ
tr
e,1

∣∣
σ=+1

dl −
ˆ l1

l2

∇∥ĝ
tr
e,1

∣∣
σ=−1

dl

=
[
ĝtre (l2, σ = +1)− ĝtre (l2, σ = −1)

]
+
[
ĝtre (l1, σ = −1)− ĝtre (l1, σ = +1)

]

where it has been accounted for that the sign of σ affects both in which region of velocity space
the kinetic response ĝtre,1 is evaluated and what the sign of the parallel gradient will be35 and all
terms involving the same bounce points have been been grouped together. Since the influx and
outflux of trapped particles at each bounce point must balance since otherwise trapped particles
could “leak out” from their magnetic well, both terms must vanish individually such that also
for trapped particles the bounce average of the parallel dynamics will vanish. Consequently by
bounce averaging Equation (49) also the electron GKE becomes a simple algebraic equation for
the kinetic electron response

ĝe ≈ ĝe,0 =
−e
Te

(
ω − ωT⋆e

)
FMe

ω − ωde + iνe,tot
J0(k⊥ρe)ϕ̂ (51)

where a quick inventorisation of variables shows that only J0, ϕ̂, ωde vary along the orbit of
a particle. Although Equation (51) is valid for both passing and trapped electrons, it will
typically vanish for passing electrons as they sample the full perturbation along the line such that

J0(k⊥ρe)ϕ̂ ≈ 0. Furthermore, as TEMs which are characterised by spatial scales of k⊥ρi ∼ O(1)
the Bessel function may be approximated as J0(k⊥ρe) ≈ 1 because of the large mass difference
between electrons and ions.

3.1.3 Pitch-angle velocity coordinates

To obtain a consistent solution to the GKE, the approximate results for the kinetic responses
Equations (48) and (51) will have to be substituted in the quasi-neutrality condition Equa-
tion (37). As Equation (51) vanishes for passing particles, only the region of velocity space
corresponding to trapped particles will contribute to the integral over ĝe. The distinction be-
tween passing and trapped particles is best made by transforming to pitch-angle coordinates
(v, λ, σ) defined by

v =
√
v2∥ + v2⊥ v∥ = σ

√
v2 − v2⊥ = σv

√
1− λB

λ =
µ

E
=

v2⊥
v2B

v2⊥ = v2 − v2∥ = v2λB

and σ = v∥/
∣∣v∥
∣∣. Using these new coordinates the velocity differential of cylindrical velocity

coordinates d3v = dϑ /2 dv⊥2 dv∥ is transformed with the Jacobian

det J
v∥,v

2
⊥

v,λ = det

[
σ
√
1− λB −σ vB

2
√
1−λB

2vλB v2B

]
=

σv2B√
1− λB

such that d3v → ∑
σ=±1

v2B
2
√
1−λB dv dλ dϑ. The domain of velocity space v∥ ∈ (−∞,∞), v⊥ ∈

(0,∞), ϑ ∈ [0, 2π) is then mapped to36 v ∈ [0,∞), λ ∈ [0, 1/B), ϑ ∈ [0, 2π) with σ = ±1
accounting for the different directions of v∥.

35This is easiest to see using the gradient approximation ∇∥f ≈ ∆f
∆l

, where for σ = +1 the increment along
the field line will be ∆l > 0 but for σ = −1 the increment along the field line will be ∆l < 0. Consequently
in the limit of |∆l| → 0 when the gradient approximation becomes exact, it follows that ∇∥f

∣∣
σ=+1

= ∂f
∂l

but

∇∥f
∣∣
σ=−1

= − ∂f
∂l
.

36In practice the integral over the gyrophase ϑ will just give a 2π factor since the kinetic responses ĝs are
constructed to be gyrophase independent.
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The distinction between passing and trapped particles is then mainly characterised by λ with
small values corresponding to passing particles (v2⊥/v

2
∥ ≪ 1) and large values corresponding

to trapped particles (µB ∼ E). However the introduction of finite collisionality results in
another distinction between trapped and passed particles in velocity space. If a particle would
be detrapped as a result of the accumulated effect of small changes to its pitch angle v∥/v⊥
before it completes many bounce orbits, then it cannot effectively be considered as trapped
since it will manage to escape its magnetic well within the period of the perturbation and thus
respond to the perturbations as if it were a passing particle as a result of the frequency ordering
ω/ωTbe ≪ 1 [69, 83]. Therefore, as a practical limit a particle can only be considered as trapped
if νs/ωbs ≤ 1 such that on average it will experience less than a single effective 90° collision per
bounce orbit [121]. In term of pitch angle coordinates the bounce time is given by

τb =

˛
dl∣∣v∥
∣∣ =

1

v

˛
dl√

1− λB
(52)

where v is constant along the field line because of energy conservation. Consequently the bounce
frequency ωb ∼ 1/τb ∝ v increases linearly with particle speed while the collision frequencies
Equation (16) all decrease with speed, such that the requirement37 νs/ωbs ≤ 1 will set a lower
limit to the speeds below which trapped particles can no longer be considered as trapped.

Finally, also because of energy conservation, the bounce averaging Equation (50) simplifies
considerably when using pitch-angle coordinates

· · · =

¸
(· · · ) dl

|v∥|¸
dl

|v∥|
=

¸
(· · · ) dl√

1−λB(l)¸
dl√

1−λB(l)

(53)

such that any quantity that depends on the distance along the field will be transformed to a
quantity that depends on the pitch angle λ instead.

3.2 Perturbative approach to TEMs

If the approximate solutions for the ion and electron kinetic responses Equations (48) and (51)
valid in the TEM regime are substituted in the quasi-neutrality equation condition Equation (37)
it results in

(1 + τ)ϕ̂ ≈
ˆ

ω − ωT⋆i
ω − ωdi + iνtot,i

FMi

n0
J0(k⊥ρi)

2ϕ̂d3vi + τ

ˆ
ω − ωT⋆e

ω − ωde + iνtot,e

FMe

n0
ϕ̂d3ve (54)

where quasi-neutrality of the equilibrium ni0 ≈ ne0 = n0 and for the electrons J0(k⊥ρe) ≈
1 have been used, common prefactors have been cancelled, and the temperature ratio τ =
Ti0/Te0 is introduced. Equation (54) takes the form of a dispersion relation D(ω,k⊥, ϕ̂) = 0
that determines the allowed mode frequencies for a given spatial structure of the electrostatic
perturbation38.

The main difficulty in analytically solving Equation (54) is that the dispersion equation is non-
local as a result of non-uniform magnetic field, which is a general property of instabilities in
toroidal geometry [132]. In the specific case of TEMs this is due to populations of trapped
electrons, which as a result of the frequency ordering Equation (47) are responsible for “commu-
nicating” information about the perturbation along the field line, while on the timescale of the

37The 90° scattering frequency introduced in Equation (17) is that of a typical particle with thermal speed. As
the effort to decorrelate the initial momentum through small angle collisions will increase with the magnitude of
the velocity, it logically follows that by letting vT → v in Equation (16) one obtains the 90° scattering frequency
for arbitrary particle speed.

38Recall that by using the WKB approximation Equation (28) for the electrostatic potential ϕ̂ account for the
variation along the field lines and k⊥ serves as a proxy for the mode structure perpendicular to the field lines
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oscillation period the ions remain stationary. Especially in stellarators where multiple magnetic
wells of different depths exist along the field line, this complicates the analysis as these wells will
be connected by the less deeply trapped particles that can escape the more shallow wells [93].

However, as the bounce average ϕ̂ will vanish for passing particles which sample the full pertur-
bation along the field line, the integration over electron velocity space effectively only takes place
over the trapped particle region. By means of a hand-waving argument this can be accounted
for by integrating over all velocity space and correcting by the fraction of trapped particles´
tr d

3ve ∼ ft
´
d3ve [36] and consequently by symmetry of the kinetic responses the two terms

on the right-hand side of Equation (54) scale as
´
d3ve/

´
d3vi ∼ ft. In tokamaks for example,

the trapped particle fraction can be calculated analytically by assuming concentric flux surfaces
as ft ≈

√
2r/R where r is the distance from the magnetic axis and R the major radius [133].

The trapped particle fraction can thus be at most ft ≈
√
2a/R where a is the minor radius,

which is typically small and therefore the right-hand side of Equation (54) will be dominated
by the ion response.

This would facilitate a perturbative treatment of the trapped electron term, where to lowest
order the allowed mode is determined by the kinetic ions and adiabatic electrons, and to next
order the interaction of the trapped electrons with the mode will result in a frequency shift δω.
Mathematically this perturbative approach boils down to a Taylor expansion of the dispersion
relation D(ω,k⊥, ϕ̂) = D0(ω,k⊥, ϕ̂) +D1(ω,k⊥, ϕ̂) about a trapped particle fraction of zero

D0(ω0, ϕ̂,k⊥) = 0
∂D0(ω, ϕ̂,k⊥)

∂ω

∣∣∣∣∣
ω0

δω = D1(ω0, ϕ̂,k⊥) (55)

where the expansion is made around the frequency shift δω which is directly proportional to
the trapped particle fraction, ω0 is the lowest order mode frequency and D1 corresponds to
the trapped electron term in Equation (54). This is the common approach in literature to
treat TEMs gyrokinetically [83, 134], but often the leading order part is replaced by a cold-ion
fluid model instead [84, 85, 120, 121, 126]. What all these approaches have in common is that
they treat the trapped electron response only in extreme limits of weak/strong collisionality,
which will be expanded upon in Section 3.4.2 by considering arbitrary collisionality. For the
perturbative approach to be a valid treatment, it will have to be verified in retrospect that the
trapped electrons dynamics are not dominant, i.e. the resulting frequency shift should remain
small δω/ω0 ≪ 1.

For the collision frequency, only the effect of interspecies collisions will be accounted for since the
electron momentum can be scattered considerably by the transfer of a small fraction of the ion
momentum because of the mass difference leading to strong (de)trapping. Meanwhile collisions
among electrons would result in equal exchanges of momentum and as a consequence collisions
between trapped/passing particles can swap their nature leading to no effective change in the
trapped particle population. Therefore the tot subscript will be omitted for the remainder of
this calculation.

3.3 Solution to the leading order dispersion relation

The leading order dispersion relation is obtained from Equation (54) by only retaining the
adiabatic electron response, resulting in

D0(ω,k⊥, ϕ̂) =

[
1 + τ −

ˆ
ω − ωT⋆i

ω − ωdi + iνi

FMi

n0
J0(k⊥ρi)

2d3vi

]
ϕ̂

where the kinetic ion response is brought to the other side and the electrostatic potential am-
plitude ϕ̂ is taken out of the integral since it only depends on the distance along the field line.
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Consequently this means that the lowest order solution determined by D0(ω0, ϕ̂,k⊥) = 0 either
has the trivial root ϕ̂ = 0 corresponding to no perturbations at all or a mode frequency ω0

determined by the perpendicular mode structure through k⊥ from the vanishing of the terms in
square brackets. The integral over ion velocity can be simplified by using the order of magnitude
estimate

ωdi
ω

∼ k⊥δvT i
ω

∼
k∥vT i
ω

∼ ωti
ω

≪ 1

which follows from ωdi = k⊥ · vds, Equation (27) for the drift velocity, the gyrokinetic ordering
Equation (19) and the TEM frequency regime Equation (47). Furthermore, for the collision
frequency a similar estimate for a typical thermal particle gives

νie(vT i)

ω
=
νie(vT i)

νei(vTe)

νei(vTe)

ωTbe

ωTbe
ωTbi

ωTbi
ω

≤
√
me

mi
τ−3/2ω

T
bi

ω
≪ 1

which follows from the trapping requirement for thermal particles νei(vTe)/ω
T
be ≤ 1, the pa-

rameter dependence of the collision frequencies Equations (17) and (18), considering a trapped
ion and electron with a similar pitch-angle λ such that ωTbe/ω

T
bi ∼ vTe/vT i and the TEM fre-

quency regime Equation (47) together with τ ≈ 1 for typical reactor conditions. Therefore the
frequency denominator in the integrand can be safely expanded, such that the leading order
frequency solution is determined by

1 + τ ≈
ˆ (

1− ωT⋆i
ω

)[
1 +

ωdi
ω

− i
νie

ω

](
mi

2πTi0

)3/2

exp

(
−miv

2
i

2Ti0

)
J0

(
k⊥
v⊥,i
Ωi

)2

d3vi (56)

where the gyroradius is written out explicitly as a reminder of its velocity dependence for the
integration, and Equation (23) has been substituted for the Maxwellian FMi. A final simplifica-
tion concerns the magnetic drift velocity vdi, which is determined by both the gradient in the
magnetic field strength ∇ lnB and the curvature vector κ. The curvature vector can be written
in terms of the plasma parameters as [46]

κ =eb ·∇eb = −eb × (∇× eb) =
µ0∇p

B2
+

∇⊥B
B

(57)

by using Ampère’s law (∇×B = µ0J) and the MHD force balance Equation (2), and where the
perpendicular gradient is defined by ∇⊥ = ∇− (eb ·∇) eb. Aside from the gradient operator,
the first term is essentially the normalised plasma pressure β which is at most a few percent due
to macroscopic stability constraints [43], and will therefore be small. Physically this means that
as a result of the relatively low charge particle density in the plasma compared to the current
density in the external coils, the diamagnetic effect of the plasma is sufficiently weak that it does
not significantly affect the magnetic geometry. Therefore the plasma medium has approximately
the magnetic permeability of vacuum as far as the strong external magnetic field is considered,
and within this “vacuum plasma” approximation, the diamagnetic response of the plasma can
be neglected such that the curvature vector can be approximated as κ ≈ ∇⊥ lnB. Consequently
the magnetic drift frequency will be given by

ωdi ≈ k⊥ ·
(
eb
Ωi

×∇⊥ lnB

)[
v2⊥
2

+ v2∥

]
≡ ω̂di

[
v2⊥
2v2T i

+
v2∥
v2T i

]
(58)

where for notational convenience a characteristic drift frequency ω̂di normalised to the thermal
velocity has been introduced.

For calculating the ion velocity integral it is most convenient to adopt cylindrical velocity coor-
dinates d3v → dϑ v⊥ dv⊥ dv∥ as this best accounts for the dependence on the Bessel function and
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drift frequency on the perpendicular/parallel velocity. Finally for the collision frequency, the
deflection frequency νieD Equation (18) will be used which determines the remaining velocity de-
pendence in the ion integral39. In Appendix I it is shown by using velocity coordinates normalised

to the thermal speed, explicitly expanding each term in the product
(
1− ωT⋆i

ω

) [
1 + ωdi

ω − iν
ie

ω

]

that the dispersion relation becomes

1 + τ =
ω − ω⋆i
ω

(
S1(k⊥ρT i) +

ω̂di
ω
S2(k⊥ρT i)− i

ν̃ie

ω
S3(k⊥ρT i)

)

−ω⋆i
ω
ηi

(
S4(k⊥ρT i) +

ω̂di
ω
S5(k⊥ρT i)− i

ν̃ie

ω
S6(k⊥ρT i)

) (59)

where ν̃ie is the ion-electron collision frequency at thermal speed (defined similarly as ω̂di in
Equation (58)) and S{1,6} denote the result of each separate velocity integral and are given by

S1(x) = Γ0

(
x2

2

)
S4(x) =

x2

2

(
Γ1

(
x2

2

)
− Γ0

(
x2

2

))

S2(x) =
x2

4
Γ1

(
x2

2

)
+

(
1− x2

4

)
Γ0

(
x2

2

)
S5(x) =

(
1− x2

2

)2

Γ0

(
x2

2

)
− x2

2

(
x2

2
− 3

2

)
Γ1

(
x2

2

)

S3(x) = 2× 2F2

[
1/2 1/2
1 3/2

;−x2
]

S6(x) = Γ0

(
x2

2

)
− 3× 2F2

[
1/2 1/2
1 3/2

;−x2
]

where in literature it is custom to define the functions Γn(ζ) = In(ζ) exp(−ζ) with In the
nth order modified Bessel function, and pFq denotes the more exotic generalised hypergeo-
metric function of which e.g. the exponential and Bessel functions are special limiting cases

ex = 0F0

[
;x
]
, J0(x) = 0F1

[
1
;−x2/4

]
[135]. These integrals are plotted in Figure 11, which

shows that they are nicely behaved, typically peaking at zero argument (except for S4) and
asymptotically decaying to zero as k⊥ρ tends to infinity which reflects the limiting behaviour of
the Bessel function in the original velocity integral.

By using quasi-neutrality the ion diamagnetic frequency can be rewritten as ω⋆i = −τω⋆e which
will make Equation (59) more symmetric in terms of signs and temperature ratio

1 + τ =
(
1 + τ

ω⋆e
ω

)(
S1(k⊥ρT i) +

ω̂di
ω
S2(k⊥ρT i)− i

ν̃ie

ω
S3(k⊥ρT i)

)

+τ
ω⋆e
ω
ηi

(
S4(k⊥ρT i) +

ω̂di
ω
S5(k⊥ρT i)− i

ν̃ie

ω
S6(k⊥ρT i)

)

which is a quadratic equation in the mode frequency ω, whose roots are straightforwardly ob-
tained by multiplying both sides by (ω/ω⋆e)

2 as

ω

ω⋆e
=
τ (S1 + ηiS4) +

ω̂di
ω⋆e

S2 − i ν̃
ie

ω⋆e
S3

2 (1 + τ − S1)

±

√[
τ (S1 + ηiS4) +

ω̂di
ω⋆e

S2 − i ν̃
ie

ω⋆e
S3

]2

2 (1 + τ − S1)

√√√√√√1 +
4(1 + τ − S1)τ

(
ω̂di
ω⋆e

[S2 + ηiS5]− i ν̃
ie

ω⋆e
[S3 + ηiS6]

)

[
τ (S1 + ηiS4) +

ω̂di
ω⋆e

S2 − i ν̃
ie

ω⋆e
S3

]2

39The velocity dependence of the three fundamental processes Equation (18) shows that at low energies velocity
deflection will be the dominant process, but for speeds v ≳ vTi the effective friction on electrons is the most
important collisional process. However, what matters for the density perturbation is the collective effect of all
possible single particle collisions which are weighted by the speed distribution ∝ v2 exp

(
−(v/vT )

2
)
from which

the low energy particles will have the largest contribution.
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Figure 11: Visualisation of the dependence of the six stand-alone integrals that result from ex-
panding the ion kinetic response for ωdi/ω ∼ νi/ω ≪ 1 giving respectively the lowest order
contribution and influence of finite drift and collision frequency as a result of density gradient
(S1, S2, S3)) and temperature gradient (S4, S5, S6) on perpendicular wavenumber of perturba-
tions.

where the dependence of the integrals S{1,6} on k⊥ρ has been suppressed.

The main difficulty in getting a sensible solution for the mode frequency lies in the two square
root terms because their argument is complex-valued. By writing a complex number very gener-
ally in terms of its phase and magnitude ξ = |ξ| exp(iφ), where the phase φ ∈ [−π, π) uniquely
determines where ξ lies in the complex plane. If this complex number is squared its phase will
essentially be doubled ξ2 = |ξ|2 exp(2iφ), which has the potential to create a phase ambiguity
as 2φ may exceed the domain of definition for the phase, such that a new phase 2φ′ = 2φ± 2πn
with n ∈ Z could equally describe its square ξ2 = |ξ|2 exp(2iφ′) such that its square is not
uniquely determined. This is troublesome as this means that

√
ξ2 = ±ξ depending on whether

φ or φ′ is used for the phase. This issue only arises if the initial phase of the complex number
lies outside of φ ∈ [−π/2, π/2) such that doubling the rotation of ξ in the complex plane doesn’t
bring its phase outside [−π, π).

For the specific case at hand the complex number is ξ = τ (S1 + ηiS4) +
ω̂di
ω⋆e

S2 − i ν̃
ie

ω⋆e
S3. As the

collision frequency is positive, the density gradient is typically radially inward ( ∂n∂ψ < 0) and the
electron charge is q = −e it follows from Equation (30) that the electron diamagnetic frequency
is positive ω⋆e > 0, and S3 > 0 for all wavenumbers (see Figure 11), it follows that ξ lies in the
third or fourth quadrant of the complex plane. Consequently, this phase ambiguity will arise
only if Re[ξ] = τ (S1 + ηiS4) +

ω̂di
ω⋆e

S2 < 0 such that ξ is in the fourth quadrant. Focusing on

the case where Re[ξ] > 0 and
√
ξ2 “behaves nicely” the two roots to the dispersion relation are

obtained as
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ω

ω⋆e
=





τ(S1+ηiS4)+
ω̂di
ω⋆e

S2−i ν̃
ie

ω⋆e
S3

(1+τ−S1)
+

τ
(
ω̂di
ω⋆e

[S2+ηiS5]−i ν̃
ie

ω⋆e
[S3+ηiS6]

)
τ(S1+ηiS4)+

ω̂di
ω⋆e

S2−i ν̃ieω⋆e
S3

+ branch

−
τ
(
ω̂di
ω⋆e

[S2+ηiS5]−i ν̃
ie

ω⋆e
[S3+ηiS6]

)
τ(S1+ηiS4)+

ω̂di
ω⋆e

S2−i ν̃ieω⋆e
S3

− branch

where the
√
1 + · · · term has been expanded for ω̂di/ω⋆e ∼ ν̃ie/ω⋆e ≪ 1. Of these two branches

the latter contradicts the ωdi/ω ∼ νie/ω ≪ 1 assumptions that were used to expand the fre-
quency denominator in Equation (56) and thus gives an inconsistent solution which has to
considered as an “unphysical branch”. It is straightforward to show that if Re[ξ] < 0 instead,
the solutions for the ± branches simply switch, such that the physically relevant solution to the
leading order dispersion relation Equation (54) follows as

ω

ω⋆e
=
τ (S1 + ηiS4)

(1 + τ − S1)
+
ω̂di
ω⋆e

[
S2

1 + τ − S1
+
S2 + ηiS5
S1 + η1S4

]
− i

ν̃ie

ω⋆e

[
S3

1 + τ − S1
+
S3 + ηiS6
S1 + ηiS4

]
(60)

which has been further linearised in ω̂di/ω⋆e ∼ ν̃ie/ω⋆e ≪ 1.

Note that the derivation has been completely general aside from an assumption on the drift- and
collision frequencies which follows from the frequency ordering Equation (47). For the scope of
this thesis however, only density gradient driven TEMs are investigated, such that in the regime
of interest the solution can be simplified by setting the temperature gradient to zero which
amounts to ηi = 0, such that Equation (60) reduces to

ω

ω⋆e
=

τS1
(1 + τ − S1)︸ ︷︷ ︸

≈ω0

+
ω̂di
ω⋆e

S2 (1 + τ)

S1 (1 + τ − S1)
− i

ν̃ie

ω⋆e

S3 (1 + τ)

S1 (1 + τ − S1)
. (61)

The first term in Equation (61) would be the lowest order solution to the dispersion relation ω0

if the magnetic drift and collisions were neglected altogether and is purely real-valued, whereas
the remaining two terms give a small shift in the real frequency and a small imaginary compo-
nent that will damp the perturbations due to corrections the ion drift and collision frequency
respectively. These three contributions are plotted versus k⊥ρT i in Figure 12 for various tem-
perature ratios τ to show the dispersive property of the mode frequency. It can be seen that
the first term is rather insensitive to the temperature ratio and places the mode frequency
ω/ω⋆e ∼ O(0.1)−O(1.0) which further validates the assumptions used to expand the frequency
denominator in Equation (56). Furthermore in the long wavelength limit k⊥ρT i → 0 this dom-
inant contribution to the mode frequency is exactly the electron diamagnetic frequency ω⋆e
independent of the temperature ratio. If the drifts and collisions were neglected, then only the
adiabatic response of electrons to the perturbations and kinetic response of ions under influence
of to the perturbed E × B drift are accounted for by the dispersion relation D0 = 0. These
are exactly same elements present in the simple fluid calculation of the basic drift wave from
Appendix E which results in ω⋆e as the drift wave frequency. Since in the limit of k⊥ρT i → 0
plasma fluid models correspond to velocity moments of the gyrokinetic equation [136], recovering
this behaviour serves as a sanity check on the calculation. For completeness the dispersion of
the general solution Equation (61) with finite temperature gradient are shown in Appendix J.
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Figure 12: Contributions to the leading order dispersion relation D0(ω,k⊥, ϕ̂) = 0 without ion
temperature gradients showing (a) the lowest order (real) frequency in absence of ion drift and
collisions, (b) the shift in (real) frequency due to correction from ion drift, and (c) the growth
rate due to correction from collisions for various temperature ratios τ = Ti/Te. Note that in (c)
the growth rate is always negative corresponding to damping.
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3.4 Perturbative solution to next order dispersion relation

With the leading order mode frequency determined by Equation (61), the shift in frequency
δω due to the kinetic response of trapped electrons can be calculated using the paradigm from
Equation (55). For this calculation, only the dominant contribution to Equation (61) will be
retained as ω0. This is justified as the frequency shift due to ion drift is typically a much
smaller effect than the variation of ω0 with wavenumber [128], which is also an instance of a
Finite Larmor Radius (FLR) effect. Furthermore the ion collisions provide only a very weak
proportionality of the growth rate to ν̃ie which is smaller by the mass ratio me/mi compared to

the typical electron frequency ν̂ei, such that any instability drive by electron collisions will have
a much larger effect on the actual growth rate.

With this limitation in mind, the leading order dispersion relation essentially reduces to

D0(ω, ϕ̂,k⊥) ≈
(
1 + τ −

(
1− ω⋆i

ω

)
Γ0

(
(k⊥ρ)

2

2

))
ϕ̂

where the only surviving integral S1 has been written out explicitly, such that to next order in
the trapped electron fraction the dispersion relation becomes

δω

ω0
τ
ω⋆e
ω0

Γ0ϕ̂ =τ

ˆ
tr

ω0 − ω⋆e
ω0 − ωde + iνei

FMe

ne0
ϕ̂d3ve

=τ (ω0 − ω⋆e)
∑

σ=±

ˆ ∞

0
dve

ˆ 1/B

0
dλ

exp
(
− v2e
v2Te

)/√
π
3
v3Te

ω0 − ωde + iνe

πv2B√
1− λB

ϕ̂

(62)

where the dependence of Γ0 on the wavenumber has been suppressed to keep the notation
compact, and in the second step the Maxwellian was substituted and the pitch-angle coordinates
discussed in Section 3.1.3 are used, but integration over λ, v still includes both passing- and

trapped particles. To account only for the trapped particles for which ϕ̂ ̸≈ 0, the integration
limits have to be adapted. The proper limit on particle speeds is determined from the collisional
cutoff to the trapped particle region of velocity space, which follows from the speed dependence
of the 90° collision frequency (see Footnote 37) νe = ν̂ei(vTe/ve)

3 and bounce frequency ωbe =
ωTbeve/vTe Equation (52), resulting in40

vcut = vTe
4

√
ν̂ei/ωTbe (63)

Meanwhile the proper limits on pitch-angle are determined by the deflection requirement λB = 1,
which has to met somewhere along the field line for a particle to be trapped. Consequently the
trapped particle are characterised by pitch-angles λ > 1/Bmax with Bmax = max{B(l)} being
the global maximum field strength along the field line.

Unlike for D0 it is not possible to solve Equation (62) directly for the frequency shift since it
is non-local as a result of the bounce average. Furthermore as ϕ̂ is a Fourier coefficient it is in
general a complex quantity such that the shift in real frequency Re[δω] and growth rate Im[δω]
as a result of the trapped electrons are not easily extracted. The latter issue is alleviated by
multiplying Equation (62) with ϕ̂∗ and integrating along the field line in so-called ballooning
space41

¸
dl /B resulting in

δω

ω0

ω⋆e
ω0

Γ0

˛ ∣∣∣ϕ̂
∣∣∣
2dl

B
=(ω0 − ω⋆e)

2√
π

˛
dl

ˆ ∞

xcut

dx

ˆ 1/B(l)

1/Bmax

dλ
x2 exp

(
−x2

)

ω0 − ωde(x, λ) + iνe(x)

ϕ̂(λ)ϕ̂∗(l)√
1− λB(l)

40Here the distinction between ν̂ei and νab90° according to Equation (17) has been dissolved, as this would merely
result in a multiplicative correction of 0.93 to Equation (63).

41The appearance of the 1/B factor is a geometric effect resulting from the Clebsch representation of the
magnetic field Equation (5), which makes the integration in ballooning-space actually equivalent to taking an
average over the flux surface [46]. This is however beyond the scope of the thesis to discuss.
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where the integration along the field line wraps around the torus until the field line “bites its
own tail” again, normalised speed coordinates x = ve/vTe have been used, the sum over σ
simply gives a factor of two as there is no explicit dependence of the direction along which the
field is traversed, and all functional dependencies have been made explicit. Aside from possibly
the frequency shift δω all quantities on the left-hand side are now real-valued such that the
frequency shift and growth due to trapped electrons can directly be attributed to the real and
imaginary parts of the integral over the trapped electron response on the right-hand side. Note
that the integration order matters on the right-hand side, as the position along the field line
determines the upper limit of admissible pitch-angles and in which magnetic well the bounce
averages are appropriate to take. Exactly the same populations of trapped particles can be
uniquely determined by reversing the order of integration [126,137]

˛
dl

ˆ 1/B(l)

1/Bmax

dλ→
ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ l2[w]

l1[w]

dl (64)

where Bmin = min{B(l)} is the global minimum field strength along the field line. In Equa-
tion (64) the interval over λ covers all positions along the field line where trapped particles
reside, and the different populations of trapped particles with a given pitch-angle λ′ are now
distinguished by their spatial separation among the different trapping wells, which are demar-
cated by the bounce points l1[w], l2[w] determined by the deflection condition λ′B(l) = 1. By
this reversal of integration order, the position-dependent terms on the right-hand side naturally
take the form seen in the bounce average as expressed in pitch-angle coordinates Equation (52)
such that the solution to the perturbative frequency shift follows as42

δω

ω0
=

2√
π

ω0 − ω⋆e
Γ0

ω0

ω⋆e

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

xcut

dx
x2 exp

(
−x2

)

ω0 − ωde + iνe

∣∣∣ϕ̂
∣∣∣
2
Leff [w]

/ ˛ ∣∣∣ϕ̂
∣∣∣
2dl

B
(65)

where the “effective well length” Leff [w] =
´ l2[w]

l1[w]

dl√
1−λB(l)

has been introduced43. As a result of

the reversal of the integration order the shift in real frequency and growth rate due to trapped
electrons are now easily linked to the real and imaginary parts of the integral over the normalised
particle speeds as all other quantities are real-valued.

3.4.1 Standard literature results and collisionality regimes

Unlike for the ion case, the frequency denominator in Equation (65) cannot be expanded based on
the frequency ordering for TEMs Equation (47). Rather, in the literature it is common to define
different regimes of collisionality for which the integrand can be approximated by neglecting the
appropriate terms [120, 128]. To now rigorously understand how the TEM is driven unstable
by the magnetic drift as highlighted by the intuitive waveform model in Section 2.1.2, and
see how collisions could destabilise the TEM, these common literature limits are first explored
independently. Then their extension to arbitrary collisionality will be made, which presents the
first original result from this thesis.

In the extreme limit of the strongly dissipative regime ωde < ω ∼ ω⋆e < νei < ωbe the collisional
dynamics are the most dominant process and the speed integral in Equation (65) can be ap-
proximated by

42To be precise, all bounce averages should also have a well label w, this is however omitted for notational
simplicity.

43In literature it is more common call this the “bounce time” τb[w] of the well [11, 92, 126, 137], but this is an
ill-naming convention as it is dimensionally incorrect and the actual bounce time is given by τb[w] = Leff [w]/v
and thus depends on the energy of trapped particles.
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(66)

where the electron-ion velocity deflection frequency νeiD Equation (18) has been used for νe as the
diffusion in the direction of the velocity causes (de)trapping, a change of variables z = x2 has
been made and Γ(n, ξ) is the upper incomplete gamma function. Typically the velocity cut-off is
taken to be very small (despite the limit of strong collisionality) such that Γ(3, x2cut) ≈ 2, or even
completely omitted from the analysis. The resulting frequency shift δω is then purely imaginary
and as the leading order solution ω0/ω⋆e ≤ 1 corresponds to a growth rate γ/ω0 ∝ ω0/ν̂

ei > 0,
indicating instability. Interestingly the growth rate decreases with collisionality, indicating that
detrapping dominates over trapping and the collisions have a benign effect on the dissipative
TEM instability.

The other extreme limit is the collisionsless regime νe < ωde < ω ∼ ω⋆e < ωbe and the collisional
dynamics can be neglected altogether and the speed integral is approximated by

δω

ω0
=

2√
π

ω0 − ω⋆e
Γ0

ω0

ω⋆e

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

0
dx

x2 exp
(
−x2

)

ω0 − ωde

∣∣∣ϕ̂
∣∣∣
2
Leff [w]

/ ˛ ∣∣∣ϕ̂
∣∣∣
2dl

B

where the speed cut-off xcut is lifted as collisions have become irrelevant. At a first glance it
seems like this would not lead to an instability as δω will be purely real-valued, however this
neglects the possibility of a resonance where ω0 ≈ ωde which causes the kinetic electron response
to diverge. As the bounce-averaged electron drift frequency is given by

ωde(x, λ) ≈ v2k⊥ ·
(
eb
Ωs

×∇⊥lnB
[
1− λB

2

])
≡ x2ωTde(λ) (67)

where the “vacuum plasma” approximation κ ≈ ∇⊥ lnB is made, pitch-angle coordinates have
been used and the bounce average drift frequency of a particle at thermal speed ωTde has been
introduced for convenient normalisation, such a resonance will occur for trapped particles which
have the correct resonant speed

xres =

√
ω0

ωTde

(68)

provided that ωTde and ω0 have the same sign. If this satisfied there will always be a population
of trapped electrons that are resonant since there is no speed cut-off in the absence of collisions.

To investigate whether such a resonance could lead to an instability the mode frequency is given
a small imaginary part ω0 → ω0+ iδγ to lift the resonance, and after calculating the integral the
speed the limit for marginal stability δγ ↓ 0 is taken to see if the imaginary part of the resulting
frequency shift also consistently vanishes. In Appendix K it has shown that this reduces to an
instance of the Sothotski-Plemelj theorem along the real-line [138]

lim
γ↓0

ˆ ∞

0
dx

x2 exp
(
−x2

)

ω0 − ωde + iδγ
= P

{ˆ ∞

0
dx

x2 exp
(
−x2

)

ω0 − ωTde

}
− i

π

ωTde

ˆ ∞

0
dxx2 exp

(
−x2

)
δ(x2 − x2res)

(69)
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where P denotes the Cauchy Principle Value and the Dirac-Delta takes care of whether the
resonance can occur or not. Substituting Equation (69) result back in Equation (65) then gives
the resulting growth rate as a result of drift resonances with trapped electrons

γ

ω0
=

√
π

(
1− ω0

ω⋆e

)

Γ0

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

(
ω0

ωTde(λ)

)3/2

exp

(
− ω0

ωTde(λ)

)∣∣∣ϕ̂
∣∣∣
2
Leff,w

/ ˛ ∣∣∣ϕ̂
∣∣∣
2dl

B
(70)

which is positive and such that resonances with the precession frequency of trappped particles
provide the collisionless TEM instability mechanism, as first pointed out by Adam et al [134].

In Equation (70) it has tacitly been assumed that such a resonance does exist, which requires
ωde to have the same sign as ω0 such that the resonance speed Equation (68) xres ∈ R. As the
leading order mode frequency Equation (61) is always in the electron diamagnetic direction this
will be satisfied whenever ω⋆eωde > 0. As the precession frequency is due to the particle drifts in
the inhomogeneous magnetic field the magnetic geometry essentially completely determines the
stability properties of the plasma against collisionless TEMs. By decomposing the wavevector in
Clebsch coordinates as k⊥ = kψ∇ψ + kα∇α the precession frequency can be rewritten as [126]

ωde = k⊥ · vde = kψvde ·∇ψ + kαvde ·∇α =
1

eτbe

(
∂J
∂ψ

kα − ∂J
∂α

kψ

)
(71)

where Equation (8) was used for the bounce-averaged guiding centre drifts. With this represen-
tation of the bounce average drift, the stability criterion can be assessed by

ω⋆eωde =
Te
e2τbe

d lnne
dψ

(
∂J
∂α

kψkα − k2α
∂J
∂ψ

)
.

In general the density gradient will be negative as a result of centrally peaked profiles such that
the sign of the terms in brackets determines whether a resonance can occur. In the special
case of an omnigeneous magnetic field in which the average radial drift vds ·∇ψ = 0 = ∂J

∂α
vanishes (like in tokamaks and optimised stellarators), whether or not a resonance will occur
is completely determined by the “profile” of the second adiabatic invariant J . In a max-J
configuration where J peaks at the plasma centre and ∂J

∂ψ < 0 everywhere, the signs of the
frequencies will thus be reversed ω⋆eωde < 0 such that a resonance cannot occur, making them
stable against TEMs as first pointed out by Proll et al [95]. Tokamaks in contrast are neither
maximum-J nor minimum-J such that there will be always be some population of trapped
particles for which ω⋆eωde > 0 and TEMs are expected to be unstable, explaining why TEMs
are observed to be one of the root causes for the observed transport in present day experiments,
as highlighted in Section 1.1.

3.4.2 Going beyond literature: the domain splitting approach

Although insightful to the different TEM instability mechanisms, these literature results con-
sider only the asymptotic limits where either the collision frequency or the precession frequency
resonance dominates in the denominator of Equation (65). It is unsure if and how these re-
sults can be extrapolated, as Equation (70) predicts the growth rate a finite growth rate at
low collisionality whereas Equation (66) predicts the growth rate to diverge as the collisionality
is decreased, and these branches should continuously match in some intermediate collisionality
regime. A remedy to this issue comes from the realisation that these literature regimes neglect
the fact that both frequencies have a qualitatively opposite dependence on the (normalised)
particle speed νe ∝ 1/x3, ωde ∝ x2. Consequently even at extremely low collisionality there will
be fraction of low energy particles with a high collision frequency that exceeds their precession
frequency, and vice versa for high collisionality. Therefore these regimes are not applicable over
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the full speed integral even though they are applied as such in literature. What will determine
the dominant driving mechanism for a given particle energy is whether ωde/ω0 or νe/ω0 is largest,
which using Equations (67) and (68) can be written as

ωde
ω0

=

(
x

xres

)2 νe
ω0

=
(xν
x

)3

where another characteristic collision speed has been introduced as

xν =
3

√
ν̂ei

ω0
(72)

by means of an analogy with the resonant speed xres such that these parameters give the particle
energies at which the precession and collision frequency are comparable in magnitude to the
leading order mode frequency ω0. Based on these parameters a critical speed xcrit can be defined
at which the magnitude of the collision and precession frequency are equal νe(xcrit) = |ωde| and
the dominant driving mechanism will shift from dissipative to collisionless

xcrit = 5

√√√√ ν̂ei∣∣∣ωTde
∣∣∣
= |xν |3/5|xres|2/5 (73)

where the absolute value takes care of any possible signs in the frequencies44 such that xcrit ∈ R+.
Consequently as a first crude approximation the integral over particle speeds could be split into
a purely dissipative (x < xcrit) and purely collisionless (x > xcrit) domain. To a lesser degree of
approximation, rather than completely neglecting the other driving mechanism in each domain
it could be included as a small correction such that

1

ω0 − ωde(x) + iνe(x)
≈





1

ω0 + iνe(x)

(
1 +

ωde(x)

ω0 + iνe(x)

)
x < xcrit

1

ω0 − ωde(x)

(
1− iνe(x)

ω0 − ωde(x)

)
x > xcrit

. (74)

In Appendix L it is shown that near the critical speed, where the approximation is most likely
to break down, Equation (74) is in fact a decent approximation provided that the critical speed
does not coincide with the resonance speed. In terms of this domain splitting approximation
the frequency shift due to trapped electrons is given as

δω

ω0
=

2√
π

(
ω0
ω⋆e

− 1
)

Γ0

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)



ˆ xcrit(λ)

x
3/4
ν 4

√
ω0

ωT
be

(λ)

dx
x2 exp

(
−x2

)

1 + i
(
xν
x

)3 + · · ·

+
1

x2res(λ)

ˆ xcrit(λ)

x
3/4
ν 4

√
ω0

ωT
be

(λ)

dx
x4 exp

(
−x2

)
(
1 + i

(
xν
x

)3)2 +

ˆ ∞

xcrit(λ)

x2 exp
(
−x2

)

1−
(

x
xres(λ)

)2 + · · ·

−ix3ν
ˆ ∞

xcrit(λ)

exp
(
−x2

)

x

(
1−

(
x

xres(λ)

)2)2



∣∣∣ϕ̂(λ)
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2
Leff [w](λ)
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∣∣∣
2dl

B

(75)

where the speed-cut off Equation (63) has been rewritten in terms of xν and ω0 has been taken out
of the denominators in all integrals which naturally makes the different speed parameters xres, xν

44Although the collision frequency ν̂ei is certainly positive, the lowest order mode frequency ω0 which enters
the definition of xν will in general not always positive since ω0 ∼ ω⋆e ∝ −d lnne

dψ
. Consequently if the density

profile would not be peaked at the centre the diamagnetic drift frequency could be negative.
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appear. The real power of this novel approach is twofold; first by recalling the dependence of the
critical speed on xres, xν ( Equation (73)) and letting xres → ∞ and xν ≫ 1 only the first term
remains and Equation (75) reduces to the result in the strongly dissipative regime Equation (66),
while letting xν → 0 only the third term remains and Equation (75) reduces to the result for the
collisionless regime Equation (70). Thus Equation (75) can be reduced to the “classic” results
from literature. But second and foremost, Equation (75) provides predictive capability for the
growth rate of TEMs. If the critical speed xcrit would exceed the resonance speed xres then the
resonance with the precession frequency would be avoided, and in absence of a resonance it is
expected that the growth rates would be strongly quenched. Because of the dependence of xcrit
on xν Equation (73) this sets a threshold collision frequency

xcrit > |xres| ⇒ |xν | > |xres| ⇒ ν̂ei > |ω0|
∣∣∣∣∣

ω0

ωTde(λ)

∣∣∣∣∣

3/2

(76)

above which collisions are capable to filter out the resonance. In Appendix L this prediction of
the threshold collision frequency is tested by numerically integrating the full speed integral from

Equation (65)
´∞
xcut

dx
x2 exp(−x2)
ω0−ωde+iνe for a wide range of xν , xres parameters to get an “exact” answer

without invoking the domain splitting approximation. There it is shown that the threshold
frequency prediction is perfectly reproduced by the reduction in magnitude of this integral in the
resonant case xres ∈ R whenever |xν | exceeds |xres|. But it is also found that when |xν | < |xres|
the collisions could add to the resonant instability drive or (as expected) that collisions form
the destabilisation mechanism when the resonance is not possible xres ∈ C. This is investigated
in more detail below, when the role of geometry is taking into account.

3.5 Realistic investigation of geometric effects

Although the results obtained by the domain splitting approach Section 3.4.2 provide a nice
first qualitative insight about when and how collisions will affect the growth rate of TEMs, the
threshold collision frequency Equation (76) is not the most useful metric because the criterion
depends on the bounce frequency which depends on the pitch-angle and even more strongly
on the magnetic geometry. Thus each population of trapped particles along the field line will
have their own threshold collision frequency, whereas the collision frequency itself is constant
along the field line due to its dependence on the plasma profiles Equation (17). As it is the
combined effect of all trapped particles that results in instability, it is therefore imperative to
take into account the integration over pitch-angle to determine the actual growth rate of TEMs.
Furthermore, even if there were a unique threshold collision frequency for all trapped particles,
it would depend on the perpendicular wavelength k⊥ of the perturbations through ω0, and even
if this effect were negligible for the integration over trapped particle, the total frequency total
frequency shift δω/ω0 would still be dispersive through the integral prefactor in Equation (65).
This dispersive

Therefore to investigate the influence of collisionality on the growth rate Equation (65) has to
be evaluated numerically, which has the benefit that actual realistic magnetic geometries can
be used to identify the populations of trapped particles and assess whether the influence of
collisions is universal or differs between magnetic configurations. It is particularly interesting to
see if collisions could spoil the stability properties of max-J configurations. For the numerical
integration a code which has been recently used to find the Available Energy of trapped particles
[50] involving the same integration over energies and pitch-angle has been retrofitted to use the
actual integrand of Equation (65). To account for realistic geometries, the Geometric Interface
for Stellarators and Tokamaks (GIST) code is used to generate all geometric information about
the magnetic field from a calculated magnetic equilibrium configuration [139]. To facilitate a
potential comparison with the numerical simulations that follow in Chapter 4 for simulations,
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the same geometries of the DIII-D tokamak and HSX/W7-X stellarators are considered for
the numerical integration, which are highlighted in Figure 13. The differences between these
geometries are striking, with the axisymmetry and conventional torus shape of DIII-D made very
apparent in Figure 13a. This in contrast to the twisting shape of the flux surface in seen in the
stellarator configurations. The most apparent features of HSX are the helically shaped contours
of the magnetic field and four-fold discrete toroidal symmetry resulting in the square-like top
view as seen in Figure 13b. Meanwhile the most noticeable aspects of W7-X are the nearly
poloidally closed contours of the magnetic which indicate the configuration approximates quasi-
isodynamicity [46,140], and the five-fold discrete toroidal symmetry resulting in a pentagon-like
top view of W7-X seen in Figure 13c.

For this comparison between theory and simulation some differences have to be taken into
account. In simulations what is set is the binormal wavenumber ky, which is related to kα
with a dimensional prefactor to have the proper dimension of a inverse meters rather than the
perpendicular wavenumber k⊥. These wavenumbers are related through [16]

k⊥ =
√
gxxk2x + 2gxykxky + gyyk2y (77)

where gij are elements of the metric tensor for the coordinate system used in simulations (more
about that in Chapter 4) and kx is the radial wavenumber similarly related to kψ with a di-
mensional prefactor. Consequently the perpendicular wavenumber varies with distance along
the field line for a given set of kx, ky. Therefore to bridge the gap to theory where ω0 has been
considered as constant in deriving Equation (65), the weighted average of the wavenumber ⟨k⊥⟩
along the field line is considered according to the method from [143,144]

〈
k2⊥
〉
=

´
k2⊥

∣∣∣ϕ̂
∣∣∣
2
dl
B´ ∣∣∣ϕ̂

∣∣∣
2
dl
B

. (78)

To further accommodate normalisation for numerical implementation45 all frequencies in Equa-
tion (65) are normalised by the diamagnetic frequency ω⋆e such that the numerical integration
friendly form of Equation (65) is
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x2 exp

(
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)
〈
ω0
ω⋆e

〉
− ωde

ω⋆e
+ i νeω⋆e

∣∣∣ϕ̂
∣∣∣
2
Leff [w]

/ ˛ ∣∣∣ϕ̂
∣∣∣
2dl

B

(79)

where the short-hand notation ⟨F ⟩ = F (⟨k⊥⟩) for any function of the perpendicular wavenumber
is introduced.

Two additional simplifications are made for the numerical integration. First, as the most un-
stable modes are typically the most radially extended ones which can feed from the full density
gradient in the plasma [96], the radial wavenumber is set to kx = 0(= kψ). This approximation
does somewhat blur the line between omnigeneous and non-omnigeneous magnetic fields as it
makes the radial drifts disappear from the precession frequency Equation (71). Second, the elec-
trostatic potential is approximated to be a “flute-mode” ϕ̂(l) ≈ ϕ̂0 which is constant along the
field line. This approximation is definitely more severe and not very realistic, however it is a com-
mon approximation made in literature to get semi-analytical results which for tokamaks at least
gives results that are within a factor of 2 of using more realistic mode structure [83,134,145,146].

45Technically speaking such normalisation is not strictly required, as Equation (65) is already inherently
dimensionless. Nevertheless normalisation remains a good practice and it is even necessary to respect the inherent
normalisations from GIST/GENE in order to “feed” the geometric information into the integrals.
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(a)

(b)

(c)

Figure 13: Magnetic geometries used for the perturbative calculation showing both a side- and
top view of what the flux surfaces look like for (a) DIII-D,(b) HSX, and (c) W7-X respectively.
The contours give the magnetic field strength B normalised to its average on the flux surface,
while the blue/black lines correspond to the to the magnetic axis and a magnetic field spanning
two poloidal turns on the flux surface respectively. These magnetic equilibria are the result of
a reconstruction from experimental measurements using the EFIT code [141] in case of DIII-D
and full 3D equilibrium calculation using the VMEC code [142] for HSX and W7-X.

i
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Nevertheless invoking the “flute-mode” approximation allows to emphasise any inherent differ-
ences between the magnetic geometries as result of the distribution of the trapped particles
among the different magnetic wells and the possibility of a resonance as a result of the pro-
file of the second adiabatic invariant J . Furthermore as the leading order dispersion relation
D0(ω,k⊥, ϕ̂) = 0 is solved by Equation (60) regardless of the mode structure along the field line,
any arbitrary choice of ϕ̂(l) would provide a consistent solution to the perturbative paradigm of
Equation (55).

With these approximations in mind Equation (79) is solved numerically by scanning over the
normalised wavenumber kyρci, where the gyroradius at ion sound speed ρci is used as to have
the same normalisation as the GENE code46 to facilitate comparison with the simulation results
from Chapter 4. The collision frequency is also scanned over in the normalised form of νei/ωphys

⋆e ,

where ωphys
⋆e = Te/(eB0aρci), with B0 denoting the magnetic field strength on the magnetic

axis. This choice of normalisation of the collision frequency removes any inherent scale factor
related to the turbulence47 as ωphys

⋆e corresponds to the electron diamagnetic frequency at a
wavenumber and density gradient of kyρci = a/Ln = 1. Details about the normalisation process
of Equation (79) can be found in Appendix M.2.

The results for the frequency shift δω/ ⟨ω0⟩ as a function of binormal wavenumber and col-
lision frequency for the three geometries are in shown in Figure 14. Regardless of the value
of the collision frequency or geometry, it can be seen that the relative perturbation δω/ ⟨ω0⟩
increases along with the poloidal wavenumber. This is a consequence of the fact that the per-
pendicular wavenumber k⊥ is directly proportional to the poloidal wavenumber ky according to
Equation (78), and the leading order solution for ω0 Equation (61) decreases with wavenum-
ber. Consequently at large kyρci the perturbative approach will not provide a valid solution to
the original quasi-neutrality condition Equation (54). Nevertheless, even if the perturbative ap-
proach cannot yield a quantitatively valid answer, it can still at least qualitatively describe what
the influence of collisions on the growth rate γ = Im[δω/ ⟨ω0⟩] of TEM will be since D1(ω,k⊥, ϕ̂)
(see right-hand side of Equation (62)) contains all of the trapped electron dynamics which are
responsible for driving the instability. A universal observation from Figure 14 is that regardless
of the geometry and collisionality there is always instability γ > 0, so the collisions do not lead
to absolute damping (γ < 0) of the perturbations. More interestingly are the differences between
geometries. It can be seen that in stellarator geometry the real frequency shift is larger than in
the tokamak case. In contrast the instability is much worse in tokamaks, where the growth rates
are larger and also become significant at lower wavelenghts. The most interesting difference is
the apparent lack of destabilisation as a result of collisionality in DIII-D, which appears in both
stellarator. This feature is most prominent in W7-X however where the growth rates at low
collisionality are much lower which can be attributed to the favourable max-J property of the
magnetic configuration.

46This results in an additional translation factor of vTi/cs,i =
√
2τ between the normalised binormal wavenum-

ber to the normalised perpendicular wavenumber k⊥ρTi appearing in theory besides Equation (78).
47If this normalisation were not done but the collision frequency was simply varied as νei/ω⋆e then the actual

physical collision frequency νei would increase as ky is varied which would complicate the interpretation of the
results.
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Figure 14: Results for the full perturbative frequency shift δω/ ⟨ω0⟩ for different magnetic geome-
tries, showing (a) real- and (b) imaginary parts in DIII-D, (c) real- and (d) imaginary parts in
HSX, and (e) real- and (f) imaginary parts in W7-X. Note that the coloirbar has been adapted
such that in all plots bright colours indicate a large perturbation and dark colours indicate small
perturbation, and the collision frequency is plotted logarithmically whereas the wavenumber is
plotted linearly. In case of DIII-D the real frequency shift is both negative and positive as in-
dicated in (a), whereas for HSX and W7-X the real frequency shift is negative over the full
parameter range.
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Continuing with the analysis of the growth rates, the shape of the contours seem to suggest that
the growth is rather insensitive to the collision frequency in the low collisionality regime, then
starts to increase in an intermediate collisionality regime, until it makes a turnover and decreases
again at high collisionality regime. To further investigate this behaviour and see if there might
be a universal scaling between the growth rate and collision frequency in the different geometries,
for several fixed wavenumbers the logarithm of the growth rate is traced over with collisionality.
Additionally this allows to zoom in on what happens in the low ky region of the contours where
the growth rates are so small they are indistinguishable from zero. This is shown in Figure 15,
where indeed the curves reveal differences between low and high ky.

To investigate how the growth rate scales with the collision frequency, the slopes of the lines are
estimated in different collisionality regimes by the differences between their ends points, which
results in power-law scalings. The general trend of all lines, however, is that after a turnover
regime at intermediate collisionality where the curves bulge, all curves are decaying with col-
lision frequency at high collisionality. This turnover regime corresponds to the observation in
Appendix L that for a collision parameter below threshold (xν < xres) the collisions add to the
instability drive from resonance by increasing the imaginary part of the speed integral. To check
whether this decay is universal, the slopes of the curves after turnover are averaged48 to give

a power-law γ ∝
(
ν̂ei
)−(0.8-0.9)

at high collisionality, which is nearly the same for all devices.
Perhaps surprisingly the exponent of the power law is not −1 as would be expected from Equa-
tion (66). Initially this was believed to be caused by the non-negligible speed cut-off xcut at such
high collisionalities for which the upper incomplete gamma function in Equation (66) deviates
considerably from 2.0, however a separate calculation with this cut-off suppressed showed only
marginal differences in the exponent. Rather it was found that the influence of the averaging
window for the slope influenced the exponent more significantly. A scaling closer to −1 could
perhaps be achieved by extending the numerical integration to significantly higher collisionalities
to increase the averaging window, but this was not pursued.

In contrast at low collisionality before the curves turn over, the slopes are either virtually
flat or clearly positive over a few orders of magnitude of collisionality depending whether the
wavenumber kyρci is low or high. For each geometry, a separate power-law is determined by
averaging over the slopes of the near-flat curves and the positively sloping curves. For DIII-D
all curves are considered to be flat, whereas for HSX and W7-X all but the curves for lowest two
and three wavenumbers respectively are considered flat. For the flat regime49 this again leads

to a common scaling law γ ∝
(
ν̂ei
)−(0.02-0.04)

showing a negligible dependence on collisionality
and indicating that the instability is driven by a resonance.

Lastly, for the positively sloping regime, an exception is made for DIII-D where the growth rate
of the lowest wavenumber kyρi = 0.25 the only which is destabilised by collisions. Therefore
the slope from this curve is taken into account for comparison with the slopes in HSX/W7-

X. Two different power-laws are found50, with the growth rate in DIII-D scaling as
(
ν̂ei
)0.17

whereas in HSX and W7-X it scales as
(
ν̂ei
)0.79-0.81

. This is difference is fully explainable by
the fact that the kyρi = 0.25 curve in DIII-D is in the turnover process from collisionless to

48For this averaging procedure the slope of all curves are averaged over the window of the last decade and a
half of the collision frequency, i.e. log10(ν̂

ei/ωphys
⋆e ) ∈ [0.5, 2.0]

49For this averaging procedure different windows of the collision frequency are used for the different curves
to respect their turn-over regions. For DIII-D the slope of all flat curves is determined on the interval
log10(ν̂

ei/ωphys
⋆e ) ∈ [−6,−2]. For HSX the intervals that have been used are [−6,−2], [−6,−2.5] and [−6,−3.5]

for wavenumbers kyρi > 1.5, kyρi = 1.03, kyρi = 0.74 respectively. For W7-X the interval [−6,−3] is used for
kyρi > 1.5 and [−6,−4.5] for kyρi = 1.03.

50In DIII-D the kyρi = 0.25 slope is determined in the range [−3.5,−1.5] and no averaging has taken place
as there is only a single wavenumber. For HSX the kyρi = 0.25 slope is determined on [−6,−1.5] while the
kyρi = 0.54 slope is determined on [−5.5,−1.0]. Lastly for W7-X the slopes of the kyρi = 0.25, 0.54 curves is
determined on [−6,−1.5] while the slope of the kyρi = 0.74 curve is determined on the interval [−5.5,−1.5].
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Figure 15: Growth rate vs collision frequency on a double logarithmic scale for binormal
wavenumbers kyρi = [0.25, 0.54, 0.74, 1.03, 1.53, 2.02, 2.51] for (a) DIII-D, (b) HSX and (c) W7-
X. The power law scalings are obtained by estimating the slope of the straightlines by the end-
points of the different collisionality regimes.
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dissipative dynamics, whereas the selected low kyρi stellarator curves maintain their slope at
low collisionality. This indicates that as ν̂ei → 0 the growth rate would vanish as well and there
would be no collisionless TEM at these low wavenumbers. This is further supported by the
fact that the exponent of 0.8 is close to a linear scaling of the growth rate with the collision
frequency, which would correspond to the expected growth rate resulting from the expansion
of the 1/(ω0 − ωde(x) + iνe) denominator above the critical speed Equation (74) occurring in
the domain-splitting approximation of Section 3.4.2 in case that the resonance is not possible.
Based on the fact that the precession frequency Equation (71) increases with ky, whereas the
lowest order mode frequency decreases with ky, it would indeed be expected that at the low
wavenumbers, where this scaling is found, the resonant drive would be an inefficient instability
mechanism as only very few high energetic particles will have the correct resonant speed.
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4 Simulation results

In Chapter 3 the gyrokinetic framework developed in Chapter 2 was investigated analytically
to investigate how TEMs are influenced by collisions, but to keep things tractable quite some
assumptions and approximations were made along the way. These place constraints on the
instabilities which can accurately be described by this theory, and furthermore the method is
limited to providing predictions for the growth rate whereas the spatial structure of perturbations
along the field line remains unknown.

These restrictions will be lifted in this chapter which presents the simulations results obtained
with the GENE code, which numerically employs the same gyrokinetic framework. Firstly, a
quick overview of the working mechanism and most important normalisations of the GENE code
is given in Section 4.1 to make the reader familiar with the numerics. Then in Section 4.2 a set
of “base-case” simulations is presented in the absence of collisions which form a reference for
comparing with the collisional simulations, and the methods of mode identification are intro-
duced. Lastly, the results for the collisional simulations are presented in Section 4.3, where the
emphasis will be on the observed differences witch respect to the “base-case”. Ultimately, these
simulation results can then serve as a test for the obtained growth rates from the perturbative
approach, which will be the topic of Chapter 5.

4.1 Introduction to the GENE code

The GENE (Gyrokinetic Electromagnetic Numerical Experiment) code is developed by Jenko et
al [17], and numerically solves the GKE (Equation (25)). GENE can solve the gyrokinetic equa-
tion either linearly or non-linearly by switching off/on the advective E×B non-linearity, and has
been extensively benchmarked against other gyrokinetic codes in both cases [75,90,102,147,148].
Furthermore, GENE can simulate an arbitrary number of kinetic plasma species, take into col-
lisions and general electromagnetic fluctuations in the plasma. In this thesis however, GENE
will only be used to solve the linear gyrokinetic equation for a two species plasma consisting of
deuterium ions and electrons using the exact51 mass ratio me/mi = 2.7244 × 10−4, while sup-
pressing electromagnetic fluctuations to remain within the electrostatic approximation. Only
the supplementary option to include a collision operator will be used. Additionally. the Geo-
metric Interface for Stellarators and Tokamaks (GIST) code [139] is used to create the necessary
geometrical input data which allows GENE to take into account realistic magnetic geometries,
as opposed to using simplified analytical magnetic equilibria like the s−α model52 which can re-
sult in significant discrepancies [148]. Most importantly, GENE is highly parallelisable achieving
close to 90% parallisation efficiencies [151] and is thus suitable to be used on high performance
computers. To this end GENE will be run on the MARCONI cluster which is part of an EURO-
fusion workpackage [152]. Especially for stellarators, such a parallelisation is imperative as the
geometric complexity of stellarators results in a significant increase of the computational costs
compared with tokamaks [153].

Different versions of GENE exist depending on the complexity of the simulation domain [154].
For the work in this thesis the local version of GENE is used, which solves the gyrokinetic equa-
tion in so-called flux-tube geometry. This geometry exploits the k∥/k⊥ ≪ 1 spatial anisotropy
of the fluctuations by coiling a box of several gyroradii wide (since k⊥ρ ∼ O(1)) around a single
magnetic field line which is traced for one or several poloidal turns, allowing to solve for the evo-

51In literature sometimes simulations are also performed with a “heavy electron” model using a mass ratio of
me/mi ∼ O(1e− 3) is considered to reduce the computational effort by allowing for larger timesteps and spatial
resolutions [15,75,102,149]

52This is the most simplified model for a tokamak equilibrium with a sheared magnetic field, whose flux surfaces
are concentric circles displaced from the magnetic axis due to the so-called Shafranov shift as a result of the plasma
diamagnetic effect [150].
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lution of turbulence using a minimal simulation volume [68]. Because the perpendicular extends
of the simulation volume are small compared with equilibrium scales, within a flux-tube the
turbulence can be considered to be locally driven, i.e. the instability mechanism is completely
determined by the local value of the pressure profile and its gradients, magnetic field strength
and shear, etc. at the position of the magnetic field line and variations of these variables in
the perpendicular direction are not taken into account [153, 155]. The Clebsch representation
of the magnetic field Equation (5) naturally gives (ψ, α) as the choices for the perpendicular
coordinates, which are conveniently rescaled to have the proper physical dimension of meters by

x =
ψ − ψ0

B0r0
y = r0 (α− α0) .

Here r0 is the radial distance from magnetic axis, B0 is the magnetic field strength on axis,
and ψ0, α0 are the Clebsch coordinates for the central magnetic field which is traced in the
flux tube and thus only described by the z coordinate, which is taken to be the poloidal angle
θ. One subtlety hidden in the flux-tube geometry is that the coordinates are curvilinear and
non-orthogonal, and as a consequence the rectangular computational domain (x, y, z) actually
corresponds to a sheared and curved physical volume inside the torus [16, 68, 156], which is
illustrated in Figure 16. For more details on the flux-tube geometry, see Appendix N.

GENE is a so-called Eulerian code, which means that the gyrokinetic equation is solved on a
fixed 5D phase-space grid [157]. For the flux-tube geometry, the three spatial coordinates are
x, y, z as described above, with the location of the origin corresponding to the point along the
field line where the central magnetic field is closest to the outer radius of the torus. Meanwhile
the two velocity space coordinates used by GENE are the parallel velocity and magnetic mo-
ment v∥, µ. The main assumption for the flux-tube approach is that the perpendicular extent
of the simulation volume is larger than the correlation length of the fluctuations, such that the
turbulence inside the box is statistically independent to the turbulence outside the box [68,153].

Figure 16: Visualisation of the physical 3D volume that is spun by a flux-tube in the W7-X
stellarator. Indicated in black is the central field line along which the tube is expanded in α,ψ
directions. Note how the cross-section of the flux tube is sheared through space as a result of the
geometry and how the box follows the curvature of the central field line. Adapted from [153].
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As furthermore only the fluctuations themselves vary in the perpendicular direction, a pseudo-
spectral approach using Fourier modes for the (x, y) directions is used, such that derivatives
are handled analytically as ∂

∂{x,y} → ikx,y [16]. The discretisation in the perpendicular direc-
tions is then achieved through a truncation for the number of wavenumbers. The remaining
coordinates are discretised on numerical grids, and the derivatives are taken using finite dif-
ferences. This introduces coupling between subset of grid points and could cause unphysical
grid-scale oscillations in the results, which is compensated for by introducing artificial hyperdif-
fusion53 [158]. This hyperdiffusion is only necessary in the z, v∥ directions, as derivatives in the
magnetic moment only enter through the collision operator, which is already diffusive by nature
as a result of its Fokker-Planck form Equation (11) and thus provides a source of dissipation
at small scales [16]. Finally, the GKE is then evolved in time using a Runge-Kutta scheme
with adaptive timestepping, and the dynamics of the collision operator are separated from the
remainder of the kinetic equation for an optimal number of evaluations per timestep depending
on the collision frequency [157].

Lastly, as GENE solves the GKE numerically, all variables have to be suitably normalised
to be dimensionless. The full steps in the normalisation process of GENE can be found in
Appendix M.1. Of most importance for the work of this thesis is the normalisation of the
spatial and temporal scales. The equilibrium length scales such as the curvature and driving
gradients are normalised to the minor radius a of the torus54 whereas the fluctuation length scales
are normalised to the ion gyroradius at sound speed ρs = cs/Ωi. Combining these previous two
normalisations, then gives a natural unit for normalising the timescales to a/cs. As a consequence
of these normalisations wavenumbers are in units of inverse gyroradii and the frequency/growth
rates are in units of cs/a. Also of particular interest for the work of this thesis is the normalisation
of the collision frequency. In GENE the normalised collision frequency as used by the code input
is given by [157]

ν̃c = 2.303 08× 10−5nref[10
19m−3]a[m]

T 2
ref[keV]

lnΛ (80)

where the reference (electron) density and temperature refer to the pressure profile at the central
field line of the flux-tube and have been expressed in the convenient units of 1019m−3 and keV
similar to the Coulomb logarithm in Equation (13). Furthermore the minor radius has been
expressed in the unit of m which results in the numerical value of the prefactor. This normalised
collision frequency is related to the characteristic ion-electron collision frequency of Equation (17)
by

ν̂ei = 4
ni
nref

√
mi

me
ν̃c
cs
a

≈ 171
√
Aν̃c

cs
a

(81)

where in the last step quasi-neutrality was used, and the mass number A of the ion species is
introduced to use the ion-electron mass ratio.

4.2 Collisionless base case simulations

4.2.1 Overview of geometries and simulation parameters

The GENE simulations are performed for three different magnetic geometries; the DIII-D toka-
mak, the HSX stellarator and the W7-X stellarator. To focus on the differences between the

53The hyperdiffusion coefficient is implemented as an additional derivative D = −inϵξ
(
∆ξ
2

)n dn

dξn
, where ϵξ can

be used to set the strength of the hyperdiffusion, the order of the derivative is typically n = 4, ξ is any variable
for which hyperdiffusion is desired and ∆ξ is the grid resolution in that variable. Because of the combination
(∆ξ ∂

∂ξ
)n the hyperdiffusion only has a significant dissipative effect at the smallest scales which are comparable

to the grid resolution while leaving large scale structures comparable to full grid sizes intact.
54In typical tokamak literature it is however more common to use the major radius R of the torus for normal-

isation of the equilibrium length scales.
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magnetic field in the geometries, they are made as similar as possible by choosing the flux-tube
to span a single poloidal turn and lie on the flux surface55 characterised by a total enclosed
flux of s = ψ/ψa = 0.5 where ψa is the enclosed toroidal flux at the plasma edge. As the flux
increases with distance from the magnetic axis as ψ ∝ r2, this corresponds to a flux surface at
a radius of r/a ≈ 0.71. For consistency with neglecting electromagnetic fluctuations the input
magnetic fields correspond to equilibria at β = 0. The only differences between the geometries
is then the structure of the magnetic field, which determines the magnetic wells through B as
well as the particle drifts through its gradients.

The differences between flux surfaces of the configurations have already been highlighted in
Figure 13, which have been chosen at the corresponding radial position of r/a = 0.71 at which
the flux-tube simulations are performed. The variation of the magnetic field strength and its
curvature within the flux-tube generated on this surface are shown in Figure 17, where the cur-
vature vector κ is represented by its so-called “normal component” as this curvature component
is associated with MHD instabilities of the plasma, with negative values corresponding to “bad
curvature” regions [3,12,46]. In the low β approximation this component roughly correspond to
the radial derivative of the magnetic field strength, such that negative values correspond to ra-
dially outward drifts. Notice how there is an overlap between these regions of bad curvature and
the magnetic wells in DIII-D and HSX, whereas this is partially avoided in W7-X, particularly
at the outboard side.

For the simulation parameters, a seemingly artificial case with only density gradients is con-
sidered. This is done to create an idealised limit where other instabilities driven by the tem-
perature gradient can be ruled out, and the TEM can be isolated as much as possible [137].
In literature it is quite common to consider such idealised scenarios to study particular gy-
rokinetic instabilities [149]. ITG modes are typically simulated using only isothermal adiabatic
electrons (ηe = 0) and having an ion temperature gradient much larger than density gradi-
ent ηi ≪ 1 [71,73, 79, 127,147,160] whereas ETG modes are typically simulated in the opposite
limit [17,74,102,161]. Although an electron temperature gradient could also drive TEMs, includ-
ing a finite ηe in the simulations would result in a mixed TEM/ETG spectrum [75]. Similarly if an
ion temperature gradient would be included a mixed TEM/ITG spectrum would ensue if the elec-
trons are not treated adiabatically [68,76,143,149,149,162]. As the main goal of the thesis is to
assess the role of the collisionality on TEMs, the normalised density gradient is fixed to the value
a/Ln = 3.0 for all simulations, which is a typical value considered in gyrokinetic simulations of
stellarators [11,137]. Furthermore as the most transport relevant instabilities which significantly
affect the confinement time occur at long wavelengths w.r.t. the ion gyroradius, simulations are
performed for wavenumbers up to kyρs = 2 as in [76,95,163], which is in between extrema found
in literature of only simulating extremely long wavelengths kyρ ≤ 1 [75,77,143,164] and taking
into account extremely small wavenelgths kyρ ≥ 5 [19, 95, 165]. Each simulation set for a value
of the collision frequency then consists of a scan over the binormal wavenumber kyρs ranging
from 0.1-2.0 with a stepsize of 0.1. Lastly the temperature ratio is fixed τ = 1.0 for all simula-
tions, which is a decent approximation for actual experimental conditions of DIII-D [166–168]
and W7-X [55, 169, 170] but not in HSX where the confinement time is too short for ions and
electrons to exchange sufficient energy such that ions remain “cold” at several tens of eV while
the electrons are heated to about a keV [171–173]. Accounting for different temperature ratios
would complicate the comparison between the geometries and thus the simulations for HSX will
be somewhat artifical but the simulations could nevertheless still be insightful to assess how
turbulence in an HSX-like reactor would behave.

55As the three devices, however, have different major radii R0, these surfaces do correspond to distinct aspect
ratios r/R0.
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Figure 17: Plots of magnetic field strength and normal component of the curvature vector within
the flux-tube geometry used as simulation input for (a) DIII-D, (b) HSX, and (c) W7-X respec-
tively. The variation of all geometric quantities related to the magnetic field (like B and κ) within
the flux-tube are the generated output from the GIST code [159], which uses the EFIT/VMEC
equilibrium data from Figure 13 as input.
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4.2.2 Convergence test and base-case results

As the simulations are performed using finite resolutions it is important to assess whether
the results are actually physical or a numerical effect of the discretisation. Nevertheless for
computational costs it is desirable to use as low as possible resolutions, leading to trade-off.
For an optimal compromise in this trade-off convergence tests are first performed in the grid
resolutions to assess that the results are fairly insensitive to the chosen resolutions. For linear
simulations the number of Fourier modes in the y direction is fixed to one, and the number of
grid points in the parallel direction nz0 is determined by the resolution used to generate the
geometric information using the GIST code. For TEMs it has empirically been found that a
resolution of 16 grid points along the field line per magnetic is sufficient to resolve the TEM [96],
such that the chosen resolutions of nz0 = 64, 128, 96 for DIII-D, HSX, W7-X respectively are
ample for the simulations of interest.

This leaves three resolutions to be set: nkx0, nv0, nw0 corresponding to the number of Fourier
modes in the x direction56, and the number of grid points in the v∥, µ directions respectively. To
find a balance in the required resolutions, simulations are first performed with a low resolution
set of nkx0 = 11, nv0 = 24, nw0 = 8 and then subsequently doubled, tripled, quadrupled, etc..
After each consecutive run the results for the growth rate and real frequency are compared and
if the descrepancy is less than 5% while the spectral distribution in kx has remained identical
the result is considered as converged. As the resolution increases are rather course by changing
both spatial and velocity resolutions simultaneously, next a hybrid convergence test between
the previous and new resolution is done where only nkx0 or nv0, nw0 are increased to see if
additional spatial or velocity resolution is required for convergence and find a more minimal
set of resolutions. Lastly, the value of the hyperdiffusivity ϵz (see Footnote 53 for notation) is
adjusted from its (relatively high) default value of 2.0 to roughly the maximum linear growth
rate found in the scan over wavenumbers according to [157, 158] and a last check is done to
see whether the results are insensitive to the decrease in hyperdiffusion. The hyperdiffusion in
velocity space is kept to its default value of 0.2.

The resulting resolution sets from this convergence test are shown in Table 1, where it can be
seen that stellarator geometries are much more computationally demanding requiring higher
resolutions. The only exception where convergence could be not reached, not even by increasing
the initial resolution sixfold were the smallest two wavenumbers in HSX kyρs = 0.1, 0.2. A
similar issue has previously been observed in non-linear simulations of HSX, where a longer flux
tube spanning multiple poloidal turns was required to reach convergence in the heat flux at low
wavenumbers, which is believed to be caused by the low magnetic shear of the device [174]. As
only a single poloidal turn flux-tube was available, these wavenumbers are subsequently omitted
from the analysis and all future simulations including collisions. The corresponding result for the
converged growth rate and real frequency obtained with these resolutions is shown in Figure 18,
which will be analysed in the next section.

56As a consequence of the double Fourier transform and the relation between Fourier coefficients ϕ̂kx,ky =

ϕ̂∗
−kx,ky , ϕ̂kx,ky = ϕ̂∗

kx,−ky for real valued quantities such as all physical observables, working with positive and

negative wavenumbers in the x and y directions is redundant since ϕ̂−kx,−ky = ϕ̂kx,ky . Therefore as the order of
Fourier transforms taken by GENE is first in the y, x directions, the number of Fourier modes in the x direction
and the number of radial grid points (as would be needed to compute fluxes) in the x direction are identical
nkx0 = nx0. Meanwhile the number of grid points in the y direction is ny0 = 2nky0 as negative wavenumbers
ky are retained (although the ”physical” y grid is never explicitly needed).
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Figure 18: Converged results for (a) the real frequency and (b) the growth rate for the different
geometries which form the reference base-case for comparison against the collisional simulations
of Section 4.3. The dotted black line in (a) corresponds the transition between modes traversing
in the ion- and electron diamagnetic directions.
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nkx0 nz0 nv0 nw0 ϵz
DIII-D 21 64 48 16 0.75
HSX 43 128 120 40 0.70
W7-X 33 96 96 32 0.25

Table 1: Minimal resolution sets of each geometry for which convergence in the complex mode
frequency and spectral distribution of the perturbations was reached for the collisionless base-case
simulations.

4.2.3 Mode identification

An important question is of course what has been simulated by GENE. To identify which type
of instability (often called a linear (eigen)mode of the linearised GKE) the results correspond
to three methods will be used. First of all the sign of the real frequency ωR can be used as
a signature for the type of instability, where in particular for TEM the mode is expected to
traverse in the electron diamagnetic direction ω⋆e. As a result of the GENE normalisations to
ion scales a positive frequency corresponds to a mode traversing in the ion diamagnetic direction.
Furthermore discrete jumps in the real frequency as the wavenumber is varied are indicative for
a change in instability type corresponding to another branch of the dispersion relation which has
become more unstable [125, 164, 175]. As a second tool the cross-phases between the different
fluctuations can be used to asses the type of instability, as according to the waveform model for
the instabilities discussed in Section 2.1 the electrostatic potential perturbation will be typically
π/2 out of phase with the perturbation of the driving factor for instability. In GENE the
fluctuations in the temperature are also treated anisotropically and split in a δT∥, δT⊥ where the
parallel temperature fluctuation is defined as δT∥ ≡

´
mv2∥δfd

3v and idem for the perpendicular

temperature (with a factor of 1/2) [157]. As passing particles are characterised by their large
parallel velocity the δT∥ fluctuations can be taken as a proxy for the passing particle response
while δT⊥ can be taken as a proxy for the trapped particle response [143]. Lastly the spatial
mode structure along the field line is a third method for mode identification, since TEMs are
expected to peak in magnetic wells where the trapped particle reside. In contrast, although
it is not discussed in this thesis, the passing particle instability of the ITG is characterised by
peaking of the mode structure in bad curvature regions rather than magnetic wells [95, 127].
These methods will now be applied to the results of Figure 18.

4.2.3.1 DIII-D

Starting with the simplest case of the DIII-D tokamak, it can be seen from Figure 18 that for
wavenumbers kyρs ≤ 1 the mode is traversing in the direction of ω⋆e, and then switches to the
ion direction for larger wavenumbers. This switch however occurs very gradually as opposed to
changes in ωR in the stellarators, indicating that this is not a change to a different instability
type. Interestingly enough the growth rate γ peaks at kyρs = 1 where the transition occurs.
These are all the properties of the so-called “ubiquitous mode” (UM) from Coppi et al [175],
which is the short wavelength extension of the classical TEM corresponding to the large kyρ
limit of the same branch of the dispersion relation as the TEM [69, 164], thus explaining the
smoothness in ωR curve. Rather than being a kinetic instability, the instability is more fluid-like
and is no longer driven by a resonance with the electron drift but a combination of ion/electron
drifts such that the mode still relies on the existence of trapped electrons, but is less tied to the
magnetic wells and is more localised to the regions of bad curvature [19]. The growth rate of this
fluid-like instability is, however, much larger than the resonant growth rate of classical TEM at
the same wavenumber such that the UM becomes the dominant instability mechanism, which
peaks when the competing mechanisms of electron/ion drift cancel at zero real frequency [175].
A look at the mode structures along the field line in Figure 19a reveals that at low kyρ the mode
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is peaked at θ = 0 at the depth of the magnetic well as expected for a classical TEM, but as the
wavenumber increases and the mode has transitioned to UM regime the mode structure is more
flattened out and extends more towards higher field regions to maximise the ion drive from the
unfavourable curvature regions.

Taking a look at the cross-phases in Figure 19b it can be seen that at low kyρ the instability
is driven by a combination of δT⊥,e and δn fluctuations as expected for TEMs. Oddly enough
the δT⊥,e crossphase becomes negative indicating stabilisation already at kyρ = 0.8 before the
transition to UM occurs, and there is no similar instability driving factor characterised by
positive cross-phase occuring for the ions after the transition to UM. The only match between
the cross-phases and the UM transition is that this occurs when the cross-phase with the density
fluctuation is exactly +π/2 where the maximum instability drive is expected as the E×B will
purely enhance the density perturbations as seen in the basic drift-wave models from Section 2.1.
The cross-phase with the density perturbations alone can in fact completely explain the growth
rate growth rate spectrum from Figure 18, initially increasing up to kyρ = 0.1 as the cross-phases
approaches φ→ +π/2 and then decreasing again as the cross-phase passes +π/2 and continues
to rise resulting in a more out of phase E ×B fluctuations again.
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Figure 19: Analysis of the base-case results for DIII-D showing (a) the shape of the mode struc-
ture in the flux tube for some selected wavenumbers compared with the shape of the magnetic
field and curvature and (b) the cross-phases between the different perturbations, as obtained from
a weighted average over the mode structure of the electrostatic potential.
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4.2.3.2 HSX

Moving on to the analysis of HSX, the spectrum of the real frequency shows that the instability
is always propagating in the electron diamagnetic direction ω⋆e, but several transitions to a
different branch of eigenmode occur. As the magnetic field in HSX is not a max-J configuration,
these modes are expected to be TEMs. In contrast to DIII-D however, there is no emergence
of the UM and the growth rate does therefore not peak but there is a clear transition around
kyρ ∼ 0.8 where the modes becomes increasingly unstable with wavenumber. In this case mode
identification is most easily performed by looking at the mode structure along the field line in
Figure 20a, which shows strong correlation between significant changes in mode structure and
the different branches in the spectrum for ωR. Except for the mode at the lowest wavenumber
kyρ = 0.3 all mode structures are clear TEMs and only differ in which of the magnetic wells
they peak, with a general trend that as kyρ increases the instability becomes more and more
tokamak-like peaking only at the central magnetic well at the outboard side where there is the
most overlap between bad curvature and well sturcture, which are slightly shifted toward the
inboard side (θ = ±π), which also explains the “kink” in the growth rate curve near kyρ ≈ 0.7
where the transition occurs between mode peaking at the in- and outboard sides of the torus.

Returning to the exception at kyρ = 0.3, the mode does not seem to favour peaking at the
magnetic wells or bad curvature regions, and is hardly localised anywhere in the geometry
almost satisfying Φ/ ⟨Φ⟩ ≈ 1 where ⟨Φ⟩ is the average electrostatic potential along the entire
field line. This mode is in fact the so-called “Universal Instability” (UI) which is a general
electrostatic plasma instability corresponding to another unstable variant the basic drift wave
that relies only on the existence of a density gradient and is therefore unaffected by trapping
effects, which is traditionally studied in slab geometry [165, 176]. The UI is also found to exist
in toroidal geometry, as inferred from tokamak simulations, with typical characteristics besides
its unlocalised mode structure that it occurs at low wavenumbers and low magnetic shear,
propagates in the electron diamagnetic direction, and is driven by parallel Landau resonances of
passing particles [163]. The existence of the UI in stellarator geometries have only recently been
established in gyrokinetic simulations [177], where they are more strongly anticipated to occur
than in tokamaks as a consequence of the much lower magnetic shear typical for stellarators [43].

Taking a look at the cross-phases in Figure 20b the UI can indeed by clearly distinguished from
the TEMs by a much weaker coupling to the δT⊥,e fluctuations although there does not seem
to be a destabilising interaction with the δT∥ fluctuations of either species as expected for the
Landau resonances. Furthermore at kyρ = 0.3 the cross-phases would predict a negligibly small
growth rate compared with kyρ = 0.4 even though this is not observed in the actual spectrum
of Figure 18.
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Figure 20: Analysis of the base-case results for HSX showing (a) the shape of the mode structure
in the flux tube for some selected wavenumbers compared with the shape of the magnetic field
and curvature and (b) the cross-phases between the different perturbations, as obtained from a
weighted average over the mode structure of the electrostatic potential.
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4.2.3.3 W7-X

Lastly the modes in W7-X are investigated, which is expected to be stable against classical
TEMs as the magnetic configuration results in the max-J property. From the spectrum of
the real frequency it can be seen that modes propagating in the electron diamagnetic direction
are only found for kyρ < 0.4 with the remainder of the modes traversing in the ω⋆i direction,
identifying only a few candidates for potential classical TEMs. The modes in the ion branch of
the spectrum is the so-called ion-driven trapped electron mode (iTEM) identified by Plunk et al
as the extension of the UM to stellarator geometry [93], and is characteristed by a non-resonant
destablisation from ion drift which requires the interaction of the fluctuations with the trapped
electrons to change the propagation direction of the unstable drift wave. Just like with the UM
it can indeed be seen that the ωR passes through zero at kyρ = 0.1, 0.7.

Taking a look at some of the mode structures in Figure 21a it can be seen that with the exception
of the kyρ = 0.3 mode which clearly propagates in the electron diamagnetic direction all other
modes show a clear TEM structure and the different branches in ωR can again be associated with
the mode structure peaking in a different magnetic well like in HSX. The major differences is
however that these iTEMs cannot peak at the outboard side because of the mismatch between
bad curvature and magnetic well at θ = 0, explaining the much lower growth rates of the
instability. The only exception is the kyρ = 0.3 mode which is insensitive to the magnetic
geometry and together with its propagation direction in the electron diamagnetic direction is
a typical UI. Typically the UI would be overshadowed by the TEM as a result from the much
stronger resonant instability drive by trapped electrons, and is therefore expected to emerge only
in more peculiar magnetic configurations like in W7-X where such a resonant drive is rendered
impossible [132].

Taking a look at the cross-phases in Figure 21b the UI can clearly be identified by sharp drops
in the cross-phases δT⊥ of both species, although striklingly it is the δT∥,i fluctuation which has
an a positive cross-phase as opposed to the δT∥,e fluctuation based on the fact that the UI is
characterised by a resonance with passing electrons [132, 165]. The cross-phases also provide
some insight to the mode at kyρ = 0.2 (not shown in Figure 21a, but discussed in more detail
in Section 4.3) which also propagates in the electron diamagnetic direction, but has a hybrid
mode structure in between TEM- and UI-like. This is reflected by the cross-phases, where the
δn cross-phase is seen to drop similar to the kyρ = 0.3 mode in both HSX and W7-X which
have clear UI-like mode structure, but the δT⊥,e cross phase remains similar to those of iTEM
modes at larger wavenumbers, indicating some competition with instability drive from trapped
electrons.

Also interestingly the δT⊥,e cross-phase does not change sign near the transition to iTEM as
observed before in the tomakak case for the UM. However, similar to the tokamak case of
Figure 19b there does not seem to be a change to the stability properties of the cross-phase
from the δT⊥,i fluctuations as expected, and the zero crossings of the real frequency seems to be
completely linked to the density fluctuations cross-phase being +π/2.

4.3 Collisional simulations

4.3.1 Changes to the code and realistic collisionality regimes

In order to perform collisional simulations, a collision operator has to be specified for the GENE
code to use. Since the collisions are expected to mainly influence the TEM through collisional
(de)trapping, only the pitch-angle scattering part of the collision operator is accounted for, which
is a common choice for collisional simulations in literature [18, 74, 75, 77], which at least for the
case of electron-ion collisions accurately decribes the full Coulomb collision operator to lowest
order in the mass ratio [20, 70]. This means that in the code the “test” part of the collision
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Figure 21: Analysis of the base-case results for W7-X showing (a) the shape of the mode structure
in the flux tube for some selected wavenumbers compared with the shape of the magnetic field
and curvature and (b) the cross-phases between the different perturbations, as obtained from a
weighted average over the mode structure of the electrostatic potential.

operator (see Section 2.3) is modelled as [86,106]

⟨Css′(gs, FMs′⟩R = νss
′

D ⟨L(gs)⟩R =
νss

′
D

2

[
∂

∂ξ

(
1− ξ2

) ∂
∂ξ

−
(
1 + ξ2

) v2
v2Ts

k⊥ρTs

]
gs

where ξ = v∥/v is a proper dimensionless pitch-angle variable, L the Lorentz scattering operator
as given by Equation (15), and the gyroaveraging procedure does not affect the diffusion in pitch
angle but results in a FLR correction for the perpendicular velocity diffusion term (as alluded to
in Section 2.5). For the “field” part of the collision operator a conservative model operator which
ensures that particles, momentum and energy remain conserved, as a direct evaluation of the
Rosenbluth potentials Equation (12) it typically believed to be too computationally intensive
[87, 88, 90, 178], although state-of-the-art is now moving towards exact treatment of the field
particle operator [89,91].

A second concern is the input values of the collision frequency parameter ν̃c which can essen-
tially be set to arbitrary values. To prevent simulating unrealistically low or high collisionality,
the experimental profile data for density and temperature shown in Figure 22 are used as a
reference guide for realistic ranges of the collision frequency parameters, where the dashed
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line corresponds to the radial position of the flux-tube used in the simulations. Using Equa-
tion (81) the collision frequencies in Figure 22 correspond to GENE collision frequency ranges
of57 log10(ν̃c) ≃ [−3.5,−2.5], [−5.0,−2.5], [−3.5,−1.0] for DIII-D, HSX and W7-X respectively
indicating that there is fairly little overlap between the devices for assessing the influence of
collisionality. Furthermore, the collision frequency range for the reactor regime parameters from
Figure 1a spans [−5,−3.5] showing a clear mismatch between present day experiments and future
reactor conditions. To properly assess the influence of collisionality on the instabilities and facili-
tate a comparison with the perturbative theory calculation of Section 3.5, the collision frequency
will have to be varied through several orders of magnitude. Therefore using the realistic ranges
above as a guide the collision frequency parameter is varied between log10(ν̃c) = [−6.0,−1.0]
with a stepsize of 1.0, thus spanning the full plasma conditions from deep core to edge regions
in any realistic device.

4.3.2 Simulation results

For the results that follow below, only the frequency spectrum and mode structure are discussed
and used to assess the influence of collisions on the instability since the cross-phase diagnostic
did not prove to be extremely reliable tool in the base-case scenario. For completeness, the
changes in the cross-phase with collisionality are presented in Appendix O, where in general the
influence of collisions on the cross-phase is negligible, leading in general to a reduction of the
cross-phase angle with the δn perturbation across all devices and a sudden switch of cross-phase
sign of the δT⊥ perturbations as collisionality is increased in HSX and W7-X only.

4.3.2.1 DIII-D

In the case of DIII-D, simulations at the highest collision frequency ν̃c = 0.1 proved not to
be feasible as the numerical methods were unstable resulting, in large spectral pile-up of the
perturbations at the largest radial wavenumbers |kx| for all ky in the scan. This could not be
cured by increasing the resolutions or hyperdiffusion further such that only the results up to
ν̃c = 0.01 are retained. At the second highest collision frequency a similar spectral pile-up also
occurred but only at the two largest wavenumbers kyρ = 1.9, 2.0, as shown in Figure 23, which
are therefore omitted from the analysis.

The results for the frequency and growth rate for the numerically stable simulations are shown
in Figure 24, from which it can be seen there is a general downwards and smooth trend in both
ωR, γ as the collision frequency is increased, with exception of the highest collision frequency of
ν̃ = 0.01. A separate run at double the resolutions has been performed to assess that this is not
a numerical effect which matched within 10% showing that the results are indeed converged.
Regarding the ν̃ = 0.1 simulation as a separate case, there is a slight shift of the zero-crossing of
the real frequency to higher wavenumbers and an even weaker shift in the peak of the growth rate
to smaller wavenumbers, which is line with the theory predictions of the Ubiquitous Mode [175].
As the collision frequency is increased the TEM structure becomes slightly less peaked and
starts to “leak out” of the magnetic well explaining the reduction in growth rates as shown
in Figures 25a and 25b. At the higher wavenumbers where the base-case result changes to an
Ubiquitous Mode the collisions gradually make the mode structure more curvature driven as
shown in Figures 25c and 25d, which is expected as the trapped electron instability mechanism
will be reduced by the decreasing fraction of effectively trapped electrons and provides less
competition to the ion curvature drive mechanism. Furthermore the reduction in the trapped
electron fraction also explains the decrease in the growth rate at the high wavenumber part of
the spectrum. The mode structures from Figure 25 also explain why the frequency spectrum

57The maximum collision frequency is determined at r/a = 0.95 as at the edge of the plasma the density and
temperature drop too rapidly for the collision frequency to vary smoothly.
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Figure 22: Experimental density- and temperature profiles for (a) DIII-D [168], (b) HSX [172]
and (c) W7-X [170] and the corresponding profile of the 90° scattering frequency calculated from
Equation (17). The dashed vertical line corresponds to the radial position of the flux-tube used
for the simulations and is included as a reference. The data from (a),(c) corresponds to fits to
experimental measurements while (b) corresponds to raw data supplemented with interpolating
splines of second order. All data is reproduced with the permission from respective authors.
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Figure 23: Ballooning representation of the electrostatic potential perturbation for several values
of the binormal wavenumber from the ν̃c = 0.01 simulations, showing the spectral pile-up for
kyρ = 1.9, 2.0 near θp = −20. This ballooning representation of the perturbations is closely
related to their representation in Fourier modes, and the ballooning angle θp is closely related to
the radial wavenumber kx [156], such that Φ(θp) can be interpreted as a spectral-intensity-like
quantity. This ballooning representation is however beyond the scope of the thesis to discuss (see
e.g. Footnote 69 and the references therein).
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for ν̃ = 0.01 stands out, as it corresponds to a different type of instability which is strongly
curvature driven, and also explains the emergence of a new branch at kyρ = 1.60 where the
mode structure mirrors its asymmetry w.r.t. θ = 0.
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Figure 24: Dependence of (a) the real frequency and (b) the growth rate of the instabilities in
DIII-D on the collision frequency, where the lines are colour coded such that dark hues correspond
to a low collisionality and light hues correspond to a high collisionality. The dotted black line
in (a) corresponds the transition between modes traversing in the ion- and electron diamagnetic
directions.
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Figure 25: Changes to the shape of the mode structure of the electrostatic potential along the
field line with collisionality for (a) kyρ = 0.20, (b) kyρ = 0.50, (c) kyρ = 1.40, (d) kyρ = 1.80,
where the lines are colour coded such that dark hues correspond to a low collisionality and light
hues correspond to a high collisionality. The cases of (a) and (b) correspond to the TEM regime
of the base-case whereas the cases (c) and (d) correspond to the UM regime of the base-case.
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4.3.2.2 HSX

For the collisional simulations in HSX and W7-X all results were healthy and no data had to
be disregarded. Starting with HSX, the results for the frequency and growth rate are shown
in Figure 26. In contrast to the DIII-D results the growth spectrum does not monotonically
decrease with increasing collisionality at all wavenumbers. Although this collisional stabilisation
is present at high kyρ, there seems to be some destablisation as a result of collisions at low kyρ.
From the spectrum of ωR it can be seen that the collisions have a significant influence on the
transitions to different branches of the dispersion relation. This is most easily seen for the
transition to the the high wavenumber branch, which occurs for kyρ = 1.20 in the collisionless
case but already happens at kyρ = 0.70 for the highest collisionalities. More interestingly,
however, is the behaviour at low wavenumber where in the base-case the UI and transitions
between different TEMs are observed. The addition of collisions is seen to completely change
the observed branches at low kyρ, indicating the emergence of a different type of mode compared
to the base-case.

These potential changes in the mode type could explain the observed the destabilisation if the
new mode changes from trapped- to passing particle drive. The changes in the mode structure for
a few cases of interest are shown in Figure 27 where strikingly it can be seen that at low kyρ < 0.4
increasing collisionality promotes a change of the mode character from TEM-like to more UI-like
(see Figure 27a). This confirms the suspicion about the destablisation effect at kyρ < 0.4, as
apparently the UI becomes more unstable than the TEM with increased collisionality. However,
as both the wavenumber and collisionality are increased a gradual transition back to TEM
occurs (see Figures 27b and 27c). The destabilisation in the range of 0.4 < kyρ < 1.0, where
the collisional simulations transition back to TEM, can be explained from the fact that the new
modes are more strongly peaked at the outboard side with more overlap between unfavourable
curvature and the magnetic well (most clearly illustrated by Figure 27c). In contrast at high
kyρ, when the collisionless mode from the base-case also is also located at the outboard side, the
mode peaking decreases with collisionality as seen in Figure 27d, explaining why the collisional
γ curves cross those of the base-case and stabilisation with collisionality is observed again.

A last feature of interest is that the at the largest collisionality ν̃c = 0.1 the propagation frequency
of the mode changes to the ion diamagnetic direction and the growth rate starts to plummet
more strongly for kyρ ≳ 1.70. This is explained by the mode structure at higher wavenumbers
which reveals that the two “bumps” seen near θ = ±0.3 in Figure 27d which are not present at
the lower collisionalities have grown into small sidebands to the central peak, such that there is
a small contribution from the favourable curvature region κ > 0.
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Figure 26: Dependence of (a) the real frequency and (b) the growth rate of the instabilities in
HSX on the collision frequency, where the lines are colour coded such that dark hues correspond
to a low collisionality and light hues correspond to a high collisionality. The dotted black line
in (a) corresponds the transition between modes traversing in the ion- and electron diamagnetic
directions.
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Figure 27: Changes to the shape of the mode structure of the electrostatic potential along the
field line with collisionality for (a) kyρ = 0.40, (b) kyρ = 0.50, (c) kyρ = 0.70, (d) kyρ = 1.20,
where the lines are colour coded such that dark hues correspond to a low collisionality and light
hues correspond to a high collisionality. The transitions to different branches of the dispersion
relation caused by the collisions are clearly identified by the different shape of the mode structure.
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4.3.2.3 W7-X

Lastly the simulation results for the mode frequency and growth rate for W7-X are shown in
Figure 28. Similarly as in HSX the growth rate spectra reveals that at low kyρ the collisions
have a destabilising influence whereas at high kyρ the collisions are stabilising. Much more
interestingly the spectrum of the real frequency reveals that collisions are capable of exciting
instabilities propagating in the electron diamagnetic direction ω⋆e where previously iTEMs were
found. This hints at the possibility of collisions driving the classical TEM, which is expected to
be absent due to maximum-J property of the magnetic configuration, unstable. However, these
modes could equally be the UI which are also characterised by a negative frequency ωR, so a
more elaborate investigation of the mode structure is required is warranted.

The changes to the mode structure for a handful of interesting wavenumbers are shown in
Figure 29. From Figure 29a it can be seen that at kyρ = 0.2, where in the base-case the mode
structure is some hybrid form between UI and (i)TEM, the collisions are able to “wash-out”
the remaining TEM feature and result in a pure UI mode. Furthermore the base-case UI at
kyρ = 0.3 is unaffected by collisions and remains an UI at all collisionalities, indicating that
increasing collisionality favours the UI at low wavenumber as also observed in HSX. Meanwhile
at intermediate wavenumbers kyρ (and at kyρ = 0.1) where the base-case mode is an iTEM, the
collisional modes largely have an UI character which is not strongly influenced by the geometry
and even peaks in region of local magnetic maxima (as seen in Figures 29b to 29d). Unlike at low
kyρ the mode structure does not immediately change towards UI at the slightest collisionality but
occurs only above ν̃c = 1 × 10−4, which is consistent with theory calculations of UI predicting
that collisions initially stabilise the UI but above a certain collisionality start increasing the
growth rates [179].

Notable exceptions to this transition to UI however can be found at the ν̃c = 1 × 10−4 mode
in Figure 29c and ν̃c = 1 × 10−4, 1 × 10−3 modes in Figure 29d which show signs of peaking
at the magnetic wells near θ = ±π/2. Since the propagation frequency ωR in these cases is
in the electron diamagnetic direction these could be TEMs, however, the peaking of the mode
structure is not as strongly pronounced as for the iTEM case. Looking at the mode structure
for higher wavenumbers provides some insight in the character of these modes as the solution
for ν̃c = 1× 10−3 is already in its last branch of ωR, whereas the solution for ν̃c = 1× 10−4 still
undergoes a change to a branch propagating in the ion diamagnetic direction at slightly higher
wavenumbers. From Figures 29e and 29f it can be seen that the ν̃c = 1 × 10−4 mode solution
is peaked more strongly at the same θ = ±π/2 wells after transitioning to the iTEM branch
whereas the ν̃c = 1 × 10−3 mode solution doesn’t change. Since the solution for ν̃c = 1 × 10−3

is less strongly localised to the well and shows a local increase in its amplitude at θ = 0.0
this mode is most likely a hybrid case of UI-TEM where the trapped electrons provide some
additional destabilisation. In contrast, the ν̃c = 1 × 10−4 mode solution has its amplitude
more evidently localised to the well at θ = ±π/2 and this localisation is further strengthened
after transitioning to iTEM, indicating that this was indeed likely a classical TEM emerging as
a result of collisions spoiling the favourable bounce average drift of the max-J configuration.
More striking in Figures 29e and 29f is however the mode structure at the highest collisionality
ν̃c = 0.1 which starts to favour the outboard side of the torus (|θ| < π/2 although still with
little regard to either curvature of the magnetic wells, such that this mysterious mode is neither
UI nor TEM like.
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Figure 28: Dependence of (a) the real frequency and (b) the growth rate of the instabilities in
W7-X on the collision frequency, where the lines are colour coded such that dark hues correspond
to a low collisionality and light hues correspond to a high collisionality. The dotted black line
in (a) corresponds the transition between modes traversing in the ion- and electron diamagnetic
directions.
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Figure 29: Changes to the shape of the mode structure of the electrostatic potential along the
field line with collisionality for (a) kyρ = 0.40, (b) kyρ = 0.50, (c) kyρ = 0.70, (d) kyρ = 1.20,
where the lines are colour coded such that dark hues correspond to a low collisionality and light
hues correspond to a high collisionality. The transitions to different branches of the dispersion
relation caused by the collisions are clearly identified by the different shape of the mode structure.
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5 Comparison between theory and simulation

The effect of finite collisionality on the stability TEMs has been independently investigated
using analytical theory by means of a perturbative approach in Chapter 3 and simulations by
a gyrokinetic code in Chapter 4. Both methods have given result for the growth rate and have
considered the same set of magnetic geometries. Before moving on to wrap up the thesis, it
would be proper to ask whether there is agreement between the results from these methods.
This is first assessed on a qualitative level in Section 5.1, and then as an ultimate test on a
quantitative level in Section 5.2

5.1 Qualitative comparison of growth rates

The qualitative comparison is straightforward as it can be performed visually by comparing the
trends of the growth rate from the perturbative approach Figure 15 with those from simulations
Figures 24, 26 and 28, which is further facilitated by the scaling laws. The perturbative calcula-
tion predicts that at extremely low collisionality DIII-D is most unstable, followed by HSX which
has low growth rates at low wavenumbers but becomes more unstable as kyρ increases until the
growth rates are comparable to DIII-D, and lastly that the growth rates in W7-X remain small
for all wavenumbers which is in decent agreement with the base case simulation results of Fig-
ure 18. From the scaling laws of Figure 15a it is found that at initially at low collisionality the
growth rates in DIII-D are unaffected by collisionality, but start to decrease at high collisionality
which is confirmed by the collisional simulation results of Figure 24. Meanwhile the scaling laws
for HSX Figure 15b predict that the high wavenumber modes are largely unaffected by colli-
sions until the dissipative effect of collisions is strong enough to decrease the growth rate, while
at lower wavenumbers the growth rates increase with collisionality, as is also in line with the
collisional simulation results of Figure 26. For W7-X the scaling laws of Figure 15c predict that
the modes below kyρ = 1.0 are destablised by collisions up to a maximum value after which the
growth rates decrease again but remain larger than their collisionless counterpart. In contrast
the growth rate of the modes above kyρ = 1.0 are initially not affected by collisions at low colli-
sionality, then somewhat destabilised at intermediate collisionality but eventually get stabilised
by strong dissipation at high collisionality. These observations are mostly in agreement with
the collisional simulation results of Figure 28, except for the high wavenumbers at intermediate
collisionality. Thus it be ascertained that there is least a decent qualitative agreement between
the trends in growth rates from both methods. This raises the question if, besides just qualita-
tive agreement, there is also quantitative agreement between the calculations, which could make
the perturbative approach whose calculations are relatively cheap enough to be performed on
a home computer system an attractive alternative to the gyrokinetic simulations which require
super computers.

5.2 Quantitative comparison of growth rates

To facilitate a quantitative comparison between these methods, however, the different normali-
sations which are used have to be matched to reach a common basis of reference. The collision
frequency is most easily matched by translating the GENE values to the physical collision fre-
quency ν̂ei to get a handful of discrete points along the logarithmic ν̂ei/ωphys

⋆e axis used in the
perturbative calculation. Comparing the growth rates is a little more intricate, as the GENE
results use a fixed reference normalisation of cs/a and stay within the same O(0.1− 1.0) range,
whereas the perturbative results are normalised to ⟨ω0⟩ which changes with wavenumber and
span a handful of order of magnitudes. A comparison of the relative changes in the growth rate,
which would be attractive to consider since it is normalisation independent, is thus not feasible
as these diverge for the perturbative calculation. Therefore the absolute change of the growth
rates expressed in the fixed GENE units of cs/a are compared instead, which also removes the
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hidden dependence of the perturbative growth rates on kyρ. The translation factors for convert-
ing between these normalisations are given in Appendix M.3, and the resulting comparison of
growth rates is presented in Figure 30.

It can be seen that the quantitative comparison between the solutions is rather poor, which is
somewhat to be expected given the numerous approximations that went into simplified pertur-
bative calculation. Especially the fundamental approximation that the shift in frequency is small
δω/ω0 ≪ 1 which justifies the use of the perturbative approach is quickly violated as already
clear from Figure 14 where both the real and imaginary part of the frequency shift are of O(1)
in a large part of parameter space. What determines the validity of the perturbative approach is
that the total frequency shift in both real and imaginary should be small, for which the absolute
value |δω| can be taken as a decent proxy. In Appendix P it is shown that that the magnitude
of the frequency shift typically only stays below the 30% mark at low wavenumber (kyρ < 0.1

for DIII-D and kyρ < 0.5 for HSX/W7-X) or at very high collisionality log10(ν̂
ei/ωphys

⋆e ) > 0.5.
Furthermore the perturbative calculation inconsistently assumes the instability is an TEM with
a constant amplitude of the electrostatic potential along the field line, whereas the GENE sim-
ulations much more realistically result in a TEM mode structure which peaks in the magnetic
wells and allows for transitions to different modes like the UI and UM, whose instability mech-
anism cannot be described by trapped electron drift resonances and collisional (de)trapping at
all in case of UI or only partially in case of UM. Another potential source for discrepancy is that
the GENE simulations take into account the velocity space details of the realistic Fokker-Planck
collision operator, whereas the perturbative approach uses the simplified BGK operator.
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Figure 30: Comparison for the change in growth rate w.r.t. collisionless situation between the
perturbative calculation and GENE simulations for (a) DIII-D, (b) HSX and (c) W7-X. For the
perturbative calculation the wavenumbers which are the closest match to the wavenumbers used
in the GENE simulations have been selected for the comparison.
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6 Conclusion and outlook

In this thesis the influence of collisionality on TEMs is investigated in both tokamak and stel-
larator geometries using both analytical theory and numerical simulations. A concise overview
of the main results is presented in Section 6.1, after which the limitations on the present research
and ideas for future research are discussed in Section 6.2.

6.1 Summary of results

In summary, this thesis set out to assess what influence of collisions may have on onset of the
TEMs instability which is the dominant source of turbulent electron transport in present day
experiments [7, 94]. This is investigated through both analytical theoretically and numerical
simulations.

For the theory part an approximate perturbative calculation of the trapped electron response has
been formulated which extends the existing literature results applicable only in extreme limits
of collision frequency to an arbitrary collisionality regime and predicts that above a certain limit
TEMs would be stabilised by collisions as the drift resonance is avoided regardless of geometry.
Additionally the calculations predicts differences between geometries, with DIII-D experiencing
pure stabilisation but HSX and W7-X experiencing destabilisation at low wavenumbers and
stabilisation at high wavenumbers.

From the simulations it is found that the dominant instability in DIII-D are TEMs which
are strictly stabilised by collisions. In HSX the growth rates around found to increase at low
wavenumbers and intermediate wavenumbers, which is mostly due to a transition of the mode
to a more dangerous TEM peaking at the outboard side. At high wavenumbers, however, the
amplitude of this mode is quenched w.r.t. its collisionless counterpart such that growth rates
decrease with collisionality similar to DIII-D. Most interesting are the W7-X results, where the
collisionless resonant TEMs are prohibited by the max-J property of the magnetic field and
an iTEM occurs instead. For W7-X the collisions seem to excite a transition towards the UI,
which is practically insensitive to the existence of trapped particles or the details of the magnetic
geometry. An exception however seems to occur at 0.8 < kyρ < 1.20 where for a collisionality of
ν̃c = 1×10−4 a mode with TEM like signatures occurs, however, with the limited and unreliable
available data on the cross-phases it is not possible to determine that this mode is indeed strictly
driven by the trapped electrons and does not correspond to a collisional iTEM variant whose
real frequency is shifted downwards to the electron diamagnetic direction.

Although there is decent qualitative agreement between both methods, they have a poor quan-
titative match which can be attributed to the many approximations and simplifications made to
keep the theory analytically tractable, whereas the simulations are completely general and can
be performed up to an arbitrary level of desired detail. Note that the simulations presented in
this thesis constitute the first (to the best of the author’s knowledge) collision frequency scan for
electrostatic growth rates in W7-X, with previous collisional simulations consisting of a driving
gradient scan at a fixed value of ν̃c = 0.057 which reflects plasma conditions at the edge rather
than the core where transport is more dangerous.

6.2 Outlook

The work in this thesis indicates that the main role of collisions on the TEM is to quench its
growth rates, as intuitively would be expected based on the reduction of the effective fraction
of trapped particles, a feature both present in simulations and theory. Of particular interest
was whether collisions could result in the emergence of TEMs in W7-X which is stable against
collisionless TEMs, but collisions could spoil the favourable average electron precession drift as
a result of momentum decorrelation along the trajectory of trapped particles which “resets” the
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memory of the magnetic geometry that electrons build up over their orbit. The perturbative
calculation indeed predicts increasing (but still small) growth rates whereas the simulations
show that the main role of collisions is to facilitate a transition towards the Universal Instability
which is caused by passing particles instead. Such mode transitions occur as a consequence of the
disparate influence collisions have on the different instabilities and are much more prominent
in stellarators than tokamaks, where as a result of the more complex 3D magnetic geometry
typically a significant number of plasma instabilities can exist compared with the handful of
instabilities found in tokamaks [16,144].

Limitations on parameter regime

In the work quite some level of simplification has been introduced for both the theory and
simulations which allowed to zoom in on TEMs. Most severe is the limitation to density gradient
drive only, which is a poor reflection of the realistic plasma profiles of Figures 1a and 22,
especially for tokamaks where the temperature profile is significantly steeper than the density
profile. However given the discussion of subdominant instabilities above, this simplification is
necessary as the inclusion of temperature gradients could make the simulations prone towards
the ITG/ETG instability making it difficult to asses how collisions influence TEMs. In view of
the max-J stability criterion for TEM however the electron temperature gradient is relevant,
as detailed analysis of the energy exchange between electrons and the perturbed electric field
shows that above a gradient length ratio of ηe = 2/3 the trapped electrons could provide energy
to the instability and contribute to the growth rate [95,126]. However, in the limit of the iTEM
which has been observed in the simulations the electrons have been shown to exert a stabilising
influence for any ηe > 0 (correponding to usual peaked n, T profiles) [93]. Additionally the role
of magnetic fluctuations has been neglected by invoking the electrostatic approximation, which
is justified by the fact that typical fluctuation levels satisfy eδϕ/Te ≫ ∥δB⊥∥/B0 ≫

∣∣δB∥
∣∣/B0

such that magnetic instabilities are subdominant at low β [109]. Furthermore the growth rates of
collisionless TEMs are known to be insensitive to β unlike the ITG instability which undergoes
stabilisation with increasing pressure gradient [156], and since the collision operator has no
reference to the magnetic field it may be postulated that this does not change for collisional
TEMs. The growth rate of magnetic fluctuations however increases with β such they may
become the dominant instability at a β of a few % [125]. This is however a relevant regime for
stellarators which can operate at much higher β than tokamaks which are pressure limited by
the onset of MHD instabilities [43, 44]. However gyrokinetic flux-tube simulations at finite β
are difficult to perform since the magnetic geometry has to be consistently changed with β to
account for the influence of the plasma diamagnetic effect on the magnetic equilibrium [180].

Compatibility of flux-tube approach with non-axisymmmetric geometries

Another intricacy involved in the simulation is the use of flux-tube concept for stellarators. As
a result of the axisymmetry of tokamaks a single flux-tube spanning a single poloidal turn is
sufficient to sample the full geometry as all field lines on a flux surface are equivalent and the
geometry repeats itself after a poloidal turn [16]. This is not true in stellarators where each
field line on a flux surface corresponds to slightly different flux-tube which result in different
growth rates and fluxes corresponding to the same flux surface and some suitable averaging over
flux-tubes would be required [43, 139]. With how costly stellarator simulations are this is not
feasible and it is therefore common practice to simulate only the most unstable flux-tube [95,155]
as done in this thesis. Additionally the boundary condition used assumes periodicity in the
turbulence structure between the end-points of the flux-tube (see Appendix N) which is not true
in stellarators. However a detailed investigation by Martin et al implementing more “stellarator
friendly” boundary conditions show that the linear results are rather insensitive to the choice
of boundary condition provided that the flux-tube spans at least a full poloidal turn, although
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non-linear simulations could benefit from lower resolution requirements [153].

Inconclusive evidence for absolute stability of W7-X against collisional TEMs

A major limitation of the simulation results is that only the most unstable eigenmode is found
as a result of the explicit time integration of the GKE, such that any initialised perturbation
which can excite all instabilities will ultimately be dominated by the solution with the largest
growth rate leading to convergence of the results. No insight about stable or subdominant58

perturbations can be gained, such that it cannot be said that W7-X is absolutely stable to TEMs
even in face of collisions. For mainly illustrative purposes and as a brief preliminary exploration,
GENE has also been run with an eigenvalue setting59 to find some of the subdominant modes in
W7-X. This has been done for kyρ = 0.50 in the collisionless case and with a collision frequency
of ν̃c = 1 × 10−5 and 1 × 10−3, resulting in the frequency spectra of Figure 31. This shows
that in the collisionless case the instabilities concentrate in the iTEM region with positive ωR as
expected from the max-J propery of the configuration, but as the collision frequency is increased
the spectrum gradually shifts towards negative values of ωR indicating that TEMs could exist
as a subdominant instability next to the UI. This does provide some additional support that
the mode found at 0.8 < kyρ < 1.20 for ν̃c = 1 × 10−4 could plausibly be a TEM. A thorough
confirmation, however, would require additional simulations dedicated to this parameter region
with a finer stepsize in the collision frequency and the implementation of additional diagnostics
which can separate the contributions from trapped and passing particles to the instability drive as
opposed to the poor proxy indicators of the δT∥, δT⊥ fluctuation cross-phase available for present
simulations. Furthermore future simulations might also investigate the effect of including energy
scattering in the collision operator, which have been shown to provide additional stabilisation
to TEMs in tokamak [76].

Improvements of the perturbative approach

Some comments with regard to the theoretical work in this thesis are also due. The results
presented in Chapter 3 concern a perturbative approach of the trapped electron response with
quite some approximations. The discrepancy with the numerical simulations is quite large and
several reasons for this have been highlighted in Chapter 5. Future work could improve the
discrepancy between these two methods by two reasonable paths. First the simulations could
repeated with a BGK operator at the same collision frequencies to assess whether the abstraction
of the full kinetic details of the Fokker-Planck collision operator Equation (11) has a significant
results on the growth rates, and if so compare with the perturbative calculation again. A
more computationally friendly approach for improvement would be to lift the very unrealistic
flute mode approximation for the electrostatic potential ϕ̂(l) ≈ ϕ̂0 used for the perturbative
calculation to highlight the differences in geometry. The mode structure solutions from GENE
show that TEMs are characterised by an elecrostatic potential profile which peaks in regions of
low magnetic fields and bad curvature. Therefore as a significant improvement the GENE results

58These are perturbations with a positive growth rate which are smaller than the growth rate of the dominant
instability, which will eventually “fade out” from the simulations as a result of floating point number truncation.

59For the initial value setting, the GKE is explicitly evolved by means of direct time integration which can be
used to solve the GKE both linearly and non-linearly. As far as the linear physics is concerned, the gyrokinetic
equation can be cast in the form ∂g

∂t
= L[g] where L is a linear operator which can be represented as a matrix,

such that by assuming Fourier modes with a time dependence of exp(iωt) the linearised GKE takes the form of an
eigenvalue problem whose eigenvalues correspond to the complex mode frequencies and whose eigenveigenvectors
correspond to to the spatial structure of the perturbations, such that the linearised GKE can also be solved as an
eigenvalue problem [181]. A direct solution to the eigenvalue problem would require the construction and inversion
of the linear operator matrix which is extremely computationally extensive, and rather GENE uses an iterative
method based on trial functions for the perturbations such that only matrix-vector products have to be computed
and as a result a subset of eigenvalues is computed instead of the full spectrum, which has the advantage that
one can zoom in on the region of interest of eigenvalues corresponding to a positive growth rate [16].
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Figure 31: Eigenvalue spectrum of the 25 most unstable eigenmodes of the linearised GKE at
binormal wavenumber kyρ = 0.50 for W7-X in the collisionless case, and two collisional cases
corresponding to low and intermediate values of ν̃c considered for the simulations of Chapter 4.
The red encircled eigenvalues correspond to the most unstable eigenvalue at each value of ν̃c and
coincides with the results of Figure 28.

for the mode structure could be used as an additional input for the perturbative calculation,
which affects both the electron response and field line normalising integral in Equation (79) as
well as the average value of the perpendicular wavenumber Equation (77) used in the lowest order
solution ⟨ω0⟩. This would however mean that costly gyrokinetic simulations have to be run on a
super computer to generate input for a relatively cheap calculation which can be performed on
a personal computer, which defeats the purpose of using analytical theory to make predictions
about turbulence. As a hybrid option, a “proxy function” for the mode structure ϕ̂(l) depending
only on the fixed geometry input (B, κ) could be used to empirically account for the peaking
of the mode in magnetic wells and bad curvature regions, which currently being investigated as
an option for developing a proxy of the critical gradients below which the linear instabilities do
not occur [182,183].

Alternative theoretical approaches

However the largest restriction on the analytical approach is without a doubt the fact that the
trapped electron response is accounted for perturbatively, while being the most important in-
stability drive for TEMs. Indeed the resulting frequency shift δω far exceeds the leading order
frequency ω0 accounting only for adiabatic electrons and kinetic ions. Nevertheless the pertur-
bative approach takes into account the full kinetic details of the electrons, which is significantly
more accurate than iδ models from early literature which take into account the non-adiabatic
nature of electrons in an ad-hoc way as δn

n0
= eϕ

Te
exp(−iδ) where δ > 0 accounts for the phase

delay between electron density- and potential fluctuations [85, 184–186]. Here δ is used as a
proxy for any effect which prevents the electrons from establishing equilibrium along the field
line such as collisions, trapping or drift-resonances [69, 187, 188]. In Appendix E.2 it is shown
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that including the non-adiabaticity of electrons in this way to basic drift wave model leads to
an instability whose growth rate depends on δ.

Two alternative analytical methods for finding the TEM growth rate were considered which
treat the trapped electron response on equal footing with the remainder of the GKE. First
a thermodynamic description of plasma turbulence was considered based on the free energy
budget of the perturbations. This free energy consists of an entropy-like term which measures
the energy stored in the perturbation of the distribution function and an internal energy term
which measures the kinetic energy of the perturbed E × B drift [189–191], and for plasma
turbulence takes on a similar role as the kinetic energy does in fluid turbulence [8,192]. What is
special about the free energy is conserved by the E×B non-linearity such that it can be used to
to analyse plasma turbulence in both linear and non-linear phases [191,193–195]. The work done
on free energy can be found in Appendix Q which first extends the derivation of the evolution
equation for the free energy using the conventions of reference [111] to an non-uniform plasma
in an inhomogeneous magnetic field, and then applies the resulting equation to the approximate
solutions for the ion and electron kinetic response derived in Section 3.1 which describe the
linear TEM eigenmode to determine how the collisions influence the sign of the growth rate.
However this strategy resulted in a paradox-esque situation where the sign of the growth rate
can only be determined if the growth rate is a priori known. As a second alternative, the use
of a variational approach was considered. Variational approaches are extremely powerful and
ubiquitous in physics spanning classical mechanics [196], general relativity [197] and quantum
mechanics [198]. Within fusion, the variational principle is the working principle of the VMEC
code used to calculate 3D magnetic equilibria [142, 199] and stellarator coil optimisation [200].
The variational approach has also been applied to gyrokinetics in the past, with the focus on
finding the mode frequency at the limit of marginal stability in absence of collisions [126, 182],
and in the non-resonant fluid limit also to find the growth rate [175,201]. Some preliminary work
on an attempt to extent the validity of the variational approach to find the gyrokinetic growth
rates can be found in Appendix R, which is complicated by the inclusion of both growth rate
and collisions which require a complex variant of the “classical” real variational principle [202].
This creates a problem, where the resulting Euler-Lagrange equations are not guaranteed to be
consistent with the original quasi-neutrality condition they attempt to solve, which is a known
issue in variational formulation of dissipative quantum mechanics [203]. This matter has not
been succesfully resolved during the course of this thesis and might be considered for continuation
in future work.

Bridging linear stability analysis to turbulent transport

Finally to make the circle complete with Chapter 1, the need for investigating the role of collisions
was motivated based on Equation (1) which necessitates a sufficiently large density, temperature
and energy confinement time for fusion to be viable as an energy source, the latter of which
is limited by the turbulent transport. The turbulent transport fluxes are due to advection
of the fluctuating particle density and energy by the equally fluctuating E × B drift and is
therefore non-linear in the perturbations [71, 72, 75], such that the transport fluxes are not
properly resolved by the simulations. The relation between linear instabilities and the turbulent
transport is non-trivial as typically the modes with largest growth do not correspond to the
modes which contain the most transport [204]. In terms of Fourier modes the E ×B drift can
be expressed as a convolution [191]

(vE ·∇gs)k⊥ = − 1

B2

∑

k′
⊥

B ·
(
k′
⊥ ×

[
k⊥ − k′

⊥
])
J0(k

′
⊥ρs)ϕ̂k′

⊥
ĝs,k⊥−k′

⊥

which is responsible for “shuffling” energy between modes at different spatial scales [192], result-
ing in the eventual saturation of turbulence by drawing energy away from the growing modes at
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a similar rate as the energy injection by the linear driving term [16, 68, 74]. Plasma turbulence
however belongs to so-called “weak turbulence” which means that growth rates of instabilities
are sufficiently small such that properties of linear instabilities can fully develop before they
will interact non-linearly [128, 205]. This leads to the development of so-called mixing-length
estimates for the diffusion coefficients D ∼ γ/k2⊥ which allow to estimate transport fluxes based
on linear properties by quasi-linear models as [144,206]

{Γ, Q} ∝ {∇n,∇T} ×
∑

k

γk〈
k2⊥
〉 (82)

where ⟨k⊥⟩ is the weighted average of the perpendicular wavenumber over the mode structure ϕ̂
and γk is the growth rate at the wavenumber k, which gives the best method for determining the
turbulent transport with the available data of linear simulations. Such quasi-linear estimates
however ultimately fail to predict the actual saturated levels of turbulence and thus do not
accurately describe the absolute levels of transport [164]. Nevertheless, a quasi-linear model can
always be matched to a particular non-linear simulation to give the correct level of transport,
and then be used to “extrapolate” the fluxes using only linear data from simulations with new
parameters [18, 207, 208]. In the past, however, poor matches between changes to the quasi-
linear estimates and non-linear simulations of heat and particle fluxes with collisionality have
have been observed [73, 75]. By supplementing the simple quasi-linear model of Equation (82)
with additional physics-based weighting terms, it has in general been found that quasi-linear
estimates better approximate the heat- and particle fluxes from simulations over an extended
parameter regime [144,209–211].

The eventual failure of quasi-linear models when the physicals parameters are changed signifi-
cantly during the “extroplation” can be attributed to the complexity of the non-linear interac-
tions which is typically not accounted for. The non-linear evolution of turbulence is described by
a phase where energy injection from the most unstable instability into another mode can create
a secondary instability, and if this secondary instability results in a density gradient which is
aligned with the equilibrium gradients, the initial driving factor is enhanced and may feed novel
energy into previously unstable or subdominant modes resulting in tertiary instability etc. [212].
As it is the intricate balance between this cycle of energy injection and redistribution to other
modes which determines the saturated steady-state, non-linear simulations are ultimately re-
quired in the future to determine whether collisions not only reduce TEM growth rates but also
TEM associated transport in DIII-D and HSX, and whether W7-X remains non-linearly stable
against TEMs and to find out how severe the transport associated by the UI.
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U. Höfel, C. Hopf, K. Ida, M. Isobe, M. W. Jakubowski, Y. O. Kazakov, C. Killer,
T. Klinger, J. Knauer, R. König, M. Krychowiak, A. Langenberg, H. P. Laqua, S. Laz-
erson, P. McNeely, S. Marsen, N. Marushchenko, R. Nocentini, K. Ogawa, G. Orozco,
M. Osakabe, M. Otte, N. Pablant, E. Pasch, A. Pavone, M. Porkolab, A. Puig Sitjes,
K. Rahbarnia, R. Riedl, N. Rust, E. Scott, J. Schilling, R. Schroeder, T. Stange, A. Von
Stechow, E. Strumberger, T. Sunn Pedersen, J. Svensson, H. Thomson, Y. Turkin, L. Vano,
T. Wauters, G. Wurden, M. Yoshinuma, M. Zanini, D. Zhang, and Wendelstein 7-X team.
Performance of Wendelstein 7-X stellarator plasmas during the first divertor operation
phase. Physics of Plasmas, 26(8):082504, aug 2019. (Cited on pages 10 and 59.)

[56] Marek Rubel. Fusion Neutrons: Tritium Breeding and Impact on Wall Materials and
Components of Diagnostic Systems. Journal of Fusion Energy 2018 38:3, 38(3):315–329,
sep 2018. (Cited on page 10.)

92



[57] M. Turnyanskiy, R. Neu, R. Albanese, R. Ambrosino, C. Bachmann, S. Brezinsek,
T. Donne, T. Eich, G. Falchetto, G. Federici, D. Kalupin, X. Litaudon, M. L. Mayoral,
D. C. McDonald, H. Reimerdes, F. Romanelli, R. Wenninger, and J. H. You. European
roadmap to the realization of fusion energy: Mission for solution on heat-exhaust systems.
Fusion Engineering and Design, 96-97:361–364, oct 2015. (Cited on page 10.)

[58] P.T. Lang, A. Loarte, G. Saibene, L.R. Baylor, M. Becoulet, M. Cavinato, S. Clement-
Lorenzo, E. Daly, T.E. Evans, M.E. Fenstermacher, Y. Gribov, L.D. Horton, C. Lowry,
Y. Martin, O. Neubauer, N. Oyama, M.J. Schaffer, D. Stork, W. Suttrop, P. Thomas,
M. Tran, H.R. Wilson, A. Kavin, and O. Schmitz. ELM control strategies and tools: status
and potential for ITER. Nuclear Fusion, 53(4):043004, mar 2013. (Cited on page 10.)

[59] A W Leonard. Plasma detachment in divertor tokamaks. Plasma Physics and Controlled
Fusion, 60(4):044001, feb 2018. (Cited on page 10.)

[60] Shanliang Zheng and Thomas N. Todd. Study of impacts on tritium breeding ratio of a
fusion DEMO reactor. Fusion Engineering and Design, 98-99:1915–1918, oct 2015. (Cited
on page 10.)

[61] Richard J. Pearson, Armando B. Antoniazzi, and William J. Nuttall. Tritium supply and
use: a key issue for the development of nuclear fusion energy. Fusion Engineering and
Design, 136:1140–1148, nov 2018. (Cited on page 10.)

[62] H Arnichand, J Citrin, S Hacquin, R Sabot, A Krämer-Flecken, X Garbet, C Bourdelle,
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A Instability mechanism of the ITG mode

To investigate the effects of a temperature gradient on the potential instability of a microper-
turbation, consider again the situation of the drift wave, but with a background temperature
gradient ∇T instead of a density gradient. To account for the inhomogeneous magnetic field,
the ions are given a drift velocity which depends on the temperature, which is taken to be in
the y direction, but the electrons are taken to respond adiabatically.

A wave-like plasma perturbation δx of guiding centers will now not cause a density perturbation,
but a temperature perturbation as particles are effectively displaced towards a region of different
background temperature. By analogy with the drift wave case of Section 2.1.1 this temperature
perturbation is δT = −δx(y)dT0dx . Since the electrons are taken to respond adiabatically, they will
quickly equilibrate these temperature differences along the field line, which leaves the displaced
ions at their original temperature. If the drift velocity would be constant then the ion drift would
not lead to an accumulation of charge since the background density is taken to be uniform. If
however the drift velocity depends on the temperature (as is the case for the magnetic drift),
then there will be an imbalance between the in- and out fluxes of ions, as shown in Figure A.1a.

The resulting charge density is easiest calculated from charge conservation ∂ρ
∂t +∇·J = 0, taking

J = +en0vdi(T (x, y))ey for the ion current, resulting in

∂ρ

∂t
= −en0

dvdi
dT

∂T

∂y
≈ +en0

dvdi
dT

dT0
dx

dδx(y)

dy
.

If a small time increment δt is considered in which the temperature perturbation can be con-
sidered constant60 it follows analogolously to the trapped particle case of Section 2.1.2 that the
potential perturbation will be π/2 out of phase with the temperature perturbation, which results

in an E × B drift E × B ∝ −d2δx(y)
dy2

ex in phase with the initial guiding center perturbation

δx(y)), thus enhancing its amplitude as shown in Figure A.1b. As the ion magnetic drift de-
pends on the ion temperature, and the amplitude of the temperature perturbation is directly
proportional to the (ion) temperature gradient, this instability is called the ion temperature
gradient mode.

(a) (b)

Figure A.1: Schematic mechanism of the ion temperature gradient mode showing (a) how the
temperature dependent magnetic drift results in charge density and (b) the waveforms of all
perturbed quantities along with the effect of the E ×B drift on the initial displacement.

60Even if this assumption is not made, the electrostatic potential ϕ ∝ ρ will still have the waveform as dδx(y)
dy

since a time integration of δx(y, t) = A(t) sin(ky) only affects the amplitude, i.e. be +π/2 out of phase with the
initial temperature perturbation which will result in the same conclusion.
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B Details of the derivation for the collision operator

In the derivations that follow, the theory presented in Chapter 3 of [20] is closely followed.

B.1 Derivation of Fokker-Planck equation for the collision operator

The net effect of all binary Coulomb collisions with particles of species b on the distribution of
species a will be statistical, as for each collision pair the relative velocity u will be randomly
picked from the two distribution functions. If Pab(v,∆v) is the probability that a collision with
a particle of species b changes the velocity of a particle of species a to v → v +∆v within an
interaction time ∆t then the distribution function will evolve as

fa(x+ v∆t,v, t+∆t) =

ˆ
fa(x,v −∆v, t)Pab(v −∆v,∆v)d3∆v

where x + v∆t in the argument of the distribution function accounts for streaming of the
trajectories, fa × Pab gives the density of particles that will have their velocity changed from
v − ∆v → v and a trace over all possible velocity changes is performed. As the main effect
of Coulomb collisions up to lowest are small angle deflections, it follows that ∥∆v∥/ ⟨∥v∥⟩ ∼
∥∆v∥/vTa ≪ 1 such that a Taylor expansion of the integrand is justified

fa(x+ v∆t,v, t+∆t) ≈
ˆ
fa(x,v, t)Pab(v,∆v)d3∆v −

ˆ
∆v ·∇v[fa(x,v, t)Pab(v,∆v)]d3∆v

+
1

2

ˆ
∆v⊤ ·

(
∇v∇⊤

v [fa(x,v, t)Pab(v,∆v)]
)
·∆vd3∆v +O(∆v3)

where ∇v is the gradient operator w.r.t. velocity coordinates, ⊤ denotes the transpose and
∇v∇⊤

v represents the Hessian operator. Since Pab is a proper probability it satisfies
´
Pabd

3∆v =
1 and since the velocity changes ∆v are per definition random, the Taylor expansion can be
written more elegantly in component form as

fa(x+ v∆t,v, t+∆t)− fa(x,v, t) ≈ − ∂

∂vk

[
fa(x,v, t) ⟨∆vk⟩ab

]
+

1

2

∂2

∂vk∂vl

[
fa(x,v, t) ⟨∆vk∆vl⟩ab

]

where the order of integration over ∆v and derivative w.r.t. v have been interchanged, the
Einstein summation convention has been implied and ⟨· · ·⟩ab =

´
(· · · )Pabd3∆v encapsulates the

net statistical effect of the collisions. Dividing both sides by ∆t and taking the limit of ∆t→ 0
the LHS simply becomes a partial derivative w.r.t. time as a result of collisions and the RHS is
aptly called the collision operator
(
∂fa
∂t

)

col

≡ Cab = lim
∆t→0

− ∂

∂vk

[
fa(x,v, t)

〈
∆vk
∆t

〉ab]
+

∂2

∂vk∂vl

[
fa(x,v, t)

〈
∆vk∆vl
2∆t

〉ab]
.

(B.1)

Since in the limit of δt→ 0 the streaming of the distribution function vanishes, this means that
the collision operator of Equation (B.1) describes collisions locally at fixed position x and thus
does not introduce spatial correlations between the distribution function fa at different positions.
This feature makes the collision operator problem tractable. On the RHS of Equation (B.1) the
first term describes a net drag force on the distribution function and the second term describes
a diffusive effect, and hence the collision operator has the form of Fokker-Planck equation (up
to the order of neglected terms).

B.2 Calculation of the statistical effect

For a binary Coulomb interaction, the Lagrangian L can be mapped to that of the motion of an
effective particle with the reduced massm⋆ moving in a static Coulomb field61 with an additional

61This field is static in the sense that mathematically it appears to originate from a virtual particle at the
origin that is unaffected by the motion of the effective particle of reduced mass m⋆ around it.
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constant related to the kinetic energy from the motion of the centre of mass

L =
ma +mb

2
Ṙ2 +

1

2
m⋆ṙ

2 − qaqb
4πϵ0∥r∥

where R = (maxa+mbxb)/(ma+mb) is the centre of mass, m⋆ = mamb/(ma+mb), r = xa−xb

is the particle separation, a, b refer to the species, ϵ0 is the vacuum permittivity and m, q denote
the mass and charge respectively. If species b is taken as the “target” particle, then the velocity
of an incident “test” particle undergoes the small changes62

∆vx ≈− (1 +
ma

mb
)

(
qaqb

2πϵ0ma

)2 1

2r2u3

∆vy ≈
qaqb

2πϵ0ma

cosϕ

ur

∆vz ≈
qaqb

2πϵ0ma

sinϕ

ur

(B.2)

where the initial relative velocity u = ṙ = va−vb is aligned with the x direction of a coordinate
system before the collision event, and ϕ denotes the deflection angle in the yz plane.

Several factors introduce a statistical effect of such collisions; the distribution of target particles
fb will results in different relative velocities with the test particle, the spatial distribution of both
particles gives different interparticle distances r = ∥r∥, and the perpendicular deflection angle
ϕ is arbitrary. Therefore the net statistical effect of collisions involves an average of the test
particle velocity changes Equation (B.2) over the quasi-phase volume d6Ω spun by the velocities
of species b and the spatial volume occupied by the effective particle of the reduced mass moving
in the static Coulomb field. As the relative distance r effectively takes on the role of an impact
parameter and the effective particle moves with a velocity u, the volume spun by this effective
particle as it moves during the interaction is dV = r dr dϕu∆t, resulting in a net statistical
effect of

⟨· · ·⟩ab =
ˆ
(· · · )× fb(xb,vb, t)ru(va,vb)∆td

3vb dr dϕ .

where fb is the distribution function of target particles of species b and the dependencies on the
other integration variables has been made explicit for transparency. Substituting Equation (B.2)
gives

〈
∆vx
∆t

〉ab
=− 1

2

(
1 +

ma

mb

)(
qaqb

2πϵ0ma

)2 ˆ dr

r

ˆ 2π

0
dϕ

ˆ
1

u2
fbd

3vb

〈
∆vy
∆t

〉ab
=

(
qaqb

2πϵ0ma

) ˆ
dr

ˆ 2π

0
sinϕ dϕ

ˆ
fbd

3vb = 0

〈
∆vz
∆t

〉ab
=

(
qaqb

2πϵ0ma

) ˆ
dr

ˆ 2π

0
cosϕ dϕ

ˆ
fbd

3vb = 0

where the y, z components vanish physically as a result of symmetry in the deflection process as
each ϕ is equally likely. The issue lies in evaluating the integral over impact parameters r for the
x component as it is divergent for small lower bounds and large upper bounds. These bounds
are fortunately naturally constraint; as a result of the Debye shielding the Coulomb fields of a
target particle will approximately vanish beyond the Debye length λD and in case of repulsive

62These correspond to lowest order expansions of cosα⋆ − 1 ≈ α2
⋆/2 and sinα⋆ ≈ α⋆ in the deflection angle

α⋆ = qaqb/(2πϵ0rm⋆u
2) of the relative velocity from the x-axis. Note that α⋆ is roughly the ratio of the potential

energy to kinetic energy of a pair interaction such that α⋆ ≪ 1 is consistent with the weak coupling approximation
in Section 2.2.
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interactions there is a distance of closest approach rca set by energy conservation. In case of
an attractive interaction energy conservation does not place a lower bound on the integral, but
the validity of the approximation of small deflections does as for small r the interaction will be
strong enough to cause significant deviation of the test particle trajectory. Taking rmin = rca in
those cases as well yields the Coulomb logarithm63 ln Λ =

´ λD
rca

dr /r such that

〈
∆vx
∆t

〉ab
= −L

ab

4π

(
1 +

ma

mb

)ˆ
1

u2
fbd

3vb

〈
∆vy
∆t

〉ab
=

〈
∆vz
∆t

〉ab
= 0

(B.3)

where Lab = (qaqb/maϵ0)
2 ln Λ is a measure of the interaction strength between species a and b.

The Coulomb logarithm is closely related to the number of charged particles within the Debye
sphere and is thus typically lnΛ ≫ 1 for most plasmas of interest [30]. Equivalently the unique
quadratic terms in Equation (B.1) evaluate to

〈
∆v2x
2∆t

〉ab
=
π

8

(
1 +

ma

mb

)2( qaqb
2πϵ0ma

)4 ˆ dr

r3

ˆ
1

u5
fbd

3vb

〈
∆v2y
2∆t

〉ab
=

〈
∆v2z
2∆t

〉ab
=
Lab

8π

ˆ
1

u
fbd

3vb

〈
∆vx∆vy
2∆t

〉ab
=

〈
∆vy∆vz
2∆t

〉ab
=

〈
∆vx∆vz
2∆t

〉ab
= 0

(B.4)

where all cross-terms vanish again due to symmetry considerations, and the squared terms
in the y and z directions are equal as a result of the rotational invariance in the yz plane.

The
〈
∆v2x
2∆t

〉
term no longer contains a diverging integral, however its relative magnitude w.r.t.

the perpendicular terms can be estimated by taking the same [rca, λD] integration boundaries
for which the dominant small angle deflections occur, taking a typical effective particle where
rca ∼ qaqb/(4πϵ0m⋆v

2
T⋆) with the thermal velocity vT⋆ a measure of the average relative velocity

u, and taking rca ≪ λD since the Coulomb logarithm lnΛ ≫ 1, such that

〈
∆v2x/2∆t

〉ab
〈
∆v2y/2∆t

〉ab ∼ 1

lnΛ

v4T⋆
´

1
u5
fbd

3vb´
1
ufbd

3vb︸ ︷︷ ︸
O(1)

.

Thus as lnΛ ≫ 1 for any plasma, the contribution from
〈
∆v2x/2∆t

〉ab
to the diffusion terms

is negligible, especially so for fusion plasmas. The disappearance of the divergent integral over
impact parameters also justifies cutting off the Taylor series at second order, as the next order

correction would result in
〈
∆vk∆vl∆vm

6∆t

〉
terms in Equation (B.1) which would in turn be 1/ ln Λ

smaller than the diffusive terms.

The above calculation was done under the assumption that the initial relative velocity is aligned
with the x direction of a collision coordinate system. As this coordinate system is unique for

63The lower bound has been based on classical principle of energy conservation. However quantum effects also
pose a lower bound, as the particles involved in the collision effectively become indistinguishable if they approach
each other within the thermal de Broglie wavelength λT . The correct lower bound for the integral should thus
be min rca, λT [5]. As this correction is typically important for electrons, it resolves the ambiguity of the lower
bound for the attractive interactions.
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each collision, the results should be mapped to an arbitrary “laboratory” coordinate system
which is identical for all particles. This mapping proceeds then as follows for the linear term

〈
∆vk
∆t

〉ab
=

〈
ek ·∆v

∆t

〉ab
=

〈
ek · (ex∆vx + ey∆vy + ez∆vz)

∆t

〉ab

=

〈
ek · ex∆vx

∆t

〉ab
= −L

ab

4π

(
1 +

ma

mb

) ˆ
uk
u3
fbd

3vb

(B.5)

where Equation (B.3) was used in the second step and in the last step it was used that the
aligned collision coordinate system is characterised by ex = u/u. With a bit more effort the
quadratic term is similarly mapped as

〈
∆vk∆vl
2∆t

〉ab
=

〈
ek · (ex∆vx + ey∆vy + ez∆vz) el · (ex∆vx + ey∆vy + ez∆vz)

2∆t

〉ab

≈
〈
(ek · ey)(el · ey)∆v2y + (ek · ez)(el · ez)∆v2z

2∆t

〉ab

=

〈(
ek · el − (ek · ex)(el · ex)

)
∆v2y

2∆t

〉ab
=
Lab

8π

ˆ
Uklfbd

3vb

(B.6)

where Equation (B.4) was used, the ∆v2x term was neglected in the second step, ex = u/u was
again used in the last step and the tensor

Ukl =
u2δkl − ukul

u3
(B.7)

has been introduced, with δkl denoting the Kronecker delta.

B.3 Rosenbluth and Landau forms of the collision operator

From Equations (B.5) and (B.6) it follows that the net statistical effect of collisions is determined
by integrals over the relative velocity and the distribution function of target particles (aside
from a multiplicative constant). These integrals can be written compactly in terms of so-called
Rosenbluth potentials

φb(v) = − 1

4π

ˆ
1

u(v,v′)
fb(v

′)d3v′

ψb(v) = − 1

8π

ˆ
u(v,v′)fb(v

′)d3v′
(B.8)

where for future notational convenience primed velocities refer to the velocities of species b and

unprimed velocities refer to species a. Since the relative speed is u =
√∑

j(vj − v′j)
2 it follows

by changing the order of integration over primed velocities and derivation w.r.t. unprimed
velocities that Equation (B.5) can be written as

〈
∆vk
∆t

〉ab
= −Lab

(
1 +

ma

mb

)
∂φb
∂vk

(B.9)

and that Equation (B.6) can be written as

〈
∆vk∆vl
2∆t

〉ab
= −Lab ∂

2ψb
∂vk∂vl

. (B.10)
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The physical meaning of the Rosenbluth potentials follows by an analogy with electrostat-
ics, where the Poisson equation ∇2Φ = −ρ/ϵ0 leads to an electrostatic potential Φ(x) =
1

4πϵ0

´ ρ(x′)
∥x−x′∥d

3x′, therefore comparison with Equation (B.8) gives that the first Rosenbluth
potential is the solution to the Poisson equation

∇2
vφb = fb (B.11)

where the derivatives are not taken w.r.t. spatial but velocity coordinates, i.e. ∇2
v =

∑
j
∂2

∂v2j
.

Thus the target particle distribution fb acts as a source for φb, hence the name potential.
Meanwhile the Laplacian of the second Rosenbluth potential gives

∇2
vψb =

∑

j

− 1

8π

ˆ
∂2u

∂v2j
fb(v

′)d3v′ =
∑

j

− 1

8π

ˆ
Ujjfbd

3v′

= − 1

8π

∑

j

ˆ
u2 − u2j
u3

fbd
3v′ = − 1

4π

ˆ
1

u
fbd

3v′ = φb

(B.12)

such that φb in turn acts as a source term for ψb, and the two potentials are consequently related
such that the effective drag force and diffusion force on the test particle distribution are not
independent.

In terms of the Rosenbluth potentials the Fokker-Planck equation for the collision operator
Equation (B.1) becomes

Cab(fa, fb) =L
ab ∂

∂vk

[
(1 +

ma

mb
)
∂φb
∂vk

fa −
∂

∂vl

(
∂2ψb
∂vk∂vl

fa

)]

=Lab
∂

∂vk



(1 +

ma

mb
)
∂φb
∂vk

fa −
∂

∂vk

(∑

l

∂2ψb
∂v2l

)

︸ ︷︷ ︸
=∇2

vψb

fa −
∂2ψb
∂vk∂vl

∂fa
∂vl




=Lab
∂

∂vk

[
ma

mb

∂φb
∂vk

fa −
∂2ψb
∂vk∂vl

∂fa
∂vl

]

(B.13)

where summation over repeated indices have been suppressed for notational convenience unless
this would lead to confusion or explicitly needed. This is the form of the collision operator for
a general inverse-square force first derived by Rosenbluth et al [105].

The issue of Coulomb collisions has historically first been investigated by Landau who derived
a more symmetric expression of the collision operator, which is more transparent in its depen-
dence on fb. Landau’s form of the collision operator can be obtained from Equation (B.13) by
substituting the derivatives of the Rosenbluth potentials. The tensor Ukl Equation (B.7) has
the property that its divergence

∑

l

∂Ukl
∂vl

= −2uk
u3

= −
∑

l

∂Ukl
∂v′l

such that ∂φb
∂vk

can be rewritten as

∂φb
∂vk

=
1

4π

ˆ
uk
u3
fb(v

′)d3v′ =
1

8π

ˆ ∑
l

∂Ukl
∂v′l

fb(v
′)d3v′

=
1

8π

ˆ ∑
l

(
∂

∂v′l

[
Uklfb(v

′)
]
− Ukl

∂fb(v
′)

∂v′l

)
d3v′ = − 1

8π

∑

l

ˆ
Ukl

∂fb(v
′)

∂v′l
d3v′
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where the first term to the integral vanishes as it yields a boundary term and a proper distribution
function obeys f → 0 as ∥v∥ → ∞. Using this expression for ∂φb

∂vk
and the regular expression

for ∂2ψb
∂vk∂vl

such that the tensor Ukl is a common prefactor to both terms in Equation (B.13), the
collision operator is written as

Cab(fa, fb) =
Labma

8π

∂

∂vk

ˆ
Ukl

(
fb(v

′)

ma

∂fa(v)

∂vl
− fa(v)

mb

∂fb(v
′)

∂v′l

)
d3v′ (B.14)

which is the symmetric version of the collision operator obtained by Landau.

B.4 Collision with a Maxwellian distribution

A case of interest that is still analytically tractable is the collision operator for test particles with
an arbitrary distribution function fa with target particles from a Maxwellian distribution fMb.
In that case the Rosenbluth form of the collision operator Equation (B.13) simplifies significantly.
Because the Maxwellian distribution is isotropic the Rosenbluth potentials Equation (B.8) will
inherit this property and thus depend only on the speed of the test particle v = ∥v∥. Conse-
quently the velocity derivatives of the Rosenbluth potentials in Equation (B.13) are determined
by

∂φb
∂vk

=φ′
b

∂v

∂vk
= φ′

b

vk
v

∂2ψb
∂vk∂vl

=
∂

∂vk

(
ψ′
b

∂v

∂vl

)
= ψ′′

b

vlvk
v2

+ ψ′
bWkl

(B.15)

where a prime denotes the derivative w.r.t. to v and the tensor Wkl

Wkl =
∂2v

∂vl∂vk
=
v2δkl − vkvl

v3

is the test particle velocity equivalent to the tensor Ukl for the relative velocity. Consequently
by analogy Wkl will have the same relations to v as Ukl has to u, repeated below for convenience

∑

k

Wkk =
2

v
,
∑

l

∂Wkl

∂vl
= −2vk

v3
,
∑

l

Wklvl = 0.

Substituting Equation (B.15) for the Rosenbluth potentials gives the collision operator as

Cab(fa, fMb) =L
ab ∂

∂vk

[
ma

mb
φ′
b

vk
v
fa −

∂fa
∂vl

Wklψ
′
b − ψ′′

b

vlvk
v2

∂fa
∂vl

]

=− Lab
∂

∂vk

(
Wkl

∂fa
∂vl

ψ′
b

)
+ Lab

∂

∂vk

{
vk

[
ma

mb
φ′
b

fa
v

− ψ′′
b

1

v

∂fa
∂v

]} (B.16)

where in the second step the terms explicitly containing vk were split and the chain rule was
used to write ∂fa

∂v = ∂fa
∂vl

∂vl
∂v . The term in curly brackets of Equation (B.16) takes on the form

of a divergence in velocity coordinates which is most conveniently expressed in spherical veloc-
ity coordinates (v, θ, ϕ) since the term in square brackets depends only on v, simplifying the
divergence to a single term

∇v · (vA(v)) =
1

v2
∂

∂v

(
v3A(v)

)
. (B.17)

The first term in Equation (B.16) in round brackets can be expanded by the product rule as

∂

∂vk

(
Wkl

∂fa
∂vl

ψ′
b

)
=

∂

∂vk

(
Wkl

∂fa
∂vl

)
ψ′
b +Wkl

∂fa
∂vl

ψ′′
b

∂v

∂vk
=

∂

∂vk

(
Wkl

∂fa
∂vl

)
ψ′
b
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where the last term vanishes due to
∑

kWklvk = 0. The surviving term can also be conveniently
expressed in terms of vector operators in an orthogonal velocity coordinate system by explicitly
writing out the tensor contraction

∑

k

∂

∂vk

∑

l

(
v2δkl − vkvl

v3
∂fa
∂vl

)
=
∑

k

∂

∂vk

(
1

v

∂fa
∂vk

)

︸ ︷︷ ︸
∇v·( 1

v
∇vfa)

−
∑

k

∂

∂vk



vk
v3

∑

l

vl
∂fa
∂vl

︸ ︷︷ ︸
v·∇vfa




︸ ︷︷ ︸
∇v·

(
v
v3

(v·∇v)fa
)

Using the expression of divergence and gradient in a spherical coordinate system gives

∂

∂vk

(
Wkl

∂fa
∂vl

)
=

1

v3

(
1

sin θ

∂

∂θ

(
sin θ

∂fa
∂θ

)
+

1

sin2 θ

∂2fa
∂φ2

)
=

2

v3
L{fa} (B.18)

where L{· · · } is the called the Lorentz scattering operator.

In Equation (B.18) a factor of two has been introduced when introducing the Loretnz scattering
operator, which is a convenient normalisation inspired the physical processes in play. According
to Equations (B.9) and (B.10) the derivatives of the Rosenbluth potentials are related to the
(generally anisotropic) drag and diffusion coefficients of a test particle. If for simplicity one
considers a coordinate system where the initial velocity is aligned with the x direction, that is
v = v∥ex it follows from Equation (B.15) that the drag vector and diffusion tensor are given in
a Cartesian coordinate system as

〈
∆vk
∆t

〉ab
=− Lab(1 +

ma

mb
)φ′

b



1
0
0




〈
∆vk∆vl
2∆t

〉ab
=− Lab



ψ′′
b 0 0
0 ψ′

b/v 0
0 0 ψ′

b/v




As typically drag is associated with momentum losses of the test particle due to collisions this

motivates the introduction of the slowing down frequency νabs such that
〈
∆vk
∆t

〉ab
= −vνabs it

follows by comparison that this frequency is given by

νabs = Lab
(
1 +

ma

mb

)
φ′
b

v
. (B.19)

Similarly the velocity diffusion is associated with energy gain and losses of the test particle due

to collisions such that the diffusion tensor can be written as
〈
∆vk∆vl
2∆t

〉ab
= v2

2 νkl where νkl is

a collision frequency tensor accounting for the generally anisotropic rates of energy exchange.
By comparison with the example above it follows that there are essentially two energy exchange
rates since the two perpendicular directions are equivalent, which identifies the two unique
frequencies of the collision frequency tensor νkl as

νab∥ =
2Lab

v2
ψ′′
b (B.20)

νabD =
2Lab

v3
ψ′
b (B.21)

giving respectfully the rate of parallel diffusion and perpendicular diffusion.
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Then finally using Equations (B.17) and (B.18) to simplify Equation (B.16) gives the collision
operator in terms of these three fundamental test particle collision frequencies as

Cab(fa, fMb) = νabD L{fa}+
1

v2
∂

∂v

[
v3
(

ma

ma +mb
νabs fa +

1

2
ν∥v

∂fa
∂v

)]
. (B.22)

Note that the Lorentz-operator as defined by Equation (B.18) describes diffusion on a v =constant
surface as it only changes the directional distribution of test particle velocities such that the first
term of Equation (B.22) is energy conserving and will drive isotropisation of the test particle
distribution fa. This part of the collision operator describes pitch-angle scattering as it effec-
tively changes the ratio of perpendicular to parallel velocity. The remaining two terms give the
net effect of energy scattering as a result from competition between drag and diffusion forces on
the test particles since they involve changes in v.

All that is left to do is an explicit calculation of the derivatives of the Rosenbluth potentials
to determine the test particle collision frequencies of Equations (B.19) to (B.21). This is done
easiest from the Laplacian interpretation of these potentials Equations (B.11) and (B.12). For
a Maxwellian target particle distribution Equation (B.11) becomes

∇2
vφb =

1

v2
d

dv

(
v2

dφb
dv

)
= fMb(v) = nb

(
1√
πvTb

)3

exp

(
− v2

v2Tb

)

where isotropy allows the conversion of partial derivatives to full derivatives and the thermal
velocity vTb =

√
2Tb/mb has been used. Integrating Equation (B.11) once over the velocity

domain [0, v] will give the required derivative φ′
b for the slowing down frequency Equation (B.19),

where the integration is easiest performed in terms of the normalised velocity y = ṽ/vTb

φ′
b =

nb
π3/2v2

ˆ xb

0
y2 exp

(
−y2

)
dy =

nb
4πv2

[
1√
π

ˆ xb

0

d2 exp
(
−y2

)

dy2
dy +

2√
π

ˆ xb

0
exp
(
−y2

)
dy

]

=
nb

4πv2
(
ϕ(xb)− xbϕ

′(xb)
)
=

nb
2πv2Tb

G(xb)

(B.23)

where ṽ is introduced as integration variable for book keeping purposes and xb = v/vTb is a con-
venient normalised velocity. The first integral was evaluated using the fundamental theorem of
calculus, the second integral is the definition of the error function ϕ(x) = 2/

√
π
´ x
0 exp

(
−ξ2

)
dξ,

and the Chandrasekhar function64 G(x) is introduced in the last step defined by

G(x) =
ϕ(x)− xϕ′(x)

2x2
. (B.24)

By similar means the required derivative of ψb for the deflection frequency Equation (B.21) can
be obtained from Equation (B.12), if Equation (B.23) is first integrated once more to obtain
φb(v). This involves the integral of the Chandrasekhar function, which can be obtained using
integration by parts as
ˆ x

0
G(ξ) dξ =

ˆ x

0

ϕ(ξ)− ξϕ′(ξ)
2ξ2

dξ = − 1

2ξ

(
ϕ(ξ)− ξϕ′(ξ)

)∣∣∣∣
x

0

− 1

2

ˆ x

0
ϕ′′(ξ) dξ = −ϕ(x)

2x
.

Then the isotropy requirement reduces Equation (B.12) to

∇2
vψb =

1

v2
d

dv

(
v2

dψb
dv

)
= φb =

nb
2πvTb

ˆ xb

0
G(y) dy = − nb

4πv
ϕ(xb)

64Note that multiple definitions of the Chandrasekhar function exist in literature, most dealing with astro-
physical radiation topics. In the literature on collisions G(x) is called the Chandrasehkar function because it is
related to his other work on the friction coefficient due to gravity for celestial bodies moving through background
matter, which involves a similar integral over a Maxwellian distribution [213].

113



where v = vTbxb was used in the last step to favour the reintroduction of a velocity factor as
the Laplacian depends explicitly on v. The derivative ψ′

b then follows by integrating over the
domain [0, v] one last time

ψ′
b =− nbv

2
Tb

4πv2

ˆ xb

0
ϕ(y)y dy = −nbv

2
Tb

4πv2



1

2
y2ϕ(y)

∣∣∣∣
xb

0

−
ˆ xb

0
ϕ′(y)

y2

2︸ ︷︷ ︸
= 1√

π
y2 exp(−y2)

dy




=− nbv
2
Tb

4πv2

(
1

2
x2bϕ(xb)−

1

2
G(xb)x

2
b

)
= −nb

8π
(ϕ(xb)−G(xb))

(B.25)

where integration by parts was used on the second step, in the third step the remaining integral
was solved by noting that it is identical to the integral in Equation (B.23), and xb = v/vTb
was used for cancellation. As a final ingredient for the second derivative ψ′′

b is required for the
parallel diffusion frequency Equation (B.20) which is obtained straightforwardly by taking the
derivative of Equation (B.25)

ψ′′
b = − nb

8πvTb

(
ϕ′(xb) +

ϕ′′(xb)
2xb

+
2G(xb)

xb

)
= −nb

4π

G(xb)

v
(B.26)

where the derivative of Equation (B.24) has been explicitly expanded using the quotient rule,
and the derivatives of the error function cancel since ϕ′′(x) = −4x/

√
π exp

(
−x2

)
= −2xϕ′(x).

Now the test particle collision frequencies of Equations (B.19) to (B.21) are readily evaluated by
substituting Equations (B.23), (B.25) and (B.26) for the derivatives of the Rosenbluth potentials
as

νabs =ν̂ab
(
1 +

mb

ma

)
Ta
Tb

2G(xb)

xa

νab∥ =ν̂ab
2G(xb)

x3a

νabD =ν̂ab
ϕ(xb)−G(xb)

x3a

(B.27)

where xa = v/vTa is a second normalised velocity variable and the common prefactor ν̂ab sets
a basic test particle collision frequency scale determined solely by the plasma parameters of the
colliding species

ν̂ab =
2Labnb
8πv3Ta

=
nb

4πv3Ta

(
qaqb
ϵ0ma

)2

ln Λ

which is closely related to the typical momentum loss frequency ν̄ab associated with complete
momentum decorrelation65 by the numerical prefactor ν̂ab = ν̄ab3

√
π/4.

B.5 A rigorous proof that the equilibrium distribution is Maxwellian

As a bonus, by substituting the result for the test particle collision frequencies Equation (B.27)
back in the result for the collision operator with a Maxwellian Equation (B.22), it can rigor-
ously be proven that the Maxwellian distribution is the equilibrium solution with vanishing
self-collisions, that is Caa(f

eq
a , fMa) = 0 if feqa = fMa. Demanding that both terms in Equa-

tion (B.22) vanish independently, L{feqa } = 0 requires feqa to be isotropic in velocity space such

65In other words cumulative small angle deflections leading up to a net 90° scattering of the initial velocity.
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that feqa (v) = feqa (v) only. In order for the second term to vanish as well, the distribution
function should obey

d

dv

(
v3νaas (v)feqa + v4νaa∥ (v)

dfeqa
dv

)
= 0

where b → a was substituted and the partial derivatives have been replaced by total deriva-
tives. Demanding that the resulting integration constant is zero, it follows that the equilibrium
distribution obeys the differential equation

1

feqa

dfeqa
dv

= − νaas (v)

νaa∥ (v)v
= − 2v

v2Ta

where Equation (B.27) was substituted for the collision frequencies. Integrating w.r.t. velocity
gives

ln

(
feqa (v)

feqa (0)

)
= − v2

v2Ta

ergo if feqa (v) is properly normalised such that
´
feqa (v)d3v = na it follows that feqa will be the

Maxwellian distribution function. It should be noted that this is the centralised Maxwellian
without an average flow q =

´
fMvd3v/

´
fMd3v, however from the formulation of the collision

operator either in terms of Rosenbluth potentials Equation (B.13) or the Landau form Equa-
tion (B.14) it follows that Cab is Gallilean invariant as the velocity v only enters as a derivative
or as the relative velocity. Thus one can always transform to a co-moving frame v → v − q
where this average flow would vanish, without affecting the collision operator and thus obtain-
ing a centralised Maxwellian as equilibrium solution in the co-moving frame. Conversely, the
Gallilean invariance means that in a ”lab” frame the equilibrium distribution will then be a
shifted Maxwellian.

C Intermediate steps in the derivation of the gyrokinetic equa-
tion

C.1 Order of magnitude estimates

For a general order of magnitude estimate of the different terms in Equation (22) the derivatives
of the distribution function will be estimated by considering the scale over which the distribution
function will vary significantly. For perturbations with frequency ω this means ∂fs

∂t ∼ ωfs, while

the restriction that the distribution be 2π periodic in the gyrophase gives ∂fs
∂ϑ ∼ fs/π. As the

average energy of particles in the plasma is the thermal energy, a significant variation in the
distribution will occur only if the energy changes by an amount similar to the average such that
∂fs
∂E ∼ fs/Ts. Lastly, the convective derivative Ṙ ·∇Rfs can be estimated by recalling that the
isobars are flux surfaces, so the density (to which fs is proportional) will vary significantly over
the distance Ln only perpendicular to the field. Consequently, it are the cross field drifts that
matter for the convective derivative which are also small compared to the thermal velocity such
that Ṙ · ∇Rfs ∼ fsδvTs/Ln. Plugging in these order of magnitude estimates and dividing by
Ωs gives

ω

Ωs︸︷︷︸
δ

fs + δ
vTs
LnΩs︸ ︷︷ ︸
δ2

fs +
ω

Ωs

qsϕ

Ts︸ ︷︷ ︸
δ2

fs +
1

π︸︷︷︸
≈0.3

fs =
Cs(fs)

Ωs︸ ︷︷ ︸
δfs

.

where the scalings Equation (19) have been used on the left-hand side, and on the right-hand
side the collision frequency has been estimated as ν ∼ ω in line with the scope of the project
to consider the influence of a non-negligible collisionality. Thus ∂fs

∂ϑ is unbalanced, such that to
lowest order the distribution function has to be independent on the gyrophase.
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C.2 The equilibrium solution

This invites an expansion of the distribution function as fs = f0s + δf where the next order
correction δf is due to turbulence, and may contain a dependence on the gyrophase. The lowest
order solution is then obtained by considering the turbulence-free equilibrium situation where
ϕ = 0

∂f0s
∂t

+ Ṙ
∣∣∣
ϕ=0

·∇Rf0s = Cs(f0s) (C.1)

where the same order of magnitude estimate gives ∂f0s
∂t ≈ Cs(f0s, f0s). The evolution of the

equilibrium is very slow compared to the gyrokinetic timescales and formally occurs on a time
τeq ∼ O(1/δ2ω) [111]. Consequently the equilibrium can be taken as frozen and is then solved
by Cs(f0s) ≈ 0, which in Appendix B.5 is shown to be solved by the Maxwellian distribution
function

FMs = n0s(ψ)

(
ms

2πT0s(ψ, t)

)3/2

exp

(
− msv

2

2T0s(ψ, t)

)
(C.2)

where the density is stationary, but the temperature is allowed to have a weak time dependence
occurring on τeq to allow for the equilibration process between ion- and electron temperatures66.
Still in the turbulence free situation, there will be a next order correction to FMs due to role of
the guiding center drifts in Equation (C.1) which is purely due to the magnetic geometry and is
the source of neoclassical transport [69]. As this correction will add to the total fluctuation level,
which is typically dominated by the turbulent part, and a description of neoclassical transport
is beyond the scope of this thesis it will be omitted.

C.3 Perturbation of the distribution function

To next order in the distribution function δf is determined by including the role of turbulence,
which has two effects67. First the particles will gain potential energy next to kinetic energy such
that the Maxwellian changes as

FMs = ns

(
ms

2πT0s

)3/2

exp

(
−mv

2/2 + qsϕ

T0s

)
= FM0s exp

(
−qsϕ
T0s

)
≈ FM0s

(
1− qsϕ

T0s

)

where functional dependencies are suppressed, FM0s denotes the unperturbed equilibriumMaxwellian
given by Equation (C.2), and the scaling Equation (20) was used in the last step. This addi-
tional correction to the distribution function is the usual Boltzmann factor which accounts for
the shielding of electric fields due to fast motion of particles along the field line. From now
one, whenever the terms Maxwellian and equilibrium distribution are used they will refer FM0s

exclusively and the zero subscript will be omitted. Secondly, there will also be a kinetic response
gs to the perturbed field which is largely due to the slow magnetic drifts of the guiding centers
and the additional E ×B that arises from the perturbed electric field. Consequently the total
perturbed distribution will be δfs = gs − qsϕ

Ts
FMs.

Substitution this decomposition back into the kinetic equation Equation (22) yields

∂FMs

∂t
+
∂gs
∂t

+ Ṙ ·∇R (FMs + gs) + qs
∂ϕ

∂t

∣∣∣∣
x

(
∂FMs

∂E
+
∂gs
∂E

)
+Ωs

∂gs
∂ϑ

= Cs(FMs + gs) (C.3)

66Formally Cs(f0s) = 0 requires both the collision operator for self interactions Css and the collision operator
for exchange interactions Css′ to vanish, and the proof in Appendix B.5 only concerns the solution for Css = 0.
Nevertheless using the Landau form of the collision operator Equation (B.14) it can be shown that Css′ ∝
−(Ts0 − Ts′0) if a Maxwellian Equation (C.2) distribution is used for both species [114].

67Note that these are very handwaving arguments to introduce the adiabatic and kinetic responses that con-
stitute δf , nevertheless they make for the physically correct picture that would otherwise require arduous amount
of algebra to derive, which is not the goal of this chapter meant to sketch the essential theoretical elements that
will be used later. For the formal derivation the interested reader is referred to [112] for the linear- and [214]
non-linear case.
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where the adiabatic response drops out since it is not of kinetic nature68. A similar order of
magnitude estimate of these different terms can be made, where the short scale nature of the
turbulence has to be taken into account such that gs varies on the gyroradius scale which makes
the relative contribution of the two convective terms

Ṙ ·∇Rgs

Ṙ ·∇RFMs

∼ δvTsgs/ρs
δvTsFMs/Ln

∼ 1

and meanwhile the typical average particle energies will be influenced by the presence of the
E ×B drift, such that the new typical energy

1

2
ms

(
v2Ts + v2E

)
∼ T0s(1 + δ2) ≈ Ts

where the scaling Equation (19) has been used, is not significantly affected such that the relative
weight of the two energy terms is

∂gs
∂E
∂FMs
∂E

∼ gs/T0s
FMs/T0s

∼ δ

which reveals that that again the Ωs
∂gs
∂ϑ term containing the fast dynamics is unbalanced and

must vanish. Consequently the kinetic response can also be expanded as gs ≈ g0s + g1s where
the leading order part is gyrophase independent and by construction g1s/g0s ∼ δ.

For the collision operator, the bilinearity property of Equation (11) in the distribution functions
fa, fb can be used to expand the collision operator as

Cs(FMs + gs) = Cs(FMs, FMs) + Cs(gs, FMs) + Cs(FMs, gs) + Cs(gs, gs)

where the first part contains the equilibrium contribution, the second and third part are linear
in the perturbation and the last part is non-linear in the perturbations.

Subtracting the equilibrium contribution Equation (C.1) from Equation (C.3) and retaining only
the leading order contribution in δ to each term gives

∂g0s
∂t

+

(
Ṙ− Ṙ

∣∣∣
ϕ=0

)
·∇RFMs + Ṙ ·∇Rg0s + qs

∂ϕ

∂t

∣∣∣∣
x

∂FMs

∂E
+Ωs

∂g1s
∂ϑ

= Cs(FMs, g0s) + Cs(g0s, FMs).

The remaining convective derivative of the equilibrium can be simplified by realising that the
equilibrium gradient is still only perpendicular to the field lines, and the presence of the fluc-
tuating electric field results in an additional E × B drift of the guiding center, such that

Ṙ − Ṙϕ=0 = E × B/B2 (this can be made rigorous using the expression for
〈
Ṙ
〉
R

in Ap-

pendix D).

The only dependence on the fast gyrophase dynamics is now in ∂g1s
∂ϑ , the particle position x and

the guiding center drift Ṙ. Because the timescale of the perturbations satisfies ω/Ωs ∼ δ, these
fast dynamics cannot influence the instability properties such as the phase difference between
density and potential fluctuations, and can be removed by applying an average over the gyration

⟨· · ·⟩R ≡ 1

2π

˛
· · · dϑ

68Although it is true the adiabatic response is essentially a fluid-like response mechanism, it is not true that a
brute force substitution of δf into Equation (22) makes all terms involving the adiabatic response vanish. This
is however a consequence of the handwaving way with which the adiabatic response has been introduced, as an
actual direct approach requires a transformation of derivatives at constant particle position to constant guiding
center position, but results in the same equation for gs [67].
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where the guiding center R is kept fixed during the integration so only the direction of the
gyroradius vector ρ varies due to gyration. Applying this transform then gives

∂g0s
∂t

+

〈
E ×B

B2

〉

R

·∇RFMs +
〈
Ṙ
〉
R
·∇Rg0s + qs

〈
∂ϕ

∂t

∣∣∣∣
x

〉

R

∂FMs

∂E
=
〈
CL(gs)

〉
R

where the linear part of the collision operator has been collapsed into CL(gs) and the gyrophase
dependent part of g1s drops out due to periodicity in ϑ, such that a distinction between g0s and
g1s is no longer required and consequently omitted.

C.4 Gyroaveraging procedure of the perturbations

Using Equation (28) to characterise the electrostatic potential perturbation its spatial variation
then follows as

∇ϕ = ϕ(x, t)


∇ ln ϕ̂︸ ︷︷ ︸

O(1/Ln)

+i
∇S(x)

δ︸ ︷︷ ︸
O(1/δLn)∼O(1/ρ)


 ≈ i

∇S(x)

δ
ϕ(x, t). (C.4)

If one interprets ∇S(x)/δ as a wavevector k, then Equation (C.4) is the familiar result as if ϕ
were expanded as a Fourier series in space, with ϕ̂ being the corresponding Fourier coefficient.
The scaling k∥/k⊥ ∼ δ Equation (19) implies that the wavevector can be approximated69 by its
perpendicular component k⊥ ≈ ∇S/δ. Using Equation (C.4) the gyroaverage of the E × B
drift can be calculated as

⟨∇ϕ⟩R =exp(−iωt)
〈
ik⊥ϕ̂(R+ ρs) exp

(
i(
S(R+ ρs)

δ
)

)〉

R

≈ exp(−iωt)
〈
ik⊥

[
ϕ̂(R) + ρs ·∇ϕ̂

]
exp

(
i(
S(R)

δ
+ ρs · k⊥)

)〉

R

≈ϕ̂(R) exp

(
i(
S(R)

δ
− ωt)

)
⟨ik⊥ exp(ik⊥ · ρs)⟩R

where the gradient must be evaluated at the particle position x = R+ ρ as this determines the
local electric field that a particle experiences, and this has subsequently been expanded aroundR
in the second step. In the final step the scalings k⊥ρs ∼ O(1) and ρ/Ln ∼ δ from Equation (19)
have been used to neglect the variation of ϕ̂ on the gyroradius scale. The gyroaverage of the
phase factor can be calculated by realising that at the guiding center k⊥ is fixed and ρ only
changes direction during gyration such that

⟨exp(ik⊥ · ρs)⟩R =
1

2π

ˆ 2π

0
exp(ik⊥ρ sin(ϑ)) dϑ = J0(k⊥ρs) (C.5)

where J0 is the Bessel function of zeroth order. Consequently the gyroaveraged electric field is

⟨E⟩R = −⟨∇ϕ⟩R ≈ −ik⊥ϕ(R, t)︸ ︷︷ ︸
=E(R,t)

J0(k⊥ρs)

Completely analogous to the gyroaverage of the gradient, it can be straightforwardly shown that
〈
∂ϕ

∂t

∣∣∣∣
x

〉

R

= −iωϕ(R, t)J0(k⊥ρs).

69This leads to some subtlety on flux surfaces where the rotational transform is non-rational and a single
field line essentially traces out the complete flux surface, which creates an inconsistency as k∥ ≈ 0 implies that
S(x) must be constant on the full flux surface and consequently also k⊥ = 0. This issue is remedied by the
so-called ballooning transform [215, 216], which forms an equivalent description to Fourier modes for drift-waves
in a torus [132,217]. This is however beyond the scope of the present thesis to discuss.
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by first evaluating the derivative and then performing the expansion from particle position to
guiding center position in the exponential phase-factor.

Substituting these results into Equation (25) and collecting all terms involving gs on the left-
hand side gives

∂gs
∂t

+
(
v∥eb + vE + vds

)
·∇Rgs −

〈
CLs (gs)

〉
R
= −iωJ0ϕ(R, t)

qsϕ(R, t)

T0s
FMs − vE ·∇RFMs

(C.6)

where the derivative of the Maxwellian w.r.t. energy follows straightforward as ∂FMs
∂E = −FMs/Ts

from Equation (23).

Because density and temperature are flux functions, the convective derivative70 of FMs follows
as

−vE ·∇RFMs =iϕ(R, t)J0
k⊥ × eb

B
·∇ψ

∂FMs

∂ψ

=iJ0
qsϕ(R, t)

T0s
ωT⋆sFMs

where Equation (23) and Equation (27) have been used for the definitions of FMs,vE , and the
frequency ωT⋆s is defined by

ωT⋆s =ω⋆s

(
1 + ηs

[
E

Ts
− 3

2

])

ω⋆s =
Ts
qs

(k⊥ × eb) ·∇ψ

B

d lnns
dψ

ηs =
d lnTs
dψ

/d lnns
dψ

.

The physical interpretation of these frequencies and the Bessel function is provided in the main
text in Section 2.3.

Similar to the derivatives of the electrostatic potential ϕ, the derivatives of the kinetic response gs
appearing on the right-hand side of Equation (29) are easy to evaluate using its WKB expansion
Equation (31) as

∂gs
∂t

=− iωgs(R)

∇Rgs =gs(R, t)


∇ ln ĝs︸ ︷︷ ︸

O(1/Ln)

+i
∇S(R)

δ︸ ︷︷ ︸
O(1/δLn)∼O(1/ρ)


 ≈ i

∇S(x)

δ
gs(R, t).

D Derivation of the gyroaveraged guiding center velocity

Starting from the definition of the guiding center R from Equation (21) the guiding center
velocity is found by expanding the derivative

dR

dt
= v︸︷︷︸

i

− ėb × v

Ω︸ ︷︷ ︸
ii

− eb × v̇

Ω︸ ︷︷ ︸
iii

+
eb × v

Ω2
Ω̇

︸ ︷︷ ︸
iv

(D.1)

70The distinction between particle and guiding center position does not matter for this derivative as the pressure
varies on the macroscopic length scales Ln = ∥−∇ lnn∥−1 and LT = ∥−∇ lnT∥−1 which are comparable to the
plasma radius see Figure 1b.
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where v = ṙ is used and the dot denotes derivative w.r.t. time. The gyro-average ⟨· · ·⟩R =
1
2π

¸
· · · dϑ of Equation (D.1) is best evaluated term by term. Term i is straightforward to

average using the velocity decomposition v = v∥eb + v⊥, where v⊥ constitutes the gyromotion,
giving

⟨v⟩R =
〈
v∥eb

〉
R
+ ⟨v⊥⟩R = v∥eb(R) + 0 (D.2)

as the parallel velocity remains constant during gyroaveraging, but the direction of the perpen-
dicular velocity oscillates poloidally.

Term iii is simplified by substitution Newton’s equation of motion for a charged particle in an
electromagnetic field

〈
eb × v̇

Ω

〉

R

=
〈eb
Ω

× q

m
(E + v ×B)

〉
R

=

〈
eb ×E

B

〉

R

+ ⟨eb × (v × eb)⟩R

where the definition of the gyrofrequency Ω = qB
m and magnetic field B = Beb were used in

the last step. For the electrostatic perturbations under consideration the electric field can be
written as the gradient of the electrostatic potential E = −∇ϕ, and the magnetic force term can
be simplified using the vector triple product relation a× (b× c) = (a · c) b− (a · b) c, resulting
in

〈
eb × v̇

Ω

〉

R

= −
〈
eb ×∇ϕ

B

〉

R

+ ⟨v⊥⟩R = −eb(R)

B(R)
× ⟨∇ϕ⟩R + 0. (D.3)

Terms ii and iv deal with the time derivative of the magnetic field direction and strength
respectively. Since the perturbations under consideration are electrostatic, they do not alter the
equilibrium magnetic field which is static as a result from quasi-neutrality (∂B∂t = 0). Therefore
the only change in time a particle experiences from the magnetic is due its own motion through
the non-uniform magnetic field, i.e. the time derivative is just the convective derivative d

dt →
(v ·∇).

Term ii can be solved by realising that the direction of ėb is constrained perpendicular to eb in
order to preserve the length of the unit vector, since eb · ėb = 1

2
d(eb·eb)

dt = 1
2

d
dt1 = 0. Splitting

the convective derivative as (v · ∇)eb = v∥∇∥eb + v⊥ · ∇⊥eb will simplify the gyroaveraging
procedure.
The parallel derivative v∥∇∥eb represents the change of the direction of the magnetic field as
the particle moves along the field line, which as a result of the rotational transform ι of the
helical magnetic field is slowly twisting in the poloidal plane while moving along the field line.
Consequently, the relevant cross product

[
v∥∇∥eb

]
× v =

[
v∥∇∥eb

]
×
(
v∥eb

)
since the gyration

takes place in the poloidal plane as well. It is custom to write ∇∥eb = eb ·∇eb ≡ κ since this
quantity represents the curvature of the magnetic field lines.
The perpendicular derivative v⊥ · ∇⊥eb is also a component of ėb and therefore constrained
perpendicular to the magnetic field, however unlike the parallel derivative v∥∇∥eb it does not
have a clear physical interpretation related to the twisting of the field line. Nevertheless, the
gyroaveraging operation can be performed by realising that ∇eb is a tensor containing the
geometry information of how the direction of the magnetic field changes locally through space,
and is therefore a fixed quantity for a given magnetic configuration at the guiding centre R.
However, v⊥ is the velocity associated with the gyromotion which continually changes direction

depending on the gyro-angle ϑ. Since the magnetic moment µ =
mv2⊥
2B is an adiabatic invariant of

the motion, and the magnetic field strength cannot change abruptly along the helical trajectory
of the particle during a single gyration (

v∥
Ω ≪ ∥∇ lnB∥−1) the magnitude of v⊥ remains constant
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during a gyration. Consequently during a single gyration v⊥(ϑ) · ∇⊥eb is scanning different
components of the Jacobian matrix of the magnetic geometry (∇eb). Since after half a rotation
the perpendicular velocity is in counter phase with itself v⊥(ϑ + π) = −v⊥(ϑ) all the selected
components of the Jacobian matrix during a gyration cancel out71. Consequently, after some
effort the gyroaverage of term ii follows as

〈
ėb × v

Ω

〉

R

=

〈
v2∥κ× eb

Ω

〉

R

+

〈
(v⊥(ϑ) · ∇⊥) eb × v

Ω

〉

R

=
v2∥κ(R)× eb(R)

Ω(R)
+ 0. (D.4)

Since the mass and charge of a given particle are constants, term iv can be reduced to eb×v
Ω ×

1
B (v ·∇)B where the first factor is the gyroradius vector ρ indicating the position of the particle
on the gyration ring around the guiding center. Since for the gyroaveraging procedure the guiding
center is kept fixed, the gyromotion can conveniently be described in a local Cartesian coordinate
system {e1, e2, eb} with its origin at R [6], such that the gyration is described by

ρ =
v⊥

Ω(R)
(sin(ϑ)e1 + cos(ϑ)e2)

v = v∥eb + v⊥ (cos(ϑ)e1 − sin(ϑ)e2)

which has the benefit that the unit vectors remain constant during gyroaveraging. Expanding
term iv in this local Cartesian coordinate system gives

eb × v

Ω
× 1

B
(v ·∇)B =

v⊥
ΩB

e1

(
v∥ sin(ϑ)∇∥B + v⊥ sin(ϑ) cos(ϑ)∇e1B − v⊥ sin(ϑ)2∇e2B

)

+
v⊥
ΩB

e2

(
v∥ cos(ϑ)∇∥B + v⊥ cos(ϑ)2∇e1B − v⊥ sin(ϑ) cos(ϑ)∇e2B

)
.

The result of gyroaveraging is then readily obtained as

〈
eb × v

Ω
× 1

B
(v ·∇)B

〉

R

= − v2⊥
2Ω(R)

e1∇e2 lnB(R) +
v2⊥

2Ω(R)
e2∇e1 lnB(R) (D.5)

which is a direct consequence of the π/2 phase difference between the components of ρ and v⊥;
the dot product leads to mixing of the components of ρ and v⊥ which are in phase and result
in a non-vanishing average over a gyration. As the local Cartesian coordinate system is defined
by e1 × e2 = eb, Equation (D.5) can be generalised to an arbitrary coordinate system as

〈
eb × v

Ω
× 1

B
(v ·∇)B

〉

R

=
eb(R)

Ω(R)
×
v2⊥
2
∇ lnB(R). (D.6)

Combining Equations (D.2) to (D.6) gives the desired result for the gyroaveraged guiding center
velocity

〈
Ṙ
〉
R
= v∥eb +

eb × ⟨∇ϕ⟩R
B

+
eb
Ω

×
(
v2∥κ+

v2⊥
2
∇ lnB

)

where the evaluation of the magnetic field at the guiding center has been suppressed since that
is implied by the gyroaveraging procedure.

71This argument neglects the cross product with v which cannot be reduced to a cross product with just the
gyrophase independent v∥eb, since v⊥ · ∇⊥eb could also lie in the radial direction. Nevertheless, when v⊥ is
horizontal and the horizontal components of the Jacobian matrix are selected, the cross product with v⊥ will
select the vertical component, which is π/2 out of phase with its horizontal component. Consequently the average
over a gyration of the cross product with v⊥ also vanishes since ∇eb is independent of gyrophase
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E Derivation of dispersion relation for the basic drift wave

The dispersion relation for the basic drift wave mechanism can be derived fairly easily from the
macroscopic MHD fluid equations for particle conservation and momentum balance, and what
follows the procedure in [5, 12] will be closely followed. The MHD mass balance is given by [3]

∂ns
∂t

+∇ · (nsus) = 0 (E.1)

where ns is the species density, and us is the macroscopic fluid velocity, which is equivalent to
the average velocity in kinetic theory us =

´
vfsd

3v/ns. The MHD momentum balance is given
by [3]

msns

(
∂

∂t
+ us ·∇

)
us = qsns (E + us ×B)−∇ps −msns

∑

s′

νss′ (us − us′) (E.2)

wherems, qs are the species mass and charge respectively, E,B, ps = nsTs is the species pressure
and Ts the species temperature, and νss′ is the net collision frequency for momentum exchange
between species s and s′.

In the drift wave mechanism described in Section 2.1.1, it is the fast parallel motion of the
electrons parallel to the field that is crucial for the generation of the electric field as a result
of the much smaller inertia compared to ions. Thus neglecting the electron inertia and the
collisions since they are not included in the basic drift wave mechanism, the parallel component
of Equation (E.2) for electrons reduces to

0 ≈ ene∇∥ϕ−∇∥pe (E.3)

where the electrostatic approximation E = −∇ϕ was used. In the basic drift wave mechanism
the temperature is uniform, the equilibrium density is taken to have a gradient perpendicular
to the magnetic field, and in absence of a density perturbation there is no electrostatic potential
ϕ such that the parallel momentum balance reduces to 0 = 0 in equilibrium. In the presence
of perturbations ne → n0 + δn and ϕ ̸= 0, and assuming these perturbations to be small
δn/n0 ∼ eϕ/Te ∼ δ ≪ 1 Equation (E.3) can be solved perturbatively by neglecting δ2 terms as

δne
n0

=
eϕ

Te
(E.4)

where ∇∥ne = ∇∥Te = 0 were used. Note that Equation (E.4) is simply the linearisation of the
Boltzmann relation for electrons in equilibrium [218], which corresponds with the assumption
that electrons respond adiabatically to equilibrate density differences.

Meanwhile the ions are dominated by their relatively large inertia, and will respond kinetically
to the density perturbation. As a result from the electric field the ions will be affected by the
E × B drift, which for a typical Maxwellian velocity distribution will be the mean velocity
obtained from averaging over the distribution72. Consequently Equation (E.1) for the ions takes
the form

∂ni
∂t

+∇ ·
(
ni

eb ×∇ϕ

B

)
= 0 (E.5)

72In light of the theory presented Section 2.3 this is not completely true, since the kinetic response of the
ions results in a distribution fi = fMi + fad,i + gi. Although for the first two terms which are of Maxwellian
form it holds that ui = vE , the kinetic response function can also have a non-vanishing average parallel velocity.
Nevertheless if the perturbations satisfy ω/k∥ ≫ vth the parallel motion of ions during a period of the oscillation
will be negligible and on the timescale of the perturbation one can take ui ≈ vE [5]
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where B is just the magnitude of the magnetic field and eb = B/B is the unit vector in the direc-
tion of the magnetic field. Assuming all perturbations to be of the form f = f̃ exp(ik · x− ωt)
for amplitude f̃ , wavevector k and frequency ω, Equation (E.5) can also be solved perturbatively.
Just as before using ni = n0+δni, eϕ/Ti ∼ δni/n0 ∼ δ, and neglecting δ2 effects, Equation (E.5)
becomes

iωδni =
eb × k

B
iϕ ·∇n0 −

eb × k

B
· k

︸ ︷︷ ︸
=0

n0ϕ

which is easily solved for the density perturbation as δni =
(eb×k)·∇n0

ωB ϕ.

As a final ingredient, demanding the perturbations to maintain quasi-neutrality such that no
macroscopically large electric fields will form along the magnetic field, results in

(
(eb × k) ·∇n0

Bω
− n0

e

Te

)
ϕ = 0

which should hold regardless of the form of the potential perturbation such that the frequency
of the perturbation is found as

ω =
Te
e

(eb × k)

B
·∇ lnn0, (E.6)

i.e. the frequency is purely real corresponding to a stable travelling rather than an instability.
Since the frequency was obtained with the same assumptions as the basic drift wave mechanism,
namely adiabatic electrons and ions influenced by the E × B drift, it must be the drift wave
frequency.

E.1 Translation to toroidal geometry

In the slab geometry the density gradient was taken to be in the x direction, which corresponds to
the radial ψ direction in toroidal geometry, and a comparison with Equation (30) shows that the
wavefrequency is the electron diamagnetic frequency ω⋆e. Continuing the translation from slab
to toroidal geometry, the wavevector in Equation (E.6) can be taken as k⊥ as the cross product
would make any parallel component vanish, and the Clebsch representation of the magnetic field
Equation (5) gives a natural choice for the perpendicular wavevector as k⊥ = kα∇α + kψ∇ψ,
for which Equation (E.6) gives

ω⋆e =
Te
−e

(k⊥ × eb)

B
·∇ψ

d lnne
dψ

=
Te
−ekα

d lnne
dψ

(E.7)

where the circular shift property of the scalar triple product, the definition of Clebsch coordinates
B = ∇ψ×∇α and eb = B/B have been used.

The fact that the perturbations move in the electron diamagnetic direction stems mathemat-
ically from Equation (E.4), namely that the perturbed electron density has exactly the same
waveform as the potential perturbation (and by enforcing quasi neutrality so must the ion den-
sity). Physically it stems from the fact that the electrons quickly re-establish their density to
the background density and thereby leave the ions behind at the perturbed density, so the wave
will travel in the same direction along the field lines as the electrons do, with the phase speed
ω/k∥.

E.2 Extension to iδ model

If the non-adiabatic nature of the electrons is accounted for by means of an iδ model, such that
the electron density perturbation becomes

δne
n0

=
eϕ

Te
e−iδ ≈ eϕ

Te
(1− iδ)
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for phase delay of δ ≪ 1, then the quasi-neutrality condition is changed to

[
(eb × k) ·∇n0

Bω
− (1− iδ)n0

e

Te

]
ϕ = 0

where the density perturbation for ions is the same as before. Factoring n0, e, Te out of the brack-
ets to enforce Equation (E.6) as the definition for ω⋆e gives the new solution to the dispersion
relation as

ω

ω⋆e
=

1

1− iδ
≈ 1 + iδ

where δ ≪ 1 was again used in the last step. The drift wave frequency now acquires an imaginary
part which corresponds to a growth rate of γ = δ × ω⋆e leading to instability as a result of the
non-adiabatic response of electrons provided that δ > 0 and the density perturbation will lag
the potential perturbation, i.e. the electrons cannot immediately establish equilibrium along the
field line on the timescale of the perturbations. In the more general case where the phase delay
is not small and the exp(−iδ) phase factor cannot be expanded it is straightforward to show
that the solution to the dispersion relation is given by

ω

ω⋆e
= exp(iδ) (E.8)

such that the non-adiabatic electron response leads to both a shift in the propagation frequency
away from ω⋆e and a growth rate.

F Relaxation property of the BGK collision operator

In the absence of spatial gradients and electromagnetic fields73 (i.e. a homogeneous, unmag-
netised and quasi-neutral plasma) the kinetic equation Equation (10) reduces to the simple
form

∂fs
∂t

= Cs. (F.1)

By taking velocity moments of Equation (F.1) evolution equations for the density, mean velocity
and temperature of species s are obtained

∂

∂t
(ns) =

ˆ
Csd

3vs

∂

∂t
(nsqs) =

ˆ
vsCsd

3vs

∂

∂t

(
3

ms
Ts + nsq

2
s

)
=

ˆ
v2sCsd

3vs

(F.2)

where the definition of the velocity moments of fs from Equation (40) have been used. By using
the BGK model Equation (38) for the collision operator Cs it follows from the standard velocity
moments of the shifted Maxwellian

ˆ
M [fs]d

3vs = ns

ˆ
M [fs]vsd

3vs = nsqs

ˆ
v2M [fs]d

3vs = ns

(
3Ts
ms

+ q2s

)
(F.3)

73This is an idealisation that directly reduces the problem to an as simple as possible form. In actuality, spatial
gradients can be allowed provided that they are sufficiently weak (i.e. long gradient lengths L∇) and the presence
of magnetic field can also be allowed provided that is sufficiently strong, such that there is again a strong timescale
separation vTs/L∇∇x ≪ νs ≪ Ωs and the kinetic equation can be approximately reduced to Equation (F.1).
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that all of the right-hand sides of Equation (F.2) vanish, which is a consequence of the conserva-
tive nature of the BGK model. This means that Equation (F.2) represent a set of conservation
equations for the particle, momentum and energy densities, which can be reduced to

∂ns
∂t

= 0
∂qs
∂t

= 0
∂Ts
∂t

= 0

by substituting one equation into the next, and shows that the density, mean velocity and
temperature are all individually all stationary (i.e. constant in time). As furthermore the
plasma is taken to be homogeneous the the velocity of moments of fs, which in general are a
function of space and time since fs(x,v, t), are all just constants n0s, q0s, T0s, and therefore the
equivalent Maxwellian Equation (39) is also constant M0s =M [fs(v, t)] =M(n0s, q0s, T0s).

By explicitly writing out the BGK model in Equation (F.1) and plugging in the above results
for the constant velocity moments gives

∂fs(v, t)

∂t
= − 1

τrel,s
(fs(v, t)−M0s)

where because of the assumed spatial homogeneity the distribution function fs can only be a
function of time and velocity, for which can rather trivially be solved by means of substitution
to the new variable ∆fs(v, t) ≡ fs(v, t)−M0s in the reduced kinetic equation, resulting in

fs(v, t) = fs(v, 0) exp
(
− t
τrel,s

)
+ n0s

(
ms

2πT0s

)3/2
exp
(
−ms(vs−q0s)

2

2T0s

)(
1− exp

(
− t
τrel,s

))
(F.4)

where M0s has been written out explicitly. From Equation (F.4) it can be seen that as t → ∞
the distribution function tends to fs → M0s regardless of the initial distribution fs(v, 0) and
that the distribution function looses its initial character exponentially with an e-folding time
τrel,s.

G Details of derivation for interspecies BGK model

G.1 Constraints to the interspecies BGK model

The derivations of this section closely mirrors the one in [117,123], without assuming the collision
frequencies ν12, ν21 to be identical to respect the appearance of mass ratio in Equation (18).
The general strategy for determining the “hybrid” velocity moments of the equivalent Maxwellian
Mss′ appearing in the interspecies BGK collision model is best discussed step-by-step. First
the exchange of particles, momentum and energy from one species to the other are calculated
and the corresponding conservation requirements are set up in Appendix G.1.1. Then the
process of relaxation towards a common equilibrium is discussed in Appendix G.1.2. Then
lastly the postulates for the “hybrid” velocity moments are introduced in Appendix G.1.3 and
their corresponding solutions from the constraints are obtained.

G.1.1 Conservation requirements

The exchanges of particles, momentum and energy as a result of the interspecies collisions follow
from taking velocity moments of Equation (42), where the velocity moments ofMss′ are the same
as forMs but with all species labels s in Equation (F.3) replaced by ss′ and the velocity moments
of fs remain defined by Equation (40). Since any elastic scattering of particles cannot change the
total number of particles, the “hybrid” densities can immediately be determined by requiring
the vanishing of the zeroth velocity moment of Equation (42), resulting in

ˆ
Css′,BGKd3vs = −νss′ (nss − nss′)
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where in the case s = s′ the result that self-collision conserve particles is recovered. Thus the
“hybrid” densities are simply the particle density of each species nss which reflects the fact that
since νss′ are constant collision rates there is no preferential group of particles that only scatter
among themselves but not with the other species. Consequently double species labels on the
density are redundant and will be dropped.

Net exchanges of momentum and energy between two species are however possible such that
Css′ is not required to conserve momentum and energy. The resulting flows of momentum and
energy from species s′ to s follow as

ˆ
msvsCss′d

3vs =− νss′ns (qss − qss′)

ˆ
msv

2
s

2
Css′d

3vs =− νss′ns

(
3

2
[Tss − Tss′ ] +

ms

2
[qss · qss − qss′ · qss′ ]

) (G.1)

where again in the case s = s′ the momentum and energy conservation of self-collisions is recov-
ered. Since the collisions between ions and electrons are however elastic, the total momentum
and energy in the system have to be conserved such that the total momentum lost by one species
has to be gained by the other, which puts constraints on the “hybrid” moments in terms of the
known moments of the distribution of each species. Conservation of total momentum and energy
of the two species system follows from summing Equation (G.1) over both species which leads
to

∑

(s,s′)=1,2

ˆ
msvsCss′d

3vs = 0 = −ν12n1m1 (q11 − q12)− ν21n2m2 (q22 − q21) (G.2)

∑

(s,s′)=1,2

ˆ
msv

2
s

2
Css′d

3vs = 0

= ν12n1

(
3

2
[T11 − T12] +

m1

2

[
q211 − q212

])
− ν21n2

(
3

2
[T22 − T21] +

m2

2

[
q222 − q221

])
(G.3)

These conservation requirements on the total momentum and energy in the system however
gives only four equations to determine the eight unknown “hybrid” moments, such that addi-
tional constraints are required to uniquely determine all “hybrid” moments. These additional
constraints come from a relaxation problem, which is worked out below

G.1.2 Relaxation towards common equilibrium

The continuous exchange of momentum and energy between the electrons and ions will eventually
lead to an equilibrium situation where both species have the same temperature and mean velocity
, such that on a statistical level momentum- and energy exchange between ion and electrons
will cease [124]. To focus on the essential details of this process (slow time change to the
distribution function as a result of collisions) the same simplification of a homogeneous plasma
void of electromagnetic fields as in Appendix F is considered. Using Equation (G.1) the evolution
equations for particle, momentum and energy density Equation (F.2) follow as

∂

∂t
(ns) = 0

∂

∂t
(nsqss) = −

∑

s′=(1,2)

νss′ns (qss − qss′)

∂

∂t

(
3

ms
Tss + nsq

2
ss

)
= −

∑

s′=(1,2)

νss′ns

(
3

ms
[Tss − Tss′ ] +

[
q2ss − q2ss′

])
.

(G.4)
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These evolution equations can similarly be reduced by substituting each equation in the next to
give pure evolution equations for just the density, mean flow and temperature of species s

∂ns
∂t

= 0
∂qss
∂t

= −νss′ (qss − qss′)
∂Tss
∂t

= −νss′
(
[Tss − Tss′ ]−

ms

3
[qss − qss′ ]

2
)

(G.5)

such that the evolution of the observables of interest of the distribution function are obtained.
The difficulty in solving Equation (G.5) is that the evolution equations for Ts and qs are coupled
because of reshuffling of energy between deterministic part related to qs and thermal part related
to random motion. The main role of interspecies collisions will be to equilibrate the electrons
with the ions and vice versa by exchanging energy and momentum until a common temperature
and mean flow velocity are reached

lim
t→∞

q11 = lim
t→∞

q22 ≡ q∞ lim
t→∞

T11 = lim
t→∞

T22 ≡ T∞. (G.6)

To be a true equilibrium, the microscopic dynamics of ions and electrons which will continue to
exchange momentum and energy on a single-particle level should no longer affect the macroscopic
statistical properties of the electrons and ions on the collective level, such that the equilibrium
must be steady-state. Therefore ∂q∞

∂t = 0 and ∂T∞
∂t = 0, i.e. the moments of the distribution

function should over time relax.

Enforcing steady-state on Equation (G.5) then places constraints on the long time behaviour of
the “hybrid” moments

lim
t→∞

qss′ → q∞ lim
t→∞

Tss′ → T∞ (G.7)

which means that the equivalent Maxwellians describing the scattering of each species among
themselves and with each other will relax to the same distribution

lim
t→∞

Mss[fs] = lim
t→∞

Mss′ [fs, fs′ ] =Ms,∞

which makes sense as the statisical information of the distribution functions fs, fs′ , which in turn
determine the statistical properties of Mss′ , are identical in the relaxed state. Equation (G.6)
and Equation (G.7) can be compactly written as

lim
t→∞

qss′ → q∞ ∀(s, s′) ∈ {1, 2} ⊗ {1, 2} (G.8)

lim
t→∞

Tss′ → T∞ ∀(s, s′) ∈ {1, 2} ⊗ {1, 2} (G.9)

which only gives information on the limiting time behaviour of the “hybrid” moments such that
these cannot be used in conjunction to Equations (G.2) and (G.3) which have to be satisfied
instantaneously and all reduce to zero in this relaxed state.

G.1.3 Form of the “hybrid” moments

The workaround to this issue which allows to use the relaxation problem as additional constraints
to the conservation requirements is to decompose the “hybrid” moments in terms of the mo-
ments of the distribution of the two species (see Footnote 32 for motivation of this decomposition)

q12 = α11q11 + α12q22

q21 = α21q11 + α22q22
(G.10)

T12 = β11T11 + β12T22 +Aq211 +Bq11 · q22 + Cq222

T21 = β21T11 + β22T22 +Dq211 + Eq11 · q22 + Fq222
(G.11)

Because all time dependence in Equations (G.10) and (G.11) is relinquished to the time depen-
dence of the temperature and mean velocity of each species and the coefficients are constant, the
conservation requirements and relexation constraints can be applied to determine what these
coefficients should be to reflect the proper physics and not be some arbitrary model parameter.
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G.1.3.1 Solution for the “hybrid” mean velocities
The four αij coefficients are determined from momentum conservation Equation (G.2) and the
velocity relaxation Equation (G.8). The steady-state requirement of the relaxation problem
directly places a constraint on the αij ’s since

lim
t→∞

q12 = (α11 + α12)q∞ → q∞

must hold for arbitrary q∞. Taking the same limit for q21 gives two constraint equations

α11 + α12 = 1, α21 + α22 = 1 (G.12)

Meanwhile the momentum conservation requirement Equation (G.2) becomes

(n1m1ν12 [1− α11]− n2ν21m2α21) q11 + (n2ν21m2 [1− α22]− n1ν12m1α12) q22 = 0

which should be satisfied instantaneously for any q11, q22 such that the constant coefficients in
front of the mean flow velocities should vanish. However, using the earlier determined constraint
on the αij ’s Equation (G.12) this only produces one unique additional constraint coupling the
two “hybrid” velocities q12, q21

α21

α12
=
n1m1ν12
n2m2ν21

(G.13)

which leaves one of the αij ’s as a free model parameter, which is taken to be α12.

G.1.3.2 Solution for the “hybrid” temperatures
The four βij coefficients and six Roman coefficients A-F are determined from energy conservation
Equation (G.3) and the temperature relaxation Equation (G.9). Proceeding similarly as above,
the steady-state requirement of the relaxation problem gives

lim
t→∞

T12 = (β11 + β12)T∞ + (A+B + C)q2∞ → T∞

which must hold for arbitrary q∞, T∞. Taking the same limit for T21 yields the four constraint
equations

β11 + β12 = 1 β21 + β22 = 1

A+B + C = 0 D + E + F = 0
. (G.14)

Meanwhile the energy conservation requirement Equation (G.3) becomes

3

2
(n1ν12 [1− β11]− n2ν21β21)T11 +

1

2

(
m1n1ν12

[
1− α2

11

]
−m2n2ν21α

2
21 − 3n1ν12A− 3n2ν21D

)
q211+

3

2
(n2ν21 [1− β22]− n1ν12β12)T22 +

1

2

(
m2n2ν21

[
1− α2

22

]
−m1n1ν12α

2
12 − 3n1ν12C − 3n2ν21F

)
q222+

−1

2
(3n1ν12B + 3n2ν21E + 2m1n1ν12α12α11 + 2m2n2ν21α21α22) q11 · q22 = 0

which should be statisfied instantaneously for any T11, T22, q11, q22 such the coefficients in front
of every temperature and combination of flow velocity must vanish, yielding five additional
constraint equations, which can be solved independently as Equation (G.14) decouples the βij ’s
from A-F . The constraint equations for the βij ’s are isomorphic to the constraints for the αij ’s
such that only on additional constraint on the βij ’s follows from energy conservation

β21
β12

=
n1ν12
n2ν21

(G.15)
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which leaves β12 as a free model parameter.

The three remaining constraint on the Roman coefficents A-F are however coupled to the con-
straints on the αij ’s such that these are not independent. Substituting the constraints on the
αij ’s then gives constraints equations on A-F in terms of the free parameter α12

3 (n1ν12A+ n2ν21D) =α12m1n1ν12

(
2− α12

[
1 +

n1m1ν12
n2m2ν21

])

3 (n1ν12C + n2ν21F ) =α12m1n1ν12

(
2− α12

[
1 +

n1m1ν12
n2m2ν21

])

3 (n1ν12B + n2ν21E) =− 2α12m1n1ν12

(
2− α12

[
1 +

n1m1ν12
n2m2ν21

])
(G.16)

which can be reduced to the “eyeballing solution”

A = C = −B
2
, D = F = −E

2

which is also a consistent solution to the relation constraint Equation (G.14), as each constraint
in Equation (G.16) has the same right-hand side such that they are degenerate. This means
that out of the six Roman coefficients A-F only two are unique and Equation (G.16) can be
used to eliminate one of them which yields a third free model parameter

D

A
=
α12

A

m1n1ν12
3n2ν21

(
2− α12

[
1 +

n1m1ν12
n2m2ν21

])
− n1ν21
n2ν21

(G.17)

which is chosen to be coefficient A.

G.2 Coupling of interspecies BGK model to exchange model

The fact that the BGK collision rates νss′ are free model parameters can cleverly be used to
determine some of the remaining undetermined coefficients for the “hybrid” velocity moments
Equations (G.10) and (G.11). This is because the undetermined parameters essentially are given
the status of a free model parameter as well, but by substituting the results for the αij , βij , A−F
from Appendix G.1 into Equation (G.1) it follows that the resulting exchange of momentum
and energy from e.g. species 2 to 1 are given byˆ

m1v1C12d
3v1 = −ν12n1m1 (q11 − q12) = −n1m1α12ν12 (q11 − q22) (G.18)

ˆ
m1v

2
1

2
C12d

3v1 = −ν12n1
(
3

2
[T11 − T12] +

m1

2

[
q211 − q212

])

= −n1ν12β12 [T11 − T22] + n1ν12

(m1

2
[q11 − q22]

2
)
×
(
3A

m1
+ α2

12

)
− n1m1ν12α12 (q11 − q22) · q11

.

(G.19)

Equation (G.18) shows that the actual momentum transform is determined by α12 × ν12 such
that it is impossible for both α12, ν12 to take on arbitrary values as the actual rate of momentum
transfer between ions and electrons is determined by the details of their Coulomb interaction.
Similarly Equation (G.19) shows that the energy flow has three channels of energy flow: transfer
of thermal energy between the species, changes in the component of the relative velocity that
species 1 carry and direct energy changes as a consequence from momentum transfer between the
species. These channels have an energy flow propotional to the products ν12×β12, ν12×A, ν12×
α12, whereas the actual rate of energy transfer between ions and electrons is also determined
by the details of their Coulomb interaction. Therefore the model parameters α12, β12, A cannot
truly be free as they will have to be adapted to the choice of ν12 to give the proper momentum
and energy transfers.
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G.2.1 Net exchange model for Coulomb collisions

The physical transfer of momentum and energy from the ions to the electrons due to collisions
are semi-phenomonologically modelled as [3]

d

dt
(nemeqe) =−meneνmei (qe − qi) (G.20)

d

dt
(Ue) =− νenei (Ue − Ui) (G.21)

where Us = 3
2nsTs +

1
2nsmsq

2
s is the total energy density of species s and νmei , ν

en
ei denote the

effective exchange frequency of momentum and energy respectively. In fusion plasmas the mean
flow is typically due to a toroidal rotation of the plasma that is externally induced to increase
the macroscopic plasma stability [219]. In tokamaks this rotation speed can be a fraction of
the ion thermal speed, but in stellarators it is typically inhibited [43]. Consequently the energy
density is dominated by its thermal part such that Uj ≈ 3

2njTj , which makes the coefficients A-F
redundant. It might be objected that this would violate energy conservation since according to
Equation (G.17) A = 0 does not imply that D = 0 as well, however in view of the inevitable
linearisation of the BGK model which follows , the quadratic contributions in q to the “hybrid”
temperature would be neglected anyway since these are O(δ2) [123]. Furthermore the fact that
rotational velocities do not exceed only a fraction of the slowest ion thermal velocity is completely
consistent with the linearisation of q[f ]/vRMS ≈ 0 from Section 2.5. By changing the species
labels e → i, i → e in Equations (G.20) and (G.21) completely analogous equations for the
transfer of momentum and energy from electrons to ions are obtained, and conservation of the
combined momentum and energy of electrons and ions fixes the relation between the exchange
frequencies as

d

dt
(nemeqe + nimiqi) = 0 ⇒ meνmei = miνmie

d

dt
(Ue + Ui) = 0 → νenei = νenie

(G.22)

where quasi-neutrality ne ≈ ni has been used.

G.2.2 Matching of BGK to physical net exchange model

To match the BGK model to the exchange model a convention about the species labels will
have to be adopted, and therefore the electrons are taken as species 1 and the ions as species 2.
Comparing Equation (G.18) to Equation (G.20) then gives the undetermined α12 coefficient as

α12 =
νmei
ν12

. (G.23)

Similarly comparing the momentum flow from electrons to ions to the exchange model would give
a match forα21 = νmie /ν21 such that ratio of the two αij coefficients follows from Equation (G.22)
as

α21

α12
=
νmie ν12

νmei ν21
=
meν12
miν21

which is consistent with the constraint Equation (G.13) under the same quasi-neutrality as-
sumption.

For a consistent comparison of the energy exchange model Equation (G.21) with the energy flow
from the BGK model Equation (G.19), the quadratic terms in the flow velocity will have to be
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neglected in the latter, which would happen in linearisation anyway. Thus by retaining only the
the first heat transfer term in Equation (G.19) the free parameter β12 is fixed as

β12 =
νenei
ν12

(G.24)

and a similar analysis for the energy flow from electrons to ions gives a match for β21 =
νenie
ν21

such that the ratio of the two βij coefficients follows from Equation (G.22) as

β21
β12

=
νenie ν12

νenei ν21
=
ν12
ν21

which is consistent with the constraint Equation (G.15) under the same quasi-neutrality as-
sumption.

This method seems dubious at first as Equations (G.23) and (G.24) now express a previously
free model parameter in the ratio between a seemingly phenomenological exchange rate and
an equally free model parameter. The exchange model is however only semi-phenomological
as the exchange frequencies can be determined from first principles, which involves averaging
over the changes in velocity of individual test-electrons due to collisions with ions and is the
natural extension to how the test particle collision frequencies Equation (16) are determined.
The details of this calculation is rather lengthy and therefore deferred to Appendix H, which
results in a coupling of the exchange frequencies to the rigorously physically interpretable 90°
scattering frequency of electrons on ions as

νenei = 2
me

mi
νmei = 2

me

mi
νei90° (G.25)

which again shows that energy transfer is slower than momentum transfer by the mass ratio.
Furthermore Equation (G.25) allows to express α12 in terms of β12 as

β12 = 2
me

mi
α12

which was not previously possible from the constraints on the interspecies BGK model. Within
the framework of the linearisation to come this eliminates another coefficient of the “hybrid”
moments for the interspecies BGK model such that all “hybrid moments” may be expressed in
terms of β12, which is in turn fixed through Equation (G.24) by any choice for the collision rate
ν12 which is the conventional free parameter of the single-species BGK model. Consequently
when linearised around qs/vTs ≪ 1 the two-species BGK model is completely determined in
terms of the four arbitrary collision rates νss′ only.

G.3 Linearisation of the interspecies BGK model

With the “hybrid” velocity moments for the equivalent MaxwellianMss′ of the scattered particles
finally determined in terms of the known velocity moments of the ion and electron distribution
functions the model can be subsequently linearised for its intended application of performing
linear stability analysis on the GKE Equation (25).

G.3.1 Linearisation of the interspecies collision operator

Using the decomposition Equations (G.10) and (G.11), the solutions for the coefficients given
in Appendices G.1 and G.2 and the linearised solution for the functionals Equation (40) (corre-
sponding to linearised velocity moments of fs) of each species determined in Section 2.5.1, the
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“hybrid” moments follow as

n12 =ne = n0e

(
1 +

eϕ

Te

)
n21 =ni = n0i

(
1− eϕ

Ti

)

q12 ≈0 q21 ≈0

T12 ≈β12Ti + (1− β12)Te T21 ≈β12
ν12
ν21

Te +

(
1− β12

ν12
ν21

)
Ti

where species 1 is taken to be the electrons and species 2 is taken to be the ions. The issue
with the coupled arbitrariness of β12 to the free choice of the collision rate ν12 can be closed by
introducing the temperature ratio τ = T0i/T0e such that the “hybrid” temperatures for scattered
electrons can be written in terms of the electron temperature, and vice versa for the ions

T12 = Te (1 + β12 (τ − 1)) T21 = Ti

(
1 + β21

1− τ

τ

)
.

Under typical fusion reactor conditions the temperature ratio satisfies τ ≈ 1, see Figure 1b, such
that the “hybrid” Maxwellians can be expanded around τ = 1 such that the linearised BGK
operator for e.g. electron-ion collisions becomes

Cei,BGK = −ν12ge + ν12β12 (τ − 1)FMe

(
1 +

eϕ

Te0

)[
mev

2
e

2Te
− 3

2

]
≡ Cδei,BGK + C0

ei,BGK (G.26)

which consists of a fluctuating part Cδei,BGK that is linear in the perturbations gs, ϕ and an

equilibrium C0
ei,BGK part that only contains the Maxwellian FMe. As this part is unrelated to

the fluctuations that are intended to be studied with Equation (G.26) its role is first investigated
in detail below by taking the equilibrium limit of ge, ϕ→ 0.

G.3.2 Understanding the equilibrium contribution

The effect of the leading order equilibrium part of the linearised BGK operator for electron-ion
collisions

C0
ei,BGK = ν12β12 (τ − 1)FMe

(
mev

2
e

2Te
− 3

2

)
. (G.27)

becomes clear by taking its moments velocity moments. The zeroth velocity moment follows as

ˆ
C0
ei,BGKd3ve = ν12β12 (τ − 1)ne0

(
me

2πTe0

)3/2 ˆ
exp

(
−mev

2
e

2Te0

)(
mev

2
e

2Te0
− 3

2

)
d3ve

= ν12β12 (τ − 1)ne0
2√
π

ˆ ∞

0

√
µ exp(−µ)

(
µ− 3

2

)
dµ

= ν12β12 (τ − 1)ne0
2√
π

(
Γ(5/2)− 3

2
Γ(3/2)

)
= 0

where spherical velocity coordinates are used to exploit the isotropy of the Maxwellian, µ =
mev

2
e/2Te has been introduced to map the remaining integral onto gamma functions, and the

last step follows from the recursive property of the gamma function Γ(n + 1) = nΓ(n). As the
zeroth velocity moment vanishes, Equation (G.27) is particle conserving.

The first velocity moment of Equation (G.27)
´
C0
eimeved

3ve = 0 as the integrand is anti-
symmetric, such that in equilibrium there is no momentum exchange with the ions. As the
ions are also taken to be given by a Maxwellian distribution without mean velocity, this is
consistent with the exchange model Equation (G.20). This could be expected as the Maxwellian
Equation (23) is taken to have zero mean velocity for both ions and electrons, such that the
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electrons and ion do not cary any net macroscopic momentum and this neatly shows that there
is no spurious macroscopic momentum generated for the electrons (and hence also not for ions
to conserve total momentum).

Meanwhile the second velocity moment of Equation (G.27) is given by

ˆ
C0
ei

mev
2
e

2
d3ve = ν12β12 (τ − 1)ne0

me

2

(
me

2πTe0

)3/2 ˆ
exp

(
−mev

2
e

2Te0

)(
mev

2
e

2Te0
− 3

2

)
v2ed

3ve

= ν12β12 (τ − 1)ne0
2Te0√
π

ˆ ∞

0
µ3/2 exp(−µ)

(
µ− 3

2

)
dµ

= ν12β12 (τ − 1)ne
2T√
π


Γ(7/2)︸ ︷︷ ︸

=15
√
π/8

−3

2
Γ(5/2)︸ ︷︷ ︸
=3

√
π/4




= ν12β12 (τ − 1)ne
3Te0
2

upon using Equation (G.24) and τ = Ti0/Te0 it follows that the energy exchange resulting from
Equation (G.27) is exactly the energy exchange model Equation (G.21). The fact that the
BGK model is consistent with the exchange model should not be completely surprising as the
BGK model is fitted to match the exchange model and the exchange frequencies are rigorously
calculated by averaging the energy and momentum exchanges over the Maxwellian distribution.

Furthermore, if the electron Maxwellian is given by Equation (23), repeated here for convenience

FMe = n0e(ψ)

(
me

2πT0e(ψ, t)

)3/2

exp

(
− mev

2
e

2T0e(ψ, t)

)

then it follows that in equilibrium

dFMe

dt
= ne0

(
me

2πT0e(ψ, t)

)3/2

exp

(
− mev

2
e

2T0e(ψ, t)

)(
mev

2

2T0e
− 3

2

)
dTe0
dt

/Te0 (G.28)

where for flux functions P (ψ, t) the convective part of the total time derivative dP
dt = ∂P

∂t +

ψ̇ ∂P
∂ψ will vanish if averaged over some suitable intermediate time interval since to have proper

particle confinement the magnetic geometry is constructed to make the average radial drifts
vanish74. If the energy exchange model Equation (G.21) is substituted for dTe0

dt , where for the
equilibrium Maxwellian the energy density is exactly Uj = 3

2n0jT0j because there is no mean
flow, Equation (G.28) becomes

dFMe

dt
= −FMeνenei

(
mev

2

2T0e
− 3

2

)
(Te0 − Ti0) /Te0 = C0

ei,BGK (G.29)

where the last step follows by substitution of Equation (G.24) and definition τ = Ti0/Te0. That
is Equation (G.29) is essentially the kinetic equation75 for the equilibrium Maxwellian, and the
purpose of the equilibrium part of the BGK operator Equation (G.27) is to slowly equilibrate
the electron temperature to the ion temperature over time as it will completely vanish when
τ = 1, which was alluded to in Section 2.3 when the Maxwellian Equation (23) was introduced.

74Rather in the context of Appendix C.2 this radial drift would lead to a small deviation from the Maxwellian
resulting in neoclassical transport, but this has been omitted throughout the thesis.

75Not in the sense of a direct comparison with Equation (10) which is valid in a general situation, but rather in
the sense of Equation (C.2) taking into account the previous comment about omitting the neoclassical correction
or averaging over a suitable intermediate time window.
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G.3.3 Simplifying the fluctuating contribution

As the equilibrium can be considered as “frozen” on the timescale of the perturbations, for the
purpose of linear stability the contribution from C0

ei,BGK to Equation (G.26) can be neglected

such that the BGK model is completely determined by its fluctuating part Cδei,BGK . There
is however an inbalance between these terms as both gs/FMs ∼ eϕ/Te0 ∼ δ ≪ 1 but the
second term is still multiplied by τ −1 which tends to zero when τ ≈ 1 and consequently will be
significantly smaller. Therefore combining the above statements then leads to the total linearised
BGK operator for electron-ion collisions as

Cei,BGK ≈ −ν12ge + ν12β12 (τ − 1)FMe
eϕ

Te0

[
mev

2
e

2Te
− 3

2

]
≈ −ν12ge

which eliminates β12 completely from the collision operator, such that it is merely described by
its free parameter collision rate ν12. This analysis has focused on the electron-ion term since
it contains the somewhat annoying β12 parameter which has to be determined from the choice
of ν12 and the energy exchange frequency νenei , but is straightforward to show that for the ion-
electron collisions effectively the labels e→ i, 12 → 21 and τ → 1/τ are changed in all formulas
above such that analogously the lowest order contribution to the linearised BGK operator for
ion-electrons collisions is just Cie,BGK ≈ −ν21gi.

H Calculation of the macroscopic exchange frequencies

In the derivations that follow, the integral strategy from Chapter 9.7 of [3] is closely followed,
but has been reformulated in terms of the theory of binary collisions from Appendix B and
extended to the more general case where the mean velocities are not aligned with one of the
coordinate axes.

H.1 The momentum exchange frequency

The net change in the macroscopic momentum density of electrons due to binary collisions with
ions is simply a suitable average of the microscopic momentum gained by a test-electron from
collisions with the population of target-ions over the electron distribution function

d

dt
(nemeqe) =

ˆ 〈
me (ve +∆ve)−meve

∆t︸ ︷︷ ︸
=

∆(meve)
∆t

〉ei
fed

3ve

= −L
ei

4π

(
1 +

me

mi

)
me

¨
u

u3
fefid

3ved
3vi

(H.1)

where Equation (B.5) has been used for the statistical change in the velocity of a test-electron
due to collisions with all the ions. Calculating Equation (H.1) in general for arbitrary distribu-
tion is not feasible, therefore the ions and electrons are assumed to have a shifted Maxwellian
distribution to allow for a macroscopic flow of ions and electrons such that there is a non-zero
macroscopic momentum. In line with the observation that the toroidal plasma rotation is typ-
ically only a fraction of the ion thermal velocity at most the mean velocities are ordered as
∥qs∥/vTs ≪ 1 for both species. Additionally in accordance with the typical reactor conditions
the temperature difference between ion and electrons is assumed to be small such that

(Te − Ti)

(Te + Ti) /2
≡ ∆T

T0
≪ 1

where T0 is a measure for the average temperature in the plasma and the electron and ion
temperature follow from this definition as Te = T0 + ∆T/2 and Ti = T0 − ∆T/2. With these
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assumption the distribution function for ions and electrons can be expanded to first order in
qs/vTs,∆T/T0 resulting in

fs(vs) ≈ ns

(
ms

2πT0

)3/2

exp

(
−msv

2
s

2T0

)
×
(
1± ∆T

2T0

[
msv

2
s

2T0
− 3

2

]
+
msvs · qs

T0

)

where the the plus sign holds for electrons and the minus sign for ions.

Because the integration in Equation (H.1) involves the relative velocity u and the individual
velocities of both species it is best handled with a change of coordinates that reflects the form
of the integrand. This is facilitated by the coordinate transform (ve,vi) → (V ,u) determined
by

ve =V +
mi

me +mi
u

vi =V − me

me +mi
u

V =
meve +mivi
me +mi

u =ve − vi

(H.2)

where V is the centre of mass velocity and u is the relative velocity. To correctly transform
the velocity volume element d3ved

3ve →
∣∣det J

∣∣d3ud3V the determinant of the 6× 6 Jacobian
matrix J is required. Fortunately this can be done in an elegant way by realising there is
no mixing of components in the coordinate transformation Equation (H.2), consequently the
Jacobian matrix J will be very sparse and can be arranged to have a block-diagonal structure
of three 2× 2 matrices for each direction and the determinant is simply detJ = JxJyJz where

Jk = det
∂(ve,k, vi,k)

∂(Vk, uk)
= det

[
1 mi

me+mi
1 − me

me+mi

]
= −1 k = x, y, z

is identical for each 2 × 2 sub-matrix due to absence of component mixing and is a simple
multiplicative factor because the transforms Equation (H.2) are linear. As a last prepratory
before calculating the integral the product of distribution functions fefi is also written as a
function of u,V

fefi ≈neni
(
memi

(2πT0)2

)3/2

exp

(
−mev

2
e +miv

2
i

2T0

)(
1 +

meve · qe +mivi · qi
T0

+
mev

2
e −miv

2
i

2T0

∆T

2T0

)

=neni

(
memi

(2πT0)2

)3/2

exp

(
−(mi +me)V

2

2T0

)
exp

(
−m⋆u

2

2T0

)(
1 +

V · (meqe +miqi)

T0
+

m⋆u · (qe − qi)

T0
+

∆T

2T0

[
(me −mi)V

2

2T0
+

4m⋆V · u
2T0

+
u2m⋆

mi−me
mi+me

2T0

])

≡neni
(
memi

(2πT0)2

)3/2

exp

(
−(mi +me)V

2

2T0

)
exp

(
−m⋆u

2

2T0

)
F (V ,u)

(H.3)

where only terms to first order in qs/vTs, δT/T0 are retained and the reduced mass m⋆ =
mime/(mi +me) has been introduced.

The resulting integral
˜

u
u3
fefid

3ud3V can now easily be carried out by substituting Equa-

tion (H.3) and realising that the prefactor u
u3

exp
(
−m⋆u2

2T0

)
is anti-symmetric in u, such that

the only non-vanishing contribution to the integral over d3u comes from the expansion terms in

F (u,V ) that are also anti-symmetric in u. Similarly the prefactor exp
(
− (mi+me)V

2

2T0

)
is sym-

metric in V , such that the only non-vanishing contribution to the integral over d3V comes from
the expansion terms in F (u,V ) that are also symmetric in V . There is only one term in the
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expansion F (u,V ) which satisfies both symmetry requirements, such that the integral simplifies
to

¨
u

u3
fefid

3ud3V = neni

(
memi

(2πT0)2

)3/2¨ u

u3
exp

(
−(mi +me)V

2

2T0

)
exp

(
−m⋆u

2

2T0

)
m⋆u · (qe − qi)

T0
d3ud3V

which factors itself into a V dependent integral and a u dependent integral that can be evaluated
separately in spherical velocity coordinates

d3V → V 2 sinΘdV dΘdΦ d3u → u2 sin θ dudθ dϕ

The integral over d3V is the most straightforward

ˆ 2π

0

ˆ π

0

ˆ ∞

0
exp

(
−(mi +me)V

2

2T0

)
V 2 sinΘdV dΘdΦ =4π

(
2T0

me +mi

)3/2 ˆ ∞

0
W 2 exp

(
−W 2

)
dW

= 4π

(
2T0

me +mi

)3/2



1

2

ˆ ∞

0

√
ξ exp(−ξ)

︸ ︷︷ ︸
=Γ(3/2)=

√
π/2


 =

(
2πT0

me +mi

)3/2

where in the first step the information over angle is performed and a change of variables W =√
(me +mi)/2T0V has been performed, and in the second step another change of variables

ξ =W 2 is performed to map the integral onto a standard Gamma function.

The integral over d3u requires some more effort to work out since it also depends on the direction
of u, which can be accounted for by expanding u and qe,i in their Cartesian components

´∞
0

m⋆u
T0

exp
(
−m⋆u2

2T0

)
du×

´ 2π
0

´ π
0 sin θ (sin θ cosϕex + sin θ sinϕey + cos θez)× ([qe,x − qi,x] sin θ cosϕ+ [qe,y − qi,y] sin θ sinϕ+ [qe,z − qi,z] cos θ) dθ dϕ

which can be straightforward integrated over ϕ to cancel out the majority of the terms

=

ˆ ∞

0
exp(η) dη

︸ ︷︷ ︸
=Γ(1)=1

×π
ˆ π

0
sin θ

(
[qe,x − qi,x] ex sin2 θ + [qe,y − qi,y] ey sin

2 θ + [qe,z − qi,z] ez2 cos
2 θ
)

= π

ˆ 1

−1

(
[qe,x − qi,x] ex(1− α2) + [qe,y − qi,y] ey(1− α2) + [qe,z − qi,z] ez2α

2
)
dα =

4π

3
(qe − qi)

where the new variables η = m⋆u
2/2T0, α = cos θ have been introduced to reduce the integrals

to elementary forms.

Combining the factorised integrals over u and V then gives the rate of change in macroscopic
electron momentum density as

d

dt
(nemeqe) = −L

ei

4π

(
1 +

me

mi

)
me × neni

(
memi

(2πT0)2

)3/2

×
(

2πT0
me +mi

)3/2

× 4π

3
(qe − qi) . (H.4)

Comparing Equation (H.4) with the phenomological form of the exchange model Equation (G.20)
then gives the effective momentum exchange frequency between ions and electrons as

νmei =
Lei

3

(
1 +

me

mi

)
ni

(
m⋆

2πT0

)3/2

≈ ni
3

(
e2

ϵ0me

)2
1

π3/2v3Te
ln Λ = νei90° (H.5)

where the mass ratio expansion me/mi ≪ 1 has been performed, the definition of Lei given
below Equation (B.3) and Equation (17) for the definition of the 90° scattering frequency have
been used.
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H.2 The energy exchange frequency

The calculation of the energy exchange frequency proceeds much analogous to the calculation
of the momentum exchange frequency. Departing from averaging the change in test-electron
energy due to collisions with the target-ion population

d

dt
Ue =

ˆ 〈
me (ve +∆ve)

2 /2−mev
2
e/2

∆t︸ ︷︷ ︸
=
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fifed
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8π
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2

u
fifed
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(H.6)

where Equations (B.5) and (B.6) have been used for the statistical changes in electron velocity.
Equation (H.6) shows the test-electron energy can either change by direct momentum transfer
resulting in a power P = ∂meve

∂t · ve and indirect velocity diffusion.

When transforming to the new velocity variables (ve,vi) → (V ,u) these different contributions
partially cancel leaving only

d

dt
Ue = −L

ei

4π

(
1 +

me

mi

)
me

ˆ ˆ
u · V
u3

fifed
3ud3V

which is a consequence of the fact that the small velocity deflection in binary Coulomb collisions
conserve both the centre of mass velocity V and the magnitude of the relative velocity ∥u∥2
such that only the direction of u w.r.t. V can change in a collisions [3].

Substituting Equation (H.3) and considering the symmetry requirement that only expansion
terms in F (u,V ) that are odd in both u,V will give a non-vanishing contribution to the integral
leaves again only a single integral to evaluate

ˆ ˆ
u · V
u3

fifed
3ud3V = neni

(
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which can again be done in spherical velocity coordinates for both V ,u but results in a more
involved angular as the direction of both u,V will have to be accounted for. Nevertheless using
spherical facilitates to factorise the integral into an angular (direction) part, and two magnitude
(speed) parts. The latter can be cast in the form of gamma functions
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by using ξ = (mi +me)V
2/2T0, η = m⋆u

2/2T0 again. The angular part is more involved
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which is calculated by first carrying out the integral over Φ, ϕ by expanding cos(Φ− ϕ) into
elementary trigonometric functions, and then transforming the remaining integral over θ,Θ
with the substitutions α = cos θ, β = cosΘ. Combining the above integrals then gives the rate
of change in macroscopic electron energy density as

d
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4π
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)
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(
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× ∆T

T0
× 3

√
π8

(
2T0

mi +me

)5/2

× 16π2

3
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(H.7)

To compare Equation (H.7) with the phenomological form of the exchange model, the small
mean flow assumption ∥qs∥/vTs ≪ 1 is made such that Uj ≈ 3

2njTj and the effective energy
exchange frequency follows as

νenei =
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(
m⋆
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)3/2 me
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= 2

me
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where again the mass ratio expansion me/mi ≪ 1 is performed and Equation (17) for the
definition of the 90° scattering frequency have been used. A comparison of Equation (H.8) with
Equation (H.5) shows that the exchange frequencies are related by

νenei = 2
me

mi
νmei .

I Explicit calculation of the ion velocity integral

Departing from the ion velocity integral on the right-hand side of Equation (56) and substitut-
ing for the temperature dependent diamagnetic velocity Equation (30) splitting for its energy
dependent and independent parts results in the following integrals
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where all velocity independent factors have been taken out of the integral and the thermal veloc-
ity vT i =

√
2Ti0/mi was used for compressed notation of the Maxwellian. This notation further

facilitates the use of normalised cylindrical velocity coordinates d3vi → v3T i dϑx⊥ dx⊥ dx∥ where
x∥ = v∥/vT i, x⊥ = v⊥/vT i since the Bessel function depends only on the perpendicular speed
and the magnetic drift velocity splits in a contribution from parallel and perpendicular motion,
resulting in

(
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where the integral over the gyrophase just gives a 2π prefactor as by construction the kinetic
response ĝi is gyrophase independent and the dependence of collision frequency and drift fre-
quency is made explicit. Upon using the “vacuum plasma” approximation for the magnetic drift
frequency, the integrals over perpendicular and parallel direction become factorisable into the

138



following standard integrals
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(I.1)

where Γ(n) is the Gamma function and In denotes the modified Bessel function of order n and
a > 0. In terms of these standard integrals the constant and drift terms of the velocity integral
evaluate to
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For the ion-electron frequency the velocity dependence ∝ (vT i/vi)
2 is prevents factorisation of

the parallel and perpendicular velocity integrals. Nevertheless as it turns it the double integral
over both velocity components evaluates to a more generalised hypergeometric function pFq
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such that the two remaining integrals involving the collision frequency become
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2

2

)

2
I0

(
(k⊥ρT i)

2

2

)
− 3

22
F2

[
1/2 1/2
1 3/2

;− (k⊥ρT i)
2

]


where ν̃ie = νieD(vT i) = ν̂ie 4
3
√
π

√
me/mi

√
Ti0/Te0 by using Equation (18). Multiplying the above

integrals by the common 2/
√
π prefactor and adding them leads to Equation (59).
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J Effects of finite temperature gradient on leading order disper-
sion relation solution

The role of finite temperature gradient will enter the solution to the leading order dispersion
relation Equation (60) through the ion gradient length scale ratio ηi =

d lnTi
dψ /d lnni

dψ = Ln/LT
(presuming the density gradient is non-zero). As the solution for ω0 in absence of temperature
gradient Equation (61) is found to be rather insensitive to the temperature ratio, the role of finite
ηi is investigated at a fixed temperature of τ = 1.0. The three contributions to Equation (60)
are plotted versus k⊥ρT i for various ion gradient length ratios ηi in Figure J.1.

Unlike the temperature ratio τ is can be seen that the temperature gradient has a significant
influence on the solution to the dipersion relation D0(ω,k⊥, ϕ̂) = 0. Increasing ηi results in a
downward shift of the mode frequency compared to the pure density gradient case (ηi = 0) until
above a certain critical value of ηi the mode frequency starts to propagates in the ion diamagnetic
direction (ω0/ω⋆e < 0). This behaviour is more closely investigated by slowly varying ηi, from
which it is found that this transition occurs near k⊥ρT i ≈ 2 for a critical temperature gradient of
ηi,crit ≈ 1.64. This is as result of the opposite signs that the integrals S1, S4 have (see Figure 11).
For temperature gradients above critical the wavelength window where the mode frequency
changes sign becomes wider and the frequency becomes ever directed in the ion diamagnetic
direction. This change of sign of the mode frequency to the ion diamagnetic direction is indicative
of the mode being an ITG rather than a TEM [76,96, 220]. Even though treating the electrons
adiabatically is appropriate for ITGs [36], the obtained solution D0(ω0,k⊥, ϕ̂) = 0 does not
accurately describe the ITG instability as a resonance with ion drift or longitudinal motion (in
case of slab ITG) is not possible with the ωdi/ω ≪ 1, vT i/k∥ ≪ ω assumptions [83].

As a result of the frequency crossing through zero as the temperature gradient is increased,
the approximation of small collision frequency and small drift break down, which is seen from
the discontinuity and divergence in the two bottom plots of Figure J.1 which coincide with the
wavenumber (k⊥ρT i)trans for which the mode changes from TEM to ITG. In the vicinity of
this transition region the solutions have to be discarded, but in the remaining regions where
ω0 is either strongly in the ion diamagnetic region or electron diamagnetic region they provide
proper solutions. Most interestingly it can be seen that a finite temperature gradient spoils
the stabilising influence collisions have in the pure density gradient case, with the growth rate
becoming positive. This already occurs for temperature gradients below the critical value for
TEM→ITG transition and is determined similarly by the opposite signs of the integrals S3, S6
which lead to a threshold temperature gradient for instability of ηi,thres ≈ 0.75. At temperature
gradients above the TEM→ITG transition there is however a competing effect in the growth
rate, as ηi enters Im[ω0] through the ratio (S3 + ηiS6)/(S1 + ηiS4) which changes its sign twice
as ηi is increased, such that collisions always have a damping effect in the ITG regime.

K Marginal stability evaluation of collisionless TEM

The method presented here is inspired by the one presented in [221] where the pole of the
integrand occurs at zero along the real line rather than shifted at xres.

Allowing for a small imaginary part iδγ in the denominator of the trapped electron response,

the integral over particle energies in the collisionless limit becomes
´∞
0 dx

x2 exp(−x2)
ω0−ωde+iδγ which can

be explicitly split in its real and imaginary parts by expanding the denominator

ˆ ∞

0
dx

x2 exp
(
−x2

)

ω0 − ωde + iδγ
=

ˆ ∞

0
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + (δγ)2

−
ˆ ∞

0
dx

iδγx2 exp
(
−x2

)

(ω0 − ωde)
2 + (δγ)2

. (K.1)
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Figure J.1: Contributions to the leading order dispersion relation D0(ω,k⊥, ϕ̂) = 0 for a tem-
perature ratio of τ = 1 (a) the lowest order (real) frequency in absence of ion drift and collisions,
(b) the shift in (real) frequency due to correction from ion drift, and (c) the growth rate due to
correction from collisions for various temperature gradient ratios ηi = ∥∇ lnTi∥/∥∇ lnni∥. Note
that the axis in (b),(c) have been scaled by a factor of 10 and the curves for ηi = 0.0 correspond
to those of Figure 12.
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The behaviour of these integrals can then be investigated separately in the limit of marginal
stability. Starting with the real part, it is most convenient to break up the integration interval
in three regions around the resonance xres

ˆ xres−δx

0
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + δγ2

+

ˆ xres+δx

xres−δx
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + δγ2

+

ˆ ∞

xres+δx
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + δγ2

where δx > 0 is in principle arbitrary. In the outer two integrals the resonance is avoided and
the limit of marginal stability can safely be applied by simply setting δγ = 0 directly in the
integrand. Meanwhile if the width of the central region around xres is taken to be small by
letting the arbitrary parameter δx/xres ≪ 1 then the part from the Maxwellian function will
hardly vary in the integration interval compared to the variation in (ω0 − ωde) such that such
that the central integral can be approximated by

ˆ xres+δx

xres−δx
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + δγ2

≈x2res exp
(
−x2res

) ˆ xres+δx

xres−δx
dx

(ω0 − ωde)

(ω0 − ωde)
2 + δγ2

=
x2res exp

(
−x2res

)

ωTde

ˆ xres+δx

xres−δx
dx

(
x2res − x2

)

(x2res − x2)2 + δγ2

ωTde
2

where Equations (67) and (68) where substituted for ωde, ω0 respectively. Now as the integration
interval becomes increasingly small around xres the integrand will ever closer become antisym-
metric around xres such that the integral becomes asymptotically zero76. Consequently in the
simulataneoous limit δx, δγ → 0 the real part of the integral reduces to

lim
δx↓0

(
lim
δγ↓0

ˆ ∞

0
dx

(ω0 − ωde)x
2 exp

(
−x2

)

(ω0 − ωde)
2 + (δγ)2

)
→ 1

ωTde

[
lim
δx↓0

ˆ xres−δx

0
dx

x2 exp
(
−x2

)

x2res − x2
+

ˆ ∞

xres+δx
dx

x2 exp
(
−x2

)

x2res − x2

]

where the term in square bracket defines the Cauchy Principal Value P of the integral
´
dx

x2 exp(−x2)
x2res−x2 .

The procedure for the imaginary part of Equation (K.1) is much the same, with the slight
subtlety that in the limit of marginal stability the δγ prefactor makes the integral vanishingly
small except near xres where the integral will diverge as 1/δγ. Consequently the procedure for
the integrand used in the central regime above is in fact appropriate for the full integration
range as in the limit of marginal stability it is only the narrow region near xres that will give a
finite contribution to the complete integral

ˆ ∞

0
dx

δγx2 exp
(
−x2

)

(ω0 − ωde)
2 + (δγ)2

≈ δγ

2ωTde

√
zres exp(−zres)

ˆ ∞

0

dz

(zres − z)2 + δγ2

ωTde
2

(K.2)

where the change of variables z = x2 was made. This change of variables facilitates the use of
standard integrals as it reduces the definition of arctan function such that

ˆ ∞

0

dz

(zres − z)2 + δγ2

ωTde
2

=

arctan

(
z−zres
δγ/ωTde

)

δγ/ωTde

∣∣∣∣∣∣∣∣

∞

0

=
π

2
sgn

(
δγ

ωTde

)
+ arctan

(
zres

δγ/ωTde

)

where sgn is the signum function defined such that sgn(x > 0) = +1, sgn(x < 0) = −1, sgn(x =
0) = 0. In the limit of marginal stability this integral simply reduced to π which shows the

76More precisely, the smaller δx the better the integrand is approximated by an arbitrary truncation of its
Taylor expansion around xres which is straightforward to integrate around the interval xres ± δx. Only the even
terms give a non-vanishing contributions to the integral and result in a polynomial in δx2n+1/δγ2n (n ≥ 1) which
vanishes in the limit that δx→ 0 even if δγ → 0 as well.
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factor 1
π

δγ/ωTde

(zres−z)2+
(
δγ/ωTde

)2 in Equation (K.2) effectively acts a Dirac delta function to sift out

the resonance in the limit of δγ → 0. This is not surprising since this “magic” factor is the
Lorentzian/Cauchy distribution L representing a probability density function with the property

that
´
Ldξ = 1, where the factor δγ/ωTde acts as the characteristic width of the distribution. It

is a common property of many distribution functions that they reduce to a Dirac delta function
as their width is taken as infinitesimally small provided that they peak at a single well defined
point [222], which is satisfied by the Lorentzian.

Putting these results back together into Equation (K.1) then gives the collisionless resonant
integral in the limit of marginal stability

lim
δγ↓0

ˆ ∞

0
dx

x2 exp
(
−x2

)

ω0 − ωde + iδγ
=

1

ωTde

P
{ˆ ∞

0
dx

x2 exp
(
−x2

)

x2res − x2

}
− i

π

ωTde

ˆ √
z

2
exp(−z)δ(z − zres)

if the latter integral is transformed back from z = x2 to x and ωTde is absorbed into the principal
value Equation (69) is recovered.

L Validation of the domain splitting approximation

L.1 Validity of the approximation

The domain splitting approximation makes use of the qualitatively different dependence on the
particle speed of the electron-ion collision frequency νe(x) ∝ 1/x3 and electron drift frequency
ωde ∝ x2 to split the integral over particle speed as

ˆ ∞

xcut

dx
x2 exp

(
−x2

)

ω0 − ωde + iνei
=

ˆ xcrit

xcut

dx
x2 exp

(
−x2

)

ω0 − ωde + iνei︸ ︷︷ ︸
νei>|ωde|

+

ˆ ∞

xcrit

dx
x2 exp

(
−x2

)

ω0 − ωde + iνei︸ ︷︷ ︸
|ωde|>νei

≈
ˆ xcrit

xcut

dx
x2 exp

(
−x2

)

ω0 + iνei

[
1 +

ωde
ω0 + iνei

]
+

ˆ ∞

xcrit

dx
x2 exp

(
−x2

)

ω0 − ωde

[
1− iνei

ω0 − ωde

]
.

where the critical speed is defined as the speed where the magnitude of both frequencies will be
equal ν̂(xcrit) = |ωde(xcrit)| with the absolute value taking care of the sign of ωde, as collision
frequencies are strictly positive. Treating the drift/collision frequency as a small correction helps
to not complete discard part of the physics in either regime and helps to make a more smooth
“connection” between the dissipative and collisionless regimes as integrands would change in a
rather discrete way between regimes if the denominators were only expanded to zeroth order.
Nevertheless close to xcrit where ν̂

ei ∼ |ωde| and this approximation is not justifiable and likely
to fail. To investigate this the approximate integrands just above and below regime transition
are compared to the exact integrand at regime transition





x2 exp(−x2)
ω0−ωde+iνei =

x2crit exp(−x2crit)
ω0

1
1+ξ(i∓1) exact for x = xcrit

x2 exp(−x2)
ω0−ωde+iνei ≈

x2crit exp(−x2crit)
ω0

1+ξ(i±1)
(1+iξ)2

approximation for 0 < xcrit−x
xcrit

≪ 1
x2 exp(−x2)
ω0−ωde+iνei ≈

x2crit exp(−x2crit)
ω0

1−ξ(i±1)ξ
(1∓ξ)2 approximation for 0 < x−xcrit

xcrit
≪ 1

(L.1)

where all factors are approximated by their value at critical speed since they vary smoothly
over the regime transition in contrast to the actual integrands themselves. In Equation (L.1)
the parameter ξ = ν(xcrit)/ω0 = |ωde(xcrit)|/ω0 is introduced and the different sign conventions
account for the sign of ωde(xcrit) with the top signs corresponding to ωde(xcrit) > 0.
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Figure L.1: Comparison of the behaviour of different integrands near regime transition at xcrit
as a function of normalised critical frequency ξ, showing for the case when ωde(xcrit) > 0 the (a)
real and (b) imaginary parts, and for the case when ωde(xcrit) < 0 (c) real and (d) imaginary
parts.

The quality of the approximation is then visually assessable by comparing how well the ap-
proximate ξ functions match the exact ξ function, which is shown in Figure L.1 for both signs
of ωde(xcrit). It can be seen that the approximations for the integrand in both regimes are a
decent match except when ξ = ±1, which exactly corresponds to resonance at the critical speed
ωde(xcrit) = ω0. Furthermore it can be seen that the largest discrepancy due to resonance comes
form the approximation in the collisionless regime, which is because the resonance is amplified
by the domain splitting regime since it enters as 1/(1± ξ)2 which strongly increases its locality
compared to the exact case where the inclusion of iνe in the denominator smoothens out the
resonance by increasing its width but decreases its amplitude. For either case it also follows that
at the opposite side of the resonance (different sign of ξ) the approximations in both regimes
decently match the exact integrand. Consequently near the transition region the domain split-
ting approximation will be a decent tool provided that the transition will not occur near the
resonance (if it exists).

L.2 Verification of the threshold collision frequency

The threshold frequency prediction Equation (76) is still based on the domain splitting approx-
imation of Equation (74) rather than the exact denominator. Based on the verification of this
approximation above it should be expected that this prediction decently holds, but as the ap-
proximation is shown to break down near resonance it is of interest to investigate how well the
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prediction holds in general. Fortunately this can be verified by means of numerically integrat-

ing
´∞
xcut

dx
ω0x2 exp(−x2)
ω0−ωde+iνe for various speed parameters xres, xν such that both cases where xν

and xres are well separated (and the domain splitting approximation will decently hold), and
cases where xν ∼ xres (and the domain splitting approximation is not accurate) are excluded.
Since both parameters represent a normalised speed they are scanned over within the range
|xν,res| ≤ 5, covering both resonant and non-resonant cases as well as configurations with a
standard density profile where ω⋆e > 0 and configurations with off-centre density peak where
ω⋆e < 0. In order to numerically capture the resonance, an artificially small 1× 10−6 imaginary
part is added to the denominator, which has been tested to correctly reproduce the expected
result from the Sokhotski-Plemelj theorem in the absence of collisions while not affecting the
outcome of the integral when a finite collision parameter xν of at least 1×10−4 is included. The
results are shown in Figure L.2 where a real/imaginary valued xres correspond to cases the res-
onance can/cannot occur, while positive/negative values of xν correspond to centred/off-centre
density profiles. It can immediately be seen that whether or not a resonance is possible has a
large influence on the trapped electron response with both real and imaginary parts being much
larger in the resonant case. Furthermore reversal of the density gradient gives a sign change in xν
and essentially produces complex conjugation of δω as seen from the symmetry in Figures L.2a
and L.2b and asymmetry in Figures L.2c and L.2d around xν = 0, which is a consequence of
the way the collision frequency enters the GKE by using a simplified BGK operator. However,
as ω0 is effectively taken out of this integral to provide normalisation, such sign changes in the
imaginary part would ultimately cancel in the actual frequency shift Equation (65) which is
normalised by 1/ω0. The condition for the threshold collision frequency |xν | > |xres| to avoid
a resonance is neatly reproduced in Figures L.2a and L.2c where the magnitude of the integral
quickly fades outside of the threshold region corresponding to the diagonal. However, perhaps
more importantly it seems that in the case of a resonance the growth rate is actually worsened
by the introduction of a small collision freqeuncy below the threshold of Equation (76), as seen
by the spreading of the contours in Figure L.2c.
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Figure L.2: Results of numerical integration over the particle energy for various xres, xν pa-
rameters, showing (a) the real part of the integral in case of resonance, (b) the real part of the
integral for the off-resonant case, (c) the imaginary part of the integral in case of resonance, and
(d) the imaginary part of the integral in the off-resonant case. Notice the disparity in contour
levels for both real and imaginary parts showing the importance of resonance.
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M Normalisations procedures of the numerical methods

M.1 Normalisations used in GENE

The normalisation procedure of GENE is two-fold where first the independent variables are nor-
malised by selecting appropriate reference scales, and then the remaining independent variables
are normalised [158,162]. There are several layers to the reference values where first fundamental
reference values for the mass and charge are chosen, defined by the particle species. Next a set
of reference scales are determined by the macroscopic plasma equilibrium such as the density,
temperature, magnetic field strength and an equilibrium length scale Lref (which is typically
the major/minor radius). Based on the combination of fundamental and equilibrium reference
scales a set of reference scales related to the gyromotion are created

cref =

√
Tref
mref

Ωref =
eBref

mref
ρref =

cref
Ωref

where in the typical case of a plasma consisting of a single ion species mref = mi, Tref = Te such
that cref is simply the ion sound speed, and consequently ρref is simply the ion gyroradius at
sound speed. The independent quantities are then normalised as follows [16]

ỹ =
y

ρref
x̃ =

x

ρref
z̃ = z ṽ∥ =

v∥
vTs

µ̃ =
µ

T0s/Bref
t̃ =

t

Lref/cref

where quantities in tildes refer to normalised quantities, the parallel z direction does not require
normalisation as it measures the poloidal angle along the field line (see explanation of flux tube
in Appendix N), and the velocity dimensions are normalised per species77 such that a single
velocity grid for both species can be used.

Next with the independent variables normalised and dimensionless, the remainder of the GKE
is then suitably normalised by making the dependent variables dimensionless as well, which for
electrostatic turbulence means [16]

˜FMs =
n0s
v3Ts

FMs g̃s =
n0s
v3Ts

gs
ρref
Lref

ϕ̃ =
Tref
e
ϕ
ρref
Lref

where perturbed quantities are intrinsically normalised to the already dimensionless ρref/Lref

factor to incorporate the δ ≪ 1 ordering parameter for perturbations. Meanwhile the the
important derivatives of the magnetic field which determine the curvature and ∇B drifts and
plasma profiles that determine the driving factors are normalised according to

∂̃B

∂x
=
Lref

Bref

∂B

∂x

∂̃B

∂y
=
Lref

Bref

∂B

∂y

∂̃B

∂z
=

1

Bref

∂B

∂x

ω̃n =− Lref

Bref

dn0s
dx

ω̃T = −Lref

Tref

dT0s
dx

and the Jacobian which maps the volume elements in (x, y, z) space to a 3D volume in the torus
is normalised according to J̃ = LrefJ .

When these normalisations are applied to the GKE three natural dimensionless quantities ap-
pear78

β =
nrefTref
B2

ref/2µ0
ν̃c =

e4 ln ΛLrefnref

32
√
2πT 2

refϵ
2
0

λ̃D =

√
B2

refϵ0
mrefnref

77This essentially entails an additional normalisation step of the species mass and temperature in terms of the
reference quantities mref,Tref, such that e.g. the thermal velocity vTs is first made dimensionless through terms
of cref and the velocity grid is then normalised to the dimensionless thermal velocity.

78For modern convenience these have been converted into SI units. GENE, much like the literature on plasma
turbulence, still uses CGS units such that the actual dimensionless quantities are β = 8πnrefTref/B

2
ref, ν̃c =
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which give respectively the ratio between plasma pressure to magnetic pressure, the collision
frequency normalised to the time unit Lref/cref and the ratio of Debye length to ρref. These
three quantities influence the simulations in terms of the equations that are solved as they are
effectively applied weights to the normalised terms of the GKE. A non-zero β will switch on
electromagnetic perturbations, a non-zero λ̃D takes into account deviations from quasi-neutrality
within the the flux tube (by retaining ∇2ϕ terms), and a non-zero ν̃c will take the collision
operator into account.

In particular the value of ν̃c will be tweaked to explore the influence of collisionality. For the
interpretation of results it is most useful to map the input collision frequency to a sensible
physical collision frequency. This connection is given by [157]

ν̂ei = 4
ni
nref

(
Tref
Te

)3/2√mref

me
ν̃c
cref
Lref

≈ 171
√
Aν̃c

cref
Lref

(M.1)

where the last step follows for the typical single ion species case with mref = mi, Tref = Te and
quasi-neutrality n0i ≈ n0e = nref, with A being the ion species mass number. In particular
if the reference density, temperature and length scale are expressed in 1019m−3, keV and m
respectively, the numerical value of ν̃c follows as

ν̃c = 2.303 08× 10−5nref[10
19m−3]Lref[m]

T 2
ref[keV]

lnΛ

which can be used to straightforward obtain a realistic values of ν̃c from pressure profiles.

M.2 Normalisations used for integrating the perturbative frequency shift

The normalised frequency shift is calculated according to Equation (79) which is repeated below
for convenience

δω

ω0
=

2√
π

〈
ω0
ω⋆e

〉
− 1

⟨Γ0⟩

〈
ω0

ω⋆e

〉ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

xcut

dx
x2 exp

(
−x2

)
〈
ω0
ω⋆e

〉
− ωde

ω⋆e
+ i νeω⋆e

∣∣∣ϕ̂
∣∣∣
2
Leff [w]

/ ˛ ∣∣∣ϕ̂
∣∣∣
2dl

B
.

(M.2)

As the GIST code is used to “feed” the geometry info to the integral to calculate all electron
bounce quantities, and GIST is coupled to GENE, most of the normalisations from Appendix M.1
have to be directly applied. A few things require additional care however. For all integrals along
the field line the proper integration variable is the arc length along the magnetic field dl. Rather
in the flux tube, the parallel field coordinate is taken to be the poloidal angle dθ. As the field
lines are helical, a variation in the poloidal angle directly relates to a variation in the length
along the magnetic field according to [46]

dl =
√
gB

dθ

ι
(M.3)

where
√
g is the Jacobian that maps the 3D volume element in a torus to the (ψ, α, θ) coordinates

dV =
√
g dψ dα dθ, B is the local value of the magnetic field strength along the field line and

ι is the rotational transform of the field (which in terms of the flux-tube coordiantes is 1/q0).
Consequently all integrals along the field line have to be transformed to integrals over the

πe4 lnΛLrefnref/2
3/2T 2

ref, λ̃D =
√
B2

ref/4πc
2mrefnref. This distinction matters little as regardless of the system

of units, simulations are performed using β = λ̃D = 0 and introducing convenient renormalisations for Lref.nref, Tref

of 1m, 1×1019 m−3, 1 keV respectively based on typical fusion plasma parameters. With these renormalisations of
the reference values for ν̂c, the dimensionless collision frequency has the same numerical prefactor of 2.303× 10−5

in both CGS and SI units.
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poloidal angle which spans on poloidal turn θ ∈ [−π, π]. The Jacobian which is provided by
GIST code is however the Jacobian for how the volume span by flux tube coordinates (x, y, z)
changes to a physical 3D volume element in the torus, which by using Equation (N.7) means
that the “Jacobian” from GIST is actually79 Jflux-tube = 1/B0

√
g = J̃GIST/Lref with B0 the

magnetic field strength on axis. Consequently the arc length element is given in terms of GIST
parameters as

dl =
B

B0

Lref

J̃GIST
q0 dθ = Lref q0B̃

Bref

B0
dθ

︸ ︷︷ ︸
=d̃l

(M.4)

where B̃ = B/Bref is the normalised magnetic field in GENE units and a dimensionless arclength
dl̃ is identified.

With Equation (M.4) the most painful part of the normalisation process is complete, as the
remainder of the normalisations are quite straightforward. The frequency ratio ω0/ω⋆e already
has a normalised expression Equation (61) which is expressed in terms of functions of k⊥ρTi.
There are two translations which have to be made to Equation (61) to make it compatible
with GENE/GIST normalisations. First the perpendicular wavenumber should be properly
averaged along the field line according to Equation (78) with k⊥ given by Equation (77). As the
wavenumbers are inherently normalised to the ρref this means the averaging procedure actually
calculates

〈
(k⊥ρref)2

〉
, whereas the ⟨ω0/ω⋆e⟩ and ⟨Γ0⟩ are functions of (k⊥ρT i)2. The function

argument is straightforwardly translated as

⟨k⊥ρTi⟩ = ⟨k⊥ρref⟩
√

2Ti0mref

Trefmi
(M.5)

where the translation factor reduces to
√
2τ in the standard case of single ion species plasma.

For the integral to determine the average wavenumber Equation (78) however the electrostatic
potential has to be normalised80, where the obvious choice for normalisation from the discussion
of quasi-neutrality condition Section 2.4 where the dimensionless potential Φ = eϕ/Te0 was used,
which immediately corresponds to the GENE units as the electron temperature is taken as the

reference scale such that
˜̂
ϕ = eϕ̂/Tref. For the remaining frequency ratios an explicit expression

of the electron diamagnetic frequency is required, which from Equation (E.7) is given in terms
of Clebsch coordinates as

ω⋆e =
Te
−ekα

d lnne
dψ

= − Te
eB0

ky
d lnne
dx

=
Te

eB0Lrefρref︸ ︷︷ ︸
=ωphys

⋆e

(kyρref) ω̃n (M.6)

where again the translation from (ψ, α) Clebsch coordinates to (x, y) flux-tube coordinates has
been made, and a basic diamagnetic drift frequency with dimension of Hz corresponding the
diamagnetic drift for ω̃n = k̃y = 1 naturally defines itself. It is this basic diamagnetic drift
frequency that provides the most sensible normalisation for the collision frequency as it removes
any intrinsic scaling on the driving gradient strength and spatial extent of the perturbations.
Consequently the collision frequency term in Equation (M.2) is normalised as

νe(x)

ω⋆e
=

ν̂ei

ωphys
⋆e

1

x3k̃yω̃n
≡ ν̃scan

x3k̃yω̃n

79The normalisation follows from dimensional analysis of the volume element dV =
√
g dψ dα dθ which shows

that B0
√
g has the dimension of m and is the actual Jacobian J which is normalised by Lref in the GENE

normalisation of Appendix M.1.
80Technically the electrostatic completely cancels out from all equations as a result of the “flute-mode” ap-

proximation, but for future improvements a variation of the electrostatic potential along the field line can be
considered and the normalisation issue becomes relevant again.

149



where ν̃scan is the dimensionless collision frequency which is varied in Section 3.5.

For the remaining frequency ratio between the precession frequency and the diamagnetic fre-
quency is most sensible if the precession frequency is explicitly written out. For this exercise it is
most convenient to express the precession frequency in Clebsch coordinates Equation (71) since
the bounce average drifts in (ψ, α) are related to the derivatives of the second adiabatic invariant
J . Starting from its definition Equation (7) and using pitch-angle coordinates it follows that

J =
´ b
a

√
2mE

√
1− λB dl. Taking its derivative at constant ψ, µ, α gives the bounce time τb

(
∂J
∂E

)

ψ,µ,α

=

√
m

2E

ˆ √
1− λB dl +

√
mE

2

ˆ −B√
1− λB

∂λ

∂E

=

√
m

2E

ˆ (√
1− λB +

λB√
1− λB

)
=

√
m

2E

ˆ
dl√

1− λB
=

ˆ
dl

v∥

where the proper energy dependence of the pitch-angle λ = µ/E has to be accounted for. At
the same time its derivative w.r.t. the Clebsch coordinates while holding the other variables
constant follow similarly as

(
∂J
∂ψ

)

E,µ,α

=

√
mE

2

ˆ −λ∂B∂ψ√
1− λB

dl

(
∂J
∂α

)

E,µ,ψ

=

√
mE

2

ˆ −λ∂B∂α√
1− λB

dl .

Consequently the α component of the precession drift then follows as

kαvds ·∇α =
kα
eτb

(
∂J
∂ψ

)

E,µ,α

=
kαE

e

´
−λ∂B∂ψ /

√
1− λB dl´

dl /
√
1− λB

(M.7)

which takes precisely the form of a bounce average in pitch-angle coordinates, and similarly for
the ψ component by replacing the indices ψ ↔ α. As only kψ = 0 modes are considered in the
the calculation, the α component of the drift is the only one that matters such that the ratio
ωde/ω⋆e follows as

81

ωde
ω⋆e

=
kyE

eB0

´
−λ∂B∂x /

√
1− λB dl´

dl /
√
1− λB

/
ωphys
⋆e k̃yω̃n =

E

Te
Lref

´
−λ∂B∂x /

√
1− λB dl´

dl /
√
1− λB

/
ω̃n

where again the translation between Clebsch-coordinates and flux-tube coordinates Equation (N.7)

has been made, and the explicit expression for ωphys
⋆e Equation (M.6) is substituted. As the mag-

netic field is normalised to Bref it follows that the pitch angle must be normalised according to
λ̃ = λ/Bref which follows either from dimensional analysis of λ = µ/E or the fact that the prod-
uct λB = 1 has to keep defining the bounce points even in normalised units, and correspondingly
the ratio is given in dimensionless units as provided by GIST

ωde
ω⋆e

= x2
´
−λ̃ ∂̃B∂x /

√
1− λ̃B̃d̃dl´

d̃l/
√
1− λ̃B̃

/
ω̃n

where the definition of the normalised velocity x = v/vTe and the normalisation of the magnetic
gradient according to Appendix M.1 are used and the dimensional factor to translate dl → d̃l
simply cancels as it appears in both the numerator and denominator. For exactly the same
reason, making the bounce average of the potential dimensionless results only in a prefactor

related to normalisation of the potential ϕ̂ → Tref/e
˜̂
ϕ which is cancelled by the same prefactor

that will appear in the denominator of Equation (M.2).

81In case that a radial wave number would be included it is fairly straightforward to show by the same process

that this would result in an additional term where with ∂̃B
∂x

replaced by (kx/ky)
∂̃B
∂y

.
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This leaves two normalisations left undetermined which are closely related to each other. First
the “effective well length” normalisation follows directly from the normalisations that have been
introduced so far

Leff [w] =

ˆ l2[w]

l1[w]

dl√
1− λB

→ Lref

ˆ l2[w]/Lref

l1[w]/Lref

d̃l√
1− λ̃B̃

≡ Lref
˜Leff [w]

where the integration boundaries naturally define the dimensionless bounce point locations
˜l1,2[w]. This is not surprising since Leff [w] represents the physical length of an electron or-

bit along a fraction of the field line which can be comparable to macroscopic plasma scales
unless the particles are deeply trapped. The remaining normalisation concerns the energy cut-
off in the integration xcut =

4
√
ν̂ei/ωbe(λ)T which because of the choice to normalise the collision

frequency w.r.t. ωphys
⋆e is no longer free to be normalised at will. Rather it would be more

correct to use the proper bounce frequency for each magnetic well w and particles trapped with
the same pitch angle λ will have a different bounce frequency in a wide and compressed well

with the same depth. Consequently ωbe[w]
T (λ) = 2πvTe/

´ l2[w]
l1[w]

dl√
1−λB = 2πvTe/Leff [w] and the

collisional cut-off is given by xcut =
4
√
ν̃scanG[w](λ) where the function G[w](λ) is given by

G[w](λ) =
ωphys
⋆e

ωTbe[w](λ)
=

Te√
Trefmref

Bref
B0
Leff [w]

2π
√

2Te/meLref

=

√
me
mref

√
Te
Tref

2π
√
2

Bref

B0

˜Leff [w] (M.8)

which follows by explicitly writing out ωphys
⋆e Equation (M.6) along with ρref = cref/Ωref and

the thermal electron velocity. In the typical case of a single ion plasma where mref = mi and
Tref = Te this weighing function ν̃scan to the cut-off velocity will be very small such that it would
be appropriate to set82 Bref/B0 ≈ 1 as order unity factors would not significantly affect xcut or
the total end result.

After a lengthy process this then leads to the dimensionless integral

δω

ω0
=

2√
π

〈
ω0

ω⋆e

〉
− 1

⟨Γ0⟩

〈
ω0

ω⋆e

〉ˆ 1/B̃min

1/B̃max

dλ̃
∑

w(λ̃)

ˆ ∞

4
√

ν̃scanG[w](λ̃)

dx
x2 exp

(
−x2

)
〈

ω0

ω⋆e

〉
− x2

´
−λ̃ ∂̃B

∂x /
√

1−λ̃B̃d̃l´
d̃l/

√
1−λ̃B̃×ω̃n

+ i ν̃scan

x3k̃yω̃n

˜Leff [w]

/ ˛
d̃l

B̃

where the “flute-mode” approximation is invoked to get rid of the terms involving the elec-
trostatic potential and all functions of k⊥ρT i are evaluated at ⟨k⊥ρci⟩

√
2τ . The numerical

integration is performed using a hybrid of python/MATLAB, since MATLAB turned out to
possess the most robust “black box” numerical integration method for handling the resonance
at low collisionality, whereas Python is used to load in the geometry, identify the different wells
and corresponding bounce points along with the gyroaverages, and performs the final integration
over pitch angle.

M.3 Matching of the GENE and perturbative frequency normalisations

For fair comparison between the solutions for the two numerical methods the collision frequency
and growth rates have to be expressed in the same basis. The values of the GENE collision

82There are strict reasons inherent to the GENE normalisation why one cannot set the reference magnetic field
strength equal to the magnetic field strength on axis [159]. However as the magnetic field is generated by coils some
distance from the plasma a simple ∝ 1/r estimate for the magnetic field strength shows that B0/Bref = 1+ δr/R0

where R0 is the major radius and δr is the deviation of the reference position from the magnetic axis, which can
be at most the plasma minor radius at the edges. As the aspect ratio a/R0 is typically small for most devices, it
follows that B0/Bref ≈ 1 will not be a severe approximation given that the other contribution factors to xcut are
small or O(1) themselves.
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frequency ν̃c are straightforward expressed in terms of ν̃scan by using Equation (M.1), which

only requires to ratio of (cref/Lref)/ω
phys
⋆e . Using Equation (M.6) it follows that

cref/Lref

ωphys
⋆e

=
cref/Lref

Te/eB0Lrefρref
=
B0c

2
refmref

TeBref
(M.9)

where the gyroradius was expressed in terms of the reference speed and reference gyrofrequency.
Consequently the GENE collision frequency can be mapped to the perturbative collision fre-
quency by

ν̃scan = 4
ni
nref

(
Tref
Te

)5/2√mref

me
ν̃c
B0

Bref
≈ 171

√
Aν̃c

B0

Bref

where cref was expressed in terms of the reference mass and temperature in Equation (M.9)
and the last step corresponds to the usual case of a single ion species plasma simulation where
Tref = Te,mref = mi.

To convert the growth rates from the perturbative calculation to the GENE normalisation,
⟨ω0⟩ has to be expressed in terms of cref/Lref. Rather what the leading order solution of the
perturbative calculation gives is ω0/ω⋆e, however as a result of flux surfaces being isobars and
kyρref being a fixed quantity in the flux-tube the diamagnetic frequency is fortunately constant
along the field line such that ⟨ω0/ω⋆e⟩ = ⟨ω0⟩ /ω⋆e, and the normalised solution for the leading
order dispersion relation for the average perpendicular wavenumber Equation (M.5) can be used.
From Equation (M.6) it then follows that the growth rates are also translated by the ratio of

(cs/a)/ω
phys
⋆e according to

γ̃perturb =
γ

⟨ω0⟩
=

[
cref/Lref

ω⋆e ⟨ω0/ω⋆e⟩

]
γ

cref/Lref
=

TrefB0

TeBref(kyρref)ω̃n ⟨ω0/ω⋆e⟩
γ̃GENE

where Equations (M.6) and (M.9) have been used and in the usual case of single ion species the
temperature ratio disappears.
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N Mathetmatical details of the flux-tube geomtetry

Note: due to historic reasons the notation for the Clebsch representation in this section deviates
from notations elsewhere in the thesis, such that α,ψ have different meaning, and the safety
factor q is used rather than rotational transform ι. To be consistent α̃ = −α/ι and ψ̃ = χ where
tildes indicate the notation used within this section. This section is largely based on [68] unless
otherwise stated.

N.1 Choice and implications of coordinates

The flux tube geometry is able to minimise the required simulation volume to resolve plasma
microturbulence by considering a box whose sizes are (slightly larger than) the correlation length
of the turbulent eddies perpendicular to the magnetic field (typically the gyroradius), which
wraps around the field line for one or several poloidal revolution (such that k∥L∥ ∼ 1) as well.
Then the turbulence statistics outside of this box will be the identical to the those within the
box and the simulation results become practically insensitive to the box size.

The flux tube formalism is based on the Clebsch representation of the magnetic field as B =
∇α×∇ψ with ψ denoting the poloidal flux and α = ζ − q(ψ)θ the field line label, with ζ, θ the
toroidal and poloidal Boozer angle (as usual, no change in definition), and q(ψ) = 1/ι(ψ) the
safety factor. Because from the Clebsch representation it follows that B · ∇α = B · ∇ψ = 0
such that α,ψ are constant on a particular field line, this naturally gives ψ, α as choices for the
perpenedicular coordinates of the flux-tube. Within the flux tube then ψ is a radial coordinate
since the enclosed magnetic flux will increase with further distance from the magnetic axis.
This leaves α is the so-called binormal coordinate, as it is a second dimension perpendicular to
the magnetic field line. Only a third coordinate z has to be chosen to represent the distance
along the field line. Although the arc length along the field line would be the most intuitive
choice, it is more convenient to use the poloidal Boozer angle83 z = θ, and as a result the
actual physical length scale of the parallel direction will enter through the normalisation of the
metric [154]. Since the Boozer coordinates (ψ, ζ, θ) themselves are non-orthogonal84, the flux
tube coordinates (ψ, α, z) form a non-mutually orthogonal curvilinear coordinate system as well.
Therefore that the information of the metric tensor g(ψ, α, z) mapping (ψ, α, z) to physical lab

frame (in which the volume and shape of the torus are defined) is of importance. Specifically the
value of the Jacobian J(ψ, α, z) = [(∇α×∇ψ) ·∇z]−1 which maps the volume of the flux tube
to the physical volume that is wrapped along of the field line in the torus has a large influence.
As a consequence of J(ψ, α, z) the rectangular volume of the flux tube geometry is transformed
into a sheared and curved box inside the torus which is embedded in the fixed lab frame (see
Figure 16). In principle other choices of the third coordinate z can be made, but each choice will
affect the explicit form of the metric tensor g and the Jacobian J , but the choice of the poloidal

Boozer angle is most convenient as it directly links the flux tube coordinates (ψ, α, z) to MHD
equilibria configurations of the magnetic field [139] and makes the Fourier modes closely related
to the ballooning mode formalism [68].

With the formalities and intricacies of the coordinate system out of the way, the flux tube

83Note that with this choice z is not a strictly parallel coordinate like eb since B ·∇z/∥B∥∥∇z∥ ̸= 1, but the
fact that B · ∇z ̸= 0 means that ∇z has a finite projection onto the magnetic field line, and can thus be used
to parameterise the distance along the field as the other coordinates are strictly perpendicular to B. Note that
changes in θ indeed correspond to changes of the arc length along the magnetic field through Equation (M.3), and
it is only the variation of the Jacobian and the magnetic field strength with θ which spoils a direct correspondence
between θ and the parallel direction.

84This is what leads to the different representations of the magnetic field in its usual contravariant/Clebsch
form in fluxes and covariant form in terms of currents [45,47].
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formalism can be constructed. The idea is to take a volume that is enclosed by

α0 −∆α ≤ α ≤ α+∆α0 ψ0 −∆ψ ≤ ψ ≤ ψ0 +∆ψ − z0 ≤ z ≤ z0 (N.1)

which describes a box with area ∆ψ∆α centred around a magnetic field line described by ψ0, α0,
which is then extended 2z0 along the field. Since the perpendicular correlation length is much
smaller than the equilibrium length scales of density and temperature profiles, the turbulence
can be considered to be locally driven as the gradients do not vary over the correlation length.
Within this approximation the equilibrium quantities can then be expanded to lowest order
around the central field line as

n ≈ n0 +
dn

dψ

∣∣∣∣
ψ=ψ0

(ψ − ψ0) T ≈ T0 +
dT

dψ

∣∣∣∣
ψ=ψ0

(ψ − ψ0)

making use of the flux surface property that B ·∇p = 0 such that the pressure profile depends
only on the flux surface label ψ. A similar approximation is also applied to the metric tensor g,

as the coordinates are defined on the equilibrium magnetic field which also varies on the same
equilibrium scale according to the MHD force balance j × B = ∇p, such that all geometric
quantities are independent of ψ, α and only depend on their local value along the field line [153].
Specifically this means that throughout the full flux tube

g(ψ, α, z) ≈ g(ψ0, α0, z) J(ψ, α, z) ≈ J(ψ0, α0, z)

and as a consequence the transformed spatial differential operators expressed in (α,ψ, z) coor-
dinates (which involve the elements of the metric tensor) have no explicit dependence on α,ψ
anymore, which leads to a reduction in the number of computational operations that have to be
performed in the simulation.

N.2 Boundary conditions

As the flux tube does not simulate the full torus where natural/physical boundary conditions
would arise (e.g. pressure vanishing at the edge), a set of suitable boundary conditions for the
flux tube have to be implemented. These boundary conditions should be chosen such that this
reduction in simulation domain has a negligible influence on the results85. As the flux tube is
based on the idea of turbulence correlation length, such that the turbulence statistics at ψ+2∆ψ
are identical to those at ψ, motivating the use of periodic boundary conditions86 in ψ and for
completely analogous reasons periodic boundary conditions in α. This periodicity and the fact
that the differential operators do not explicitly depend on α,ψ make the decomposition of all
turbulent quantities A in terms of a Fourier series attractive

A(ψ, α, z, t) =

∞∑

n=−∞

∞∑

m=−∞
Ân,m(z, t) exp

(
i2πn

(ψ − ψ0)

2∆ψ
+ i2πm

α− α0

2∆α

)
. (N.2)

Although Equation (N.2) implies plane waves in (ψ, α), the actual waves inside the torus can
be highly distorted due to the shearing of the flux tube volume.

More complicated is the parallel boundary condition. Since the parallel length of the box is also
taken to be longer than the parallel correlation length, a parallel periodic boundary condition can
also be used. However, there is a two-fold subtlety about this periodicity. First if periodicity
were to be enforced in within the flux tube coordinates, it is implied that A(ψ0, α0,+z0) =

85For instance this means that fixed boundary conditions like for the full torus should be avoided, as they can
unphysically prevent fluxes of heat and particles out of the simulation box.

86Furthermore such periodic boundary conditions would prevent the accumulation of heat and particles which
could alter the fixed gradients in the local approach [16].
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A(ψ0, α0,−z0), and as 2z0 is an integer number of poloidal revolutions this would imply that all
field lines ”bite their own tail” after an integer number of poloidal revolutions, i.e. that every
field line has a rational q0. Secondly, since the magnetic field line is twisting in real space during
a poloidal revolution, the physical turbulence structures which are elongated along the field line
do also twist in real space, and it is the periodicity in the turbulence structures that should be
enforced (as beyond a parallel correlation length, the turbulence properties along the field line
will be the same). Therefore the parallel boundary condition should be applied using physical
(ψ, ζ, θ) coordinates, as the turbulent eddies in the (ψ, ζ) plane87 should be identical after an
integer number of poloidal revolutions as this returns to the same (ψ, ζ) plane in the torus. As
a consequence thus, the parallel periodic boundary condition for Np ∈ N poloidal revolutions of
the flux tube becomes

A (ψ, α(θ, ζ), z(θ)) = A (ψ, α(θ + 2πNp, ζ), z(θ + 2πNp)) . (N.3)

To enforce the boundary condition Equation (N.3), the safety factor can also be expanded

as q ≈ q0 + ∂q
∂ψ |ψ=ψ0 (ψ − ψ0) just like the equilibrium quantities n, T since the geometry of

the equilibrium magnetic field line hardly changes within the extend of the flux tube. As
a consequence the radial and poloidal coordinate get mixed in the Fourier representation of
Equation (N.2)

A(ψ, α(θ, ζ), z(θ), t) =

∞∑

n=−∞

∞∑

m=−∞
Ân,m(θ, t) exp

(
i2πn

ψ − ψ0

2∆ψ
+ i2πm

ζ − ζ0
2δα

− i2πmq0
θ − θ0
2∆α

− i2πm
dq

dψ
(ψ − ψ0)

θ − θ0
2∆α

)

=

∞∑

n=−∞

∞∑

m=−∞
Ân,m(θ, t) exp

(
i2π

ψ − ψ0

2∆ψ

[
n−m

dq

dψ
(θ − θ0)

2∆ψ

2∆α

]
+ i2πm

ζ − ζ0
2δα

− i2πmq0
θ − θ0
2∆α

)

where in the second line all factors of ψ − ψ0 have been gathered in favour to apply the
boundary condition Equation (N.3), since the boundary condition is taken at constant ψ, ζ. A
similar expansion of at a poloidal angle of θ + 2πNp gives

A(ψ, α(θ + 2πNp, ζ), z(θ + 2πNp), t) =
∑∞

n=−∞
∑∞

m=−∞ Ân,m(θ + 2πNp, t) exp
(
i2πψ−ψ0

2∆ψ

[
n−m dq

dψ (θ − θ0)
2∆ψ
2∆α −m dq

dψ2πNp
2∆ψ
2∆α

]
+ i2πm ζ−ζ0

2δα − i2πmq0
θ−θ0
2∆α − i2πmq0

2πNp
2∆α

)

∑∞
n′=−∞

∑∞
m=−∞ Ân′+δn,m(θ + 2πNp, t) exp

(
i2πψ−ψ0

2∆ψ

[
n′ −m dq

dψ (θ − θ0)
2∆ψ
2∆α

]
+ i2πm ζ−ζ0

2∆α − i2πmq0
θ−θ0
2∆α − i2πmq0

2πNp
2∆α

)

where a shift index n′ = n− δn was introduced in the last line with

δn = m
dq

dψ
2πNp

2∆ψ

2∆α
. (N.4)

After this effort, the boundary condition Equation (N.3) can then be straightforwardly applied by
comparing the expressions for A(ψ, α(θ, ζ), z(θ, t) and A(ψ, α(θ+2πN, ζ), z(θ+2πN, t): because
the start point (ψ, ζ, θ) was identical the coefficients in front of each of the ψ−ψ0, ζ− ζ0, θ−θ0
terms in the exponential should be identical. This leads to the following condition

Ân,m(θ, t) = Ân+δn,m(θ + 2πNp, t) exp

(
−i2πmq0

2πN

2∆α

)
(N.5)

with δn given by Equation (N.4). Essentially this means that Fourier modes in the ψ direction
become coupled at the parallel ends of the flux tube, even though they are decoupled within the
interior (at least as long as the E×B non-linearity is not in play). The physical reason for this
coupling is that as a result of shearing of the cross section of the flux tube in the torus through

87Since ψ is a radial coordinate, and ζ the Boozer toroidal angle, this plane characterises a slice going around
the torus the long way which extends from the magnetic axis to the edge and thus samples full physical eddies in
the plasma except for poloidal asymmetries.
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the metric elements g(z) gets distorted, and a matching of these surfaces (as implied by the

parallel boundary condition) requires a shift in the binormal coordinate α that depends on the
radial ψ coordinate [16]. Such shifts in physical space then correspond to an shift ”the other way
around” in Fourier space, as the index δn is shifted, essentially the wavenumber kψ = n2π/2∆ψ
in the ψ direction is shifted.

The most important consequence of the parallel boundary condition is that the box sizes of the
flux tube in the two perpendicular directions are constraint by the dq

dψ of the central field line.
This is because the index shift δn must be an integer, such that Equation (N.4) requires that

2π
dq

dψ

2∆ψ

2∆α
∈ Z (N.6)

since both m,Np are already integers. Another indirect consequence of the parallel boundary
condition Equation (N.5) is that even for a linear simulation in which the Fourier modes are
decoupled in the interior of the flux tube, an envelope of kψ modes (corresponding to different
n’s in Equation (N.2)) is always required even for a single kα mode (corresponding to different
m’s in Equation (N.2)). This then gives the very pragmatic way of handling the constraint on
the box sizes Equation (N.6) to minimise the simulation volume: the wave-number kα of the
mode determines the minimum resolution in the binormal direction through 2∆αmin = 2π/kα
to resolve at least one period of the eddy in the binormal direction, and Equation (N.6) then
determines the box size in the radial direction 2∆ψ, with the minimum box size corresponding
to an index shift of |δn| = 1, leading to a minimum radial box size of

2∆ψmin =
2∆αmin

2π
∣∣∣ dqdψ
∣∣∣
.

N.3 Transformation to practical coordinates

In principle the above method completes the characterisation of the flux tube, but it is not the
most practical description. The range of (α,ψ, z) describing the flux-tube do not enclose the
origin and more importantly the two perpendicular coordinates have different dimensions, which
makes normalisation bothersome. As plasma microturbulence is characterised by k⊥ρ ∼ 1 and
the ion gyroradius is used in the normalisation of length scales, it makes sense to transform to new
perpendicular coordinates (x, y) which have the normal dimension of m. These normalisation-
friendly are

x =
q0
B0r0

(ψ − ψ0) y =
r0
q0

(α− α0) (N.7)

with B0 the magnetic field strength at the magnetic axis and r0 the distance from the magnetic
axis to the central field line of the flux-tube (characterised by (α0, ψ0)). As the poloidal flux
scales as ψ ∼ Bpolr

2 with r the distance from the magnetic axis, it can be seen that x is a
physical radial coordinate by expanding ψ − ψ0 for r = r0 + δr

x ∼ q0
B0r0

Bpol

(
[r0 + δr]2 − r20

)
=
q0Bpol

B0
δr

(
2 +

δr

r0

)

as at the magnetic axis the magnetic field is purely toroidal the q0 makes the prefactor unity
as a result of Equation (4). Together with the small perpendicular extent of the box such that
δr/r0 ≪ 1 it follows that x is the radial deviation from the central field line within the flux
tube. Similarly for the y coordinate the factor r0 transfer the deviation in binormal coordinate
α−α0 to an arc length since α is an angle, which in the limit of small δα deviations from α0 are
straightline segments. The additional appearance of the safety factor q0 in the y coordinate is
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to facilitate normalisation of the the constraint on box sizes due to parallel boundary condition
Equation (N.6). Equation (N.7) implies physical box sizes of Lx = 2∆x = q02∆ψ/B0r0 and
Ly = r02∆α/q0, such that Equation (N.6) in terms of the new coordinates becomes

2π
dq

dψ

B0r
2
0

q20

Lx
Ly

= 2π
dq

dx

r0
q0

Lx
Ly

∈ Z (N.8)

where the derivative of the safety factor has also been changed to the new radial coordinate x.
The quantity dq

dx |x=0
r0
q0

≡ ŝ is intrinsically dimensionless and is known as the global magnetic
shear (since the derivative at x = 0 is equivalent to a radial derivative at r = r0), indicating how
the twisting of the magnetic field changes through the torus. Equation (N.8) is an implementa-
tion friendly way of determining the radial box-size Lx since the shear ŝ is one of the equilibrium
MHD quantities of the central field line available from the GIST interface. Similarly also the
position of the flux within the torus given by x0 can be obtained from the GIST file, as the field
line is characterised by the normalised enclosed flux s0 = ψ/ψedge = r20/a

2 of its flux surface.

In these new physical coordinates, the perpendicular periodic boundary conditions don’t change
such that Equation (N.2) can be recast as

A(x, y, z, t) =

∞∑

kx=−∞

∞∑

ky=−∞
Âkx,ky(z, t) exp(ikxx+ ikyy) (N.9)

where the wave numbers kx = n2π/Lx, ky = m2π/Ly are related to the n,m indices of Equa-
tion (N.2), and the shift condition Equation (N.4) translates to a shift in kx. Within these
new coordinates the equilibrium quantities n, T can then be extended in the radial direction as
opposed to the flux label ψ

n ≈ n0
dn

dr

∣∣∣∣
r=r0

(r − r0) T ≈ T0 +
dT

dr

∣∣∣∣
r=r0

(r − r0)

which has the benefit that radial profile derivatives are easily obtained from e.g. experimen-
tal measurements, and that the gradient lengths d lnn

dr are straightforward to normalise to the
machine size.

O Cross-phase data for the collisional simulations

The dependence of the weighted average cross-phase data on wavenumber and collision frequency
for the collisional simulation for DIII-D, HSX and W7-X are shown in Figures O.1 to O.3
respectively. The axes have been fixed to [−π,+π] to include all possible phases and make
direct comparison between plots possible.
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Figure O.1: Cross-phases between the electrostatic potential and (a) density, (b) parallel ion
temperature, (c) perpendicular ion temperature, (d) parallel electron temperature and (e) per-
pendicular electron temperature perturbations in DIII-D.
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Figure O.2: Cross-phases between the electrostatic potential and (a) density, (b) parallel ion
temperature, (c) perpendicular ion temperature, (d) parallel electron temperature and (e) per-
pendicular electron temperature perturbations in HSX.
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Figure O.3: Cross-phases between the electrostatic potential and (a) density, (b) parallel ion
temperature, (c) perpendicular ion temperature, (d) parallel electron temperature and (e) per-
pendicular electron temperature perturbations in W7-X.
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P Validity limits of the perturbative calculation

The validity of the perturbative approach extends only to small frequency shifts, which can
be most consistently assessed by the absolute value of the complex frequency shift |δω| =√

Re[δω]2 + Im[δω]2 which weights the real and imaginary parts equally. Taken |δω|/ ⟨ω0⟩ =
10−0.5 ≈ 0.3 as a generous measure for the validity range of small perturbations, it can be seen
from Figure P.1 that this the perturbations over a large range of parameter space are larger
than acceptable to justify the perturbative approach. Note that the absolute frequency shift in
HSX and W7-X are near identical, which can be explained by the similar shape of the contours
for real and imaginary parts of the frequency shift of Figure 14 where the fact that Re[δω/ ⟨ω0⟩]
is typically smaller in HSX than in W7-X is compensated in the absolute value by the fact that
Im[δω/ ⟨ω0⟩] is larger in HSX than in W7-X in the absolute value.
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Figure P.1: Absolute value of the normalised complex frequency shift as a function of the bi-
normal wavenumber and collision frequency in (a) DIII-D, (b) HSX and (c) W7-X, where the
dotted line indicates the 30% mark within which the perturbative approach is justified.
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Q Work on free energy description of TEMs

An alternative toolbox to describe microinstabilities is the so-called free energy that is stored in
the perturbations, which will increase/decrease in time as the perturbations are destabilised/-
damped respectively. This framework is based on a statistical thermodynamic description of the
plasma, and starts from the gyroaveraged Hamiltonian [190]

H =
1

2
mv2 + q ⟨ϕ⟩R − e2

2B

∂

∂µ

(
⟨ϕ⟩2R −

〈
ϕ2
〉
R

)
= H0 + q ⟨ϕ⟩R − e2

2B

∂

∂µ

(
⟨ϕ⟩2R −

〈
ϕ2
〉
R

)
(Q.1)

where H0 is simply the unperturbed particle energy. From the Hamiltonian the total energy
of the plasma can be constructed by integrating the single particle Hamiltonian over the dis-
tribution function in phase space E =

∑
s

´
d6ΛHfs, where d6Λ = d3vd3x. By splitting the

distribution in its equilibrium and perturbed part fs = FMs + δfs and subsequently linearising
this gives the total plasma energy as [190]

E =
∑

s

ˆ
d6Λ

[
H0FMs +H0δfs +

q2s
2T

FMs(ϕ
2 − ⟨ϕ⟩2R)

]
. (Q.2)

As the first term to Equation (Q.2) is simply the total kinetic energy of the plasma in equilibrium,
the free energy of the perturbations is then subsequently defined as the difference E = E −∑

s

´
d6ΛH0FMs, and consists of two contributions the kinetic energy of the perturbed particles

which as a result of lack of equilibrium will establish itself as entropy and the energy stored
within the electric field given by the second and third term of Equation (Q.2) respectively [189].

Note that the free energy E is defined in real-space using the potential ϕ rather than its Fourier
components ϕ̂. This is because the free energy is a so-called non-linear invariant of the GKE,
which is conserved by the convective E×B non-linearity [193,194]. This is because in terms of
Fourier modes the neglected E ×B non-linearity becomes a convolution in wavenumber-space,
given by [191]

(vE ·∇gs)k⊥ = − 1

B2

∑

k′
⊥

B ·
(
k′
⊥ ×

[
k⊥ − k′

⊥
])
J0(k

′
⊥ρs)ϕ̂k′

⊥
ĝs,k⊥−k′

⊥
(Q.3)

which can only shuffle (free) energy between Fourier modes rather than create/dissipate it and
is responsible for eventual saturation of turbulence [192]. This is much in analogy with fluid
turbulence, where the kinetic energy mu2/2 is also a non-linear invariant of the Navier-Stokes
equations as it is conserved by the u ·∇u non-linearity [8,192,193]. Just as in fluid turbulence
where the evolution equation of kinetic energy follows by multiplying the Navier-Stokes equation
with u and averaging over space [223], the evolution for the free energy in plasma follows by
multiplying the GKE Equation (25) with factors that are preserved by the non-linearity, which
are88 the kinetic response Tsgs/FMs and the electrostatic potential perturbation qs ⟨ϕ⟩R and
integrating over phase-space (where the additional prefactors make sure that the free energy E
has the proper dimension).

88This is because in a formal formulation of gyrokinetics the advective non-linearity can be expressed as a
Poisson bracket

{
⟨ϕ⟩R , gs

}
[67] which has the property that it will vanish when multiplied by any commuting

quantity and integrated over space [111, 190]. This does leave room for some discrepancy about the adiabatic
response in literature [109], where the adiabatic response as used in this thesis is the particle adiabatic response
related to the particle distribution function while in free-energy literature the guiding-center adiabatic response
is considered based on both the energy form in the Hamiltonian Equation (Q.1) and the appearance of ⟨ϕ⟩R
in the Poisson bracket. This does create an inconsistency in evolution equations of free energy, as the adiabatic
response of the distribution function is also taken as −qs ⟨ϕ⟩R /Ts0FMs which alters the form of Poisson’s equation
Equation (37), and results in a single evolution equation for both free energy forms [189, 190, 193, 195]. If the
adiabatic response of the distribution function is however properly kept as −qsϕ/Ts0FMs the same derivation
results in two separate evolution equations for the free energy quantities as also obtained by [111] which consider
a uniform equilibrium magnetic field and kinetic profiles.
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Q.1 Derivation of free energy evolution equations

As the E × B non-linearity conserves the free energy E , the linearised gyrokinetic equation
Equation (34) can be used to derive the evolution equations for the free energy, provided that
the result is summed over all wavenumbers such that the neglected influence of the non-linearity
is effectively “washed out”89. Rather than multiplying the GKE with Tsgs/FMs and qs ⟨ϕ⟩R to
derive the evolution equation for the free energy, the linearised GKE Equation (34) is multiplied
by Tsĝs

∗/FMs and qsJ0ϕ̂
∗ instead and taking the real part of the phase space integral [191,195].

Doing so would only result in the free energy associated with one particular species, so to get
the total free energy one finally has to sum over all species, just like with the total plasma
energy Equation (Q.2). Physically this is motivated with the foresight that Eδf is an entropy-
like quantity and the total entropy of a system that is divisible in subsystems is the the sum of
individual entropies [224].

Since the free energy is quadratic in the perturbations (as will be clear shortly) this equivalence
between treating the total free energy E and the combined free energy per Fourier mode

∑
k⊥

Ek⊥

is due to Parseval’s theorem [193]. Consequently the integration over phase space and spatial
averaging can be replaced by

´
· · · d6Λ/

´
d3x =

˜
· · · d3vd3x → ∑

k⊥

˜
(· · · )k⊥

d3v dl
B /
´

dl
B

since the wavevector only accounts for the cross-field variations as a result of the WKB formalism
for the perturbations Equation (28). Since however k ≈ k⊥, the distinction between k and k⊥
will henceforth be suppressed for notational convenience, unless it is particularly illuminating
to do so.

Q.1.1 Derivation of entropy evolution equation

Starting with the entropy-like quantity, multiplying Equation (34) with Tsĝs
∗/FMs, adding the

integrals/summations and taking the real part gives

∑

s

∑

k

Re

[ˆ
d3v

ˆ
dl

B
Ts
ĝ∗s,k
FMs

v∥∇∥ĝs,k − Ts
ĝ∗s,k
FMs

i (ωk − ωd,s) ĝs,k − Ts
ĝ∗s,k
FMs

Ĉk

]
=

−
∑

s

∑

k

Re

[ˆ
d3v

ˆ
dl

B
iTs

ĝ∗s,k
FMs

qs
Ts
J0ϕ̂k

(
ωk − ωT⋆s

)
FMs

] (Q.4)

which is best expanded on a term-by-term basis. Starting with the parallel dynamics term on
the left-hand side of Equation (Q.4), and splitting the integration over position and velocity
variables gives

Re

[ˆ
d3v

ˆ
dl

B

Ts
FMs

v∥ĝ
∗
s,k∇∥ĝs,k

]
= Re

[ˆ
d3v

Ts
FMs

v∥

ˆ
dl

B
ĝ∗s,k∇∥ĝs,k

]

If pitch-angle velocity coordinates are used for the velocity integral, then as a result of the
Jacobian d3v →∑

σ=± πv
2B/

√
1− λB dv dλ the 1/B factor will cancel such that the integration

along the field line can be performed using integration by parts [195]

ˆ ∞

−∞
dl ĝ∗s,k∇∥ĝs,k = |ĝs,k|2

∣∣∣
l=+∞

l=−∞
−
ˆ ∞

−∞
dl ĝs,k∇∥ĝ

∗
s,k = −

(ˆ ∞

−∞
dl ĝs,k∇∥ĝ

∗
s,k

)∗

89Mathematically this follows from a summation of Equation (Q.3) over wavenumbers k, such that the double
sum

∑
k

∑
k′ will repeat every possible (k,k′) pair and will vanishes as the cross-product is reversed in the outer

sum. Physically this is because the E×B non-linearity only exchanges free energy between different modes such
that an inclusion of Equation (Q.3) to the linearised GKE Equation (34) would result in an additional source/sink
in the evolution equation for the free energy for each Fourier mode ∂Ek

∂t
, but all these internal sources/sinks cancel

when adding up the free energy stored in each Fourier mode to get the evolution total free energy ∂E
∂t

=
∑

k
∂Ek
∂t

,
similarly to how in Classical Mechanics all internal forces between particles cancel and the dynamics of a multibody
system is given by Newton’s equation of motion for the centre of mass acted upon only by the external forces [108].
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where the boundary term vanishes since l = ±∞ correspond to the points where a field-line will
bite its own tail90 As this integral is the opposite of its own complex conjugate it must be purely
imaginary, and consequently its real part vanishes.

Moving on to the second term on the left-hand side of Equation (Q.4), the procedure of simpli-
fying the integral is more straightforward

Re

[ˆ
d3v

ˆ
dl

B

Ts
FMs

ĝ∗s,ki(ωk − ωd,s)ĝs,k

]
= −γk

ˆ
d3v

ˆ
dl

B

Ts
FMs

|ĝs,k|2

by using the complex frequency ω = ωR + iγ, and the fact that |ĝs,k|2 ∈ R along with all other
equilibrium quantities including the magnetic drift frequency.

The term involving the collision operator cannot be simplified by exploiting a splitting in re-
al/imaginary parts without specifying a collision operator so it will be left as is. Moving on
to the right-hand side of Equation (Q.4) there is only a a single term, however it cannot be
straightforwardly simplified like the other terms above by identifying its real and imaginary
parts since those depend on the phase between ĝk, ϕ̂k. This phase cannot be arbitrary however
as the (charge) density perturbations are directly linked to perturbations in the electrostatic po-
tential through the quasi-neutrality condtion Equation (37). Therefore by explicitly including
the sum over species this time the first term from the angular brackets can be rewritten as

∑

s

Re

[
iωk

ˆ
dl

B
ϕ̂kqs

ˆ
d3vĝ∗s,kJ0

]
= Re

[
iωk

ˆ
dl

B
ϕ̂k
∑

s

(
qs

ˆ
d3vĝ∗s,kJ0

)]

= Re

[
iωk

ˆ
dl

B
ϕ̂k
∑

s

ns
q2s
Ts
ϕ̂∗k

]
= −γk

∑

s

ˆ
dl

B

nsq
2
s

Ts

∣∣∣ϕ̂k
∣∣∣
2

where the quasi-neutrality condition eliminates the kinetic response and leaves ωk as the only
complex value under the Re[· · · ] operator. The remaining term on the left-hand side involving
the diamagnetic frequency ωT⋆s cannot be rewritten in a similar way, as unlike ωk it cannot be
evacuated from the velocity integral because of its velocity dependence, and it thus cannot be
cast in terms of the quasi-neutrality condition. The imaginary unit i can however be removed
from this expression by using Re[iζ] = Im[ζ∗] which holds for any ζ ∈ C, which will be more
advantageous for identifying its physical significance.

Compiling all of the above intermediate results and substituting them back in Equation (Q.4)
then leads to the “evolution” equation

∑

k

γk
∑

s

ˆ
dl

B

(ˆ
Ts
FMs

|ĝs,k|2d3v − q2sns
Ts

|ϕk|2
)

=

∑

k

Im

[∑

s

qs

ˆ
dl

B
ϕ̂∗k

ˆ
d3vĝs,kω

T
⋆sJ0

]
+
∑

k

Re

[∑

s

ˆ
dl

B

ˆ
d3v

Ts
FMs

ĝ∗s,k
〈
Ĉk

〉
R

] (Q.5)

where all terms involving the growth rate have been collected on the left-hand side.

90Alternatively, rather than imposing periodic boundary conditions, the the contribution of this integral to the
total free energy will vanish as long as |ĝs,k|2 remains bounded, as the free energy formally involves a normalisation
along the field line /

¸
dl /B [195].
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Q.1.2 Derivation of field energy evolution equation

Moving on to the field energy-like quantity, multiplying Equation (34) with qsJ0ĝs, adding the
integrals/summations and taking the real parts gives

∑

s

∑

k

Re

[ˆ
d3v

ˆ
dl

B
qsJ0ϕ̂

∗
kv∥∇∥ĝs,k − qsJ0ϕ̂

∗
ki (ωk − ωd,s) ĝs,k − qsJ0ϕ̂

∗Ĉk

]
=

−
∑

s

Re

[ˆ
d3v

ˆ
dl

B
iqsJ0ϕ̂

∗
k

qs
Ts
J0ϕk

(
ωk − ωT⋆,s

)
FMs

] . (Q.6)

Working again on a term-by-term basis, the parallel dynamics term on the left-hand side of
Equation (Q.6) cannot be simplified like before with the entropy evolution equation because
it involves a mixing between ϕ̂k, ĝs which cannot be rewritten in terms of the quasi-neutrality
condition to eliminate the unknown phase. Specifically if the same trick of integration by parts
along the field line would be performed than one would obtain

ˆ ∞

−∞
dl ϕ̂∗k∇∥ĝs,k = ϕ̂∗kgs,k

∣∣∣
l=+∞

l=−∞
−
ˆ ∞

−∞
dl ĝ∗s,k∇∥ = −

ˆ ∞

−∞
dl ĝ∗s,k∇∥ϕ̂

∗
k (Q.7)

where the boundary vanishes again because they correspond to the points where the field line
bites its own tail. Unlike before, the ”new” integral obtained by integration by parts is not the
complex conjugate of the ”old” integral, and thus the parallel dynamics will contribute to the
evolution of the free energy since it must have a real part. Equation (Q.7) will be useful later
when the resulting evolutions are interpreted as it shows one can swap the derivative between
ϕ̂ and gs at the cost of a minus sign. The second term on the left-hand side (drift frequency
ωk − ωds term) will also involve the phase between the perturbations, however just like with
the diamagnetic frequency term above ωk − ωT⋆s, this can be partially recast in terms of the
quasi-neutrality condition since ωk is independent of velocity

∑

s

Re

[ˆ
d3v

ˆ
dl

B
qsJ0ϕ̂

∗
kiωkĝs,k

]
= Re

[
iωk

ˆ
dl

B
ϕ̂∗k
∑

s

qs

ˆ
d3vJ0ĝs,k

]
= −γk

∑

s

ˆ
dl

B

dl

B

nsq
2
s

Ts

∣∣∣ϕ̂k
∣∣∣
2

where Equation (37) is used once more. The same simplification cannot be made for the drift
frequency term however because of the dependence of the magnetic drift velocity Equation (27)
on particle velocity, and is therefore also left as is.

Also much like before the term involving the collision operator cannot be simplified without first
specifying a specific form of the collision operator, such that all that is left to simplify is the
left-hand side term of Equation (Q.6). Fortunately, since side of the GKE is proportional to ϕ̂k
rather than ˆgs,k the phase between the perturbations is not involved for the remaining and the
simplification procedure is straightforward

∑

s

Re

[ˆ
d3v

ˆ
dl

B
i
q2s
Ts
J2
0 |ϕk|2

(
ωk − ωT⋆,s

)
FMs

]
=
∑

s

Re

[
iωk

ˆ
dl

B

q2s
Ts

|ϕk|2
ˆ

d3vJ2
0FMs

]
+ 0

where the contribution from the diamagnetic drift vanishes as all terms are purely real valued.
The remaining integral over the square of the Bessel function has been encountered before during
the perturbative calculation in Section 3.3 and by using the integrals from Equation (I.1) it

follows that
´
d3vJ2

0FMs = nsI0

(
(k⊥ρTs)

2

2

)
exp
(
− (k⊥ρTs)

2

2

)
= nsΓ0s using the same shorthand

notation as in Section 3.3 but with the index s added as a reminder that the argument of the
modified Bessel and exponential functions should be taken with the thermal gyroradius of each
species.
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Compiling all of these intermediate results and substituting them back in Equation (Q.6) then
leads to the “evolution” equation

∑

k

γk
∑

s

ˆ
dl

B

nsq
2
s

Ts

∣∣∣ϕ̂k
∣∣∣
2
(1− Γ0s) =

∑

k

Re

[∑

s

qs

ˆ
dl

B

ˆ
d3vJ0ϕ̂

∗
kĈk

]

−
∑

k

Re

[∑

s

qs

ˆ
dl

B

ˆ
d3vJ0ϕ̂

∗
k

(
v∥∇∥ + iωds

)
ĝs,k

] (Q.8)

where all terms involving the growth have again been collected on the left-hand side.

Q.2 Interpretation of free energy evolution equations

Just as with the derivation of the free energy evolution equations, their interpretation is best
done independently and on a term-by-term basis.

Q.2.1 Interpretation of the entropy evolution equation

The term on the left-hand side of Equation (Q.5) is best interpreted by not consdidering the
kinetic and adiabatic responses separately, but by considering the total perturbation to the
distribution function of the distribution function Equation (24) in Fourier space instead. By
doing so the integrand along the field line can be written as

ˆ
Ts
FMs

|ĝs,k|2d3v − q2sns
Ts

|ϕk|2 =
ˆ

Ts
FMs

∣∣∣δ̂fs,k
∣∣∣
2
d3v + ϕ̂∗kqs

ˆ
δ̂fs,kd

3v + ϕ̂kqs

ˆ
δ̂f

∗
s,kd

3v

which follows by writing ĝs,k = δ̂fs,k + qsFMsϕ̂k/Ts and performing the velocity integrals over
the Maxwellian. When performing the sum over species the latter two terms will cancel as
they reduce to the quasi-neutrality condition

∑
s qsδns = 0. Consequently the left-hand side

of Equation (Q.5) can be interpreted as a time derivative of the amplitude in perturbation in
distribution function

∑

k

γk
∑

s

ˆ
dl

B

ˆ
Ts
FMs

∣∣∣δ̂fs,k
∣∣∣
2
d3v =

∂

∂t

∑

k

∑

s

ˆ
dl

B

ˆ
d3v

Ts
2FMs

∣∣∣δ̂fs,k
∣∣∣
2

which follows from recalling that the perturbations have an exp(−iωkt) time dependence with a

complex mode frequency ωk = ωR,k+ iγk such that the squared amplitude
∣∣∣δ̂fs,k

∣∣∣
2
has a growth

rate of 2γk. This defines the first free energy quantity Eδf , whose physical significance is related
to the continuous extension of the Gibbs entropy to phase-space Ss = −

˜
fs ln fsd

3vd3x [111].
By inserting fs = FMs + δfs and expanding the entropy for δfs/FMs ≪ 1

Ss =−
¨

(FMs + δfs) ln(FMs + δfs)d
6Λ ≈ −

¨
(FMs + δfs)

[
ln(FMs) +

δfs
FMs

− 1

2

δf2s
F 2
Ms

+O
(
δ3
)]

d6Λ

=−
(¨

FMs ln(FMs)d
6Λ +

¨
δfs ln(FMs)d

6Λ +

¨
δfsd

6Λ +
1

2

¨
δf2s
FMs

d6Λ

)

=−
¨

FMs ln(FMs)d
6Λ− 1

2

¨
δf2s
FMs

d6Λ ≡ S0,s + δSs

where the perturbations must satisfy
´
δfsd

3x to have a zero net contribution to the number
of particles in the system, it follows that Eδf = −∑s TsδSs is in fact the energy stored in the
fluctuation entropy (as already hinted to by the names of the sections).
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The identification of Eδf as entropy also helps to identify the second term on the right-hand of
Equation (Q.5), since in absence of equilibrium profile gradients ωT⋆s = 0 and Equation (Q.5)
reduces to

∂

∂t

∑

s

∑

k

−δSs,k =
∑

k

Re

[∑

s

ˆ
dl

B

ˆ
d3v

Ts
FMs

ĝ∗s,k
〈
Ĉk

〉
R

]

which is the extension of Boltzmann’s H-theorem for the perturbation to the distribution func-
tion, and consequently this represents irreversible dissipation of the perturbations by parti-
cle collisions such that collisions have a damping effect on the growth rate (as Eδf is positive
definite) [8]. This is most readily seen by substituting the linearised BGK collision operator

Equation (46) such that the term on the right-hand side −∑k Re
[∑

s

´
dl
B

´
d3vνs

Ts
FMs

|ĝs,k|2
]

is negative definite, but the same property also holds for more advanced collision operators used
in gyrokinetic simulation codes [87–90].

Lastly the first term on the right-hand side of Equation (Q.5) must contains the role of the
plasma gradients through the diamagnetic frequency Equation (30) and must represent the
driving factors of the instability to balance the dissipation provided by collisions. According to
the simple waveform model of drift waves from Section 2.1 it are the density and temperature
gradients that are responsible for driving the perturbations unstable if there is an unfavourable
phase-shift between the potential perturbations and the density/temperature perturbations. As
the temperature and density perturbations follow from velocity moments of gs, the phase-shift
in the potential perturbation can be incorporated as ϕ =

∑
k ϕ̂

′
ke
i(k·x−ωkt−φs,k), which affects

the actual amplitude of the Fourier amplitude ϕ̂k = ϕ̂′k exp(−iφk) which is defined on an
expansion of the perturbation in an ei(k·x−ωkt) basis. With such a phase-shift the first term on
the right-hand side of Equation (Q.5) becomes

∑

k

Im

[∑

s

qs

ˆ
dl

B
ϕ̂∗k

ˆ
d3vĝs,kω

T
⋆sJ0

]
=
∑

k

∑

s

qs

ˆ
dl

B

ˆ
d3v Im

[
ϕ̂∗kĝs,k

]
ωT⋆sJ0

=
∑

k

∑

s

qs

(ˆ
dl

B

ˆ
d3v

∣∣∣ϕ̂k
∣∣∣|ĝs,k|ωT⋆sJ0

)
sin(φs,k)

and consequently a phase shift of φs,k ∈ (0, π) results in a destabilising influence with a maximum
destabilisation for π/2, while a phase shift of φs,k ∈ (−π, 0) results in a stabilising influence and
in the special case that the perturbations are completely in phase the basic collisionless drift
wave from Section 2.1.1 is recovered. A novelty from the free energy formalism is that the
different species can exert a different influence on the growth rate, while the basic models from
from Section 2.1 only highlighted the main instability driving mechanism.

Q.2.2 Interpretation of field energy evolution equaiton

Completely analogous to the interpretation of Equation (Q.5) the term on the left-hand side

of Equation (Q.8) identifies the growth of a free-energy quantity Eϕ,k =
´

dl
B
nsq2s
2Ts

∣∣∣ϕ̂k
∣∣∣
2
(1− Γ0)

which is quadratic the perturbations and also positive definite since 0 ≤ Γ0 ≤ 1. The second
free energy quantity Eϕ is essentially the gyrokinetic generalisation of the kinetic energy due to
the E×B flow [190,191]. This can be seen by an analogy with the fluid model91 of the plasma

91The extension to the kinetic picture is straightforward, with the total kinetic energy being∑
s

´ msv
2
s

2
fsd

3vsd
3x. In the limit in which the fluid picture holds, collisionality is sufficiently large to establish

equilibrium such that the distribution function fs → FMs(v − uE) becomes a shifted Maxwellian around the
E×B velocity. The integral then results in a thermal component and a bulk component as a result of the mean
flow uE , the latter which is being used here.
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where both electrons and ions will move with a bulk flow velocity which has a kinetic energy of

∑

s

ˆ
1

2
nsmsu

2
Ed

3x =
∑

s

ˆ
1

2
nsms

ϕ2

B2
∥eb ×∇ lnϕ∥2d3x ∼

∑

s

ˆ
1

4

nsq
2
s

Ts
ϕ2
(
ρTs
Lϕ,⊥

)2

where the last step follows from writing the magnetic field strength in terms of the gyrofrequency
of a thermal particle B = msvTs/qsρTs, the fact that eb is a unit vector and an characteristic
perpendicular length scale of the electrostatic potential fluctuations has been introduced similar
to Lns, LTs. To compare this fluid picture with Eϕ the appropriate long wavelength limit for the
fluctuations k⊥ρ≪ 1 has to be taken, for which Γ0s ≈ 1− (k⊥ρTs)

2 /2 +O((k⊥ρTs)4) resulting
in

lim
k⊥ρTs→0

Eϕ,k ≈
∑

s

ˆ
dl

B

nsq
2
s

2Ts

∣∣∣ϕ̂k
∣∣∣
2 (k⊥ρTs)2

2

which by identifying the wavenumber as the inverse correlation length of the fluctuations k⊥ ∼
1/Lϕ,⊥ completely matches the fluid picture. Consequently Eϕ represents the energy stored in
the fluctuating electric field in a gyrokinetic way.

The second term on the right-hand side of Equation (Q.8) requires some more effort to identify,
but fortunately the tricky part has already been done in Appendix Q.1. The drift term can be
rewritten by recalling that the magnetic drift frequency is defined as ωds = k⊥ · vds such that

∑

k

Re

[∑

s

qs

ˆ
dl

B

ˆ
d3vJ0ϕ̂

∗
k

(
v∥∇∥ + iωds

)
ĝs,k

]
= −

∑

k

Re

[∑

s

qs

ˆ
dl

B

ˆ
d3vĝ∗s,k

(
v∥∇∥ + ik⊥ · vds

)
J0ϕ̂k

]

where Equation (Q.7) is used to rewrite the parallel dynamics in favour of a derivative of ϕ̂ and
the complex conjugation of the drift term is allowed as it does not alter the real part of the
integral. Now recalling that in Fourier space ik⊥ is equivalent to ∇⊥ in real-space it follows
that the second term on the right-hand side of Equation (Q.8) is the Fourier analogue to the
J ·E Joule heating that the gyroaverage perturbed electric field exerts on the plasma92 which
can either draw away energy from the electric field or provide energy to it corresponding to a
stabilising/destabilising effect on the growth rate respectively.

The first term on the right-hand side of Equation (Q.8) does not have a straightforward inter-
pretation by rewriting it and making an analogy with a familiar branch of physics. Rather if the
collisions are interpreted as pitch-angle scattering, then the net result of a collision will be to
“reset” the particle gyration and have it continue on a new orbit with a displaced gyrocenter, as
a change in v⊥ affects the gyroradius such that the average particle position during a gyration
will be shifted w.r.t. the situation before the collision. As a particle effectively only feels the
gyroaverage of the potential over its orbit, this scattering will result in a change of its potential

energy qs ⟨ϕ⟩R. Therefore
∑

k Re
[∑

s qs
´

dl
B

´
d3vJ0ϕ̂

∗
kĈk

]
can be interpreted as “potential en-

ergy scattering”, which can either withdraws energy from the particles which has to be deposited
in the perturbed electric field corresponding to growth or vice versa instill energy to the particles
corresponding to damping. In the simple case of a BGK operator, and proposing a similar phase
shift φs,k between the electrostatic potential and density/temperature perturbations this term
becomes

∑

k

Re

[∑

s

qs

ˆ
dl

B

ˆ
d3vJ0ϕ̂

∗
kĈk

]
= −

∑

k

∑

s

qs

ˆ
dl

B

ˆ
d3vνsJ0

∣∣∣ϕ̂k
∣∣∣|ĝs,k| cos(φs,k)

92This is by considering the current carried by each species in a statistically as js =
´
qsvsfs, which vanishes

for both the Maxwellian due to isotropy and the adiabatic response when integrating over the gyrophase [67].
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which seems to predict that for the most unstable perturbations with a phase shift close to π/2
this “potential energy scattering” would have little effect on the field free energy Eϕ, a feature
which has also been observed in simulations by Navarro et al using a realistic collision operator
instead [194].

The two evolution equations for the free energy quantities Eδf , Eϕ Equations (Q.5) and (Q.8) are
not independent, after all both free energy quantities are proportional to |ϕk|2. Furthermore
in the limit of a “monochromatic” perturbation which is characterised by just a single k, the
sums in Equations (Q.5) and (Q.8) would disappear giving two equations for the growth rate
of the same perturbations, which would have to be consistent. This is not a feature caused
by neglecting the E × B non-linearity in the derivation since Equation (Q.3) vanishes if the
perturbation is “monochromatic” [111], showing that there are no unaccounted sources/sinks for
both free energy forms in the “monochromatic” limit. Therefore the free energy should strictly
be interpreted as the total E = Eδf + Eϕ, which together with the identification of Eδf as the
perturbation entropy and Eϕ as the “internal” energy of the perturbed electric field reveals that
E = U −∑s TsδSs is essentially the Helmholtz free energy of the perturbations [191].

Q.3 Application to TEMs

In the “monochromatic” limit discussed above, the free energy framework can be found to obtain
the growth rate of TEMs. The rationale for this approach is that each evolution equation for
the free energy of each Fourier mode takes the form of

∂Ek,{δf,ϕ}
∂t

= 2γkEk,{δf,ϕ} = [Sources/sinks]k,{δf,ϕ}

however in the “monochromatic” limit the E×B non-linearity cannot reshuffle energy between
different Fourier modes, such that the sources and sinks will simply given by the corresponding
Fourier component from the right-hand sides of Equations (Q.5) and (Q.8). As both contribu-
tions to the Helmholtz free energy are strictly positive Ek,{δf,ϕ} > 0 this means that the net sign
of the sources/sinks determines whether the instability will be unstable (γk > 0) or damped
(γk < 0). As in the “monochromatic” limit the perturbation consists of only a single Fourier
mode, the subscript on the wavenumber will be omitted from now on.

This method has been used in the past to determine the maximum growth rates of linear
eigenmodes [125, 191, 195] but using a different definition of the adiabatic response which leads
to an evolution for the free energy that does not include the J ·E or potential energy scattering
work (see explanation under Footnote 88). Furthermore, free energy transfer has been used to
assess that max-J configurations are stable against TEMs [95, 126], but this assessment only
considers the collisionless case and the J · E work. It is therefore interesting to see if (even
qualitatively) it could be assessed how collisions affect the growth rate of TEMs using this
method.

To evaluate the sources and sinks of Equations (Q.5) and (Q.8) for TEMs, the approximate
solutions for the kinetic responses of ions and electrons Equations (48) and (51) in the TEM
are used again, and the simplified BGK collision operator ⟨Ck⟩R = −νsĝs is employed. The
process is mostly a straightforward substitution of these expressions in the right-hand sides of
Equations (Q.5) and (Q.8), and determining which factors are real/imaginary which can be done
on a per-species basis. For example, starting with the ions direct substitution of Equation (48)
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in the gradient drive term of Equation (Q.5) gives

Im

[
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B
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∣∣∣
2
ˆ

d3v

(
ω − ωT⋆i
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]
=
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ˆ
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ˆ

d3v
ωT⋆i
[
γ
(
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(
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)]

|ω − ωdi + iνi|2
J2
0FMi

(Q.9)

where ϕ̂ is extracted from the velocity integral since it only depends on position and the fraction
of all frequencies is the only non-real valued term, which has been explicitly expanded with a
complex mode frequency ω = ωR + iγ in the last step by multiplying with the conjugate of the
denominator. Doing similarly for the dissipation term with a BGK operator gives

Re

[
−
ˆ

dl

B

ˆ
d3v

Ti
FMi

νi|ĝi|2
]
= −e

2

Ti
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ˆ
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(
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⋆i − 2ωRω
T
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)

|ω − ωdi + iνi|2
J2
0FMi

which shares much a similar structure of the integrand, such that both contributions can be
neatly combined to give the total change in entropy due to ions

(
∂Eδf
∂t

)

ions

=
e2

Ti
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B

∣∣∣ϕ̂
∣∣∣
2
ˆ

d3v
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)
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(
|ω|2 − ωRω

T
⋆i

)

|ω − ωdi + iνi|2
J2
0FMi. (Q.10)

The procedure for the electron is much the same, but has a slight subtlety. The approximate
solution for the electron kinetic response Equation (51) describes the response of trapped par-
ticles and vanishes in regions of velocity space corresponding to passing particles. This is best
handled by using pitch-angle coordinates for velocity space such that e.g. the gradient drive
term becomes
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J0ϕ̂J0FMe

]

= Im


2π e

2
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1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dv
ωT
⋆e

(
ω − ωT

⋆e

)

ω − ωde + iνe

∣∣∣J0ϕ̂
∣∣∣
2

Leff,[w]v
2FMe




where Equation (64) has been used to revert the order of integration and turn all remaining
field line depending quantities into bounce averages. A comparison with Equation (Q.9) shows
that the electron and ion gradient drive terms are isomorphic, by replacing all quantities that
depend on the position along the field line with their bounce average, using pitch-angle velocity
coordinates and replacing the integral along the field line with the “effective well” length. It is
straightforward to show that this isomorphism between ion and electron free energy sources/sinks
also carries over to the other terms, such that the total change in entropy due to electrons
becomes

(
∂Eδf
∂t

)

electrons

= 2π
e2

Te

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dv
γωT⋆e

(
ωT⋆e − ωde

)
− νe

(
|ω|2 − ωRω

T
⋆e

)

|ω − ωde + iνe|2
v2
∣∣∣J0ϕ̂

∣∣∣
2
FMeLeff,[w].

(Q.11)

The sources/sinks for the field energy Eϕ largely follow in a largely analogous way by direct
substitution of the approximate solutions for ĝi, ĝe in the right-hand side of Equation (Q.8),
except for the parallel J · E work which requires some careful deliberation. The free energy
evolution equations are derived for the most general case of the linearised GKE and is exact,
whereas the approximate solutions for ĝi, ĝe are obtained by asymptotic limits for the parallel
dynamics term in the GKE based on the frequency ordering Equation (47). For the ions this
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simply means that the v∥∇∥ term can be completely neglected such with regard to the free
energy J∥E∥ ≈ 0. Direct substitution of Equation (48) in Equation (Q.8) then gives the field
energy source/sink for the ions

(
∂Eϕ
∂t

)

ions

= −e
2

Ti

ˆ
dl

B

∣∣∣ϕ̂
∣∣∣
2
ˆ

d3v
νi

(
|ω|2 + γνi − ωRω

T
⋆i

)
+ γωdi

(
ωdi − ωT⋆i

)

|ω − ωdi + iνi|2
J2
0FMi (Q.12)

For the electrons however the v∥∇∥ term actually dominates and the approximate solution
Equation (51) is obtained by taking the bounce average of the GKE to filter out the parallel
dynamics, and only describes the trapped electrons (as described in Section 3.1.2). The passing
electrons, which would only enter through the small correction ĝe,1 to the kinetic response can
however carry a substantial parallel current which cannot be neglected. This can be accounted
for by solving the GKE “iteratively”, that is using Equation (49) to obtain an expression for
the parallel dynamics from passing electrons v∥∇∥ĝe,1 in terms of the approximate solution
Equation (51) describing trapped electrons. With this “iterative” approach the J ·E work due
to electrons becomes

Re

[
−e
ˆ

dl

B

ˆ
d3vJ0ϕ̂

∗ (v∥∇∥ + iωde
)
ĝe

]
≈ Re

[
− e

ˆ
dl

B

ˆ
d3vJ0ϕ̂

∗ (v∥∇∥ĝe,1 + iωdeĝe,0
) ]

= Re

[
i
e2

Te

ˆ
dl

B

ˆ
d3v

(
ω − ωT⋆e

)
(ω + iνe)

ω − ωde + iνe
J0ϕ̂

∗J0ϕ̂FMe

]
− Re

[
i
e2

Te

ˆ
dl

B

ˆ
d3v

∣∣∣ϕ̂
∣∣∣
2
J2
0

(
ω − ωT⋆e

)
FMe

]

where the first term will vanish for passing electrons because of the bounce average, but the
second term contains contributions from both passing and trapped electrons. For the potential
energy scattering however, this distinction between passing and trapped electrons does not
matter and retaining only the approximate solution Equation (51) is sufficient. Working out
the Re[· · · ] operator by expanding the complex frequency fraction for each term like before then
gives the total field energy source/sink for electrons as

(
∂Eϕ
∂t

)

electrons

=− 2π
e2

Te

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dv
νe

(
|ω|2 + γνe − ωT⋆eωR

)
+ γωde

(
ωde − ωT⋆e

)

|ω − ωde + iνe|2
v2FMe

∣∣∣ϕ̂J0
∣∣∣
2
Leff,[w]

− e2

Te
γ



ˆ

dl

B

ˆ
d3v

∣∣∣ϕ̂
∣∣∣
2
J2
0FMe − 2π
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dλ
∑

w(λ)

ˆ ∞

vcut

dv
∣∣∣J0ϕ̂

∣∣∣
2
v2FMeLeff,[w]




(Q.13)

where the term is again the isomorphic electron equivalent to the ion term from Equation (Q.12),
and the second term which is absent for the ions describes the non-negligible J∥E∥ work. One
would expect this additional term to be mainly due to passing electrons rather than trapped
electrons which at first sight also give a contribution. Rather by explicitly splitting the velocity
integral of the first term in a passing and trapped contribution it follows that

ˆ
dl

B

ˆ
d3v

∣∣∣ϕ̂
∣∣∣
2
J2
0FMe − 2π

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dv
∣∣∣J0ϕ̂

∣∣∣
2
v2FMeLeff,[w] =

ˆ
dl

B

ˆ
P
d3v

∣∣∣ϕ̂
∣∣∣
2
J2
0FMe + 2π

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dv

{∣∣∣J0ϕ̂
∣∣∣
2
−
∣∣∣J0ϕ̂

∣∣∣
2
}
v2FMeLeff,[w]

where the subscript P has been used to indicate the passing particle region93 and the trapped
particle particles have been described by pitch-angle coordinates as usual. The term in the curly

93Using e.g. pitch-angle velocity coordinates these would be characterised by v ∈ [0,∞), λ ∈ [0, 1/Bmax) and
the integral along the field line would wind completely around the torus. However to keep the notation compact
this has not been written out explicitly.
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brackets is essentially the extension of the usual definition of the variance of J0ϕ̂ along the orbit
of a trapped electron. In case the perturbations are relatively elongated compared w.r.t. the
effective well length k∥Leff [w] ≪ 1 then a trapped particle will hardly experience changes to the
electrostatic potential along its orbit and the contribution from trapped electrons will approach
zero such that the J∥E∥ work is largely due to passing particles as expected. One intricacy is
that the J∥E∥ work is proportional to the growth −γ, which means that it will exert a stabilising
influence to unstable modes and vice versa. Both of these observations match the result from
Manas et al [76] who separately looked to contributions from parallel and perpendicular electron
dynamics to the TEM growth rate in simulations and found that the parallel dynamics were
uniformly stabilising and concentrated in the passing particle region of velocity space.

With all four sources/sinks to the total Helmholtz free energy E = Eδf + Eϕ identified, the
growth rate can be determined by adding the evolution equations Equations (Q.5) and (Q.8) in
an attempt to find the growth rate of TEMs

∂E
∂t

= 2γE = −e
2

Ti

ˆ
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B

ˆ
d3v

2νi

(
|ω|2 − ωRω
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⋆i
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(
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)
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∣∣∣
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2
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(Q.14)

where Equations (Q.10) to (Q.13) were substituted and the all terms with the same denominator
were brought together. There is one major problem with Equation (Q.14): it is impossible to
determine the right-hand side without knowing the growth rate γ! This means that the free
energy transfer cannot be used to assess the growth rate based on the rationale that the free
energy itself E is always positive such that the sign of the source/sinks can be used to determine
the growth rate. Ideally, Equation (Q.14) could be rewritten in the form γ(2E+G) = F where G
contains all term on the right-hand side which are proportional to γ such that the growth could
still be determined, however the terms in G are not strictly positive such that whether there will
be an instability would no longer depend just on the sign of F .

Nevertheless some rudimentary qualitative information about the influence of collisions on TEMs
can be extracted from Equation (Q.14). Reasoning similarly as for the J∥E∥ term which has
a stabilising influence on instabilities, by assuming the growth rate to be γ > 0 the collisions
will have a directly stabilising effect from both the γν2s and 2νs|ω|2 terms in Equation (Q.14)
regardless of the real frequency. The real frequency is however crucial in determining the sign
of the 2νsωRω

T
⋆s terms, which is independent of the growth rate, such that collisions exert a

destabilising effect if ωRω
T
⋆s > 0, which in absence of temperture gradients is exactly the same

criterion as for the collisionless TEM resonance. As the electron collision frequency is typically
higher than the ion collision frequency, this means that collisions could further destabilise an
already resonant TEM. However this analysis only allows to assess the qualitative effects of
each term involving the collision frequency, the net effect of collisions will be determined by the
imbalance among them which is impossible to assess.

R Preliminary work on the variational principle for growth rates

The basis of all variational principles rely on the calculus of variations, which is first briefly
outlined in Appendix R.1 before diving into its application towards finding the generally complex
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mode frequency for gyrokinetic instabilities, with in particular TEMs in Appendix R.2. After
deriving the corresponding Euler-Lagrange equations their consistency issue is highlighted and
some first steps towards their resolvement are taken in Appendix R.3.

R.1 Introduction to variational principle

The following exerpt is based on the classical textbook on the subject by Gelfand and Fomin [225]
on the subject.

Calculus of variations concerns itself with finding extrema of a functional S[y], where most
functionals encountered in physics take the form

S[y] =

ˆ b

a
L(x, y, y′) dx (R.1)

where y′ = dy
dx . Such a funtional S[y] can be considered as “a function of the function y(x)”,

or formally it expresses a mapping of some curve y(x) to the set of real numbers. Much of
functional analysis follows by analogy with the analysis of “normal” functions f(x). In particular
of importance in optimisation problems is to find where Equation (R.1) has an extremum. For
a regular function f(x) this happens when its variation df = 0, and the subsequent analogue
for functionals is that the variation δS = 0. Consider two curves y(x) and ỹ(x) = y(x) + h(x)
with h(x) such that y(x) and ỹ(x) are “neighbouring curves” in function space94 with the same
end-points such that h(a) = h(b) = 0. Then the difference in S[y] between the two curves is

∆S[y] = S[ỹ]− S[y] =

ˆ b

a

∂L
∂y

h(x) +
∂L
∂y′

h′ dx+O(h2, hh′, (h′)2)

where a Taylor expansion of the integrand is made and the first part linear in h(x), h′(x) is
referred to as the variation δS. Integrating the latter by parts gives

δS[y] =

ˆ b

a

[
∂L
∂y

− d

dx

(
∂L
∂y′

)]
h(x) dx+

∂F

∂y′
h(x)

∣∣∣∣
x=b

x=a︸ ︷︷ ︸
=0

where the boundary term vanishes since the two curves ỹ(x), y(x) have the same end points. For
the functional S[y] to have an extremum for the curve y(x) its variation must vanish δS[y] = 0
for any arbitrary choice of h(x), which can only happen if

∂L
∂y

− d

dx

(
∂L
∂y′

)
= 0

which is referred to as the Euler-Lagrange (EL) equation for the functional Equation (R.1),whose
integrand L is then referred to as the Lagrangian density (or just Lagrangian depending on the
field of application). The EL equation is readily generalised for a functional S[y1, y2, · · · , yN ]
depending on multiple curves as

∂L
∂yj

− d

dx

(
∂L
∂y′j

)
= 0 for j = 1, 2, · · · , N. (R.2)

Additional generalisations such as non-fixed end point problems, functionals depending on higher
order derivatives, etc can be found in [225], but Equation (R.2) is already more than sufficient
for its application to gyrokinetics.

94This can be defined by means of a suitable norm depending on the type of functional. For the common
example of Equation (R.1) where the functional depends both on y and its derivative, this means that the
absolute deviation of the curve and their slopes have to stay within some prescribed bound for which S[y] is
continuous.
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R.2 Quadratic form functional for TEMs

As the main difficulty of the trapped electron mode is that the qausi-neutrality condition is in an
equation in both the mode structure ϕ̂ and its integral because of the bounce averaging (called
a Fredholm equation in mathematics). As the main interest is not so much the mode structure
but rather the complex mode frequency, in particular its imaginary part giving the instability
growth rates. This problem can be circumvented by multipyling the quasi-neutrality condition,
in the form of Equation (54) with the approximate solutions for the kinetic responses ĝe, ĝi of
electrons and ions substituted, with ϕ̂∗ and integrating over the field line [43,93], resulting in95

˛
(1 + τ)

∣∣∣ϕ̂
∣∣∣
2dl

B
=

˛
dl

B

ˆ
d3vi

ω − ωT⋆i
ω − ωdi + iνi

J2
0

∣∣∣ϕ̂
∣∣∣
2FMi

n0

+ τ

˛ 1/Bmin

1/Bmax

dλ
∑

w(λ)

ˆ ∞

vcut

dve
ω − ωT⋆e

ω − ωde + iνe

2πv2eFMe

n0

∣∣∣ϕ̂
∣∣∣
2
Leff [w]

(R.3)

where pitch-angle velocity coordinates for the trapped electrons are used for the velocity integra-
tion and the trick of Equation (64) has been used to change the order of integration over pitch
angle and field line. Equation (R.3) is the so called quadratic form and has the benefit that it
depends on integrals of the absolute magnitude of ϕ which are always positive and real-valued,
and the mode frequency ω which is constant w.r.t. all integrals. Although it is still not possible
to solve Equation (R.3) for the mode structure and the mode frequency ω, one could make an
educated guess for the mode structure and calculate what the corresponding mode frequency
would be. In general the resulting guess of the mode frequency will be off from the “true”
mode frequency ω0 belonging to the “true” electrostatic potential ϕ̂0. The idea is now that if
Equation (R.3) can be recast into a functional S[ω, ϕ̂] = 0 and the variational principle can be
used to find stationary solutions δS[ω, ϕ̂] = 0, then the guess for the mode frequency will be a
close proxy to the actual frequency of the TEM. Because Equation (R.3) is quadratic in ϕ̂ but
”linear” in ω this technique will be a double-edged sword as it means any error δ̂ϕ = ϕ̂ − ϕ̂0
made in the initial guess for the mode structure will propagate as δ2 into the error for the guess
of the mode frequency δω = ω − ω0, such that the proxy for the TEM frequency will be either
very good if δ ≪ 1 or very poor if δ > 1. In the latter case of course the EL equations will
not be valid as the assumption in their derivation was that the deviations are small such that
∆S[y] is accurately given by its linear variation δS[y] and the quadratic and higher corrections
are negligible.

To be suitable for the variational principle the functional S[ω, ϕ] has to be written in the form
of Equation (R.1) with a single integration variable. This can be achieved by sacrificing the
symmetry in the trap electron obtained by reversing the order of the pitch-angle and field line
integrals, such that the instruction of multiplying the quasi-neutrality by ϕ̂ and integrating along
the field line not further simplified than by introducing pitch-angle coordinates for d3ve, leading
to the functional

S[ω, ϕ̂] =

˛ [
f(ω, l)

∣∣∣ϕ̂
∣∣∣
2
/B(l)−

{ˆ 1/B(l)

1/Bmax

g(ω, λ, l)ϕ̂(λ) dλ

}
ϕ̂∗/B(l)

]
dl

95Note that is essentially the same as the last step of the perturbative calculation of Section 3.2 except that
the electron response is treated in a non-perturbative way from the get-go.
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where the functions

f(ω, l) = (1 + τ)− h(ω, l)

h(ω, l) =

ˆ
d3vi

ω − ωT⋆i
ω − ωdi + iνi

J2
0

FMi

n0

g(ω, λ, l) =

ˆ ∞

vcut

dve
ω − ωT⋆e

ω − ωde + iνe

2πv2eB(l)√
1− λB(l)

FMe

n0

(R.4)

are defined for convenient shorthand notation and S[ω, ϕ̂] is here liberally interpreted as a
general functional which maps the ”curve” of ϕ̂(l) to a complex number, with the special case
of S[ω, ϕ̂] = 0 corresponding to the solution of Equation (R.3). Thus the Lagrangian density to
use for the variational principle is then recognised as

L(ω, ϕ̂, l) = f(ω, l)ϕ̂ ϕ̂∗/B(l)−
ˆ 1/B(l)

1/Bmax

g(ω, λ, l)ϕ̂ dλ ϕ̂∗/B(l)

which depends on both ϕ̂ and its complex conjugate. Such a situation also typically occurs
in the variational formulation of quantum-mechanics where both the wavefunction ψ and its
complex conjugate enter the Lagrangian density and they are treated as independent variables
for the variations of the EL equations which lead to the Schrödinger equation for ψ and ψ∗

respectively [198, 203, 226]. This is essentially because the wavefunction is a complex number
which can be represented by two independent real numbers; either its real and imaginary parts or
more physically relevant its phase and magnitdue which can be constructed from combinations
of ψ and ψ∗. The same also applies to the Fourier coefficent-like electrostatic potential ϕ̂, such
that actually S[ω, ϕ̂, ϕ̂∗] =

´
L(ω, ϕ̂, ϕ̂∗, l) dl which leads to the following system of EL equations

∂L
∂ω

= 0
∂L
∂ϕ̂

= 0
∂L
∂ϕ̂∗

= 0

as a result of applying Equation (R.2) to a Lagrangian density which does not depend on
any derivative. Technically Equation (R.2) is derived for a real-valued functional which maps
a collection of curves along the real line to a real-valued number, but this can be naturally
extended to functionals which map a curve in the complex plane to a complex number resulting
in the same set of (complex) EL equations [202]. Although the derivatives of L w.r.t. ϕ̂, ω are
straightforward to obtain, the derivative w.r.t. ϕ̂ is less obvious because of the bounce averaging.
Here the quadratic form of this term in Equation (R.3) provides a clever way of calculating the
derivative by (re)writing it as

´ 1/Bmin
1/Bmax

dλ
∑

w(λ) (· · · ) ϕ̂ ϕ̂
∗ ´ l2[w]

l1[w]
dl√

1−λB(l)
=
¸
dl
´ 1/B(l)
1/Bmax

dλ (· · · ) ϕ̂ ϕ̂∗√
1−λB =

¸
dl
´ 1/B(l)
1/Bmax

dλ (· · · ) ϕ̂∗ ϕ̂√
1−λB

where Leff [w] has been written out explicitly in the first line, and the two steps below follow
reversing the order of integration between λ and l again by means of Equation (64), applying

the definition of the bounce average Equation (52) once to the product of ϕ̂Leff [w] and once to
the complex conjugate instead and recognising that during any of the integrals the pitch angle

never exceeds λB ≥ 1 such that ϕ̂
∗
= ϕ̂∗. The fact that these integrals are similar is of course

because
∣∣ϕ
∣∣2Leff [w] ∈ R and must therefore equal its own conjugate. Consequently this means

there are two equivalent Lagrangian densities L1,L2

L1(ω, ϕ̂, ϕ̂
∗, l) = f(ω, l)ϕ̂ ϕ̂∗/B(l)−

ˆ 1/B(l)

1/Bmax

g(ω, λ, l)ϕ̂ dλ ϕ̂∗/B(l)

L2(ω, ϕ̂, ϕ̂
∗, l) = f(ω, l)ϕ̂ ϕ̂∗/B(l)−

ˆ 1/B(l)

1/Bmax

g(ω, λ, l)ϕ̂∗ dλ ϕ̂/B(l)
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which lead to exactly the same functional S[ω, ϕ̂, ϕ̂∗], such that for the EL equations one has the
freedom to pick which Lagrangian density to use for the derivatives96 such that the EL equations
for the variational principle are

∂L
∂ϕ̂

= f(ω, l)ϕ̂∗/B −
ˆ
g(ω, λ, l)ϕ̂∗ dλ /B = 0 (R.5a)

∂L
∂ϕ̂∗

= f(ω, l)ϕ̂/B −
ˆ
g(ω, λ, l)ϕ̂ dλ /B = 0 (R.5b)

∂L
∂ω

=
∂f(ω, l)

∂ω

∣∣∣ϕ̂
∣∣∣
2
/B −

ˆ
∂g(ω, λ, l)

∂ω
ϕ̂ dλ ϕ̂∗/B = 0 (R.5c)

where the boundaries of the pitch-angle integration have been suppressed.

R.3 The consistency issue of the Euler-Lagrange equations

All EL equations of Equation (R.5) take the form of (· · · ) /B = 0 which have to be satisfied
everywhere along the field line where the magnetic field strength remains finite, such that all EL
equations can only be satisfied by (· · · ) = 0. Interestingly the EL equation Equation (R.5b) for
variation w.r.t. ϕ̂∗ reduces exactly to the quasi-neutrality equation for TEMs (Equation (54))
after substituting Equation (R.4), despite the general interpretation of S[ω, ϕ̂, ϕ̂∗] as a general
mapping of some complex curve ϕ̂(l) to a complex number which may be other than zero if the
electrostatic potential does not satisfy quasi-neutrality. One is tempted to interpret this result
that the extrema of S thus correspond to solutions to the quasi-neutrality condition. This is
however problematic as a comparison between Equations (R.5a) and (R.5b) shows that ϕ̂ and
ϕ̂∗ should satisfy exactly the same equation which can only be true if ϕ̂ = ϕ̂∗ because both f, g
are complex-valued. Mathematically this would strictly limit the WKB amplitude functions ϕ̂
to be real-valued since the conjugate should satisfy Im[ϕ̂∗] = − Im[ϕ̂]. Physically however the
interpretation that the extrema of the functional correspond to solutions of the quasi-neutrality
breaks down, since the electrostatic potential is real-valued such that

ϕ(x, t) = (ϕ(x, t))∗ = ϕ̂∗(x) exp(−i(S(x)/δ − ω∗t))

by invoking Equation (28) for the electrostatic potential, which shows that ϕ̂∗ corresponds to
a “mirror image” of ϕ̂ which is going in the opposite direction with a corresponding vector
k∗
⊥ = ∇ϕ/iϕ → −k⊥ and oscillation frequency ω∗

R → −ωR but the same growth rate γ∗ = γ.
Consequently this would introduce sign change to the appropriate diamagnetic frequency ωT⋆s and
magnetic drift frequency ωds as well such that the corresponding quasi-neutrality condition for
ϕ̂∗ would be described by functions f∗(ω, l), g∗(ω, λ, l) other than the ones from Equation (R.4)
which appear in Equation (R.5a).

This prevents a consistent interpretation of extrema of S[ω, ϕ̂, ϕ̂∗] as solutions to the quasi-
neutrality condition since ϕ̂∗ would no longer be the conjugate of ϕ̂ which solves the quasi-
neutrality condition. This problem does not occur in the “normal” variational principle of the
Schrödinger equation because the corresponding Lagrangian density is real-valued and so the
corresponding EL equations are each other’s complex conjugate97 and a consistent interpretation

96This is because one could formulate the EL equations once by expressing S[ω, ϕ̂, ϕ̂∗] in L1 and once by
expressing S in L2 which does not introduce an additional term to the EL equations since L2 still does not
depend on any derivative and arrive at ∂L∞

∂ϕ̂
= 0 = ∂L∈

∂ϕ̂
.

97Formally speaking, in the quantum mechanics the formulation is in terms Hilbert spaces where ⟨ψ| , |ψ⟩ are
used instead and the EL equations are each other’s adjoint in the respective Hilbert space because the Lagrangian
density is a Hermittian operator with real eigenvalues corresponding to energy E of the quantum system [226].
In terms of the TEM problem, the ”eigenvalue” would be the frequency ω which is complex and the Lagrangian
density is not Hermitian because of the reasons argued above.
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as ψ∗ and ψ is possible [203]. This problem also does not arise in previous applications of the
variational principle to TEMs [126, 182] which are done in the collisionless limit (ν → o) at
marginal stability (γ ↓ 0) such that the functions f(ω, l), g(ω, λ, l) become real-valued again and
all the sign changes to the frequencies would neatly cancel, such that the EL equations for ϕ̂∗

and ϕ̂ become each others complex conjugate and a consistent intepretation of ϕ̂∗ as the complex
conjugate is possible again.

In an attempt to remedy this issue, the constraint that S[ω, ϕ̂] = 0 is satisfied for proper
solutions to the quasi-neutrality condition. A similar approach is used in Reference [201] to
use the variational approach for the growth rate in the fluid limit of kinetic-ballooning modes,
where the fact that S = 0 results in an two equations for the real and imaginary part which
could be solved independently. With the quasi-neutrality expressed in the quadratic form of

Equation (R.3) where only |ϕ|2 and
∣∣ϕ
∣∣2 taking the real and imaginary part are straightforward,

resulting in the two equations

˛
(1 + τ) |ϕ|2dl

B
=

˛
Re[h(ω, l)]|ϕ|2dl

B
+ τ

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

Re[G(ω, λ, [w])]
∣∣∣ϕ̂
∣∣∣
2
Leff [w]

0 =

˛
Im[h(ω, l)]|ϕ|2dl

B
+ τ

ˆ 1/Bmin

1/Bmax

dλ
∑

w(λ)

Im[G(ω, λ, [w])]
∣∣∣ϕ̂
∣∣∣
2
Leff [w]

where temporarily G(ω, λ, [w]) =
´∞
vcut

dve
ω−ωT⋆e

ω−ωde[w]+iνe
2πv2eFMe

n0
has been used for short hand-

notation. Focussing on the latter, and reverting the order of integration between pitch-angle
and arc length yields

˛
Im[h(ω, l)]

∣∣∣ϕ̂
∣∣∣
2dl

B
+

˛ ˆ
dλ Im[g(ω, λ, l)]ϕ̂ϕ̂∗ dl /B =

˛ (
Im[h(ω, l)]ϕ̂+

ˆ
dλ Im[g(ω, λ, l)]ϕ̂

)
ϕ̂∗

dl

B
= 0

which can be satisfied only if either ϕ̂∗ = 0 or Im[h(ω, l)]ϕ̂ +
´
dλ Im[g(ω, λ, l)]ϕ̂ = 0. The first

solution would however imply ϕ̂ = 0 = ϕ and corresponds to the trivial solution of no turbulence,
such that the second equation provides the proper constraint. As assessed in Appendix R.2 there

is some freedom in how
∣∣∣ϕ̂
∣∣∣
2
Leff [w] is converted from a sum over wells to an integral along the arc

length of the field line which leads to two equivalent Lagrangian densities corresponding to the
same functional S¿ Completely analogous as shown above where the choice was made to convert

ϕ̂
∗
Leff [w], the condition of Im[h(ω, l)]ϕ̂∗+

´
dλ Im[g(ω, λ, l)]ϕ̂

∗
= 0 would be obtained instead if

ϕ̂Leff [w] were converted, which is just the complex conjugate of the previous constraint. This

should be expected since the fact that ϕ̂ and ϕ̂∗ are each others complex conjugates have been
extensively used to arrive at the constraints.

This constraint can now be applied to the EL equations of Equation (R.5) by complex expanding
the functions f = Re[f ] + i Im[f ] and similarly for g, where from Equation (R.4) it follows that
Im[f ] = − Im[h], which results in

∂L
∂ϕ̂

= Re[f(ω, l)]ϕ̂∗/B −
ˆ

Re[g(ω, λ, l)]ϕ̂∗ dλ /B = 0 (R.6a)

∂L
∂ϕ̂∗

= Re[f(ω, l)]ϕ̂/B −
ˆ

Re[g(ω, λ, l)]ϕ̂ dλ /B = 0 (R.6b)

∂L
∂ω

=
∂ Re[f(ω, l)]

∂ω

∣∣∣ϕ̂
∣∣∣
2
/B −

ˆ
∂ Re[g(ω, λ, l)]

∂ω
ϕ̂ dλ ϕ̂∗/B = 0 (R.6c)
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as a result of the linearity of the integral and derivative operators. At a first glance Equa-
tions (R.6a) and (R.6b) still imply that ϕ̂ = ϕ̂∗ must solve the quasi-neutrality condition.
However, since only Re[f ],Re[g] instead of f, g appear these new constrainted EL equations now
do satsify the equations for ϕ̂ and ϕ̂∗ are each others complex conjugate such that ϕ̂∗ can be
consistently interpreted as the conjugate of ϕ̂. This gives a first improvement which is necessary
to be able to extent the variational principle for TEMs to be applicable to their growth rates
and without neglecting collisions, however the issues with Equation (R.5) are not completely
resolved yet. It remains to be shown in future work that the new EL equations of Equation (R.6)
can still be interpreted as the quasi-neutrality condition for ϕ̂ and ϕ̂∗ as the imaginary imagi-
nation about f, g is lost. Once this has been established some effort can be put to interpreting
what physics Equation (R.6c) represents, e.g. could it already give a simpler equation than the
original quasi-neutrality condition for finding an analytical expression for the growth rate?, and
then finally the variational machinery could be put to work by using trial functions ϕ̂ for the
potential and see how well the resulting real frequency and growth rates do correspond to the
results of simulations to see if the variational method would correspond to a cheaper but good
alternative to gyrokinetic simulations.
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